Brain disease research based on functional magnetic resonance imaging data and machine learning: a review

Brain diseases, including neurodegenerative diseases and neuropsychiatric diseases, have long plagued the lives of the affected populations and caused a huge burden on public health. Functional magnetic resonance imaging (fMRI) is an excellent neuroimaging technology for measuring brain activity, wh...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in neuroscience Vol. 17; p. 1227491
Main Authors Teng, Jing, Mi, Chunlin, Shi, Jian, Li, Na
Format Journal Article
LanguageEnglish
Published Lausanne Frontiers Research Foundation 17.08.2023
Frontiers Media S.A
Subjects
Online AccessGet full text
ISSN1662-453X
1662-4548
1662-453X
DOI10.3389/fnins.2023.1227491

Cover

Abstract Brain diseases, including neurodegenerative diseases and neuropsychiatric diseases, have long plagued the lives of the affected populations and caused a huge burden on public health. Functional magnetic resonance imaging (fMRI) is an excellent neuroimaging technology for measuring brain activity, which provides new insight for clinicians to help diagnose brain diseases. In recent years, machine learning methods have displayed superior performance in diagnosing brain diseases compared to conventional methods, attracting great attention from researchers. This paper reviews the representative research of machine learning methods in brain disease diagnosis based on fMRI data in the recent three years, focusing on the most frequent four active brain disease studies, including Alzheimer's disease/mild cognitive impairment, autism spectrum disorders, schizophrenia, and Parkinson's disease. We summarize these 55 articles from multiple perspectives, including the effect of the size of subjects, extracted features, feature selection methods, classification models, validation methods, and corresponding accuracies. Finally, we analyze these articles and introduce future research directions to provide neuroimaging scientists and researchers in the interdisciplinary fields of computing and medicine with new ideas for AI-aided brain disease diagnosis.
AbstractList Brain diseases, including neurodegenerative diseases and neuropsychiatric diseases, have long plagued the lives of the affected populations and caused a huge burden on public health. Functional magnetic resonance imaging (fMRI) is an excellent neuroimaging technology for measuring brain activity, which provides new insight for clinicians to help diagnose brain diseases. In recent years, machine learning methods have displayed superior performance in diagnosing brain diseases compared to conventional methods, attracting great attention from researchers. This paper reviews the representative research of machine learning methods in brain disease diagnosis based on fMRI data in the recent three years, focusing on the most frequent four active brain disease studies, including Alzheimer's disease/mild cognitive impairment, autism spectrum disorders, schizophrenia, and Parkinson's disease. We summarize these 55 articles from multiple perspectives, including the effect of the size of subjects, extracted features, feature selection methods, classification models, validation methods, and corresponding accuracies. Finally, we analyze these articles and introduce future research directions to provide neuroimaging scientists and researchers in the interdisciplinary fields of computing and medicine with new ideas for AI-aided brain disease diagnosis.
Brain diseases, including neurodegenerative diseases and neuropsychiatric diseases, have long plagued the lives of the affected populations and caused a huge burden on public health. Functional magnetic resonance imaging (fMRI) is an excellent neuroimaging technology for measuring brain activity, which provides new insight for clinicians to help diagnose brain diseases. In recent years, machine learning methods have displayed superior performance in diagnosing brain diseases compared to conventional methods, attracting great attention from researchers. This paper reviews the representative research of machine learning methods in brain disease diagnosis based on fMRI data in the recent three years, focusing on the most frequent four active brain disease studies, including Alzheimer's disease/mild cognitive impairment, autism spectrum disorders, schizophrenia, and Parkinson's disease. We summarize these 55 articles from multiple perspectives, including the effect of the size of subjects, extracted features, feature selection methods, classification models, validation methods, and corresponding accuracies. Finally, we analyze these articles and introduce future research directions to provide neuroimaging scientists and researchers in the interdisciplinary fields of computing and medicine with new ideas for AI-aided brain disease diagnosis.Brain diseases, including neurodegenerative diseases and neuropsychiatric diseases, have long plagued the lives of the affected populations and caused a huge burden on public health. Functional magnetic resonance imaging (fMRI) is an excellent neuroimaging technology for measuring brain activity, which provides new insight for clinicians to help diagnose brain diseases. In recent years, machine learning methods have displayed superior performance in diagnosing brain diseases compared to conventional methods, attracting great attention from researchers. This paper reviews the representative research of machine learning methods in brain disease diagnosis based on fMRI data in the recent three years, focusing on the most frequent four active brain disease studies, including Alzheimer's disease/mild cognitive impairment, autism spectrum disorders, schizophrenia, and Parkinson's disease. We summarize these 55 articles from multiple perspectives, including the effect of the size of subjects, extracted features, feature selection methods, classification models, validation methods, and corresponding accuracies. Finally, we analyze these articles and introduce future research directions to provide neuroimaging scientists and researchers in the interdisciplinary fields of computing and medicine with new ideas for AI-aided brain disease diagnosis.
