Brain disease research based on functional magnetic resonance imaging data and machine learning: a review
Brain diseases, including neurodegenerative diseases and neuropsychiatric diseases, have long plagued the lives of the affected populations and caused a huge burden on public health. Functional magnetic resonance imaging (fMRI) is an excellent neuroimaging technology for measuring brain activity, wh...
Saved in:
Published in | Frontiers in neuroscience Vol. 17; p. 1227491 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Lausanne
Frontiers Research Foundation
17.08.2023
Frontiers Media S.A |
Subjects | |
Online Access | Get full text |
ISSN | 1662-453X 1662-4548 1662-453X |
DOI | 10.3389/fnins.2023.1227491 |
Cover
Abstract | Brain diseases, including neurodegenerative diseases and neuropsychiatric diseases, have long plagued the lives of the affected populations and caused a huge burden on public health. Functional magnetic resonance imaging (fMRI) is an excellent neuroimaging technology for measuring brain activity, which provides new insight for clinicians to help diagnose brain diseases. In recent years, machine learning methods have displayed superior performance in diagnosing brain diseases compared to conventional methods, attracting great attention from researchers. This paper reviews the representative research of machine learning methods in brain disease diagnosis based on fMRI data in the recent three years, focusing on the most frequent four active brain disease studies, including Alzheimer's disease/mild cognitive impairment, autism spectrum disorders, schizophrenia, and Parkinson's disease. We summarize these 55 articles from multiple perspectives, including the effect of the size of subjects, extracted features, feature selection methods, classification models, validation methods, and corresponding accuracies. Finally, we analyze these articles and introduce future research directions to provide neuroimaging scientists and researchers in the interdisciplinary fields of computing and medicine with new ideas for AI-aided brain disease diagnosis. |
---|---|
AbstractList | Brain diseases, including neurodegenerative diseases and neuropsychiatric diseases, have long plagued the lives of the affected populations and caused a huge burden on public health. Functional magnetic resonance imaging (fMRI) is an excellent neuroimaging technology for measuring brain activity, which provides new insight for clinicians to help diagnose brain diseases. In recent years, machine learning methods have displayed superior performance in diagnosing brain diseases compared to conventional methods, attracting great attention from researchers. This paper reviews the representative research of machine learning methods in brain disease diagnosis based on fMRI data in the recent three years, focusing on the most frequent four active brain disease studies, including Alzheimer's disease/mild cognitive impairment, autism spectrum disorders, schizophrenia, and Parkinson's disease. We summarize these 55 articles from multiple perspectives, including the effect of the size of subjects, extracted features, feature selection methods, classification models, validation methods, and corresponding accuracies. Finally, we analyze these articles and introduce future research directions to provide neuroimaging scientists and researchers in the interdisciplinary fields of computing and medicine with new ideas for AI-aided brain disease diagnosis. Brain diseases, including neurodegenerative diseases and neuropsychiatric diseases, have long plagued the lives of the affected populations and caused a huge burden on public health. Functional magnetic resonance imaging (fMRI) is an excellent neuroimaging technology for measuring brain activity, which provides new insight for clinicians to help diagnose brain diseases. In recent years, machine learning methods have displayed superior performance in diagnosing brain diseases compared to conventional methods, attracting great attention from researchers. This paper reviews the representative research of machine learning methods in brain disease diagnosis based on fMRI data in the recent three years, focusing on the most frequent four active brain disease studies, including Alzheimer's disease/mild cognitive impairment, autism spectrum disorders, schizophrenia, and Parkinson's disease. We summarize these 55 articles from multiple perspectives, including the effect of the size of subjects, extracted features, feature selection methods, classification models, validation methods, and corresponding accuracies. Finally, we analyze these articles and introduce future research directions to provide neuroimaging scientists and researchers in the interdisciplinary fields of computing and medicine with new ideas for AI-aided brain disease diagnosis.Brain diseases, including neurodegenerative diseases and neuropsychiatric diseases, have long plagued the lives of the affected populations and caused a huge burden on public health. Functional magnetic resonance imaging (fMRI) is an excellent neuroimaging technology for measuring brain activity, which provides new insight for clinicians to help diagnose brain diseases. In recent years, machine learning methods have displayed superior performance in diagnosing brain diseases compared to conventional methods, attracting great attention from researchers. This paper reviews the representative research of machine learning methods in brain disease diagnosis based on fMRI data in the recent three years, focusing on the most frequent four active brain disease studies, including Alzheimer's disease/mild cognitive impairment, autism spectrum disorders, schizophrenia, and Parkinson's disease. We summarize these 55 articles from multiple perspectives, including the effect of the size of subjects, extracted features, feature selection methods, classification models, validation methods, and corresponding accuracies. Finally, we analyze these articles and introduce future research directions to provide neuroimaging scientists and researchers in the interdisciplinary fields of computing and medicine with new ideas for AI-aided brain disease diagnosis. |
