Prominin2 Drives Ferroptosis Resistance by Stimulating Iron Export

Ferroptosis, regulated cell death characterized by the iron-dependent accumulation of lethal lipid reactive oxygen species, contributes to tissue homeostasis and numerous pathologies, and it may be exploited for therapy. Cells differ in their sensitivity to ferroptosis, however, and a key challenge...

Full description

Saved in:
Bibliographic Details
Published inDevelopmental cell Vol. 51; no. 5; pp. 575 - 586.e4
Main Authors Brown, Caitlin W., Amante, John J., Chhoy, Peter, Elaimy, Ameer L., Liu, Haibo, Zhu, Lihua Julie, Baer, Christina E., Dixon, Scott J., Mercurio, Arthur M.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 02.12.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Ferroptosis, regulated cell death characterized by the iron-dependent accumulation of lethal lipid reactive oxygen species, contributes to tissue homeostasis and numerous pathologies, and it may be exploited for therapy. Cells differ in their sensitivity to ferroptosis, however, and a key challenge is to understand mechanisms that contribute to resistance. Using RNA-seq to identify genes that contribute to ferroptosis resistance, we discovered that pro-ferroptotic stimuli, including inhibition of the lipid hydroperoxidase GPX4 and detachment from the extracellular matrix, induce expression of prominin2, a pentaspanin protein implicated in regulation of lipid dynamics. Prominin2 facilitates ferroptosis resistance in mammary epithelial and breast carcinoma cells. Mechanistically, prominin2 promotes the formation of ferritin-containing multivesicular bodies (MVBs) and exosomes that transport iron out of the cell, inhibiting ferroptosis. These findings reveal that ferroptosis resistance can be driven by a prominin2-MVB-exosome-ferritin pathway and have broad implications for iron homeostasis, intracellular trafficking, and cancer. [Display omitted] •Pro-ferroptotic stimuli induce expression of the pentaspanin protein Prominin2•Prominin2 facilitates ferroptosis resistance in epithelial and carcinoma cells•Prominin2 promotes formation of ferritin-containing multivesicular bodies and exosomes•Exosomal transport of ferritin out of the cell inhibits ferroptosis Cells differ in their capacity to resist ferroptosis but mechanisms that contribute to resistance are not well understood. Brown et al. demonstrate that resistant cells are characterized by their ability to induce expression of Prominin2, which stimulates the formation of ferritin-containing multivesicular bodies/exosomes that transport iron out of the cell.
AbstractList Ferroptosis, regulated cell death characterized by the iron-dependent accumulation of lethal lipid reactive oxygen species, contributes to tissue homeostasis and numerous pathologies, and it may be exploited for therapy. Cells differ in their sensitivity to ferroptosis, however, and a key challenge is to understand mechanisms that contribute to resistance. Using RNA-seq to identify genes that contribute to ferroptosis resistance, we discovered that pro-ferroptotic stimuli, including inhibition of the lipid hydroperoxidase GPX4 and detachment from the extracellular matrix, induce expression of prominin2, a pentaspanin protein implicated in regulation of lipid dynamics. Prominin2 facilitates ferroptosis resistance in mammary epithelial and breast carcinoma cells. Mechanistically, prominin2 promotes the formation of ferritin-containing multivesicular bodies (MVBs) and exosomes that transport iron out of the cell, inhibiting ferroptosis. These findings reveal that ferroptosis resistance can be driven by a prominin2-MVB-exosome-ferritin pathway and have broad implications for iron homeostasis, intracellular trafficking, and cancer.
Ferroptosis, regulated cell death characterized by the iron-dependent accumulation of lethal lipid reactive oxygen species, contributes to tissue homeostasis and numerous pathologies, and it may be exploited for therapy. Cells differ in their sensitivity to ferroptosis, however, and a key challenge is to understand mechanisms that contribute to resistance. Using RNA-seq to identify genes that contribute to ferroptosis resistance, we discovered that pro-ferroptotic stimuli, including inhibition of the lipid hydroperoxidase GPX4 and detachment from the extracellular matrix, induce expression of prominin2, a pentaspanin protein implicated in regulation of lipid dynamics. Prominin2 facilitates ferroptosis resistance in mammary epithelial and breast carcinoma cells. Mechanistically, prominin2 promotes the formation of ferritin-containing multivesicular bodies (MVBs) and exosomes that transport iron out of the cell, inhibiting ferroptosis. These findings reveal that ferroptosis resistance can be driven by a prominin2-MVB-exosome-ferritin pathway and have broad implications for iron homeostasis, intracellular trafficking, and cancer.Ferroptosis, regulated cell death characterized by the iron-dependent accumulation of lethal lipid reactive oxygen species, contributes to tissue homeostasis and numerous pathologies, and it may be exploited for therapy. Cells differ in their sensitivity to ferroptosis, however, and a key challenge is to understand mechanisms that contribute to resistance. Using RNA-seq to identify genes that contribute to ferroptosis resistance, we discovered that pro-ferroptotic stimuli, including inhibition of the lipid hydroperoxidase GPX4 and detachment from the extracellular matrix, induce expression of prominin2, a pentaspanin protein implicated in regulation of lipid dynamics. Prominin2 facilitates ferroptosis resistance in mammary epithelial and breast carcinoma cells. Mechanistically, prominin2 promotes the formation of ferritin-containing multivesicular bodies (MVBs) and exosomes that transport iron out of the cell, inhibiting ferroptosis. These findings reveal that ferroptosis resistance can be driven by a prominin2-MVB-exosome-ferritin pathway and have broad implications for iron homeostasis, intracellular trafficking, and cancer.
Ferroptosis, regulated cell death characterized by the iron-dependent accumulation of lethal lipid reactive oxygen species, contributes to tissue homeostasis and numerous pathologies, and it may be exploited for therapy. Cells differ in their sensitivity to ferroptosis, however, and a key challenge is to understand mechanisms that contribute to resistance. Using RNA-seq to identify genes that contribute to ferroptosis resistance, we discovered that pro-ferroptotic stimuli, including inhibition of the lipid hydroperoxidase GPX4 and detachment from the extracellular matrix, induce expression of prominin2, a pentaspanin protein implicated in regulation of lipid dynamics. Prominin2 facilitates ferroptosis resistance in mammary epithelial and breast carcinoma cells. Mechanistically, prominin2 promotes the formation of ferritin-containing multivesicular bodies (MVBs) and exosomes that transport iron out of the cell, inhibiting ferroptosis. These findings reveal that ferroptosis resistance can be driven by a prominin2-MVB-exosome-ferritin pathway and have broad implications for iron homeostasis, intracellular trafficking, and cancer. [Display omitted] •Pro-ferroptotic stimuli induce expression of the pentaspanin protein Prominin2•Prominin2 facilitates ferroptosis resistance in epithelial and carcinoma cells•Prominin2 promotes formation of ferritin-containing multivesicular bodies and exosomes•Exosomal transport of ferritin out of the cell inhibits ferroptosis Cells differ in their capacity to resist ferroptosis but mechanisms that contribute to resistance are not well understood. Brown et al. demonstrate that resistant cells are characterized by their ability to induce expression of Prominin2, which stimulates the formation of ferritin-containing multivesicular bodies/exosomes that transport iron out of the cell.
Author Chhoy, Peter
Mercurio, Arthur M.
Baer, Christina E.
Zhu, Lihua Julie
Brown, Caitlin W.
Elaimy, Ameer L.
Liu, Haibo
Dixon, Scott J.
Amante, John J.
Author_xml – sequence: 1
  givenname: Caitlin W.
  surname: Brown
  fullname: Brown, Caitlin W.
  organization: Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
– sequence: 2
  givenname: John J.
  surname: Amante
  fullname: Amante, John J.
  organization: Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
– sequence: 3
  givenname: Peter
  surname: Chhoy
  fullname: Chhoy, Peter
  organization: Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
– sequence: 4
  givenname: Ameer L.
  surname: Elaimy
  fullname: Elaimy, Ameer L.
  organization: Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
– sequence: 5
  givenname: Haibo
  surname: Liu
  fullname: Liu, Haibo
  organization: Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
– sequence: 6
  givenname: Lihua Julie
  surname: Zhu
  fullname: Zhu, Lihua Julie
  organization: Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
– sequence: 7
  givenname: Christina E.
  surname: Baer
  fullname: Baer, Christina E.
  organization: Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605, USA
– sequence: 8
  givenname: Scott J.
  surname: Dixon
  fullname: Dixon, Scott J.
  organization: Department of Biology, Stanford University, Stanford, CA, USA
– sequence: 9
  givenname: Arthur M.
  surname: Mercurio
  fullname: Mercurio, Arthur M.