Author Li, Na
Teng, Jing
Mi, Chunlin
Shi, Jian
AuthorAffiliation 3 Department of Radiology, The Third Xiangya Hospital of Central South University , Changsha , China
1 School of Control and Computer Engineering, North China Electric Power University , Beijing , China
2 Department of Hematology and Critical Care Medicine, The Third Xiangya Hospital of Central South University , Changsha , China
AuthorAffiliation_xml – name: 1 School of Control and Computer Engineering, North China Electric Power University , Beijing , China
– name: 2 Department of Hematology and Critical Care Medicine, The Third Xiangya Hospital of Central South University , Changsha , China
– name: 3 Department of Radiology, The Third Xiangya Hospital of Central South University , Changsha , China
Author_xml – sequence: 1
  givenname: Jing
  surname: Teng
  fullname: Teng, Jing
– sequence: 2
  givenname: Chunlin
  surname: Mi
  fullname: Mi, Chunlin
– sequence: 3
  givenname: Jian
  surname: Shi
  fullname: Shi, Jian
– sequence: 4
  givenname: Na
  surname: Li
  fullname: Li, Na
BookMark eNp9kktvEzEQx1eoSLSFL8DJEhcuCbbX6wcXBBWPSpW4gMTNmtjjxNHGLvZuEd8ebxMk2gOnefg3f8_Yc9GdpZyw614yuu57bd6EFFNdc8r7NeNcCcOedOdMSr4SQ__j7B__WXdR655SybXg5138UCAm4mNFqEgKNlvcjmxa5ElOJMzJTTEnGMkBtgmn6BaqJZJDElsupi3xMAGB5BvjdjEhGZtM62n7lkDD7yL-et49DTBWfHGyl933Tx-_XX1Z3Xz9fH31_mblhBLTigXqNkYLFI4NTvbacykVcFBMNY8Z0MpT6iG0iEMYnNd6cBxQIuO96y-766Ouz7C3t6W1WH7bDNHeJ3LZWihtihGtViqgV2A2gQlhnA69oQOTGKSTCkPTenfUup03B_QO01RgfCD68CTFnd3mO8uokEZq0xRenxRK_jljnewhVofjCAnzXC3XkkqmuRka-uoRus9zaQ-_UMPC9HIR1EfKlVxrwWBdnGD5odZAHNvNdtkIe78RdtkIe9qIVsoflf4d5D9FfwB8j76s
CitedBy_id crossref_primary_10_1038_s41598_024_84508_8
crossref_primary_10_1016_j_eswa_2024_125922
crossref_primary_10_1002_brb3_70427
Cites_doi 10.1007/s11042-018-5768-0
10.1155/2021/9963824
10.1007/s11042-018-6287-8
10.1080/1028415X.2022.2051957
10.1002/hbm.25023
10.3390/bioengineering10010056
10.3389/fnagi.2021.758298
10.1152/jn.00338.2011
10.1016/j.compbiomed.2022.106240
10.1016/j.bspc.2022.103725
10.1126/science.284.5411.96
10.3390/app11083636
10.3389/fninf.2022.761942
10.1016/j.braindev.2006.07.002
10.1109/TCDS.2021.3073368
10.1016/j.neuroimage.2009.10.003
10.3389/fnins.2021.605115
10.1002/cne.21974
10.1016/j.csda.2007.12.004
10.3389/fnins.2019.00585
10.1016/j.neuron.2011.09.006
10.1109/TBME.2019.2957921
10.1177/13623613231151356
10.1038/nm.4190
10.1093/schbul/sbz137
10.3389/fninf.2021.635657
10.1016/j.compbiomed.2022.105634
10.1002/mp.14692
10.3389/fnins.2020.00751
10.3390/diagnostics12102404
10.1017/S1041610211000913
10.3389/fnagi.2022.888575
10.1053/j.semnuclmed.2013.06.003
10.2147/NDT.S354265
10.1016/j.media.2021.102279
10.1109/TCYB.2020.3016953
10.1016/j.neuroimage.2011.01.024
10.3389/fnins.2022.933660
10.2147/NDT.S323127
10.1109/TMI.2019.2928790
10.1126/science.aab2358
10.1016/j.neucom.2020.03.006
10.1109/JBHI.2020.2973324
10.1016/j.neucom.2020.01.053
10.1038/nrn730
10.1371/journal.pone.0166934
10.1007/s11517-022-02558-4
10.1007/s11682-019-00255-9
10.1016/j.parkreldis.2021.08.003
10.3389/fnagi.2022.818871
10.1109/JBHI.2022.3151084
10.1016/j.inffus.2022.12.010
10.1016/j.neuroimage.2003.12.030
10.3389/fnins.2021.697870
10.1109/JBHI.2019.2934230
10.1093/cercor/bhw157
10.3389/fnmol.2022.999605
10.1103/PhysRevLett.87.198701
10.1016/j.euroneuro.2010.03.008
10.1007/s11704-020-9520-3
10.1016/j.neuroimage.2006.01.021
10.1109/TNNLS.2020.3007943
10.1016/S1474-4422(06)70471-9
10.3389/fnagi.2021.688926
10.1109/TNSRE.2021.3120024
10.3389/fnagi.2021.624731
10.1109/ACCESS.2020.3003424
10.1155/2021/6626728
10.1002/jmri.1076
10.1016/j.neuroimage.2010.02.082
10.1371/journal.pone.0264710
10.1007/s11548-022-02620-4
10.1002/hbm.20870
10.3389/fnagi.2022.893250
10.1002/hbm.21333
10.1126/science.1194144
10.1016/S0140-6736(18)31129-2
10.3389/fnins.2021.697168
10.1109/SPIN.2015.7095308
10.1111/j.1741-1130.2007.00143.x
10.32604/cmc.2022.026999
10.1006/nimg.2001.0978
10.1080/01621459.1975.10479865
10.1016/j.neuroimage.2013.05.079
10.1038/nature08538
10.3389/fnagi.2022.806828
10.1016/S0140-6736(15)01124-1
10.1109/TNSRE.2020.2984519
10.1016/j.jad.2014.12.001
10.1037/h0072400
10.3389/fnagi.2022.866230
10.1186/s12859-020-3437-6
10.1002/hbm.26201
10.3389/fnins.2022.900330
10.1016/j.neuroimage.2021.118200
10.48550/arXiv.1906.01703
10.1038/s41537-017-0013-9
10.1162/netn_a_00054
10.1007/978-3-319-10443-0_23
10.1111/cns.13959
10.2307/3033543
10.1038/nature06976
10.3389/fnagi.2020.00028
10.1145/3344998
10.3390/s20143903
10.1155/2021/9624269
10.1214/09-SS054
10.1016/j.pediatrneurol.2015.02.026
10.1109/TCYB.2020.3035282
10.3389/fnins.2020.558434
10.1109/JBHI.2021.3067798
10.1109/TCBB.2020.2989315
10.1192/j.eurpsy.2022.2319
10.1038/30918
ContentType Journal Article
Copyright 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2023 Teng, Mi, Shi and Li.
Copyright © 2023 Teng, Mi, Shi and Li. 2023 Teng, Mi, Shi and Li
Copyright_xml – notice: 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2023 Teng, Mi, Shi and Li.
– notice: Copyright © 2023 Teng, Mi, Shi and Li. 2023 Teng, Mi, Shi and Li
DBID AAYXX
CITATION
3V.
7XB
88I
8FE
8FH
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.3389/fnins.2023.1227491
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Biological Science Collection
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Public Health
EISSN 1662-453X
ExternalDocumentID oai_doaj_org_article_877fed7a9bf1449c8f390516ef6c67ef
PMC10469689
10_3389_fnins_2023_1227491
GroupedDBID ---
29H
2WC
53G
5GY
5VS
88I
8FE
8FH
9T4
AAFWJ
AAYXX
ABUWG
ACGFO
ACGFS
ACXDI
ADRAZ
AEGXH
AENEX
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BBNVY
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
CS3
DIK
DU5
DWQXO
E3Z
EBS
EJD
EMOBN
F5P
FRP
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HYE
KQ8
LK8
M2P
M48
M7P
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RNS
RPM
W2D
3V.
