Artificial Intelligence-based methods in head and neck cancer diagnosis: an overview
Background This paper reviews recent literature employing Artificial Intelligence/Machine Learning (AI/ML) methods for diagnostic evaluation of head and neck cancers (HNC) using automated image analysis. Methods Electronic database searches using MEDLINE via OVID, EMBASE and Google Scholar were cond...
Saved in:
Published in | British journal of cancer Vol. 124; no. 12; pp. 1934 - 1940 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
08.06.2021
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Background
This paper reviews recent literature employing Artificial Intelligence/Machine Learning (AI/ML) methods for diagnostic evaluation of head and neck cancers (HNC) using automated image analysis.
Methods
Electronic database searches using MEDLINE via OVID, EMBASE and Google Scholar were conducted to retrieve articles using AI/ML for diagnostic evaluation of HNC (2009–2020). No restrictions were placed on the AI/ML method or imaging modality used.
Results
In total, 32 articles were identified. HNC sites included oral cavity (
n
= 16), nasopharynx (
n
= 3), oropharynx (
n
= 3), larynx (
n
= 2), salivary glands (
n
= 2), sinonasal (
n
= 1) and in five studies multiple sites were studied. Imaging modalities included histological (
n
= 9), radiological (
n
= 8), hyperspectral (
n
= 6), endoscopic/clinical (
n
= 5), infrared thermal (
n
= 1) and optical (
n
= 1). Clinicopathologic/genomic data were used in two studies. Traditional ML methods were employed in 22 studies (69%), deep learning (DL) in eight studies (25%) and a combination of these methods in two studies (6%).
Conclusions
There is an increasing volume of studies exploring the role of AI/ML to aid HNC detection using a range of imaging modalities. These methods can achieve high degrees of accuracy that can exceed the abilities of human judgement in making data predictions. Large-scale multi-centric prospective studies are required to aid deployment into clinical practice. |
---|---|
AbstractList | This paper reviews recent literature employing Artificial Intelligence/Machine Learning (AI/ML) methods for diagnostic evaluation of head and neck cancers (HNC) using automated image analysis.
Electronic database searches using MEDLINE via OVID, EMBASE and Google Scholar were conducted to retrieve articles using AI/ML for diagnostic evaluation of HNC (2009-2020). No restrictions were placed on the AI/ML method or imaging modality used.
In total, 32 articles were identified. HNC sites included oral cavity (n = 16), nasopharynx (n = 3), oropharynx (n = 3), larynx (n = 2), salivary glands (n = 2), sinonasal (n = 1) and in five studies multiple sites were studied. Imaging modalities included histological (n = 9), radiological (n = 8), hyperspectral (n = 6), endoscopic/clinical (n = 5), infrared thermal (n = 1) and optical (n = 1). Clinicopathologic/genomic data were used in two studies. Traditional ML methods were employed in 22 studies (69%), deep learning (DL) in eight studies (25%) and a combination of these methods in two studies (6%).
There is an increasing volume of studies exploring the role of AI/ML to aid HNC detection using a range of imaging modalities. These methods can achieve high degrees of accuracy that can exceed the abilities of human judgement in making data predictions. Large-scale multi-centric prospective studies are required to aid deployment into clinical practice. This paper reviews recent literature employing Artificial Intelligence/Machine Learning (AI/ML) methods for diagnostic evaluation of head and neck cancers (HNC) using automated image analysis.BACKGROUNDThis paper reviews recent literature employing Artificial Intelligence/Machine Learning (AI/ML) methods for diagnostic evaluation of head and neck cancers (HNC) using automated image analysis.Electronic database searches using MEDLINE via OVID, EMBASE and Google Scholar were conducted to retrieve articles using AI/ML for diagnostic evaluation of HNC (2009-2020). No restrictions were placed on the AI/ML method or imaging modality used.METHODSElectronic database searches using MEDLINE via OVID, EMBASE and Google Scholar were conducted to retrieve articles using AI/ML for diagnostic evaluation of HNC (2009-2020). No restrictions were placed on the AI/ML method or imaging modality used.In total, 32 articles were identified. HNC sites included oral cavity (n = 16), nasopharynx (n = 3), oropharynx (n = 3), larynx (n = 2), salivary glands (n = 2), sinonasal (n = 1) and in five studies multiple sites were studied. Imaging modalities included histological (n = 9), radiological (n = 8), hyperspectral (n = 6), endoscopic/clinical (n = 5), infrared thermal (n = 1) and optical (n = 1). Clinicopathologic/genomic data were used in two studies. Traditional ML methods were employed in 22 studies (69%), deep learning (DL) in eight studies (25%) and a combination of these methods in two studies (6%).RESULTSIn total, 32 articles were identified. HNC sites included oral cavity (n = 16), nasopharynx (n = 3), oropharynx (n = 3), larynx (n = 2), salivary glands (n = 2), sinonasal (n = 1) and in five studies multiple sites were studied. Imaging modalities included histological (n = 9), radiological (n = 8), hyperspectral (n = 6), endoscopic/clinical (n = 5), infrared thermal (n = 1) and optical (n = 1). Clinicopathologic/genomic data were used in two studies. Traditional ML methods were employed in 22 studies (69%), deep learning (DL) in eight studies (25%) and a combination of these methods in two studies (6%).There is an increasing volume of studies exploring the role of AI/ML to aid HNC detection using a range of imaging modalities. These methods can achieve high degrees of accuracy that can exceed the abilities of human judgement in making data predictions. Large-scale multi-centric prospective studies are required to aid deployment into clinical practice.CONCLUSIONSThere is an increasing volume of studies exploring the role of AI/ML to aid HNC detection using a range of imaging modalities. These methods can achieve high degrees of accuracy that can exceed the abilities of human judgement in making data predictions. Large-scale multi-centric prospective studies are required