Author | Li, Na Teng, Jing Mi, Chunlin Shi, Jian |
AuthorAffiliation | 3 Department of Radiology, The Third Xiangya Hospital of Central South University , Changsha , China 1 School of Control and Computer Engineering, North China Electric Power University , Beijing , China 2 Department of Hematology and Critical Care Medicine, The Third Xiangya Hospital of Central South University , Changsha , China |
AuthorAffiliation_xml | – name: 1 School of Control and Computer Engineering, North China Electric Power University , Beijing , China – name: 2 Department of Hematology and Critical Care Medicine, The Third Xiangya Hospital of Central South University , Changsha , China – name: 3 Department of Radiology, The Third Xiangya Hospital of Central South University , Changsha , China |
Author_xml | – sequence: 1 givenname: Jing surname: Teng fullname: Teng, Jing – sequence: 2 givenname: Chunlin surname: Mi fullname: Mi, Chunlin – sequence: 3 givenname: Jian surname: Shi fullname: Shi, Jian – sequence: 4 givenname: Na surname: Li fullname: Li, Na |
BookMark | eNp9kktvEzEQx1eoSLSFL8DJEhcuCbbX6wcXBBWPSpW4gMTNmtjjxNHGLvZuEd8ebxMk2gOnefg3f8_Yc9GdpZyw614yuu57bd6EFFNdc8r7NeNcCcOedOdMSr4SQ__j7B__WXdR655SybXg5138UCAm4mNFqEgKNlvcjmxa5ElOJMzJTTEnGMkBtgmn6BaqJZJDElsupi3xMAGB5BvjdjEhGZtM62n7lkDD7yL-et49DTBWfHGyl933Tx-_XX1Z3Xz9fH31_mblhBLTigXqNkYLFI4NTvbacykVcFBMNY8Z0MpT6iG0iEMYnNd6cBxQIuO96y-766Ouz7C3t6W1WH7bDNHeJ3LZWihtihGtViqgV2A2gQlhnA69oQOTGKSTCkPTenfUup03B_QO01RgfCD68CTFnd3mO8uokEZq0xRenxRK_jljnewhVofjCAnzXC3XkkqmuRka-uoRus9zaQ-_UMPC9HIR1EfKlVxrwWBdnGD5odZAHNvNdtkIe78RdtkIe9qIVsoflf4d5D9FfwB8j76s |
CitedBy_id | crossref_primary_10_1038_s41598_024_84508_8 crossref_primary_10_1016_j_eswa_2024_125922 crossref_primary_10_1002_brb3_70427 |
Cites_doi | 10.1007/s11042-018-5768-0 10.1155/2021/9963824 10.1007/s11042-018-6287-8 10.1080/1028415X.2022.2051957 10.1002/hbm.25023 10.3390/bioengineering10010056 10.3389/fnagi.2021.758298 10.1152/jn.00338.2011 10.1016/j.compbiomed.2022.106240 10.1016/j.bspc.2022.103725 10.1126/science.284.5411.96 10.3390/app11083636 10.3389/fninf.2022.761942 10.1016/j.braindev.2006.07.002 10.1109/TCDS.2021.3073368 10.1016/j.neuroimage.2009.10.003 10.3389/fnins.2021.605115 10.1002/cne.21974 10.1016/j.csda.2007.12.004 10.3389/fnins.2019.00585 10.1016/j.neuron.2011.09.006 10.1109/TBME.2019.2957921 10.1177/13623613231151356 10.1038/nm.4190 10.1093/schbul/sbz137 10.3389/fninf.2021.635657 10.1016/j.compbiomed.2022.105634 10.1002/mp.14692 10.3389/fnins.2020.00751 10.3390/diagnostics12102404 10.1017/S1041610211000913 10.3389/fnagi.2022.888575 10.1053/j.semnuclmed.2013.06.003 10.2147/NDT.S354265 10.1016/j.media.2021.102279 10.1109/TCYB.2020.3016953 10.1016/j.neuroimage.2011.01.024 10.3389/fnins.2022.933660 10.2147/NDT.S323127 10.1109/TMI.2019.2928790 10.1126/science.aab2358 10.1016/j.neucom.2020.03.006 10.1109/JBHI.2020.2973324 10.1016/j.neucom.2020.01.053 10.1038/nrn730 10.1371/journal.pone.0166934 10.1007/s11517-022-02558-4 10.1007/s11682-019-00255-9 10.1016/j.parkreldis.2021.08.003 10.3389/fnagi.2022.818871 10.1109/JBHI.2022.3151084 10.1016/j.inffus.2022.12.010 10.1016/j.neuroimage.2003.12.030 10.3389/fnins.2021.697870 10.1109/JBHI.2019.2934230 10.1093/cercor/bhw157 10.3389/fnmol.2022.999605 10.1103/PhysRevLett.87.198701 10.1016/j.euroneuro.2010.03.008 10.1007/s11704-020-9520-3 10.1016/j.neuroimage.2006.01.021 10.1109/TNNLS.2020.3007943 10.1016/S1474-4422(06)70471-9 10.3389/fnagi.2021.688926 10.1109/TNSRE.2021.3120024 10.3389/fnagi.2021.624731 10.1109/ACCESS.2020.3003424 10.1155/2021/6626728 10.1002/jmri.1076 10.1016/j.neuroimage.2010.02.082 10.1371/journal.pone.0264710 10.1007/s11548-022-02620-4 10.1002/hbm.20870 10.3389/fnagi.2022.893250 10.1002/hbm.21333 10.1126/science.1194144 10.1016/S0140-6736(18)31129-2 10.3389/fnins.2021.697168 10.1109/SPIN.2015.7095308 10.1111/j.1741-1130.2007.00143.x 10.32604/cmc.2022.026999 10.1006/nimg.2001.0978 10.1080/01621459.1975.10479865 10.1016/j.neuroimage.2013.05.079 10.1038/nature08538 10.3389/fnagi.2022.806828 10.1016/S0140-6736(15)01124-1 10.1109/TNSRE.2020.2984519 10.1016/j.jad.2014.12.001 10.1037/h0072400 10.3389/fnagi.2022.866230 10.1186/s12859-020-3437-6 10.1002/hbm.26201 10.3389/fnins.2022.900330 10.1016/j.neuroimage.2021.118200 10.48550/arXiv.1906.01703 10.1038/s41537-017-0013-9 10.1162/netn_a_00054 10.1007/978-3-319-10443-0_23 10.1111/cns.13959 10.2307/3033543 10.1038/nature06976 10.3389/fnagi.2020.00028 10.1145/3344998 10.3390/s20143903 10.1155/2021/9624269 10.1214/09-SS054 10.1016/j.pediatrneurol.2015.02.026 10.1109/TCYB.2020.3035282 10.3389/fnins.2020.558434 10.1109/JBHI.2021.3067798 10.1109/TCBB.2020.2989315 10.1192/j.eurpsy.2022.2319 10.1038/30918 |
ContentType | Journal Article |
Copyright | 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright © 2023 Teng, Mi, Shi and Li. Copyright © 2023 Teng, Mi, Shi and Li. 2023 Teng, Mi, Shi and Li |
Copyright_xml | – notice: 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright © 2023 Teng, Mi, Shi and Li. – notice: Copyright © 2023 Teng, Mi, Shi and Li. 2023 Teng, Mi, Shi and Li |
DBID | AAYXX CITATION 3V. 7XB 88I 8FE 8FH 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M2P M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.3389/fnins.2023.1227491 |
DatabaseName | CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Biological Science Collection Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Public Health |
EISSN | 1662-453X |
ExternalDocumentID | oai_doaj_org_article_877fed7a9bf1449c8f390516ef6c67ef PMC10469689 10_3389_fnins_2023_1227491 |
