HCAR1/MCT1 Regulates Tumor Ferroptosis through the Lactate-Mediated AMPK-SCD1 Activity and Its Therapeutic Implications
Ferroptosis is a recently discovered form of programed cell death caused by the metabolically regulated lipid peroxidation and holds promise for cancer treatment, but its regulatory mechanisms remain elusive. In this study, we observe that lactate-rich liver cancer cells exhibit enhanced resistance...
Saved in:
Published in | Cell reports (Cambridge) Vol. 33; no. 10; p. 108487 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
08.12.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Ferroptosis is a recently discovered form of programed cell death caused by the metabolically regulated lipid peroxidation and holds promise for cancer treatment, but its regulatory mechanisms remain elusive. In this study, we observe that lactate-rich liver cancer cells exhibit enhanced resistance to the ferroptotic damage induced by common ferroptosis inducers such as Ras-selective lethal small molecule 3 (RSL3) and Erastin and that the monocarboxylate transporter 1 (MCT1)-mediated lactate uptake could promote ATP production in hepatocellular carcinoma (HCC) cells and deactivate the energy sensor AMP-activated protein kinase (AMPK), leading to the upregulation of sterol regulatory element-binding protein 1 (SREBP1) and the downstream stearoyl-coenzyme A (CoA) desaturase-1 (SCD1) to enhance the production of anti-ferroptosis monounsaturated fatty acids. Additionally, blocking the lactate uptake via hydroxycarboxylic acid receptor 1 (HCAR1)/MCT1 inhibition promotes ferroptosis by activating the AMPK to downregulate SCD1, which may synergize with its acyl-coenzyme A synthetase 4 (ACSL4)-promoting effect to amplify the ferroptotic susceptibility. In vitro and in vivo evidence confirms that lactate regulates the ferroptosis of HCC cells and highlights its translational potential as a therapeutic target for ferroptosis-based tumor treatment.
[Display omitted]
•Lactate uptake promotes ATP production to upregulate SREBP1 and SCD1•Lactate mediates the production of ferroptosis-related lipids in cancer cells•HCAR1/MCT1 inhibition sensitizes cancer cells to ferroptosis induction
Zhao et al. discover a lactate-mediated ferroptosis regulatory pathway in liver cancer cells, through which lactate enhances their ferroptosis resistance by upregulating the production of anti-ferroptosis monounsaturated fatty acids. Their findings may provide avenues for the development of ferroptosis-based cancer therapies. |
---|---|
AbstractList | Ferroptosis is a recently discovered form of programed cell death caused by the metabolically regulated lipid peroxidation and holds promise for cancer treatment, but its regulatory mechanisms remain elusive. In this study, we observe that lactate-rich liver cancer cells exhibit enhanced resistance to the ferroptotic damage induced by common ferroptosis inducers such as Ras-selective lethal small molecule 3 (RSL3) and Erastin and that the monocarboxylate transporter 1 (MCT1)-mediated lactate uptake could promote ATP production in hepatocellular carcinoma (HCC) cells and deactivate the energy sensor AMP-activated protein kinase (AMPK), leading to the upregulation of sterol regulatory element-binding protein 1 (SREBP1) and the downstream stearoyl-coenzyme A (CoA) desaturase-1 (SCD1) to enhance the production of anti-ferroptosis monounsaturated fatty acids. Additionally, blocking the lactate uptake via hydroxycarboxylic acid receptor 1 (HCAR1)/MCT1 inhibition promotes ferroptosis by activating the AMPK to downregulate SCD1, which may synergize with its acyl-coenzyme A synthetase 4 (ACSL4)-promoting effect to amplify the ferroptotic susceptibility. In vitro and in vivo evidence confirms that lactate regulates the ferroptosis of HCC cells and highlights its translational potential as a therapeutic target for ferroptosis-based tumor treatment.
[Display omitted]
•Lactate uptake promotes ATP production to upregulate SREBP1 and SCD1•Lactate mediates the production of ferroptosis-related lipids in cancer cells•HCAR1/MCT1 inhibition sensitizes cancer cells to ferroptosis induction
Zhao et al. discover a lactate-mediated ferroptosis regulatory pathway in liver cancer cells, through which lactate enhances their ferroptosis resistance by upregulating the production of anti-ferroptosis monounsaturated fatty acids. Their findings may provide avenues for the development of ferroptosis-based cancer therapies. Ferroptosis is a recently discovered form of programed cell death caused by the metabolically regulated lipid peroxidation and holds promise for cancer treatment, but its regulatory mechanisms remain elusive. In this study, we observe that lactate-rich liver cancer cells exhibit enhanced resistance to the ferroptotic damage induced by common ferroptosis inducers such as Ras-selective lethal small molecule 3 (RSL3) and Erastin and that the monocarboxylate transporter 1 (MCT1)-mediated lactate uptake could promote ATP production in hepatocellular carcinoma (HCC) cells and deactivate the energy sensor AMP-activated protein kinase (AMPK), leading to the upregulation of sterol regulatory element-binding protein 1 (SREBP1) and the downstream stearoyl-coenzyme A (CoA) desaturase-1 (SCD1) to enhance the production of anti-ferroptosis monounsaturated fatty acids. Additionally, blocking the lactate uptake via hydroxycarboxylic acid receptor 1 (HCAR1)/MCT1 inhibition promotes ferroptosis by activating the AMPK to downregulate SCD1, which may synergize with its acyl-coenzyme A synthetase 4 (ACSL4)-promoting effect to amplify the ferroptotic susceptibility. In vitro and in vivo evidence confirms that lactate regulates the ferroptosis of HCC cells and highlights its translational potential as a therapeutic target for ferroptosis-based tumor treatment.Ferroptosis is a recently discovered form of programed cell death caused by the metabolically regulated lipid peroxidation and holds promise for cancer treatment, but its regulatory mechanisms remain elusive. In this study, we observe that lactate-rich liver cancer cells exhibit enhanced resistance to the ferroptotic damage induced by common ferroptosis inducers such as Ras-selective lethal small molecule 3 (RSL3) and Erastin and that the monocarboxylate transporter 1 (MCT1)-mediated lactate uptake could promote ATP production in hepatocellular carcinoma (HCC) cells and deactivate the energy sensor AMP-activated protein kinase (AMPK), leading to the upregulation of sterol regulatory element-binding protein 1 (SREBP1) and the downstream stearoyl-coenzyme A (CoA) desaturase-1 (SCD1) to enhance the production of anti-ferroptosis monounsaturated fatty acids. Additionally, blocking the lactate uptake via hydroxycarboxylic acid receptor 1 (HCAR1)/MCT1 inhibition promotes ferroptosis by activating the AMPK to downregulate SCD1, which may synergize with its acyl-coenzyme A synthetase 4 (ACSL4)-promoting effect to amplify the ferroptotic susceptibility. In vitro and in vivo evidence confirms that lactate regulates the ferroptosis of HCC cells and highlights its translational potential as a therapeutic target for ferroptosis-based tumor treatment. Ferroptosis is a recently discovered form of programed cell death caused by the