Leukocyte-Derived IFN-α/β and Epithelial IFN-λ Constitute a Compartmentalized Mucosal Defense System that Restricts Enteric Virus Infections

Epithelial cells are a major port of entry for many viruses, but the molecular networks which protect barrier surfaces against viral infections are incompletely understood. Viral infections induce simultaneous production of type I (IFN-α/β) and type III (IFN-λ) interferons. All nucleated cells are b...

Full description

Saved in:
Bibliographic Details
Published inPLoS pathogens Vol. 11; no. 4; p. e1004782
Main Authors Mahlakõiv, Tanel, Hernandez, Pedro, Gronke, Konrad, Diefenbach, Andreas, Staeheli, Peter
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 01.04.2015
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Epithelial cells are a major port of entry for many viruses, but the molecular networks which protect barrier surfaces against viral infections are incompletely understood. Viral infections induce simultaneous production of type I (IFN-α/β) and type III (IFN-λ) interferons. All nucleated cells are believed to respond to IFN-α/β, whereas IFN-λ responses are largely confined to epithelial cells. We observed that intestinal epithelial cells, unlike hematopoietic cells of this organ, express only very low levels of functional IFN-α/β receptors. Accordingly, after oral infection of IFN-α/β receptor-deficient mice, human reovirus type 3 specifically infected cells in the lamina propria but, strikingly, did not productively replicate in gut epithelial cells. By contrast, reovirus replicated almost exclusively in gut epithelial cells of IFN-λ receptor-deficient mice, suggesting that the gut mucosa is equipped with a compartmentalized IFN system in which epithelial cells mainly respond to IFN-λ that they produce after viral infection, whereas other cells of the gut mostly rely on IFN-α/β for antiviral defense. In suckling mice with IFN-λ receptor deficiency, reovirus replicated in the gut epithelium and additionally infected epithelial cells lining the bile ducts, indicating that infants may use IFN-λ for the control of virus infections in various epithelia-rich tissues. Thus, IFN-λ should be regarded as an autonomous virus defense system of the gut mucosa and other epithelial barriers that may have evolved to avoid unnecessarily frequent triggering of the IFN-α/β system which would induce exacerbated inflammation.
AbstractList Epithelial cells are a major port of entry for many viruses, but the molecular networks which protect barrier surfaces against viral infections are incompletely understood. Viral infections induce simultaneous production of type I (IFN-α/β) and type III (IFN-λ) interferons. All nucleated cells are believed to respond to IFN-α/β, whereas IFN-λ responses are largely confined to epithelial cells. We observed that intestinal epithelial cells, unlike hematopoietic cells of this organ, express only very low levels of functional IFN-α/β receptors. Accordingly, after oral infection of IFN-α/β receptor-deficient mice, human reovirus type 3 specifically infected cells in the lamina propria but, strikingly, did not productively replicate in gut epithelial cells. By contrast, reovirus replicated almost exclusively in gut epithelial cells of IFN-λ receptor-deficient mice, suggesting that the gut mucosa is equipped with a compartmentalized IFN system in which epithelial cells mainly respond to IFN-λ that they produce after viral infection, whereas other cells of the gut mostly rely on IFN-α/β for antiviral defense. In suckling mice with IFN-λ receptor deficiency, reovirus replicated in the gut epithelium and additionally infected epithelial cells lining the bile ducts, indicating that infants may use IFN-λ for the control of virus infections in various epithelia-rich tissues. Thus, IFN-λ should be regarded as an autonomous virus defense system of the gut mucosa and other epithelial barriers that may have evolved to avoid unnecessarily frequent triggering of the IFN-α/β system which would induce exacerbated inflammation.
Epithelial cells are a major port of entry for many viruses, but the molecular networks which protect barrier surfaces against viral infections are incompletely understood. Viral infections induce simultaneous production of type I (IFN-α/β) and type III (IFN-λ) interferons. All nucleated cells are believed to respond to IFN-α/β, whereas IFN-λ responses are largely confined to epithelial cells. We observed that intestinal epithelial cells, unlike hematopoietic cells of this organ, express only very low levels of functional IFN-α/β receptors. Accordingly, after oral infection of IFN-α/β receptor-deficient mice, human reovirus type 3 specifically infected cells in the lamina propria but, strikingly, did not productively replicate in gut epithelial cells. By contrast, reovirus replicated almost exclusively in gut epithelial cells of IFN-λ receptor-deficient mice, suggesting that the gut mucosa is equipped with a compartmentalized IFN system in which epithelial cells mainly respond to IFN-λ that they produce after viral infection, whereas other cells of the gut mostly rely on IFN-α/β for antiviral defense. In suckling mice with IFN-λ receptor deficiency, reovirus replicated in the gut epithelium and additionally infected epithelial cells lining the bile ducts, indicating that infants may use IFN-λ for the control of virus infections in various epithelia-rich tissues. Thus, IFN-λ should be regarded as an autonomous virus defense system of the gut mucosa and other epithelial barriers that may have evolved to avoid unnecessarily frequent triggering of the IFN-α/β system which would induce exacerbated inflammation. Virus-induced interferon consists of two distinct families of molecules, IFN-α/β and IFN-λ. IFN-α/β family members are key antiviral molecules that confer protection against a large number of viruses infecting a wide variety of cell types. By contrast, IFN-λ responses are largely confined to epithelial cells due to highly restricted expression of the cognate receptor. Interestingly, virus resistance of the gut epithelium is not dependent on IFN-α/β but rather relies on IFN-λ, questioning the prevailing view that receptors for IFN-α/β are expressed ubiquitously. Here we demonstrate that the IFN-α/β system is unable to compensate for IFN-λ deficiency during infections with epitheliotropic viruses because intestinal epithelial cells do not express functional receptors for IFN-α/β. We further demonstrate that virus-infected intestinal epithelial cells are potent producers of IFN-λ, indicating that the gut mucosa possesses a compartmentalized IFN system in which epithelial cells predominantly respond to IFN-λ, whereas other cells of the gut mainly rely on IFN-α/β for antiviral defense. We suggest that IFN-λ may have evolved as an autonomous virus defense system of the gut mucosa to avoid unnecessarily frequent triggering of the IFN-α/β system which, due to its potent activity on immune cells, would induce exacerbated inflammation.
