Artificial Intelligence-based methods in head and neck cancer diagnosis: an overview

Background This paper reviews recent literature employing Artificial Intelligence/Machine Learning (AI/ML) methods for diagnostic evaluation of head and neck cancers (HNC) using automated image analysis. Methods Electronic database searches using MEDLINE via OVID, EMBASE and Google Scholar were cond...

Full description

Saved in:
Bibliographic Details
Published inBritish journal of cancer Vol. 124; no. 12; pp. 1934 - 1940
Main Authors Mahmood, Hanya, Shaban, Muhammad, Rajpoot, Nasir, Khurram, Syed A.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 08.06.2021
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Background This paper reviews recent literature employing Artificial Intelligence/Machine Learning (AI/ML) methods for diagnostic evaluation of head and neck cancers (HNC) using automated image analysis. Methods Electronic database searches using MEDLINE via OVID, EMBASE and Google Scholar were conducted to retrieve articles using AI/ML for diagnostic evaluation of HNC (2009–2020). No restrictions were placed on the AI/ML method or imaging modality used. Results In total, 32 articles were identified. HNC sites included oral cavity ( n  = 16), nasopharynx ( n  = 3), oropharynx ( n  = 3), larynx ( n  = 2), salivary glands ( n  = 2), sinonasal ( n  = 1) and in five studies multiple sites were studied. Imaging modalities included histological ( n  = 9), radiological ( n  = 8), hyperspectral ( n  = 6), endoscopic/clinical ( n  = 5), infrared thermal ( n  = 1) and optical ( n  = 1). Clinicopathologic/genomic data were used in two studies. Traditional ML methods were employed in 22 studies (69%), deep learning (DL) in eight studies (25%) and a combination of these methods in two studies (6%). Conclusions There is an increasing volume of studies exploring the role of AI/ML to aid HNC detection using a range of imaging modalities. These methods can achieve high degrees of accuracy that can exceed the abilities of human judgement in making data predictions. Large-scale multi-centric prospective studies are required to aid deployment into clinical practice.
AbstractList This paper reviews recent literature employing Artificial Intelligence/Machine Learning (AI/ML) methods for diagnostic evaluation of head and neck cancers (HNC) using automated image analysis. Electronic database searches using MEDLINE via OVID, EMBASE and Google Scholar were conducted to retrieve articles using AI/ML for diagnostic evaluation of HNC (2009-2020). No restrictions were placed on the AI/ML method or imaging modality used. In total, 32 articles were identified. HNC sites included oral cavity (n = 16), nasopharynx (n = 3), oropharynx (n = 3), larynx (n = 2), salivary glands (n = 2), sinonasal (n = 1) and in five studies multiple sites were studied. Imaging modalities included histological (n = 9), radiological (n = 8), hyperspectral (n = 6), endoscopic/clinical (n = 5), infrared thermal (n = 1) and optical (n = 1). Clinicopathologic/genomic data were used in two studies. Traditional ML methods were employed in 22 studies (69%), deep learning (DL) in eight studies (25%) and a combination of these methods in two studies (6%). There is an increasing volume of studies exploring the role of AI/ML to aid HNC detection using a range of imaging modalities. These methods can achieve high degrees of accuracy that can exceed the abilities of human judgement in making data predictions. Large-scale multi-centric prospective studies are required to aid deployment into clinical practice.
This paper reviews recent literature employing Artificial Intelligence/Machine Learning (AI/ML) methods for diagnostic evaluation of head and neck cancers (HNC) using automated image analysis.BACKGROUNDThis paper reviews recent literature employing Artificial Intelligence/Machine Learning (AI/ML) methods for diagnostic evaluation of head and neck cancers (HNC) using automated image analysis.Electronic database searches using MEDLINE via OVID, EMBASE and Google Scholar were conducted to retrieve articles using AI/ML for diagnostic evaluation of HNC (2009-2020). No restrictions were placed on the AI/ML method or imaging modality used.METHODSElectronic database searches using MEDLINE via OVID, EMBASE and Google Scholar were conducted to retrieve articles using AI/ML for diagnostic evaluation of HNC (2009-2020). No restrictions were placed on the AI/ML method or imaging modality used.In total, 32 articles were identified. HNC sites included oral cavity (n = 16), nasopharynx (n = 3), oropharynx (n = 3), larynx (n = 2), salivary glands (n = 2), sinonasal (n = 1) and in five studies multiple sites were studied. Imaging modalities included histological (n = 9), radiological (n = 8), hyperspectral (n = 6), endoscopic/clinical (n = 5), infrared thermal (n = 1) and optical (n = 1). Clinicopathologic/genomic data were used in two studies. Traditional ML methods were employed in 22 studies (69%), deep learning (DL) in eight studies (25%) and a combination of these methods in two studies (6%).RESULTSIn total, 32 articles were identified. HNC sites included oral cavity (n = 16), nasopharynx (n = 3), oropharynx (n = 3), larynx (n = 2), salivary glands (n = 2), sinonasal (n = 1) and in five studies multiple sites were studied. Imaging modalities included histological (n = 9), radiological (n = 8), hyperspectral (n = 6), endoscopic/clinical (n = 5), infrared thermal (n = 1) and optical (n = 1). Clinicopathologic/genomic data were used in two studies. Traditional ML methods were employed in 22 studies (69%), deep learning (DL) in eight studies (25%) and a combination of these methods in two studies (6%).There is an increasing volume of studies exploring the role of AI/ML to aid HNC detection using a range of imaging modalities. These methods can achieve high degrees of accuracy that can exceed the abilities of human judgement in making data predictions. Large-scale multi-centric prospective studies are required to aid deployment into clinical practice.CONCLUSIONSThere is an increasing volume of studies exploring the role of AI/ML to aid HNC detection using a range of imaging modalities. These methods can achieve high degrees of accuracy that can exceed the abilities of human judgement in making data predictions. Large-scale multi-centric prospective studies are required to aid deployment into clinical practice.
Background This paper reviews recent literature employing Artificial Intelligence/Machine Learning (AI/ML) methods for diagnostic evaluation of head and neck cancers (HNC) using automated image analysis. Methods Electronic database searches using MEDLINE via OVID, EMBASE and Google Scholar were conducted to retrieve articles using AI/ML for diagnostic evaluation of HNC (2009–2020). No restrictions were placed on the AI/ML method or imaging modality used. Results In total, 32 articles were identified. HNC sites included oral cavity ( n  = 16), nasopharynx ( n  = 3), oropharynx ( n  = 3), larynx ( n  = 2), salivary glands ( n  = 2), sinonasal ( n  = 1) and in five studies multiple sites were studied. Imaging modalities included histological ( n  = 9), radiological ( n  = 8), hyperspectral ( n  = 6), endoscopic/clinical ( n  = 5), infrared thermal ( n  = 1) and optical ( n  = 1). Clinicopathologic/genomic data were used in two studies. Traditional ML methods were employed in 22 studies (69%), deep learning (DL) in eight studies (25%) and a combination of these methods in two studies (6%). Conclusions There is an increasing volume of studies exploring the role of AI/ML to aid HNC detection using a range of imaging modalities. These methods can achieve high degrees of accuracy that can exceed the abilities of human judgement in making data predictions. Large-scale multi-centric prospective studies are required to aid deployment into clinical practice.