metabolically regulated lipid peroxidation and holds promise for cancer treatment, but its regulatory mechanisms remain elusive. In this study, we observe that lactate-rich liver cancer cells exhibit enhanced resistance to the ferroptotic damage induced by common ferroptosis inducers such as Ras-selective lethal small molecule 3 (RSL3) and Erastin and that the monocarboxylate transporter 1 (MCT1)-mediated lactate uptake could promote ATP production in hepatocellular carcinoma (HCC) cells and deactivate the energy sensor AMP-activated protein kinase (AMPK), leading to the upregulation of sterol regulatory element-binding protein 1 (SREBP1) and the downstream stearoyl-coenzyme A (CoA) desaturase-1 (SCD1) to enhance the production of anti-ferroptosis monounsaturated fatty acids. Additionally, blocking the lactate uptake via hydroxycarboxylic acid receptor 1 (HCAR1)/MCT1 inhibition promotes ferroptosis by activating the AMPK to downregulate SCD1, which may synergize with its acyl-coenzyme A synthetase 4 (ACSL4)-promoting effect to amplify the ferroptotic susceptibility. In vitro and in vivo evidence confirms that lactate regulates the ferroptosis of HCC cells and highlights its translational potential as a therapeutic target for ferroptosis-based tumor treatment. |
ArticleNumber | 108487 |
Author | Fei, Yang Li, Zhengguo Cai, Kaiyong Li, Menghuan Zhao, Youbo Luo, Zhong Yao, Xuemei Lin, Zhenghong Zhao, Yanli |
Author_xml | – sequence: 1 givenname: Youbo surname: Zhao fullname: Zhao, Youbo organization: School of Life Science, Chongqing University, Chongqing 400044, China – sequence: 2 givenname: Menghuan surname: Li fullname: Li, Menghuan organization: School of Life Science, Chongqing University, Chongqing 400044, China – sequence: 3 givenname: Xuemei surname: Yao fullname: Yao, Xuemei organization: School of Life Science, Chongqing University, Chongqing 400044, China – sequence: 4 givenname: Yang surname: Fei fullname: Fei, Yang organization: School of Life Science, Chongqing University, Chongqing 400044, China – sequence: 5 givenname: Zhenghong surname: Lin fullname: Lin, Zhenghong organization: School of Life Science, Chongqing University, Chongqing 400044, China – sequence: 6 givenname: Zhengguo surname: Li fullname: Li, Zhengguo organization: School of Life Science, Chongqing University, Chongqing 400044, China – sequence: 7 givenname: Kaiyong surname: Cai fullname: Cai, Kaiyong organization: Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China – sequence: 8 givenname: Yanli surname: Zhao fullname: Zhao, Yanli organization: Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore – sequence: 9 givenname: Zhong orcidid: 0000-0002-9019-3314 surname: Luo fullname: Luo, Zhong email: luozhong918@cqu.edu.cn organization: School of Life Science, Chongqing University, Chongqing 400044, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33296645$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1r3DAYhEVJaNI0_6AUHXvxRvKHZPVQWNykWbpLS7I5C1l-ndViW64kJ-TfV1snUHpIdRkhnhnQzDt0NNgBEPpAyYISyi72Cw2dg3GRkvTwVOYlf4NO05TShKY5P_rrfoLOvd-TeBihVORv0UmWpYKxvDhFj9fV8oZebKotxTdwP3UqgMfbqbcOX4FzdgzWG4_DztnpfhcV8FrpELFkA42J2uDl5uf35Lb6SvFSB_NgwhNWQ4NXISbtwKkRpmA0XvVjZ7QKxg7-PTpuVefh_FnP0N3V5ba6TtY_vq2q5TrROc9DQttC1Ew0omSMcUZ5m7aUCNbyvC4VL2pFoWyykkMKomyKmpakhqJQNVFciSY7Q5_m3NHZXxP4IHvjY3edGsBOXqY5E4TTTPCIfnxGp7qHRo7O9Mo9yZeyIvB5BrSz3jtopTbhz3eCU6aTlMjDOHIv53HkYRw5jxPN-T_ml_z_2L7MNoglPRhw0msDg47VO9BBNta8HvAbnCCpLg |
CitedBy_id | crossref_primary_10_1016_j_celrep_2023_112945 crossref_primary_10_1186_s40364_023_00507_3 crossref_primary_10_1002_adbi_202100396 crossref_primary_10_1038_s41589_023_01512_1 crossref_primary_10_1016_j_jclepro_2023_137308 crossref_primary_10_1155_2021_6654887 crossref_primary_10_1016_j_micpath_2024_107261 crossref_primary_10_1016_j_redox_2024_103479 crossref_primary_10_3390_cancers15010005 crossref_primary_10_62347_SIGP9279 crossref_primary_10_1038_s41580_024_00703_5 crossref_primary_10_1007_s12274_022_4620_z crossref_primary_10_1016_j_freeradbiomed_2022_03_002 crossref_primary_10_1016_j_phymed_2024_155365 crossref_primary_10_3389_fphar_2023_1122065 crossref_primary_10_3390_ijms251910855 crossref_primary_10_1016_j_jshs_2025_101032 crossref_primary_10_3389_fimmu_2024_1440309 crossref_primary_10_7554_eLife_89136 crossref_primary_10_3389_fimmu_2024_1349867 crossref_primary_10_12677_acm_2024_1441260 crossref_primary_10_1038_s41392_022_01151_3 crossref_primary_10_4110_in_2025_25_e6 crossref_primary_10_1002_adhm_202101702 crossref_primary_10_1007_s10753_022_01637_w crossref_primary_10_1016_j_metabol_2024_155953 crossref_primary_10_1002_cai2_7 crossref_primary_10_1016_j_freeradbiomed_2024_01_041 crossref_primary_10_3389_fcell_2022_845232 crossref_primary_10_1111_jcmm_17997 crossref_primary_10_1038_s41418_025_01467_x crossref_primary_10_1152_ajpcell_00346_2023 crossref_primary_10_2147_DDDT_S485755 crossref_primary_10_1155_2022_7686956 crossref_primary_10_3390_cancers14235811 crossref_primary_10_1002_advs_202303894 crossref_primary_10_1007_s13258_024_01554_2 crossref_primary_10_3390_molecules28031453 crossref_primary_10_1007_s11010_023_04893_y crossref_primary_10_1016_j_jma_2023_02_007 crossref_primary_10_1007_s12672_024_00954_w crossref_primary_10_1016_j_canlet_2024_217426 crossref_primary_10_1515_med_2023_0845 crossref_primary_10_3389_fphys_2022_1038421 crossref_primary_10_1002_smll_202100130 crossref_primary_10_1080_15476286_2021_1974208 crossref_primary_10_1016_j_biopha_2022_113917 crossref_primary_10_1002_mc_23647 crossref_primary_10_3389_fimmu_2023_1137107 crossref_primary_10_3389_fphar_2025_1533464 crossref_primary_10_1002_smll_202310342 crossref_primary_10_1007_s12072_023_10593_y crossref_primary_10_1186_s12920_024_01867_x crossref_primary_10_1089_ars_2022_0203 crossref_primary_10_1038_s41417_022_00521_x crossref_primary_10_3390_cancers16244178 crossref_primary_10_1016_j_celrep_2021_108767 crossref_primary_10_3389_fncel_2024_1464169 crossref_primary_10_1016_j_bcp_2022_115374 crossref_primary_10_1016_j_cellsig_2023_110791 crossref_primary_10_1124_molpharm_122_000607 crossref_primary_10_3389_fendo_2023_1319969 crossref_primary_10_2139_ssrn_4064682 crossref_primary_10_3390_ijms22168898 crossref_primary_10_3390_biology12060864 crossref_primary_10_1016_j_canlet_2024_216837 crossref_primary_10_1186_s12964_023_01350_7 crossref_primary_10_1016_j_ajps_2024_100939 crossref_primary_10_1016_j_ajpath_2024_07_005 crossref_primary_10_31083_j_fbl2812332 crossref_primary_10_1016_j_ccell_2024_03_011 crossref_primary_10_1016_j_tcb_2024_08_006 crossref_primary_10_1016_j_mito_2024_101974 crossref_primary_10_1021_acsnano_2c11923 crossref_primary_10_1016_j_jconrel_2022_09_051 crossref_primary_10_1021_acsnano_3c04632 crossref_primary_10_1038_s41419_023_05756_6 crossref_primary_10_3389_fphar_2022_937413 crossref_primary_10_1083_jcb_202208103 crossref_primary_10_1155_2022_3425841 crossref_primary_10_3389_fonc_2023_1155511 crossref_primary_10_1111_crj_13675 crossref_primary_10_1007_s11427_023_2352_9 crossref_primary_10_1016_j_biopha_2023_115251 crossref_primary_10_1002_cbf_3961 crossref_primary_10_1038_s41418_022_00941_0 crossref_primary_10_1016_j_ejmech_2024_116290 crossref_primary_10_3389_fonc_2022_871798 crossref_primary_10_1155_2022_3205040 crossref_primary_10_1016_j_molmet_2022_101470 