Epithelial cells are a major port of entry for many viruses, but the molecular networks which protect barrier surfaces against viral infections are incompletely understood. Viral infections induce simultaneous production of type I (IFN-α/β) and type III (IFN-λ) interferons. All nucleated cells are believed to respond to IFN-α/β, whereas IFN-λ responses are largely confined to epithelial cells. We observed that intestinal epithelial cells, unlike hematopoietic cells of this organ, express only very low levels of functional IFN-α/β receptors. Accordingly, after oral infection of IFN-α/β receptor-deficient mice, human reovirus type 3 specifically infected cells in the lamina propria but, strikingly, did not productively replicate in gut epithelial cells. By contrast, reovirus replicated almost exclusively in gut epithelial cells of IFN-λ receptor-deficient mice, suggesting that the gut mucosa is equipped with a compartmentalized IFN system in which epithelial cells mainly respond to IFN-λ that they produce after viral infection, whereas other cells of the gut mostly rely on IFN-α/β for antiviral defense. In suckling mice with IFN-λ receptor deficiency, reovirus replicated in the gut epithelium and additionally infected epithelial cells lining the bile ducts, indicating that infants may use IFN-λ for the control of virus infections in various epithelia-rich tissues. Thus, IFN-λ should be regarded as an autonomous virus defense system of the gut mucosa and other epithelial barriers that may have evolved to avoid unnecessarily frequent triggering of the IFN-α/β system which would induce exacerbated inflammation.Epithelial cells are a major port of entry for many viruses, but the molecular networks which protect barrier surfaces against viral infections are incompletely understood. Viral infections induce simultaneous production of type I (IFN-α/β) and type III (IFN-λ) interferons. All nucleated cells are believed to respond to IFN-α/β, whereas IFN-λ responses are largely confined to epithelial cells. We observed that intestinal epithelial cells, unlike hematopoietic cells of this organ, express only very low levels of functional IFN-α/β receptors. Accordingly, after oral infection of IFN-α/β receptor-deficient mice, human reovirus type 3 specifically infected cells in the lamina propria but, strikingly, did not productively replicate in gut epithelial cells. By contrast, reovirus replicated almost exclusively in gut epithelial cells of IFN-λ receptor-deficient mice, suggesting that the gut mucosa is equipped with a compartmentalized IFN system in which epithelial cells mainly respond to IFN-λ that they produce after viral infection, whereas other cells of the gut mostly rely on IFN-α/β for antiviral defense. In suckling mice with IFN-λ receptor deficiency, reovirus replicated in the gut epithelium and additionally infected epithelial cells lining the bile ducts, indicating that infants may use IFN-λ for the control of virus infections in various epithelia-rich tissues. Thus, IFN-λ should be regarded as an autonomous virus defense system of the gut mucosa and other epithelial barriers that may have evolved to avoid unnecessarily frequent triggering of the IFN-α/β system which would induce exacerbated inflammation.
Author Hernandez, Pedro
Gronke, Konrad
Diefenbach, Andreas
Staeheli, Peter
Mahlakõiv, Tanel
AuthorAffiliation 2 Spemann Graduate School of Biology and Medicine (SGBM), Albert Ludwigs University Freiburg, Freiburg, Germany
Stanford University, UNITED STATES
1 Institute of Virology, University Medical Center Freiburg, Freiburg, Germany
5 Research Centre Immunology and Institute of Medical Microbiology and Hygiene, University of Mainz Medical Centre, Mainz, Germany
3 Institute of Medical Microbiology and Hygiene, University Medical Center Freiburg, Freiburg, Germany
4 International Max Planck Research School for Molecular and Cell Biology (IMPRS-MCB), Freiburg, Germany
AuthorAffiliation_xml – name: 1 Institute of Virology, University Medical Center Freiburg, Freiburg, Germany
– name: 4 International Max Planck Research School for Molecular and Cell Biology (IMPRS-MCB), Freiburg, Germany
– name: 3 Institute of Medical Microbiology and Hygiene, University Medical Center Freiburg, Freiburg, Germany
– name: 5 Research Centre Immunology and Institute of Medical Microbiology and Hygiene, University of Mainz Medical Centre, Mainz, Germany
– name: Stanford University, UNITED STATES
– name: 2 Spemann Graduate School of Biology and Medicine (SGBM), Albert Ludwigs University Freiburg, Freiburg, Germany
Author_xml – sequence: 1
  givenname: Tanel
  surname: Mahlakõiv
  fullname: Mahlakõiv, Tanel
– sequence: 2
  givenname: Pedro
  surname: Hernandez
  fullname: Hernandez, Pedro
– sequence: 3
  givenname: Konrad
  surname: Gronke
  fullname: Gronke, Konrad
– sequence: 4
  givenname: Andreas
  surname: Diefenbach
  fullname: Diefenbach, Andreas
– sequence: 5
  givenname: Peter
  surname: Staeheli
  fullname: Staeheli, Peter
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25849543$$D View this record in MEDLINE/PubMed
BookMark eNp9kstu1DAUhiNURC_wBgh5ySZTO3YShwUSmk7LSANI3LaWxz7peEjs1HYqDS_Bs5Qt79BnwsNMUcuClW__-X6d4_84O7DOQpY9J3hCaE1O1270VnaTYZBxQjBmNS8eZUekLGle05od3NsfZschrJOGUFI9yQ6LkrOmZPQo-7GA8ZtTmwj5GXhzDRrNz9_ntzentz-RtBrNBhNX0BnZ7R5-oamzIZo4RkAyHfpB-tiDjbIz31P5u1G5kNRn0IINgD5tQoQexZWM6COE6I2KAc1sTHYKfTV-DGhuW1DRJPDT7HEruwDP9utJ9uV89nn6Nl98uJhP3yxyxWoWcwKM6Yq3RatYtdRcV5gVijQcdMNVg3VbUgZFTRrQULeyIVgWS90STglrOaUn2XzH1U6uxeBNL_1GOGnEnwvnL0Vqy6gORFVyJeumIoQwhqnmBWmIKlSC4QazMrFe71jDuOxBqzQLL7sH0Icv1qzEpbsWjHLOapwAL_cA767GNCPRm6Cg66QFNwZBqrrAqYWySdIX973-mtz9aBK82gmUdyF4aIUyUW5nm6xNJwgW2_iIfXzENj5iH59UzP4pvuP_t-w3bl7SCA
