HCAR1/MCT1 Regulates Tumor Ferroptosis through the Lactate-Mediated AMPK-SCD1 Activity and Its Therapeutic Implications

Ferroptosis is a recently discovered form of programed cell death caused by the metabolically regulated lipid peroxidation and holds promise for cancer treatment, but its regulatory mechanisms remain elusive. In this study, we observe that lactate-rich liver cancer cells exhibit enhanced resistance...

Full description

Saved in:
Bibliographic Details
Published inCell reports (Cambridge) Vol. 33; no. 10; p. 108487
Main Authors Zhao, Youbo, Li, Menghuan, Yao, Xuemei, Fei, Yang, Lin, Zhenghong, Li, Zhengguo, Cai, Kaiyong, Zhao, Yanli, Luo, Zhong
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 08.12.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Ferroptosis is a recently discovered form of programed cell death caused by the metabolically regulated lipid peroxidation and holds promise for cancer treatment, but its regulatory mechanisms remain elusive. In this study, we observe that lactate-rich liver cancer cells exhibit enhanced resistance to the ferroptotic damage induced by common ferroptosis inducers such as Ras-selective lethal small molecule 3 (RSL3) and Erastin and that the monocarboxylate transporter 1 (MCT1)-mediated lactate uptake could promote ATP production in hepatocellular carcinoma (HCC) cells and deactivate the energy sensor AMP-activated protein kinase (AMPK), leading to the upregulation of sterol regulatory element-binding protein 1 (SREBP1) and the downstream stearoyl-coenzyme A (CoA) desaturase-1 (SCD1) to enhance the production of anti-ferroptosis monounsaturated fatty acids. Additionally, blocking the lactate uptake via hydroxycarboxylic acid receptor 1 (HCAR1)/MCT1 inhibition promotes ferroptosis by activating the AMPK to downregulate SCD1, which may synergize with its acyl-coenzyme A synthetase 4 (ACSL4)-promoting effect to amplify the ferroptotic susceptibility. In vitro and in vivo evidence confirms that lactate regulates the ferroptosis of HCC cells and highlights its translational potential as a therapeutic target for ferroptosis-based tumor treatment. [Display omitted] •Lactate uptake promotes ATP production to upregulate SREBP1 and SCD1•Lactate mediates the production of ferroptosis-related lipids in cancer cells•HCAR1/MCT1 inhibition sensitizes cancer cells to ferroptosis induction Zhao et al. discover a lactate-mediated ferroptosis regulatory pathway in liver cancer cells, through which lactate enhances their ferroptosis resistance by upregulating the production of anti-ferroptosis monounsaturated fatty acids. Their findings may provide avenues for the development of ferroptosis-based cancer therapies.
AbstractList Ferroptosis is a recently discovered form of programed cell death caused by the metabolically regulated lipid peroxidation and holds promise for cancer treatment, but its regulatory mechanisms remain elusive. In this study, we observe that lactate-rich liver cancer cells exhibit enhanced resistance to the ferroptotic damage induced by common ferroptosis inducers such as Ras-selective lethal small molecule 3 (RSL3) and Erastin and that the monocarboxylate transporter 1 (MCT1)-mediated lactate uptake could promote ATP production in hepatocellular carcinoma (HCC) cells and deactivate the energy sensor AMP-activated protein kinase (AMPK), leading to the upregulation of sterol regulatory element-binding protein 1 (SREBP1) and the downstream stearoyl-coenzyme A (CoA) desaturase-1 (SCD1) to enhance the production of anti-ferroptosis monounsaturated fatty acids. Additionally, blocking the lactate uptake via hydroxycarboxylic acid receptor 1 (HCAR1)/MCT1 inhibition promotes ferroptosis by activating the AMPK to downregulate SCD1, which may synergize with its acyl-coenzyme A synthetase 4 (ACSL4)-promoting effect to amplify the ferroptotic susceptibility. In vitro and in vivo evidence confirms that lactate regulates the ferroptosis of HCC cells and highlights its translational potential as a therapeutic target for ferroptosis-based tumor treatment. [Display omitted] •Lactate uptake promotes ATP production to upregulate SREBP1 and SCD1•Lactate mediates the production of ferroptosis-related lipids in cancer cells•HCAR1/MCT1 inhibition sensitizes cancer cells to ferroptosis induction Zhao et al. discover a lactate-mediated ferroptosis regulatory pathway in liver cancer cells, through which lactate enhances their ferroptosis resistance by upregulating the production of anti-ferroptosis monounsaturated fatty acids. Their findings may provide avenues for the development of ferroptosis-based cancer therapies.
Ferroptosis is a recently discovered form of programed cell death caused by the metabolically regulated lipid peroxidation and holds promise for cancer treatment, but its regulatory mechanisms remain elusive. In this study, we observe that lactate-rich liver cancer cells exhibit enhanced resistance to the ferroptotic damage induced by common ferroptosis inducers such as Ras-selective lethal small molecule 3 (RSL3) and Erastin and that the monocarboxylate transporter 1 (MCT1)-mediated lactate uptake could promote ATP production in hepatocellular carcinoma (HCC) cells and deactivate the energy sensor AMP-activated protein kinase (AMPK), leading to the upregulation of sterol regulatory element-binding protein 1 (SREBP1) and the downstream stearoyl-coenzyme A (CoA) desaturase-1 (SCD1) to enhance the production of anti-ferroptosis monounsaturated fatty acids. Additionally, blocking the lactate uptake via hydroxycarboxylic acid receptor 1 (HCAR1)/MCT1 inhibition promotes ferroptosis by activating the AMPK to downregulate SCD1, which may synergize with its acyl-coenzyme A synthetase 4 (ACSL4)-promoting effect to amplify the ferroptotic susceptibility. In vitro and in vivo evidence confirms that lactate regulates the ferroptosis of HCC cells and highlights its translational potential as a therapeutic target for ferroptosis-based tumor treatment.Ferroptosis is a recently discovered form of programed cell death caused by the metabolically regulated lipid peroxidation and holds promise for cancer treatment, but its regulatory mechanisms remain elusive. In this study, we observe that lactate-rich liver cancer cells exhibit enhanced resistance to the ferroptotic damage induced by common ferroptosis inducers such as Ras-selective lethal small molecule 3 (RSL3) and Erastin and that the monocarboxylate transporter 1 (MCT1)-mediated lactate uptake could promote ATP production in hepatocellular carcinoma (HCC) cells and deactivate the energy sensor AMP-activated protein kinase (AMPK), leading to the upregulation of sterol regulatory element-binding protein 1 (SREBP1) and the downstream stearoyl-coenzyme A (CoA) desaturase-1 (SCD1) to enhance the production of anti-ferroptosis monounsaturated fatty acids. Additionally, blocking the lactate uptake via hydroxycarboxylic acid receptor 1 (HCAR1)/MCT1 inhibition promotes ferroptosis by activating the AMPK to downregulate SCD1, which may synergize with its acyl-coenzyme A synthetase 4 (ACSL4)-promoting effect to amplify the ferroptotic susceptibility. In vitro and in vivo evidence confirms that lactate regulates the ferroptosis of HCC cells and highlights its translational potential as a therapeutic target for ferroptosis-based tumor treatment.
Ferroptosis is a recently discovered form of programed cell death caused by the metabolically regulated lipid peroxidation and holds promise for cancer treatment, but its regulatory mechanisms remain elusive. In this study, we observe that lactate-rich liver cancer cells exhibit enhanced resistance to the ferroptotic damage induced by common ferroptosis inducers such as Ras-selective lethal small molecule 3 (RSL3) and Erastin and that the monocarboxylate transporter 1 (MCT1)-mediated lactate uptake could promote ATP production in hepatocellular carcinoma (HCC) cells and deactivate the energy sensor AMP-activated protein kinase (AMPK), leading to the upregulation of sterol regulatory element-binding protein 1 (SREBP1) and the downstream stearoyl-coenzyme A (CoA) desaturase-1 (SCD1) to enhance the production of anti-ferroptosis monounsaturated fatty acids. Additionally, blocking the lactate uptake via hydroxycarboxylic acid receptor 1 (HCAR1)/MCT1 inhibition promotes ferroptosis by activating the AMPK to downregulate SCD1, which may synergize with its acyl-coenzyme A synthetase 4 (ACSL4)-promoting effect to amplify the ferroptotic susceptibility. In vitro and in vivo evidence confirms that lactate regulates the ferroptosis of HCC cells and highlights its translational potential as a therapeutic target for ferroptosis-based tumor treatment.