7XB
8FK
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c474t-1f0cb984e4c15c638d2667a2a71726619a87d00daf2662af5cd885c2ae6e123c3
IEDL.DBID DOA
ISSN 1662-453X
1662-4548
IngestDate Wed Aug 27 01:29:33 EDT 2025
Thu Aug 21 18:36:09 EDT 2025
Thu Sep 04 23:51:35 EDT 2025
Fri Jul 25 10:30:04 EDT 2025
Tue Jul 01 03:02:28 EDT 2025
Thu Apr 24 23:07:49 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-1f0cb984e4c15c638d2667a2a71726619a87d00daf2662af5cd885c2ae6e123c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
Reviewed by: Mario Versaci, Mediterranea University of Reggio Calabria, Italy; Esmaeil Mohammadi, University of Oklahoma Health Sciences Center, United States
Edited by: Lu Zhao, University of Southern California, United States
OpenAccessLink https://doaj.org/article/877fed7a9bf1449c8f390516ef6c67ef
PQID 2851829369
PQPubID 4424402
ParticipantIDs doaj_primary_oai_doaj_org_article_877fed7a9bf1449c8f390516ef6c67ef
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10469689
proquest_miscellaneous_2860618295
proquest_journals_2851829369
crossref_citationtrail_10_3389_fnins_2023_1227491
crossref_primary_10_3389_fnins_2023_1227491
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-08-17
PublicationDateYYYYMMDD 2023-08-17
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-17
  day: 17
PublicationDecade 2020
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Frontiers in neuroscience
PublicationYear 2023
Publisher Frontiers Research Foundation
Frontiers Media S.A
Publisher_xml – name: Frontiers Research Foundation
– name: Frontiers Media S.A
References Ji (B46) 2021; 18
Liang (B59) 2021; 29
Moridian (B69) 2022; 15
Zhang (B108) 2019
Chen (B20) 2022; 26
(B75) 2015
Khatri (B50) 2022; 14
Lama (B52) 2021; 15
Liang (B60) 2022; 72
Zhang (B111) 2022; 52
Chowdhary (B21) 2020; 20
Heeger (B40) 2002; 3
Hu (B42) 2022; 14
Watts (B100) 1998; 393
Wang (B92) 2022; 76
Li (B58); 24
Zhang (B109) 2020; 14
Power (B77) 2011; 72
Slobounov (B86) 2011; 55
Mulkey (B71) 2015; 52
Mousa (B70) 2022; 17
Geisser (B31) 1975; 70
Guo (B37) 2020; 8
Ghosal (B34) 2021; 238
Nasrallah (B72) 2013; 43
Cao (B18) 2020; 14
Pang (B74) 2022; 28
Tzourio-Mazoyer (B89) 2002; 15
Xing (B101) 2021; 17
van den Heuvel (B90) 2010; 20
Hsu (B41) 2008; 52
Hutchison (B44) 2013; 80
Farahani (B28) 2019; 13
Craddock (B22) 2011; 33
Arlot (B6) 2010; 4
Wang (B96); 65
Bi (B10) 2020; 24
Hallquist (B38) 2019; 3
Subah (B87) 2021; 11
Bi (B11); 15
Logothetis (B66) 2008; 453
Price (B78) 2014
Cai (B16) 2022; 14
Wang (B98) 2021; 2021
Li (B56) 2022; 12
Birur (B15) 2017; 3
Wang (B94) 2022; 75
Zang (B107) 2004; 22
Raji (B79) 2009; 31
Freeman (B30) 1977; 40
ElNakieb (B26) 2023; 10
Liu (B63); 21
Fan (B27) 2016; 26
Wang (B93) 2020; 67
Zang (B106) 2007; 29
Abdelrahman (B1) 2022; 18
Wattjes (B99) 2011; 23
Yang (B103) 2020; 46
Alorf (B5) 2022; 151
Jin (B48) 2020; 41
Tanveer (B88) 2020; 16
Haweel (B39) 2021; 48
Larson (B53) 1931; 22
Dosenbach (B25) 2010; 329
Lin (B61) 2022; 16
Lei (B55) 2020; 15
Cao (B17) 2022; 60
Shi (B83) 2022; 14
Zhao (B113) 2022; 16
Vardi (B91) 2008; 5
Bellec (B9) 2010; 51
Wang (B97); 16
Pang (B73) 2021; 90
Baskar (B8) 2018; 78
Xu (B102) 2020; 12
Guo (B36) 2020; 28
Ghiassian (B33) 2016; 11
Insel (B45) 2015; 348
Rubinov (B80) 2010; 52
Huang (B43) 2021; 32
Fathi (B29) 2022; 146
Yeo (B104) 2011; 106
Abi-Dargham (B2) 2016; 22
Desikan (B24) 2006; 31
Shi (B84); 13
Liu (B65) 2018; 77
Liu (B64) 2021; 15
Shi (B82); 2021
Bi (B13); 25
Zhang (B112) 2015; 174
Chen (B19) 2023; 44
Zhang (B110) 2021; 13
Allely (B4) 2023
Wang (B95) 2022; 52
Latora (B54) 2001; 87
Ghafoori (B32) 2022; 17
Scheltens (B81) 2016; 388
Ahammed (B3) 2021; 15
Gullett (B35) 2021; 13
Shoeibi (B85) 2023; 93
Azevedo (B7) 2009; 513
Bihan (B14) 2001; 13
Lu (B68) 2022; 14
Zhou (B114) 2022; 14
de Lau (B23) 2006; 5
Liu (B62); 400
Lord (B67) 2018; 392
Li (B57); 388
Jia (B47) 2021; 2021
Koch (B51) 1999; 284
Perrin (B76) 2009; 461
Zang (B105) 2021; 15
Kam (B49) 2020; 39
Bi (B12) 2022; 26
References_xml – volume: 77
  start-page: 29687
  year: 2018
  ident: B65
  article-title: T-test based Alzheimer's disease diagnosis with multi-feature in MRIs
  publication-title: Multimed. Tools Appl
  doi: 10.1007/s11042-018-5768-0
– volume: 2021
  start-page: 1
  ident: B82
  article-title: Machine learning of schizophrenia detection with structural and functional neuroimaging
  publication-title: Dis. Markers
  doi: 10.1155/2021/9963824
– volume: 78
  start-page: 12883
  year: 2018
  ident: B8
  article-title: An efficient classification approach for detection of Alzheimer's disease from biomedical imaging modalities
  publication-title: Multimed. Tools Appl
  doi: 10.1007/s11042-018-6287-8
– volume: 26
  start-page: 414
  year: 2022
  ident: B20
  article-title: Oleanolic acid and ursolic acid: therapeutic potential in neurodegenerative diseases, neuropsychiatric diseases and other brain disorders
  publication-title: Nutr. Neurosci
  doi: 10.1080/1028415X.2022.2051957
– volume: 41
  start-page: 3379
  year: 2020
  ident: B48
  article-title: grab−AD: generalizability and reproducibility of altered brain activity and diagnostic classification in Alzheimer's disease
  publication-title: Hum. Brain Mapp
  doi: 10.1002/hbm.25023
– volume: 10
  start-page: 56
  year: 2023
  ident: B26
  article-title: Understanding the role of connectivity dynamics of resting-state functional MRI in the diagnosis of autism spectrum disorder: a comprehensive study
  publication-title: Bioengineering
  doi: 10.3390/bioengineering10010056
– volume: 13
  start-page: 758298
  year: 2021
  ident: B35
  article-title: Baseline neuroimaging predicts decline to dementia from amnestic mild cognitive impairment
  publication-title: Front. Aging Neurosci
  doi: 10.3389/fnagi.2021.758298
– volume: 106
  start-page: 1125
  year: 2011
  ident: B104
  article-title: The organization of the human cerebral cortex estimated by intrinsic functional connectivity
  publication-title: J. Neurophysiol
  doi: 10.1152/jn.00338.2011
– volume: 151
  start-page: 106240
  year: 2022
  ident: B5
  article-title: Multi-label classification of Alzheimer's disease stages from resting-state fMRI-based correlation connectivity data and deep learning
  publication-title: Comput. Biol. Med
  doi: 10.1016/j.compbiomed.2022.106240
– volume: 76
  start-page: 103725
  year: 2022
  ident: B92
  article-title: Multigroup recognition of dementia patients with dynamic brain connectivity under multimodal cortex parcellation
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2022.103725
– volume: 284
  start-page: 96
  year: 1999
  ident: B51
  article-title: Complexity and the nervous system
  publication-title: Science
  doi: 10.1126/science.284.5411.96
– volume: 11
  start-page: 3636
  year: 2021
  ident: B87
  article-title: A deep learning approach to predict autism spectrum disorder using multisite resting-state fMRI
  publication-title: Appl. Sci
  doi: 10.3390/app11083636
– volume: 16
  start-page: 761942
  year: 2022
  ident: B113
  article-title: Identifying boys with autism spectrum disorder based on whole-brain resting-state interregional functional connections using a boruta-based support vector machine approach
  publication-title: Front. Neuroinform
  doi: 10.3389/fninf.2022.761942