to aid deployment into clinical practice. Background This paper reviews recent literature employing Artificial Intelligence/Machine Learning (AI/ML) methods for diagnostic evaluation of head and neck cancers (HNC) using automated image analysis. Methods Electronic database searches using MEDLINE via OVID, EMBASE and Google Scholar were conducted to retrieve articles using AI/ML for diagnostic evaluation of HNC (2009–2020). No restrictions were placed on the AI/ML method or imaging modality used. Results In total, 32 articles were identified. HNC sites included oral cavity ( n = 16), nasopharynx ( n = 3), oropharynx ( n = 3), larynx ( n = 2), salivary glands ( n = 2), sinonasal ( n = 1) and in five studies multiple sites were studied. Imaging modalities included histological ( n = 9), radiological ( n = 8), hyperspectral ( n = 6), endoscopic/clinical ( n = 5), infrared thermal ( n = 1) and optical ( n = 1). Clinicopathologic/genomic data were used in two studies. Traditional ML methods were employed in 22 studies (69%), deep learning (DL) in eight studies (25%) and a combination of these methods in two studies (6%). Conclusions There is an increasing volume of studies exploring the role of AI/ML to aid HNC detection using a range of imaging modalities. These methods can achieve high degrees of accuracy that can exceed the abilities of human judgement in making data predictions. Large-scale multi-centric prospective studies are required to aid deployment into clinical practice. BackgroundThis paper reviews recent literature employing Artificial Intelligence/Machine Learning (AI/ML) methods for diagnostic evaluation of head and neck cancers (HNC) using automated image analysis.MethodsElectronic database searches using MEDLINE via OVID, EMBASE and Google Scholar were conducted to retrieve articles using AI/ML for diagnostic evaluation of HNC (2009–2020). No restrictions were placed on the AI/ML method or imaging modality used.ResultsIn total, 32 articles were identified. HNC sites included oral cavity (n = 16), nasopharynx (n = 3), oropharynx (n = 3), larynx (n = 2), salivary glands (n = 2), sinonasal (n = 1) and in five studies multiple sites were studied. Imaging modalities included histological (n = 9), radiological (n = 8), hyperspectral (n = 6), endoscopic/clinical (n = 5), infrared thermal (n = 1) and optical (n = 1). Clinicopathologic/genomic data were used in two studies. Traditional ML methods were employed in 22 studies (69%), deep learning (DL) in eight studies (25%) and a combination of these methods in two studies (6%).ConclusionsThere is an increasing volume of studies exploring the role of AI/ML to aid HNC detection using a range of imaging modalities. These methods can achieve high degrees of accuracy that can exceed the abilities of human judgement in making data predictions. Large-scale multi-centric prospective studies are required to aid deployment into clinical practice. |
Author | Rajpoot, Nasir Khurram, Syed A. Shaban, Muhammad Mahmood, Hanya |
Author_xml | – sequence: 1 givenname: Hanya orcidid: 0000-0001-7159-0368 surname: Mahmood fullname: Mahmood, Hanya email: h.mahmood@sheffield.ac.uk organization: Academic Unit of Oral & Maxillofacial Surgery, School of Clinical Dentistry, University of Sheffield – sequence: 2 givenname: Muhammad surname: Shaban fullname: Shaban, Muhammad organization: Department of Computer Science, University of Warwick – sequence: 3 givenname: Nasir surname: Rajpoot fullname: Rajpoot, Nasir organization: Department of Computer Science, University of Warwick – sequence: 4 givenname: Syed A. surname: Khurram fullname: Khurram, Syed A. organization: Unit of Oral & Maxillofacial Pathology, School of Clinical Dentistry, University of Sheffield |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33875821$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kctuFDEQRS0URCaBH2CBLLFhY3DZ_ahhgRRFPCJFYhPWltuunnHosYPdMwl_j8OEAFlkZVl1btWtukfsIKZIjL0E-RakxnelgQY6IRUICRo7cfOELaDVSgCq_oAtpJS9kEslD9lRKZf1u5TYP2OHWmPfooIFuzjJcxiDC3biZ3GmaQorio7EYAt5vqF5nXzhIfI1Wc9t9DyS-86drVDmPthVTCWU97XE047yLtD1c_Z0tFOhF3fvMfv26ePF6Rdx_vXz2enJuXBN38wCWuwkjAiIBENvQS9bTYSqQ4XKttL2vmmWFkZCGmtJt-C0135QRENH-ph92Pe92g4b8o7inO1krnLY2PzTJBvM_5UY1maVdqaObFDJ2uDNXYOcfmypzGYTiqtHsJHSthjVQttVtIOKvn6AXqZtjnW9Suke6zk1VurVv47urfw5eAXUHnA5lZJpvEdAmttUzT5VU1M1v1M1N1WED0QuzHYO6XarMD0u1XtpqXPiivJf24-ofgEgdLc1 |
CitedBy_id | crossref_primary_10_1148_rg_240029 crossref_primary_10_37349_etat_2023_00174 crossref_primary_10_1007_s10006_025_01334_6 crossref_primary_10_1007_s11864_022_00942_8 crossref_primary_10_1016_j_identj_2024_09_032 crossref_primary_10_1016_j_eclinm_2023_102202 crossref_primary_10_3389_froh_2024_1363052 crossref_primary_10_1002_ccr3_7933 crossref_primary_10_1055_s_0044_1791783 crossref_primary_10_3390_s23114993 crossref_primary_10_5937_mp74_43594 crossref_primary_10_1038_s41416_024_02916_z crossref_primary_10_1177_19160216251326590 crossref_primary_10_2174_0118742106349183250131062154 crossref_primary_10_3390_ijerph182312390 crossref_primary_10_1002_2056_4538_12392 crossref_primary_10_1088_2057_1976_ad6dcd crossref_primary_10_1002_jmv_29080 crossref_primary_10_1038_s41415_024_8029_9 crossref_primary_10_30683_1929_2279_2025_14_01 crossref_primary_10_1097_SCS_0000000000010663 crossref_primary_10_1007_s00405_024_08722_w crossref_primary_10_1002_lio2_721 crossref_primary_10_1007_s12325_023_02527_9 crossref_primary_10_1007_s00521_023_08258_w crossref_primary_10_1002_lary_30781 crossref_primary_10_1016_j_oooo_2024_12_028 crossref_primary_10_3390_curroncol31090389 crossref_primary_10_1088_1361_6560_ac840f crossref_primary_10_3390_ph17101308 crossref_primary_10_1016_j_oor_2023_100035 crossref_primary_10_1016_j_soc_2024_04_002 crossref_primary_10_3390_diagnostics13142416 crossref_primary_10_1016_j_ejca_2022_05_003 crossref_primary_10_29328_journal_jro_1001044 crossref_primary_10_3389_froh_2021_794248 crossref_primary_10_2147_OARRR_S284763 crossref_primary_10_1038_s41598_025_86527_5 crossref_primary_10_1371_journal_pone_0273508 crossref_primary_10_3390_cancers16183156 crossref_primary_10_1007_s42600_022_00234_y crossref_primary_10_1016_j_apjon_2022_100133 crossref_primary_10_3390_cells12141916 crossref_primary_10_3390_molecules29133164 crossref_primary_10_1002_oto2_164 