ArticleNumber 108487
Author Fei, Yang
Li, Zhengguo
Cai, Kaiyong
Li, Menghuan
Zhao, Youbo
Luo, Zhong
Yao, Xuemei
Lin, Zhenghong
Zhao, Yanli
Author_xml – sequence: 1
  givenname: Youbo
  surname: Zhao
  fullname: Zhao, Youbo
  organization: School of Life Science, Chongqing University, Chongqing 400044, China
– sequence: 2
  givenname: Menghuan
  surname: Li
  fullname: Li, Menghuan
  organization: School of Life Science, Chongqing University, Chongqing 400044, China
– sequence: 3
  givenname: Xuemei
  surname: Yao
  fullname: Yao, Xuemei
  organization: School of Life Science, Chongqing University, Chongqing 400044, China
– sequence: 4
  givenname: Yang
  surname: Fei
  fullname: Fei, Yang
  organization: School of Life Science, Chongqing University, Chongqing 400044, China
– sequence: 5
  givenname: Zhenghong
  surname: Lin
  fullname: Lin, Zhenghong
  organization: School of Life Science, Chongqing University, Chongqing 400044, China
– sequence: 6
  givenname: Zhengguo
  surname: Li
  fullname: Li, Zhengguo
  organization: School of Life Science, Chongqing University, Chongqing 400044, China
– sequence: 7
  givenname: Kaiyong
  surname: Cai
  fullname: Cai, Kaiyong
  organization: Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
– sequence: 8
  givenname: Yanli
  surname: Zhao
  fullname: Zhao, Yanli
  organization: Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
– sequence: 9
  givenname: Zhong
  orcidid: 0000-0002-9019-3314
  surname: Luo
  fullname: Luo, Zhong
  email: luozhong918@cqu.edu.cn
  organization: School of Life Science, Chongqing University, Chongqing 400044, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33296645$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1r3DAYhEVJaNI0_6AUHXvxRvKHZPVQWNykWbpLS7I5C1l-ndViW64kJ-TfV1snUHpIdRkhnhnQzDt0NNgBEPpAyYISyi72Cw2dg3GRkvTwVOYlf4NO05TShKY5P_rrfoLOvd-TeBihVORv0UmWpYKxvDhFj9fV8oZebKotxTdwP3UqgMfbqbcOX4FzdgzWG4_DztnpfhcV8FrpELFkA42J2uDl5uf35Lb6SvFSB_NgwhNWQ4NXISbtwKkRpmA0XvVjZ7QKxg7-PTpuVefh_FnP0N3V5ba6TtY_vq2q5TrROc9DQttC1Ew0omSMcUZ5m7aUCNbyvC4VL2pFoWyykkMKomyKmpakhqJQNVFciSY7Q5_m3NHZXxP4IHvjY3edGsBOXqY5E4TTTPCIfnxGp7qHRo7O9Mo9yZeyIvB5BrSz3jtopTbhz3eCU6aTlMjDOHIv53HkYRw5jxPN-T_ml_z_2L7MNoglPRhw0msDg47VO9BBNta8HvAbnCCpLg
CitedBy_id crossref_primary_10_1016_j_celrep_2023_112945
crossref_primary_10_1186_s40364_023_00507_3
crossref_primary_10_1002_adbi_202100396
crossref_primary_10_1038_s41589_023_01512_1
crossref_primary_10_1016_j_jclepro_2023_137308
crossref_primary_10_1155_2021_6654887
crossref_primary_10_1016_j_micpath_2024_107261
crossref_primary_10_1016_j_redox_2024_103479
crossref_primary_10_3390_cancers15010005
crossref_primary_10_62347_SIGP9279
crossref_primary_10_1038_s41580_024_00703_5
crossref_primary_10_1007_s12274_022_4620_z
crossref_primary_10_1016_j_freeradbiomed_2022_03_002
crossref_primary_10_1016_j_phymed_2024_155365
crossref_primary_10_3389_fphar_2023_1122065
crossref_primary_10_3390_ijms251910855
crossref_primary_10_1016_j_jshs_2025_101032
crossref_primary_10_3389_fimmu_2024_1440309
crossref_primary_10_7554_eLife_89136
crossref_primary_10_3389_fimmu_2024_1349867
crossref_primary_10_12677_acm_2024_1441260
crossref_primary_10_1038_s41392_022_01151_3
crossref_primary_10_4110_in_2025_25_e6
crossref_primary_10_1002_adhm_202101702
crossref_primary_10_1007_s10753_022_01637_w
crossref_primary_10_1016_j_metabol_2024_155953
crossref_primary_10_1002_cai2_7
crossref_primary_10_1016_j_freeradbiomed_2024_01_041
crossref_primary_10_3389_fcell_2022_845232
crossref_primary_10_1111_jcmm_17997
crossref_primary_10_1038_s41418_025_01467_x
crossref_primary_10_1152_ajpcell_00346_2023
crossref_primary_10_2147_DDDT_S485755
crossref_primary_10_1155_2022_7686956
crossref_primary_10_3390_cancers14235811
crossref_primary_10_1002_advs_202303894
crossref_primary_10_1007_s13258_024_01554_2
crossref_primary_10_3390_molecules28031453
crossref_primary_10_1007_s11010_023_04893_y
crossref_primary_10_1016_j_jma_2023_02_007
crossref_primary_10_1007_s12672_024_00954_w
crossref_primary_10_1016_j_canlet_2024_217426
crossref_primary_10_1515_med_2023_0845
crossref_primary_10_3389_fphys_2022_1038421
crossref_primary_10_1002_smll_202100130
crossref_primary_10_1080_15476286_2021_1974208
crossref_primary_10_1016_j_biopha_2022_113917
crossref_primary_10_1002_mc_23647
crossref_primary_10_3389_fimmu_2023_1137107
crossref_primary_10_3389_fphar_2025_1533464
crossref_primary_10_1002_smll_202310342
crossref_primary_10_1007_s12072_023_10593_y
crossref_primary_10_1186_s12920_024_01867_x
crossref_primary_10_1089_ars_2022_0203
crossref_primary_10_1038_s41417_022_00521_x
crossref_primary_10_3390_cancers16244178
crossref_primary_10_1016_j_celrep_2021_108767
crossref_primary_10_3389_fncel_2024_1464169
crossref_primary_10_1016_j_bcp_2022_115374
crossref_primary_10_1016_j_cellsig_2023_110791
crossref_primary_10_1124_molpharm_122_000607
crossref_primary_10_3389_fendo_2023_1319969
crossref_primary_10_2139_ssrn_4064682
crossref_primary_10_3390_ijms22168898
crossref_primary_10_3390_biology12060864
crossref_primary_10_1016_j_canlet_2024_216837
crossref_primary_10_1186_s12964_023_01350_7
crossref_primary_10_1016_j_ajps_2024_100939
crossref_primary_10_1016_j_ajpath_2024_07_005
crossref_primary_10_31083_j_fbl2812332
crossref_primary_10_1016_j_ccell_2024_03_011
crossref_primary_10_1016_j_tcb_2024_08_006
crossref_primary_10_1016_j_mito_2024_101974
crossref_primary_10_1021_acsnano_2c11923
crossref_primary_10_1016_j_jconrel_2022_09_051
crossref_primary_10_1021_acsnano_3c04632
crossref_primary_10_1038_s41419_023_05756_6
crossref_primary_10_3389_fphar_2022_937413
crossref_primary_10_1083_jcb_202208103
crossref_primary_10_1155_2022_3425841
crossref_primary_10_3389_fonc_2023_1155511
crossref_primary_10_1111_crj_13675
crossref_primary_10_1007_s11427_023_2352_9
crossref_primary_10_1016_j_biopha_2023_115251
crossref_primary_10_1002_cbf_3961
crossref_primary_10_1038_s41418_022_00941_0
crossref_primary_10_1016_j_ejmech_2024_116290
crossref_primary_10_3389_fonc_2022_871798
crossref_primary_10_1155_2022_3205040
crossref_primary_10_1016_j_molmet_2022_101470
crossref_primary_10_1186_s40364_024_00645_2
crossref_primary_10_3389_fgene_2022_955225
crossref_primary_10_1016_j_meatsci_2024_109692
crossref_primary_10_1186_s12935_021_02264_5
crossref_primary_10_3389_fcell_2023_1219840
crossref_primary_10_1002_jcb_30687
crossref_primary_10_1016_j_heliyon_2024_e32288
crossref_primary_10_3748_wjg_v29_i16_2433
crossref_primary_10_1002_mc_23795
crossref_primary_10_1177_09731296241251957
crossref_primary_10_1007_s12274_024_6602_9
crossref_primary_10_1155_2022_2985249
crossref_primary_10_3724_abbs_2024221
crossref_primary_10_1016_j_yexmp_2025_104957
crossref_primary_10_3389_fcell_2021_739392
crossref_primary_10_1002_adtp_202200254
crossref_primary_10_1111_eci_14131
crossref_primary_10_3390_antiox11050921
crossref_primary_10_1002_tox_23871
crossref_primary_10_1016_j_freeradbiomed_2023_07_036
crossref_primary_10_1038_s41388_021_01908_0
crossref_primary_10_1002_jcb_30458
crossref_primary_10_1002_adfm_202312308
crossref_primary_10_1002_1873_3468_14441
crossref_primary_10_1016_j_snb_2022_131937
crossref_primary_10_1016_j_jbc_2022_101617
crossref_primary_10_1016_j_semcancer_2022_02_004
crossref_primary_10_1177_09603271221142818
crossref_primary_10_3389_fonc_2022_1024789