  email: arthur.mercurio@umassmed.edu
  organization: Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31735663$$D View this record in MEDLINE/PubMed
BookMark eNqFkEtLxDAQx4Os6Pr4BiI9eumaR7tJPQi6PkFQfJxDm04kS5usSbrotzfLqgcPepkZhv9vYH47aGSdBYQOCJ4QTKbH80kLSwXdhGJSpdUEY76BxkRwkZOyJKM0l6zIS4H5NtoJYY4TRgTeQtuMcFZOp2yMzh-86401lmYX3iwhZFfgvVtEF0zIHiHVWFsFWfORPUXTD10djX3Nbr2z2eX7wvm4hzZ13QXY_-q76OXq8nl2k9_dX9_Ozu5yVfAi5oS3WuhSV1xUmmEqdKtp0aiGFlPBuaoZBoGh0rgoFW45rTlwXmHGBBVtU7BddLS-u_DubYAQZW9CEtDVFtwQJGXpbVriahU9_IoOTQ-tXHjT1_5Dfv-dAsU6oLwLwYP-iRAsV3rlXK71ypXe1TbpTdjJL0yZmIQ4G31tuv_g0zUMSdLSgJdBGUhuW-NBRdk68_eBT3Ozlzc
CitedBy_id crossref_primary_10_2174_0118744710262369231110065230
crossref_primary_10_3892_ijmm_2023_5256
crossref_primary_10_3390_antiox12030733
crossref_primary_10_1007_s12094_023_03089_6
crossref_primary_10_1186_s41065_022_00235_y
crossref_primary_10_1371_journal_pgen_1011098
crossref_primary_10_1631_jzus_B2200410
crossref_primary_10_3390_metabo14040228
crossref_primary_10_1186_s12935_024_03275_8
crossref_primary_10_3389_fmolb_2022_890766
crossref_primary_10_1002_1878_0261_13649
crossref_primary_10_1038_s41574_021_00499_w
crossref_primary_10_3892_mmr_2025_13483
crossref_primary_10_3389_fgene_2023_1275154
crossref_primary_10_1038_s41580_024_00703_5
crossref_primary_10_1038_s41580_020_00324_8
crossref_primary_10_1155_2022_3112388
crossref_primary_10_1155_2022_3961495
crossref_primary_10_2196_66286
crossref_primary_10_1016_j_abb_2023_109737
crossref_primary_10_1002_anie_202300379
crossref_primary_10_3389_fmolb_2022_892957
crossref_primary_10_1038_s41467_023_42103_x
crossref_primary_10_3389_fphar_2025_1568246
crossref_primary_10_1016_j_biopha_2020_110710
crossref_primary_10_1016_j_semcancer_2024_09_003
crossref_primary_10_1186_s40364_020_00230_3
crossref_primary_10_1038_s41581_023_00689_x
crossref_primary_10_1016_j_tcb_2020_02_009
crossref_primary_10_3389_fonc_2023_1119369
crossref_primary_10_58567_ci03010001
crossref_primary_10_1016_j_phrs_2020_104991
crossref_primary_10_3390_cells12081128
crossref_primary_10_1155_2022_3095749
crossref_primary_10_3389_fphar_2023_1194343
crossref_primary_10_3390_ijms22168635
crossref_primary_10_1007_s13577_022_00699_0
crossref_primary_10_1016_j_cmet_2022_09_021
crossref_primary_10_3389_fonc_2023_1085581
crossref_primary_10_1016_j_bbrc_2020_01_066
crossref_primary_10_1016_j_bbrc_2021_08_018
crossref_primary_10_4103_NRR_NRR_D_24_00112
crossref_primary_10_1016_j_critrevonc_2022_103772
crossref_primary_10_1111_jcmm_18044
crossref_primary_10_1155_2022_5124553
crossref_primary_10_3389_fcell_2021_765859
crossref_primary_10_1186_s12967_023_04370_6
crossref_primary_10_1515_oncologie_2024_0147
crossref_primary_10_1007_s13577_023_00890_x
crossref_primary_10_3724_abbs_2023120
crossref_primary_10_1002_ctm2_1494
crossref_primary_10_1007_s10495_023_01928_z
crossref_primary_10_7717_peerj_17692
crossref_primary_10_1016_j_tibs_2021_07_003
crossref_primary_10_1080_15376516_2024_2325989
crossref_primary_10_1111_febs_16059
crossref_primary_10_3390_life11080835
crossref_primary_10_1186_s13046_023_02664_7
crossref_primary_10_1038_s41419_022_05384_6
crossref_primary_10_3389_fendo_2023_1319969
crossref_primary_10_1111_acel_14204
crossref_primary_10_1007_s12265_024_10508_8
crossref_primary_10_1016_j_heliyon_2023_e13152
crossref_primary_10_1016_j_bbcan_2023_188917
crossref_primary_10_1002_jcp_30331
crossref_primary_10_3389_fgene_2023_1136240
crossref_primary_10_1016_j_freeradbiomed_2023_03_027
crossref_primary_10_3389_fmolb_2023_1164398
crossref_primary_10_3390_antiox13111329
crossref_primary_10_1007_s11010_024_05118_6
crossref_primary_10_1152_ajpregu_00117_2023
crossref_primary_10_1002_jex2_70012
crossref_primary_10_1016_j_actbio_2023_02_015
crossref_primary_10_1016_j_biopha_2023_114849
crossref_primary_10_3389_fimmu_2022_916664
crossref_primary_10_2147_OTT_S287811
crossref_primary_10_1016_j_canlet_2024_217115
crossref_primary_10_58567_ci02020001
crossref_primary_10_1186_s12935_021_02166_6
crossref_primary_10_3892_or_2024_8851
crossref_primary_10_3390_nano12223995
crossref_primary_10_1038_s41569_022_00735_4
crossref_primary_10_1016_j_heliyon_2024_e37613
crossref_primary_10_2147_BCTT_S496322
crossref_primary_10_3389_fimmu_2023_1264206
crossref_primary_10_1111_iwj_14466
crossref_primary_10_1038_s41580_019_0195_2
crossref_primary_10_3389_fcell_2021_739392
crossref_primary_10_1016_j_ceca_2021_102422
crossref_primary_10_1038_s41598_022_24402_3
crossref_primary_10_1080_15384101_2022_2079054
crossref_primary_10_3389_fimmu_2025_1531577
crossref_primary_10_1186_s13045_024_01564_3
crossref_primary_10_1016_j_lfs_2021_119958
crossref_primary_10_1186_s12915_025_02154_6
crossref_primary_10_62347_EQFY1219
crossref_primary_10_31083_j_rcm2305167
crossref_primary_10_1111_febs_16382
crossref_primary_10_3389_fphar_2023_1147414
crossref_primary_10_1016_j_brainres_2024_149045
crossref_primary_10_1016_j_cell_2022_06_003
crossref_primary_10_1016_j_phymed_2023_155256
crossref_primary_10_1002_ijc_34934
crossref_primary_10_1002_smll_202201704
crossref_primary_10_1155_2022_5361241
crossref_primary_10_3390_antiox12091739
crossref_primary_10_1093_mtomcs_mfab021
crossref_primary_10_1097_MD_0000000000040835
crossref_primary_10_1007_s11010_023_04837_6
crossref_primary_10_3390_ijms241713560
crossref_primary_10_1002_cac2_12275
crossref_primary_10_3389_fmolb_2023_1223493
crossref_primary_10_1186_s12957_024_03544_w
crossref_primary_10_1186_s40364_022_00365_5
crossref_primary_10_4196_kjpp_2024_28_3_183
crossref_primary_10_1016_j_ymthe_2021_03_022
crossref_primary_10_1111_os_13848
crossref_primary_10_1007_s10565_022_09778_2
crossref_primary_10_3389_fonc_2020_571127
crossref_primary_10_1038_s41420_024_01938_z
crossref_primary_10_1152_physrev_00031_2024
crossref_primary_10_1016_j_mam_2020_100860
crossref_primary_10_1167_iovs_66_3_25
crossref_primary_10_3389_fcvm_2023_1135723
crossref_primary_10_3389_fcell_2024_1423869
crossref_primary_10_3168_jds_2023_24490
crossref_primary_10_1016_j_bioactmat_2025_01_005
crossref_primary_10_1038_s41433_024_03371_z
crossref_primary_10_3389_fgene_2022_1039951
crossref_primary_10_1038_s41420_021_00473_5
crossref_primary_10_1159_000530046
crossref_primary_10_1038_s41418_021_00859_z