BackgroundThis paper reviews recent literature employing Artificial Intelligence/Machine Learning (AI/ML) methods for diagnostic evaluation of head and neck cancers (HNC) using automated image analysis.MethodsElectronic database searches using MEDLINE via OVID, EMBASE and Google Scholar were conducted to retrieve articles using AI/ML for diagnostic evaluation of HNC (2009–2020). No restrictions were placed on the AI/ML method or imaging modality used.ResultsIn total, 32 articles were identified. HNC sites included oral cavity (n = 16), nasopharynx (n = 3), oropharynx (n = 3), larynx (n = 2), salivary glands (n = 2), sinonasal (n = 1) and in five studies multiple sites were studied. Imaging modalities included histological (n = 9), radiological (n = 8), hyperspectral (n = 6), endoscopic/clinical (n = 5), infrared thermal (n = 1) and optical (n = 1). Clinicopathologic/genomic data were used in two studies. Traditional ML methods were employed in 22 studies (69%), deep learning (DL) in eight studies (25%) and a combination of these methods in two studies (6%).ConclusionsThere is an increasing volume of studies exploring the role of AI/ML to aid HNC detection using a range of imaging modalities. These methods can achieve high degrees of accuracy that can exceed the abilities of human judgement in making data predictions. Large-scale multi-centric prospective studies are required to aid deployment into clinical practice.
Author Rajpoot, Nasir
Khurram, Syed A.
Shaban, Muhammad
Mahmood, Hanya
Author_xml – sequence: 1
  givenname: Hanya
  orcidid: 0000-0001-7159-0368
  surname: Mahmood
  fullname: Mahmood, Hanya
  email: h.mahmood@sheffield.ac.uk
  organization: Academic Unit of Oral & Maxillofacial Surgery, School of Clinical Dentistry, University of Sheffield
– sequence: 2
  givenname: Muhammad
  surname: Shaban
  fullname: Shaban, Muhammad
  organization: Department of Computer Science, University of Warwick
– sequence: 3
  givenname: Nasir
  surname: Rajpoot
  fullname: Rajpoot, Nasir
  organization: Department of Computer Science, University of Warwick
– sequence: 4
  givenname: Syed A.
  surname: Khurram
  fullname: Khurram, Syed A.
  organization: Unit of Oral & Maxillofacial Pathology, School of Clinical Dentistry, University of Sheffield
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33875821$$D View this record in MEDLINE/PubMed
BookMark eNp9kctuFDEQRS0URCaBH2CBLLFhY3DZ_ahhgRRFPCJFYhPWltuunnHosYPdMwl_j8OEAFlkZVl1btWtukfsIKZIjL0E-RakxnelgQY6IRUICRo7cfOELaDVSgCq_oAtpJS9kEslD9lRKZf1u5TYP2OHWmPfooIFuzjJcxiDC3biZ3GmaQorio7EYAt5vqF5nXzhIfI1Wc9t9DyS-86drVDmPthVTCWU97XE047yLtD1c_Z0tFOhF3fvMfv26ePF6Rdx_vXz2enJuXBN38wCWuwkjAiIBENvQS9bTYSqQ4XKttL2vmmWFkZCGmtJt-C0135QRENH-ph92Pe92g4b8o7inO1krnLY2PzTJBvM_5UY1maVdqaObFDJ2uDNXYOcfmypzGYTiqtHsJHSthjVQttVtIOKvn6AXqZtjnW9Suke6zk1VurVv47urfw5eAXUHnA5lZJpvEdAmttUzT5VU1M1v1M1N1WED0QuzHYO6XarMD0u1XtpqXPiivJf24-ofgEgdLc1
CitedBy_id crossref_primary_10_1148_rg_240029
crossref_primary_10_37349_etat_2023_00174
crossref_primary_10_1007_s10006_025_01334_6
crossref_primary_10_1007_s11864_022_00942_8
crossref_primary_10_1016_j_identj_2024_09_032
crossref_primary_10_1016_j_eclinm_2023_102202
crossref_primary_10_3389_froh_2024_1363052
crossref_primary_10_1002_ccr3_7933
crossref_primary_10_1055_s_0044_1791783
crossref_primary_10_3390_s23114993
crossref_primary_10_5937_mp74_43594
crossref_primary_10_1038_s41416_024_02916_z
crossref_primary_10_1177_19160216251326590
crossref_primary_10_2174_0118742106349183250131062154
crossref_primary_10_3390_ijerph182312390
crossref_primary_10_1002_2056_4538_12392
crossref_primary_10_1088_2057_1976_ad6dcd
crossref_primary_10_1002_jmv_29080
crossref_primary_10_1038_s41415_024_8029_9
crossref_primary_10_30683_1929_2279_2025_14_01
crossref_primary_10_1097_SCS_0000000000010663
crossref_primary_10_1007_s00405_024_08722_w
crossref_primary_10_1002_lio2_721
crossref_primary_10_1007_s12325_023_02527_9
crossref_primary_10_1007_s00521_023_08258_w
crossref_primary_10_1002_lary_30781
crossref_primary_10_1016_j_oooo_2024_12_028
crossref_primary_10_3390_curroncol31090389
crossref_primary_10_1088_1361_6560_ac840f
crossref_primary_10_3390_ph17101308
crossref_primary_10_1016_j_oor_2023_100035
crossref_primary_10_1016_j_soc_2024_04_002
crossref_primary_10_3390_diagnostics13142416
crossref_primary_10_1016_j_ejca_2022_05_003
crossref_primary_10_29328_journal_jro_1001044
crossref_primary_10_3389_froh_2021_794248
crossref_primary_10_2147_OARRR_S284763
crossref_primary_10_1038_s41598_025_86527_5
crossref_primary_10_1371_journal_pone_0273508
crossref_primary_10_3390_cancers16183156
crossref_primary_10_1007_s42600_022_00234_y
crossref_primary_10_1016_j_apjon_2022_100133
crossref_primary_10_3390_cells12141916
crossref_primary_10_3390_molecules29133164
crossref_primary_10_1002_oto2_164
crossref_primary_10_1016_j_clon_2023_03_012
crossref_primary_10_1186_s12967_024_05067_0
crossref_primary_10_3390_cancers17050796
crossref_primary_10_1186_s12903_024_04347_x
crossref_primary_10_3390_cancers14071815
crossref_primary_10_3390_diagnostics15010033
crossref_primary_10_1007_s12070_024_04776_8
crossref_primary_10_1615_CritRevOncog_2023047799
crossref_primary_10_3390_cancers13184600
crossref_primary_10_3390_cancers15205063
crossref_primary_10_1111_his_15067
crossref_primary_10_1002_lary_31243
crossref_primary_10_1002_ohn_391
crossref_primary_10_7759_cureus_44018
crossref_primary_10_25699_SSSB_2022_44_4_004
crossref_primary_10_1007_s11042_024_19398_z
crossref_primary_10_1016_j_pathol_2023_10_002
crossref_primary_10_1007_s11033_024_09476_8
crossref_primary_10_1186_s44147_023_00355_w
crossref_primary_10_7759_cureus_38317
crossref_primary_10_1017_S002221512400015X