crossref_primary_10_1186_s40364_024_00645_2 crossref_primary_10_3389_fgene_2022_955225 crossref_primary_10_1016_j_meatsci_2024_109692 crossref_primary_10_1186_s12935_021_02264_5 crossref_primary_10_3389_fcell_2023_1219840 crossref_primary_10_1002_jcb_30687 crossref_primary_10_1016_j_heliyon_2024_e32288 crossref_primary_10_3748_wjg_v29_i16_2433 crossref_primary_10_1002_mc_23795 crossref_primary_10_1177_09731296241251957 crossref_primary_10_1007_s12274_024_6602_9 crossref_primary_10_1155_2022_2985249 crossref_primary_10_3724_abbs_2024221 crossref_primary_10_1016_j_yexmp_2025_104957 crossref_primary_10_3389_fcell_2021_739392 crossref_primary_10_1002_adtp_202200254 crossref_primary_10_1111_eci_14131 crossref_primary_10_3390_antiox11050921 crossref_primary_10_1002_tox_23871 crossref_primary_10_1016_j_freeradbiomed_2023_07_036 crossref_primary_10_1038_s41388_021_01908_0 crossref_primary_10_1002_jcb_30458 crossref_primary_10_1002_adfm_202312308 crossref_primary_10_1002_1873_3468_14441 crossref_primary_10_1016_j_snb_2022_131937 crossref_primary_10_1016_j_jbc_2022_101617 crossref_primary_10_1016_j_semcancer_2022_02_004 crossref_primary_10_1177_09603271221142818 crossref_primary_10_3389_fonc_2022_1024789 crossref_primary_10_1016_j_bbcan_2022_188848 crossref_primary_10_1016_j_isci_2025_111864 crossref_primary_10_32604_or_2024_049757 crossref_primary_10_2147_JIR_S385977 crossref_primary_10_1038_s41467_025_56711_2 crossref_primary_10_3389_fmed_2023_1084479 crossref_primary_10_1002_cam4_6623 crossref_primary_10_1002_cbin_11975 crossref_primary_10_3390_cancers14215468 crossref_primary_10_1002_cnma_202300611 crossref_primary_10_1159_000540180 crossref_primary_10_1097_CM9_0000000000002533 crossref_primary_10_1089_ars_2022_0013 crossref_primary_10_1016_j_jstrokecerebrovasdis_2024_107736 crossref_primary_10_1016_j_cej_2024_149518 crossref_primary_10_1016_j_tcb_2023_05_003 crossref_primary_10_3390_cancers15010087 crossref_primary_10_1016_j_bbrc_2025_151552 crossref_primary_10_1016_j_gendis_2022_04_011 crossref_primary_10_7554_eLife_89136_3 crossref_primary_10_1007_s10555_023_10156_5 crossref_primary_10_1007_s10620_024_08416_7 crossref_primary_10_1016_j_ejphar_2024_176803 crossref_primary_10_1016_j_ymthe_2021_03_022 crossref_primary_10_1055_s_0041_1731709 crossref_primary_10_1039_D2NA00719C crossref_primary_10_1111_cns_70189 crossref_primary_10_1186_s40168_023_01659_y crossref_primary_10_3892_ijmm_2024_5480 crossref_primary_10_1152_physrev_00031_2024 crossref_primary_10_1016_j_yexcr_2025_114474 crossref_primary_10_1038_s41419_023_06045_y crossref_primary_10_3389_fcell_2024_1423869 crossref_primary_10_1080_1061186X_2022_2071909 crossref_primary_10_3748_wjg_v29_i4_616 crossref_primary_10_1186_s12967_024_05543_7 crossref_primary_10_1002_wnan_2010 crossref_primary_10_1186_s12964_024_01762_z crossref_primary_10_12677_hjbm_2024_142017 crossref_primary_10_2147_JIR_S432111 crossref_primary_10_1038_s41418_021_00859_z crossref_primary_10_3390_cells12060867 crossref_primary_10_1016_j_canlet_2023_216147 crossref_primary_10_1186_s13046_024_02943_x crossref_primary_10_1016_j_intimp_2024_112461 crossref_primary_10_1016_j_procbio_2024_04_004 crossref_primary_10_1016_j_smaim_2022_01_008 crossref_primary_10_3389_fimmu_2023_1297886 crossref_primary_10_1016_j_microc_2024_111098 crossref_primary_10_1002_advs_202100997 crossref_primary_10_1016_j_isci_2023_108560 crossref_primary_10_3389_fimmu_2023_1284344 crossref_primary_10_1002_cac2_12250 crossref_primary_10_1016_j_biopha_2024_117406 crossref_primary_10_3390_cancers14071826 crossref_primary_10_2147_JHC_S446313 crossref_primary_10_20517_cdr_2024_151 crossref_primary_10_3390_w16202930 crossref_primary_10_3724_zdxbyxb_2024_0117 crossref_primary_10_1186_s13046_023_02925_5 crossref_primary_10_1002_ctm2_752 crossref_primary_10_3390_life11030222 crossref_primary_10_1084_jem_20210518 crossref_primary_10_3389_fgene_2022_897683 crossref_primary_10_1002_jcp_31290 crossref_primary_10_3390_cancers13205250 crossref_primary_10_3390_cancers15051417 crossref_primary_10_1002_admt_202201643 crossref_primary_10_26599_FSHW_2023_9250035 crossref_primary_10_1136_jitc_2021_003430 crossref_primary_10_1016_j_lfs_2024_122720 crossref_primary_10_1002_smll_202102269 crossref_primary_10_1371_journal_pone_0302050 crossref_primary_10_2147_JHC_S469449 crossref_primary_10_3892_ijo_2024_5680 crossref_primary_10_1016_j_ejphar_2023_175913 crossref_primary_10_11569_wcjd_v32_i10_699 crossref_primary_10_3390_ijms24087463 crossref_primary_10_3390_cancers15153861 crossref_primary_10_1097_FJC_0000000000001328 crossref_primary_10_1016_j_abb_2025_110352 crossref_primary_10_1007_s10565_024_09853_w crossref_primary_10_1016_j_procbio_2023_03_012 crossref_primary_10_3389_fimmu_2022_1038650 crossref_primary_10_1016_j_apsb_2021_09_019 crossref_primary_10_1016_j_redox_2025_103553 crossref_primary_10_1016_j_biopha_2023_116074 crossref_primary_10_1016_j_prp_2024_155567 crossref_primary_10_2147_JHC_S325593 crossref_primary_10_1016_j_phrs_2025_107674 crossref_primary_10_1080_08923973_2022_2072328 crossref_primary_10_1038_s41419_022_05257_y crossref_primary_10_3389_fcell_2021_690796 crossref_primary_10_3390_ijms25179141 crossref_primary_10_1080_2162402X_2024_2320951 crossref_primary_10_1007_s00203_024_04013_4 crossref_primary_10_1016_j_ejphar_2024_176965 crossref_primary_10_1002_adfm_202411247 crossref_primary_10_1002_cac2_12519 crossref_primary_10_3389_fphar_2022_926802 crossref_primary_10_1016_j_semcancer_2022_10_009 crossref_primary_10_3389_fmolb_2022_947208 crossref_primary_10_1016_j_cellsig_2024_111239 crossref_primary_10_1039_D1TB01289D crossref_primary_10_3389_fcell_2021_809457 crossref_primary_10_1021_acsami_4c21890 crossref_primary_10_1021_acsnano_4c05084 crossref_primary_10_1093_bib_bbae223 crossref_primary_10_3389_fcell_2022_1069555 crossref_primary_10_1038_s41598_025_88538_8 crossref_primary_10_26508_lsa_202503226 crossref_primary_10_1016_j_biopha_2022_113279 crossref_primary_10_1111_jcmm_18377 crossref_primary_10_1097_HEP_0000000000000390 crossref_primary_10_1080_23723556_2021_1901558 crossref_primary_10_2147_IJN_S343361 crossref_primary_10_1017_S0954422421000226 crossref_primary_10_1038_s41598_025_91237_z crossref_primary_10_1016_j_bcp_2021_114584 crossref_primary_10_1016_j_ebiom_2024_105088 crossref_primary_10_1002_jcp_31122 crossref_primary_10_1038_s41419_023_06057_8 crossref_primary_10_1038_s41388_024_03020_5 crossref_primary_10_1016_j_critrevonc_2024_104349 crossref_primary_10_3390_metabo11110777 crossref_primary_10_1039_D2EW00853J crossref_primary_10_3389_fonc_2021_796152 crossref_primary_10_1002_lci2_68 crossref_primary_10_1016_j_jgg_2022_06_002 crossref_primary_10_1007_s10495_022_01795_0 crossref_primary_10_1038_s41418_024_01414_2 crossref_primary_10_3390_biom14111407 crossref_primary_10_3389_fcell_2022_873029 crossref_primary_10_1002_advs_202301300 crossref_primary_10_1007_s12272_023_01431_8 crossref_primary_10_1038_s41420_022_01044_y crossref_primary_10_3389_fonc_2025_1553722 |