CitedBy_id crossref_primary_10_1089_jir_2019_0009
crossref_primary_10_3389_fimmu_2016_00598
crossref_primary_10_1186_s12934_024_02397_y
crossref_primary_10_1016_j_coi_2024_102456
crossref_primary_10_1128_JVI_02079_16
crossref_primary_10_3389_fimmu_2023_1250541
crossref_primary_10_1099_jgv_0_000522
crossref_primary_10_1007_s00705_018_4087_0
crossref_primary_10_1016_j_antiviral_2017_10_017
crossref_primary_10_1038_s41590_019_0345_x
crossref_primary_10_4049_jimmunol_2100707
crossref_primary_10_1016_j_jcmgh_2019_02_007
crossref_primary_10_3389_fimmu_2024_1441908
crossref_primary_10_3390_ijms22094726
crossref_primary_10_1038_s41577_019_0182_z
crossref_primary_10_3389_fimmu_2021_637399
crossref_primary_10_3389_fimmu_2018_03086
crossref_primary_10_1016_j_it_2018_08_008
crossref_primary_10_1128_mbio_01308_22
crossref_primary_10_3389_fimmu_2017_01707
crossref_primary_10_1007_s00005_019_00564_3
crossref_primary_10_1126_sciimmunol_abd5318
crossref_primary_10_3342_kjorl_hns_2015_58_11_739
crossref_primary_10_1016_j_cytogfr_2016_02_005
crossref_primary_10_3389_fimmu_2017_00459
crossref_primary_10_1002_eji_201646519
crossref_primary_10_4049_immunohorizons_2200025
crossref_primary_10_1080_2162402X_2023_2209473
crossref_primary_10_1371_journal_pone_0230667
crossref_primary_10_1007_s00705_022_05461_3
crossref_primary_10_1016_j_celrep_2025_115243
crossref_primary_10_1016_j_ijbiomac_2024_136712
crossref_primary_10_1016_j_immuni_2019_03_025
crossref_primary_10_1128_jvi_00917_22
crossref_primary_10_1021_acs_jproteome_0c00164
crossref_primary_10_3389_fimmu_2017_01302
crossref_primary_10_3390_cells11244041
crossref_primary_10_1038_mi_2017_77
crossref_primary_10_1093_protein_gzy029
crossref_primary_10_3389_fimmu_2017_01661
crossref_primary_10_3390_v10010046
crossref_primary_10_1080_14760584_2021_1927724
crossref_primary_10_1016_j_chom_2019_04_005
crossref_primary_10_1016_j_coi_2024_102430
crossref_primary_10_1038_srep24530
crossref_primary_10_3389_fvets_2019_00034
crossref_primary_10_1016_j_coi_2018_10_007
crossref_primary_10_1016_j_ejps_2024_106974
crossref_primary_10_3390_pathogens12091142
crossref_primary_10_1186_s13567_024_01436_1
crossref_primary_10_1146_annurev_virology_110615_042152
crossref_primary_10_3389_fimmu_2019_02674
crossref_primary_10_1038_s41435_018_0028_x
crossref_primary_10_1128_JVI_02167_20
crossref_primary_10_1016_j_cytogfr_2016_03_002
crossref_primary_10_1038_s41584_021_00606_1
crossref_primary_10_1016_j_chom_2017_08_021
crossref_primary_10_3389_fimmu_2017_01232
crossref_primary_10_3389_fimmu_2021_705342
crossref_primary_10_1016_j_micinf_2024_105466
crossref_primary_10_1084_jem_20160437
crossref_primary_10_1371_journal_ppat_1007420
crossref_primary_10_3389_fmicb_2021_806084
crossref_primary_10_1128_JVI_00480_20
crossref_primary_10_3389_fmicb_2018_02943
crossref_primary_10_1016_j_jconrel_2023_05_029
crossref_primary_10_1038_ni_3212
crossref_primary_10_1080_19490976_2024_2447830
crossref_primary_10_1371_journal_ppat_1008515
crossref_primary_10_3390_ijms221910851
crossref_primary_10_1038_s41467_021_22928_0
crossref_primary_10_1016_j_mucimm_2024_03_011
crossref_primary_10_1089_jir_2018_0046
crossref_primary_10_3389_fimmu_2021_793841
crossref_primary_10_1016_j_cell_2024_10_010
crossref_primary_10_1016_j_mucimm_2024_03_013
crossref_primary_10_7554_eLife_65762
crossref_primary_10_1016_j_smim_2019_101303
crossref_primary_10_1128_mbio_00550_24
crossref_primary_10_1002_eji_202048777
crossref_primary_10_3389_fimmu_2017_00671
crossref_primary_10_1101_cshperspect_a031674
crossref_primary_10_1155_2022_8873536
crossref_primary_10_1073_pnas_2409684121
crossref_primary_10_1128_JVI_00603_20
crossref_primary_10_4049_jimmunol_2000979
crossref_primary_10_1128_JVI_02000_18
crossref_primary_10_1016_j_drudis_2015_10_021
crossref_primary_10_1038_s41598_019_52307_1
crossref_primary_10_1128_mBio_02540_20
crossref_primary_10_1016_j_coi_2024_102412
crossref_primary_10_3390_jmp4040024
crossref_primary_10_1016_j_coi_2024_102413
crossref_primary_10_3390_v13040589
crossref_primary_10_1016_j_antiviral_2017_01_016
crossref_primary_10_1371_journal_ppat_1008986
crossref_primary_10_1128_jvi_01147_24
crossref_primary_10_7554_eLife_74072
crossref_primary_10_1089_jir_2019_0040
crossref_primary_10_1128_jvi_01388_22
crossref_primary_10_1089_vim_2020_0076
crossref_primary_10_1128_JVI_01073_19
crossref_primary_10_1099_jgv_0_001660
crossref_primary_10_1128_jvi_01705_21
crossref_primary_10_15252_msb_20209833
crossref_primary_10_3389_fimmu_2024_1338096
crossref_primary_10_1016_j_coi_2023_102400
crossref_primary_10_3390_v11110998
crossref_primary_10_1016_j_coi_2021_07_014
crossref_primary_10_1089_jir_2024_0107
crossref_primary_10_1128_jvi_00706_22
crossref_primary_10_3390_v12060667
crossref_primary_10_1128_JVI_01677_17
crossref_primary_10_1016_j_fsi_2018_12_008
crossref_primary_10_1146_annurev_virology_111821_112317
crossref_primary_10_1186_s12974_016_0551_5
crossref_primary_10_1371_journal_ppat_1008057
crossref_primary_10_3390_v12040405
crossref_primary_10_3390_v12091039
crossref_primary_10_1128_mbio_00443_22
crossref_primary_10_1002_eji_202048990
crossref_primary_10_1016_j_coi_2024_102424
crossref_primary_10_1089_jir_2019_0036