crossref_primary_10_3390_diagnostics13172736
crossref_primary_10_3390_diagnostics13162670
crossref_primary_10_1615_CritRevOncog_2023049134
crossref_primary_10_3389_frai_2024_1329737
crossref_primary_10_3390_cancers16213623
crossref_primary_10_3390_diagnostics11091526
crossref_primary_10_3389_fmolb_2024_1395721
crossref_primary_10_3390_a16090445
crossref_primary_10_1186_s40537_023_00703_w
crossref_primary_10_1590_0100_3984_2021_54_6e2
crossref_primary_10_1016_j_compbiomed_2022_105991
crossref_primary_10_1097_MOO_0000000000000957
crossref_primary_10_1016_j_procs_2023_10_278
crossref_primary_10_2174_0118742106360500241226054719
crossref_primary_10_3390_jpm14040341
crossref_primary_10_1016_j_semcancer_2023_06_003
crossref_primary_10_4103_jmss_jmss_143_21
crossref_primary_10_5604_01_3001_0015_9501
crossref_primary_10_3390_ijerph20053894
crossref_primary_10_1016_j_oooo_2025_02_014
Cites_doi 10.1016/j.micron.2011.09.016
10.1109/TMI.2016.2525803
10.1158/1078-0432.CCR-17-0906
10.1007/s11548-011-0669-y
10.1186/s40880-018-0325-9
10.1002/lary.27228
10.1007/s13402-014-0172-x
10.1117/1.JMI.4.3.034502
10.1007/s00432-018-02834-7
10.3390/cancers11111673
10.1177/0011000005285875
10.1007/s10278-012-9520-4
10.1186/s40644-016-0075-3
10.1016/j.tice.2018.06.004
10.1037/1040-3590.12.1.19
10.1146/annurev.pathol.4.110807.092158
10.1146/annurev-bioeng-071516-044442
10.1016/j.csbj.2014.11.005
10.1016/j.ultrasmedbio.2010.06.009
10.1371/journal.pone.0126760
10.1002/lary.27159
10.1364/BOE.9.005318
10.3174/ajnr.A5106
10.7150/thno.32655
10.1117/1.3516593
10.1016/j.compbiomed.2009.09.004
10.1097/RCT.0000000000000682
10.1007/s00330-017-5214-0
10.1001/jama.2017.14585
10.1038/nature14539
10.1117/1.JBO.22.6.060503
10.1016/j.media.2017.07.005
10.1016/j.oraloncology.2006.03.009
10.1016/j.canlet.2019.12.007
10.1016/j.oraloncology.2017.11.008
10.1158/1940-6207.CAPR-17-0054
10.1038/s41598-019-50313-x
10.1007/s10916-018-1052-0
10.3389/fonc.2019.01045
10.1017/S0022215116000360
10.3390/s120100162
10.1002/cncr.20482
10.1038/s41571-019-0252-y
10.3322/caac.21590
10.1117/1.JBO.22.8.086009
10.1016/j.oraloncology.2020.104885
10.1038/modpathol.2017.98
10.4414/smw.2014.14015
10.1038/s41598-017-12320-8
10.1037/11281-000
10.1371/journal.pone.0188717
10.1109/EMBC.2016.7590964
10.1109/ISBI.2018.8363645
10.1155/2017/8612519
10.1109/JBHI.2020.2991043
ContentType Journal Article
Copyright The Author(s) 2021
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7RV
7TO
7U9
7X7
7XB
88E
8AO
8C1
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AN0
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB0
LK8
M0S
M1P
M7P
NAPCQ
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.1038/s41416-021-01386-x
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
ProQuest Nursing and Allied Health Journals - PSU access expires 11/30/25.
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Proquest Health and Medical Complete
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
British Nursing Database (Proquest)
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
Biological Science Database
Nursing & Allied Health Premium
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
AIDS and Cancer Research Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Public Health
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
British Nursing Index with Full Text
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

ProQuest Central Student
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1532-1827
EndPage 1940
ExternalDocumentID PMC8184820
33875821
10_1038_s41416_021_01386_x
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: RCUK | Medical Research Council (MRC)
  grantid: MR/P015476/1
  funderid: https://doi.org/10.13039/501100000265
– fundername: NMR was supported by the PathLAKE digital pathology consortium, which is funded from the Data to Early Diagnosis and Precision Medicine strand of the UK government’s Industrial Strategy Challenge Fund (award# 18181), managed and delivered by UK Research and Innovation (UKRI).
– fundername: DH | National Institute for Health Research (NIHR)
  funderid: https://doi.org/10.13039/501100000272
– fundername: Alan Turing Institute
  funderid: https://doi.org/10.13039/100012338
– fundername: Sheffield Hospitals Charity (Sheffield Hospitals Charitable Trust)
  funderid: https://doi.org/10.13039/501100004876
– fundername: Medical Research Council
  grantid: MR/P015476/1
– fundername: Cancer Research UK
  grantid: 29674
– fundername: ;
– fundername: ;
  grantid: MR/P015476/1
GroupedDBID ---
0R~
23N
36B
39C
4.4
406
53G
5GY
5RE
6J9
70F
7RV
7X7
88E
8AO
8C1
8FI
8FJ
8R4
8R5
AACDK
AANZL
AASML
AATNV
AAWTL
AAYZH
AAZLF
ABAKF
ABLJU
ABOCM
ABUWG
ABZZP
ACAOD
ACGFO
ACGFS
ACKTT
ACPRK
ACRQY
ACZOJ
ADBBV
ADFRT
ADHDB
AEFQL
AEJRE
AEMSY
AENEX
AEVLU
AEXYK
AFBBN
AFKRA
AFRAH
AFSHS
AGAYW
AGHAI
AGQEE
AHMBA
AHSBF
AIGIU
AILAN
AJRNO
ALFFA
ALMA_UNASSIGNED_HOLDINGS
AMYLF
AN0
AOIJS
ASPBG
AVWKF
AXYYD
AZFZN
BAWUL
BBNVY
BENPR
BHPHI
BKEYQ
BKKNO
BNQBC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DNIVK
DPUIP
DU5
E3Z
EAP
EBLON
EBS
EE.
EIOEI
EMB
ESX
EX3
F5P
FDQFY
FEDTE
FERAY
FIGPU
FRJ
FSGXE
FYUFA
GX1
HCIFZ
HMCUK
HVGLF
HYE
HZ~
IH2
IWAJR
JSO
JZLTJ
KQ8
M1P
M7P
NAPCQ
NQJWS
O9-
OK1
P2P
PQQKQ
PROAC
PSQYO
Q2X
RNT
RNTTT
ROL
RPM
SNX
SNYQT
SOHCF
SOJ
SRMVM
SWTZT
TAOOD
TBHMF
TDRGL
TR2
UKHRP
W2D
WH7
WOW
~02
AAFWJ
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
AEZWR
AFDZB
AFHIU
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
-Q-
.55
.GJ
8WZ
A6W
ABAWZ
ABDBF
ABRTQ
ACUHS
AI.
B0M
CAG
CGR
COF
CUY
CVF
EAD
EAS
EBC
EBD
ECM
EIF
EJD
EMK
EMOBN
EPL
FIZPM
J5H
M41
NPM
PJZUB
PPXIY
PQGLB
SV3
TUS
UDS
VH1
X7M
Y6R
ZGI
~8M
3V.
7TO
7U9
7XB
8FE
8FH
8FK
AZQEC
DWQXO
GNUQQ
H94
K9.