GroupedDBID | --- 29H 2WC 53G 5GY 5VS 88I 8FE 8FH 9T4 AAFWJ AAYXX ABUWG ACGFO ACGFS ACXDI ADRAZ AEGXH AENEX AFKRA AFPKN AIAGR ALMA_UNASSIGNED_HOLDINGS AZQEC BBNVY BENPR BHPHI BPHCQ CCPQU CITATION CS3 DIK DU5 DWQXO E3Z EBS EJD EMOBN F5P FRP GNUQQ GROUPED_DOAJ GX1 HCIFZ HYE KQ8 LK8 M2P M48 M7P O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC RNS RPM W2D 3V. 7XB 8FK PKEHL PQEST PQGLB PQUKI PRINS Q9U 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c474t-1f0cb984e4c15c638d2667a2a71726619a87d00daf2662af5cd885c2ae6e123c3 |
IEDL.DBID | DOA |
ISSN | 1662-453X 1662-4548 |
IngestDate | Wed Aug 27 01:29:33 EDT 2025 Thu Aug 21 18:36:09 EDT 2025 Thu Sep 04 23:51:35 EDT 2025 Fri Jul 25 10:30:04 EDT 2025 Tue Jul 01 03:02:28 EDT 2025 Thu Apr 24 23:07:49 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c474t-1f0cb984e4c15c638d2667a2a71726619a87d00daf2662af5cd885c2ae6e123c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 Reviewed by: Mario Versaci, Mediterranea University of Reggio Calabria, Italy; Esmaeil Mohammadi, University of Oklahoma Health Sciences Center, United States Edited by: Lu Zhao, University of Southern California, United States |
OpenAccessLink | https://doaj.org/article/877fed7a9bf1449c8f390516ef6c67ef |
PQID | 2851829369 |
PQPubID | 4424402 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_877fed7a9bf1449c8f390516ef6c67ef pubmedcentral_primary_oai_pubmedcentral_nih_gov_10469689 proquest_miscellaneous_2860618295 proquest_journals_2851829369 crossref_citationtrail_10_3389_fnins_2023_1227491 crossref_primary_10_3389_fnins_2023_1227491 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-08-17 |
PublicationDateYYYYMMDD | 2023-08-17 |
PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-17 day: 17 |
PublicationDecade | 2020 |
PublicationPlace | Lausanne |
PublicationPlace_xml | – name: Lausanne |
PublicationTitle | Frontiers in neuroscience |
PublicationYear | 2023 |
Publisher | Frontiers Research Foundation Frontiers Media S.A |
Publisher_xml | – name: Frontiers Research Foundation – name: Frontiers Media S.A |
References | Ji (B46) 2021; 18 Liang (B59) 2021; 29 Moridian (B69) 2022; 15 Zhang (B108) 2019 Chen (B20) 2022; 26 (B75) 2015 Khatri (B50) 2022; 14 Lama (B52) 2021; 15 Liang (B60) 2022; 72 Zhang (B111) 2022; 52 Chowdhary (B21) 2020; 20 Heeger (B40) 2002; 3 Hu (B42) 2022; 14 Watts (B100) 1998; 393 Wang (B92) 2022; 76 Li (B58); 24 Zhang (B109) 2020; 14 Power (B77) 2011; 72 Slobounov (B86) 2011; 55 Mulkey (B71) 2015; 52 Mousa (B70) 2022; 17 Geisser (B31) 1975; 70 Guo (B37) 2020; 8 Ghosal (B34) 2021; 238 Nasrallah (B72) 2013; 43 Cao (B18) 2020; 14 Pang (B74) 2022; 28 Tzourio-Mazoyer (B89) 2002; 15 Xing (B101) 2021; 17 van den Heuvel (B90) 2010; 20 Hsu (B41) 2008; 52 Hutchison (B44) 2013; 80 Farahani (B28) 2019; 13 Craddock (B22) 2011; 33 Arlot (B6) 2010; 4 Wang (B96); 65 Bi (B10) 2020; 24 Hallquist (B38) 2019; 3 Subah (B87) 2021; 11 Bi (B11); 15 Logothetis (B66) 2008; 453 Price (B78) 2014 Cai (B16) 2022; 14 Wang (B98) 2021; 2021 Li (B56) 2022; 12 Birur (B15) 2017; 3 Wang (B94) 2022; 75 Zang (B107) 2004; 22 Raji (B79) 2009; 31 Freeman (B30) 1977; 40 ElNakieb (B26) 2023; 10 Liu (B63); 21 Fan (B27) 2016; 26 Wang (B93) 2020; 67 Zang (B106) 2007; 29 Abdelrahman (B1) 2022; 18 Wattjes (B99) 2011; 23 Yang (B103) 2020; 46 Alorf (B5) 2022; 151 Jin (B48) 2020; 41 Tanveer (B88) 2020; 16 Haweel (B39) 2021; 48 Larson (B53) 1931; 22 Dosenbach (B25) 2010; 329 Lin (B61) 2022; 16 Lei (B55) 2020; 15 Cao (B17) 2022; 60 Shi (B83) 2022; 14 Zhao (B113) 2022; 16 Vardi (B91) 2008; 5 Bellec (B9) 2010; 51 Wang (B97); 16 Pang (B73) 2021; 90 Baskar (B8) 2018; 78 Xu (B102) 2020; 12 Guo (B36) 2020; 28 Ghiassian (B33) 2016; 11 Insel (B45) 2015; 348 Rubinov (B80) 2010; 52 Huang (B43) 2021; 32 Fathi (B29) 2022; 146 Yeo (B104) 2011; 106 Abi-Dargham (B2) 2016; 22 Desikan (B24) 2006; 31 Shi (B84); 13 Liu (B65) 2018; 77 Liu (B64) 2021; 15 Shi (B82); 2021 Bi (B13); 25 Zhang (B112) 2015; 174 Chen (B19) 2023; 44 Zhang (B110) 2021; 13 Allely (B4) 2023 Wang (B95) 2022; 52 Latora (B54) 2001; 87 Ghafoori (B32) 2022; 17 Scheltens (B81) 2016; 388 Ahammed (B3) 2021; 15 Gullett (B35) 2021; 13 Shoeibi (B85) 2023; 93 Azevedo (B7) 2009; 513 Bihan (B14) 2001; 13 Lu (B68) 2022; 14 Zhou (B114) 2022; 14 de Lau (B23) 2006; 5 Liu (B62); 400 Lord (B67) 2018; 392 Li (B57); 388 Jia (B47) 2021; 2021 Koch (B51) 1999; 284 Perrin (B76) 2009; 461 Zang (B105) 2021; 15 Kam (B49) 2020; 39 Bi (B12) 2022; 26 |
References_xml | – volume: 77 start-page: 29687 year: 2018 ident: B65 article-title: T-test based Alzheimer's disease diagnosis with multi-feature in MRIs publication-title: Multimed. Tools Appl doi: 10.1007/s11042-018-5768-0 – volume: 2021 start-page: 1 ident: B82 article-title: Machine learning of schizophrenia detection with structural and functional neuroimaging publication-title: Dis. Markers doi: 10.1155/2021/9963824 – volume: 78 start-page: 12883 year: 2018 ident: B8 article-title: An efficient classification approach for detection of Alzheimer's disease from biomedical imaging modalities publication-title: Multimed. Tools Appl doi: 10.1007/s11042-018-6287-8 – volume: 26 start-page: 414 year: 2022 ident: B20 article-title: Oleanolic acid and ursolic acid: therapeutic potential in neurodegenerative diseases, neuropsychiatric diseases and other brain disorders publication-title: Nutr. Neurosci doi: 10.1080/1028415X.2022.2051957 – volume: 41 start-page: 3379 year: 2020 ident: B48 article-title: grab−AD: generalizability and reproducibility of altered brain activity and diagnostic classification in Alzheimer's disease publication-title: Hum. Brain Mapp doi: 10.1002/hbm.25023 – volume: 10 start-page: 56 year: 2023 ident: B26 article-title: Understanding the role of connectivity dynamics of resting-state functional MRI in the diagnosis of autism spectrum disorder: a comprehensive study publication-title: Bioengineering doi: 10.3390/bioengineering10010056 – volume: 13 start-page: 758298 year: 2021 ident: B35 article-title: Baseline neuroimaging predicts decline to dementia from amnestic mild cognitive impairment publication-title: Front. Aging Neurosci doi: 10.3389/fnagi.2021.758298 – volume: 106 start-page: 1125 year: 2011 ident: B104 article-title: The organization of the human cerebral cortex estimated by intrinsic functional connectivity publication-title: J. Neurophysiol doi: 10.1152/jn.00338.2011 – volume: 151 start-page: 106240 year: 2022 ident: B5 article-title: Multi-label classification of Alzheimer's disease stages from resting-state fMRI-based correlation connectivity data and deep learning publication-title: Comput. Biol. Med doi: 10.1016/j.compbiomed.2022.106240 – volume: 76 start-page: 103725 year: 2022 ident: B92 article-title: Multigroup recognition of dementia patients with dynamic brain connectivity under multimodal cortex parcellation publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2022.103725 – volume: 284 start-page: 96 year: 1999 ident: B51 article-title: Complexity and the nervous system publication-title: Science doi: 10.1126/science.284.5411.96 – volume: 11 start-page: 3636 year: 2021 ident: B87 article-title: A deep learning approach to predict autism spectrum disorder using multisite resting-state fMRI publication-title: Appl. Sci doi: 10.3390/app11083636 – volume: 16 start-page: 761942 year: 2022 ident: B113 article-title: Identifying boys with autism spectrum disorder based on whole-brain resting-state interregional functional connections using a boruta-based support vector machine approach publication-title: Front. Neuroinform doi: 10.3389/fninf.2022.761942 – volume: 29 start-page: 83 year: 2007 ident: B106 article-title: Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI publication-title: Brain Dev doi: 10.1016/j.braindev.2006.07.002 – volume: 14 start-page: 730 year: 2022 ident: B42 article-title: Uncertainty modeling for multicenter autism spectrum disorder classification using takagi–sugeno–kang fuzzy systems publication-title: IEEE Trans. Cogn. Dev. Syst doi: 10.1109/TCDS.2021.3073368 – volume: 52 start-page: 1059 year: 2010 ident: B80 article-title: Complex network measures of brain connectivity: uses and interpretations publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.10.003 – volume: 15 start-page: 605115 year: 2021 ident: B52 article-title: Diagnosis of Alzheimer's disease using brain network publication-title: Front. Neurosci doi: 10.3389/fnins.2021.605115 – volume: 513 start-page: 532 year: 2009 ident: B7 article-title: Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain publication-title: J. Comp. Neurol doi: 10.1002/cne.21974 – volume: 52 start-page: 3645 year: 2008 ident: B41 article-title: Subset selection for vector autoregressive processes using lasso publication-title: Comput. Stat. Data Anal doi: 10.1016/j.csda.2007.12.004 – volume: 13 start-page: 585 year: 2019 ident: B28 article-title: Application of graph theory for identifying connectivity patterns in human brain networks: a systematic review publication-title: Front. Neurosci doi: 10.3389/fnins.2019.00585 – volume: 72 start-page: 665 year: 2011 ident: B77 article-title: Functional network organization of the human brain publication-title: Neuron doi: 10.1016/j.neuron.2011.09.006 – volume: 67 start-page: 2241 year: 2020 ident: B93 article-title: Spatial-temporal dependency modeling and network hub detection for functional MRI analysis via convolutional-recurrent network publication-title: IEEE Trans. Biomed. Eng doi: 10.1109/TBME.2019.2957921 – year: 2023 ident: B4 article-title: Autism spectrum disorder and personality disorders: how do clinicians carry out a differential diagnosis? publication-title: Autism doi: 10.1177/13623613231151356 – volume: 22 start-page: 1248 year: 2016 ident: B2 article-title: The search for imaging biomarkers in psychiatric disorders publication-title: Nat. Med doi: 10.1038/nm.4190 – volume: 46 start-page: 916 year: 2020 ident: B103 article-title: Connectomic underpinnings of working memory deficits in schizophrenia: evidence from a replication fMRI study publication-title: Schizophr. Bull doi: 10.1093/schbul/sbz137 – volume: 15 start-page: 635657 year: 2021 ident: B3 article-title: DarkASDNet: classification of ASD on functional MRI using deep neural network publication-title: Front. Neuroinform doi: 10.3389/fninf.2021.635657 – volume: 146 start-page: 105634 year: 2022 ident: B29 article-title: Early diagnosis of Alzheimer's disease based on deep learning: a systematic review publication-title: Comput. Biol. Med doi: 10.1016/j.compbiomed.2022.105634 – volume: 48 start-page: 2315 year: 2021 ident: B39 article-title: A robust DWT–CNN-based CAD system for early diagnosis of autism using task-based fMRI publication-title: Med. Phys doi: 10.1002/mp.14692 – volume: 14 start-page: 751 year: 2020 ident: B18 article-title: A radiomics approach to predicting Parkinson's disease by incorporating whole-brain functional activity and gray matter structure publication-title: Front. Neurosci doi: 10.3389/fnins.2020.00751 – volume: 12 start-page: 2404 year: 2022 ident: B56 article-title: Detecting Parkinson's disease through gait measures using machine learning publication-title: Diagnostics doi: 10.3390/diagnostics12102404 – volume: 23 start-page: S13 year: 2011 ident: B99 article-title: Structural MRI publication-title: Int. Psychogeriatr doi: 10.1017/S1041610211000913 – volume: 14 start-page: 888575 year: 2022 ident: B68 article-title: A novel key features screening method based on extreme learning machine for Alzheimer's disease study publication-title: Front. Aging Neurosci doi: 10.3389/fnagi.2022.888575 – volume: 43 start-page: 449 year: 2013 ident: B72 article-title: An overview of PET neuroimaging publication-title: Semin. Nucl. Med doi: 10.1053/j.semnuclmed.2013.06.003 – volume: 18 start-page: 1801 year: 2022 ident: B1 article-title: Combining multiple indices of diffusion tensor imaging can better differentiate patients with traumatic brain injury from healthy subjects publication-title: Neuropsychiatr. Dis. Treat doi: 10.2147/NDT.S354265 – volume: 75 start-page: 102279 year: 2022 