Cites_doi | 10.1158/2326-6066.CIR-18-0481 10.1083/jcb.201701136 10.1038/s41388-019-0805-7 10.1016/j.chembiol.2019.03.001 10.1016/j.cell.2017.09.019 10.1038/onc.2017.188 10.1016/j.bbadis.2019.165576 10.1038/nchembio.2172 10.1016/j.freeradbiomed.2018.10.426 10.1158/0008-5472.CAN-14-0319 10.3322/caac.21590 10.1093/nar/28.1.27 10.1002/adma.201704007 10.1093/nar/gkz430 10.1016/j.cmet.2019.10.004 10.3322/caac.21338 10.1002/adma.201904197 10.1038/s41586-019-1170-y 10.1038/s41556-018-0178-0 10.1038/nchembio.2239 10.1038/s41388-020-1216-5 10.1016/j.cmet.2017.11.005 10.1073/pnas.1821022116 10.1158/0008-5472.CAN-19-0369 10.1016/j.tibs.2018.10.011 10.1016/j.cell.2018.01.009 10.1016/j.ccell.2019.04.002 10.1038/s41586-019-1705-2 10.1016/j.cmet.2019.08.013 10.1126/science.aaw9872 10.1146/annurev-cancerbio-030518-055844 10.1038/s41586-019-1847-2 10.1038/s41388-020-1235-2 10.1038/nature24057 10.1016/j.cell.2017.11.048 10.1016/j.stem.2016.11.004 10.1038/s41418-019-0299-4 10.1016/j.jhep.2017.06.015 10.1038/s41419-019-1877-6 10.1038/s41575-019-0229-4 10.1038/s41556-018-0209-x 10.1038/s41586-019-1707-0 10.1038/s41467-019-09152-7 10.1158/0008-5472.CAN-18-3726 10.1038/s41589-019-0408-1 10.1038/s41568-019-0149-1 10.1016/j.chembiol.2018.11.016 10.1016/j.cub.2018.05.094 10.1016/j.tcb.2020.02.009 10.1016/j.chembiol.2020.03.015 10.1038/s41589-018-0031-6 10.1038/s41467-019-08585-4 10.1016/j.pharmthera.2019.107451 |
ContentType | Journal Article |
Copyright | 2020 Copyright © 2020. Published by Elsevier Inc. |
Copyright_xml | – notice: 2020 – notice: Copyright © 2020. Published by Elsevier Inc. |
DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 |
DOI | 10.1016/j.celrep.2020.108487 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2211-1247 |
ExternalDocumentID | 33296645 10_1016_j_celrep_2020_108487 S2211124720314765 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | 0R~ 0SF 4.4 457 53G 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AAKRW AALRI AAUCE AAXUO ABMAC ABMWF ACGFO ACGFS ADBBV ADEZE AENEX AEXQZ AFTJW AGHFR AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ BAWUL BCNDV DIK EBS EJD FCP FDB FRP GROUPED_DOAJ GX1 IXB KQ8 M41 M48 NCXOZ O-L O9- OK1 RCE ROL SSZ AAMRU AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION HZ~ IPNFZ RIG NPM 7X8 |
ID | FETCH-LOGICAL-c474t-1f59b69d986667617f2f1096f74b8a75ba1e8d387e2e98d5b180be55ab0a7a9d3 |
IEDL.DBID | M48 |
ISSN | 2211-1247 |
IngestDate | Fri Jul 11 17:01:05 EDT 2025 Thu Apr 03 07:06:19 EDT 2025 Thu Apr 24 23:13:03 EDT 2025 Tue Jul 01 02:59:14 EDT 2025 Tue Jul 25 21:03:20 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | ferroptosis tumor microenvironment lactate tumor therapy MCT1 |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2020. Published by Elsevier Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c474t-1f59b69d986667617f2f1096f74b8a75ba1e8d387e2e98d5b180be55ab0a7a9d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-9019-3314 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S2211124720314765 |
PMID | 33296645 |
PQID | 2469071397 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2469071397 pubmed_primary_33296645 crossref_citationtrail_10_1016_j_celrep_2020_108487 crossref_primary_10_1016_j_celrep_2020_108487 elsevier_sciencedirect_doi_10_1016_j_celrep_2020_108487 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-12-08 |
PublicationDateYYYYMMDD | 2020-12-08 |
PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-08 day: 08 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell reports (Cambridge) |
PublicationTitleAlternate | Cell Rep |
PublicationYear | 2020 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | García-Cañaveras, Chen, Rabinowitz (bib19) 2019; 79 Siegel, Miller, Jemal (bib42) 2020; 70 Badgley, Kremer, Maurer, DelGiorno, Lee, Purohit, Sagalovskiy, Ma, Kapilian, Firl (bib1) 2020; 368 Chen, Mahieu, Huang, Singh, Crawford, Johnson, Gross, Schaefer, Patti (bib8) 2016; 12 Ippolito, Morandi, Giannoni, Chiarugi (bib27) 2019; 44 Liang, Zhang, Yang, Dong (bib33) 2019; 31 Brown, Bhattacharjee, Ramachandran, Sivaprakasam, Ristic, Sikder, Ganapathy (bib6) 2020; 39 Han, Hu, Cui, Liu, Ma, Xue, Liu, Zhang, Zhao, Yu (bib21) 2019; 10 Kanehisa, Goto (bib54) 2000; 28 Dixon, Stockwell (bib12) 2019; 3 Zhang, Shi, Liu, Feng, Gong, Koppula, Sirohi, Li, Wei, Lee (bib52) 2018; 20 Xie, Zhu, He, Zhang, Zhang, Wang, Luo, Peng, Cheng, Gao (bib51) 2020; 1866 Faubert, Li, Cai, Hensley, Kim, Zacharias, Yang, Do, Doucette, Burguete (bib16) 2017; 171 Chen, Zheng, Baade, Zhang, Zeng, Bray, Jemal, Yu, He (bib7) 2016; 66 Tauffenberger, Fiumelli, Almustafa, Magistretti (bib48) 2019; 10 Brown, Amante, Goel, Mercurio (bib5) 2017; 216 Roland, Arumugam, Deng, Liu, Philip, Gomez, Burns, Ramachandran, Wang, Cruz-Monserrate, Logsdon (bib39) 2014; 74 Hassannia, Vandenabeele, Vanden Berghe (bib23) 2019; 35 Su, Chen, Yao, Liu, Yu, Lao, Wang, Luo, Xing, Chen (bib45) 2018; 172 Tasdogan, Faubert, Ramesh, Ubellacker, Shen, Solmonson, Murphy, Gu, Gu, Martin (bib47) 2020; 577 Pucino, Certo, Bulusu, Cucchi, Goldmann, Pontarini, Haas, Smith, Headland, Blighe (bib38) 2019; 30 Wang, Green, Choi, Gijón, Kennedy, Johnson, Liao, Lang, Kryczek, Sell (bib50) 2019; 569 Song, Zhu, Chen, Hou, Wen, Liu, Xie, Liu, Klionsky, Kroemer (bib43) 2018; 28 Magtanong, Ko, To, Cao, Forcina, Tarangelo, Ward, Cho, Patti, Nomura (bib35) 2019; 26 Shen, Song, Yung, Zhou, Wu, Chen (bib40) 2018; 30 Hui, Ghergurovich, Morscher, Jang, Teng, Lu, Esparza, Reya, Le Zhan, Yanxiang Guo (bib25) 2017; 551 Tesfay, Paul, Konstorum, Deng, Cox, Lee, Furdui, Hegde, Torti, Torti (bib49) 2019; 79 Doll, Freitas, Shah, Aldrovandi, da Silva, Ingold, Goya Grocin, Xavier da Silva, Panzilius, Scheel (bib14) 2019; 575 Bersuker, Hendricks, Li, Magtanong, Ford, Tang, Roberts, Tong, Maimone, Zoncu (bib2) 2019; 575 Stockwell, Jiang, Gu (bib44) 2020; 30 Li, Feng, Wang, Zhao, Sun, Tian, Liu, Zhang, Ning, Yao, Tian (bib32) 2019; 26 Murphy (bib37) 2018; 20 Fang, Wang, Han, Xie, Yang, Wei, Gu, Gao, Zhu, Yin (bib15) 2019; 116 Doll, Proneth, Tyurina, Panzilius, Kobayashi, Ingold, Irmler, Beckers, Aichler, Walch (bib13) 2017; 13 Tang, Kang, Li, Chen, Zhang (bib46) 2019; 47 Zou, Schreiber (bib53) 2020; 27 Ma, Lau, Leung, Lo, Ho, Cheng, Ma, Lin, Copland, Ding (bib34) 2017; 67 Martínez-Reyes, Chandel (bib36) 2017; 26 Brown, Ganapathy (bib4) 2020; 206 Feng, Yang, Zhang, Wei, Zhu, Zhu, Yang, Cao, Wang, Wu (bib17) 2017; 36 Craig, von Felden, Garcia-Lezana, Sarcognato, Villanueva (bib10) 2020; 17 Ingold, Berndt, Schmitt, Doll, Poschmann, Buday, Roveri, Peng, Porto Freitas, Seibt (bib26) 2018; 172 Kim, DeBerardinis (bib30) 2019; 30 Bertolio, Napoletano, Mano, Maurer-Stroh, Fantuz, Zannini, Bicciato, Sorrentino, Del Sal (bib3) 2019; 10 Shin, Kim, Lee, Roh (bib41) 2018; 129 Friedmann Angeli, Krysko, Conrad (bib18) 2019; 19 Huang, Feng, Wang, Li, Sun, Wilhelm, Huang, Vo, Sumer, Gao (bib24) 2020 Gaschler, Andia, Liu, Csuka, Hurlocker, Vaiana, Heindel, Zuckerman, Bos, Reznik (bib20) 2018; 14 Harmon, Robinson, Hand, Almuaili, Mentor, Houlihan, Hoti, Lynch, Geoghegan, O’Farrelly (bib22) 2019; 7 Das (bib11) 2019; 26 Ippolito, Morandi, Taddei, Parri, Comito, Iscaro, Raspollini, Magherini, Rapizzi, Masquelier (bib28) 2019; 38 Conrad, Pratt (bib9) 2019; 15 Li, Condello, Thomes-Pepin, Ma, Xia, Hurley, Matei, Cheng (bib31) 2017; 20 Khan, Valli, Lam, Scott, Murray, Hanssen, Eden, Gamble, Pandher, Flemming (bib29) 2020; 39 Kanehisa (10.1016/j.celrep.2020.108487_bib54) 2000; 28 Roland (10.1016/j.celrep.2020.108487_bib39) 2014; 74 Hassannia (10.1016/j.celrep.2020.108487_bib23) 