LK8
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c474t-158601f8188e1b7a13953ee8268282a50a7d449a1fe8ef53e351c3d3db2eeb6e3
IEDL.DBID C6C
ISSN 0007-0920
1532-1827
IngestDate Thu Aug 21 14:36:03 EDT 2025
Mon Jul 21 10:46:43 EDT 2025
Fri Jul 25 08:54:16 EDT 2025
Mon Jul 21 06:00:08 EDT 2025
Thu Apr 24 22:50:45 EDT 2025
Tue Jul 01 04:23:44 EDT 2025
Fri Feb 21 02:38:13 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-158601f8188e1b7a13953ee8268282a50a7d449a1fe8ef53e351c3d3db2eeb6e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0001-7159-0368
OpenAccessLink https://www.nature.com/articles/s41416-021-01386-x
PMID 33875821
PQID 2537858238
PQPubID 41855
PageCount 7
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8184820
proquest_miscellaneous_2515684861
proquest_journals_2537858238
pubmed_primary_33875821
crossref_primary_10_1038_s41416_021_01386_x
crossref_citationtrail_10_1038_s41416_021_01386_x
springer_journals_10_1038_s41416_021_01386_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-06-08
PublicationDateYYYYMMDD 2021-06-08
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-08
  day: 08
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle British journal of cancer
PublicationTitleAbbrev Br J Cancer
PublicationTitleAlternate Br J Cancer
PublicationYear 2021
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Siegel, Miller, Jemal (CR10) 2020; 70
Moccia, De Momi, Guarnaschelli, Savazzi, Laborai, Guastini (CR33) 2017; 4
Quang, Tran, Schwarz, Williams, Vigneswaran, Gillenwater (CR60) 2017; 10
Baik, Ye, Zhang, Poh, Rosin, MacAulay (CR51) 2014; 37
Muto, Nakane, Katada, Sano, Ohtsu, Esumi (CR2) 2004; 101
CR35
Mookiah, Shah, Chakraborty, Ray (CR53) 2011; 33
Ashizawa, Yoshimura, Johno, Inoue, Katoh, Funayama (CR47) 2017; 75
Fei, Lu, Wang, Zhang, Little, Patel (CR40) 2017; 22
Song, Sunny, Uthoff, Patrick, Suresh, Kolur (CR58) 2018; 9
Lu, Lewis, Dupont, Plummer, Janowczyk, Madabhushi (CR50) 2017; 30
Li, Jing, Ke, Li, Xia, He (CR30) 2018; 38
Al Ajmi, Forghani, Reinhold, Bayat, Forghani (CR37) 2018; 28
Zhang, Wu, Zheng, Su, Chen, Ma (CR32) 2019; 9
Shen, Wu, Suk (CR27) 2017; 19
Krishnan, Venkatraghavan, Acharya, Pal, Paul, Min (CR54) 2012; 43
CR6
CR5
LeCun, Bengio, Hinton (CR25) 2015; 521
Liu, Wang, Li (CR59) 2012; 12
Wu, Khong, Chan (CR29) 2012; 7
Ranjbar, Ning, Zwart, Wood, Weindling, Wu (CR36) 2018; 42
Sirinukunwattana, Raza, Tsang, Snead, Cree, Rajpoot (CR24) 2016; 35
Huang, Yang, Fong, Zhao (CR17) 2020; 471
Litjens, Kooi, Bejnordi, Setio, Ciompi, Ghafoorian (CR26) 2017; 42
CR43
Kourou, Exarchos, Exarchos, Karamouzis, Fotiadis (CR19) 2015; 13
Huang, Chan, Zhou (CR31) 2013; 26
Grove, Zald, Lebow, Snitz, Nelson (CR64) 2000; 12
Zormpas-Petridis, Failmezger, Raza, Roxanis, Jamin, Yuan (CR22) 2019; 9
Jeyaraj, Nadar (CR45) 2019; 145
Das, Bose, Maiti, Mitra, Mukherjee, Dutta (CR49) 2018; 53
Vogel, Thoeny (CR14) 2016; 16
CR15
Mehlum, Larsen, Kiss, Groentved, Kjaergaard, Möller (CR16) 2018; 128
Al-Ma’aitah, AlZubi (CR56) 2018; 42
CR57
CR12
Bray, Ferlay, Soerjomataram, Siegel, Torre, Jemal (CR11) 2018; 68
Siebers, Zenk, Bozzato, Klintworth, Iro, Ermert (CR38) 2010; 36
Lu, Little, Wang, Zhang, Patel, Griffith (CR42) 2017; 23
Bera, Schalper, Rimm, Velcheti, Madabhushi (CR21) 2019; 16
Wang, Yang, Rong, Zhan, Fujimoto, Liu (CR23) 2019; 11
Ægisdóttir, White, Spengler, Maugherman, Anderson, Cook (CR63) 2006; 34
Jemal, Bray, Center, Ferlay, Ward, Forman (CR9) 2011; 61
Halicek, Lu, Little, Wang, Patel, Griffith (CR41) 2017; 22
Ramkumar, Ranjbar, Ning, Lal, Zwart, Wood (CR39) 2017; 38
Roblyer, Kurachi, Stepanek, Schwarz, Williams, El-Naggar (CR46) 2010; 15
CR28
Krishnan, Pal, Bomminayuni, Chakraborty, Paul, Chatterjee (CR52) 2009; 39
Shaw, Beasley (CR3) 2016; 130
Pai, Westra (CR1) 2009; 4
Bejnordi, Veta, Van Diest, Van Ginneken, Karssemeijer, Litjens (CR18) 2017; 318
(CR4) 2010; 96
CR20
Mascharak, Baird, Holsinger (CR34) 2018; 128
CR62
CR61
Halicek, Shahedi, Little, Chen, Myers, Sumer (CR55) 2019; 9
Shotelersuk, Khorprasert, Sakdikul, Pornthanakasem, Voravud, Mutirangura (CR8) 2000; 6
Liu, Li, Liu, Liu, Khawar, Zhang (CR48) 2015; 10
Mahmood, Shaban, Indave, Santos-Silva, Rajpoot, Khurram (CR44) 2020; 110
Papillomaviruses (CR7) 2011
Kujan, Khattab, Oliver, Roberts, Thakker, Sloan (CR13) 2007; 43
H Mahmood (1386_CR44) 2020; 110
PR Jeyaraj (1386_CR45) 2019; 145
M Halicek (1386_CR41) 2017; 22
J Baik (1386_CR51) 2014; 37
1386_CR35
S Ranjbar (1386_CR36) 2018; 42
H Papillomaviruses (1386_CR7) 2011
M Al-Ma’aitah (1386_CR56) 2018; 42
S Mascharak (1386_CR34) 2018; 128
R Shaw (1386_CR3) 2016; 130
CS Mehlum (1386_CR16) 2018; 128
K Kourou (1386_CR19) 2015; 13
B Song (1386_CR58) 2018; 9
K Shotelersuk (1386_CR8) 2000; 6
D Shen (1386_CR27) 2017; 19
G Lu (1386_CR42) 2017; 23
K Bera (1386_CR21) 2019; 16
DM Roblyer (1386_CR46) 2010; 15
B Fei (1386_CR40) 2017; 22
S Wang (1386_CR23) 2019; 11
1386_CR6
K Sirinukunwattana (1386_CR24) 2016; 35
M Muto (1386_CR2) 2004; 101
1386_CR5
S Huang (1386_CR17) 2020; 471
WM Grove (1386_CR64) 2000; 12
W Huang (1386_CR31) 2013; 26
K Ashizawa (1386_CR47) 2017; 75
S Ramkumar (1386_CR39) 2017; 38
S Siebers (1386_CR38) 2010; 36
DK Das (1386_CR49) 2018; 53
F Bray (1386_CR11) 2018; 68
1386_CR43
MM Krishnan (1386_CR54) 2012; 43
1386_CR15
S Moccia (1386_CR33) 2017; 4
1386_CR57
M Halicek (1386_CR55) 2019; 9
A Jemal (1386_CR9) 2011; 61
C Lu (1386_CR50) 2017; 30
Z Liu (1386_CR59) 2012; 12
IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. (1386_CR4) 2010; 96
G Litjens (1386_CR26) 2017; 42
SI Pai (1386_CR1) 2009; 4
Y Liu (1386_CR48) 2015; 10
1386_CR12
Y LeCun (1386_CR25) 2015; 521
O Kujan (1386_CR13) 2007; 43
DW Vogel (1386_CR14) 2016; 16
MM Krishnan (1386_CR52) 2009; 39
1386_CR28
B Wu (1386_CR29) 2012; 7
E Al Ajmi (1386_CR37) 2018; 28
L Zhang (1386_CR32) 2019; 9
MR Mookiah (1386_CR53) 2011; 33
RL Siegel (1386_CR10) 2020; 70
C Li (1386_CR30) 2018; 38
T Quang (1386_CR60) 2017; 10
1386_CR62
1386_CR61
BE Bejnordi (1386_CR18) 2017; 318
S Ægisdóttir (1386_CR63) 2006; 34
1386_CR20
K Zormpas-Petridis (1386_CR22) 2019; 9
References_xml – volume: 43
  start-page: 352
  year: 2012
  end-page: 364
  ident: CR54
  article-title: Automated oral cancer identification using histopathological images: a hybrid feature extraction paradigm
  publication-title: Micron
  doi: 10.1016/j.micron.2011.09.016
– volume: 61
  start-page: 69
  year: 2011
  end-page: 90
  ident: CR9
  article-title: Global cancer statistics
  publication-title: CA: Cancer J. Clin.