crossref_primary_10_3389_fcell_2021_733751
crossref_primary_10_1021_acs_chemrev_4c00577
crossref_primary_10_1016_j_xpro_2021_100303
crossref_primary_10_1038_s41467_024_46776_w
crossref_primary_10_3389_fphar_2024_1407335
crossref_primary_10_1016_j_cellin_2023_100091
crossref_primary_10_1080_15548627_2020_1810918
crossref_primary_10_3390_cimb45100517
crossref_primary_10_1038_s41420_023_01606_8
crossref_primary_10_3390_ijms25179703
crossref_primary_10_1016_j_pbi_2023_102499
crossref_primary_10_1016_j_exger_2022_111836
crossref_primary_10_1002_cac2_12250
crossref_primary_10_3390_ijms241713336
crossref_primary_10_3390_cancers14071826
crossref_primary_10_1186_s40104_025_01158_0
crossref_primary_10_1038_s41392_022_01046_3
crossref_primary_10_3389_fimmu_2023_1120519
crossref_primary_10_1038_s41467_021_25377_x
crossref_primary_10_1126_scitranslmed_adk0330
crossref_primary_10_3389_fphar_2024_1430561
crossref_primary_10_1016_j_yexcr_2024_114190
crossref_primary_10_2147_JAA_S416276
crossref_primary_10_3389_fonc_2022_916082
crossref_primary_10_3390_ijms24020922
crossref_primary_10_1016_j_cellsig_2024_111256
crossref_primary_10_15212_bioi_2020_0039
crossref_primary_10_3389_fcell_2021_701788
crossref_primary_10_1016_j_biopha_2024_116363
crossref_primary_10_1152_ajpcell_00148_2022
crossref_primary_10_1089_ars_2022_0048
crossref_primary_10_3389_fonc_2023_1032364
crossref_primary_10_1002_adfm_202214598
crossref_primary_10_1002_ange_202300379
crossref_primary_10_1080_14728222_2021_2011206
crossref_primary_10_1089_ars_2022_0179
crossref_primary_10_1007_s10565_024_09853_w
crossref_primary_10_3390_cells12101435
crossref_primary_10_3390_ph16121710
crossref_primary_10_1007_s11427_022_2340_4
crossref_primary_10_1038_s41392_020_00428_9
crossref_primary_10_3390_cancers13184576
crossref_primary_10_1016_j_arr_2023_102063
crossref_primary_10_31083_j_fbl2809208
crossref_primary_10_1002_jcp_31250
crossref_primary_10_1007_s10495_023_01909_2
crossref_primary_10_1016_j_chembiol_2020_03_015
crossref_primary_10_1016_j_chembiol_2020_03_016
crossref_primary_10_1002_ctm2_1632
crossref_primary_10_1007_s11255_024_04302_3
crossref_primary_10_1093_procel_pwae003
crossref_primary_10_1038_s41580_023_00648_1
crossref_primary_10_1016_j_bbcan_2024_189200
crossref_primary_10_1017_S0954422421000226
crossref_primary_10_1016_j_bcp_2021_114584
crossref_primary_10_1016_j_placenta_2021_03_007
crossref_primary_10_3389_fcell_2022_871512
crossref_primary_10_1007_s12264_024_01343_7
crossref_primary_10_1016_j_drup_2023_100974
crossref_primary_10_1186_s11658_024_00560_2
crossref_primary_10_3390_ijms22062986
crossref_primary_10_1186_s12935_021_02366_0
crossref_primary_10_2478_raon_2023_0033
crossref_primary_10_3390_ijms25189947
crossref_primary_10_1002_jat_4453
crossref_primary_10_1038_s41598_022_08950_2
crossref_primary_10_3389_fcell_2021_637162
crossref_primary_10_3389_fcell_2021_670184
crossref_primary_10_1016_j_tcb_2024_01_010
crossref_primary_10_1016_j_lfs_2021_119799
crossref_primary_10_1002_med_21934
crossref_primary_10_1016_j_freeradbiomed_2020_08_001
crossref_primary_10_1038_s41420_021_00768_7
crossref_primary_10_1038_s41420_022_01212_0
crossref_primary_10_1007_s12035_023_03501_w
crossref_primary_10_3390_cells12020311
crossref_primary_10_1007_s00204_023_03665_3
crossref_primary_10_1038_s41420_024_01799_6
crossref_primary_10_3389_fnhum_2022_838692
crossref_primary_10_1016_j_cbi_2023_110348
crossref_primary_10_1080_21655979_2021_1956403
crossref_primary_10_1016_j_bbrc_2020_12_075
crossref_primary_10_1186_s13045_022_01392_3
crossref_primary_10_1186_s40364_020_00229_w
crossref_primary_10_3892_ol_2024_14437
crossref_primary_10_62347_SIGP9279
crossref_primary_10_1038_s41422_020_00441_1
crossref_primary_10_17816_RCF567780
crossref_primary_10_1016_j_biopha_2023_115466
crossref_primary_10_1111_pcmr_13009
crossref_primary_10_3389_fmolb_2023_1203269
crossref_primary_10_3390_biology12091172
crossref_primary_10_1002_adhm_202101702
crossref_primary_10_1002_cai2_7
crossref_primary_10_3390_ijms25073641
crossref_primary_10_1016_j_msard_2025_106378
crossref_primary_10_2174_1568009621666211202091523
crossref_primary_10_3390_ijms252413334
crossref_primary_10_1186_s12964_023_01408_6
crossref_primary_10_3389_fimmu_2021_598601
crossref_primary_10_1021_acs_nanolett_4c03862
crossref_primary_10_1016_j_chembiol_2021_01_006
crossref_primary_10_3390_biomedicines9111679
crossref_primary_10_2147_JIR_S414316
crossref_primary_10_3390_ijms23073792
crossref_primary_10_3390_cancers17020234
crossref_primary_10_1038_s41419_021_04296_1
crossref_primary_10_3389_fonc_2021_579286
crossref_primary_10_1002_smll_202404299
crossref_primary_10_1007_s10571_022_01196_6
crossref_primary_10_3389_fmed_2024_1449037
crossref_primary_10_3390_cancers15245728
crossref_primary_10_1093_mtomcs_mfae043
crossref_primary_10_1053_j_gastro_2024_01_051
crossref_primary_10_1038_s41392_024_02088_5
crossref_primary_10_1080_19490976_2023_2263210
crossref_primary_10_1016_j_biopha_2024_116761
crossref_primary_10_1016_j_canlet_2024_216728
crossref_primary_10_3892_mmr_2024_13343
crossref_primary_10_1097_CM9_0000000000002327
crossref_primary_10_2174_0113892037315874240826112422
crossref_primary_10_3390_biom12111702
crossref_primary_10_29296_24999490_2023_02_03
crossref_primary_10_1038_s41571_020_00462_0
crossref_primary_10_1002_cbin_12190
crossref_primary_10_32604_or_2023_046676
crossref_primary_10_1016_j_celrep_2024_114403
crossref_primary_10_31083_j_fbl2812332
crossref_primary_10_1155_2022_3938940
crossref_primary_10_1007_s10495_020_01638_w
crossref_primary_10_3389_fonc_2021_743006
crossref_primary_10_1016_j_mito_2024_101974
crossref_primary_10_3389_fonc_2022_896927
crossref_primary_10_1002_cam4_4706
crossref_primary_10_1242_jcs_255737
crossref_primary_10_1038_s41392_024_01769_5
crossref_primary_10_1016_j_biopha_2023_115251
crossref_primary_10_1016_j_bbamcr_2020_118857
crossref_primary_10_1097_TP_0000000000005199
crossref_primary_10_2147_IJGM_S342783
crossref_primary_10_1002_cpz1_413
crossref_primary_10_1038_s41413_024_00398_6
crossref_primary_10_1016_j_xpro_2021_100468
crossref_primary_10_1039_D1BM00721A
crossref_primary_10_1038_s41419_022_04927_1
crossref_primary_10_3389_fphar_2023_1196287
crossref_primary_10_1016_j_cmet_2020_10_011