2019; 35 Zhang (10.1016/j.celrep.2020.108487_bib52) 2018; 20 Fang (10.1016/j.celrep.2020.108487_bib15) 2019; 116 Kim (10.1016/j.celrep.2020.108487_bib30) 2019; 30 Chen (10.1016/j.celrep.2020.108487_bib7) 2016; 66 Doll (10.1016/j.celrep.2020.108487_bib13) 2017; 13 Khan (10.1016/j.celrep.2020.108487_bib29) 2020; 39 Friedmann Angeli (10.1016/j.celrep.2020.108487_bib18) 2019; 19 Brown (10.1016/j.celrep.2020.108487_bib5) 2017; 216 Doll (10.1016/j.celrep.2020.108487_bib14) 2019; 575 Su (10.1016/j.celrep.2020.108487_bib45) 2018; 172 Huang (10.1016/j.celrep.2020.108487_bib24) 2020 Tang (10.1016/j.celrep.2020.108487_bib46) 2019; 47 Gaschler (10.1016/j.celrep.2020.108487_bib20) 2018; 14 Li (10.1016/j.celrep.2020.108487_bib31) 2017; 20 Dixon (10.1016/j.celrep.2020.108487_bib12) 2019; 3 Han (10.1016/j.celrep.2020.108487_bib21) 2019; 10 Das (10.1016/j.celrep.2020.108487_bib11) 2019; 26 Tasdogan (10.1016/j.celrep.2020.108487_bib47) 2020; 577 Zou (10.1016/j.celrep.2020.108487_bib53) 2020; 27 Tauffenberger (10.1016/j.celrep.2020.108487_bib48) 2019; 10 Badgley (10.1016/j.celrep.2020.108487_bib1) 2020; 368 Martínez-Reyes (10.1016/j.celrep.2020.108487_bib36) 2017; 26 Xie (10.1016/j.celrep.2020.108487_bib51) 2020; 1866 Shin (10.1016/j.celrep.2020.108487_bib41) 2018; 129 Feng (10.1016/j.celrep.2020.108487_bib17) 2017; 36 Liang (10.1016/j.celrep.2020.108487_bib33) 2019; 31 Stockwell (10.1016/j.celrep.2020.108487_bib44) 2020; 30 Faubert (10.1016/j.celrep.2020.108487_bib16) 2017; 171 Bertolio (10.1016/j.celrep.2020.108487_bib3) 2019; 10 Harmon (10.1016/j.celrep.2020.108487_bib22) 2019; 7 Ippolito (10.1016/j.celrep.2020.108487_bib27) 2019; 44 Wang (10.1016/j.celrep.2020.108487_bib50) 2019; 569 Bersuker (10.1016/j.celrep.2020.108487_bib2) 2019; 575 García-Cañaveras (10.1016/j.celrep.2020.108487_bib19) 2019; 79 Pucino (10.1016/j.celrep.2020.108487_bib38) 2019; 30 Brown (10.1016/j.celrep.2020.108487_bib6) 2020; 39 Song (10.1016/j.celrep.2020.108487_bib43) 2018; 28 Craig (10.1016/j.celrep.2020.108487_bib10) 2020; 17 Hui (10.1016/j.celrep.2020.108487_bib25) 2017; 551 Shen (10.1016/j.celrep.2020.108487_bib40) 2018; 30 Chen (10.1016/j.celrep.2020.108487_bib8) 2016; 12 Brown (10.1016/j.celrep.2020.108487_bib4) 2020; 206 Ingold (10.1016/j.celrep.2020.108487_bib26) 2018; 172 Siegel (10.1016/j.celrep.2020.108487_bib42) 2020; 70 Li (10.1016/j.celrep.2020.108487_bib32) 2019; 26 Murphy (10.1016/j.celrep.2020.108487_bib37) 2018; 20 Magtanong (10.1016/j.celrep.2020.108487_bib35) 2019; 26 Conrad (10.1016/j.celrep.2020.108487_bib9) 2019; 15 Tesfay (10.1016/j.celrep.2020.108487_bib49) 2019; 79 Ma (10.1016/j.celrep.2020.108487_bib34) 2017; 67 Ippolito (10.1016/j.celrep.2020.108487_bib28) 2019; 38 |
References_xml | – volume: 577 start-page: 115 year: 2020 end-page: 120 ident: bib47 article-title: Metabolic heterogeneity confers differences in melanoma metastatic potential publication-title: Nature – volume: 79 start-page: 3155 year: 2019 end-page: 3162 ident: bib19 article-title: The Tumor Metabolic Microenvironment: Lessons from Lactate publication-title: Cancer Res. – volume: 19 start-page: 405 year: 2019 end-page: 414 ident: bib18 article-title: Ferroptosis at the crossroads of cancer-acquired drug resistance and immune evasion publication-title: Nat. Rev. Cancer – volume: 70 start-page: 7 year: 2020 end-page: 30 ident: bib42 article-title: Cancer statistics, 2020 publication-title: CA Cancer J. Clin. – volume: 129 start-page: 454 year: 2018 end-page: 462 ident: bib41 article-title: Nrf2 inhibition reverses resistance to GPX4 inhibitor-induced ferroptosis in head and neck cancer publication-title: Free Radic. Biol. Med. – volume: 13 start-page: 91 year: 2017 end-page: 98 ident: bib13 article-title: ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition publication-title: Nat. Chem. Biol. – volume: 27 start-page: 463 year: 2020 end-page: 471 ident: bib53 article-title: Progress in Understanding Ferroptosis and Challenges in Its Targeting for Therapeutic Benefit publication-title: Cell Chem. Biol. – volume: 10 start-page: 1326 year: 2019 ident: bib3 article-title: Sterol regulatory element binding protein 1 couples mechanical cues and lipid metabolism publication-title: Nat. Commun. – volume: 172 start-page: 841 year: 2018 end-page: 856.e816 ident: bib45 article-title: CD10(+)GPR77(+) Cancer-Associated Fibroblasts Promote Cancer Formation and Chemoresistance by Sustaining Cancer Stemness publication-title: Cell – volume: 39 start-page: 3292 year: 2020 end-page: 3304 ident: bib6 article-title: The lactate receptor GPR81 promotes breast cancer growth via a paracrine mechanism involving antigen-presenting cells in the tumor microenvironment publication-title: Oncogene – volume: 26 start-page: 803 year: 2017 end-page: 804 ident: bib36 article-title: Waste Not, Want Not: Lactate Oxidation Fuels the TCA Cycle publication-title: Cell Metab. – volume: 12 start-page: 937 year: 2016 end-page: 943 ident: bib8 article-title: Lactate metabolism is associated with mammalian mitochondria publication-title: Nat. Chem. Biol. – volume: 1866 start-page: 165576 year: 2020 ident: bib51 article-title: A lactate-induced Snail/STAT3 pathway drives GPR81 expression in lung cancer cells publication-title: Biochim. Biophys. Acta Mol. Basis Dis. – volume: 3 start-page: 35 year: 2019 end-page: 54 ident: bib12 article-title: The Hallmarks of Ferroptosis publication-title: Annu. Rev. Cancer Biol. – volume: 26 start-page: 420 year: 2019 end-page: 432 e429 ident: bib35 article-title: Exogenous Monounsaturated Fatty Acids Promote a Ferroptosis-Resistant Cell State publication-title: Cell Chem. Biol. – volume: 575 start-page: 693 year: 2019 end-page: 698 ident: bib14 article-title: FSP1 is a glutathione-independent ferroptosis suppressor publication-title: Nature – volume: 20 start-page: 303 year: 2017 end-page: 314 e305 ident: bib31 article-title: Lipid Desaturation Is a Metabolic Marker and Therapeutic Target of Ovarian Cancer Stem Cells publication-title: Cell Stem Cell – volume: 20 start-page: 1104 year: 2018 end-page: 1105 ident: bib37 article-title: Metabolic control of ferroptosis in cancer publication-title: Nat. Cell Biol. – volume: 67 start-page: 979 year: 2017 end-page: 990 ident: bib34 article-title: Stearoyl-CoA desaturase regulates sorafenib resistance via modulation of ER stress-induced differentiation publication-title: J. Hepatol. – volume: 206 start-page: 107451 year: 2020 ident: bib4 article-title: Lactate/GPR81 signaling and proton motive force in cancer: Role in angiogenesis, immune escape, nutrition, and Warburg phenomenon publication-title: Pharmacol. Ther. – volume: 7 start-page: 335 year: 2019 end-page: 346 ident: bib22 article-title: Lactate-Mediated Acidification of Tumor Microenvironment Induces Apoptosis of Liver-Resident NK Cells in Colorectal Liver Metastasis publication-title: Cancer Immunol. Res. – volume: 30 start-page: 434 year: 2019 end-page: 446 ident: bib30 article-title: Mechanisms and Implications of Metabolic Heterogeneity in Cancer publication-title: Cell Metab. – volume: 171 start-page: 358 year: 2017 end-page: 371.e9 ident: bib16 article-title: Lactate Metabolism in Human Lung Tumors publication-title: Cell – volume: 368 start-page: 85 year: 2020 end-page: 89 ident: bib1 