– volume: 35
  start-page: 1196
  year: 2016
  end-page: 1206
  ident: CR24
  article-title: Locality sensitive deep learning for detection and classification of nuclei in routine colon cancer histology images
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2525803
– volume: 23
  start-page: 5426
  year: 2017
  end-page: 5436
  ident: CR42
  article-title: Detection of head and neck cancer in surgical specimens using quantitative hyperspectral imaging
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-17-0906
– volume: 7
  start-page: 635
  year: 2012
  end-page: 646
  ident: CR29
  article-title: Automatic detection and classification of nasopharyngeal carcinoma on PET/CT with support vector machine
  publication-title: Int. J. Computer Assist. Radiol. Surg.
  doi: 10.1007/s11548-011-0669-y
– volume: 38
  start-page: 1
  year: 2018
  end-page: 1
  ident: CR30
  article-title: Development and validation of an endoscopic images‐based deep learning model for detection with nasopharyngeal malignancies
  publication-title: Cancer Commun.
  doi: 10.1186/s40880-018-0325-9
– year: 2011
  ident: CR7
  publication-title: IARC Monographs on the Evaluation of Carcinogenic Risks to Humans
– ident: CR12
– volume: 128
  start-page: 2375
  year: 2018
  end-page: 2379
  ident: CR16
  article-title: Laryngeal precursor lesions: Interrater and intrarater reliability of histopathological assessment
  publication-title: Laryngoscope
  doi: 10.1002/lary.27228
– volume: 37
  start-page: 193
  year: 2014
  end-page: 202
  ident: CR51
  article-title: Automated classification of oral premalignant lesions using image cytometry and random forests-based algorithms
  publication-title: Cell. Oncol.
  doi: 10.1007/s13402-014-0172-x
– volume: 33
  start-page: 158
  year: 2011
  end-page: 168
  ident: CR53
  article-title: Brownian motion curve-based textural classification and its application in cancer diagnosis
  publication-title: Anal. Quant. Cytol. Histol.
– volume: 4
  start-page: 034502
  year: 2017
  ident: CR33
  article-title: Confident texture-based laryngeal tissue classification for early stage diagnosis support
  publication-title: J. Med. Imaging
  doi: 10.1117/1.JMI.4.3.034502
– volume: 145
  start-page: 829
  year: 2019
  end-page: 837
  ident: CR45
  article-title: Computer-assisted medical image classification for early diagnosis of oral cancer employing deep learning algorithm
  publication-title: J. Cancer Res. Clin. Oncol.
  doi: 10.1007/s00432-018-02834-7
– volume: 11
  start-page: 1673
  year: 2019
  ident: CR23
  article-title: Artificial intelligence in lung cancer pathology image analysis
  publication-title: Cancers
  doi: 10.3390/cancers11111673
– ident: CR35
– volume: 34
  start-page: 341
  year: 2006
  end-page: 382
  ident: CR63
  article-title: The meta-analysis of clinical judgment project: fifty-six years of accumulated research on clinical versus statistical prediction
  publication-title: Counseling Psychologist
  doi: 10.1177/0011000005285875
– ident: CR61
– volume: 26
  start-page: 472
  year: 2013
  end-page: 482
  ident: CR31
  article-title: Region-based nasopharyngeal carcinoma lesion segmentation from MRI using clustering-and classification-based methods with learning
  publication-title: J. Digital Imaging
  doi: 10.1007/s10278-012-9520-4
– volume: 16
  year: 2016
  ident: CR14
  article-title: Cross-sectional imaging in cancers of the head and neck: how we review and report
  publication-title: Cancer Imaging
  doi: 10.1186/s40644-016-0075-3
– volume: 53
  start-page: 111
  year: 2018
  end-page: 119
  ident: CR49
  article-title: Automatic identification of clinically relevant regions from oral tissue histological images for oral squamous cell carcinoma diagnosis
  publication-title: Tissue Cell
  doi: 10.1016/j.tice.2018.06.004
– volume: 12
  start-page: 19
  year: 2000
  ident: CR64
  article-title: Clinical versus mechanical prediction: a meta-analysis
  publication-title: Psychol. Assess.
  doi: 10.1037/1040-3590.12.1.19
– volume: 4
  start-page: 49
  year: 2009
  end-page: 70
  ident: CR1
  article-title: Molecular pathology of head and neck cancer: implications for diagnosis, prognosis, and treatment
  publication-title: Annu. Rev. Pathol.: Mechanisms Dis.
  doi: 10.1146/annurev.pathol.4.110807.092158
– volume: 19
  start-page: 221
  year: 2017
  end-page: 248
  ident: CR27
  article-title: Deep learning in medical image analysis
  publication-title: Annu. Rev. Biomed. Eng.
  doi: 10.1146/annurev-bioeng-071516-044442
– volume: 13
  start-page: 8
  year: 2015
  end-page: 17
  ident: CR19
  article-title: Machine learning applications in cancer prognosis and prediction
  publication-title: Comput. Struct. Biotechnol. J.
  doi: 10.1016/j.csbj.2014.11.005
– volume: 36
  start-page: 1525
  year: 2010
  end-page: 1534
  ident: CR38
  article-title: Computer aided diagnosis of parotid gland lesions using ultrasonic multi-feature tissue characterization
  publication-title: Ultrasound Med. Biol.
  doi: 10.1016/j.ultrasmedbio.2010.06.009
– volume: 10
  start-page: e0126760
  year: 2015
  ident: CR48
  article-title: Quantitative risk stratification of oral leukoplakia with exfoliative cytology
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0126760
– volume: 128
  start-page: 2514
  year: 2018
  end-page: 2520
  ident: CR34
  article-title: Detecting oropharyngeal carcinoma using multispectral, narrow‐band imaging and machine learning
  publication-title: Laryngoscope
  doi: 10.1002/lary.27159
– volume: 9
  start-page: 5318
  year: 2018
  end-page: 5329
  ident: CR58
  article-title: Automatic classification of dual-modalilty, smartphone-based oral dysplasia and malignancy images using deep learning
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.9.005318
– volume: 38
  start-page: 1019
  year: 2017
  end-page: 1025
  ident: CR39
  article-title: MRI-based texture analysis to differentiate sinonasal squamous cell carcinoma from inverted papilloma
  publication-title: Am. J. Neuroradiol.
  doi: 10.3174/ajnr.A5106
– volume: 9
  start-page: 2541
  year: 2019
  ident: CR32
  article-title: Rapid histology of laryngeal squamous cell carcinoma with deep-learning based stimulated Raman scattering microscopy
  publication-title: Theranostics
  doi: 10.7150/thno.32655
– ident: CR15
– volume: 6
  start-page: 1046
  year: 2000
  end-page: 1051
  ident: CR8
  article-title: Epstein-Barr virus DNA in serum/plasma as a tumor marker for nasopharyngeal cancer
  publication-title: Clin. Cancer Res.