crossref_primary_10_1016_j_bbcan_2022_188848
crossref_primary_10_1016_j_isci_2025_111864
crossref_primary_10_32604_or_2024_049757
crossref_primary_10_2147_JIR_S385977
crossref_primary_10_1038_s41467_025_56711_2
crossref_primary_10_3389_fmed_2023_1084479
crossref_primary_10_1002_cam4_6623
crossref_primary_10_1002_cbin_11975
crossref_primary_10_3390_cancers14215468
crossref_primary_10_1002_cnma_202300611
crossref_primary_10_1159_000540180
crossref_primary_10_1097_CM9_0000000000002533
crossref_primary_10_1089_ars_2022_0013
crossref_primary_10_1016_j_jstrokecerebrovasdis_2024_107736
crossref_primary_10_1016_j_cej_2024_149518
crossref_primary_10_1016_j_tcb_2023_05_003
crossref_primary_10_3390_cancers15010087
crossref_primary_10_1016_j_bbrc_2025_151552
crossref_primary_10_1016_j_gendis_2022_04_011
crossref_primary_10_7554_eLife_89136_3
crossref_primary_10_1007_s10555_023_10156_5
crossref_primary_10_1007_s10620_024_08416_7
crossref_primary_10_1016_j_ejphar_2024_176803
crossref_primary_10_1016_j_ymthe_2021_03_022
crossref_primary_10_1055_s_0041_1731709
crossref_primary_10_1039_D2NA00719C
crossref_primary_10_1111_cns_70189
crossref_primary_10_1186_s40168_023_01659_y
crossref_primary_10_3892_ijmm_2024_5480
crossref_primary_10_1152_physrev_00031_2024
crossref_primary_10_1016_j_yexcr_2025_114474
crossref_primary_10_1038_s41419_023_06045_y
crossref_primary_10_3389_fcell_2024_1423869
crossref_primary_10_1080_1061186X_2022_2071909
crossref_primary_10_3748_wjg_v29_i4_616
crossref_primary_10_1186_s12967_024_05543_7
crossref_primary_10_1002_wnan_2010
crossref_primary_10_1186_s12964_024_01762_z
crossref_primary_10_12677_hjbm_2024_142017
crossref_primary_10_2147_JIR_S432111
crossref_primary_10_1038_s41418_021_00859_z
crossref_primary_10_3390_cells12060867
crossref_primary_10_1016_j_canlet_2023_216147
crossref_primary_10_1186_s13046_024_02943_x
crossref_primary_10_1016_j_intimp_2024_112461
crossref_primary_10_1016_j_procbio_2024_04_004
crossref_primary_10_1016_j_smaim_2022_01_008
crossref_primary_10_3389_fimmu_2023_1297886
crossref_primary_10_1016_j_microc_2024_111098
crossref_primary_10_1002_advs_202100997
crossref_primary_10_1016_j_isci_2023_108560
crossref_primary_10_3389_fimmu_2023_1284344
crossref_primary_10_1002_cac2_12250
crossref_primary_10_1016_j_biopha_2024_117406
crossref_primary_10_3390_cancers14071826
crossref_primary_10_2147_JHC_S446313
crossref_primary_10_20517_cdr_2024_151
crossref_primary_10_3390_w16202930
crossref_primary_10_3724_zdxbyxb_2024_0117
crossref_primary_10_1186_s13046_023_02925_5
crossref_primary_10_1002_ctm2_752
crossref_primary_10_3390_life11030222
crossref_primary_10_1084_jem_20210518
crossref_primary_10_3389_fgene_2022_897683
crossref_primary_10_1002_jcp_31290
crossref_primary_10_3390_cancers13205250
crossref_primary_10_3390_cancers15051417
crossref_primary_10_1002_admt_202201643
crossref_primary_10_26599_FSHW_2023_9250035
crossref_primary_10_1136_jitc_2021_003430
crossref_primary_10_1016_j_lfs_2024_122720
crossref_primary_10_1002_smll_202102269
crossref_primary_10_1371_journal_pone_0302050
crossref_primary_10_2147_JHC_S469449
crossref_primary_10_3892_ijo_2024_5680
crossref_primary_10_1016_j_ejphar_2023_175913
crossref_primary_10_11569_wcjd_v32_i10_699
crossref_primary_10_3390_ijms24087463
crossref_primary_10_3390_cancers15153861
crossref_primary_10_1097_FJC_0000000000001328
crossref_primary_10_1016_j_abb_2025_110352
crossref_primary_10_1007_s10565_024_09853_w
crossref_primary_10_1016_j_procbio_2023_03_012
crossref_primary_10_3389_fimmu_2022_1038650
crossref_primary_10_1016_j_apsb_2021_09_019
crossref_primary_10_1016_j_redox_2025_103553
crossref_primary_10_1016_j_biopha_2023_116074
crossref_primary_10_1016_j_prp_2024_155567
crossref_primary_10_2147_JHC_S325593
crossref_primary_10_1016_j_phrs_2025_107674
crossref_primary_10_1080_08923973_2022_2072328
crossref_primary_10_1038_s41419_022_05257_y
crossref_primary_10_3389_fcell_2021_690796
crossref_primary_10_3390_ijms25179141
crossref_primary_10_1080_2162402X_2024_2320951
crossref_primary_10_1007_s00203_024_04013_4
crossref_primary_10_1016_j_ejphar_2024_176965
crossref_primary_10_1002_adfm_202411247
crossref_primary_10_1002_cac2_12519
crossref_primary_10_3389_fphar_2022_926802
crossref_primary_10_1016_j_semcancer_2022_10_009
crossref_primary_10_3389_fmolb_2022_947208
crossref_primary_10_1016_j_cellsig_2024_111239
crossref_primary_10_1039_D1TB01289D
crossref_primary_10_3389_fcell_2021_809457
crossref_primary_10_1021_acsami_4c21890
crossref_primary_10_1021_acsnano_4c05084
crossref_primary_10_1093_bib_bbae223
crossref_primary_10_3389_fcell_2022_1069555
crossref_primary_10_1038_s41598_025_88538_8
crossref_primary_10_26508_lsa_202503226
crossref_primary_10_1016_j_biopha_2022_113279
crossref_primary_10_1111_jcmm_18377
crossref_primary_10_1097_HEP_0000000000000390
crossref_primary_10_1080_23723556_2021_1901558
crossref_primary_10_2147_IJN_S343361
crossref_primary_10_1017_S0954422421000226
crossref_primary_10_1038_s41598_025_91237_z
crossref_primary_10_1016_j_bcp_2021_114584
crossref_primary_10_1016_j_ebiom_2024_105088
crossref_primary_10_1002_jcp_31122
crossref_primary_10_1038_s41419_023_06057_8
crossref_primary_10_1038_s41388_024_03020_5
crossref_primary_10_1016_j_critrevonc_2024_104349
crossref_primary_10_3390_metabo11110777
crossref_primary_10_1039_D2EW00853J
crossref_primary_10_3389_fonc_2021_796152
crossref_primary_10_1002_lci2_68
crossref_primary_10_1016_j_jgg_2022_06_002
crossref_primary_10_1007_s10495_022_01795_0
crossref_primary_10_1038_s41418_024_01414_2
crossref_primary_10_3390_biom14111407
crossref_primary_10_3389_fcell_2022_873029
crossref_primary_10_1002_advs_202301300
crossref_primary_10_1007_s12272_023_01431_8
crossref_primary_10_1038_s41420_022_01044_y
crossref_primary_10_3389_fonc_2025_1553722
Cites_doi 10.1158/2326-6066.CIR-18-0481
10.1083/jcb.201701136
10.1038/s41388-019-0805-7
10.1016/j.chembiol.2019.03.001
10.1016/j.cell.2017.09.019
10.1038/onc.2017.188
10.1016/j.bbadis.2019.165576
10.1038/nchembio.2172
10.1016/j.freeradbiomed.2018.10.426
10.1158/0008-5472.CAN-14-0319
10.3322/caac.21590
10.1093/nar/28.1.27
10.1002/adma.201704007
10.1093/nar/gkz430
10.1016/j.cmet.2019.10.004
10.3322/caac.21338
10.1002/adma.201904197
10.1038/s41586-019-1170-y
10.1038/s41556-018-0178-0
10.1038/nchembio.2239
10.1038/s41388-020-1216-5
10.1016/j.cmet.2017.11.005
10.1073/pnas.1821022116
10.1158/0008-5472.CAN-19-0369
10.1016/j.tibs.2018.10.011
10.1016/j.cell.2018.01.009
10.1016/j.ccell.2019.04.002
10.1038/s41586-019-1705-2
10.1016/j.cmet.2019.08.013
10.1126/science.aaw9872
10.1146/annurev-cancerbio-030518-055844
10.1038/s41586-019-1847-2
10.1038/s41388-020-1235-2
10.1038/nature24057
10.1016/j.cell.2017.11.048
10.1016/j.stem.2016.11.004
10.1038/s41418-019-0299-4
10.1016/j.jhep.2017.06.015
10.1038/s41419-019-1877-6
10.1038/s41575-019-0229-4
10.1038/s41556-018-0209-x
10.1038/s41586-019-1707-0
10.1038/s41467-019-09152-7
10.1158/0008-5472.CAN-18-3726
10.1038/s41589-019-0408-1
10.1038/s41568-019-0149-1
10.1016/j.chembiol.2018.11.016
10.1016/j.cub.2018.05.094
10.1016/j.tcb.2020.02.009
10.1016/j.chembiol.2020.03.015
10.1038/s41589-018-0031-6
10.1038/s41467-019-08585-4
10.1016/j.pharmthera.2019.107451
ContentType Journal Article
Copyright 2020
Copyright © 2020. Published by Elsevier Inc.