article-title: Cysteine depletion induces pancreatic tumor ferroptosis in mice publication-title: Science – volume: 10 start-page: 623 year: 2019 ident: bib21 article-title: Post-translational regulation of lipogenesis via AMPK-dependent phosphorylation of insulin-induced gene publication-title: Nat. Commun. – volume: 30 start-page: 1055 year: 2019 end-page: 1074.e8 ident: bib38 article-title: Lactate Buildup at the Site of Chronic Inflammation Promotes Disease by Inducing CD4 publication-title: Cell Metab. – volume: 28 start-page: 27 year: 2000 end-page: 30 ident: bib54 article-title: KEGG: Kyoto Encyclopedia of Genes and Genomes publication-title: Nucleic Acids Res – volume: 39 start-page: 3555 year: 2020 end-page: 3570 ident: bib29 article-title: Targeting metabolic activity in high-risk neuroblastoma through Monocarboxylate Transporter 1 (MCT1) inhibition publication-title: Oncogene – volume: 14 start-page: 507 year: 2018 end-page: 515 ident: bib20 article-title: FINO publication-title: Nat. Chem. Biol. – volume: 79 start-page: 5355 year: 2019 end-page: 5366 ident: bib49 article-title: Stearoyl-CoA Desaturase 1 Protects Ovarian Cancer Cells from Ferroptotic Cell Death publication-title: Cancer Res. – volume: 28 start-page: 2388 year: 2018 end-page: 2399.e5 ident: bib43 article-title: AMPK-Mediated BECN1 Phosphorylation Promotes Ferroptosis by Directly Blocking System X publication-title: Curr. Biol. – volume: 575 start-page: 688 year: 2019 end-page: 692 ident: bib2 article-title: The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis publication-title: Nature – volume: 551 start-page: 115 year: 2017 end-page: 118 ident: bib25 article-title: Glucose feeds the TCA cycle via circulating lactate publication-title: Nature – volume: 26 start-page: 309 year: 2019 end-page: 311 ident: bib11 article-title: Saturated Fatty Acids, MUFAs and PUFAs Regulate Ferroptosis publication-title: Cell Chem. Biol. – volume: 38 start-page: 5339 year: 2019 end-page: 5355 ident: bib28 article-title: Cancer-associated fibroblasts promote prostate cancer malignancy via metabolic rewiring and mitochondrial transfer publication-title: Oncogene – volume: 30 start-page: e1704007 year: 2018 ident: bib40 article-title: Emerging Strategies of Cancer Therapy Based on Ferroptosis publication-title: Adv. Mater. – volume: 66 start-page: 115 year: 2016 end-page: 132 ident: bib7 article-title: Cancer statistics in China, 2015 publication-title: CA Cancer J. Clin. – volume: 30 start-page: 478 year: 2020 end-page: 490 ident: bib44 article-title: Emerging Mechanisms and Disease Relevance of Ferroptosis publication-title: Trends Cell Biol. – volume: 17 start-page: 139 year: 2020 end-page: 152 ident: bib10 article-title: Tumour evolution in hepatocellular carcinoma publication-title: Nat. Rev. Gastroenterol. Hepatol. – volume: 44 start-page: 153 year: 2019 end-page: 166 ident: bib27 article-title: Lactate: A Metabolic Driver in the Tumour Landscape publication-title: Trends Biochem. Sci. – volume: 35 start-page: 830 year: 2019 end-page: 849 ident: bib23 article-title: Targeting Ferroptosis to Iron Out Cancer publication-title: Cancer Cell – volume: 31 start-page: e1904197 year: 2019 ident: bib33 article-title: Recent Progress in Ferroptosis Inducers for Cancer Therapy publication-title: Adv. Mater. – volume: 10 start-page: 653 year: 2019 ident: bib48 article-title: Lactate and pyruvate promote oxidative stress resistance through hormetic ROS signaling publication-title: Cell Death Dis. – volume: 569 start-page: 270 year: 2019 end-page: 274 ident: bib50 article-title: CD8 publication-title: Nature – volume: 216 start-page: 4287 year: 2017 end-page: 4297 ident: bib5 article-title: The α6β4 integrin promotes resistance to ferroptosis publication-title: J. Cell Biol. – volume: 172 start-page: 409 year: 2018 end-page: 422 e421 ident: bib26 article-title: Selenium Utilization by GPX4 Is Required to Prevent Hydroperoxide-Induced Ferroptosis publication-title: Cell – volume: 116 start-page: 2672 year: 2019 end-page: 2680 ident: bib15 article-title: Ferroptosis as a target for protection against cardiomyopathy publication-title: Proc. Natl. Acad. Sci. USA – start-page: e2000549 year: 2020 ident: bib24 article-title: Tumor-Targeted Inhibition of Monocarboxylate Transporter 1 Improves T-Cell Immunotherapy of Solid Tumors publication-title: Adv. Healthc. Mater. – volume: 26 start-page: 2284 year: 2019 end-page: 2299 ident: bib32 article-title: Ischemia-induced ACSL4 activation contributes to ferroptosis-mediated tissue injury in intestinal ischemia/reperfusion publication-title: Cell Death Differ. – volume: 74 start-page: 5301 year: 2014 end-page: 5310 ident: bib39 article-title: Cell surface lactate receptor GPR81 is crucial for cancer cell survival publication-title: Cancer Res. – volume: 15 start-page: 1137 year: 2019 end-page: 1147 ident: bib9 article-title: The chemical basis of ferroptosis publication-title: Nat. Chem. Biol. – volume: 47 start-page: W556 year: 2019 end-page: W560 ident: bib46 article-title: GEPIA2: an enhanced web server for large-scale expression profiling and interactive analysis publication-title: Nucleic Acids Res. – volume: 20 start-page: 1181 year: 2018 end-page: 1192 ident: bib52 article-title: BAP1 links metabolic regulation of ferroptosis to tumour suppression publication-title: Nat. Cell Biol. – volume: 36 start-page: 5829 year: 2017 end-page: 5839 ident: bib17 article-title: Tumor cell-derived lactate induces TAZ-dependent upregulation of PD-L1 through GPR81 in human lung cancer cells publication-title: Oncogene – volume: 7 start-page: 335 year: 2019 ident: 10.1016/j.celrep.2020.108487_bib22 article-title: Lactate-Mediated Acidification of Tumor Microenvironment Induces Apoptosis of Liver-Resident NK Cells in Colorectal Liver Metastasis publication-title: Cancer Immunol. Res. doi: 10.1158/2326-6066.CIR-18-0481 – volume: 216 start-page: 4287 year: 2017 ident: 10.1016/j.celrep.2020.108487_bib5 article-title: The α6β4 integrin promotes resistance to ferroptosis publication-title: J. Cell Biol. doi: 10.1083/jcb.201701136 – volume: 38 start-page: 5339 year: 2019 ident: 10.1016/j.celrep.2020.108487_bib28 article-title: Cancer-associated fibroblasts promote prostate cancer malignancy via metabolic rewiring and mitochondrial transfer publication-title: Oncogene doi: 10.1038/s41388-019-0805-7 – volume: 26 start-page: 309 year: 2019 ident: 10.1016/j.celrep.2020.108487_bib11 article-title: Saturated Fatty Acids, MUFAs and PUFAs Regulate Ferroptosis publication-title: Cell Chem. Biol. doi: 10.1016/j.chembiol.2019.03.001 – volume: 171 start-page: 358 year: 2017 ident: 10.1016/j.celrep.2020.108487_bib16 article-title: Lactate Metabolism in Human Lung Tumors publication-title: Cell doi: 10.1016/j.cell.2017.09.019 – volume: 36 start-page: 5829 year: 2017 ident: 10.1016/j.celrep.2020.108487_bib17 article-title: Tumor cell-derived lactate induces TAZ-dependent upregulation of PD-L1 through GPR81 in human lung cancer cells publication-title: Oncogene doi: 10.1038/onc.2017.188 – volume: 1866 start-page: 165576 year: 2020 ident: 10.1016/j.celrep.2020.108487_bib51 article-title: A lactate-induced Snail/STAT3 pathway drives GPR81 expression in lung cancer cells publication-title: Biochim. Biophys. Acta