crossref_primary_10_1016_j_clon_2023_03_012 crossref_primary_10_1186_s12967_024_05067_0 crossref_primary_10_3390_cancers17050796 crossref_primary_10_1186_s12903_024_04347_x crossref_primary_10_3390_cancers14071815 crossref_primary_10_3390_diagnostics15010033 crossref_primary_10_1007_s12070_024_04776_8 crossref_primary_10_1615_CritRevOncog_2023047799 crossref_primary_10_3390_cancers13184600 crossref_primary_10_3390_cancers15205063 crossref_primary_10_1111_his_15067 crossref_primary_10_1002_lary_31243 crossref_primary_10_1002_ohn_391 crossref_primary_10_7759_cureus_44018 crossref_primary_10_25699_SSSB_2022_44_4_004 crossref_primary_10_1007_s11042_024_19398_z crossref_primary_10_1016_j_pathol_2023_10_002 crossref_primary_10_1007_s11033_024_09476_8 crossref_primary_10_1186_s44147_023_00355_w crossref_primary_10_7759_cureus_38317 crossref_primary_10_1017_S002221512400015X crossref_primary_10_3390_diagnostics13172736 crossref_primary_10_3390_diagnostics13162670 crossref_primary_10_1615_CritRevOncog_2023049134 crossref_primary_10_3389_frai_2024_1329737 crossref_primary_10_3390_cancers16213623 crossref_primary_10_3390_diagnostics11091526 crossref_primary_10_3389_fmolb_2024_1395721 crossref_primary_10_3390_a16090445 crossref_primary_10_1186_s40537_023_00703_w crossref_primary_10_1590_0100_3984_2021_54_6e2 crossref_primary_10_1016_j_compbiomed_2022_105991 crossref_primary_10_1097_MOO_0000000000000957 crossref_primary_10_1016_j_procs_2023_10_278 crossref_primary_10_2174_0118742106360500241226054719 crossref_primary_10_3390_jpm14040341 crossref_primary_10_1016_j_semcancer_2023_06_003 crossref_primary_10_4103_jmss_jmss_143_21 crossref_primary_10_5604_01_3001_0015_9501 crossref_primary_10_3390_ijerph20053894 crossref_primary_10_1016_j_oooo_2025_02_014 |
Cites_doi | 10.1016/j.micron.2011.09.016 10.1109/TMI.2016.2525803 10.1158/1078-0432.CCR-17-0906 10.1007/s11548-011-0669-y 10.1186/s40880-018-0325-9 10.1002/lary.27228 10.1007/s13402-014-0172-x 10.1117/1.JMI.4.3.034502 10.1007/s00432-018-02834-7 10.3390/cancers11111673 10.1177/0011000005285875 10.1007/s10278-012-9520-4 10.1186/s40644-016-0075-3 10.1016/j.tice.2018.06.004 10.1037/1040-3590.12.1.19 10.1146/annurev.pathol.4.110807.092158 10.1146/annurev-bioeng-071516-044442 10.1016/j.csbj.2014.11.005 10.1016/j.ultrasmedbio.2010.06.009 10.1371/journal.pone.0126760 10.1002/lary.27159 10.1364/BOE.9.005318 10.3174/ajnr.A5106 10.7150/thno.32655 10.1117/1.3516593 10.1016/j.compbiomed.2009.09.004 10.1097/RCT.0000000000000682 10.1007/s00330-017-5214-0 10.1001/jama.2017.14585 10.1038/nature14539 10.1117/1.JBO.22.6.060503 10.1016/j.media.2017.07.005 10.1016/j.oraloncology.2006.03.009 10.1016/j.canlet.2019.12.007 10.1016/j.oraloncology.2017.11.008 10.1158/1940-6207.CAPR-17-0054 10.1038/s41598-019-50313-x 10.1007/s10916-018-1052-0 10.3389/fonc.2019.01045 10.1017/S0022215116000360 10.3390/s120100162 10.1002/cncr.20482 10.1038/s41571-019-0252-y 10.3322/caac.21590 10.1117/1.JBO.22.8.086009 10.1016/j.oraloncology.2020.104885 10.1038/modpathol.2017.98 10.4414/smw.2014.14015 10.1038/s41598-017-12320-8 10.1037/11281-000 10.1371/journal.pone.0188717 10.1109/EMBC.2016.7590964 10.1109/ISBI.2018.8363645 10.1155/2017/8612519 10.1109/JBHI.2020.2991043 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2021 – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7RV 7TO 7U9 7X7 7XB 88E 8AO 8C1 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AN0 AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB0 LK8 M0S M1P M7P NAPCQ PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
DOI | 10.1038/s41416-021-01386-x |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) ProQuest Nursing and Allied Health Journals - PSU access expires 11/30/25. Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Proquest Health and Medical Complete ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland British Nursing Database (Proquest) ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Biological Sciences Health & Medical Collection (Alumni) Medical Database Biological Science Database Nursing & Allied Health Premium ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection AIDS and Cancer Research Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Public Health Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition British Nursing Index with Full Text ProQuest Nursing & Allied Health Source ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic ProQuest Central Student |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1532-1827 |
EndPage | 1940 |
ExternalDocumentID | PMC8184820 33875821 10_1038_s41416_021_01386_x |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: RCUK | Medical Research Council (MRC) grantid: MR/P015476/1 funderid: https://doi.org/10.13039/501100000265 – fundername: NMR was supported by the PathLAKE digital pathology consortium, which is funded from the Data to Early Diagnosis and Precision Medicine strand of the UK government’s Industrial Strategy Challenge Fund (award# 18181), managed and delivered by UK Research and Innovation (UKRI). – fundername: DH | National Institute for Health Research (NIHR) funderid: https://doi.org/10.13039/501100000272 – fundername: Alan Turing Institute funderid: https://doi.org/10.13039/100012338 – fundername: Sheffield Hospitals Charity (Sheffield Hospitals Charitable Trust) funderid: https://doi.org/10.13039/501100004876 – fundername: Medical Research Council grantid: MR/P015476/1 – fundername: Cancer Research UK grantid: 29674 – fundername: ; – fundername: ; grantid: MR/P015476/1 |
GroupedDBID | --- 0R~ 23N 36B 39C 4.4 406 53G 5GY 5RE 6J9 70F 7RV 7X7 88E 8AO 8C1 8FI 8FJ 8R4 8R5 AACDK AANZL AASML AATNV AAWTL AAYZH AAZLF ABAKF ABLJU ABOCM ABUWG ABZZP ACAOD ACGFO ACGFS ACKTT ACPRK ACRQY ACZOJ ADBBV ADFRT ADHDB AEFQL AEJRE AEMSY AENEX AEVLU AEXYK AFBBN AFKRA AFRAH AFSHS AGAYW AGHAI AGQEE AHMBA AHSBF AIGIU AILAN AJRNO ALFFA ALMA_UNASSIGNED_HOLDINGS AMYLF AN0 AOIJS ASPBG AVWKF AXYYD AZFZN BAWUL BBNVY BENPR BHPHI BKEYQ BKKNO BNQBC BPHCQ BVXVI C6C CCPQU CS3 DIK DNIVK DPUIP DU5 E3Z EAP EBLON EBS EE. EIOEI EMB ESX EX3 F5P FDQFY FEDTE FERAY FIGPU FRJ FSGXE FYUFA GX1 HCIFZ HMCUK HVGLF HYE HZ~ IH2 IWAJR JSO JZLTJ KQ8 M1P M7P NAPCQ NQJWS O9- OK1 P2P PQQKQ PROAC PSQYO Q2X RNT RNTTT ROL RPM SNX SNYQT SOHCF SOJ SRMVM SWTZT TAOOD TBHMF TDRGL TR2 UKHRP W2D WH7 WOW ~02 AAFWJ AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC AEZWR AFDZB AFHIU AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT -Q- .55 .GJ 8WZ A6W ABAWZ ABDBF ABRTQ ACUHS AI. B0M CAG CGR COF CUY CVF EAD EAS EBC EBD ECM EIF EJD EMK EMOBN EPL FIZPM J5H M41 NPM PJZUB PPXIY PQGLB SV3 TUS UDS VH1 X7M Y6R ZGI ~8M 3V. 7TO 7U9 7XB 8FE 8FH 8FK AZQEC DWQXO GNUQQ H94 K9. LK8 PKEHL PQEST PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c474t-158601f8188e1b7a13953ee8268282a50a7d449a1fe8ef53e351c3d3db2eeb6e3 |