Copyright_xml – notice: 2020
– notice: Copyright © 2020. Published by Elsevier Inc.
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.celrep.2020.108487
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2211-1247
ExternalDocumentID 33296645
10_1016_j_celrep_2020_108487
S2211124720314765
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID 0R~
0SF
4.4
457
53G
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKRW
AALRI
AAUCE
AAXUO
ABMAC
ABMWF
ACGFO
ACGFS
ADBBV
ADEZE
AENEX
AEXQZ
AFTJW
AGHFR
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BAWUL
BCNDV
DIK
EBS
EJD
FCP
FDB
FRP
GROUPED_DOAJ
GX1
IXB
KQ8
M41
M48
NCXOZ
O-L
O9-
OK1
RCE
ROL
SSZ
AAMRU
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
HZ~
IPNFZ
RIG
NPM
7X8
ID FETCH-LOGICAL-c474t-1f59b69d986667617f2f1096f74b8a75ba1e8d387e2e98d5b180be55ab0a7a9d3
IEDL.DBID M48
ISSN 2211-1247
IngestDate Fri Jul 11 17:01:05 EDT 2025
Thu Apr 03 07:06:19 EDT 2025
Thu Apr 24 23:13:03 EDT 2025
Tue Jul 01 02:59:14 EDT 2025
Tue Jul 25 21:03:20 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords ferroptosis
tumor microenvironment
lactate
tumor therapy
MCT1
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2020. Published by Elsevier Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-1f59b69d986667617f2f1096f74b8a75ba1e8d387e2e98d5b180be55ab0a7a9d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9019-3314
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S2211124720314765
PMID 33296645
PQID 2469071397
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2469071397
pubmed_primary_33296645
crossref_citationtrail_10_1016_j_celrep_2020_108487
crossref_primary_10_1016_j_celrep_2020_108487
elsevier_sciencedirect_doi_10_1016_j_celrep_2020_108487
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-12-08
PublicationDateYYYYMMDD 2020-12-08
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-08
  day: 08
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell reports (Cambridge)
PublicationTitleAlternate Cell Rep
PublicationYear 2020
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References García-Cañaveras, Chen, Rabinowitz (bib19) 2019; 79
Siegel, Miller, Jemal (bib42) 2020; 70
Badgley, Kremer, Maurer, DelGiorno, Lee, Purohit, Sagalovskiy, Ma, Kapilian, Firl (bib1) 2020; 368
Chen, Mahieu, Huang, Singh, Crawford, Johnson, Gross, Schaefer, Patti (bib8) 2016; 12
Ippolito, Morandi, Giannoni, Chiarugi (bib27) 2019; 44
Liang, Zhang, Yang, Dong (bib33) 2019; 31
Brown, Bhattacharjee, Ramachandran, Sivaprakasam, Ristic, Sikder, Ganapathy (bib6) 2020; 39
Han, Hu, Cui, Liu, Ma, Xue, Liu, Zhang, Zhao, Yu (bib21) 2019; 10
Kanehisa, Goto (bib54) 2000; 28
Dixon, Stockwell (bib12) 2019; 3
Zhang, Shi, Liu, Feng, Gong, Koppula, Sirohi, Li, Wei, Lee (bib52) 2018; 20
Xie, Zhu, He, Zhang, Zhang, Wang, Luo, Peng, Cheng, Gao (bib51) 2020; 1866
Faubert, Li, Cai, Hensley, Kim, Zacharias, Yang, Do, Doucette, Burguete (bib16) 2017; 171
Chen, Zheng, Baade, Zhang, Zeng, Bray, Jemal, Yu, He (bib7) 2016; 66
Tauffenberger, Fiumelli, Almustafa, Magistretti (bib48) 2019; 10
Brown, Amante, Goel, Mercurio (bib5) 2017; 216
Roland, Arumugam, Deng, Liu, Philip, Gomez, Burns, Ramachandran, Wang, Cruz-Monserrate, Logsdon (bib39) 2014; 74
Hassannia, Vandenabeele, Vanden Berghe (bib23) 2019; 35
Su, Chen, Yao, Liu, Yu, Lao, Wang, Luo, Xing, Chen (bib45) 2018; 172
Tasdogan, Faubert, Ramesh, Ubellacker, Shen, Solmonson, Murphy, Gu, Gu, Martin (bib47) 2020; 577
Pucino, Certo, Bulusu, Cucchi, Goldmann, Pontarini, Haas, Smith, Headland, Blighe (bib38) 2019; 30
Wang, Green, Choi, Gijón, Kennedy, Johnson, Liao, Lang, Kryczek, Sell (bib50) 2019; 569
Song, Zhu, Chen, Hou, Wen, Liu, Xie, Liu, Klionsky, Kroemer (bib43) 2018; 28
Magtanong, Ko, To, Cao, Forcina, Tarangelo, Ward, Cho, Patti, Nomura (bib35) 2019; 26
Shen, Song, Yung, Zhou, Wu, Chen (bib40) 2018; 30
Hui, Ghergurovich, Morscher, Jang, Teng, Lu, Esparza, Reya, Le Zhan, Yanxiang Guo (bib25) 2017; 551
Tesfay, Paul, Konstorum, Deng, Cox, Lee, Furdui, Hegde, Torti, Torti (bib49) 2019; 79
Doll, Freitas, Shah, Aldrovandi, da Silva, Ingold, Goya Grocin, Xavier da Silva, Panzilius, Scheel (bib14) 2019; 575
Bersuker, Hendricks, Li, Magtanong, Ford, Tang, Roberts, Tong, Maimone, Zoncu (bib2) 2019; 575
Stockwell, Jiang, Gu (bib44) 2020; 30
Li, Feng, Wang, Zhao, Sun, Tian, Liu, Zhang, Ning, Yao, Tian (bib32) 2019; 26
Murphy (bib37) 2018; 20
Fang, Wang, Han, Xie, Yang, Wei, Gu, Gao, Zhu, Yin (bib15) 2019; 116
Doll, Proneth, Tyurina, Panzilius, Kobayashi, Ingold, Irmler, Beckers, Aichler, Walch (bib13) 2017; 13
Tang, Kang, Li, Chen, Zhang (bib46) 2019; 47
Zou, Schreiber (bib53) 2020; 27
Ma, Lau, Leung, Lo, Ho, Cheng, Ma, Lin, Copland, Ding (bib34) 2017; 67
Martínez-Reyes, Chandel (bib36) 2017; 26
Brown, Ganapathy (bib4) 2020; 206
Feng, Yang, Zhang, Wei, Zhu, Zhu, Yang, Cao, Wang, Wu (bib17) 2017; 36
Craig, von Felden, Garcia-Lezana, Sarcognato, Villanueva (bib10) 2020; 17
Ingold, Berndt, Schmitt, Doll, Poschmann, Buday, Roveri, Peng, Porto Freitas, Seibt (bib26) 2018; 172
Kim, DeBerardinis (bib30) 2019; 30
Bertolio, Napoletano, Mano, Maurer-Stroh, Fantuz, Zannini, Bicciato, Sorrentino, Del Sal (bib3) 2019; 10
Shin, Kim, Lee, Roh (bib41) 2018; 129
Friedmann Angeli, Krysko, Conrad (bib18) 2019; 19
Huang, Feng, Wang, Li, Sun, Wilhelm, Huang, Vo, Sumer, Gao (bib24) 2020
Gaschler, Andia, Liu, Csuka, Hurlocker, Vaiana, Heindel, Zuckerman, Bos, Reznik (bib20) 2018; 14
Harmon, Robinson, Hand, Almuaili, Mentor, Houlihan, Hoti, Lynch, Geoghegan, O’Farrelly (bib22) 2019; 7
Das (bib11) 2019; 26
Ippolito, Morandi, Taddei, Parri, Comito, Iscaro, Raspollini, Magherini, Rapizzi, Masquelier (bib28) 2019; 38
Conrad, Pratt (bib9) 2019; 15
Li, Condello, Thomes-Pepin, Ma, Xia, Hurley, Matei, Cheng (bib31) 2017; 20
Khan, Valli, Lam, Scott, Murray, Hanssen, Eden, Gamble, Pandher, Flemming (bib29) 2020; 39
Kanehisa (10.1016/j.celrep.2020.108487_bib54) 2000; 28
Roland (10.1016/j.celrep.2020.108487_bib39) 2014; 74
Hassannia (10.1016/j.celrep.2020.108487_bib23) 2019; 35
Zhang (10.1016/j.celrep.2020.108487_bib52) 2018; 20
Fang (10.1016/j.celrep.2020.108487_bib15) 2019; 116
Kim (10.1016/j.celrep.2020.108487_bib30) 2019; 30
Chen (10.1016/j.celrep.2020.108487_bib7) 2016; 66
Doll (10.1016/j.celrep.2020.108487_bib13) 2017; 13
Khan (10.1016/j.celrep.2020.108487_bib29) 2020; 39
Friedmann Angeli (10.1016/j.celrep.2020.108487_bib18) 2019; 19
Brown (10.1016/j.celrep.2020.108487_bib5) 2017; 216
Doll (10.1016/j.celrep.2020.108487_bib14) 2019; 575
Su (10.1016/j.celrep.2020.108487_bib45) 2018; 172
Huang (10.1016/j.celrep.2020.108487_bib24) 2020
Tang (10.1016/j.celrep.2020.108487_bib46) 2019; 47