– ident: CR57
– volume: 15
  start-page: 066017
  year: 2010
  ident: CR46
  article-title: Comparison of multispectral wide-field optical imaging modalities to maximize image contrast for objective discrimination of oral neoplasia
  publication-title: J. Biomed. Opt.
  doi: 10.1117/1.3516593
– volume: 39
  start-page: 1096
  year: 2009
  end-page: 1104
  ident: CR52
  article-title: Automated classification of cells in sub-epithelial connective tissue of oral sub-mucous fibrosis—an SVM based approach
  publication-title: Computers Biol. Med.
  doi: 10.1016/j.compbiomed.2009.09.004
– volume: 42
  start-page: 299
  year: 2018
  end-page: 305
  ident: CR36
  article-title: Computed tomography-based texture analysis to determine human papillomavirus status of oropharyngeal squamous cell carcinoma
  publication-title: J. computer Assist. Tomogr.
  doi: 10.1097/RCT.0000000000000682
– volume: 28
  start-page: 2604
  year: 2018
  end-page: 2611
  ident: CR37
  article-title: Spectral multi-energy CT texture analysis with machine learning for tissue classification: an investigation using classification of benign parotid tumours as a testing paradigm
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-017-5214-0
– volume: 318
  start-page: 2199
  year: 2017
  end-page: 2210
  ident: CR18
  article-title: Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer
  publication-title: J. Am. Med. Assoc.
  doi: 10.1001/jama.2017.14585
– ident: CR5
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: CR25
  article-title: Deep learning
  publication-title: nature
  doi: 10.1038/nature14539
– ident: CR43
– volume: 68
  start-page: 394
  year: 2018
  end-page: 424
  ident: CR11
  article-title: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries
  publication-title: CA: Cancer J. Clin.
– volume: 22
  start-page: 060503
  year: 2017
  ident: CR41
  article-title: Deep convolutional neural networks for classifying head and neck cancer using hyperspectral imaging
  publication-title: J. Biomed. Opt.
  doi: 10.1117/1.JBO.22.6.060503
– volume: 42
  start-page: 60
  year: 2017
  end-page: 88
  ident: CR26
  article-title: A survey on deep learning in medical image analysis
  publication-title: Med. image Anal.
  doi: 10.1016/j.media.2017.07.005
– volume: 43
  start-page: 224
  year: 2007
  end-page: 231
  ident: CR13
  article-title: Why oral histopathology suffers inter-observer variability on grading oral epithelial dysplasia: an attempt to understand the sources of variation
  publication-title: Oral. Oncol.
  doi: 10.1016/j.oraloncology.2006.03.009
– volume: 471
  start-page: 61
  year: 2020
  end-page: 71
  ident: CR17
  article-title: Artificial intelligence in cancer diagnosis and prognosis: opportunities and challenges
  publication-title: Cancer Lett.
  doi: 10.1016/j.canlet.2019.12.007
– volume: 75
  start-page: 111
  year: 2017
  end-page: 119
  ident: CR47
  article-title: Construction of mass spectra database and diagnosis algorithm for head and neck squamous cell carcinoma
  publication-title: Oral. Oncol.
  doi: 10.1016/j.oraloncology.2017.11.008
– volume: 10
  start-page: 563
  year: 2017
  end-page: 570
  ident: CR60
  article-title: Prospective evaluation of multimodal optical imaging with automated image analysis to detect oral neoplasia in vivo
  publication-title: Cancer Prev. Res.
  doi: 10.1158/1940-6207.CAPR-17-0054
– volume: 9
  start-page: 1
  year: 2019
  end-page: 1
  ident: CR55
  article-title: Head and neck cancer detection in digitized whole-slide histology using convolutional neural networks
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-50313-x
– ident: CR6
– volume: 42
  year: 2018
  ident: CR56
  article-title: Enhanced computational model for gravitational search optimized echo state neural networks based oral cancer detection
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-018-1052-0
– volume: 9
  start-page: 1045
  year: 2019
  ident: CR22
  article-title: Superpixel-based conditional random fields (SuperCRF): incorporating global and local context for enhanced deep learning in melanoma histopathology
  publication-title: Front. Oncol.
  doi: 10.3389/fonc.2019.01045
– volume: 130
  start-page: S9
  year: 2016
  end-page: S12
  ident: CR3
  article-title: Aetiology and risk factors for head and neck cancer: United Kingdom National Multidisciplinary Guidelines
  publication-title: J. Laryngol. Otol.
  doi: 10.1017/S0022215116000360
– volume: 12
  start-page: 162
  year: 2012
  end-page: 174
  ident: CR59
  article-title: Tongue tumor detection in medical hyperspectral images
  publication-title: Sensors
  doi: 10.3390/s120100162
– volume: 96
  start-page: 3
  year: 2010
  ident: CR4
  article-title: Alcohol consumption and ethyl carbamate
  publication-title: IARC Monogr. Evaluation Carcinogenic Risks Hum.
– volume: 101
  start-page: 1375
  year: 2004
  end-page: 1381
  ident: CR2
  article-title: Squamous cell carcinoma in situ at oropharyngeal and hypopharyngeal mucosal sites
  publication-title: Cancer: Interdisciplinary Int. J. Am. Cancer Soc.
  doi: 10.1002/cncr.20482
– volume: 16
  start-page: 703
  year: 2019
  end-page: 715
  ident: CR21
  article-title: Artificial intelligence in digital pathology—new tools for diagnosis and precision oncology
  publication-title: Nat. Rev. Clin. Oncol.
  doi: 10.1038/s41571-019-0252-y
– volume: 70
  start-page: 7
  year: 2020
  ident: CR10
  article-title: Cancer statistics, 2020
  publication-title: CA Cancer J. Clin.
  doi: 10.3322/caac.21590
– volume: 22
  start-page: 086009
  year: 2017
  ident: CR40
  article-title: Label-free reflectance hyperspectral imaging for tumor margin assessment: a pilot study on surgical specimens of cancer patients
  publication-title: J. Biomed. Opt.
  doi: 10.1117/1.JBO.22.8.086009
– volume: 110
  start-page: 104885
  year: 2020
  ident: CR44
  article-title: Use of artificial intelligence in diagnosis of head and neck precancerous and cancerous lesions: a systematic review
  publication-title: Oral. Oncol.
  doi: 10.1016/j.oraloncology.2020.104885
– ident: CR28
– ident: CR62
– volume: 30
  start-page: 1655
  year: 2017
  end-page: 1665
  ident: CR50
  article-title: An oral cavity squamous cell carcinoma quantitative histomorphometric-based image classifier of nuclear morphology can risk stratify patients for disease-specific survival
  publication-title: Mod. Pathol.
  doi: 10.1038/modpathol.2017.98
– ident: CR20
– volume: 11
  start-page: 1673
  year: 2019
  ident: 1386_CR23
  publication-title: Cancers
  doi: 10.3390/cancers11111673
– volume: 38
  start-page: 1
  year: 2018
  ident: 1386_CR30
  publication-title: Cancer Commun.
  doi: 10.1186/s40880-018-0325-9
– volume: 101
  start-page: 1375
  year: 2004
  ident: 1386_CR2
  publication-title: Cancer: Interdisciplinary Int. J. Am. Cancer Soc.
  doi: 10.1002/cncr.20482
– volume: 9
  start-page: 2541
  year: 2019
  ident: 1386_CR32
  publication-title: Theranostics
  doi: 10.7150/thno.32655
– volume: 145
  start-page: 829
  year: 2019
  ident: 1386_CR45
  publication-title: J. Cancer Res. Clin. Oncol.
  doi: 10.1007/s00432-018-02834-7
– volume: 130
  start-page: S9
  year: 2016
  ident: 1386_CR3
  publication-title: J. Laryngol. Otol.
  doi: 10.1017/S0022215116000360
– volume: 521
  start-page: 436
  year: 2015
  ident: 1386_CR25
  publication-title: nature
  doi: 10.1038/nature14539
– ident: 1386_CR12
– volume: 34
  start-page: 341
  year: 2006
  ident: 1386_CR63
  publication-title: Counseling Psychologist
  doi: 10.1177/0011000005285875
– volume: 68
  start-page: 394
  year: 2018
  ident: 1386_CR11
  publication-title: CA: Cancer J. Clin.