IEDL.DBID | C6C |
ISSN | 0007-0920 1532-1827 |
IngestDate | Thu Aug 21 14:36:03 EDT 2025 Mon Jul 21 10:46:43 EDT 2025 Fri Jul 25 08:54:16 EDT 2025 Mon Jul 21 06:00:08 EDT 2025 Thu Apr 24 22:50:45 EDT 2025 Tue Jul 01 04:23:44 EDT 2025 Fri Feb 21 02:38:13 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c474t-158601f8188e1b7a13953ee8268282a50a7d449a1fe8ef53e351c3d3db2eeb6e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-7159-0368 |
OpenAccessLink | https://www.nature.com/articles/s41416-021-01386-x |
PMID | 33875821 |
PQID | 2537858238 |
PQPubID | 41855 |
PageCount | 7 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8184820 proquest_miscellaneous_2515684861 proquest_journals_2537858238 pubmed_primary_33875821 crossref_primary_10_1038_s41416_021_01386_x crossref_citationtrail_10_1038_s41416_021_01386_x springer_journals_10_1038_s41416_021_01386_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-06-08 |
PublicationDateYYYYMMDD | 2021-06-08 |
PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-08 day: 08 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | British journal of cancer |
PublicationTitleAbbrev | Br J Cancer |
PublicationTitleAlternate | Br J Cancer |
PublicationYear | 2021 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Siegel, Miller, Jemal (CR10) 2020; 70 Moccia, De Momi, Guarnaschelli, Savazzi, Laborai, Guastini (CR33) 2017; 4 Quang, Tran, Schwarz, Williams, Vigneswaran, Gillenwater (CR60) 2017; 10 Baik, Ye, Zhang, Poh, Rosin, MacAulay (CR51) 2014; 37 Muto, Nakane, Katada, Sano, Ohtsu, Esumi (CR2) 2004; 101 CR35 Mookiah, Shah, Chakraborty, Ray (CR53) 2011; 33 Ashizawa, Yoshimura, Johno, Inoue, Katoh, Funayama (CR47) 2017; 75 Fei, Lu, Wang, Zhang, Little, Patel (CR40) 2017; 22 Song, Sunny, Uthoff, Patrick, Suresh, Kolur (CR58) 2018; 9 Lu, Lewis, Dupont, Plummer, Janowczyk, Madabhushi (CR50) 2017; 30 Li, Jing, Ke, Li, Xia, He (CR30) 2018; 38 Al Ajmi, Forghani, Reinhold, Bayat, Forghani (CR37) 2018; 28 Zhang, Wu, Zheng, Su, Chen, Ma (CR32) 2019; 9 Shen, Wu, Suk (CR27) 2017; 19 Krishnan, Venkatraghavan, Acharya, Pal, Paul, Min (CR54) 2012; 43 CR6 CR5 LeCun, Bengio, Hinton (CR25) 2015; 521 Liu, Wang, Li (CR59) 2012; 12 Wu, Khong, Chan (CR29) 2012; 7 Ranjbar, Ning, Zwart, Wood, Weindling, Wu (CR36) 2018; 42 Sirinukunwattana, Raza, Tsang, Snead, Cree, Rajpoot (CR24) 2016; 35 Huang, Yang, Fong, Zhao (CR17) 2020; 471 Litjens, Kooi, Bejnordi, Setio, Ciompi, Ghafoorian (CR26) 2017; 42 CR43 Kourou, Exarchos, Exarchos, Karamouzis, Fotiadis (CR19) 2015; 13 Huang, Chan, Zhou (CR31) 2013; 26 Grove, Zald, Lebow, Snitz, Nelson (CR64) 2000; 12 Zormpas-Petridis, Failmezger, Raza, Roxanis, Jamin, Yuan (CR22) 2019; 9 Jeyaraj, Nadar (CR45) 2019; 145 Das, Bose, Maiti, Mitra, Mukherjee, Dutta (CR49) 2018; 53 Vogel, Thoeny (CR14) 2016; 16 CR15 Mehlum, Larsen, Kiss, Groentved, Kjaergaard, Möller (CR16) 2018; 128 Al-Ma’aitah, AlZubi (CR56) 2018; 42 CR57 CR12 Bray, Ferlay, Soerjomataram, Siegel, Torre, Jemal (CR11) 2018; 68 Siebers, Zenk, Bozzato, Klintworth, Iro, Ermert (CR38) 2010; 36 Lu, Little, Wang, Zhang, Patel, Griffith (CR42) 2017; 23 Bera, Schalper, Rimm, Velcheti, Madabhushi (CR21) 2019; 16 Wang, Yang, Rong, Zhan, Fujimoto, Liu (CR23) 2019; 11 Ægisdóttir, White, Spengler, Maugherman, Anderson, Cook (CR63) 2006; 34 Jemal, Bray, Center, Ferlay, Ward, Forman (CR9) 2011; 61 Halicek, Lu, Little, Wang, Patel, Griffith (CR41) 2017; 22 Ramkumar, Ranjbar, Ning, Lal, Zwart, Wood (CR39) 2017; 38 Roblyer, Kurachi, Stepanek, Schwarz, Williams, El-Naggar (CR46) 2010; 15 CR28 Krishnan, Pal, Bomminayuni, Chakraborty, Paul, Chatterjee (CR52) 2009; 39 Shaw, Beasley (CR3) 2016; 130 Pai, Westra (CR1) 2009; 4 Bejnordi, Veta, Van Diest, Van Ginneken, Karssemeijer, Litjens (CR18) 2017; 318 (CR4) 2010; 96 CR20 Mascharak, Baird, Holsinger (CR34) 2018; 128 CR62 CR61 Halicek, Shahedi, Little, Chen, Myers, Sumer (CR55) 2019; 9 Shotelersuk, Khorprasert, Sakdikul, Pornthanakasem, Voravud, Mutirangura (CR8) 2000; 6 Liu, Li, Liu, Liu, Khawar, Zhang (CR48) 2015; 10 Mahmood, Shaban, Indave, Santos-Silva, Rajpoot, Khurram (CR44) 2020; 110 Papillomaviruses (CR7) 2011 Kujan, Khattab, Oliver, Roberts, Thakker, Sloan (CR13) 2007; 43 H Mahmood (1386_CR44) 2020; 110 PR Jeyaraj (1386_CR45) 2019; 145 M Halicek (1386_CR41) 2017; 22 J Baik (1386_CR51) 2014; 37 1386_CR35 S Ranjbar (1386_CR36) 2018; 42 H Papillomaviruses (1386_CR7) 2011 M Al-Ma’aitah (1386_CR56) 2018; 42 S Mascharak (1386_CR34) 2018; 128 R Shaw (1386_CR3) 2016; 130 CS Mehlum (1386_CR16) 2018; 128 K Kourou (1386_CR19) 2015; 13 B Song (1386_CR58) 2018; 9 K Shotelersuk (1386_CR8) 2000; 6 D Shen (1386_CR27) 2017; 19 G Lu (1386_CR42) 2017; 23 K Bera (1386_CR21) 2019; 16 DM Roblyer (1386_CR46) 2010; 15 B Fei (1386_CR40) 2017; 22 S Wang (1386_CR23) 2019; 11 1386_CR6 K Sirinukunwattana (1386_CR24) 2016; 35 M Muto (1386_CR2) 2004; 101 1386_CR5 S Huang (1386_CR17) 2020; 471 WM Grove (1386_CR64) 2000; 12 W Huang (1386_CR31) 2013; 26 K Ashizawa (1386_CR47) 2017; 75 S Ramkumar (1386_CR39) 2017; 38 S Siebers (1386_CR38) 2010; 36 DK Das (1386_CR49) 2018; 53 F Bray (1386_CR11) 2018; 68 1386_CR43 MM Krishnan (1386_CR54) 2012; 43 1386_CR15 S Moccia (1386_CR33) 2017; 4 1386_CR57 M Halicek (1386_CR55) 2019; 9 A Jemal (1386_CR9) 2011; 61 C Lu (1386_CR50) 2017; 30 Z Liu (1386_CR59) 2012; 12 IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. (1386_CR4) 2010; 96 G Litjens (1386_CR26) 2017; 42 SI Pai (1386_CR1) 2009; 4 Y Liu (1386_CR48) 2015; 10 1386_CR12 Y LeCun (1386_CR25) 2015; 521 O Kujan (1386_CR13) 2007; 43 DW Vogel (1386_CR14) 2016; 16 MM Krishnan (1386_CR52) 2009; 39 1386_CR28 B Wu (1386_CR29) 2012; 7 E Al Ajmi (1386_CR37) 2018; 28 L Zhang (1386_CR32) 2019; 9 MR Mookiah (1386_CR53) 2011; 33 RL Siegel (1386_CR10) 2020; 70 C Li (1386_CR30) 2018; 38 T Quang (1386_CR60) 2017; 10 1386_CR62 1386_CR61 BE Bejnordi (1386_CR18) 2017; 318 S Ægisdóttir (1386_CR63) 2006; 34 1386_CR20 K Zormpas-Petridis (1386_CR22) 2019; 9 |