– volume: 29
  start-page: 83
  year: 2007
  ident: B106
  article-title: Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI
  publication-title: Brain Dev
  doi: 10.1016/j.braindev.2006.07.002
– volume: 14
  start-page: 730
  year: 2022
  ident: B42
  article-title: Uncertainty modeling for multicenter autism spectrum disorder classification using takagi–sugeno–kang fuzzy systems
  publication-title: IEEE Trans. Cogn. Dev. Syst
  doi: 10.1109/TCDS.2021.3073368
– volume: 52
  start-page: 1059
  year: 2010
  ident: B80
  article-title: Complex network measures of brain connectivity: uses and interpretations
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.10.003
– volume: 15
  start-page: 605115
  year: 2021
  ident: B52
  article-title: Diagnosis of Alzheimer's disease using brain network
  publication-title: Front. Neurosci
  doi: 10.3389/fnins.2021.605115
– volume: 513
  start-page: 532
  year: 2009
  ident: B7
  article-title: Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain
  publication-title: J. Comp. Neurol
  doi: 10.1002/cne.21974
– volume: 52
  start-page: 3645
  year: 2008
  ident: B41
  article-title: Subset selection for vector autoregressive processes using lasso
  publication-title: Comput. Stat. Data Anal
  doi: 10.1016/j.csda.2007.12.004
– volume: 13
  start-page: 585
  year: 2019
  ident: B28
  article-title: Application of graph theory for identifying connectivity patterns in human brain networks: a systematic review
  publication-title: Front. Neurosci
  doi: 10.3389/fnins.2019.00585
– volume: 72
  start-page: 665
  year: 2011
  ident: B77
  article-title: Functional network organization of the human brain
  publication-title: Neuron
  doi: 10.1016/j.neuron.2011.09.006
– volume: 67
  start-page: 2241
  year: 2020
  ident: B93
  article-title: Spatial-temporal dependency modeling and network hub detection for functional MRI analysis via convolutional-recurrent network
  publication-title: IEEE Trans. Biomed. Eng
  doi: 10.1109/TBME.2019.2957921
– year: 2023
  ident: B4
  article-title: Autism spectrum disorder and personality disorders: how do clinicians carry out a differential diagnosis?
  publication-title: Autism
  doi: 10.1177/13623613231151356
– volume: 22
  start-page: 1248
  year: 2016
  ident: B2
  article-title: The search for imaging biomarkers in psychiatric disorders
  publication-title: Nat. Med
  doi: 10.1038/nm.4190
– volume: 46
  start-page: 916
  year: 2020
  ident: B103
  article-title: Connectomic underpinnings of working memory deficits in schizophrenia: evidence from a replication fMRI study
  publication-title: Schizophr. Bull
  doi: 10.1093/schbul/sbz137
– volume: 15
  start-page: 635657
  year: 2021
  ident: B3
  article-title: DarkASDNet: classification of ASD on functional MRI using deep neural network
  publication-title: Front. Neuroinform
  doi: 10.3389/fninf.2021.635657
– volume: 146
  start-page: 105634
  year: 2022
  ident: B29
  article-title: Early diagnosis of Alzheimer's disease based on deep learning: a systematic review
  publication-title: Comput. Biol. Med
  doi: 10.1016/j.compbiomed.2022.105634
– volume: 48
  start-page: 2315
  year: 2021
  ident: B39
  article-title: A robust DWT–CNN-based CAD system for early diagnosis of autism using task-based fMRI
  publication-title: Med. Phys
  doi: 10.1002/mp.14692
– volume: 14
  start-page: 751
  year: 2020
  ident: B18
  article-title: A radiomics approach to predicting Parkinson's disease by incorporating whole-brain functional activity and gray matter structure
  publication-title: Front. Neurosci
  doi: 10.3389/fnins.2020.00751
– volume: 12
  start-page: 2404
  year: 2022
  ident: B56
  article-title: Detecting Parkinson's disease through gait measures using machine learning
  publication-title: Diagnostics
  doi: 10.3390/diagnostics12102404
– volume: 23
  start-page: S13
  year: 2011
  ident: B99
  article-title: Structural MRI
  publication-title: Int. Psychogeriatr
  doi: 10.1017/S1041610211000913
– volume: 14
  start-page: 888575
  year: 2022
  ident: B68
  article-title: A novel key features screening method based on extreme learning machine for Alzheimer's disease study
  publication-title: Front. Aging Neurosci
  doi: 10.3389/fnagi.2022.888575
– volume: 43
  start-page: 449
  year: 2013
  ident: B72
  article-title: An overview of PET neuroimaging
  publication-title: Semin. Nucl. Med
  doi: 10.1053/j.semnuclmed.2013.06.003
– volume: 18
  start-page: 1801
  year: 2022
  ident: B1
  article-title: Combining multiple indices of diffusion tensor imaging can better differentiate patients with traumatic brain injury from healthy subjects
  publication-title: Neuropsychiatr. Dis. Treat
  doi: 10.2147/NDT.S354265
– volume: 75
  start-page: 102279
  year: 2022
  ident: B94
  article-title: Multi-site clustering and nested feature extraction for identifying autism spectrum disorder with resting-state fMRI
  publication-title: Med. Image Anal
  doi: 10.1016/j.media.2021.102279
– volume: 52
  start-page: 6822
  year: 2022
  ident: B111
  article-title: Multiview feature learning with multiatlas-based functional connectivity networks for MCI diagnosis
  publication-title: IEEE Trans. Cybern
  doi: 10.1109/TCYB.2020.3016953
– volume: 55
  start-page: 1716
  year: 2011
  ident: B86
  article-title: Alteration of brain functional network at rest and in response to YMCA physical stress test in concussed athletes: RsFMRI study
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.01.024
– volume: 16
  start-page: 933660
  year: 2022
  ident: B61
  article-title: Convolutional recurrent neural network for dynamic functional MRI analysis and brain disease identification
  publication-title: Front. Neurosci
  doi: 10.3389/fnins.2022.933660
– volume: 17
  start-page: 2697
  year: 2021
  ident: B101
  article-title: Regional neural activity changes in Parkinson's disease-associated mild cognitive impairment and cognitively normal patients
  publication-title: Neuropsychiatr. Dis. Treat
  doi: 10.2147/NDT.S323127
– volume: 39
  start-page: 478
  year: 2020
  ident: B49
  article-title: Deep learning of static and dynamic brain functional networks for early MCI detection
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2019.2928790
– volume: 348
  start-page: 499
  year: 2015
  ident: B45
  article-title: Brain disorders? precisely
  publication-title: Science
  doi: 10.1126/science.aab2358
– volume: 400
  start-page: 322
  ident: B62
  article-title: Enhancing the feature representation of multi-modal MRI data by combining multi-view information for MCI classification
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.03.006
– volume: 24
  start-page: 2973
  year: 2020
  ident: B10
  article-title: Multimodal data analysis of Alzheimer's disease based on clustering evolutionary random forest
  publication-title: IEEE J. Biomed. Health Inf
  doi: 10.1109/JBHI.2020.2973324
– volume: 388
  start-page: 280
  ident: B57
  article-title: Detecting Alzheimer's disease based on 4d fMRI: an exploration under deep learning framework
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.01.053
– volume: 3
  start-page: 142
  year: 2002
  ident: B40
  article-title: What does fMRI tell us about neuronal activity?