Gaschler (10.1016/j.celrep.2020.108487_bib20) 2018; 14
Li (10.1016/j.celrep.2020.108487_bib31) 2017; 20
Dixon (10.1016/j.celrep.2020.108487_bib12) 2019; 3
Han (10.1016/j.celrep.2020.108487_bib21) 2019; 10
Das (10.1016/j.celrep.2020.108487_bib11) 2019; 26
Tasdogan (10.1016/j.celrep.2020.108487_bib47) 2020; 577
Zou (10.1016/j.celrep.2020.108487_bib53) 2020; 27
Tauffenberger (10.1016/j.celrep.2020.108487_bib48) 2019; 10
Badgley (10.1016/j.celrep.2020.108487_bib1) 2020; 368
Martínez-Reyes (10.1016/j.celrep.2020.108487_bib36) 2017; 26
Xie (10.1016/j.celrep.2020.108487_bib51) 2020; 1866
Shin (10.1016/j.celrep.2020.108487_bib41) 2018; 129
Feng (10.1016/j.celrep.2020.108487_bib17) 2017; 36
Liang (10.1016/j.celrep.2020.108487_bib33) 2019; 31
Stockwell (10.1016/j.celrep.2020.108487_bib44) 2020; 30
Faubert (10.1016/j.celrep.2020.108487_bib16) 2017; 171
Bertolio (10.1016/j.celrep.2020.108487_bib3) 2019; 10
Harmon (10.1016/j.celrep.2020.108487_bib22) 2019; 7
Ippolito (10.1016/j.celrep.2020.108487_bib27) 2019; 44
Wang (10.1016/j.celrep.2020.108487_bib50) 2019; 569
Bersuker (10.1016/j.celrep.2020.108487_bib2) 2019; 575
García-Cañaveras (10.1016/j.celrep.2020.108487_bib19) 2019; 79
Pucino (10.1016/j.celrep.2020.108487_bib38) 2019; 30
Brown (10.1016/j.celrep.2020.108487_bib6) 2020; 39
Song (10.1016/j.celrep.2020.108487_bib43) 2018; 28
Craig (10.1016/j.celrep.2020.108487_bib10) 2020; 17
Hui (10.1016/j.celrep.2020.108487_bib25) 2017; 551
Shen (10.1016/j.celrep.2020.108487_bib40) 2018; 30
Chen (10.1016/j.celrep.2020.108487_bib8) 2016; 12
Brown (10.1016/j.celrep.2020.108487_bib4) 2020; 206
Ingold (10.1016/j.celrep.2020.108487_bib26) 2018; 172
Siegel (10.1016/j.celrep.2020.108487_bib42) 2020; 70
Li (10.1016/j.celrep.2020.108487_bib32) 2019; 26
Murphy (10.1016/j.celrep.2020.108487_bib37) 2018; 20
Magtanong (10.1016/j.celrep.2020.108487_bib35) 2019; 26
Conrad (10.1016/j.celrep.2020.108487_bib9) 2019; 15
Tesfay (10.1016/j.celrep.2020.108487_bib49) 2019; 79
Ma (10.1016/j.celrep.2020.108487_bib34) 2017; 67
Ippolito (10.1016/j.celrep.2020.108487_bib28) 2019; 38
References_xml – volume: 577
  start-page: 115
  year: 2020
  end-page: 120
  ident: bib47
  article-title: Metabolic heterogeneity confers differences in melanoma metastatic potential
  publication-title: Nature
– volume: 79
  start-page: 3155
  year: 2019
  end-page: 3162
  ident: bib19
  article-title: The Tumor Metabolic Microenvironment: Lessons from Lactate
  publication-title: Cancer Res.
– volume: 19
  start-page: 405
  year: 2019
  end-page: 414
  ident: bib18
  article-title: Ferroptosis at the crossroads of cancer-acquired drug resistance and immune evasion
  publication-title: Nat. Rev. Cancer
– volume: 70
  start-page: 7
  year: 2020
  end-page: 30
  ident: bib42
  article-title: Cancer statistics, 2020
  publication-title: CA Cancer J. Clin.
– volume: 129
  start-page: 454
  year: 2018
  end-page: 462
  ident: bib41
  article-title: Nrf2 inhibition reverses resistance to GPX4 inhibitor-induced ferroptosis in head and neck cancer
  publication-title: Free Radic. Biol. Med.
– volume: 13
  start-page: 91
  year: 2017
  end-page: 98
  ident: bib13
  article-title: ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition
  publication-title: Nat. Chem. Biol.
– volume: 27
  start-page: 463
  year: 2020
  end-page: 471
  ident: bib53
  article-title: Progress in Understanding Ferroptosis and Challenges in Its Targeting for Therapeutic Benefit
  publication-title: Cell Chem. Biol.
– volume: 10
  start-page: 1326
  year: 2019
  ident: bib3
  article-title: Sterol regulatory element binding protein 1 couples mechanical cues and lipid metabolism
  publication-title: Nat. Commun.
– volume: 172
  start-page: 841
  year: 2018
  end-page: 856.e816
  ident: bib45
  article-title: CD10(+)GPR77(+) Cancer-Associated Fibroblasts Promote Cancer Formation and Chemoresistance by Sustaining Cancer Stemness
  publication-title: Cell
– volume: 39
  start-page: 3292
  year: 2020
  end-page: 3304
  ident: bib6
  article-title: The lactate receptor GPR81 promotes breast cancer growth via a paracrine mechanism involving antigen-presenting cells in the tumor microenvironment
  publication-title: Oncogene
– volume: 26
  start-page: 803
  year: 2017
  end-page: 804
  ident: bib36
  article-title: Waste Not, Want Not: Lactate Oxidation Fuels the TCA Cycle
  publication-title: Cell Metab.
– volume: 12
  start-page: 937
  year: 2016
  end-page: 943
  ident: bib8
  article-title: Lactate metabolism is associated with mammalian mitochondria
  publication-title: Nat. Chem. Biol.
– volume: 1866
  start-page: 165576
  year: 2020
  ident: bib51
  article-title: A lactate-induced Snail/STAT3 pathway drives GPR81 expression in lung cancer cells
  publication-title: Biochim. Biophys. Acta Mol. Basis Dis.
– volume: 3
  start-page: 35
  year: 2019
  end-page: 54
  ident: bib12
  article-title: The Hallmarks of Ferroptosis
  publication-title: Annu. Rev. Cancer Biol.
– volume: 26
  start-page: 420
  year: 2019
  end-page: 432 e429
  ident: bib35
  article-title: Exogenous Monounsaturated Fatty Acids Promote a Ferroptosis-Resistant Cell State
  publication-title: Cell Chem. Biol.
– volume: 575
  start-page: 693
  year: 2019
  end-page: 698
  ident: bib14
  article-title: FSP1 is a glutathione-independent ferroptosis suppressor
  publication-title: Nature
– volume: 20
  start-page: 303
  year: 2017
  end-page: 314 e305
  ident: bib31
  article-title: Lipid Desaturation Is a Metabolic Marker and Therapeutic Target of Ovarian Cancer Stem Cells
  publication-title: Cell Stem Cell
– volume: 20
  start-page: 1104
  year: 2018
  end-page: 1105
  ident: bib37
  article-title: Metabolic control of ferroptosis in cancer
  publication-title: Nat. Cell Biol.
– volume: 67
  start-page: 979
  year: 2017
  end-page: 990
  ident: bib34
  article-title: Stearoyl-CoA desaturase regulates sorafenib resistance via modulation of ER stress-induced differentiation
  publication-title: J. Hepatol.
– volume: 206
  start-page: 107451
  year: 2020
  ident: bib4
  article-title: Lactate/GPR81 signaling and proton motive force in cancer: Role in angiogenesis, immune escape, nutrition, and Warburg phenomenon
  publication-title: Pharmacol. Ther.
– volume: 7
  start-page: 335
  year: 2019
  end-page: 346
  ident: bib22
  article-title: Lactate-Mediated Acidification of Tumor Microenvironment Induces Apoptosis of Liver-Resident NK Cells in Colorectal Liver Metastasis
  publication-title: Cancer Immunol. Res.
– volume: 30
  start-page: 434
  year: 2019
  end-page: 446
  ident: bib30
  article-title: Mechanisms and Implications of Metabolic Heterogeneity in Cancer
  publication-title: Cell Metab.