References_xml | – volume: 43 start-page: 352 year: 2012 end-page: 364 ident: CR54 article-title: Automated oral cancer identification using histopathological images: a hybrid feature extraction paradigm publication-title: Micron doi: 10.1016/j.micron.2011.09.016 – volume: 61 start-page: 69 year: 2011 end-page: 90 ident: CR9 article-title: Global cancer statistics publication-title: CA: Cancer J. Clin. – volume: 35 start-page: 1196 year: 2016 end-page: 1206 ident: CR24 article-title: Locality sensitive deep learning for detection and classification of nuclei in routine colon cancer histology images publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2016.2525803 – volume: 23 start-page: 5426 year: 2017 end-page: 5436 ident: CR42 article-title: Detection of head and neck cancer in surgical specimens using quantitative hyperspectral imaging publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-17-0906 – volume: 7 start-page: 635 year: 2012 end-page: 646 ident: CR29 article-title: Automatic detection and classification of nasopharyngeal carcinoma on PET/CT with support vector machine publication-title: Int. J. Computer Assist. Radiol. Surg. doi: 10.1007/s11548-011-0669-y – volume: 38 start-page: 1 year: 2018 end-page: 1 ident: CR30 article-title: Development and validation of an endoscopic images‐based deep learning model for detection with nasopharyngeal malignancies publication-title: Cancer Commun. doi: 10.1186/s40880-018-0325-9 – year: 2011 ident: CR7 publication-title: IARC Monographs on the Evaluation of Carcinogenic Risks to Humans – ident: CR12 – volume: 128 start-page: 2375 year: 2018 end-page: 2379 ident: CR16 article-title: Laryngeal precursor lesions: Interrater and intrarater reliability of histopathological assessment publication-title: Laryngoscope doi: 10.1002/lary.27228 – volume: 37 start-page: 193 year: 2014 end-page: 202 ident: CR51 article-title: Automated classification of oral premalignant lesions using image cytometry and random forests-based algorithms publication-title: Cell. Oncol. doi: 10.1007/s13402-014-0172-x – volume: 33 start-page: 158 year: 2011 end-page: 168 ident: CR53 article-title: Brownian motion curve-based textural classification and its application in cancer diagnosis publication-title: Anal. Quant. Cytol. Histol. – volume: 4 start-page: 034502 year: 2017 ident: CR33 article-title: Confident texture-based laryngeal tissue classification for early stage diagnosis support publication-title: J. Med. Imaging doi: 10.1117/1.JMI.4.3.034502 – volume: 145 start-page: 829 year: 2019 end-page: 837 ident: CR45 article-title: Computer-assisted medical image classification for early diagnosis of oral cancer employing deep learning algorithm publication-title: J. Cancer Res. Clin. Oncol. doi: 10.1007/s00432-018-02834-7 – volume: 11 start-page: 1673 year: 2019 ident: CR23 article-title: Artificial intelligence in lung cancer pathology image analysis publication-title: Cancers doi: 10.3390/cancers11111673 – ident: CR35 – volume: 34 start-page: 341 year: 2006 end-page: 382 ident: CR63 article-title: The meta-analysis of clinical judgment project: fifty-six years of accumulated research on clinical versus statistical prediction publication-title: Counseling Psychologist doi: 10.1177/0011000005285875 – ident: CR61 – volume: 26 start-page: 472 year: 2013 end-page: 482 ident: CR31 article-title: Region-based nasopharyngeal carcinoma lesion segmentation from MRI using clustering-and classification-based methods with learning publication-title: J. Digital Imaging doi: 10.1007/s10278-012-9520-4 – volume: 16 year: 2016 ident: CR14 article-title: Cross-sectional imaging in cancers of the head and neck: how we review and report publication-title: Cancer Imaging doi: 10.1186/s40644-016-0075-3 – volume: 53 start-page: 111 year: 2018 end-page: 119 ident: CR49 article-title: Automatic identification of clinically relevant regions from oral tissue histological images for oral squamous cell carcinoma diagnosis publication-title: Tissue Cell doi: 10.1016/j.tice.2018.06.004 – volume: 12 start-page: 19 year: 2000 ident: CR64 article-title: Clinical versus mechanical prediction: a meta-analysis publication-title: Psychol. Assess. doi: 10.1037/1040-3590.12.1.19 – volume: 4 start-page: 49 year: 2009 end-page: 70 ident: CR1 article-title: Molecular pathology of head and neck cancer: implications for diagnosis, prognosis, and treatment publication-title: Annu. Rev. Pathol.: Mechanisms Dis. doi: 10.1146/annurev.pathol.4.110807.092158 – volume: 19 start-page: 221 year: 2017 end-page: 248 ident: CR27 article-title: Deep learning in medical image analysis publication-title: Annu. Rev. Biomed. Eng. doi: 10.1146/annurev-bioeng-071516-044442 – volume: 13 start-page: 8 year: 2015 end-page: 17 ident: CR19 article-title: Machine learning applications in cancer prognosis and prediction publication-title: Comput. Struct. Biotechnol. J. doi: 10.1016/j.csbj.2014.11.005 – volume: 36 start-page: 1525 year: 2010 end-page: 1534 ident: CR38 article-title: Computer aided diagnosis of parotid gland lesions using ultrasonic multi-feature tissue characterization publication-title: Ultrasound Med. Biol. doi: 10.1016/j.ultrasmedbio.2010.06.009 – volume: 10 start-page: e0126760 year: 2015 ident: CR48 article-title: Quantitative risk stratification of oral leukoplakia with exfoliative cytology publication-title: PLoS ONE doi: 10.1371/journal.pone.0126760 – volume: 128 start-page: 2514 year: 2018 end-page: 2520 ident: CR34 article-title: Detecting oropharyngeal carcinoma using multispectral, narrow‐band imaging and machine learning publication-title: Laryngoscope doi: 10.1002/lary.27159 – volume: 9 start-page: 5318 year: 2018 end-page: 5329 ident: CR58 article-title: Automatic classification of dual-modalilty, smartphone-based oral dysplasia and malignancy images using deep learning publication-title: Biomed. Opt. Express doi: 10.1364/BOE.9.005318 – volume: 38 start-page: 1019 year: 2017 end-page: 1025 ident: CR39 article-title: MRI-based texture analysis to differentiate