crossref_primary_10_3389_fimmu_2020_608645
crossref_primary_10_1146_annurev_immunol_101921_050835
crossref_primary_10_1074_jbc_R117_777102
crossref_primary_10_1186_s12967_024_05673_y
crossref_primary_10_1128_mbio_01130_24
crossref_primary_10_1016_j_tim_2017_10_010
crossref_primary_10_1084_jem_20190295
crossref_primary_10_1073_pnas_1615422114
crossref_primary_10_1016_j_immuni_2017_04_027
crossref_primary_10_3389_fimmu_2017_00258
crossref_primary_10_1016_j_immuni_2017_04_025
crossref_primary_10_1084_jem_20181621
crossref_primary_10_1371_journal_pone_0247738
crossref_primary_10_1016_j_immuni_2015_07_001
crossref_primary_10_3389_fimmu_2017_00749
crossref_primary_10_1038_ni_3821
crossref_primary_10_1016_j_dci_2024_105236
crossref_primary_10_1089_jir_2023_0037
crossref_primary_10_1016_j_celrep_2017_10_059
crossref_primary_10_1038_gene_2016_24
crossref_primary_10_3389_fvets_2020_00045
crossref_primary_10_4049_jimmunol_1601430
crossref_primary_10_1053_j_gastro_2017_03_015
crossref_primary_10_3390_v15122284
crossref_primary_10_1016_j_virusres_2021_198342
crossref_primary_10_3390_microorganisms9010105
crossref_primary_10_1084_jem_20161289
crossref_primary_10_1016_j_ejpb_2022_02_006
crossref_primary_10_1371_journal_pone_0164858
crossref_primary_10_1016_j_jim_2017_03_001
crossref_primary_10_1089_jir_2024_0096
crossref_primary_10_3390_ijms23179661
crossref_primary_10_3389_fimmu_2017_00119
crossref_primary_10_1016_j_virusres_2016_09_001
crossref_primary_10_1128_mbio_02791_22
crossref_primary_10_1089_jir_2023_0040
crossref_primary_10_1016_j_virusres_2016_05_015
crossref_primary_10_1007_s40588_018_0079_9
crossref_primary_10_1099_jgv_0_001651
crossref_primary_10_1371_journal_ppat_1005600
crossref_primary_10_1038_s41392_024_02049_y
crossref_primary_10_1089_jir_2023_0046
crossref_primary_10_3389_fimmu_2017_01281
crossref_primary_10_7554_eLife_37552
crossref_primary_10_7554_eLife_33354
crossref_primary_10_1016_j_chom_2020_02_003
crossref_primary_10_1371_journal_ppat_1005684
crossref_primary_10_3389_fgene_2022_976814
crossref_primary_10_1016_j_it_2016_06_003
crossref_primary_10_3389_fimmu_2018_01270
crossref_primary_10_1080_22221751_2023_2239937
Cites_doi 10.1016/j.immuni.2012.05.020
10.1016/j.exger.2004.06.013
10.1089/jir.2010.0061
10.1038/jid.2010.244
10.1126/science.1235214
10.1002/hep.24189
10.1371/journal.ppat.1000151
10.1053/j.gastro.2011.12.055
10.1172/JCI16303
10.1016/j.immuni.2012.04.011
10.1074/jbc.M608618200
10.1007/s13365-011-0038-1
10.1073/pnas.1100552108
10.1111/j.1398-9995.2008.01826.x
10.1128/JVI.00272-10
10.1073/pnas.1212188109
10.1056/NEJM198208193070806
10.1128/JVI.00391-08
10.1016/j.immuni.2012.03.013
10.1016/j.virusres.2011.07.011
10.2223/JPED.1608
10.1099/vir.0.83391-0
10.1099/0022-1317-68-3-945
10.1084/jem.20101664
10.2174/1568005310101020117
10.1006/viro.2002.1723
10.1016/S0952-7915(02)00349-7
10.1385/IR:23:2-3:229
10.1038/ni873
10.1126/science.1258100
10.1371/journal.ppat.1000017
10.1089/107999099313802
10.1002/hep.24580
10.1002/eji.200324610
10.1016/j.virol.2005.09.024
10.1371/journal.ppat.1003064
10.3109/13550280903586394
10.1111/j.1600-065X.1995.tb00090.x
10.1038/ni1303
10.1002/hep.510270603
10.1128/JVI.68.10.6458-6465.1994
10.1038/ni875
10.1371/journal.ppat.1002670
10.1006/viro.2002.1699
10.1099/vir.0.051276-0
10.1371/journal.ppat.1003773
10.4049/jimmunol.180.4.2474
10.1128/JVI.01956-12
10.1074/jbc.R700016200
10.1038/ni.2915
10.1128/JVI.02675-06
10.1038/nature09907
10.1016/j.pharmthera.2004.12.002
10.1084/jem.20061587
10.1007/978-1-60761-362-6_32
10.1128/JVI.01703-09
10.1126/science.8009221
10.1038/ncomms4864
10.1159/000360084
10.1038/35073080
10.3109/00313026909071296
10.1016/0882-4010(86)90034-3
10.1146/annurev.immunol.23.021704.115843
10.1371/journal.pone.0002961
10.4049/jimmunol.182.3.1296
10.1016/S0014-5793(99)01598-7
10.1128/JVI.68.12.8428-8432.1994
ContentType Journal Article
Copyright 2015 Mahlakõiv et al 2015 Mahlakõiv et al
Copyright_xml – notice: 2015 Mahlakõiv et al 2015 Mahlakõiv et al
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.1371/journal.ppat.1004782
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Compartmentalized Mucosal Defense System
EISSN 1553-7374
ExternalDocumentID oai_doaj_org_article_658ca7961114403d82191c2cf1809045
PMC4388470
25849543
10_1371_journal_ppat_1004782
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
123
29O
2WC
53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
B0M
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EAP
EAS
EBD
EMK
EMOBN
ESX
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IHR
INH
INR
ISN
ISR
ITC
KQ8
LK8
M1P
M48
M7P
MM.
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PV9
QF4
QN7
RNS
RPM
RZL
SV3
TR2
TUS
UKHRP
WOW
~8M
3V.
CGR
CUY
CVF
ECM
EIF
H13
IPNFZ
M~E
NPM
RIG
WOQ
7X8
PPXIY
PQGLB
5PM
PJZUB
PUEGO
ID FETCH-LOGICAL-c474t-1e44d68f2fc46bd8d6042c198ed98c90df534e2719ede7fa910a2bdf18314f833
IEDL.DBID M48
ISSN 1553-7374
1553-7366
IngestDate Wed Aug 27 01:14:09 EDT 2025
Thu Aug 21 14:31:21 EDT 2025
Fri Jul 11 01:44:42 EDT 2025
Wed Feb 19 02:33:52 EST 2025
Thu Apr 24 23:12:40 EDT 2025
Tue Jul 01 02:41:14 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-1e44d68f2fc46bd8d6042c198ed98c90df534e2719ede7fa910a2bdf18314f833
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Conceived and designed the experiments: TM PH AD PS. Performed the experiments: TM PH KG. Analyzed the data: TM PH AD PS. Contributed reagents/materials/analysis tools: TM PH AD PS. Wrote the paper: TM PH PS.