crossref_primary_10_3748_wjg_v29_i16_2433
crossref_primary_10_1016_j_cmet_2022_07_006
crossref_primary_10_1111_tra_12905
crossref_primary_10_7717_peerj_13983
crossref_primary_10_1038_s41573_023_00749_8
crossref_primary_10_1152_ajpcell_00224_2023
crossref_primary_10_1038_s41568_022_00459_0
crossref_primary_10_1186_s40164_024_00498_3
crossref_primary_10_1097_CM9_0000000000002784
crossref_primary_10_2147_RRTM_S392606
crossref_primary_10_1007_s13402_023_00784_y
crossref_primary_10_3389_fcell_2020_590226
crossref_primary_10_1186_s12964_023_01369_w
crossref_primary_10_3389_fmolb_2021_678877
crossref_primary_10_1083_jcb_202105043
crossref_primary_10_1038_s41419_023_06144_w
crossref_primary_10_1021_acs_jafc_2c08128
crossref_primary_10_1097_CM9_0000000000003189
crossref_primary_10_1016_j_prp_2025_155907
crossref_primary_10_3390_ijms25042398
crossref_primary_10_3390_antiox13070791
crossref_primary_10_3390_cancers13236069
crossref_primary_10_1002_adhm_202403933
crossref_primary_10_1042_BST20230550
crossref_primary_10_3389_fcell_2024_1482838
crossref_primary_10_1016_j_molmed_2022_02_003
crossref_primary_10_1038_s41418_022_00998_x
crossref_primary_10_1016_j_gendis_2024_101341
crossref_primary_10_1038_s41419_023_06045_y
crossref_primary_10_1371_journal_ppat_1009298
crossref_primary_10_1038_s41420_024_02013_3
crossref_primary_10_1016_j_jbc_2023_105463
crossref_primary_10_3389_fendo_2023_1140644
crossref_primary_10_1038_s41418_023_01198_x
crossref_primary_10_3390_antiox10121864
crossref_primary_10_1016_j_lfs_2024_122629
crossref_primary_10_1016_j_jare_2025_02_009
crossref_primary_10_1126_sciadv_adk7329
crossref_primary_10_3390_cancers14174295
crossref_primary_10_1097_MD_0000000000039158
crossref_primary_10_1007_s00018_022_04365_4
crossref_primary_10_3390_antiox12040916
crossref_primary_10_1002_jex2_162
crossref_primary_10_2174_1566524023666230913105735
crossref_primary_10_1111_febs_16993
crossref_primary_10_1182_bloodadvances_2020003100
crossref_primary_10_1002_advs_202100997
crossref_primary_10_15252_emmm_202013792
crossref_primary_10_1080_10715762_2023_2191813
crossref_primary_10_3389_fnut_2022_1003340
crossref_primary_10_1038_s41419_022_05007_0
crossref_primary_10_1146_annurev_nutr_062320_114541
crossref_primary_10_1016_j_bcp_2022_115141
crossref_primary_10_1016_j_isci_2023_106827
crossref_primary_10_1186_s13046_023_02925_5
crossref_primary_10_1155_2023_9808100
crossref_primary_10_2174_0929867329666220630144648
crossref_primary_10_3390_antiox12010183
crossref_primary_10_1111_febs_16981
crossref_primary_10_3390_biology10020083
crossref_primary_10_3389_fphar_2025_1570069
crossref_primary_10_5306_wjco_v15_i3_391
crossref_primary_10_20517_cdr_2024_127
crossref_primary_10_1016_j_bioelechem_2025_108940
crossref_primary_10_1007_s10571_023_01411_y
crossref_primary_10_1182_blood_2021013181
crossref_primary_10_3389_fgene_2023_1133020
crossref_primary_10_1111_pcmr_13032
crossref_primary_10_1158_0008_5472_CAN_20_2017
crossref_primary_10_1007_s10495_022_01785_2
crossref_primary_10_1038_s41419_021_03559_1
crossref_primary_10_1186_s12974_021_02231_x
crossref_primary_10_1186_s12943_024_02172_y
crossref_primary_10_1016_j_biopha_2023_115419
crossref_primary_10_1089_ars_2020_8175
crossref_primary_10_1016_j_abb_2022_109199
crossref_primary_10_1002_cac2_12519
crossref_primary_10_3389_fimmu_2024_1520570
crossref_primary_10_1142_S0192415X24500071
crossref_primary_10_1016_j_compbiomed_2023_107370
crossref_primary_10_3390_ijms232314753
crossref_primary_10_1155_2021_4758364
crossref_primary_10_3389_fendo_2023_1174817
crossref_primary_10_3389_fmed_2024_1356225
crossref_primary_10_1038_s41420_022_01297_7
crossref_primary_10_3389_fmolb_2022_974156
crossref_primary_10_3389_fcell_2021_809457
crossref_primary_10_1016_j_tips_2023_12_003
crossref_primary_10_7717_peerj_13238
crossref_primary_10_1016_j_lfs_2024_122949
crossref_primary_10_1111_exd_15114
crossref_primary_10_7717_peerj_16741
crossref_primary_10_3389_fimmu_2023_1188365
crossref_primary_10_31083_j_jin2306113
crossref_primary_10_1038_s41420_023_01721_6
crossref_primary_10_3389_fcvm_2021_710963
crossref_primary_10_1155_2022_7175027
crossref_primary_10_1111_cpr_13752
crossref_primary_10_1186_s43556_023_00142_2
crossref_primary_10_1002_ctm2_390
crossref_primary_10_1016_j_freeradbiomed_2020_10_010
crossref_primary_10_1021_acsami_4c11979
crossref_primary_10_1097_MD_0000000000029573
crossref_primary_10_1016_j_jgg_2022_06_002
crossref_primary_10_1007_s10495_022_01795_0
crossref_primary_10_1186_s12951_024_02297_8
crossref_primary_10_1089_dna_2021_0594
crossref_primary_10_1016_j_devcel_2019_11_004
Cites_doi 10.1073/pnas.1603244113
10.1146/annurev-nutr-082117-051732
10.1038/cr.2016.95
10.1073/pnas.1821022116
10.1007/s00418-010-0690-1
10.1083/jcb.201211138
10.1016/j.freeradbiomed.2018.09.043
10.1016/0092-8674(90)90474-S
10.1016/j.nbd.2016.05.011
10.1083/jcb.201701136
10.1038/nature14344
10.1038/nchembio.2239
10.1038/nature23007
10.1016/j.tcb.2015.10.014
10.1007/s00441-006-0324-z
10.1046/j.1432-0436.1996.6120113.x
10.1091/mbc.e05-11-1054
10.1016/j.cell.2017.09.021
10.1016/j.chembiol.2008.02.010
10.1038/nature24297
10.1016/j.cell.2013.12.010
10.1038/s41598-018-23408-0
10.1146/annurev-cancerbio-030518-055844
10.1371/journal.pgen.1001055
10.1038/nchembio.2079
10.1042/BJ20150658
10.1083/jcb.132.6.1011
10.1074/jbc.RA118.003017
10.1016/j.bbrc.2013.03.097
10.1038/ncb3064
10.1083/jcb.101.3.942
10.1016/j.chembiol.2019.01.008
10.1038/cddis.2016.208
10.1016/j.chembiol.2018.11.016
10.1016/j.bmcl.2011.09.047
10.7554/eLife.02523
10.1080/15548627.2016.1187366
10.1182/blood-2017-02-768580
10.1016/0955-0674(95)80013-1
10.1016/j.ccell.2018.03.017
10.1084/jem.174.4.881
10.1016/j.cell.2012.03.042
ContentType Journal Article
Copyright 2019 Elsevier Inc.
Copyright © 2019 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2019 Elsevier Inc.
– notice: Copyright © 2019 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.devcel.2019.10.007
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1878-1551
EndPage 586.e4
ExternalDocumentID 31735663
10_1016_j_devcel_2019_10_007
S1534580719308160
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM122923
– fundername: NCI NIH HHS
  grantid: R01 CA218085
GroupedDBID ---
--K
0R~
1~5
2WC
4.4
457
4G.