ident: B94 article-title: Multi-site clustering and nested feature extraction for identifying autism spectrum disorder with resting-state fMRI publication-title: Med. Image Anal doi: 10.1016/j.media.2021.102279 – volume: 52 start-page: 6822 year: 2022 ident: B111 article-title: Multiview feature learning with multiatlas-based functional connectivity networks for MCI diagnosis publication-title: IEEE Trans. Cybern doi: 10.1109/TCYB.2020.3016953 – volume: 55 start-page: 1716 year: 2011 ident: B86 article-title: Alteration of brain functional network at rest and in response to YMCA physical stress test in concussed athletes: RsFMRI study publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.01.024 – volume: 16 start-page: 933660 year: 2022 ident: B61 article-title: Convolutional recurrent neural network for dynamic functional MRI analysis and brain disease identification publication-title: Front. Neurosci doi: 10.3389/fnins.2022.933660 – volume: 17 start-page: 2697 year: 2021 ident: B101 article-title: Regional neural activity changes in Parkinson's disease-associated mild cognitive impairment and cognitively normal patients publication-title: Neuropsychiatr. Dis. Treat doi: 10.2147/NDT.S323127 – volume: 39 start-page: 478 year: 2020 ident: B49 article-title: Deep learning of static and dynamic brain functional networks for early MCI detection publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2019.2928790 – volume: 348 start-page: 499 year: 2015 ident: B45 article-title: Brain disorders? precisely publication-title: Science doi: 10.1126/science.aab2358 – volume: 400 start-page: 322 ident: B62 article-title: Enhancing the feature representation of multi-modal MRI data by combining multi-view information for MCI classification publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.03.006 – volume: 24 start-page: 2973 year: 2020 ident: B10 article-title: Multimodal data analysis of Alzheimer's disease based on clustering evolutionary random forest publication-title: IEEE J. Biomed. Health Inf doi: 10.1109/JBHI.2020.2973324 – volume: 388 start-page: 280 ident: B57 article-title: Detecting Alzheimer's disease based on 4d fMRI: an exploration under deep learning framework publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.01.053 – volume: 3 start-page: 142 year: 2002 ident: B40 article-title: What does fMRI tell us about neuronal activity? publication-title: Nat. Rev. Neurosci doi: 10.1038/nrn730 – volume: 11 start-page: e0166934 year: 2016 ident: B33 article-title: Using functional or structural magnetic resonance images and personal characteristic data to identify ADHD and autism publication-title: PLoS ONE doi: 10.1371/journal.pone.0166934 – volume: 60 start-page: 1897 year: 2022 ident: B17 article-title: Modeling the dynamic brain network representation for autism spectrum disorder diagnosis publication-title: Med. Biol. Eng. Comput doi: 10.1007/s11517-022-02558-4 – volume: 15 start-page: 276 year: 2020 ident: B55 article-title: Diagnosis of early Alzheimer's disease based on dynamic high order networks publication-title: Brain Imaging Behav doi: 10.1007/s11682-019-00255-9 – volume: 90 start-page: 65 year: 2021 ident: B73 article-title: Use of machine learning method on automatic classification of motor subtype of Parkinson's disease based on multilevel indices of rs-fMRI publication-title: Parkinsonism Relat. Disord doi: 10.1016/j.parkreldis.2021.08.003 – volume: 14 start-page: 818871 year: 2022 ident: B50 article-title: Alzheimer's disease diagnosis and biomarker analysis using resting-state functional MRI functional brain network with multi-measures features and hippocampal subfield and amygdala volume of structural MRI publication-title: Front. Aging Neurosci doi: 10.3389/fnagi.2022.818871 – volume: 26 start-page: 3068 year: 2022 ident: B12 article-title: Pathogeny detection for mild cognitive impairment via weighted evolutionary random forest with brain imaging and genetic data publication-title: IEEE J. Biomed. Health Inf doi: 10.1109/JBHI.2022.3151084 – volume: 93 start-page: 85 year: 2023 ident: B85 article-title: Diagnosis of brain diseases in fusion of neuroimaging modalities using deep learning: a review publication-title: Inf. Fusion doi: 10.1016/j.inffus.2022.12.010 – volume: 22 start-page: 394 year: 2004 ident: B107 article-title: Regional homogeneity approach to fMRI data analysis publication-title: Neuroimage doi: 10.1016/j.neuroimage.2003.12.030 – volume: 15 start-page: 697870 year: 2021 ident: B64 article-title: Autism spectrum disorder studies using fMRI data and machine learning: a review publication-title: Front. Neurosci doi: 10.3389/fnins.2021.697870 – volume: 24 start-page: 1160 ident: B58 article-title: Toward a better estimation of functional brain network for mild cognitive impairment identification: a transfer learning view publication-title: IEEE J. Biomed. Health Inf doi: 10.1109/JBHI.2019.2934230 – volume: 26 start-page: 3508 year: 2016 ident: B27 article-title: The human brainnetome atlas: a new brain atlas based on connectional architecture publication-title: Cereb. Cortex doi: 10.1093/cercor/bhw157 – volume: 15 start-page: 999605 year: 2022 ident: B69 article-title: Automatic autism spectrum disorder detection using artificial intelligence methods with MRI neuroimaging: a review publication-title: Front. Mol. Neurosci doi: 10.3389/fnmol.2022.999605 – volume: 87 start-page: 198701 year: 2001 ident: B54 article-title: Efficient behavior of small-world networks publication-title: Phys. Rev. Lett doi: 10.1103/PhysRevLett.87.198701 – volume: 20 start-page: 519 year: 2010 ident: B90 article-title: Exploring the brain network: a review on resting-state fMRI functional connectivity publication-title: Eur. Neuropsychopharmacol doi: 10.1016/j.euroneuro.2010.03.008 – volume: 15 start-page: 156903 ident: B11 article-title: Identification of differential brain regions in MCI progression via clustering-evolutionary weighted SVM