The authors have declared that no competing interests exist.
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.ppat.1004782
PMID 25849543
PQID 1672091059
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_658ca7961114403d82191c2cf1809045
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4388470
proquest_miscellaneous_1672091059
pubmed_primary_25849543
crossref_citationtrail_10_1371_journal_ppat_1004782
crossref_primary_10_1371_journal_ppat_1004782
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-04-01
PublicationDateYYYYMMDD 2015-04-01
PublicationDate_xml – month: 04
  year: 2015
  text: 2015-04-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco, CA USA
PublicationTitle PLoS pathogens
PublicationTitleAlternate PLoS Pathog
PublicationYear 2015
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References MA Horisberger (ref67) 1987; 68
CD Krause (ref5) 2005; 106
F Flohr (ref68) 1999; 463
O Haller (ref2) 2006; 344
U Muller (ref4) 1994; 264
M Mordstein (ref14) 2010; 84
E de Carvalho (ref58) 2007; 83
J Angel (ref18) 1999; 19
M Mordstein (ref16) 2008; 4
P Hermant (ref44) 2014; 6
I Ioannidis (ref48) 2013; 87
J Wang (ref49) 2009; 182
C Johansson (ref17) 2007; 204
EM Coccia (ref46) 2004; 34
RE Randall (ref1) 2008; 89
MF van den Broek (ref3) 1995; 148
S Crotta (ref27) 2013; 9
ES Barton (ref40) 2003; 111
GA Wilson (ref42) 1994; 68
SV Kotenko (ref11) 2003; 4
G Holloway (ref19) 2013; 94
ref45
PA Phillips (ref61) 1969; 1
T Kawai (ref29) 2006; 7
C Odendall (ref57) 2014; 15
J Pott (ref37) 2012; 8
K Onoguchi (ref56) 2007; 282
C Sommereyns (ref13) 2008; 4
M Derrien (ref41) 2003; 305
M Colonna (ref30) 2002; 14
HM Amerongen (ref36) 1994; 68
SL Sanos (ref69) 2010; 612
JR Fulton (ref31) 2004; 39
G Trinchieri (ref63) 2010; 207
AS Major (ref33) 1998; 233
J Pott (ref23) 2011; 108
C Schindler (ref7) 2007; 282
E Thomas (ref55) 2012; 142
AN Theofilopoulos (ref6) 2005; 23
MC Abt (ref26) 2012; 37
Z Makowska (ref66) 2011; 53
M Mordstein (ref15) 2010; 30
CJ Clarke (ref9) 2001; 1
KR Dionne (ref34) 2011; 17
P Sheppard (ref12) 2003; 4
M Riepenhoff-Talty (ref62) 1993; 33
T Okabayashi (ref52) 2011; 160
S Marukian (ref54) 2011; 54
MR Khaitov (ref51) 2009; 64
KL Tyler (ref60) 1998; 27
JW Schoggins (ref10) 2011; 472
GR Stark (ref8) 2012; 36
MA Mann (ref39) 2002; 303
S Davidson (ref64) 2014; 5
N Feng (ref21) 2008; 82
SC Ganal (ref25) 2012; 37
A Boasso (ref65) 2008; 3
JR Teijaro (ref20) 2013; 340
S Ohka (ref22) 2007; 81
A Sen (ref28) 2012; 109
N Ank (ref47) 2008; 180
MM Arnold (ref38) 2013; 9
T Taniguchi (ref24) 2001; 2
KL Tyler (ref43) 2010; 16
DH Rubin (ref35) 1986; 1
S Zahn (ref53) 2011; 131
R Morecki (ref59) 1982; 307
NA Jewell (ref50) 2010; 84
D Chen (ref32) 2001; 23
References_xml – volume: 37
  start-page: 171
  year: 2012
  ident: ref25
  article-title: Priming of natural killer cells by nonmucosal mononuclear phagocytes requires instructive signals from commensal microbiota
  publication-title: Immunity
  doi: 10.1016/j.immuni.2012.05.020
– volume: 39
  start-page: 1285
  year: 2004
  ident: ref31
  article-title: Mucosal and systemic immunity to intestinal reovirus infection in aged mice
  publication-title: Exp Gerontol
  doi: 10.1016/j.exger.2004.06.013
– volume: 30
  start-page: 579
  year: 2010
  ident: ref15
  article-title: What have we learned from the IL28 receptor knockout mouse?