53G
5GY
62-
7-5
AACTN
AAEDW
AAFTH
AAIAV
AAKRW
AALRI
AAUCE
AAVLU
AAXUO
ABJNI
ABMAC
ABMWF
ABVKL
ACGFO
ACGFS
ACNCT
ADBBV
ADEZE
ADJPV
AEFWE
AENEX
AEXQZ
AFFNX
AFTJW
AGKMS
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
D0L
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FEDTE
FIRID
HVGLF
IHE
IXB
J1W
JIG
M3Z
M41
O-L
O9-
OK1
P2P
RCE
RIG
ROL
RPZ
SDG
SES
SSZ
TR2
WQ6
ZA5
29F
5VS
AAEDT
AAIKJ
AAMRU
AAQFI
AAQXK
AAYWO
AAYXX
ABDGV
ABWVN
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AETEA
AEUPX
AFPUW
AGCQF
AGHFR
AGQPQ
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
FGOYB
HZ~
OZT
R2-
UHS
0SF
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c474t-17df8f5f9789f3028fdf24bcb246877ca30e80e9f045c0d72a7e779033828db43
IEDL.DBID IXB
ISSN 1534-5807
1878-1551
IngestDate Fri Jul 11 15:47:09 EDT 2025
Wed Feb 19 02:27:50 EST 2025
Thu Apr 24 23:03:46 EDT 2025
Tue Jul 01 00:48:11 EDT 2025
Fri Feb 23 02:48:33 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords ferritin
ferroptosis
GPX4
therapy
multivesicular body
iron
breast cancer
mammary gland
prominin2
exosome
Language English
License Copyright © 2019 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-17df8f5f9789f3028fdf24bcb246877ca30e80e9f045c0d72a7e779033828db43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://www.cell.com/article/S1534580719308160/pdf
PMID 31735663
PQID 2315525094
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2315525094
pubmed_primary_31735663
crossref_primary_10_1016_j_devcel_2019_10_007
crossref_citationtrail_10_1016_j_devcel_2019_10_007
elsevier_sciencedirect_doi_10_1016_j_devcel_2019_10_007
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-12-02
PublicationDateYYYYMMDD 2019-12-02
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-12-02
  day: 02
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Developmental cell
PublicationTitleAlternate Dev Cell
PublicationYear 2019
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Hirschhorn, Stockwell (bib21) 2019; 133
Pan, Teng, Wu, Adam, Johnstone (bib28) 1985; 101
Cella, Cornejo-Uribe, Montes, Hynes, Chammas (bib4) 1996; 61
Do Van, Gouel, Jonneaux, Timmerman, Gelé, Pétrault, Bastide, Laloux, Moreau, Bordet (bib8) 2016; 94
Torii, Shintoku, Kubota, Yaegashi, Torii, Sasaki, Suzuki, Mori, Yoshimoto, Takeuchi (bib35) 2016; 473
Felder, Miller, Moehren, Ullrich, Schlessinger, Hopkins (bib11) 1990; 61
Harding, Heuser, Stahl (bib19) 1984; 35
Kobuna, Inoue, Shibata, Gengyo-Ando, Yamamoto, Mitani, Arai (bib25) 2010; 6
Florek, Bauer, Janich, Wilsch-Braeuninger, Fargeas, Marzesco, Ehninger, Thiele, Huttner, Corbeil (bib12) 2007; 328
Friedmann Angeli, Schneider, Proneth, Tyurina, Tyurin, Hammond, Herbach, Aichler, Walch, Eggenhofer (bib13) 2014; 16
Futter, Pearse, Hewlett, Hopkins (bib14) 1996; 132
Gao, Monian, Pan, Zhang, Xiang, Jiang (bib15) 2016; 26
Shimada, Skouta, Kaplan, Yang, Hayano, Dixon, Brown, Valenzuela, Wolpaw, Stockwell (bib32) 2016; 12
Fang, Wang, Han, Xie, Yang, Wei, Gu, Gao, Zhu, Yin (bib10) 2019; 116
Yang, Kim, Gaschler, Patel, Shchepinov, Stockwell (bib41) 2016; 113
Truman-Rosentsvit, Spektor, Cohen, Belizowsky-Moshe, Lifshitz, Ma, Li, Kesselman, Abutbul-Ionita (bib37) 2018; 131
Doll, Proneth, Tyurina, Panzilius, Kobayashi, Ingold, Irmler, Beckers, Aichler, Walch (bib9) 2017; 13
Hangauer, Viswanathan, Ryan, Bole, Matov, Galeas, Dhruv, Berens, Schreiber, McCormick, McManus (bib18) 2017; 551
Tsoi, Robert, Paraiso, Galvan, Sheu, Lay, Wong, Atefi, Shirazi, Wang (bib38) 2018; 33
Gruenberg, Maxfield (bib17) 1995; 7
Torti, Manz, Paul, Blanchette-Farra, Torti (bib36) 2018; 21
Dixon, Patel, Welsch, Skouta, Lee, Hayano, Thomas, Gleason, Tatonetti, Slusher (bib6) 2014; 3
Yang, SriRamaratnam, Welsch, Shimada, Skouta, Viswanathan, Cheah, Clemons, Shamji, Clish (bib42) 2014; 156
Saha, Islam, Kwak, Rahman, Cho (bib31) 2019
Brown, Amante, Goel, Mercurio (bib2) 2017; 216
Jiang, Kon, Li, Wang, Su, Hibshoosh, Baer, Gu (bib24) 2015; 520
Razi, Futter (bib30) 2006; 8
Stockwell, Friedmann Angeli, Bayir, Bush, Conrad, Dixon, Fulda, Gascón, Hatzios, Kagan (bib34) 2017; 171
Hou, Xie, Song, Sun, Lotze, Zeh, Kang, Tang (bib22) 2016; 12
Dixon, Stockwell (bib7) 2019; 3
Magtanong, Ko, To, Cao, Forcina, Tarangelo, Ward, Cho, Patti, Nomura (bib27) 2019; 26
Dixon, Lemberg, Lamprecht, Skouta, Zaitsev, Gleason, Patel, Bauer, Cantley, Yang (bib5) 2012; 149
Brown, Amante, Mercurio (bib3) 2018; 293
Agmon, Solon, Bassereau, Stockwell (bib1) 2018; 8
Singh, Schroeder, Scheffer, Holicky, Wheatley, Marks, Pagano (bib33) 2013; 434
Weïwer, Bittker, Lewis, Shimada, Yang, MacPherson, Dandapani, Palmer, Stockwell, Schreiber (bib40) 2012; 22
Hart, Young (bib20) 1991; 174
Raposo, Stoorvogel (bib29) 2013; 200
Yang, Stockwell (bib44) 2016; 26
Geng, Shi, Li, Zhong, Li, Xua, Zhou, Cai (bib16) 2018; 22
Viswanathan, Ryan, Dhruv, Gill, Eichhoff, Seashore-Ludlow, Kaffenberger, Eaton, Shimada, Aguirre (bib39) 2017; 547
Ma, Henson, Chen, Gibson (bib26) 2016; 7
Yang, Stockwell (bib43) 2008; 15
Zhang, Tan, Daniels, Zandkarimi, Liu, Brown, Uchida, O'Connor, Stockwell (bib45) 2019; 26
Jászai, Farkas, Fargeas, Janich, Haase, Huttner, Corbeil (bib23) 2010; 133
Torti (10.1016/j.devcel.2019.10.007_bib36) 2018; 21
Shimada (10.1016/j.devcel.2019.10.007_bib32) 2016; 12
Jiang (10.1016/j.devcel.2019.10.007_bib24) 2015; 520
Felder (10.1016/j.devcel.2019.10.007_bib11) 1990; 61
Gruenberg (10.1016/j.devcel.2019.10.007_bib17) 1995; 7
Yang (10.1016/j.devcel.2019.10.007_bib41) 2016; 113
Friedmann Angeli (10.1016/j.devcel.2019.10.007_bib13) 2014; 16
Razi (10.1016/j.devcel.2019.10.007_bib30) 2006; 8
Raposo (10.1016/j.devcel.2019.10.007_bib29) 2013; 200
Magtanong (10.1016/j.devcel.2019.10.007_bib27) 2019; 26
Brown (10.1016/j.devcel.2019.10.007_bib3) 2018; 293
Doll (10.1016/j.devcel.2019.10.007_bib9) 2017; 13
Dixon (10.1016/j.devcel.2019.10.007_bib6) 2014; 3
Futter (10.1016/j.devcel.2019.10.007_bib14) 1996; 132
Saha (10.1016/j.devcel.2019.10.007_bib31) 2019
Geng (10.1016/j.devcel.2019.10.007_bib16) 2018; 22
Yang (10.1016/j.devcel.2019.10.007_bib44) 2016; 26
Torii (10.1016/j.devcel.2019.10.007_bib35) 2016; 473
Agmon (10.1016/j.devcel.2019.10.007_bib1) 2018; 8
Ma (10.1016/j.devcel.2019.10.007_bib26) 2016; 7
Hart (10.1016/j.devcel.2019.10.007_bib20) 1991; 174
Singh (10.1016/j.devcel.2019.10.007_bib33) 2013; 434
Weïwer (10.1016/j.devcel.2019.10.007_bib40) 2012; 22
Zhang (10.1016/j.devcel.2019.10.007_bib45) 2019; 26
Stockwell (10.1016/j.devcel.2019.10.007_bib34) 2017; 171
Yang (10.1016/j.devcel.2019.10.007_bib42) 2014; 156
Dixon (10.1016/j.devcel.2019.10.007_bib7) 2019; 3
Jászai (10.1016/j.devcel.2019.10.007_bib23) 2010; 133
Pan (10.1016/j.devcel.2019.10.007_bib28) 1985; 101
Viswanathan (10.1016/j.devcel.2019.10.007_bib39) 2017; 547
Fang (10.1016/j.devcel.2019.10.007_bib10) 2019; 116
Tsoi (10.1016/j.devcel.2019.10.007_bib38) 2018; 33
Hirschhorn (10.1016/j.devcel.2019.10.007_bib21) 2019; 133
Brown (10.1016/j.devcel.2019.10.007_bib2) 2017; 216
Hangauer (10.1016/j.devcel.2019.10.007_bib18) 2017; 551
Harding (10.1016/j.devcel.2019.10.007_bib19) 1984; 35
Yang (10.1016/j.devcel.2019.10.007_bib43) 2008; 15
Do Van (10.1016/j.devcel.2019.10.007_bib8) 2016; 94
Florek (10.1016/j.devcel.2019.10.007_bib12) 2007; 328
Cella (10.1016/j.devcel.2019.10.007_bib4) 1996; 61
Dixon (10.1016/j.devcel.2019.10.007_bib5) 2012; 149
Hou (10.1016/j.devcel.2019.10.007_bib22) 2016; 12
Truman-Rosentsvit (10.1016/j.devcel.2019.10.007_bib37) 2018; 131
Kobuna (10.1016/j.devcel.2019.10.007_bib25) 2010; 6
Gao (10.1016/j.devcel.2019.10.007_bib15) 2016; 26
31794716 - Dev Cell. 2019 Dec 2;51(5):548-549
31748716 - Nat Rev Mol Cell Biol. 2020 Jan;21(1):4-5
References_xml – volume: 61
  start-page: 623
  year: 1990
  end-page: 634
  ident: bib11
  article-title: Kinase activity controls the sorting of the epidermal growth factor receptor within the multivesicular body
  publication-title: Cell
– volume: 16
  start-page: 1180
  year: 2014
  end-page: 1191
  ident: bib13
  article-title: Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice
  publication-title: Nat. Cell Biol.
