fNIRS can robustly measure brain activity during memory encoding and retrieval in healthy subjects

Early intervention in Alzheimer’s Disease (AD) requires novel biomarkers that can capture changes in brain activity at an early stage. Current AD biomarkers are expensive and/or invasive and therefore unsuitable for use as screening tools, but a non-invasive, inexpensive, easily accessible screening...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 7; no. 1; pp. 9533 - 14
Main Authors Jahani, Sahar, Fantana, Antoniu L., Harper, David, Ellison, James M., Boas, David A., Forester, Brent P., Yücel, Meryem A.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 25.08.2017
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Early intervention in Alzheimer’s Disease (AD) requires novel biomarkers that can capture changes in brain activity at an early stage. Current AD biomarkers are expensive and/or invasive and therefore unsuitable for use as screening tools, but a non-invasive, inexpensive, easily accessible screening method could be useful in both clinical and research settings. Prior studies suggest that especially paired-associate learning tasks may be useful in detecting the earliest memory impairment in AD. Here, we investigated the utility of functional Near Infrared Spectroscopy in measuring brain activity from prefrontal, parietal and temporal cortices of healthy adults (n = 19) during memory encoding and retrieval under a face-name paired-associate learning task. Our findings demonstrate that encoding of novel face-name pairs compared to baseline as well as compared to repeated face-name pairs resulted in significant activation in left dorsolateral prefrontal cortex while recalling resulted in activation in dorsolateral prefrontal cortex bilaterally. Moreover, brain response to recalling was significantly higher than encoding in medial, superior and middle frontal cortices for novel faces. Overall, this study shows that fNIRS can reliably measure cortical brain activation during a face-name paired-associate learning task. Future work will include similar measurements in populations with progressing memory deficits.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-017-09868-w