  publication-title: J Interferon Cytokine Res
  doi: 10.1089/jir.2010.0061
– volume: 131
  start-page: 133
  year: 2011
  ident: ref53
  article-title: Evidence for a pathophysiological role of keratinocyte-derived type III interferon (IFNlambda) in cutaneous lupus erythematosus
  publication-title: J Invest Dermatol
  doi: 10.1038/jid.2010.244
– volume: 340
  start-page: 207
  year: 2013
  ident: ref20
  article-title: Persistent LCMV infection is controlled by blockade of type I interferon signaling
  publication-title: Science
  doi: 10.1126/science.1235214
– volume: 53
  start-page: 1154
  year: 2011
  ident: ref66
  article-title: Interferon-beta and interferon-lambda signaling is not affected by interferon-induced refractoriness to interferon-alpha in vivo
  publication-title: Hepatology
  doi: 10.1002/hep.24189
– volume: 4
  start-page: e1000151
  year: 2008
  ident: ref16
  article-title: Interferon-lambda contributes to innate immunity of mice against influenza A virus but not against hepatotropic viruses
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1000151
– volume: 142
  start-page: 978
  year: 2012
  ident: ref55
  article-title: HCV infection induces a unique hepatic innate immune response associated with robust production of type III interferons
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2011.12.055
– volume: 111
  start-page: 1823
  year: 2003
  ident: ref40
  article-title: Utilization of sialic acid as a coreceptor is required for reovirus-induced biliary disease
  publication-title: J Clin Invest
  doi: 10.1172/JCI16303
– volume: 37
  start-page: 158
  year: 2012
  ident: ref26
  article-title: Commensal bacteria calibrate the activation threshold of innate antiviral immunity
  publication-title: Immunity
  doi: 10.1016/j.immuni.2012.04.011
– volume: 282
  start-page: 7576
  year: 2007
  ident: ref56
  article-title: Viral infections activate types I and III interferon genes through a common mechanism
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M608618200
– volume: 17
  start-page: 314
  year: 2011
  ident: ref34
  article-title: Type I interferon signaling limits reoviral tropism within the brain and prevents lethal systemic infection
  publication-title: J Neurovirol
  doi: 10.1007/s13365-011-0038-1
– volume: 108
  start-page: 7944
  year: 2011
  ident: ref23
  article-title: IFN-lambda determines the intestinal epithelial antiviral host defense
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1100552108
– volume: 33
  start-page: 394
  year: 1993
  ident: ref62
  article-title: Group A rotaviruses produce extrahepatic biliary obstruction in orally inoculated newborn mice
  publication-title: Pediatr Res
– volume: 64
  start-page: 375
  year: 2009
  ident: ref51
  article-title: Respiratory virus induction of alpha-, beta- and lambda-interferons in bronchial epithelial cells and peripheral blood mononuclear cells
  publication-title: Allergy
  doi: 10.1111/j.1398-9995.2008.01826.x
– volume: 233
  start-page: 163
  year: 1998
  ident: ref33
  article-title: Mucosal immunity to reovirus infection
  publication-title: Curr Top Microbiol Immunol
– volume: 84
  start-page: 5670
  year: 2010
  ident: ref14
  article-title: Lambda interferon renders epithelial cells of the respiratory and gastrointestinal tracts resistant to viral infections
  publication-title: J Virol
  doi: 10.1128/JVI.00272-10
– volume: 109
  start-page: 20667
  year: 2012
  ident: ref28
  article-title: Innate immune response to homologous rotavirus infection in the small intestinal villous epithelium at single-cell resolution
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1212188109
– volume: 307
  start-page: 481
  year: 1982
  ident: ref59
  article-title: Biliary atresia and reovirus type 3 infection
  publication-title: N Engl J Med
  doi: 10.1056/NEJM198208193070806
– volume: 82
  start-page: 7578
  year: 2008
  ident: ref21
  article-title: Role of interferon in homologous and heterologous rotavirus infection in the intestines and extraintestinal organs of suckling mice
  publication-title: J Virol
  doi: 10.1128/JVI.00391-08
– volume: 36
  start-page: 503
  year: 2012
  ident: ref8
  article-title: The JAK-STAT pathway at twenty
  publication-title: Immunity
  doi: 10.1016/j.immuni.2012.03.013
– volume: 160
  start-page: 360
  year: 2011
  ident: ref52
  article-title: Type-III interferon, not type-I, is the predominant interferon induced by respiratory viruses in nasal epithelial cells
  publication-title: Virus Res
  doi: 10.1016/j.virusres.2011.07.011
– volume: 83
  start-page: 105
  year: 2007
  ident: ref58
  article-title: Extrahepatic biliary atresia: current concepts and future directions
  publication-title: J Pediatr (Rio J)
  doi: 10.2223/JPED.1608
– volume: 89
  start-page: 1
  year: 2008
  ident: ref1
  article-title: Interferons and viruses: an interplay between induction, signalling, antiviral responses and virus countermeasures
  publication-title: J Gen Virol
  doi: 10.1099/vir.0.83391-0
– volume: 68
  start-page: 945
  issue: Pt 3
  year: 1987
  ident: ref67
  article-title: A recombinant human interferon-alpha B/D hybrid with a broad host-range
  publication-title: J Gen Virol
  doi: 10.1099/0022-1317-68-3-945
– volume: 207
  start-page: 2053
  year: 2010
  ident: ref63
  article-title: Type I interferon: friend or foe?
  publication-title: J Exp Med
  doi: 10.1084/jem.20101664
– volume: 1
  start-page: 117
  year: 2001
  ident: ref9
  article-title: Mechanisms of interferon mediated anti-viral resistance
  publication-title: Curr Drug Targets Immune Endocr Metabol Disord
  doi: 10.2174/1568005310101020117
– volume: 305
  start-page: 25
  year: 2003
  ident: ref41
  article-title: The M2 gene segment is involved in the capacity of reovirus type 3Abney to induce the oily fur syndrome in neonatal mice, a S1 gene segment-associated phenotype
  publication-title: Virology
  doi: 10.1006/viro.2002.1723
– volume: 14
  start-page: 373
  year: 2002
  ident: ref30
  article-title: Interferon-producing cells: on the front line in immune responses against pathogens
  publication-title: Curr Opin Immunol
  doi: 10.1016/S0952-7915(02)00349-7
– volume: 23
  start-page: 229
  year: 2001