sinonasal squamous cell carcinoma from inverted papilloma publication-title: Am. J. Neuroradiol. doi: 10.3174/ajnr.A5106 – volume: 9 start-page: 2541 year: 2019 ident: CR32 article-title: Rapid histology of laryngeal squamous cell carcinoma with deep-learning based stimulated Raman scattering microscopy publication-title: Theranostics doi: 10.7150/thno.32655 – ident: CR15 – volume: 6 start-page: 1046 year: 2000 end-page: 1051 ident: CR8 article-title: Epstein-Barr virus DNA in serum/plasma as a tumor marker for nasopharyngeal cancer publication-title: Clin. Cancer Res. – ident: CR57 – volume: 15 start-page: 066017 year: 2010 ident: CR46 article-title: Comparison of multispectral wide-field optical imaging modalities to maximize image contrast for objective discrimination of oral neoplasia publication-title: J. Biomed. Opt. doi: 10.1117/1.3516593 – volume: 39 start-page: 1096 year: 2009 end-page: 1104 ident: CR52 article-title: Automated classification of cells in sub-epithelial connective tissue of oral sub-mucous fibrosis—an SVM based approach publication-title: Computers Biol. Med. doi: 10.1016/j.compbiomed.2009.09.004 – volume: 42 start-page: 299 year: 2018 end-page: 305 ident: CR36 article-title: Computed tomography-based texture analysis to determine human papillomavirus status of oropharyngeal squamous cell carcinoma publication-title: J. computer Assist. Tomogr. doi: 10.1097/RCT.0000000000000682 – volume: 28 start-page: 2604 year: 2018 end-page: 2611 ident: CR37 article-title: Spectral multi-energy CT texture analysis with machine learning for tissue classification: an investigation using classification of benign parotid tumours as a testing paradigm publication-title: Eur. Radiol. doi: 10.1007/s00330-017-5214-0 – volume: 318 start-page: 2199 year: 2017 end-page: 2210 ident: CR18 article-title: Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer publication-title: J. Am. Med. Assoc. doi: 10.1001/jama.2017.14585 – ident: CR5 – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: CR25 article-title: Deep learning publication-title: nature doi: 10.1038/nature14539 – ident: CR43 – volume: 68 start-page: 394 year: 2018 end-page: 424 ident: CR11 article-title: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries publication-title: CA: Cancer J. Clin. – volume: 22 start-page: 060503 year: 2017 ident: CR41 article-title: Deep convolutional neural networks for classifying head and neck cancer using hyperspectral imaging publication-title: J. Biomed. Opt. doi: 10.1117/1.JBO.22.6.060503 – volume: 42 start-page: 60 year: 2017 end-page: 88 ident: CR26 article-title: A survey on deep learning in medical image analysis publication-title: Med. image Anal. doi: 10.1016/j.media.2017.07.005 – volume: 43 start-page: 224 year: 2007 end-page: 231 ident: CR13 article-title: Why oral histopathology suffers inter-observer variability on grading oral epithelial dysplasia: an attempt to understand the sources of variation publication-title: Oral. Oncol. doi: 10.1016/j.oraloncology.2006.03.009 – volume: 471 start-page: 61 year: 2020 end-page: 71 ident: CR17 article-title: Artificial intelligence in cancer diagnosis and prognosis: opportunities and challenges publication-title: Cancer Lett. doi: 10.1016/j.canlet.2019.12.007 – volume: 75 start-page: 111 year: 2017 end-page: 119 ident: CR47 article-title: Construction of mass spectra database and diagnosis algorithm for head and neck squamous cell carcinoma publication-title: Oral. Oncol. doi: 10.1016/j.oraloncology.2017.11.008 – volume: 10 start-page: 563 year: 2017 end-page: 570 ident: CR60 article-title: Prospective evaluation of multimodal optical imaging with automated image analysis to detect oral neoplasia in vivo publication-title: Cancer Prev. Res. doi: 10.1158/1940-6207.CAPR-17-0054 – volume: 9 start-page: 1 year: 2019 end-page: 1 ident: CR55 article-title: Head and neck cancer detection in digitized whole-slide histology using convolutional neural networks publication-title: Sci. Rep. doi: 10.1038/s41598-019-50313-x – ident: CR6 – volume: 42 year: 2018 ident: CR56 article-title: Enhanced computational model for gravitational search optimized echo state neural networks based oral cancer detection publication-title: J. Med. Syst. doi: 10.1007/s10916-018-1052-0 – volume: 9 start-page: 1045 year: 2019 ident: CR22 article-title: Superpixel-based conditional random fields (SuperCRF): incorporating global and local context for enhanced deep learning in melanoma histopathology publication-title: Front. Oncol. doi: 10.3389/fonc.2019.01045 – volume: 130 start-page: S9 year: 2016 end-page: S12 ident: CR3 article-title: Aetiology and risk factors for head and neck cancer: United Kingdom National Multidisciplinary Guidelines publication-title: J. Laryngol. Otol. doi: 10.1017/S0022215116000360 – volume: 12 start-page: 162 year: 2012 end-page: 174 ident: CR59 article-title: Tongue tumor detection in medical hyperspectral images publication-title: Sensors doi: 10.3390/s120100162 – volume: 96 start-page: 3 year: 2010 ident: CR4 article-title: Alcohol consumption and ethyl carbamate publication-title: IARC Monogr. Evaluation Carcinogenic Risks Hum. – volume: 101 start-page: 1375 year: 2004 end-page: 1381 ident: CR2 article-title: Squamous cell carcinoma in situ at oropharyngeal and hypopharyngeal mucosal sites publication-title: Cancer: Interdisciplinary Int. J. Am. Cancer Soc. doi: 10.1002/cncr.20482 – volume: 16 start-page: 703 year: 2019 end-page: 715 ident: CR21 article-title: Artificial intelligence in digital pathology—new tools for diagnosis and precision oncology publication-title: Nat. Rev. Clin. Oncol. doi: 10.1038/s41571-019-0252-y – volume: 70 start-page: 7 year: 2020 ident: CR10 article-title: Cancer statistics, 2020 publication-title: CA Cancer J. Clin. doi: 10.3322/caac.21590 – volume: 22 start-page: 086009 year: 2017 ident: CR40 article-title: Label-free reflectance hyperspectral imaging for tumor margin assessment: a pilot study on surgical specimens of cancer patients publication-title: J. Biomed. Opt. doi: 10.1117/1.JBO.22.8.086009 – volume: 110 start-page: 104885 year: 2020 ident: CR44 article-title: Use of artificial intelligence in diagnosis of head and neck precancerous and cancerous lesions: a systematic review