– ident: 1386_CR15
  doi: 10.4414/smw.2014.14015
– volume: 7
  start-page: 635
  year: 2012
  ident: 1386_CR29
  publication-title: Int. J. Computer Assist. Radiol. Surg.
  doi: 10.1007/s11548-011-0669-y
– ident: 1386_CR57
  doi: 10.1038/s41598-017-12320-8
– volume: 23
  start-page: 5426
  year: 2017
  ident: 1386_CR42
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-17-0906
– volume: 15
  start-page: 066017
  year: 2010
  ident: 1386_CR46
  publication-title: J. Biomed. Opt.
  doi: 10.1117/1.3516593
– volume: 9
  start-page: 1
  year: 2019
  ident: 1386_CR55
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-50313-x
– volume: 110
  start-page: 104885
  year: 2020
  ident: 1386_CR44
  publication-title: Oral. Oncol.
  doi: 10.1016/j.oraloncology.2020.104885
– volume: 30
  start-page: 1655
  year: 2017
  ident: 1386_CR50
  publication-title: Mod. Pathol.
  doi: 10.1038/modpathol.2017.98
– ident: 1386_CR6
– volume: 16
  year: 2016
  ident: 1386_CR14
  publication-title: Cancer Imaging
  doi: 10.1186/s40644-016-0075-3
– volume: 13
  start-page: 8
  year: 2015
  ident: 1386_CR19
  publication-title: Comput. Struct. Biotechnol. J.
  doi: 10.1016/j.csbj.2014.11.005
– volume: 35
  start-page: 1196
  year: 2016
  ident: 1386_CR24
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2525803
– volume: 39
  start-page: 1096
  year: 2009
  ident: 1386_CR52
  publication-title: Computers Biol. Med.
  doi: 10.1016/j.compbiomed.2009.09.004
– volume: 26
  start-page: 472
  year: 2013
  ident: 1386_CR31
  publication-title: J. Digital Imaging
  doi: 10.1007/s10278-012-9520-4
– volume: 42
  year: 2018
  ident: 1386_CR56
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-018-1052-0
– ident: 1386_CR62
  doi: 10.1037/11281-000
– volume: 16
  start-page: 703
  year: 2019
  ident: 1386_CR21
  publication-title: Nat. Rev. Clin. Oncol.
  doi: 10.1038/s41571-019-0252-y
– volume: 6
  start-page: 1046
  year: 2000
  ident: 1386_CR8
  publication-title: Clin. Cancer Res.
– volume: 128
  start-page: 2514
  year: 2018
  ident: 1386_CR34
  publication-title: Laryngoscope
  doi: 10.1002/lary.27159
– ident: 1386_CR35
  doi: 10.1371/journal.pone.0188717
– volume: 43
  start-page: 352
  year: 2012
  ident: 1386_CR54
  publication-title: Micron
  doi: 10.1016/j.micron.2011.09.016
– volume: 42
  start-page: 60
  year: 2017
  ident: 1386_CR26
  publication-title: Med. image Anal.
  doi: 10.1016/j.media.2017.07.005
– ident: 1386_CR61
  doi: 10.1109/EMBC.2016.7590964
– volume: 43
  start-page: 224
  year: 2007
  ident: 1386_CR13
  publication-title: Oral. Oncol.
  doi: 10.1016/j.oraloncology.2006.03.009
– volume: 318
  start-page: 2199
  year: 2017
  ident: 1386_CR18
  publication-title: J. Am. Med. Assoc.
  doi: 10.1001/jama.2017.14585
– volume: 36
  start-page: 1525
  year: 2010
  ident: 1386_CR38
  publication-title: Ultrasound Med. Biol.
  doi: 10.1016/j.ultrasmedbio.2010.06.009
– volume: 22
  start-page: 086009
  year: 2017
  ident: 1386_CR40
  publication-title: J. Biomed. Opt.
  doi: 10.1117/1.JBO.22.8.086009
– volume: 471
  start-page: 61
  year: 2020
  ident: 1386_CR17
  publication-title: Cancer Lett.
  doi: 10.1016/j.canlet.2019.12.007
– ident: 1386_CR5
– volume: 61
  start-page: 69
  year: 2011
  ident: 1386_CR9
  publication-title: CA: Cancer J. Clin.
– volume: 75
  start-page: 111
  year: 2017
  ident: 1386_CR47
  publication-title: Oral. Oncol.
  doi: 10.1016/j.oraloncology.2017.11.008
– volume: 53
  start-page: 111
  year: 2018
  ident: 1386_CR49
  publication-title: Tissue Cell
  doi: 10.1016/j.tice.2018.06.004
– volume: 12
  start-page: 19
  year: 2000
  ident: 1386_CR64
  publication-title: Psychol. Assess.
  doi: 10.1037/1040-3590.12.1.19
– volume: 9
  start-page: 5318
  year: 2018
  ident: 1386_CR58
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.9.005318
– volume: 19
  start-page: 221
  year: 2017
  ident: 1386_CR27
  publication-title: Annu. Rev. Biomed. Eng.
  doi: 10.1146/annurev-bioeng-071516-044442
– ident: 1386_CR20
  doi: 10.1109/ISBI.2018.8363645
– volume-title: IARC Monographs on the Evaluation of Carcinogenic Risks to Humans
  year: 2011
  ident: 1386_CR7
– volume: 22
  start-page: 060503
  year: 2017
  ident: 1386_CR41
  publication-title: J. Biomed. Opt.
  doi: 10.1117/1.JBO.22.6.060503
– volume: 70
  start-page: 7
  year: 2020
  ident: 1386_CR10
  publication-title: CA Cancer J. Clin.
  doi: 10.3322/caac.21590
– volume: 28
  start-page: 2604
  year: 2018
  ident: 1386_CR37
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-017-5214-0
– volume: 33
  start-page: 158
  year: 2011
  ident: 1386_CR53
  publication-title: Anal. Quant. Cytol. Histol.
– volume: 96
  start-page: 3
  year: 2010
  ident: 1386_CR4
  publication-title: IARC Monogr. Evaluation Carcinogenic Risks Hum.
– volume: 128
  start-page: 2375
  year: 2018
  ident: 1386_CR16
  publication-title: Laryngoscope
  doi: 10.1002/lary.27228
– volume: 12
  start-page: 162
  year: 2012
  ident: 1386_CR59
  publication-title: Sensors
  doi: 10.3390/s120100162
– volume: 9
  start-page: 1045
  year: 2019
  ident: 1386_CR22
  publication-title: Front. Oncol.
  doi: 10.3389/fonc.2019.01045
– volume: 42
  start-page: 299
  year: 2018
  ident: 1386_CR36
  publication-title: J. computer Assist. Tomogr.
  doi: 10.1097/RCT.0000000000000682
– ident: 1386_CR43
  doi: 10.1155/2017/8612519
– volume: 10
  start-page: e0126760
  year: 2015
  ident: 1386_CR48
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0126760
– volume: 37
  start-page: 193
  year: 2014
  ident: 1386_CR51
  publication-title: Cell. Oncol.
  doi: 10.1007/s13402-014-0172-x
– volume: 4
  start-page: 49
  year: 2009
  ident: 1386_CR1
  publication-title: Annu. Rev. Pathol.: Mechanisms Dis.
  doi: 10.1146/annurev.pathol.4.110807.092158
– ident: 1386_CR28
  doi: 10.1109/JBHI.2020.2991043
– volume: 38
  start-page: 1019
  year: 2017
  ident: 1386_CR39
  publication-title: Am. J. Neuroradiol.
  doi: 10.3174/ajnr.A5106
– volume: 4
  start-page: 034502
  year: 2017
  ident: 1386_CR33
  publication-title: J. Med. Imaging
  doi: 10.1117/1.JMI.4.3.034502
– volume: 10
  start-page: 563
  year: 2017
  ident: 1386_CR60
  publication-title: Cancer Prev. Res.
  doi: 10.1158/1940-6207.CAPR-17-0054
SSID ssj0009087
Score 2.6085918
SecondaryResourceType review_article
Snippet Background This paper reviews recent literature employing Artificial Intelligence/Machine Learning (AI/ML) methods for diagnostic evaluation of head and neck...