  ident: ref32
  article-title: Mucosal T cell response to reovirus
  publication-title: Immunol Res
  doi: 10.1385/IR:23:2-3:229
– volume: 4
  start-page: 63
  year: 2003
  ident: ref12
  article-title: IL-28, IL-29 and their class II cytokine receptor IL-28R
  publication-title: Nat Immunol
  doi: 10.1038/ni873
– ident: ref45
  doi: 10.1126/science.1258100
– volume: 4
  start-page: e1000017
  year: 2008
  ident: ref13
  article-title: IFN-lambda (IFN-lambda) is expressed in a tissue-dependent fashion and primarily acts on epithelial cells in vivo
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1000017
– volume: 19
  start-page: 655
  year: 1999
  ident: ref18
  article-title: Lack of a role for type I and type II interferons in the resolution of rotavirus-induced diarrhea and infection in mice
  publication-title: J Interferon Cytokine Res
  doi: 10.1089/107999099313802
– volume: 54
  start-page: 1913
  year: 2011
  ident: ref54
  article-title: Hepatitis C virus induces interferon-lambda and interferon-stimulated genes in primary liver cultures
  publication-title: Hepatology
  doi: 10.1002/hep.24580
– volume: 34
  start-page: 796
  year: 2004
  ident: ref46
  article-title: Viral infection and Toll-like receptor agonists induce a differential expression of type I and lambda interferons in human plasmacytoid and monocyte-derived dendritic cells
  publication-title: Eur J Immunol
  doi: 10.1002/eji.200324610
– volume: 344
  start-page: 119
  year: 2006
  ident: ref2
  article-title: The interferon response circuit: induction and suppression by pathogenic viruses
  publication-title: Virology
  doi: 10.1016/j.virol.2005.09.024
– volume: 9
  start-page: e1003064
  year: 2013
  ident: ref38
  article-title: The battle between rotavirus and its host for control of the interferon signaling pathway
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1003064
– volume: 16
  start-page: 56
  year: 2010
  ident: ref43
  article-title: Gene expression in the brain during reovirus encephalitis
  publication-title: J Neurovirol
  doi: 10.3109/13550280903586394
– volume: 148
  start-page: 5
  year: 1995
  ident: ref3
  article-title: Immune defence in mice lacking type I and/or type II interferon receptors
  publication-title: Immunol Rev
  doi: 10.1111/j.1600-065X.1995.tb00090.x
– volume: 7
  start-page: 131
  year: 2006
  ident: ref29
  article-title: Innate immune recognition of viral infection
  publication-title: Nat Immunol
  doi: 10.1038/ni1303
– volume: 27
  start-page: 1475
  year: 1998
  ident: ref60
  article-title: Detection of reovirus RNA in hepatobiliary tissues from patients with extrahepatic biliary atresia and choledochal cysts
  publication-title: Hepatology
  doi: 10.1002/hep.510270603
– volume: 68
  start-page: 6458
  year: 1994
  ident: ref42
  article-title: Association of the reovirus S1 gene with serotype 3-induced biliary atresia in mice
  publication-title: J Virol
  doi: 10.1128/JVI.68.10.6458-6465.1994
– volume: 4
  start-page: 69
  year: 2003
  ident: ref11
  article-title: IFN-lambdas mediate antiviral protection through a distinct class II cytokine receptor complex
  publication-title: Nat Immunol
  doi: 10.1038/ni875
– volume: 8
  start-page: e1002670
  year: 2012
  ident: ref37
  article-title: Age-dependent TLR3 expression of the intestinal epithelium contributes to rotavirus susceptibility
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1002670
– volume: 303
  start-page: 222
  year: 2002
  ident: ref39
  article-title: Type 3 reovirus neuroinvasion after intramuscular inoculation: direct invasion of nerve terminals and age-dependent pathogenesis
  publication-title: Virology
  doi: 10.1006/viro.2002.1699
– volume: 94
  start-page: 1151
  year: 2013
  ident: ref19
  article-title: Innate cellular responses to rotavirus infection
  publication-title: J Gen Virol
  doi: 10.1099/vir.0.051276-0
– volume: 9
  start-page: e1003773
  year: 2013
  ident: ref27
  article-title: Type I and type III interferons drive redundant amplification loops to induce a transcriptional signature in influenza-infected airway epithelia
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1003773
– volume: 180
  start-page: 2474
  year: 2008
  ident: ref47
  article-title: An important role for type III interferon (IFN-lambda/IL-28) in TLR-induced antiviral activity
  publication-title: J Immunol
  doi: 10.4049/jimmunol.180.4.2474
– volume: 87
  start-page: 3261
  year: 2013
  ident: ref48
  article-title: Toll-like receptor expression and induction of type I and type III interferons in primary airway epithelial cells
  publication-title: J Virol
  doi: 10.1128/JVI.01956-12
– volume: 282
  start-page: 20059
  year: 2007
  ident: ref7
  article-title: JAK-STAT signaling: from interferons to cytokines
  publication-title: J Biol Chem
  doi: 10.1074/jbc.R700016200
– volume: 15
  start-page: 717
  year: 2014
  ident: ref57
  article-title: Diverse intracellular pathogens activate type III interferon expression from peroxisomes
  publication-title: Nat Immunol
  doi: 10.1038/ni.2915
– volume: 81
  start-page: 7902
  year: 2007
  ident: ref22
  article-title: Establishment of a poliovirus oral infection system in human poliovirus receptor-expressing transgenic mice that are deficient in alpha/beta interferon receptor
  publication-title: J Virol
  doi: 10.1128/JVI.02675-06
– volume: 472
  start-page: 481
  year: 2011
  ident: ref10
  article-title: A diverse range of gene products are effectors of the type I interferon antiviral response
  publication-title: Nature
  doi: 10.1038/nature09907
– volume: 106
  start-page: 299
  year: 2005
  ident: ref5
  article-title: Evolution of the Class 2 cytokines and receptors, and discovery of new friends and relatives
  publication-title: Pharmacol Ther
  doi: 10.1016/j.pharmthera.2004.12.002
– volume: 204
  start-page: 1349
  year: 2007
  ident: ref17
  article-title: Type I interferons produced by hematopoietic cells protect mice against lethal infection by mammalian reovirus
  publication-title: J Exp Med
  doi: 10.1084/jem.20061587
– volume: 612
  start-page: 505
  year: 2010
  ident: ref69
  article-title: Isolation of NK cells and NK-like cells from the intestinal lamina propria