ensemble algorithm publication-title: Front. Comput. Sci doi: 10.1007/s11704-020-9520-3 – volume: 31 start-page: 968 year: 2006 ident: B24 article-title: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.01.021 – volume: 32 start-page: 2847 year: 2021 ident: B43 article-title: Identifying autism spectrum disorder from resting-state fMRI using deep belief network publication-title: IEEE Trans. Neural Netw. Learn. Syst doi: 10.1109/TNNLS.2020.3007943 – volume: 5 start-page: 525 year: 2006 ident: B23 article-title: Epidemiology of Parkinson's disease publication-title: Lancet Neurol doi: 10.1016/S1474-4422(06)70471-9 – volume: 13 start-page: 688926 year: 2021 ident: B110 article-title: Predicting MCI to AD conversation using integrated sMRI and rs-fMRI: machine learning and graph theory approach publication-title: Front. Aging Neurosci doi: 10.3389/fnagi.2021.688926 – volume: 29 start-page: 2193 year: 2021 ident: B59 article-title: A convolutional neural network combined with prototype learning framework for brain functional network classification of autism spectrum disorder publication-title: IEEE Trans. Neural Syst. Rehabil. Eng doi: 10.1109/TNSRE.2021.3120024 – volume: 13 start-page: 624731 ident: B84 article-title: Application of functional magnetic resonance imaging in the diagnosis of Parkinson's disease: a histogram analysis publication-title: Front. Aging Neurosci doi: 10.3389/fnagi.2021.624731 – volume: 8 start-page: 115383 year: 2020 ident: B37 article-title: Resting state fMRI and improved deep learning algorithm for earlier detection of Alzheimer's disease publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3003424 – volume: 2021 start-page: 1 year: 2021 ident: B98 article-title: Assisted diagnosis of Alzheimer's disease based on deep learning and multimodal feature fusion publication-title: Complexity doi: 10.1155/2021/6626728 – volume: 13 start-page: 534 year: 2001 ident: B14 article-title: Diffusion tensor imaging: concepts and applications publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.1076 – volume: 51 start-page: 1126 year: 2010 ident: B9 article-title: Multi-level bootstrap analysis of stable clusters in resting-state fMRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.02.082 – volume: 17 start-page: e0264710 year: 2022 ident: B70 article-title: Alzheimer disease stages identification based on correlation transfer function system using resting-state functional magnetic resonance imaging publication-title: PLoS ONE doi: 10.1371/journal.pone.0264710 – volume: 17 start-page: 1245 year: 2022 ident: B32 article-title: Predicting conversion from MCI to AD by integration of rs-fMRI and clinical information using 3d-convolutional neural network publication-title: Int. J. Comput. Assist. Radiol. Surg doi: 10.1007/s11548-022-02620-4 – volume: 31 start-page: 353 year: 2009 ident: B79 article-title: Brain structure and obesity publication-title: Hum. Brain Mapp doi: 10.1002/hbm.20870 – volume: 14 start-page: 893250 year: 2022 ident: B16 article-title: Diagnosis of amnesic mild cognitive impairment using MGS-WBC and VGBN-LM algorithms publication-title: Front. Aging Neurosci doi: 10.3389/fnagi.2022.893250 – volume: 33 start-page: 1914 year: 2011 ident: B22 article-title: A whole brain fMRI atlas generated via spatially constrained spectral clustering publication-title: Hum. Brain Mapp doi: 10.1002/hbm.21333 – volume: 329 start-page: 1358 year: 2010 ident: B25 article-title: Prediction of individual brain maturity using fMRI publication-title: Science doi: 10.1126/science.1194144 – volume: 392 start-page: 508 year: 2018 ident: B67 article-title: Autism spectrum disorder publication-title: Lancet doi: 10.1016/S0140-6736(18)31129-2 – volume: 15 start-page: 697168 year: 2021 ident: B105 article-title: Effects of brain atlases and machine learning methods on the discrimination of schizophrenia patients: a multimodal MRI study publication-title: Front. Neurosci doi: 10.3389/fnins.2021.697168 – start-page: 98 volume-title: 2015 2nd International Conference on Signal Processing and Integrated Networks (SPIN) year: 2015 ident: B75 article-title: “Detection of brain tumor in MRI images, using combination of fuzzy c-means and SVM,” doi: 10.1109/SPIN.2015.7095308 – volume: 5 start-page: 75 year: 2008 ident: B91 article-title: Neurological disorders: public health challenges publication-title: J. Policy Pract. Intellect. Disabil doi: 10.1111/j.1741-1130.2007.00143.x – volume: 72 start-page: 4645 year: 2022 ident: B60 article-title: Multi-scale attention-based deep neural network for brain disease diagnosis publication-title: Comput. Mater. Contin doi: 10.32604/cmc.2022.026999 – volume: 15 start-page: 273 year: 2002 ident: B89 article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain publication-title: Neuroimage doi: 10.1006/nimg.2001.0978 – volume: 70 start-page: 320 year: 1975 ident: B31 article-title: The predictive sample reuse method with applications publication-title: J. Am. Stat. Assoc doi: 10.1080/01621459.1975.10479865 – volume: 80 start-page: 360 year: 2013 ident: B44 article-title: Dynamic functional connectivity: promise, issues, and interpretations publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.079 – volume: 461 start-page: 916 year: 2009 ident: B76 article-title: Multimodal techniques for diagnosis and prognosis of Alzheimer's disease publication-title: Nature doi: 10.1038/nature08538 – volume: 14 start-page: 806828 year: 2022 ident: B83 article-title: Machine learning for detecting Parkinson's disease by resting-state functional magnetic resonance imaging: a multicenter radiomics analysis publication-title: Front. Aging Neurosci doi: 10.3389/fnagi.2022.806828 – volume: 388 start-page: 505 year: 2016 ident: B81 article-title: Alzheimer's disease publication-title: Lancet doi: 10.1016/S0140-6736(15)01124-1 – volume: 28 start-page: 1049 year: 2020 ident: B36 article-title: Kernel granger causality based on back