Mol. Basis Dis. doi: 10.1016/j.bbadis.2019.165576 – volume: 12 start-page: 937 year: 2016 ident: 10.1016/j.celrep.2020.108487_bib8 article-title: Lactate metabolism is associated with mammalian mitochondria publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.2172 – volume: 129 start-page: 454 year: 2018 ident: 10.1016/j.celrep.2020.108487_bib41 article-title: Nrf2 inhibition reverses resistance to GPX4 inhibitor-induced ferroptosis in head and neck cancer publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2018.10.426 – volume: 74 start-page: 5301 year: 2014 ident: 10.1016/j.celrep.2020.108487_bib39 article-title: Cell surface lactate receptor GPR81 is crucial for cancer cell survival publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-14-0319 – volume: 70 start-page: 7 year: 2020 ident: 10.1016/j.celrep.2020.108487_bib42 article-title: Cancer statistics, 2020 publication-title: CA Cancer J. Clin. doi: 10.3322/caac.21590 – volume: 28 start-page: 27 year: 2000 ident: 10.1016/j.celrep.2020.108487_bib54 article-title: KEGG: Kyoto Encyclopedia of Genes and Genomes publication-title: Nucleic Acids Res doi: 10.1093/nar/28.1.27 – volume: 30 start-page: e1704007 year: 2018 ident: 10.1016/j.celrep.2020.108487_bib40 article-title: Emerging Strategies of Cancer Therapy Based on Ferroptosis publication-title: Adv. Mater. doi: 10.1002/adma.201704007 – volume: 47 start-page: W556 issue: W1 year: 2019 ident: 10.1016/j.celrep.2020.108487_bib46 article-title: GEPIA2: an enhanced web server for large-scale expression profiling and interactive analysis publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkz430 – start-page: e2000549 year: 2020 ident: 10.1016/j.celrep.2020.108487_bib24 article-title: Tumor-Targeted Inhibition of Monocarboxylate Transporter 1 Improves T-Cell Immunotherapy of Solid Tumors publication-title: Adv. Healthc. Mater. – volume: 30 start-page: 1055 year: 2019 ident: 10.1016/j.celrep.2020.108487_bib38 article-title: Lactate Buildup at the Site of Chronic Inflammation Promotes Disease by Inducing CD4+ T Cell Metabolic Rewiring publication-title: Cell Metab. doi: 10.1016/j.cmet.2019.10.004 – volume: 66 start-page: 115 year: 2016 ident: 10.1016/j.celrep.2020.108487_bib7 article-title: Cancer statistics in China, 2015 publication-title: CA Cancer J. Clin. doi: 10.3322/caac.21338 – volume: 31 start-page: e1904197 year: 2019 ident: 10.1016/j.celrep.2020.108487_bib33 article-title: Recent Progress in Ferroptosis Inducers for Cancer Therapy publication-title: Adv. Mater. doi: 10.1002/adma.201904197 – volume: 569 start-page: 270 year: 2019 ident: 10.1016/j.celrep.2020.108487_bib50 article-title: CD8+ T cells regulate tumour ferroptosis during cancer immunotherapy publication-title: Nature doi: 10.1038/s41586-019-1170-y – volume: 20 start-page: 1181 year: 2018 ident: 10.1016/j.celrep.2020.108487_bib52 article-title: BAP1 links metabolic regulation of ferroptosis to tumour suppression publication-title: Nat. Cell Biol. doi: 10.1038/s41556-018-0178-0 – volume: 13 start-page: 91 year: 2017 ident: 10.1016/j.celrep.2020.108487_bib13 article-title: ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.2239 – volume: 39 start-page: 3292 year: 2020 ident: 10.1016/j.celrep.2020.108487_bib6 article-title: The lactate receptor GPR81 promotes breast cancer growth via a paracrine mechanism involving antigen-presenting cells in the tumor microenvironment publication-title: Oncogene doi: 10.1038/s41388-020-1216-5 – volume: 26 start-page: 803 year: 2017 ident: 10.1016/j.celrep.2020.108487_bib36 article-title: Waste Not, Want Not: Lactate Oxidation Fuels the TCA Cycle publication-title: Cell Metab. doi: 10.1016/j.cmet.2017.11.005 – volume: 116 start-page: 2672 year: 2019 ident: 10.1016/j.celrep.2020.108487_bib15 article-title: Ferroptosis as a target for protection against cardiomyopathy publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1821022116 – volume: 79 start-page: 5355 year: 2019 ident: 10.1016/j.celrep.2020.108487_bib49 article-title: Stearoyl-CoA Desaturase 1 Protects Ovarian Cancer Cells from Ferroptotic Cell Death publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-19-0369 – volume: 44 start-page: 153 year: 2019 ident: 10.1016/j.celrep.2020.108487_bib27 article-title: Lactate: A Metabolic Driver in the Tumour Landscape publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2018.10.011 – volume: 172 start-page: 841 year: 2018 ident: 10.1016/j.celrep.2020.108487_bib45 article-title: CD10(+)GPR77(+) Cancer-Associated Fibroblasts Promote Cancer Formation and Chemoresistance by Sustaining Cancer Stemness publication-title: Cell doi: 10.1016/j.cell.2018.01.009 – volume: 35 start-page: 830 year: 2019 ident: 10.1016/j.celrep.2020.108487_bib23 article-title: Targeting Ferroptosis to Iron Out Cancer publication-title: Cancer Cell doi: 10.1016/j.ccell.2019.04.002 – volume: 575 start-page: 688 year: 2019 ident: 10.1016/j.celrep.2020.108487_bib2 article-title: The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis publication-title: Nature doi: 10.1038/s41586-019-1705-2 – volume: 30 start-page: 434 year: 2019 ident: 10.1016/j.celrep.2020.108487_bib30 article-title: Mechanisms and Implications of Metabolic Heterogeneity in Cancer publication-title: Cell Metab. doi: 10.1016/j.cmet.2019.08.013 – volume: 368 start-page: 85 year: 2020 ident: 10.1016/j.celrep.2020.108487_bib1 article-title: Cysteine depletion induces pancreatic tumor ferroptosis in mice publication-title: Science doi: 10.1126/science.aaw9872 – volume: 3 start-page: 35 year: 2019 ident: 10.1016/j.celrep.2020.108487_bib12 article-title: The Hallmarks of Ferroptosis publication-title: Annu. Rev. Cancer Biol. doi: 10.1146/annurev-cancerbio-030518-055844 – volume: 577 start-page: 115 year: 2020 ident: 10.1016/j.celrep.2020.108487_bib47 article-title: Metabolic heterogeneity confers differences in melanoma metastatic potential publication-title: Nature doi: 10.1038/s41586-019-1847-2 – volume: 39 start-page: 3555 year: 2020 ident: 10.1016/j.celrep.2020.108487_bib29 article-title: Targeting metabolic activity in high-risk neuroblastoma through Monocarboxylate Transporter 1 (MCT1) inhibition publication-title: Oncogene doi: 10.1038/s41388-020-1235-2 – volume: 551 start-page: 115 year: 2017 ident: 10.1016/j.celrep.2020.108487_bib25 article-title: Glucose feeds the TCA cycle via circulating lactate publication-title: Nature doi: 10.1038/nature24057 – volume: 172 start-page: 409 year: 2018 ident: 10.1016/j.celrep.2020.108487_bib26 article-title: Selenium Utilization by GPX4 Is Required to Prevent Hydroperoxide-Induced Ferroptosis publication-title: Cell doi: 10.1016/j.cell.2017.11.048 – volume: 20 start-page: 303 year: 2017 ident: 10.1016/j.celrep.2020.108487_bib31 article-title: Lipid Desaturation Is a Metabolic Marker and Therapeutic Target of Ovarian Cancer Stem Cells publication-title: Cell Stem Cell doi: 10.1016/j.stem.2016.11.004 – volume: 26 start-page: 2284 year: 2019 ident: 10.1016/j.celrep.2020.108487_bib32 article-title: Ischemia-induced ACSL4 activation contributes to ferroptosis-mediated tissue injury in intestinal ischemia/reperfusion publication-title: Cell Death Differ. doi: 10.1038/s41418-019-0299-4 – volume: 67 start-page: 979 year: 2017 ident: 