– volume: 171
  start-page: 358
  year: 2017
  end-page: 371.e9
  ident: bib16
  article-title: Lactate Metabolism in Human Lung Tumors
  publication-title: Cell
– volume: 368
  start-page: 85
  year: 2020
  end-page: 89
  ident: bib1
  article-title: Cysteine depletion induces pancreatic tumor ferroptosis in mice
  publication-title: Science
– volume: 10
  start-page: 623
  year: 2019
  ident: bib21
  article-title: Post-translational regulation of lipogenesis via AMPK-dependent phosphorylation of insulin-induced gene
  publication-title: Nat. Commun.
– volume: 30
  start-page: 1055
  year: 2019
  end-page: 1074.e8
  ident: bib38
  article-title: Lactate Buildup at the Site of Chronic Inflammation Promotes Disease by Inducing CD4
  publication-title: Cell Metab.
– volume: 28
  start-page: 27
  year: 2000
  end-page: 30
  ident: bib54
  article-title: KEGG: Kyoto Encyclopedia of Genes and Genomes
  publication-title: Nucleic Acids Res
– volume: 39
  start-page: 3555
  year: 2020
  end-page: 3570
  ident: bib29
  article-title: Targeting metabolic activity in high-risk neuroblastoma through Monocarboxylate Transporter 1 (MCT1) inhibition
  publication-title: Oncogene
– volume: 14
  start-page: 507
  year: 2018
  end-page: 515
  ident: bib20
  article-title: FINO
  publication-title: Nat. Chem. Biol.
– volume: 79
  start-page: 5355
  year: 2019
  end-page: 5366
  ident: bib49
  article-title: Stearoyl-CoA Desaturase 1 Protects Ovarian Cancer Cells from Ferroptotic Cell Death
  publication-title: Cancer Res.
– volume: 28
  start-page: 2388
  year: 2018
  end-page: 2399.e5
  ident: bib43
  article-title: AMPK-Mediated BECN1 Phosphorylation Promotes Ferroptosis by Directly Blocking System X
  publication-title: Curr. Biol.
– volume: 575
  start-page: 688
  year: 2019
  end-page: 692
  ident: bib2
  article-title: The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis
  publication-title: Nature
– volume: 551
  start-page: 115
  year: 2017
  end-page: 118
  ident: bib25
  article-title: Glucose feeds the TCA cycle via circulating lactate
  publication-title: Nature
– volume: 26
  start-page: 309
  year: 2019
  end-page: 311
  ident: bib11
  article-title: Saturated Fatty Acids, MUFAs and PUFAs Regulate Ferroptosis
  publication-title: Cell Chem. Biol.
– volume: 38
  start-page: 5339
  year: 2019
  end-page: 5355
  ident: bib28
  article-title: Cancer-associated fibroblasts promote prostate cancer malignancy via metabolic rewiring and mitochondrial transfer
  publication-title: Oncogene
– volume: 30
  start-page: e1704007
  year: 2018
  ident: bib40
  article-title: Emerging Strategies of Cancer Therapy Based on Ferroptosis
  publication-title: Adv. Mater.
– volume: 66
  start-page: 115
  year: 2016
  end-page: 132
  ident: bib7
  article-title: Cancer statistics in China, 2015
  publication-title: CA Cancer J. Clin.
– volume: 30
  start-page: 478
  year: 2020
  end-page: 490
  ident: bib44
  article-title: Emerging Mechanisms and Disease Relevance of Ferroptosis
  publication-title: Trends Cell Biol.
– volume: 17
  start-page: 139
  year: 2020
  end-page: 152
  ident: bib10
  article-title: Tumour evolution in hepatocellular carcinoma
  publication-title: Nat. Rev. Gastroenterol. Hepatol.
– volume: 44
  start-page: 153
  year: 2019
  end-page: 166
  ident: bib27
  article-title: Lactate: A Metabolic Driver in the Tumour Landscape
  publication-title: Trends Biochem. Sci.
– volume: 35
  start-page: 830
  year: 2019
  end-page: 849
  ident: bib23
  article-title: Targeting Ferroptosis to Iron Out Cancer
  publication-title: Cancer Cell
– volume: 31
  start-page: e1904197
  year: 2019
  ident: bib33
  article-title: Recent Progress in Ferroptosis Inducers for Cancer Therapy
  publication-title: Adv. Mater.
– volume: 10
  start-page: 653
  year: 2019
  ident: bib48
  article-title: Lactate and pyruvate promote oxidative stress resistance through hormetic ROS signaling
  publication-title: Cell Death Dis.
– volume: 569
  start-page: 270
  year: 2019
  end-page: 274
  ident: bib50
  article-title: CD8
  publication-title: Nature
– volume: 216
  start-page: 4287
  year: 2017
  end-page: 4297
  ident: bib5
  article-title: The α6β4 integrin promotes resistance to ferroptosis
  publication-title: J. Cell Biol.
– volume: 172
  start-page: 409
  year: 2018
  end-page: 422 e421
  ident: bib26
  article-title: Selenium Utilization by GPX4 Is Required to Prevent Hydroperoxide-Induced Ferroptosis
  publication-title: Cell
– volume: 116
  start-page: 2672
  year: 2019
  end-page: 2680
  ident: bib15
  article-title: Ferroptosis as a target for protection against cardiomyopathy
  publication-title: Proc. Natl. Acad. Sci. USA
– start-page: e2000549
  year: 2020
  ident: bib24
  article-title: Tumor-Targeted Inhibition of Monocarboxylate Transporter 1 Improves T-Cell Immunotherapy of Solid Tumors
  publication-title: Adv. Healthc. Mater.
– volume: 26
  start-page: 2284
  year: 2019
  end-page: 2299
  ident: bib32
  article-title: Ischemia-induced ACSL4 activation contributes to ferroptosis-mediated tissue injury in intestinal ischemia/reperfusion
  publication-title: Cell Death Differ.
– volume: 74
  start-page: 5301
  year: 2014
  end-page: 5310
  ident: bib39
  article-title: Cell surface lactate receptor GPR81 is crucial for cancer cell survival
  publication-title: Cancer Res.
– volume: 15
  start-page: 1137
  year: 2019
  end-page: 1147
  ident: bib9
  article-title: The chemical basis of ferroptosis
  publication-title: Nat. Chem. Biol.
– volume: 47
  start-page: W556
  year: 2019
  end-page: W560
  ident: bib46
  article-title: GEPIA2: an enhanced web server for large-scale expression profiling and interactive analysis
  publication-title: Nucleic Acids Res.
– volume: 20
  start-page: 1181
  year: 2018
  end-page: 1192
  ident: bib52
  article-title: BAP1 links metabolic regulation of ferroptosis to tumour suppression
  publication-title: Nat. Cell Biol.
– volume: 36
  start-page: 5829
  year: 2017
  end-page: 5839
  ident: bib17
  article-title: Tumor cell-derived lactate induces TAZ-dependent upregulation of PD-L1 through GPR81 in human lung cancer cells
  publication-title: Oncogene
– volume: 7
  start-page: 335
  year: 2019
  ident: 10.1016/j.celrep.2020.108487_bib22
  article-title: Lactate-Mediated Acidification of Tumor Microenvironment Induces Apoptosis of Liver-Resident NK Cells in Colorectal Liver Metastasis
  publication-title: Cancer Immunol. Res.
  doi: 10.1158/2326-6066.CIR-18-0481
– volume: 216
  start-page: 4287
  year: 2017
  ident: 10.1016/j.celrep.2020.108487_bib5
  article-title: The α6β4 integrin promotes resistance to ferroptosis
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201701136
– volume: 38
  start-page: 5339
  year: 2019
  ident: 10.1016/j.celrep.2020.108487_bib28
  article-title: Cancer-associated fibroblasts promote prostate cancer malignancy via metabolic rewiring and mitochondrial transfer
  publication-title: Oncogene
  doi: 10.1038/s41388-019-0805-7
– volume: 26
  start-page: 309
  year: 2019
  ident: 10.1016/j.celrep.2020.108487_bib11
  article-title: Saturated Fatty Acids, MUFAs and PUFAs Regulate Ferroptosis
  publication-title: Cell Chem. Biol.
  doi: 10.1016/j.chembiol.2019.03.001
– volume: 171
  start-page: 358
  year: 2017
  ident: 10.1016/j.celrep.2020.108487_bib16
  article-title: Lactate Metabolism in Human Lung Tumors
  publication-title: Cell
  doi: 10.1016/j.cell.2017.09.019
– volume: 36
  start-page: 5829
  year: 2017
  ident: 10.1016/j.celrep.2020.108487_bib17
  article-title: Tumor cell-derived lactate induces TAZ-dependent upregulation of PD-L1 through GPR81 in human lung cancer cells
  publication-title: Oncogene
  doi: 10.1038/onc.2017.188
– volume: 1866
  start-page: 165576
  year: 2020
  ident: 10.1016/j.celrep.2020.108487_bib51
  article-title: A lactate-induced Snail/STAT3 pathway drives GPR81 expression in lung cancer cells
  publication-title: Biochim. Biophys. Acta Mol. Basis Dis.