propagation neural network fuzzy inference system on fMRI data publication-title: IEEE Trans. Neural Syst. Rehabil. Eng doi: 10.1109/TNSRE.2020.2984519 – volume: 174 start-page: 329 year: 2015 ident: B112 article-title: Frequency-dependent alterations in the amplitude of low-frequency fluctuations in social anxiety disorder publication-title: J. Affect. Disord doi: 10.1016/j.jad.2014.12.001 – volume: 22 start-page: 45 year: 1931 ident: B53 article-title: The shrinkage of the coefficient of multiple correlation publication-title: J. Educ. Psychol doi: 10.1037/h0072400 – volume: 14 start-page: 866230 year: 2022 ident: B114 article-title: Automated classification of mild cognitive impairment by machine learning with hippocampus-related white matter network publication-title: Front. Aging Neurosci doi: 10.3389/fnagi.2022.866230 – volume: 21 start-page: 123 ident: B63 article-title: Identification of early mild cognitive impairment using multi-modal data and graph convolutional networks publication-title: BMC Bioinformatics doi: 10.1186/s12859-020-3437-6 – volume: 44 start-page: 2176 year: 2023 ident: B19 article-title: Functional connectome automatically differentiates multiple system atrophy (Parkinsonian type) from idiopathic Parkinson's disease at early stages publication-title: Hum. Brain Mapp doi: 10.1002/hbm.26201 – volume: 16 start-page: 900330 ident: B97 article-title: Identification of pathogenetic brain regions via neuroimaging data for diagnosis of autism spectrum disorders publication-title: Front. Neurosci doi: 10.3389/fnins.2022.900330 – volume: 238 start-page: 118200 year: 2021 ident: B34 article-title: A generative-discriminative framework that integrates imaging, genetic, and diagnosis into coupled low dimensional space publication-title: Neuroimage doi: 10.1016/j.neuroimage.2021.118200 – year: 2019 ident: B108 article-title: Basic neural units of the brain: neurons, synapses and action potential publication-title: arXiv doi: 10.48550/arXiv.1906.01703 – volume: 3 start-page: 15 year: 2017 ident: B15 article-title: Brain structure, function, and neurochemistry in schizophrenia and bipolar disorder—a systematic review of the magnetic resonance neuroimaging literature publication-title: NPJ Schizophr doi: 10.1038/s41537-017-0013-9 – volume: 3 start-page: 1 year: 2019 ident: B38 article-title: Graph theory approaches to functional network organization in brain disorders: a critique for a brave new small-world publication-title: Netw. Neurosci doi: 10.1162/netn_a_00054 – start-page: 177 volume-title: Medical Image Computing and Computer-Assisted Intervention MICCAI 2014 year: 2014 ident: B78 article-title: “Multiple-network classification of childhood autism using functional connectivity dynamics,” doi: 10.1007/978-3-319-10443-0_23 – volume: 28 start-page: 2172 year: 2022 ident: B74 article-title: Multimodal striatal neuromarkers in distinguishing Parkinsonian variant of multiple system atrophy from idiopathic Parkinson's disease publication-title: CNS Neurosci. Ther doi: 10.1111/cns.13959 – volume: 40 start-page: 35 year: 1977 ident: B30 article-title: A set of measures of centrality based upon betweenness publication-title: Sociometry doi: 10.2307/3033543 – volume: 453 start-page: 869 year: 2008 ident: B66 article-title: What we can do and what we cannot do with fMRI publication-title: Nature doi: 10.1038/nature06976 – volume: 12 start-page: 28 year: 2020 ident: B102 article-title: Feature selection and combination of information in the functional brain connectome for discrimination of mild cognitive impairment and analyses of altered brain patterns publication-title: Front. Aging Neurosci doi: 10.3389/fnagi.2020.00028 – volume: 16 start-page: 1 year: 2020 ident: B88 article-title: Machine learning techniques for the diagnosis of Alzheimer's disease publication-title: ACM Trans. Multimedia Comput. Commun. Appl doi: 10.1145/3344998 – volume: 20 start-page: 3903 year: 2020 ident: B21 article-title: An efficient segmentation and classification system in medical images using intuitionist possibilistic fuzzy c-mean clustering and fuzzy svm algorithm publication-title: Sensors doi: 10.3390/s20143903 – volume: 2021 start-page: 1 year: 2021 ident: B47 article-title: Alzheimer's disease classification based on image transformation and features fusion publication-title: Comput. Math. Methods Med doi: 10.1155/2021/9624269 – volume: 4 start-page: 40 year: 2010 ident: B6 article-title: A survey of cross-validation procedures for model selection publication-title: Stat. Surv doi: 10.1214/09-SS054 – volume: 52 start-page: 599 year: 2015 ident: B71 article-title: Amplitude-integrated EEG in newborns with critical congenital heart disease predicts preoperative brain magnetic resonance imaging findings publication-title: Pediatr. Neurol doi: 10.1016/j.pediatrneurol.2015.02.026 – volume: 52 start-page: 4741 year: 2022 ident: B95 article-title: Multikernel capsule network for schizophrenia identification publication-title: IEEE Trans. Cybern doi: 10.1109/TCYB.2020.3035282 – volume: 14 start-page: 558434 year: 2020 ident: B109 article-title: Investigation on the alteration of brain functional network and its role in the identification of mild cognitive impairment publication-title: Front. Neurosci doi: 10.3389/fnins.2020.558434 – volume: 25 start-page: 3019 ident: B13 article-title: Detecting risk gene and pathogenic brain region in emci using a novel gerf algorithm based on brain imaging and genetic data publication-title: IEEE J. Biomed. Health Inf doi: 10.1109/JBHI.2021.3067798 – volume: 18 start-page: 2327 year: 2021 ident: B46 article-title: Convolutional neural network with graphical lasso to extract sparse topological features for brain disease classification publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform doi: 10.1109/TCBB.2020.2989315 – volume: 65 start-page: e61 ident: B96 article-title: Exosomes in schizophrenia: pathophysiological mechanisms, biomarkers, and therapeutic targets publication-title: Eur. Psychiatry doi: 10.1192/j.eurpsy.2022.2319 – volume: 393 start-page: 440 year: 1998 ident: B100 article-title: Collective dynamics of ‘small-world' networks publication-title: Nature doi: 10.1038/30918 |