  publication-title: Nat. Rev. Neurosci
  doi: 10.1038/nrn730
– volume: 11
  start-page: e0166934
  year: 2016
  ident: B33
  article-title: Using functional or structural magnetic resonance images and personal characteristic data to identify ADHD and autism
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0166934
– volume: 60
  start-page: 1897
  year: 2022
  ident: B17
  article-title: Modeling the dynamic brain network representation for autism spectrum disorder diagnosis
  publication-title: Med. Biol. Eng. Comput
  doi: 10.1007/s11517-022-02558-4
– volume: 15
  start-page: 276
  year: 2020
  ident: B55
  article-title: Diagnosis of early Alzheimer's disease based on dynamic high order networks
  publication-title: Brain Imaging Behav
  doi: 10.1007/s11682-019-00255-9
– volume: 90
  start-page: 65
  year: 2021
  ident: B73
  article-title: Use of machine learning method on automatic classification of motor subtype of Parkinson's disease based on multilevel indices of rs-fMRI
  publication-title: Parkinsonism Relat. Disord
  doi: 10.1016/j.parkreldis.2021.08.003
– volume: 14
  start-page: 818871
  year: 2022
  ident: B50
  article-title: Alzheimer's disease diagnosis and biomarker analysis using resting-state functional MRI functional brain network with multi-measures features and hippocampal subfield and amygdala volume of structural MRI
  publication-title: Front. Aging Neurosci
  doi: 10.3389/fnagi.2022.818871
– volume: 26
  start-page: 3068
  year: 2022
  ident: B12
  article-title: Pathogeny detection for mild cognitive impairment via weighted evolutionary random forest with brain imaging and genetic data
  publication-title: IEEE J. Biomed. Health Inf
  doi: 10.1109/JBHI.2022.3151084
– volume: 93
  start-page: 85
  year: 2023
  ident: B85
  article-title: Diagnosis of brain diseases in fusion of neuroimaging modalities using deep learning: a review
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2022.12.010
– volume: 22
  start-page: 394
  year: 2004
  ident: B107
  article-title: Regional homogeneity approach to fMRI data analysis
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2003.12.030
– volume: 15
  start-page: 697870
  year: 2021
  ident: B64
  article-title: Autism spectrum disorder studies using fMRI data and machine learning: a review
  publication-title: Front. Neurosci
  doi: 10.3389/fnins.2021.697870
– volume: 24
  start-page: 1160
  ident: B58
  article-title: Toward a better estimation of functional brain network for mild cognitive impairment identification: a transfer learning view
  publication-title: IEEE J. Biomed. Health Inf
  doi: 10.1109/JBHI.2019.2934230
– volume: 26
  start-page: 3508
  year: 2016
  ident: B27
  article-title: The human brainnetome atlas: a new brain atlas based on connectional architecture
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhw157
– volume: 15
  start-page: 999605
  year: 2022
  ident: B69
  article-title: Automatic autism spectrum disorder detection using artificial intelligence methods with MRI neuroimaging: a review
  publication-title: Front. Mol. Neurosci
  doi: 10.3389/fnmol.2022.999605
– volume: 87
  start-page: 198701
  year: 2001
  ident: B54
  article-title: Efficient behavior of small-world networks
  publication-title: Phys. Rev. Lett
  doi: 10.1103/PhysRevLett.87.198701
– volume: 20
  start-page: 519
  year: 2010
  ident: B90
  article-title: Exploring the brain network: a review on resting-state fMRI functional connectivity
  publication-title: Eur. Neuropsychopharmacol
  doi: 10.1016/j.euroneuro.2010.03.008
– volume: 15
  start-page: 156903
  ident: B11
  article-title: Identification of differential brain regions in MCI progression via clustering-evolutionary weighted SVM ensemble algorithm
  publication-title: Front. Comput. Sci
  doi: 10.1007/s11704-020-9520-3
– volume: 31
  start-page: 968
  year: 2006
  ident: B24
  article-title: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.01.021
– volume: 32
  start-page: 2847
  year: 2021
  ident: B43
  article-title: Identifying autism spectrum disorder from resting-state fMRI using deep belief network
  publication-title: IEEE Trans. Neural Netw. Learn. Syst
  doi: 10.1109/TNNLS.2020.3007943
– volume: 5
  start-page: 525
  year: 2006
  ident: B23
  article-title: Epidemiology of Parkinson's disease
  publication-title: Lancet Neurol
  doi: 10.1016/S1474-4422(06)70471-9
– volume: 13
  start-page: 688926
  year: 2021
  ident: B110
  article-title: Predicting MCI to AD conversation using integrated sMRI and rs-fMRI: machine learning and graph theory approach
  publication-title: Front. Aging Neurosci
  doi: 10.3389/fnagi.2021.688926
– volume: 29
  start-page: 2193
  year: 2021
  ident: B59
  article-title: A convolutional neural network combined with prototype learning framework for brain functional network classification of autism spectrum disorder
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng
  doi: 10.1109/TNSRE.2021.3120024
– volume: 13
  start-page: 624731
  ident: B84
  article-title: Application of functional magnetic resonance imaging in the diagnosis of Parkinson's disease: a histogram analysis
  publication-title: Front. Aging Neurosci
  doi: 10.3389/fnagi.2021.624731
– volume: 8
  start-page: 115383
  year: 2020
  ident: B37
  article-title: Resting state fMRI and improved deep learning algorithm for earlier detection of Alzheimer's disease
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3003424
– volume: 2021
  start-page: 1
  year: 2021
  ident: B98