10.1016/j.celrep.2020.108487_bib34 article-title: Stearoyl-CoA desaturase regulates sorafenib resistance via modulation of ER stress-induced differentiation publication-title: J. Hepatol. doi: 10.1016/j.jhep.2017.06.015 – volume: 10 start-page: 653 year: 2019 ident: 10.1016/j.celrep.2020.108487_bib48 article-title: Lactate and pyruvate promote oxidative stress resistance through hormetic ROS signaling publication-title: Cell Death Dis. doi: 10.1038/s41419-019-1877-6 – volume: 17 start-page: 139 year: 2020 ident: 10.1016/j.celrep.2020.108487_bib10 article-title: Tumour evolution in hepatocellular carcinoma publication-title: Nat. Rev. Gastroenterol. Hepatol. doi: 10.1038/s41575-019-0229-4 – volume: 20 start-page: 1104 year: 2018 ident: 10.1016/j.celrep.2020.108487_bib37 article-title: Metabolic control of ferroptosis in cancer publication-title: Nat. Cell Biol. doi: 10.1038/s41556-018-0209-x – volume: 575 start-page: 693 year: 2019 ident: 10.1016/j.celrep.2020.108487_bib14 article-title: FSP1 is a glutathione-independent ferroptosis suppressor publication-title: Nature doi: 10.1038/s41586-019-1707-0 – volume: 10 start-page: 1326 year: 2019 ident: 10.1016/j.celrep.2020.108487_bib3 article-title: Sterol regulatory element binding protein 1 couples mechanical cues and lipid metabolism publication-title: Nat. Commun. doi: 10.1038/s41467-019-09152-7 – volume: 79 start-page: 3155 year: 2019 ident: 10.1016/j.celrep.2020.108487_bib19 article-title: The Tumor Metabolic Microenvironment: Lessons from Lactate publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-18-3726 – volume: 15 start-page: 1137 year: 2019 ident: 10.1016/j.celrep.2020.108487_bib9 article-title: The chemical basis of ferroptosis publication-title: Nat. Chem. Biol. doi: 10.1038/s41589-019-0408-1 – volume: 19 start-page: 405 year: 2019 ident: 10.1016/j.celrep.2020.108487_bib18 article-title: Ferroptosis at the crossroads of cancer-acquired drug resistance and immune evasion publication-title: Nat. Rev. Cancer doi: 10.1038/s41568-019-0149-1 – volume: 26 start-page: 420 year: 2019 ident: 10.1016/j.celrep.2020.108487_bib35 article-title: Exogenous Monounsaturated Fatty Acids Promote a Ferroptosis-Resistant Cell State publication-title: Cell Chem. Biol. doi: 10.1016/j.chembiol.2018.11.016 – volume: 28 start-page: 2388 year: 2018 ident: 10.1016/j.celrep.2020.108487_bib43 article-title: AMPK-Mediated BECN1 Phosphorylation Promotes Ferroptosis by Directly Blocking System Xc- Activity publication-title: Curr. Biol. doi: 10.1016/j.cub.2018.05.094 – volume: 30 start-page: 478 year: 2020 ident: 10.1016/j.celrep.2020.108487_bib44 article-title: Emerging Mechanisms and Disease Relevance of Ferroptosis publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2020.02.009 – volume: 27 start-page: 463 year: 2020 ident: 10.1016/j.celrep.2020.108487_bib53 article-title: Progress in Understanding Ferroptosis and Challenges in Its Targeting for Therapeutic Benefit publication-title: Cell Chem. Biol. doi: 10.1016/j.chembiol.2020.03.015 – volume: 14 start-page: 507 year: 2018 ident: 10.1016/j.celrep.2020.108487_bib20 article-title: FINO2 initiates ferroptosis through GPX4 inactivation and iron oxidation publication-title: Nat. Chem. Biol. doi: 10.1038/s41589-018-0031-6 – volume: 10 start-page: 623 year: 2019 ident: 10.1016/j.celrep.2020.108487_bib21 article-title: Post-translational regulation of lipogenesis via AMPK-dependent phosphorylation of insulin-induced gene publication-title: Nat. Commun. doi: 10.1038/s41467-019-08585-4 – volume: 206 start-page: 107451 year: 2020 ident: 10.1016/j.celrep.2020.108487_bib4 article-title: Lactate/GPR81 signaling and proton motive force in cancer: Role in angiogenesis, immune escape, nutrition, and Warburg phenomenon publication-title: Pharmacol. Ther. doi: 10.1016/j.pharmthera.2019.107451 |
SSID | ssj0000601194 |
Score | 2.6647825 |
Snippet | Ferroptosis is a recently discovered form of programed cell death caused by the metabolically regulated lipid peroxidation and holds promise for cancer... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 108487 |
SubjectTerms | ferroptosis lactate MCT1 tumor microenvironment tumor therapy |
SummonAdditionalLinks | – databaseName: ScienceDirect Free and Delayed Access Journal dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1da9swFBWlMNjL2NZ9ZOuKBn0ViWzJkh9TbyHtmjHaFPImJOsaMlo7OA6j_776sLMVNgp7MjaSLXRk3Svp3HsQOtVUamcWJYFEAmEUJNHWCJLLtAJeyUQEjaXF92x-wy5WfHWAiiEWxtMq-7k_zulhtu6fjPveHG_W6_F14tYuzjr5c0TKROYDzVMmQxDf6my_z-LzjdCgh-jLE19hiKALNK8SblvwiSuTwLdjnlv3dwv1Lw80WKLZS_SidyHxNLbyFTqA-jV6FkUl74_Qr3kxvaLjRbGk-CoqzcMWL3d3TYtn0LbNpmu26y3uFXrcFfClLr3TSRZBuAMsni5-fCPXxReKp2XUl8C6tvi8c2_6HbGFz__go79BN7Ovy2JOenkFUjLBOkIrnpsst7nMPNGViiqpqFvRVIIZByA32iFnUykggVxabqicGOBcm4kWOrfpW3RYNzW8R5jTaqKtzFLNc5ZXVINkJbWu693sKYwcoXToUlX2uce9BMatGkhmP1UEQnkgVARihMi-1ibm3niivBjQUo_GkHLm4Ymanwdwlfu9_JmJrqHZbVUStg-8mzxC7yLq-7akaeIWi4x_-O_vfkTP_V2gx8hjdNi1O_jknJzOnIRR_AB8RPf8 priority: 102 providerName: Elsevier |
Title | HCAR1/MCT1 Regulates Tumor Ferroptosis through the Lactate-Mediated AMPK-SCD1 Activity and Its Therapeutic Implications |
URI | https://dx.doi.org/10.1016/j.celrep.2020.108487 https://www.ncbi.nlm.nih.gov/pubmed/33296645 https://www.proquest.com/docview/2469071397 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Pb9MwGLXGEBIXxG_KYDISV0Pt2LVzmKZSqFogCI1W6s2y4y8SqCQjSQX772fHycaBalySS-xEfna-Z_v5ewi9NlQZHxYVAaaAcAqKGGclSVVSgCgUk53HUvZlsljzjxuxOUCDZ2vfgM0_p3bBT2pdb9_8-XVx6gf8ybVWK4dtDSH7JOtEc56E30K3fWySYahmPeGP_-aQ4yxsNTMWtFyMy-E83Z6K9sWrfXy0i0vz--heTyjxNPaAB-gAyofoTrSYvHiEfi9m0zP6NputKD6LvvPQ4NXuZ1XjOdR1dd5WzfcG9349_g74s8kDBSVZZ-MBDk-zr5_It9l7iqd5dJvApnR42fqars9v4eVf6vTHaD3_sJotSG-2QHIueUtoIVI7SV2qJkH2SmXBCurnN4Xk1sMprPE4ukRJYJAqJyxVYwtCGDs20qQueYIOy6qEZwgLWoyNU5PEiJSnBTWgeE6db3r_L5VWjVAyNKnO-0zkwRBjqwfJ2Q8dgdABCB2BGCFyVeo8ZuK44Xk5oKV7NhFZgvZ954aSrwZwtR9sYQfFlFDtGs26xYRAmkfoaUT96luShPmpIxfP_6P0Ebob3tfJYtQLdNjWO3jpyU1rj7tFAX9dbt4dd333EtZb90Y |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZdx9heRndtdtVgryKRLVnyY-Y1JGtcRptC3oRsHUNGawfHYezfTxc722CjsCeD7WMLffY5R9Kn8yH0UVOpbViUBCIJhFGQRJtCkFTGFfBKRsJrLOUXyfyafVnz9RHKhr0wjlbZ-_7g07237s-M-94cbzeb8VVkxy42Orl1RMpEwu-h-zYbEE6_YbH-dJhocQVHqBdEdAbEWQxb6DzPq4SbFlzlysgT7pgj1_09RP0rBfWhaHaCHvc5JJ6GZj5BR1A_RQ-CquSPZ-j7PJte0nGerSi-DFLzsMOr_W3T4hm0bbPtmt1mh3uJHnsEvNSlyzpJ7pU7wOBp_vWcXGWfKZ6WQWAC69rgRWef9GvLFl78Rkh_jq5nZ6tsTnp9BVIywTpCK54WSWpSmTimKxVVVFE7pKkEKyyCvNAWOhNLARGk0vCCykkBnOtiooVOTfwCHddNDacIc1pNtJFJrHnK0opqkKykxna9dZ-ikCMUD12qyr74uNPAuFEDy-ybCkAoB4QKQIwQOVhtQ_GNO-4XA1rqj49I2fhwh-WHAVxl_y-3aKJraPY7Ffn5A5cnj9DLgPqhLXEc2dEi46_--73v0cP5Kl-q5eLi_DV65K54rox8g467dg9vbcbTFe_8F_0T-Cn7Gw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=HCAR1%2FMCT1+Regulates+Tumor+Ferroptosis+through+the+Lactate-Mediated+AMPK-SCD1+Activity+and+Its+Therapeutic+Implications&rft.jtitle=Cell+reports+%28Cambridge%29&rft.au=Zhao%2C+Youbo&rft.au=Li%2C+Menghuan&rft.au=Yao%2C+Xuemei&rft.au=Fei%2C+Yang&rft.date=2020-12-08&rft.issn=2211-1247&rft.eissn=2211-1247&rft.volume=33&rft.issue=10&rft.spage=108487&rft_id=info:doi/10.1016%2Fj.celrep.2020.108487&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-1247&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-1247&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-1247&client=summon |