publication-title: Oral. Oncol. doi: 10.1016/j.oraloncology.2020.104885 – ident: CR28 – ident: CR62 – volume: 30 start-page: 1655 year: 2017 end-page: 1665 ident: CR50 article-title: An oral cavity squamous cell carcinoma quantitative histomorphometric-based image classifier of nuclear morphology can risk stratify patients for disease-specific survival publication-title: Mod. Pathol. doi: 10.1038/modpathol.2017.98 – ident: CR20 – volume: 11 start-page: 1673 year: 2019 ident: 1386_CR23 publication-title: Cancers doi: 10.3390/cancers11111673 – volume: 38 start-page: 1 year: 2018 ident: 1386_CR30 publication-title: Cancer Commun. doi: 10.1186/s40880-018-0325-9 – volume: 101 start-page: 1375 year: 2004 ident: 1386_CR2 publication-title: Cancer: Interdisciplinary Int. J. Am. Cancer Soc. doi: 10.1002/cncr.20482 – volume: 9 start-page: 2541 year: 2019 ident: 1386_CR32 publication-title: Theranostics doi: 10.7150/thno.32655 – volume: 145 start-page: 829 year: 2019 ident: 1386_CR45 publication-title: J. Cancer Res. Clin. Oncol. doi: 10.1007/s00432-018-02834-7 – volume: 130 start-page: S9 year: 2016 ident: 1386_CR3 publication-title: J. Laryngol. Otol. doi: 10.1017/S0022215116000360 – volume: 521 start-page: 436 year: 2015 ident: 1386_CR25 publication-title: nature doi: 10.1038/nature14539 – ident: 1386_CR12 – volume: 34 start-page: 341 year: 2006 ident: 1386_CR63 publication-title: Counseling Psychologist doi: 10.1177/0011000005285875 – volume: 68 start-page: 394 year: 2018 ident: 1386_CR11 publication-title: CA: Cancer J. Clin. – ident: 1386_CR15 doi: 10.4414/smw.2014.14015 – volume: 7 start-page: 635 year: 2012 ident: 1386_CR29 publication-title: Int. J. Computer Assist. Radiol. Surg. doi: 10.1007/s11548-011-0669-y – ident: 1386_CR57 doi: 10.1038/s41598-017-12320-8 – volume: 23 start-page: 5426 year: 2017 ident: 1386_CR42 publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-17-0906 – volume: 15 start-page: 066017 year: 2010 ident: 1386_CR46 publication-title: J. Biomed. Opt. doi: 10.1117/1.3516593 – volume: 9 start-page: 1 year: 2019 ident: 1386_CR55 publication-title: Sci. Rep. doi: 10.1038/s41598-019-50313-x – volume: 110 start-page: 104885 year: 2020 ident: 1386_CR44 publication-title: Oral. Oncol. doi: 10.1016/j.oraloncology.2020.104885 – volume: 30 start-page: 1655 year: 2017 ident: 1386_CR50 publication-title: Mod. Pathol. doi: 10.1038/modpathol.2017.98 – ident: 1386_CR6 – volume: 16 year: 2016 ident: 1386_CR14 publication-title: Cancer Imaging doi: 10.1186/s40644-016-0075-3 – volume: 13 start-page: 8 year: 2015 ident: 1386_CR19 publication-title: Comput. Struct. Biotechnol. J. doi: 10.1016/j.csbj.2014.11.005 – volume: 35 start-page: 1196 year: 2016 ident: 1386_CR24 publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2016.2525803 – volume: 39 start-page: 1096 year: 2009 ident: 1386_CR52 publication-title: Computers Biol. Med. doi: 10.1016/j.compbiomed.2009.09.004 – volume: 26 start-page: 472 year: 2013 ident: 1386_CR31 publication-title: J. Digital Imaging doi: 10.1007/s10278-012-9520-4 – volume: 42 year: 2018 ident: 1386_CR56 publication-title: J. Med. Syst. doi: 10.1007/s10916-018-1052-0 – ident: 1386_CR62 doi: 10.1037/11281-000 – volume: 16 start-page: 703 year: 2019 ident: 1386_CR21 publication-title: Nat. Rev. Clin. Oncol. doi: 10.1038/s41571-019-0252-y – volume: 6 start-page: 1046 year: 2000 ident: 1386_CR8 publication-title: Clin. Cancer Res. – volume: 128 start-page: 2514 year: 2018 ident: 1386_CR34 publication-title: Laryngoscope doi: 10.1002/lary.27159 – ident: 1386_CR35 doi: 10.1371/journal.pone.0188717 – volume: 43 start-page: 352 year: 2012 ident: 1386_CR54 publication-title: Micron doi: 10.1016/j.micron.2011.09.016 – volume: 42 start-page: 60 year: 2017 ident: 1386_CR26 publication-title: Med. image Anal. doi: 10.1016/j.media.2017.07.005 – ident: 1386_CR61 doi: 10.1109/EMBC.2016.7590964 – volume: 43 start-page: 224 year: 2007 ident: 1386_CR13 publication-title: Oral. Oncol. doi: 10.1016/j.oraloncology.2006.03.009 – volume: 318 start-page: 2199 year: 2017 ident: 1386_CR18 publication-title: J. Am. Med. Assoc. doi: 10.1001/jama.2017.14585 – volume: 36 start-page: 1525 year: 2010 ident: 1386_CR38 publication-title: Ultrasound Med. Biol. doi: 10.1016/j.ultrasmedbio.2010.06.009 – volume: 22 start-page: 086009 year: 2017 ident: 1386_CR40 publication-title: J. Biomed. Opt. doi: 10.1117/1.JBO.22.8.086009 – volume: 471 start-page: 61 year: 2020 ident: 1386_CR17 publication-title: Cancer Lett. doi: 10.1016/j.canlet.2019.12.007 – ident: 1386_CR5 – volume: 61 start-page: 69 year: 2011 ident: 1386_CR9 publication-title: CA: Cancer J. Clin. – volume: 75 start-page: 111 year: 2017 ident: 1386_CR47 publication-title: Oral. Oncol. doi: 10.1016/j.oraloncology.2017.11.008 – volume: 53 start-page: 111 year: 2018 ident: 1386_CR49 publication-title: Tissue Cell doi: 10.1016/j.tice.2018.06.004 – volume: 12 start-page: 19 year: 2000 ident: 1386_CR64 publication-title: Psychol. Assess. doi: 10.1037/1040-3590.12.1.19 – volume: 9 start-page: 5318 year: 2018 ident: 1386_CR58 publication-title: Biomed. Opt. Express doi: 10.1364/BOE.9.005318 – volume: 19 start-page: 221 year: 2017 ident: 1386_CR27 publication-title: Annu. Rev. Biomed. Eng. doi: 10.1146/annurev-bioeng-071516-044442 – ident: 1386_CR20 doi: 10.1109/ISBI.2018.8363645 – volume-title: IARC Monographs on the Evaluation of Carcinogenic Risks to Humans year: 2011 ident: 1386_CR7 – volume: 22 start-page: 060503 year: 2017 ident: 1386_CR41 publication-title: J. Biomed. Opt. doi: 10.1117/1.JBO.22.6.060503 – volume: 70 start-page: 7 year: 2020 ident: 1386_CR10 publication-title: CA Cancer J. Clin. doi: 10.3322/caac.21590 – volume: 28 start-page: 2604 year: 2018 ident: 1386_CR37 publication-title: Eur. Radiol. doi: 10.1007/s00330-017-5214-0 – volume: 33 start-page: 158 year: 2011 ident: 1386_CR53 publication-title: Anal. Quant. Cytol. Histol. – volume: 96 start-page: 3 year: 2010 ident: 1386_CR4 publication-title: IARC Monogr. Evaluation Carcinogenic Risks Hum. – volume: 128 start-page: 2375 year: 2018 ident: 1386_CR16 publication-title: Laryngoscope doi: 10.1002/lary.27228 – volume: 12 start-page: 162 year: 2012 ident: 1386_CR59 publication-title: Sensors doi: 10.3390/s120100162 – volume: 9 start-page: 1045 year: 2019 ident: 