  article-title: Assisted diagnosis of Alzheimer's disease based on deep learning and multimodal feature fusion
  publication-title: Complexity
  doi: 10.1155/2021/6626728
– volume: 13
  start-page: 534
  year: 2001
  ident: B14
  article-title: Diffusion tensor imaging: concepts and applications
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.1076
– volume: 51
  start-page: 1126
  year: 2010
  ident: B9
  article-title: Multi-level bootstrap analysis of stable clusters in resting-state fMRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.02.082
– volume: 17
  start-page: e0264710
  year: 2022
  ident: B70
  article-title: Alzheimer disease stages identification based on correlation transfer function system using resting-state functional magnetic resonance imaging
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0264710
– volume: 17
  start-page: 1245
  year: 2022
  ident: B32
  article-title: Predicting conversion from MCI to AD by integration of rs-fMRI and clinical information using 3d-convolutional neural network
  publication-title: Int. J. Comput. Assist. Radiol. Surg
  doi: 10.1007/s11548-022-02620-4
– volume: 31
  start-page: 353
  year: 2009
  ident: B79
  article-title: Brain structure and obesity
  publication-title: Hum. Brain Mapp
  doi: 10.1002/hbm.20870
– volume: 14
  start-page: 893250
  year: 2022
  ident: B16
  article-title: Diagnosis of amnesic mild cognitive impairment using MGS-WBC and VGBN-LM algorithms
  publication-title: Front. Aging Neurosci
  doi: 10.3389/fnagi.2022.893250
– volume: 33
  start-page: 1914
  year: 2011
  ident: B22
  article-title: A whole brain fMRI atlas generated via spatially constrained spectral clustering
  publication-title: Hum. Brain Mapp
  doi: 10.1002/hbm.21333
– volume: 329
  start-page: 1358
  year: 2010
  ident: B25
  article-title: Prediction of individual brain maturity using fMRI
  publication-title: Science
  doi: 10.1126/science.1194144
– volume: 392
  start-page: 508
  year: 2018
  ident: B67
  article-title: Autism spectrum disorder
  publication-title: Lancet
  doi: 10.1016/S0140-6736(18)31129-2
– volume: 15
  start-page: 697168
  year: 2021
  ident: B105
  article-title: Effects of brain atlases and machine learning methods on the discrimination of schizophrenia patients: a multimodal MRI study
  publication-title: Front. Neurosci
  doi: 10.3389/fnins.2021.697168
– start-page: 98
  volume-title: 2015 2nd International Conference on Signal Processing and Integrated Networks (SPIN)
  year: 2015
  ident: B75
  article-title: “Detection of brain tumor in MRI images, using combination of fuzzy c-means and SVM,”
  doi: 10.1109/SPIN.2015.7095308
– volume: 5
  start-page: 75
  year: 2008
  ident: B91
  article-title: Neurological disorders: public health challenges
  publication-title: J. Policy Pract. Intellect. Disabil
  doi: 10.1111/j.1741-1130.2007.00143.x
– volume: 72
  start-page: 4645
  year: 2022
  ident: B60
  article-title: Multi-scale attention-based deep neural network for brain disease diagnosis
  publication-title: Comput. Mater. Contin
  doi: 10.32604/cmc.2022.026999
– volume: 15
  start-page: 273
  year: 2002
  ident: B89
  article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain
  publication-title: Neuroimage
  doi: 10.1006/nimg.2001.0978
– volume: 70
  start-page: 320
  year: 1975
  ident: B31
  article-title: The predictive sample reuse method with applications
  publication-title: J. Am. Stat. Assoc
  doi: 10.1080/01621459.1975.10479865
– volume: 80
  start-page: 360
  year: 2013
  ident: B44
  article-title: Dynamic functional connectivity: promise, issues, and interpretations
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.079
– volume: 461
  start-page: 916
  year: 2009
  ident: B76
  article-title: Multimodal techniques for diagnosis and prognosis of Alzheimer's disease
  publication-title: Nature
  doi: 10.1038/nature08538
– volume: 14
  start-page: 806828
  year: 2022
  ident: B83
  article-title: Machine learning for detecting Parkinson's disease by resting-state functional magnetic resonance imaging: a multicenter radiomics analysis
  publication-title: Front. Aging Neurosci
  doi: 10.3389/fnagi.2022.806828
– volume: 388
  start-page: 505
  year: 2016
  ident: B81
  article-title: Alzheimer's disease
  publication-title: Lancet
  doi: 10.1016/S0140-6736(15)01124-1
– volume: 28
  start-page: 1049
  year: 2020
  ident: B36
  article-title: Kernel granger causality based on back propagation neural network fuzzy inference system on fMRI data
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng
  doi: 10.1109/TNSRE.2020.2984519
– volume: 174
  start-page: 329
  year: 2015
  ident: B112
  article-title: Frequency-dependent alterations in the amplitude of low-frequency fluctuations in social anxiety disorder
  publication-title: J. Affect. Disord
  doi: 10.1016/j.jad.2014.12.001
– volume: 22
  start-page: 45
  year: 1931
  ident: B53
  article-title: The shrinkage of the coefficient of multiple correlation
  publication-title: J. Educ. Psychol
  doi: 10.1037/h0072400
– volume: 14
  start-page: 866230
  year: 2022
  ident: B114
  article-title: Automated classification of mild cognitive impairment by machine learning with hippocampus-related white matter network
  publication-title: Front. Aging Neurosci
  doi: 10.3389/fnagi.2022.866230
– volume: 21
  start-page: 123
  ident: B63
  article-title: Identification of early mild cognitive impairment using multi-modal data and graph convolutional networks
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-020-3437-6