– volume: 149
  start-page: 1060
  year: 2012
  end-page: 1072
  ident: bib5
  article-title: Ferroptosis: an iron-dependent form of nonapoptotic cell death
  publication-title: Cell
– volume: 7
  start-page: 552
  year: 1995
  end-page: 563
  ident: bib17
  article-title: Membrane transport in the endocytic pathway
  publication-title: Curr. Opin. Cell Biol.
– volume: 113
  start-page: E4966
  year: 2016
  end-page: E4975
  ident: bib41
  article-title: Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 21
  start-page: 97
  year: 2018
  end-page: 125
  ident: bib36
  article-title: Iron and Cancer
  publication-title: Annu. Rev. Nutr.
– volume: 133
  start-page: 527
  year: 2010
  end-page: 539
  ident: bib23
  article-title: Prominin-2 is a novel marker of distal tubules and collecting ducts of the human and murine kidney
  publication-title: Histochem. Cell Biol.
– volume: 33
  start-page: 890
  year: 2018
  end-page: 904
  ident: bib38
  article-title: Multi-stage differentiation defines melanoma subtypes with differential vulnerability to drug-induced iron-dependent oxidative stress
  publication-title: Cancer Cell
– volume: 520
  start-page: 57
  year: 2015
  end-page: 62
  ident: bib24
  article-title: Ferroptosis as a p53-mediated activity during tumour suppression
  publication-title: Nature
– volume: 8
  start-page: 3469
  year: 2006
  end-page: 3483
  ident: bib30
  article-title: Distinct roles for Tsg101 and Hrs in multivesicular body formation and inward vesiculation
  publication-title: Mol. Biol. Cell
– volume: 8
  start-page: 5155
  year: 2018
  ident: bib1
  article-title: Modeling the effects of lipid peroxidation during ferroptosis on membrane properties
  publication-title: Sci. Rep.
– volume: 216
  start-page: 4287
  year: 2017
  end-page: 4297
  ident: bib2
  article-title: The α6β4 integrin promotes resistance to ferroptosis
  publication-title: J. Cell Biol.
– volume: 551
  start-page: 247
  year: 2017
  end-page: 250
  ident: bib18
  article-title: Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition
  publication-title: Nature
– volume: 131
  start-page: 342
  year: 2018
  end-page: 352
  ident: bib37
  article-title: Ferritin is secreted via two distinct non-classical vesicular pathways
  publication-title: Blood
– volume: 12
  start-page: 1425
  year: 2016
  end-page: 1428
  ident: bib22
  article-title: Autophagy promotes ferroptosis by degradation of ferritin
  publication-title: Autophagy
– volume: 3
  start-page: 35
  year: 2019
  end-page: 54
  ident: bib7
  article-title: The hallmarks of ferroptosis
  publication-title: Annu. Rev. Cancer Biol.
– volume: 26
  start-page: 420
  year: 2019
  end-page: 432
  ident: bib27
  article-title: Exogenous monounsaturated fatty acids promote a Ferroptosis-resistant cell state
  publication-title: Cell Chem. Biol.
– volume: 171
  start-page: 273
  year: 2017
  end-page: 285
  ident: bib34
  article-title: Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease
  publication-title: Cell
– volume: 156
  start-page: 317
  year: 2014
  end-page: 331
  ident: bib42
  article-title: Regulation of ferroptotic cancer cell death by GPX4
  publication-title: Cell
– volume: 61
  start-page: 113
  year: 1996
  end-page: 120
  ident: bib4
  article-title: The lysosomal-associated membrane protein LAMP-1 is a novel differentiation marker for HC11 mouse mammary epithelial cells
  publication-title: Differentiation
– volume: 101
  start-page: 942
  year: 1985
  end-page: 948
  ident: bib28
  article-title: Electron microscopic evidence for externalization of the transferrin receptor in vesicular form in sheep reticulocytes
  publication-title: J. Cell Biol.
– volume: 12
  start-page: 497
  year: 2016
  end-page: 503
  ident: bib32
  article-title: Global survey of cell death mechanisms reveals metabolic regulation of ferroptosis
  publication-title: Nat. Chem. Biol.
– volume: 26
  start-page: 165
  year: 2016
  end-page: 176
  ident: bib44
  article-title: Ferroptosis: death by lipid peroxidation
  publication-title: Trends Cell Biol.
– year: 2019
  ident: bib31
  article-title: PROM1 and PROM2 expression differentially modulates clinical prognosis of cancer: a multiomics analysis
  publication-title: Cancer Gene Ther.
– volume: 26
  start-page: 623
  year: 2019
  end-page: 633
  ident: bib45
  article-title: Imidazole ketone erastin induces ferroptosis and slows tumor growth in a mouse lymphoma model
  publication-title: Cell Chem. Biol.
– volume: 133
  start-page: 130
  year: 2019
  end-page: 143
  ident: bib21
  article-title: The development of the concept of ferroptosis
  publication-title: Free Radic. Biol. Med.
– volume: 132
  start-page: 1011
  year: 1996
  end-page: 1023
  ident: bib14
  article-title: Multivesicular endosomes containing internalized EGF-EGF receptor complexes mature and then fuse directly with lysosomes
  publication-title: J. Cell Biol.
– volume: 15
  start-page: 234
  year: 2008
  end-page: 245
  ident: bib43
  article-title: Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells
  publication-title: Chem. Biol.
– volume: 3
  start-page: e02523
  year: 2014
  ident: bib6
  article-title: Pharmacological inhibition of cystine–glutamate exchange induces endoplasmic reticulum stress and ferroptosis
  publication-title: Elife
– volume: 200
  start-page: 373
  year: 2013
  end-page: 383
  ident: bib29
  article-title: Extracellular vesicles: exosomes, microvesicles, and friends
  publication-title: J. Cell Biol.
– volume: 94
  start-page: 169
  year: 2016
  end-page: 178
  ident: bib8
  article-title: Ferroptosis, a newly characterized form of cell death in Parkinson's disease that is regulated by PKC
  publication-title: Neurobiol. Dis.
– volume: 35
  start-page: 256
  year: 1984
  end-page: 263
  ident: bib19
  article-title: Endocytosis and intracellular processing of transferrin and colloidal gold-transferrin in rat reticulocytes: demonstration of a pathway for receptor shedding
  publication-title: Eur. J. Cell Biol.
– volume: 293
  start-page: 12741
  year: 2018
  end-page: 12748
  ident: bib3
  article-title: Cell clustering mediated by the adhesion protein PVRL4 is necessary for α6β4 integrin-promoted ferroptosis resistance in matrix-detached cells
  publication-title: J. Biol. Chem.
– volume: 116
  start-page: 2672
  year: 2019
  end-page: 2680
  ident: bib10
  article-title: Ferroptosis as a target for protection against cardiomyopathy
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 174
  start-page: 881
  year: 1991
  end-page: 889
  ident: bib20
  article-title: Ammonium chloride, an inhibitor of phagosome-lysosome fusion in macrophages, concurrently induces phagosome-endosome fusion, and opens a novel pathway: studies of a pathogenic mycobacterium and a nonpathogenic yeast
  publication-title: J. Exp. Med.
– volume: 26
  start-page: 1021
  year: 2016
  end-page: 1032
  ident: bib15
  article-title: Ferroptosis is an autophagic cell death process
  publication-title: Cell Res.
– volume: 13
  start-page: 91
  year: 2017
  end-page: 98
  ident: bib9
  article-title: ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition
  publication-title: Nat. Chem. Biol
– volume: 22
  start-page: 1822
  year: 2012
  end-page: 1826
  ident: bib40
  article-title: Development of small-molecule probes that selectively kill cells induced to express mutant RAS
  publication-title: Bioorg. Med. Chem. Lett.
– volume: 328
  start-page: 31
  year: 2007
  end-page: 47
  ident: bib12
  article-title: Prominin-2 is a cholesterol-binding protein associated with apical and basolateral plasmalemmal protrusions in polarized epithelial cells and released into urine
  publication-title: Cell Tissue Res.
– volume: 22
  start-page: 3826
  year: 2018
  end-page: 3836
  ident: bib16
  article-title: Knockdown of ferroportin accelerates erastin-induced ferroptosis in neuroblastoma cells
  publication-title: Eur. Rev. Med. Pharmacol. Sci.