SSID | ssj0062842 |
Score | 2.3667252 |
SecondaryResourceType | review_article |
Snippet | Brain diseases, including neurodegenerative diseases and neuropsychiatric diseases, have long plagued the lives of the affected populations and caused a huge... |
SourceID | doaj pubmedcentral proquest crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 1227491 |
SubjectTerms | Alzheimer's disease Artificial intelligence Autism Brain diseases Brain mapping Brain research Cognitive ability Diagnosis feature selection Functional magnetic resonance imaging Health care Learning algorithms Machine learning Magnetic resonance imaging Medical diagnosis Mental disorders Movement disorders Neurodegenerative diseases Neuroimaging Neuroscience Parkinson's disease Pathogenesis Public health Reviews Schizophrenia Time series |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEB-0fRFEtFWMrbKC-CKxl02yH75IT1qKYBGx0Lew2Y_rQW9T6_Wh_70zm73DvPTxkgm5u9n5nvkNwIe-DS1vgiml1XXZ1MGVJthZ6StuuBU8SEHzzj_OxdlF8_2yvcwJt7-5rXKjE5OidoOlHPkRR9dAcVo_9_XmT0lbo6i6mldoPIZdVMEKz_nu_OT856-NLhaofFO9U9BsEDrn49gMhmX6KMRlJLxuXn-uOMZmupqYpoTgP3E7p02T_1mh0-fwLLuP7Hjk9wt45OMe7B9HDJ1X9-wjSw2dKVO-B0_HlBwbJ432YTmndRAsl2RYhvm5YmTIHBsiIxs3pgbZyiwijTcS1UCYHJ4tV2mhEaOeUmaiQxrqw_QsL55YfGGGjZMwL-Hi9OT3t7Myb1oobSObdVmFme21anxjq9aiSDq029Jwg8EeWXBtlHSzmTMBP3ETCFFAtZYbL5Cpta1fwU4con8NDImsMrZ3wkk8A1wrpbmpQqDtNujsFVBt_uTOZhhy2oZx3WE4QozpEmM6YkyXGVPAp-0zNyMIx4PUc-LdlpIAtNOF4XbRZXnslJTBO2l0HzCk1FaFmpDKhA_CCulDAYcbzndZqvEt2zNYwPvtbZRHKrKY6Ic7osGQkKjaAtTkxEy-0PROXF4lZG8quGuh9JuH334AT-gHU2q7koews76982_RN1r377IA_AP5PRCU priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fa9RAEB5KffFFrFWMVllBfJHUyybZH4JIK5Yi1CcP-rZs9sf1oLfR8wrtf-9MsncYUJ98TDKBZL9MZr7dnW8AXndtbHkTbSmdrsumjr600c3KUHHLneBRCqp3vvgqzufNl8v2cg-27Y7yAP78I7WjflLz9fXx7Y-7j-jwH4hxYrx9F9MykfI2r48rjiyLitnvYWQSRMYumt2qgsBfMR8LZ_5y3yQ4DRr-k8Rzum3ytzh09hAe5ASSnYyIH8BeSI_g8CQheV7dsTds2NI5zJUfwvKUGkCwvAjDsrDPFaPQ5VmfGEW1cTKQrewiUUEjWfWkwhHYcjW0MGK0i5TZ5NGGdl4GlltNLN4zy8bal8cwP_v87dN5mXsrlK6Rzaas4sx1WjWhcVXr0Ak9RmppuUV6RzFbWyX9bOZtxCNuI2kIqNZxGwTCWLv6CeynPoWnwNDIKes6L7xE1LlWSnNbxUj9bDC9K6DaDqpxWXic-l9cGyQgBIQZgDAEhMlAFPB2d8_3UXbjn9anhNXOkiSzhxP9emGyBxolZQxeWt1FJJHaqViTNpkIUTghQyzgaIu02X6GhmNCqjg1PSzg1e4yeiAtq9gU-huyQRJIVm0BavKFTB5oeiUtrwYtb1pi10LpZ__jFZ7DfRoWmvKu5BHsb9Y34QXmTJvu5eAIvwA7kxnD priority: 102 providerName: Scholars Portal |
Title | Brain disease research based on functional magnetic resonance imaging data and machine learning: a review |
URI | https://www.proquest.com/docview/2851829369 https://www.proquest.com/docview/2860618295 https://pubmed.ncbi.nlm.nih.gov/PMC10469689 https://doaj.org/article/877fed7a9bf1449c8f390516ef6c67ef |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB5KcumltElL3aZBgdJLcWPJth69ZUseFBJKaWBvRtYjWchqS9kc8u8zY2uX-NJeejHYGmNZM9LMSDPfAHzs29iKJtpSOVOXTR19aaOrysCFFU6KqCTlO19eyYvr5vu8nT8p9UUxYSM88Dhwx1qpGLyypo9o-xunY02QUjJE6aQKkVbfylQbZ2pcgyUuumJMkUEXzBzHtEiEzS3qL1ygH2b4RA0NaP0TE3MaIPlE45y9hBfZVGQnYxdfwbOQ9mD_JKGbvHxgn9gQvDnsiu_DYkalHlg-bmEZwueWkZLybJUY6a9x248t7U2i1EWiWhHeRmCL5VCsiFG8KLPJIw3FWAaWi0rcfGWWjVkur-H67PTXt4syV1EoXaOadclj5Xqjm9A43jqcbh51srLCoiNH2tlYrXxVeRvxTthIaAG6dcIGiQyrXf0GdtIqhbfAkMhp63ovvUL-CqO1EZbHSJVr0JArgG8GtXMZYpwqXdx16GoQI7qBER0xosuMKODz9p3fI8DGX6lnxKstJYFjDw9QZLosMt2_RKaAgw2nuzxj8StoempB5Q0LONo241yjAxSbwuqeaNDdI6q2AD2RkEmHpi1pcTugdtNhupHavPsfv_AentOw0OY2Vwews_5zHz6gdbTuD2F3dnr14-fhMCHwej7neL1s9CNu8xTq |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9AASQtCCMBRYJOCCTOO1vQ8khBpoldI2QqiVenM36900ElmXkgr1T_EbmfEjwpfeekw8iePM7LxnPoA309znPPMmllancZb6MjbeDmOXcMOt4F4Kmnc-mojxSfbtND9dg7_dLAy1VXY6sVbUZWUpR77N0TVQnODnPl_8igk1iqqrHYRGIxYH7voPhmy_P-1_Rf6-5Xxv9_jLOG5RBWKbyWwZJ35op1plLrNJblH8SrRR0nCDgQ1ZK22ULIfD0nh8xY2n6XmVW26cwAdIbYrfewfWM5poHcD6aHfy_Uen-wUq-7q-KmgWCYOBZkwHw0C97cM80H5wnn5IOMaCOumZwhoxoOfm9ps0_7N6ew_hQeuusp1Gvh7BmgsbsLkTMFRfXLN3rG4grTPzG3C_SQGyZrJpE-Yjgp9gbQmItWuFzhkZzpJVgZFNbVKRbGFmgcYpiaqiHSCOzRc1gBKjHlZmQok01PfpWAt0MfvIDGsmbx7Dya3w4AkMQhXcU2BIZJWx01KUEmWOa6U0N4n3hKaDzmUESfcnF7Zde07oGz8LDH-IMUXNmIIYU7SMieD96jMXzdKPG6lHxLsVJS3srt-oLmdFe_4LJaV3pTR66jGE1Vb5lDajCeeFFdL5CLY6zhetFsG7rGQ-gtery3j-qahjgquuiAZDUKLKI1A9ien9oP6VMD-vN4lTgV8LpZ_dfPdXcHd8fHRYHO5PDp7DPXp4SqsncgsGy8sr9wL9suX0ZXsYGJzd9vn7B6bZTOU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTkJICMEGotsAIwEvKKxxEttBQmhlqzYG1YSYtLfgOHZXiTpjdEL71_jruEucirzsbY9NLk3dO9-H7-MH8KrMXMZTpyNp8iRKE1dF2plRZGOuuRHcSUH9zl-n4vA0_XyWna3B364XhsoqO53YKOqqNnRGvsvRNVCc4Od2XSiLONmffLz4FRGCFGVaOziNVkSO7fUfDN9-fzjaR16_5nxy8P3TYRQQBiKTynQZxW5kylylNjVxZlAUK7RXUnONQQ5ZrlwrWY1GlXb4iWtHnfQqM1xbgYtJTILfewfWJVrFdADr44PpybfODghU_E2uVVBfEgYGbcsOhoS4Aj_3NCucJ-9ijnFhHvfMYoMe0HN5-wWb_1nAyUN4EFxXttfK2iNYs34DNvc8hu2La_aGNcWkzSn9BtxvjwNZ2-W0CfMxQVGwkA5iYcTQOSMjWrHaM7Kv7bEkW-iZp9ZKoqppHohl80UDpsSonpVpXyEN1YBaFkAvZu-ZZm0XzmM4vRUePIGBr719CgyJjNKmrEQlUf54rlTOdewcIeugozmEuPuTCxNGoBMSx88CQyFiTNEwpiDGFIExQ3i7euaiHQByI_WYeLeipOHdzYX6clYEXVAoKZ2tpM5Lh-FsbpRLaEqasE4YIa0bwk7H-SJoFHzLSv6H8HJ1G3UBJXi0t_UV0WA4SlTZEFRPYno_qH_Hz8-bqeKU7M-FyrdufvsLuIv7rvhyND3ehnu0djphj-UODJaXV_YZumjL8nnYCwx-3Pb2-wfsZFER |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Brain+disease+research+based+on+functional+magnetic+resonance+imaging+data+and+machine+learning%3A+a+review&rft.jtitle=Frontiers+in+neuroscience&rft.au=Jing+Teng&rft.au=Chunlin+Mi&rft.au=Jian+Shi&rft.au=Na+Li&rft.date=2023-08-17&rft.pub=Frontiers+Media+S.A&rft.eissn=1662-453X&rft.volume=17&rft_id=info:doi/10.3389%2Ffnins.2023.1227491&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_877fed7a9bf1449c8f390516ef6c67ef |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-453X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-453X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-453X&client=summon |