  publication-title: Methods Mol Biol
  doi: 10.1007/978-1-60761-362-6_32
– volume: 84
  start-page: 11515
  year: 2010
  ident: ref50
  article-title: Lambda interferon is the predominant interferon induced by influenza A virus infection in vivo
  publication-title: J Virol
  doi: 10.1128/JVI.01703-09
– volume: 264
  start-page: 1918
  year: 1994
  ident: ref4
  article-title: Functional role of type I and type II interferons in antiviral defense
  publication-title: Science
  doi: 10.1126/science.8009221
– volume: 5
  start-page: 3864
  year: 2014
  ident: ref64
  article-title: Pathogenic potential of interferon alphabeta in acute influenza infection
  publication-title: Nat Commun
  doi: 10.1038/ncomms4864
– volume: 6
  start-page: 563
  year: 2014
  ident: ref44
  article-title: Interferon-lambda in the context of viral infections: production, response and therapeutic implications
  publication-title: J Innate Immun
  doi: 10.1159/000360084
– volume: 2
  start-page: 378
  year: 2001
  ident: ref24
  article-title: A weak signal for strong responses: interferon-alpha/beta revisited
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/35073080
– volume: 1
  start-page: 193
  year: 1969
  ident: ref61
  article-title: Chronic obstructive jaundice induced by Reovirus type 3 in weanling mice
  publication-title: Pathology
  doi: 10.3109/00313026909071296
– volume: 1
  start-page: 79
  year: 1986
  ident: ref35
  article-title: Reovirus infection in adult mice: the virus hemagglutinin determines the site of intestinal disease
  publication-title: Microb Pathog
  doi: 10.1016/0882-4010(86)90034-3
– volume: 23
  start-page: 307
  year: 2005
  ident: ref6
  article-title: Type I interferons (alpha/beta) in immunity and autoimmunity
  publication-title: Annu Rev Immunol
  doi: 10.1146/annurev.immunol.23.021704.115843
– volume: 3
  start-page: e2961
  year: 2008
  ident: ref65
  article-title: HIV-induced type I interferon and tryptophan catabolism drive T cell dysfunction despite phenotypic activation
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0002961
– volume: 182
  start-page: 1296
  year: 2009
  ident: ref49
  article-title: Differentiated human alveolar type II cells secrete antiviral IL-29 (IFN-lambda 1) in response to influenza A infection
  publication-title: J Immunol
  doi: 10.4049/jimmunol.182.3.1296
– volume: 463
  start-page: 24
  year: 1999
  ident: ref68
  article-title: The central interactive region of human MxA GTPase is involved in GTPase activation and interaction with viral target structures
  publication-title: FEBS Lett
  doi: 10.1016/S0014-5793(99)01598-7
– volume: 68
  start-page: 8428
  year: 1994
  ident: ref36
  article-title: Proteolytic processing of reovirus is required for adherence to intestinal M cells
  publication-title: J Virol
  doi: 10.1128/JVI.68.12.8428-8432.1994
SSID ssj0041316
Score 2.540884
Snippet Epithelial cells are a major port of entry for many viruses, but the molecular networks which protect barrier surfaces against viral infections are...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e1004782
SubjectTerms Animals
Cell Separation
Epithelial Cells - immunology
Flow Cytometry
Humans
Immunohistochemistry
Interferon-alpha - immunology
Interferon-beta - immunology
Interferon-gamma - immunology
Intestinal Mucosa - immunology
Leukocytes - immunology
Mammalian orthoreovirus 3 - immunology
Mice
Mice, Knockout
Polymerase Chain Reaction
Reoviridae Infections - immunology
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NatwwEBYlUOil9L_uHyr0qu7KmpXkY1u6pKXNqYHcjCyNyNLUu2S9gfQl8izpte-QZ-rIspdsKeTSm7ElLDTfjD6h0TeMvQmmaVRjpUBlUYDRIFyUIAxG4nPgdZTpgvPXA71_CJ-PZkfXSn2lnLAsD5wnbkIrpHem0uSTAFMVLLmY9KWPSXiK-EiKvrTmjZupHIMpMvdFT1NRHGGU1sOlOWXkZLDR29XKJfnopE5T7ixKvXb_vwjn33mT1xai-T12d2CQ_F0e-X12C9sH7HauKXn-kF18wc33pT_vUARC1xkG_ml-IK4uJ1e_uGsDx1W6hnFCuMsffnO_HDMGuOM5Kb3Lmv-Ln9T9R0pqp9YBI-15kWfxZ94du46nyh4USbs1T9qe9MTPFqebNR9zvNr1I3Y4__jtw74Yqi4IDwY6IREgaBvL6EE3wQZNfu1lZTFU1lfTEGcKsDSywoAmOuIbrmwC2UNJiFapx2yvXbb4lPEyEJ-pPOEhABhVNhFpPxmdI6KAZqoLpsZpr_0gSZ4qY5zU_Tmboa1JntM6GasejFUwse21ypIcN7R_nyy6bZsEtfsXBLN6gFl9E8wK9nrEQ00OmE5VXIvLzbqW2iQAEk0t2JOMj-2vSqJ31QxUwcwOcnbGsvulXRz3It-gLBGH6bP_Mfjn7A7xvFlOOHrB9rrTDb4kLtU1r3q3-QNfiyEK
  priority: 102
  providerName: Directory of Open Access Journals
Title Leukocyte-Derived IFN-α/β and Epithelial IFN-λ Constitute a Compartmentalized Mucosal Defense System that Restricts Enteric Virus Infections
URI https://www.ncbi.nlm.nih.gov/pubmed/25849543
https://www.proquest.com/docview/1672091059
https://pubmed.ncbi.nlm.nih.gov/PMC4388470
https://doaj.org/article/658ca7961114403d82191c2cf1809045
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LjtMwFLWGGSGxQbwJj8pIbD00sWMnC4QYptUMohUaUdRd5PjBVFRpSVJE-Qm-Bbb8w3wT13ZaUTQIiW1iJ5F9H8fx9TkIPdWiLGmZxcTQzBAmOCPSxowIYwHPMcVt7A44j8b8ZMJeT9PpHtpotnYD2Fy6tHN6UpN6fvjl0_oFOPxzr9og4k2nw-VSOkJoxzcDQfkAcpNwrjpi230FiNheDNWJ5RBBOe8O0_3tKY4qGDJ0njK6k7c8vf9lmPTP0srfctXwBrregUz8MljFTbRnqlvoapCdXN9G396Y1ceFWreGHIMBfjYanw7H5OL7s4sfWFYaD5bupMYcTDPc-ImdrmcoKsAS-xhSt0EWYPYVuo9c3Tu0PjYWlsUGBx503J7LFp8ZJw2i2gb7AoSZwu9n9arBp10ZWNXcQZPh4N2rE9IJMxDFBGtJbBjTPLOJVYyXOtMcXF_FeWZ0nqm8r21KmUlEnBtthJUASWRSagvhI2Y2o_Qu2q8WlbmPcKIB8uQKTEYzJmhSWgNLTislYAkj-jxCdDPshepYy514xrzwW3ECVi9hTAs3b0U3bxEi217LwNrxj_ZHbka3bR3ntr-wqD8UnQsXgNWUFDmH7MBYn-oMgn2sEmUdBRog4wg92dhDAT7qNl5kZRarpoi5SBwuS_MI3Qv2sX3Vxr4iJHYsZ-dbdu9Us3PPA85oBtii_-C_ez5E1wD_paEQ6RHab-uVeQwYqy176IqYih46OBqM3571_J-KnnelX6MhMAE
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Leukocyte-Derived+IFN-%CE%B1%2F%CE%B2+and+Epithelial+IFN-%CE%BB+Constitute+a+Compartmentalized+Mucosal+Defense+System+that+Restricts+Enteric+Virus+Infections&rft.jtitle=PLoS+pathogens&rft.au=Mahlak%C3%B5iv%2C+Tanel&rft.au=Hernandez%2C+Pedro&rft.au=Gronke%2C+Konrad&rft.au=Diefenbach%2C+Andreas&rft.date=2015-04-01&rft.pub=Public+Library+of+Science&rft.issn=1553-7366&rft.eissn=1553-7374&rft.volume=11&rft.issue=4&rft_id=info:doi/10.1371%2Fjournal.ppat.1004782&rft_id=info%3Apmid%2F25849543&rft.externalDocID=PMC4388470
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7374&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7374&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7374&client=summon