– volume: 6
  start-page: e1001055
  year: 2010
  ident: bib25
  article-title: Multivesicular body formation requires OSBP-related proteins and cholesterol
  publication-title: PLoS Genet.
– volume: 7
  start-page: e2307
  year: 2016
  ident: bib26
  article-title: Ferroptosis is induced following siramesine and lapatinib treatment of breast cancer cells
  publication-title: Cell Death Dis.
– volume: 473
  start-page: 769
  year: 2016
  end-page: 777
  ident: bib35
  article-title: An essential role for functional lysosomes in ferroptosis of cancer cells
  publication-title: Biochem. J.
– volume: 547
  start-page: 453
  year: 2017
  end-page: 457
  ident: bib39
  article-title: Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway
  publication-title: Nature
– volume: 434
  start-page: 466
  year: 2013
  end-page: 472
  ident: bib33
  article-title: Prominin-2 expression increases protrusions, decreases caveolae and inhibits Cdc42 dependent fluid phase endocytosis
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 113
  start-page: E4966
  year: 2016
  ident: 10.1016/j.devcel.2019.10.007_bib41
  article-title: Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1603244113
– volume: 21
  start-page: 97
  year: 2018
  ident: 10.1016/j.devcel.2019.10.007_bib36
  article-title: Iron and Cancer
  publication-title: Annu. Rev. Nutr.
  doi: 10.1146/annurev-nutr-082117-051732
– volume: 26
  start-page: 1021
  year: 2016
  ident: 10.1016/j.devcel.2019.10.007_bib15
  article-title: Ferroptosis is an autophagic cell death process
  publication-title: Cell Res.
  doi: 10.1038/cr.2016.95
– volume: 116
  start-page: 2672
  year: 2019
  ident: 10.1016/j.devcel.2019.10.007_bib10
  article-title: Ferroptosis as a target for protection against cardiomyopathy
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1821022116
– volume: 133
  start-page: 527
  year: 2010
  ident: 10.1016/j.devcel.2019.10.007_bib23
  article-title: Prominin-2 is a novel marker of distal tubules and collecting ducts of the human and murine kidney
  publication-title: Histochem. Cell Biol.
  doi: 10.1007/s00418-010-0690-1
– volume: 200
  start-page: 373
  year: 2013
  ident: 10.1016/j.devcel.2019.10.007_bib29
  article-title: Extracellular vesicles: exosomes, microvesicles, and friends
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201211138
– volume: 133
  start-page: 130
  year: 2019
  ident: 10.1016/j.devcel.2019.10.007_bib21
  article-title: The development of the concept of ferroptosis
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2018.09.043
– volume: 61
  start-page: 623
  year: 1990
  ident: 10.1016/j.devcel.2019.10.007_bib11
  article-title: Kinase activity controls the sorting of the epidermal growth factor receptor within the multivesicular body
  publication-title: Cell
  doi: 10.1016/0092-8674(90)90474-S
– volume: 94
  start-page: 169
  year: 2016
  ident: 10.1016/j.devcel.2019.10.007_bib8
  article-title: Ferroptosis, a newly characterized form of cell death in Parkinson's disease that is regulated by PKC
  publication-title: Neurobiol. Dis.
  doi: 10.1016/j.nbd.2016.05.011
– volume: 216
  start-page: 4287
  year: 2017
  ident: 10.1016/j.devcel.2019.10.007_bib2
  article-title: The α6β4 integrin promotes resistance to ferroptosis
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201701136
– volume: 520
  start-page: 57
  year: 2015
  ident: 10.1016/j.devcel.2019.10.007_bib24
  article-title: Ferroptosis as a p53-mediated activity during tumour suppression
  publication-title: Nature
  doi: 10.1038/nature14344
– volume: 13
  start-page: 91
  year: 2017
  ident: 10.1016/j.devcel.2019.10.007_bib9
  article-title: ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition
  publication-title: Nat. Chem. Biol
  doi: 10.1038/nchembio.2239
– volume: 547
  start-page: 453
  year: 2017
  ident: 10.1016/j.devcel.2019.10.007_bib39
  article-title: Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway
  publication-title: Nature
  doi: 10.1038/nature23007
– volume: 26
  start-page: 165
  year: 2016
  ident: 10.1016/j.devcel.2019.10.007_bib44
  article-title: Ferroptosis: death by lipid peroxidation
  publication-title: Trends Cell Biol.
  doi: 10.1016/j.tcb.2015.10.014
– volume: 328
  start-page: 31
  year: 2007
  ident: 10.1016/j.devcel.2019.10.007_bib12
  article-title: Prominin-2 is a cholesterol-binding protein associated with apical and basolateral plasmalemmal protrusions in polarized epithelial cells and released into urine
  publication-title: Cell Tissue Res.
  doi: 10.1007/s00441-006-0324-z
– volume: 61
  start-page: 113
  year: 1996
  ident: 10.1016/j.devcel.2019.10.007_bib4
  article-title: The lysosomal-associated membrane protein LAMP-1 is a novel differentiation marker for HC11 mouse mammary epithelial cells
  publication-title: Differentiation
  doi: 10.1046/j.1432-0436.1996.6120113.x
– volume: 8
  start-page: 3469
  year: 2006
  ident: 10.1016/j.devcel.2019.10.007_bib30
  article-title: Distinct roles for Tsg101 and Hrs in multivesicular body formation and inward vesiculation
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e05-11-1054
– volume: 171
  start-page: 273
  year: 2017
  ident: 10.1016/j.devcel.2019.10.007_bib34
  article-title: Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease
  publication-title: Cell
  doi: 10.1016/j.cell.2017.09.021
– volume: 15
  start-page: 234
  year: 2008
  ident: 10.1016/j.devcel.2019.10.007_bib43
  article-title: Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells
  publication-title: Chem. Biol.
  doi: 10.1016/j.chembiol.2008.02.010
– volume: 35
  start-page: 256
  year: 1984
  ident: 10.1016/j.devcel.2019.10.007_bib19
  article-title: Endocytosis and intracellular processing of transferrin and colloidal gold-transferrin in rat reticulocytes: demonstration of a pathway for receptor shedding
  publication-title: Eur. J. Cell Biol.
– volume: 551
  start-page: 247
  year: 2017
  ident: 10.1016/j.devcel.2019.10.007_bib18
  article-title: Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition
  publication-title: Nature
  doi: 10.1038/nature24297
– volume: 156
  start-page: 317
  year: 2014
  ident: 10.1016/j.devcel.2019.10.007_bib42
  article-title: Regulation of ferroptotic cancer cell death by GPX4
  publication-title: Cell
  doi: 10.1016/j.cell.2013.12.010
– volume: 8
  start-page: 5155
  year: 2018
  ident: 10.1016/j.devcel.2019.10.007_bib1
  article-title: Modeling the effects of lipid peroxidation during ferroptosis on membrane properties
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-23408-0
– volume: 3
  start-page: 35
  year: 2019
  ident: 10.1016/j.devcel.2019.10.007_bib7
  article-title: The hallmarks of ferroptosis
  publication-title: Annu. Rev. Cancer Biol.
  doi: 10.1146/annurev-cancerbio-030518-055844
– volume: 6
  start-page: e1001055
  year: 2010
  ident: 10.1016/j.devcel.2019.10.007_bib25
  article-title: Multivesicular body formation requires OSBP-related proteins and cholesterol
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1001055
– volume: 12
  start-page: 497
  year: 2016
  ident: 10.1016/j.devcel.2019.10.007_bib32
  article-title: Global survey of cell death mechanisms reveals metabolic regulation of ferroptosis
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.2079
– volume: 22
  start-page: 3826
  year: 2018
  ident: 10.1016/j.devcel.2019.10.007_bib16
  article-title: Knockdown of ferroportin accelerates erastin-induced ferroptosis in neuroblastoma cells
  publication-title: Eur. Rev. Med. Pharmacol. Sci.