  doi: 10.1016/j.bbadis.2019.165576
– volume: 12
  start-page: 937
  year: 2016
  ident: 10.1016/j.celrep.2020.108487_bib8
  article-title: Lactate metabolism is associated with mammalian mitochondria
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.2172
– volume: 129
  start-page: 454
  year: 2018
  ident: 10.1016/j.celrep.2020.108487_bib41
  article-title: Nrf2 inhibition reverses resistance to GPX4 inhibitor-induced ferroptosis in head and neck cancer
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2018.10.426
– volume: 74
  start-page: 5301
  year: 2014
  ident: 10.1016/j.celrep.2020.108487_bib39
  article-title: Cell surface lactate receptor GPR81 is crucial for cancer cell survival
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-14-0319
– volume: 70
  start-page: 7
  year: 2020
  ident: 10.1016/j.celrep.2020.108487_bib42
  article-title: Cancer statistics, 2020
  publication-title: CA Cancer J. Clin.
  doi: 10.3322/caac.21590
– volume: 28
  start-page: 27
  year: 2000
  ident: 10.1016/j.celrep.2020.108487_bib54
  article-title: KEGG: Kyoto Encyclopedia of Genes and Genomes
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/28.1.27
– volume: 30
  start-page: e1704007
  year: 2018
  ident: 10.1016/j.celrep.2020.108487_bib40
  article-title: Emerging Strategies of Cancer Therapy Based on Ferroptosis
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201704007
– volume: 47
  start-page: W556
  issue: W1
  year: 2019
  ident: 10.1016/j.celrep.2020.108487_bib46
  article-title: GEPIA2: an enhanced web server for large-scale expression profiling and interactive analysis
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkz430
– start-page: e2000549
  year: 2020
  ident: 10.1016/j.celrep.2020.108487_bib24
  article-title: Tumor-Targeted Inhibition of Monocarboxylate Transporter 1 Improves T-Cell Immunotherapy of Solid Tumors
  publication-title: Adv. Healthc. Mater.
– volume: 30
  start-page: 1055
  year: 2019
  ident: 10.1016/j.celrep.2020.108487_bib38
  article-title: Lactate Buildup at the Site of Chronic Inflammation Promotes Disease by Inducing CD4+ T Cell Metabolic Rewiring
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2019.10.004
– volume: 66
  start-page: 115
  year: 2016
  ident: 10.1016/j.celrep.2020.108487_bib7
  article-title: Cancer statistics in China, 2015
  publication-title: CA Cancer J. Clin.
  doi: 10.3322/caac.21338
– volume: 31
  start-page: e1904197
  year: 2019
  ident: 10.1016/j.celrep.2020.108487_bib33
  article-title: Recent Progress in Ferroptosis Inducers for Cancer Therapy
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201904197
– volume: 569
  start-page: 270
  year: 2019
  ident: 10.1016/j.celrep.2020.108487_bib50
  article-title: CD8+ T cells regulate tumour ferroptosis during cancer immunotherapy
  publication-title: Nature
  doi: 10.1038/s41586-019-1170-y
– volume: 20
  start-page: 1181
  year: 2018
  ident: 10.1016/j.celrep.2020.108487_bib52
  article-title: BAP1 links metabolic regulation of ferroptosis to tumour suppression
  publication-title: Nat. Cell Biol.
  doi: 10.1038/s41556-018-0178-0
– volume: 13
  start-page: 91
  year: 2017
  ident: 10.1016/j.celrep.2020.108487_bib13
  article-title: ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.2239
– volume: 39
  start-page: 3292
  year: 2020
  ident: 10.1016/j.celrep.2020.108487_bib6
  article-title: The lactate receptor GPR81 promotes breast cancer growth via a paracrine mechanism involving antigen-presenting cells in the tumor microenvironment
  publication-title: Oncogene
  doi: 10.1038/s41388-020-1216-5
– volume: 26
  start-page: 803
  year: 2017
  ident: 10.1016/j.celrep.2020.108487_bib36
  article-title: Waste Not, Want Not: Lactate Oxidation Fuels the TCA Cycle
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2017.11.005
– volume: 116
  start-page: 2672
  year: 2019
  ident: 10.1016/j.celrep.2020.108487_bib15
  article-title: Ferroptosis as a target for protection against cardiomyopathy
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1821022116
– volume: 79
  start-page: 5355
  year: 2019
  ident: 10.1016/j.celrep.2020.108487_bib49
  article-title: Stearoyl-CoA Desaturase 1 Protects Ovarian Cancer Cells from Ferroptotic Cell Death
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-19-0369
– volume: 44
  start-page: 153
  year: 2019
  ident: 10.1016/j.celrep.2020.108487_bib27
  article-title: Lactate: A Metabolic Driver in the Tumour Landscape
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/j.tibs.2018.10.011
– volume: 172
  start-page: 841
  year: 2018
  ident: 10.1016/j.celrep.2020.108487_bib45
  article-title: CD10(+)GPR77(+) Cancer-Associated Fibroblasts Promote Cancer Formation and Chemoresistance by Sustaining Cancer Stemness
  publication-title: Cell
  doi: 10.1016/j.cell.2018.01.009
– volume: 35
  start-page: 830
  year: 2019
  ident: 10.1016/j.celrep.2020.108487_bib23
  article-title: Targeting Ferroptosis to Iron Out Cancer
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2019.04.002
– volume: 575
  start-page: 688
  year: 2019
  ident: 10.1016/j.celrep.2020.108487_bib2
  article-title: The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis
  publication-title: Nature
  doi: 10.1038/s41586-019-1705-2
– volume: 30
  start-page: 434
  year: 2019
  ident: 10.1016/j.celrep.2020.108487_bib30
  article-title: Mechanisms and Implications of Metabolic Heterogeneity in Cancer
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2019.08.013
– volume: 368
  start-page: 85
  year: 2020
  ident: 10.1016/j.celrep.2020.108487_bib1
  article-title: Cysteine depletion induces pancreatic tumor ferroptosis in mice
  publication-title: Science
  doi: 10.1126/science.aaw9872
– volume: 3
  start-page: 35
  year: 2019
  ident: 10.1016/j.celrep.2020.108487_bib12
  article-title: The Hallmarks of Ferroptosis
  publication-title: Annu. Rev. Cancer Biol.
  doi: 10.1146/annurev-cancerbio-030518-055844
– volume: 577
  start-page: 115
  year: 2020
  ident: 10.1016/j.celrep.2020.108487_bib47
  article-title: Metabolic heterogeneity confers differences in melanoma metastatic potential
  publication-title: Nature
  doi: 10.1038/s41586-019-1847-2
– volume: 39
  start-page: 3555
  year: 2020
  ident: 10.1016/j.celrep.2020.108487_bib29
  article-title: Targeting metabolic activity in high-risk neuroblastoma through Monocarboxylate Transporter 1 (MCT1) inhibition
  publication-title: Oncogene
  doi: 10.1038/s41388-020-1235-2
– volume: 551
  start-page: 115
  year: 2017
  ident: 10.1016/j.celrep.2020.108487_bib25
  article-title: Glucose feeds the TCA cycle via circulating lactate
  publication-title: Nature
  doi: 10.1038/nature24057
– volume: 172
  start-page: 409
  year: 2018
  ident: 10.1016/j.celrep.2020.108487_bib26
  article-title: Selenium Utilization by GPX4 Is Required to Prevent Hydroperoxide-Induced Ferroptosis
  publication-title: Cell
  doi: 10.1016/j.cell.2017.11.048
– volume: 20
  start-page: 303
  year: 2017
  ident: 10.1016/j.celrep.2020.108487_bib31
  article-title: Lipid Desaturation Is a Metabolic Marker and Therapeutic Target of Ovarian Cancer Stem Cells
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2016.11.004
– volume: 26
  start-page: 2284
  year: 2019
  ident: 10.1016/j.celrep.2020.108487_bib32
  article-title: Ischemia-induced ACSL4 activation contributes to ferroptosis-mediated tissue injury in intestinal ischemia/reperfusion
  publication-title: Cell Death Differ.
  doi: 10.1038/s41418-019-0299-4
– volume: 67
  start-page: 979
  year: 2017
  ident: 10.1016/j.celrep.2020.108487_bib34
  article-title: Stearoyl-CoA desaturase regulates sorafenib resistance via modulation of ER stress-induced differentiation
  publication-title: J. Hepatol.
  doi: 10.1016/j.jhep.2017.06.015
– volume: 10
  start-page: 653
  year: 2019
  ident: 10.1016/j.celrep.2020.108487_bib48
  article-title: Lactate and pyruvate promote oxidative stress resistance through hormetic ROS signaling
  publication-title: Cell Death Dis.
  doi: 10.1038/s41419-019-1877-6
– volume: 17
  start-page: 139
  year: 2020
  ident: 10.1016/j.celrep.2020.108487_bib10
  article-title: Tumour evolution in hepatocellular carcinoma
  publication-title: Nat. Rev. Gastroenterol. Hepatol.
  doi: 10.1038/s41575-019-0229-4
– volume: 20
  start-page: 1104
  year: 2018
  ident: 10.1016/j.celrep.2020.108487_bib37
  article-title: Metabolic control of ferroptosis in cancer
  publication-title: Nat. Cell Biol.