1386_CR22 publication-title: Front. Oncol. doi: 10.3389/fonc.2019.01045 – volume: 42 start-page: 299 year: 2018 ident: 1386_CR36 publication-title: J. computer Assist. Tomogr. doi: 10.1097/RCT.0000000000000682 – ident: 1386_CR43 doi: 10.1155/2017/8612519 – volume: 10 start-page: e0126760 year: 2015 ident: 1386_CR48 publication-title: PLoS ONE doi: 10.1371/journal.pone.0126760 – volume: 37 start-page: 193 year: 2014 ident: 1386_CR51 publication-title: Cell. Oncol. doi: 10.1007/s13402-014-0172-x – volume: 4 start-page: 49 year: 2009 ident: 1386_CR1 publication-title: Annu. Rev. Pathol.: Mechanisms Dis. doi: 10.1146/annurev.pathol.4.110807.092158 – ident: 1386_CR28 doi: 10.1109/JBHI.2020.2991043 – volume: 38 start-page: 1019 year: 2017 ident: 1386_CR39 publication-title: Am. J. Neuroradiol. doi: 10.3174/ajnr.A5106 – volume: 4 start-page: 034502 year: 2017 ident: 1386_CR33 publication-title: J. Med. Imaging doi: 10.1117/1.JMI.4.3.034502 – volume: 10 start-page: 563 year: 2017 ident: 1386_CR60 publication-title: Cancer Prev. Res. doi: 10.1158/1940-6207.CAPR-17-0054 |
SSID | ssj0009087 |
Score | 2.6085918 |
SecondaryResourceType | review_article |
Snippet | Background
This paper reviews recent literature employing Artificial Intelligence/Machine Learning (AI/ML) methods for diagnostic evaluation of head and neck... This paper reviews recent literature employing Artificial Intelligence/Machine Learning (AI/ML) methods for diagnostic evaluation of head and neck cancers... BackgroundThis paper reviews recent literature employing Artificial Intelligence/Machine Learning (AI/ML) methods for diagnostic evaluation of head and neck... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1934 |
SubjectTerms | 631/67/1536 692/4028/67/1536 Artificial Intelligence Biomedical and Life Sciences Biomedicine Cancer Research Deep learning Drug Resistance Epidemiology Head & neck cancer Head and Neck Neoplasms - diagnosis Head and Neck Neoplasms - pathology Humans Image processing Image Processing, Computer-Assisted - methods Larynx Learning algorithms Machine Learning Medical diagnosis Medical Oncology - methods Medical Oncology - trends Molecular Medicine Nasopharynx Oncology Oral cavity Oropharynx Pattern Recognition, Automated Reviews Salivary gland |
SummonAdditionalLinks | – databaseName: Proquest Health and Medical Complete dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9wwDLfYIaG9TIyPrcCmTOINItomaXK8IDTtxJDYE0j3VqVJKk5MPUYPiT8fu83dcaDx7FRpbCe2Y-dngEOd5sPC-5orEQyXyufchqC5RWseTGa96rpEXP0pLm7k5ViN44VbG8sq52did1D7qaM78pNcCW2UQQtzdv-PU9coyq7GFhofYJ2gy0ir9VgvQXdT02Nm0nXcME_jo5lUmJNWZuiKcCpQoFxdwZ9WDdMbb_Nt0eSrzGlnkEab8Cl6kuy8F_1nWAvNFmxcxVz5NlwTpceHYL9fAG9yMlye9a2jWzZpGJ7HntnGsya4O-ZIDx6Y72vwJu0pkhgVehKDduBm9Ov65wWPPRS4k1rOeKYMhlw1mmUTskpbdPhQKgGDCgy1cqtSq72UQ5vVwYQaSUJlTnjhqzyEqghiFwbNtAlfgRU6Vak3UhS-kM55mzp0V6raS2WczKsEsjkDSxcBxqnPxd-yS3QLU_ZML5HpZcf08imBo8U39z28xrujD-ZyKeNWa8ulYiTwY0HGTUKZD9uE6SONwTDVSFNkCXzpxbiYDmN0Ta-FE9ArAl4MIADuVUozue2AuJGrEj2oBI7nqrD8rf-vYu_9VezDx7xTS9ROcwCD2cNj-IaOz6z63mn3MwHq_r8 priority: 102 providerName: ProQuest |
Title | Artificial Intelligence-based methods in head and neck cancer diagnosis: an overview |
URI | https://link.springer.com/article/10.1038/s41416-021-01386-x https://www.ncbi.nlm.nih.gov/pubmed/33875821 https://www.proquest.com/docview/2537858238 https://www.proquest.com/docview/2515684861 https://pubmed.ncbi.nlm.nih.gov/PMC8184820 |
Volume | 124 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED-6FsZexrpPb23QYG-bmPWt7K0JDd2gYYwW8mZkSWahwx1NCvvzd5LttGm3wV7sh5Nt-U7y_c53-gngnSn5WIfQUCWipVIFTl2Mhjr05tEyF1TeJeJ0rk_O5ZeFWuwAH9bC5KL9TGmZP9NDddjHlWQIHWgqKEi5NU0RN-4l6vYUcE319IZot7QdT2b6BTfmZb9QphT2D_fYdkb3EOb9Qsk72dLshGZP4HGPHslR19992IntU3h42ufHn8FZknScEOTzLbJNmpxVIN120SuybAl-gwNxbSBt9BfEJ9tfkdDV3S1Xn1BEUnFnShw8h_PZ8dn0hPb7JlAvjVxTpiyGWQ26YhtZbRyCPLRExEACwyvuVOlMkHLsWBNtbFAkFPMiiFDzGGsdxQvYbS_b-AqINqUqg5VCBy29D670CFHqJkhlveR1AWxQYOV7UvG0t8WPKie3ha06pVeo9CorvfpVwPvNNT87So1_tj4Y7FL102tVcSWMVRbhRgFvN2KcGCnb4dp4eZ3aYGhqpdWsgJedGTePw7jcpBXCBZgtA28aJNLtbUm7_J7Jt1GrElFTAR-GoXDTrb-_xev_a_4GHvE8THG02gPYXV9dx0MEP-t6BA_MwuDRTtkI9o5mk8kcz5Pj-ddvozwTfgP_DwHA |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9QwDLfGkIAXxOcoDAgSPEG0Nh9tDgkhNJju2G5PN2lvIU1S7TTUG-tN2_4p_kacpr3jmNjbnp22qf1LbMeODfC2SNkgd66ikntFhXSMGu8LalCbe5UZJ9suEeP9fHggvh_KwzX43d-FCWmV_Z7YbtRuZsMZ-RaTvFBSoYb5fPKLhq5RIbrat9CIsNj1l-fosjWfRl9Rvu8Y2_k22R7SrqsAtaIQc5pJhU5IhYpK-awsDJpAOE-PZjY6H8zI1BROiIHJKq98hSQuM8sddyXzvsw9x_fegtuC49IMN9O3lyklg1TFGp3h-G_A0u6STsrVViMyNH1oSIgIscGcXqwqwivW7dUkzX8ita0C3HkA9zvLlXyJUHsIa75-BHfGXWz-MUwCJdajIKO_Cn3SoCgdia2qGzKtCe7_jpjakdrbY2ID7k6Jizl_0-YjkkhILA0CeQIHN8Ldp7Bez2r_DEhepDJ1SvDc5cJaZ1KL5lFZOSGVFaxMIOsZqG1X0Dz01fip28A6VzoyXSPTdct0fZHA-8UzJ7Gcx7WjN3u56G5pN3oJxATeLMi4KEOkxdR-dhbGoFushMqzBDaiGBef4xxdRMWQUqwIeDEgFPxepdTTo7bwN3JVoMWWwIceCstp_f8vnl__F6_h7nAy3tN7o_3dF3CPtRBFpKpNWJ-fnvmXaHTNy1ct0gn8uOml9QeYjTr1 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1db9QwzBpDmnhBfFMYECR4gmhtPpocEkJo47RjbOJhk_YW0iQVJ1BvrDcx_hq_Dqdp7zgm9rZnp63rj9iOHRvghcrZqPS-ppIHTYX0jNoQFLVozYMurJfdlIj9g3L3SHw8lsdr8Hu4CxPLKoc9sduo_czFM_ItJrnSUqOF2ar7sojPO-N3Jz9onCAVM63DOI0kInvh108M39q3kx3k9UvGxh8Ot3dpP2GAOqHEnBZSY0BSo9HSoaiURXcIcQ7ocmMgwqzMrfJCjGxRBx1qBHFZOO65r1gIVRk4vvcaXFeIWtQxvb0sLxnlOvXrjEeBI5b3F3ZyxL8VBbpBNBZHxDxhSc9XjeIFT_diweY_WdvOGI5vwc3eiyXvk9jdhrXQ3IGN_T5PfxcOIyT1piCTv5p-0mg0PUljq1sybQjaAk9s40kT3DfiogyeEp_q_6btGwSRWGQamXMPjq6EuvdhvZk14SGQUuUy91rw0pfCOW9zh65SVXshtROsyqAYCGhc39w8ztj4brokO9cmEd0g0U1HdHOewavFMyeptcelqzcHvphezVuzFMoMni_AqKAx62KbMDuLazBE1kKXRQYPEhsXn-Mcw0XNEKJWGLxYEJt_r0Ka6deuCThSVaD3lsHrQRSWaP3_Lx5d_hfPYAOVynyaHOw9hhusk1AUVL0J6_PTs_AE_a959bQTdAJfrlqz_gBjcz8r |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+Intelligence-based+methods+in+head+and+neck+cancer+diagnosis%3A+an+overview&rft.jtitle=British+journal+of+cancer&rft.au=Mahmood%2C+Hanya&rft.au=Shaban%2C+Muhammad&rft.au=Rajpoot%2C+Nasir&rft.au=Khurram%2C+Syed+A&rft.date=2021-06-08&rft.issn=1532-1827&rft.eissn=1532-1827&rft.volume=124&rft.issue=12&rft.spage=1934&rft_id=info:doi/10.1038%2Fs41416-021-01386-x&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0007-0920&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0007-0920&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0007-0920&client=summon |