– volume: 44
  start-page: 2176
  year: 2023
  ident: B19
  article-title: Functional connectome automatically differentiates multiple system atrophy (Parkinsonian type) from idiopathic Parkinson's disease at early stages
  publication-title: Hum. Brain Mapp
  doi: 10.1002/hbm.26201
– volume: 16
  start-page: 900330
  ident: B97
  article-title: Identification of pathogenetic brain regions via neuroimaging data for diagnosis of autism spectrum disorders
  publication-title: Front. Neurosci
  doi: 10.3389/fnins.2022.900330
– volume: 238
  start-page: 118200
  year: 2021
  ident: B34
  article-title: A generative-discriminative framework that integrates imaging, genetic, and diagnosis into coupled low dimensional space
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2021.118200
– year: 2019
  ident: B108
  article-title: Basic neural units of the brain: neurons, synapses and action potential
  publication-title: arXiv
  doi: 10.48550/arXiv.1906.01703
– volume: 3
  start-page: 15
  year: 2017
  ident: B15
  article-title: Brain structure, function, and neurochemistry in schizophrenia and bipolar disorder—a systematic review of the magnetic resonance neuroimaging literature
  publication-title: NPJ Schizophr
  doi: 10.1038/s41537-017-0013-9
– volume: 3
  start-page: 1
  year: 2019
  ident: B38
  article-title: Graph theory approaches to functional network organization in brain disorders: a critique for a brave new small-world
  publication-title: Netw. Neurosci
  doi: 10.1162/netn_a_00054
– start-page: 177
  volume-title: Medical Image Computing and Computer-Assisted Intervention MICCAI 2014
  year: 2014
  ident: B78
  article-title: “Multiple-network classification of childhood autism using functional connectivity dynamics,”
  doi: 10.1007/978-3-319-10443-0_23
– volume: 28
  start-page: 2172
  year: 2022
  ident: B74
  article-title: Multimodal striatal neuromarkers in distinguishing Parkinsonian variant of multiple system atrophy from idiopathic Parkinson's disease
  publication-title: CNS Neurosci. Ther
  doi: 10.1111/cns.13959
– volume: 40
  start-page: 35
  year: 1977
  ident: B30
  article-title: A set of measures of centrality based upon betweenness
  publication-title: Sociometry
  doi: 10.2307/3033543
– volume: 453
  start-page: 869
  year: 2008
  ident: B66
  article-title: What we can do and what we cannot do with fMRI
  publication-title: Nature
  doi: 10.1038/nature06976
– volume: 12
  start-page: 28
  year: 2020
  ident: B102
  article-title: Feature selection and combination of information in the functional brain connectome for discrimination of mild cognitive impairment and analyses of altered brain patterns
  publication-title: Front. Aging Neurosci
  doi: 10.3389/fnagi.2020.00028
– volume: 16
  start-page: 1
  year: 2020
  ident: B88
  article-title: Machine learning techniques for the diagnosis of Alzheimer's disease
  publication-title: ACM Trans. Multimedia Comput. Commun. Appl
  doi: 10.1145/3344998
– volume: 20
  start-page: 3903
  year: 2020
  ident: B21
  article-title: An efficient segmentation and classification system in medical images using intuitionist possibilistic fuzzy c-mean clustering and fuzzy svm algorithm
  publication-title: Sensors
  doi: 10.3390/s20143903
– volume: 2021
  start-page: 1
  year: 2021
  ident: B47
  article-title: Alzheimer's disease classification based on image transformation and features fusion
  publication-title: Comput. Math. Methods Med
  doi: 10.1155/2021/9624269
– volume: 4
  start-page: 40
  year: 2010
  ident: B6
  article-title: A survey of cross-validation procedures for model selection
  publication-title: Stat. Surv
  doi: 10.1214/09-SS054
– volume: 52
  start-page: 599
  year: 2015
  ident: B71
  article-title: Amplitude-integrated EEG in newborns with critical congenital heart disease predicts preoperative brain magnetic resonance imaging findings
  publication-title: Pediatr. Neurol
  doi: 10.1016/j.pediatrneurol.2015.02.026
– volume: 52
  start-page: 4741
  year: 2022
  ident: B95
  article-title: Multikernel capsule network for schizophrenia identification
  publication-title: IEEE Trans. Cybern
  doi: 10.1109/TCYB.2020.3035282
– volume: 14
  start-page: 558434
  year: 2020
  ident: B109
  article-title: Investigation on the alteration of brain functional network and its role in the identification of mild cognitive impairment
  publication-title: Front. Neurosci
  doi: 10.3389/fnins.2020.558434
– volume: 25
  start-page: 3019
  ident: B13
  article-title: Detecting risk gene and pathogenic brain region in emci using a novel gerf algorithm based on brain imaging and genetic data
  publication-title: IEEE J. Biomed. Health Inf
  doi: 10.1109/JBHI.2021.3067798
– volume: 18
  start-page: 2327
  year: 2021
  ident: B46
  article-title: Convolutional neural network with graphical lasso to extract sparse topological features for brain disease classification
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform
  doi: 10.1109/TCBB.2020.2989315
– volume: 65
  start-page: e61
  ident: B96
  article-title: Exosomes in schizophrenia: pathophysiological mechanisms, biomarkers, and therapeutic targets
  publication-title: Eur. Psychiatry
  doi: 10.1192/j.eurpsy.2022.2319
– volume: 393
  start-page: 440
  year: 1998
  ident: B100
  article-title: Collective dynamics of ‘small-world' networks
  publication-title: Nature
  doi: 10.1038/30918
SSID ssj0062842
Score 2.3667252
SecondaryResourceType review_article