  doi: 10.1038/s41556-018-0209-x
– volume: 575
  start-page: 693
  year: 2019
  ident: 10.1016/j.celrep.2020.108487_bib14
  article-title: FSP1 is a glutathione-independent ferroptosis suppressor
  publication-title: Nature
  doi: 10.1038/s41586-019-1707-0
– volume: 10
  start-page: 1326
  year: 2019
  ident: 10.1016/j.celrep.2020.108487_bib3
  article-title: Sterol regulatory element binding protein 1 couples mechanical cues and lipid metabolism
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09152-7
– volume: 79
  start-page: 3155
  year: 2019
  ident: 10.1016/j.celrep.2020.108487_bib19
  article-title: The Tumor Metabolic Microenvironment: Lessons from Lactate
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-18-3726
– volume: 15
  start-page: 1137
  year: 2019
  ident: 10.1016/j.celrep.2020.108487_bib9
  article-title: The chemical basis of ferroptosis
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/s41589-019-0408-1
– volume: 19
  start-page: 405
  year: 2019
  ident: 10.1016/j.celrep.2020.108487_bib18
  article-title: Ferroptosis at the crossroads of cancer-acquired drug resistance and immune evasion
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/s41568-019-0149-1
– volume: 26
  start-page: 420
  year: 2019
  ident: 10.1016/j.celrep.2020.108487_bib35
  article-title: Exogenous Monounsaturated Fatty Acids Promote a Ferroptosis-Resistant Cell State
  publication-title: Cell Chem. Biol.
  doi: 10.1016/j.chembiol.2018.11.016
– volume: 28
  start-page: 2388
  year: 2018
  ident: 10.1016/j.celrep.2020.108487_bib43
  article-title: AMPK-Mediated BECN1 Phosphorylation Promotes Ferroptosis by Directly Blocking System Xc- Activity
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2018.05.094
– volume: 30
  start-page: 478
  year: 2020
  ident: 10.1016/j.celrep.2020.108487_bib44
  article-title: Emerging Mechanisms and Disease Relevance of Ferroptosis
  publication-title: Trends Cell Biol.
  doi: 10.1016/j.tcb.2020.02.009
– volume: 27
  start-page: 463
  year: 2020
  ident: 10.1016/j.celrep.2020.108487_bib53
  article-title: Progress in Understanding Ferroptosis and Challenges in Its Targeting for Therapeutic Benefit
  publication-title: Cell Chem. Biol.
  doi: 10.1016/j.chembiol.2020.03.015
– volume: 14
  start-page: 507
  year: 2018
  ident: 10.1016/j.celrep.2020.108487_bib20
  article-title: FINO2 initiates ferroptosis through GPX4 inactivation and iron oxidation
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/s41589-018-0031-6
– volume: 10
  start-page: 623
  year: 2019
  ident: 10.1016/j.celrep.2020.108487_bib21
  article-title: Post-translational regulation of lipogenesis via AMPK-dependent phosphorylation of insulin-induced gene
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-08585-4
– volume: 206
  start-page: 107451
  year: 2020
  ident: 10.1016/j.celrep.2020.108487_bib4
  article-title: Lactate/GPR81 signaling and proton motive force in cancer: Role in angiogenesis, immune escape, nutrition, and Warburg phenomenon
  publication-title: Pharmacol. Ther.
  doi: 10.1016/j.pharmthera.2019.107451
SSID ssj0000601194
Score 2.6647825
Snippet Ferroptosis is a recently discovered form of programed cell death caused by the metabolically regulated lipid peroxidation and holds promise for cancer...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 108487
SubjectTerms ferroptosis
lactate
MCT1
tumor microenvironment
tumor therapy
SummonAdditionalLinks – databaseName: ScienceDirect Free and Delayed Access Journal
  dbid: IXB
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1da9swFBWlMNjL2NZ9ZOuKBn0ViWzJkh9TbyHtmjHaFPImJOsaMlo7OA6j_776sLMVNgp7MjaSLXRk3Svp3HsQOtVUamcWJYFEAmEUJNHWCJLLtAJeyUQEjaXF92x-wy5WfHWAiiEWxtMq-7k_zulhtu6fjPveHG_W6_F14tYuzjr5c0TKROYDzVMmQxDf6my_z-LzjdCgh-jLE19hiKALNK8SblvwiSuTwLdjnlv3dwv1Lw80WKLZS_SidyHxNLbyFTqA-jV6FkUl74_Qr3kxvaLjRbGk-CoqzcMWL3d3TYtn0LbNpmu26y3uFXrcFfClLr3TSRZBuAMsni5-fCPXxReKp2XUl8C6tvi8c2_6HbGFz__go79BN7Ovy2JOenkFUjLBOkIrnpsst7nMPNGViiqpqFvRVIIZByA32iFnUykggVxabqicGOBcm4kWOrfpW3RYNzW8R5jTaqKtzFLNc5ZXVINkJbWu693sKYwcoXToUlX2uce9BMatGkhmP1UEQnkgVARihMi-1ibm3niivBjQUo_GkHLm4Ymanwdwlfu9_JmJrqHZbVUStg-8mzxC7yLq-7akaeIWi4x_-O_vfkTP_V2gx8hjdNi1O_jknJzOnIRR_AB8RPf8
  priority: 102
  providerName: Elsevier
Title HCAR1/MCT1 Regulates Tumor Ferroptosis through the Lactate-Mediated AMPK-SCD1 Activity and Its Therapeutic Implications
URI https://dx.doi.org/10.1016/j.celrep.2020.108487
https://www.ncbi.nlm.nih.gov/pubmed/33296645
https://www.proquest.com/docview/2469071397
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Pb9MwGLXGEBIXxG_KYDISV0Pt2LVzmKZSqFogCI1W6s2y4y8SqCQjSQX772fHycaBalySS-xEfna-Z_v5ewi9NlQZHxYVAaaAcAqKGGclSVVSgCgUk53HUvZlsljzjxuxOUCDZ2vfgM0_p3bBT2pdb9_8-XVx6gf8ybVWK4dtDSH7JOtEc56E30K3fWySYahmPeGP_-aQ4yxsNTMWtFyMy-E83Z6K9sWrfXy0i0vz--heTyjxNPaAB-gAyofoTrSYvHiEfi9m0zP6NputKD6LvvPQ4NXuZ1XjOdR1dd5WzfcG9349_g74s8kDBSVZZ-MBDk-zr5_It9l7iqd5dJvApnR42fqars9v4eVf6vTHaD3_sJotSG-2QHIueUtoIVI7SV2qJkH2SmXBCurnN4Xk1sMprPE4ukRJYJAqJyxVYwtCGDs20qQueYIOy6qEZwgLWoyNU5PEiJSnBTWgeE6db3r_L5VWjVAyNKnO-0zkwRBjqwfJ2Q8dgdABCB2BGCFyVeo8ZuK44Xk5oKV7NhFZgvZ954aSrwZwtR9sYQfFlFDtGs26xYRAmkfoaUT96luShPmpIxfP_6P0Ebob3tfJYtQLdNjWO3jpyU1rj7tFAX9dbt4dd333EtZb90Y
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZdx9heRndtdtVgryKRLVnyY-Y1JGtcRptC3oRsHUNGawfHYezfTxc722CjsCeD7WMLffY5R9Kn8yH0UVOpbViUBCIJhFGQRJtCkFTGFfBKRsJrLOUXyfyafVnz9RHKhr0wjlbZ-_7g07237s-M-94cbzeb8VVkxy42Orl1RMpEwu-h-zYbEE6_YbH-dJhocQVHqBdEdAbEWQxb6DzPq4SbFlzlysgT7pgj1_09RP0rBfWhaHaCHvc5JJ6GZj5BR1A_RQ-CquSPZ-j7PJte0nGerSi-DFLzsMOr_W3T4hm0bbPtmt1mh3uJHnsEvNSlyzpJ7pU7wOBp_vWcXGWfKZ6WQWAC69rgRWef9GvLFl78Rkh_jq5nZ6tsTnp9BVIywTpCK54WSWpSmTimKxVVVFE7pKkEKyyCvNAWOhNLARGk0vCCykkBnOtiooVOTfwCHddNDacIc1pNtJFJrHnK0opqkKykxna9dZ-ikCMUD12qyr74uNPAuFEDy-ybCkAoB4QKQIwQOVhtQ_GNO-4XA1rqj49I2fhwh-WHAVxl_y-3aKJraPY7Ffn5A5cnj9DLgPqhLXEc2dEi46_--73v0cP5Kl-q5eLi_DV65K54rox8g467dg9vbcbTFe_8F_0T-Cn7Gw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=HCAR1%2FMCT1+Regulates+Tumor+Ferroptosis+through+the+Lactate-Mediated+AMPK-SCD1+Activity+and+Its+Therapeutic+Implications&rft.jtitle=Cell+reports+%28Cambridge%29&rft.au=Zhao%2C+Youbo&rft.au=Li%2C+Menghuan&rft.au=Yao%2C+Xuemei&rft.au=Fei%2C+Yang&rft.date=2020-12-08&rft.issn=2211-1247&rft.eissn=2211-1247&rft.volume=33&rft.issue=10&rft.spage=108487&rft_id=info:doi/10.1016%2Fj.celrep.2020.108487&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-1247&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-1247&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-1247&client=summon