– volume: 473
  start-page: 769
  year: 2016
  ident: 10.1016/j.devcel.2019.10.007_bib35
  article-title: An essential role for functional lysosomes in ferroptosis of cancer cells
  publication-title: Biochem. J.
  doi: 10.1042/BJ20150658
– volume: 132
  start-page: 1011
  year: 1996
  ident: 10.1016/j.devcel.2019.10.007_bib14
  article-title: Multivesicular endosomes containing internalized EGF-EGF receptor complexes mature and then fuse directly with lysosomes
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.132.6.1011
– volume: 293
  start-page: 12741
  year: 2018
  ident: 10.1016/j.devcel.2019.10.007_bib3
  article-title: Cell clustering mediated by the adhesion protein PVRL4 is necessary for α6β4 integrin-promoted ferroptosis resistance in matrix-detached cells
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.RA118.003017
– volume: 434
  start-page: 466
  year: 2013
  ident: 10.1016/j.devcel.2019.10.007_bib33
  article-title: Prominin-2 expression increases protrusions, decreases caveolae and inhibits Cdc42 dependent fluid phase endocytosis
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2013.03.097
– volume: 16
  start-page: 1180
  year: 2014
  ident: 10.1016/j.devcel.2019.10.007_bib13
  article-title: Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb3064
– volume: 101
  start-page: 942
  year: 1985
  ident: 10.1016/j.devcel.2019.10.007_bib28
  article-title: Electron microscopic evidence for externalization of the transferrin receptor in vesicular form in sheep reticulocytes
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.101.3.942
– volume: 26
  start-page: 623
  year: 2019
  ident: 10.1016/j.devcel.2019.10.007_bib45
  article-title: Imidazole ketone erastin induces ferroptosis and slows tumor growth in a mouse lymphoma model
  publication-title: Cell Chem. Biol.
  doi: 10.1016/j.chembiol.2019.01.008
– volume: 7
  start-page: e2307
  year: 2016
  ident: 10.1016/j.devcel.2019.10.007_bib26
  article-title: Ferroptosis is induced following siramesine and lapatinib treatment of breast cancer cells
  publication-title: Cell Death Dis.
  doi: 10.1038/cddis.2016.208
– volume: 26
  start-page: 420
  year: 2019
  ident: 10.1016/j.devcel.2019.10.007_bib27
  article-title: Exogenous monounsaturated fatty acids promote a Ferroptosis-resistant cell state
  publication-title: Cell Chem. Biol.
  doi: 10.1016/j.chembiol.2018.11.016
– volume: 22
  start-page: 1822
  year: 2012
  ident: 10.1016/j.devcel.2019.10.007_bib40
  article-title: Development of small-molecule probes that selectively kill cells induced to express mutant RAS
  publication-title: Bioorg. Med. Chem. Lett.
  doi: 10.1016/j.bmcl.2011.09.047
– volume: 3
  start-page: e02523
  year: 2014
  ident: 10.1016/j.devcel.2019.10.007_bib6
  article-title: Pharmacological inhibition of cystine–glutamate exchange induces endoplasmic reticulum stress and ferroptosis
  publication-title: Elife
  doi: 10.7554/eLife.02523
– volume: 12
  start-page: 1425
  year: 2016
  ident: 10.1016/j.devcel.2019.10.007_bib22
  article-title: Autophagy promotes ferroptosis by degradation of ferritin
  publication-title: Autophagy
  doi: 10.1080/15548627.2016.1187366
– volume: 131
  start-page: 342
  year: 2018
  ident: 10.1016/j.devcel.2019.10.007_bib37
  article-title: Ferritin is secreted via two distinct non-classical vesicular pathways
  publication-title: Blood
  doi: 10.1182/blood-2017-02-768580
– volume: 7
  start-page: 552
  year: 1995
  ident: 10.1016/j.devcel.2019.10.007_bib17
  article-title: Membrane transport in the endocytic pathway
  publication-title: Curr. Opin. Cell Biol.
  doi: 10.1016/0955-0674(95)80013-1
– year: 2019
  ident: 10.1016/j.devcel.2019.10.007_bib31
  article-title: PROM1 and PROM2 expression differentially modulates clinical prognosis of cancer: a multiomics analysis
  publication-title: Cancer Gene Ther.
– volume: 33
  start-page: 890
  year: 2018
  ident: 10.1016/j.devcel.2019.10.007_bib38
  article-title: Multi-stage differentiation defines melanoma subtypes with differential vulnerability to drug-induced iron-dependent oxidative stress
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2018.03.017
– volume: 174
  start-page: 881
  year: 1991
  ident: 10.1016/j.devcel.2019.10.007_bib20
  article-title: Ammonium chloride, an inhibitor of phagosome-lysosome fusion in macrophages, concurrently induces phagosome-endosome fusion, and opens a novel pathway: studies of a pathogenic mycobacterium and a nonpathogenic yeast
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.174.4.881
– volume: 149
  start-page: 1060
  year: 2012
  ident: 10.1016/j.devcel.2019.10.007_bib5
  article-title: Ferroptosis: an iron-dependent form of nonapoptotic cell death
  publication-title: Cell
  doi: 10.1016/j.cell.2012.03.042
– reference: 31794716 - Dev Cell. 2019 Dec 2;51(5):548-549
– reference: 31748716 - Nat Rev Mol Cell Biol. 2020 Jan;21(1):4-5
SSID ssj0016180
Score 2.6967943
Snippet Ferroptosis, regulated cell death characterized by the iron-dependent accumulation of lethal lipid reactive oxygen species, contributes to tissue homeostasis...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 575
SubjectTerms breast cancer
Breast Neoplasms - metabolism
Carcinoma - metabolism
Cell Line
Cell Line, Tumor
Epithelial Cells - metabolism
Epithelial Cells - pathology
exosome
Extracellular Matrix - metabolism
Female
ferritin
Ferritins - metabolism
Ferroptosis
GPX4
Humans
iron
Iron - metabolism
mammary gland
Membrane Glycoproteins - genetics
Membrane Glycoproteins - metabolism
Multivesicular Bodies - metabolism
multivesicular body
Phospholipid Hydroperoxide Glutathione Peroxidase - metabolism
prominin2
therapy
Title Prominin2 Drives Ferroptosis Resistance by Stimulating Iron Export
URI https://dx.doi.org/10.1016/j.devcel.2019.10.007
https://www.ncbi.nlm.nih.gov/pubmed/31735663
https://www.proquest.com/docview/2315525094
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6LIHgR364vInitu22yTXv0tayCIj5gb6VJJ7Ki7dLtiv57Z9J2wYMIHhsSmn5JJl86k_kYOwlinYXWkExqYD0JwnhxmCoPSI3R9DMJ7n_H7V04epY348G4wy7auzAUVtnY_tqmO2vdlPQaNHvTyaT3iGtVDiLcImNB6hF0bhcycpf4xucLT0LoO_U0quxR7fb6nIvxyuDDADkg_PjUxXip37an3-in24aGa2y14Y_8rO7iOutAvsGWa0XJr012fl8WlC0kD_hlSRll-RDKsphWxWwy4w8wI7qI38j1F3-sJu9OvCt_4ddlkfOrTyLjW-x5ePV0MfIamQTPSCUrz1eZjezA4nkwtgL5gs1sILXRgQwjpUwq-hD1IbbI3hB9FaQKKMsgHk6DKNNSbLOlvMhhl3HwQUoV2tRI5FE-pc5BvhGC1rFR2lddJlp0EtPkECcpi7ekDRZ7TWpME8KUShHTLvMWraZ1Do0_6qsW-OTHXEjQzP_R8rgdpwSXCfk-0hyK-SxBGjsgD24su2ynHsBFX5BCCWS1Yu_f791nK_TkwlyCA7ZUlXM4RLJS6SM3G78Bd7rlqA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9swELYqEGIvaDAYZTA8aa-hTeLGySO_qpYBmlaQ-mbFzhkVbUmVhmn899w5SSUeqkp7dWzF-WyfP-fO9zH2PUh0FllDMqmB9QSExkuiVHpAaoymnwlw_zvu7qPRo7iZDqYddtnehaGwysb21zbdWeumpNeg2ZvPZr0JrlUxiHGLTEJSj8Bz-yayAUmrczy9WLoSIt_Jp1Ftj6q39-dckFcGfw2QB8JPzlyQl1y1P63in24fGn5kOw2B5Od1H3dZB_I9tlVLSr5-Yhc_y4LSheQBvyoppSwfQlkW86pYzBb8FyyIL-JHcv3KJ9Xsj1Pvyp_4uCxyfv2P2Pg-exxeP1yOvEYnwTNCisrzZWZjO7B4IExsiITBZjYQ2uhARLGUJg37EPchsUjfEH4ZpBIozSCeToM40yI8YBt5kcMh4-CDEDKyqRFIpHzKnYOEIwKtEyO1L7ssbNFRpkkiTloWv1UbLfasakwVYUqliGmXectW8zqJxpr6sgVevZsMCu38mpbf2nFSuE7I-ZHmULwsFPLYAblwE9Fln-sBXPYFOVSItDY8-u_3nrLt0cPdrbod3__4wj7QExfzEhyzjap8gRNkLpX-6mbmGw6_6Mg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prominin2+Drives+Ferroptosis+Resistance+by+Stimulating+Iron+Export&rft.jtitle=Developmental+cell&rft.au=Brown%2C+Caitlin+W&rft.au=Amante%2C+John+J&rft.au=Chhoy%2C+Peter&rft.au=Elaimy%2C+Ameer+L&rft.date=2019-12-02&rft.issn=1878-1551&rft.eissn=1878-1551&rft.volume=51&rft.issue=5&rft.spage=575&rft_id=info:doi/10.1016%2Fj.devcel.2019.10.007&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-5807&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-5807&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-5807&client=summon