Snippet Brain diseases, including neurodegenerative diseases and neuropsychiatric diseases, have long plagued the lives of the affected populations and caused a huge...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 1227491
SubjectTerms Alzheimer's disease
Artificial intelligence
Autism
Brain diseases
Brain mapping
Brain research
Cognitive ability
Diagnosis
feature selection
Functional magnetic resonance imaging
Health care
Learning algorithms
Machine learning
Magnetic resonance imaging
Medical diagnosis
Mental disorders
Movement disorders
Neurodegenerative diseases
Neuroimaging
Neuroscience
Parkinson's disease
Pathogenesis
Public health
Reviews
Schizophrenia
Time series
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEB-0fRFEtFWMrbKC-CKxl02yH75IT1qKYBGx0Lew2Y_rQW9T6_Wh_70zm73DvPTxkgm5u9n5nvkNwIe-DS1vgiml1XXZ1MGVJthZ6StuuBU8SEHzzj_OxdlF8_2yvcwJt7-5rXKjE5OidoOlHPkRR9dAcVo_9_XmT0lbo6i6mldoPIZdVMEKz_nu_OT856-NLhaofFO9U9BsEDrn49gMhmX6KMRlJLxuXn-uOMZmupqYpoTgP3E7p02T_1mh0-fwLLuP7Hjk9wt45OMe7B9HDJ1X9-wjSw2dKVO-B0_HlBwbJ432YTmndRAsl2RYhvm5YmTIHBsiIxs3pgbZyiwijTcS1UCYHJ4tV2mhEaOeUmaiQxrqw_QsL55YfGGGjZMwL-Hi9OT3t7Myb1oobSObdVmFme21anxjq9aiSDq029Jwg8EeWXBtlHSzmTMBP3ETCFFAtZYbL5Cpta1fwU4con8NDImsMrZ3wkk8A1wrpbmpQqDtNujsFVBt_uTOZhhy2oZx3WE4QozpEmM6YkyXGVPAp-0zNyMIx4PUc-LdlpIAtNOF4XbRZXnslJTBO2l0HzCk1FaFmpDKhA_CCulDAYcbzndZqvEt2zNYwPvtbZRHKrKY6Ic7osGQkKjaAtTkxEy-0PROXF4lZG8quGuh9JuH334AT-gHU2q7koews76982_RN1r377IA_AP5PRCU
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fa9RAEB5KffFFrFWMVllBfJHUyybZH4JIK5Yi1CcP-rZs9sf1oLfR8wrtf-9MsncYUJ98TDKBZL9MZr7dnW8AXndtbHkTbSmdrsumjr600c3KUHHLneBRCqp3vvgqzufNl8v2cg-27Y7yAP78I7WjflLz9fXx7Y-7j-jwH4hxYrx9F9MykfI2r48rjiyLitnvYWQSRMYumt2qgsBfMR8LZ_5y3yQ4DRr-k8Rzum3ytzh09hAe5ASSnYyIH8BeSI_g8CQheV7dsTds2NI5zJUfwvKUGkCwvAjDsrDPFaPQ5VmfGEW1cTKQrewiUUEjWfWkwhHYcjW0MGK0i5TZ5NGGdl4GlltNLN4zy8bal8cwP_v87dN5mXsrlK6Rzaas4sx1WjWhcVXr0Ak9RmppuUV6RzFbWyX9bOZtxCNuI2kIqNZxGwTCWLv6CeynPoWnwNDIKes6L7xE1LlWSnNbxUj9bDC9K6DaDqpxWXic-l9cGyQgBIQZgDAEhMlAFPB2d8_3UXbjn9anhNXOkiSzhxP9emGyBxolZQxeWt1FJJHaqViTNpkIUTghQyzgaIu02X6GhmNCqjg1PSzg1e4yeiAtq9gU-huyQRJIVm0BavKFTB5oeiUtrwYtb1pi10LpZ__jFZ7DfRoWmvKu5BHsb9Y34QXmTJvu5eAIvwA7kxnD
  priority: 102
  providerName: Scholars Portal
Title Brain disease research based on functional magnetic resonance imaging data and machine learning: a review
URI https://www.proquest.com/docview/2851829369
https://www.proquest.com/docview/2860618295
https://pubmed.ncbi.nlm.nih.gov/PMC10469689
https://doaj.org/article/877fed7a9bf1449c8f390516ef6c67ef
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB5KcumltElL3aZBgdJLcWPJth69ZUseFBJKaWBvRtYjWchqS9kc8u8zY2uX-NJeejHYGmNZM9LMSDPfAHzs29iKJtpSOVOXTR19aaOrysCFFU6KqCTlO19eyYvr5vu8nT8p9UUxYSM88Dhwx1qpGLyypo9o-xunY02QUjJE6aQKkVbfylQbZ2pcgyUuumJMkUEXzBzHtEiEzS3qL1ygH2b4RA0NaP0TE3MaIPlE45y9hBfZVGQnYxdfwbOQ9mD_JKGbvHxgn9gQvDnsiu_DYkalHlg-bmEZwueWkZLybJUY6a9x248t7U2i1EWiWhHeRmCL5VCsiFG8KLPJIw3FWAaWi0rcfGWWjVkur-H67PTXt4syV1EoXaOadclj5Xqjm9A43jqcbh51srLCoiNH2tlYrXxVeRvxTthIaAG6dcIGiQyrXf0GdtIqhbfAkMhp63ovvUL-CqO1EZbHSJVr0JArgG8GtXMZYpwqXdx16GoQI7qBER0xosuMKODz9p3fI8DGX6lnxKstJYFjDw9QZLosMt2_RKaAgw2nuzxj8StoempB5Q0LONo241yjAxSbwuqeaNDdI6q2AD2RkEmHpi1pcTugdtNhupHavPsfv_AentOw0OY2Vwews_5zHz6gdbTuD2F3dnr14-fhMCHwej7neL1s9CNu8xTq
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9AASQtCCMBRYJOCCTOO1vQ8khBpoldI2QqiVenM36900ElmXkgr1T_EbmfEjwpfeekw8iePM7LxnPoA309znPPMmllancZb6MjbeDmOXcMOt4F4Kmnc-mojxSfbtND9dg7_dLAy1VXY6sVbUZWUpR77N0TVQnODnPl_8igk1iqqrHYRGIxYH7voPhmy_P-1_Rf6-5Xxv9_jLOG5RBWKbyWwZJ35op1plLrNJblH8SrRR0nCDgQ1ZK22ULIfD0nh8xY2n6XmVW26cwAdIbYrfewfWM5poHcD6aHfy_Uen-wUq-7q-KmgWCYOBZkwHw0C97cM80H5wnn5IOMaCOumZwhoxoOfm9ps0_7N6ew_hQeuusp1Gvh7BmgsbsLkTMFRfXLN3rG4grTPzG3C_SQGyZrJpE-Yjgp9gbQmItWuFzhkZzpJVgZFNbVKRbGFmgcYpiaqiHSCOzRc1gBKjHlZmQok01PfpWAt0MfvIDGsmbx7Dya3w4AkMQhXcU2BIZJWx01KUEmWOa6U0N4n3hKaDzmUESfcnF7Zde07oGz8LDH-IMUXNmIIYU7SMieD96jMXzdKPG6lHxLsVJS3srt-oLmdFe_4LJaV3pTR66jGE1Vb5lDajCeeFFdL5CLY6zhetFsG7rGQ-gtery3j-qahjgquuiAZDUKLKI1A9ien9oP6VMD-vN4lTgV8LpZ_dfPdXcHd8fHRYHO5PDp7DPXp4SqsncgsGy8sr9wL9suX0ZXsYGJzd9vn7B6bZTOU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTkJICMEGotsAIwEvKKxxEttBQmhlqzYG1YSYtLfgOHZXiTpjdEL71_jruEucirzsbY9NLk3dO9-H7-MH8KrMXMZTpyNp8iRKE1dF2plRZGOuuRHcSUH9zl-n4vA0_XyWna3B364XhsoqO53YKOqqNnRGvsvRNVCc4Od2XSiLONmffLz4FRGCFGVaOziNVkSO7fUfDN9-fzjaR16_5nxy8P3TYRQQBiKTynQZxW5kylylNjVxZlAUK7RXUnONQQ5ZrlwrWY1GlXb4iWtHnfQqM1xbgYtJTILfewfWJVrFdADr44PpybfODghU_E2uVVBfEgYGbcsOhoS4Aj_3NCucJ-9ijnFhHvfMYoMe0HN5-wWb_1nAyUN4EFxXttfK2iNYs34DNvc8hu2La_aGNcWkzSn9BtxvjwNZ2-W0CfMxQVGwkA5iYcTQOSMjWrHaM7Kv7bEkW-iZp9ZKoqppHohl80UDpsSonpVpXyEN1YBaFkAvZu-ZZm0XzmM4vRUePIGBr719CgyJjNKmrEQlUf54rlTOdewcIeugozmEuPuTCxNGoBMSx88CQyFiTNEwpiDGFIExQ3i7euaiHQByI_WYeLeipOHdzYX6clYEXVAoKZ2tpM5Lh-FsbpRLaEqasE4YIa0bwk7H-SJoFHzLSv6H8HJ1G3UBJXi0t_UV0WA4SlTZEFRPYno_qH_Hz8-bqeKU7M-FyrdufvsLuIv7rvhyND3ehnu0djphj-UODJaXV_YZumjL8nnYCwx-3Pb2-wfsZFER
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Brain+disease+research+based+on+functional+magnetic+resonance+imaging+data+and+machine+learning%3A+a+review&rft.jtitle=Frontiers+in+neuroscience&rft.au=Jing+Teng&rft.au=Chunlin+Mi&rft.au=Jian+Shi&rft.au=Na+Li&rft.date=2023-08-17&rft.pub=Frontiers+Media+S.A&rft.eissn=1662-453X&rft.volume=17&rft_id=info:doi/10.3389%2Ffnins.2023.1227491&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_877fed7a9bf1449c8f390516ef6c67ef
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-453X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-453X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-453X&client=summon