This paper reviews recent literature employing Artificial Intelligence/Machine Learning (AI/ML) methods for diagnostic evaluation of head and neck cancers...
BackgroundThis paper reviews recent literature employing Artificial Intelligence/Machine Learning (AI/ML) methods for diagnostic evaluation of head and neck...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1934
SubjectTerms 631/67/1536
692/4028/67/1536
Artificial Intelligence
Biomedical and Life Sciences
Biomedicine
Cancer Research
Deep learning
Drug Resistance
Epidemiology
Head & neck cancer
Head and Neck Neoplasms - diagnosis
Head and Neck Neoplasms - pathology
Humans
Image processing
Image Processing, Computer-Assisted - methods
Larynx
Learning algorithms
Machine Learning
Medical diagnosis
Medical Oncology - methods
Medical Oncology - trends
Molecular Medicine
Nasopharynx
Oncology
Oral cavity
Oropharynx
Pattern Recognition, Automated
Reviews
Salivary gland
SummonAdditionalLinks – databaseName: Proquest Health and Medical Complete
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9wwDLfYIaG9TIyPrcCmTOINItomaXK8IDTtxJDYE0j3VqVJKk5MPUYPiT8fu83dcaDx7FRpbCe2Y-dngEOd5sPC-5orEQyXyufchqC5RWseTGa96rpEXP0pLm7k5ViN44VbG8sq52did1D7qaM78pNcCW2UQQtzdv-PU9coyq7GFhofYJ2gy0ir9VgvQXdT02Nm0nXcME_jo5lUmJNWZuiKcCpQoFxdwZ9WDdMbb_Nt0eSrzGlnkEab8Cl6kuy8F_1nWAvNFmxcxVz5NlwTpceHYL9fAG9yMlye9a2jWzZpGJ7HntnGsya4O-ZIDx6Y72vwJu0pkhgVehKDduBm9Ov65wWPPRS4k1rOeKYMhlw1mmUTskpbdPhQKgGDCgy1cqtSq72UQ5vVwYQaSUJlTnjhqzyEqghiFwbNtAlfgRU6Vak3UhS-kM55mzp0V6raS2WczKsEsjkDSxcBxqnPxd-yS3QLU_ZML5HpZcf08imBo8U39z28xrujD-ZyKeNWa8ulYiTwY0HGTUKZD9uE6SONwTDVSFNkCXzpxbiYDmN0Ta-FE9ArAl4MIADuVUozue2AuJGrEj2oBI7nqrD8rf-vYu_9VezDx7xTS9ROcwCD2cNj-IaOz6z63mn3MwHq_r8
  priority: 102
  providerName: ProQuest
Title Artificial Intelligence-based methods in head and neck cancer diagnosis: an overview
URI https://link.springer.com/article/10.1038/s41416-021-01386-x
https://www.ncbi.nlm.nih.gov/pubmed/33875821
https://www.proquest.com/docview/2537858238
https://www.proquest.com/docview/2515684861
https://pubmed.ncbi.nlm.nih.gov/PMC8184820
Volume 124
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED-6FsZexrpPb23QYG-bmPWt7K0JDd2gYYwW8mZkSWahwx1NCvvzd5LttGm3wV7sh5Nt-U7y_c53-gngnSn5WIfQUCWipVIFTl2Mhjr05tEyF1TeJeJ0rk_O5ZeFWuwAH9bC5KL9TGmZP9NDddjHlWQIHWgqKEi5NU0RN-4l6vYUcE319IZot7QdT2b6BTfmZb9QphT2D_fYdkb3EOb9Qsk72dLshGZP4HGPHslR19992IntU3h42ufHn8FZknScEOTzLbJNmpxVIN120SuybAl-gwNxbSBt9BfEJ9tfkdDV3S1Xn1BEUnFnShw8h_PZ8dn0hPb7JlAvjVxTpiyGWQ26YhtZbRyCPLRExEACwyvuVOlMkHLsWBNtbFAkFPMiiFDzGGsdxQvYbS_b-AqINqUqg5VCBy29D670CFHqJkhlveR1AWxQYOV7UvG0t8WPKie3ha06pVeo9CorvfpVwPvNNT87So1_tj4Y7FL102tVcSWMVRbhRgFvN2KcGCnb4dp4eZ3aYGhqpdWsgJedGTePw7jcpBXCBZgtA28aJNLtbUm7_J7Jt1GrElFTAR-GoXDTrb-_xev_a_4GHvE8THG02gPYXV9dx0MEP-t6BA_MwuDRTtkI9o5mk8kcz5Pj-ddvozwTfgP_DwHA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9QwDLfGkIAXxOcoDAgSPEG0Nh9tDgkhNJju2G5PN2lvIU1S7TTUG-tN2_4p_kacpr3jmNjbnp22qf1LbMeODfC2SNkgd66ikntFhXSMGu8LalCbe5UZJ9suEeP9fHggvh_KwzX43d-FCWmV_Z7YbtRuZsMZ-RaTvFBSoYb5fPKLhq5RIbrat9CIsNj1l-fosjWfRl9Rvu8Y2_k22R7SrqsAtaIQc5pJhU5IhYpK-awsDJpAOE-PZjY6H8zI1BROiIHJKq98hSQuM8sddyXzvsw9x_fegtuC49IMN9O3lyklg1TFGp3h-G_A0u6STsrVViMyNH1oSIgIscGcXqwqwivW7dUkzX8ita0C3HkA9zvLlXyJUHsIa75-BHfGXWz-MUwCJdajIKO_Cn3SoCgdia2qGzKtCe7_jpjakdrbY2ID7k6Jizl_0-YjkkhILA0CeQIHN8Ldp7Bez2r_DEhepDJ1SvDc5cJaZ1KL5lFZOSGVFaxMIOsZqG1X0Dz01fip28A6VzoyXSPTdct0fZHA-8UzJ7Gcx7WjN3u56G5pN3oJxATeLMi4KEOkxdR-dhbGoFushMqzBDaiGBef4xxdRMWQUqwIeDEgFPxepdTTo7bwN3JVoMWWwIceCstp_f8vnl__F6_h7nAy3tN7o_3dF3CPtRBFpKpNWJ-fnvmXaHTNy1ct0gn8uOml9QeYjTr1
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1db9QwzBpDmnhBfFMYECR4gmhtPpocEkJo47RjbOJhk_YW0iQVJ1BvrDcx_hq_Dqdp7zgm9rZnp63rj9iOHRvghcrZqPS-ppIHTYX0jNoQFLVozYMurJfdlIj9g3L3SHw8lsdr8Hu4CxPLKoc9sduo_czFM_ItJrnSUqOF2ar7sojPO-N3Jz9onCAVM63DOI0kInvh108M39q3kx3k9UvGxh8Ot3dpP2GAOqHEnBZSY0BSo9HSoaiURXcIcQ7ocmMgwqzMrfJCjGxRBx1qBHFZOO65r1gIVRk4vvcaXFeIWtQxvb0sLxnlOvXrjEeBI5b3F3ZyxL8VBbpBNBZHxDxhSc9XjeIFT_diweY_WdvOGI5vwc3eiyXvk9jdhrXQ3IGN_T5PfxcOIyT1piCTv5p-0mg0PUljq1sybQjaAk9s40kT3DfiogyeEp_q_6btGwSRWGQamXMPjq6EuvdhvZk14SGQUuUy91rw0pfCOW9zh65SVXshtROsyqAYCGhc39w8ztj4brokO9cmEd0g0U1HdHOewavFMyeptcelqzcHvphezVuzFMoMni_AqKAx62KbMDuLazBE1kKXRQYPEhsXn-Mcw0XNEKJWGLxYEJt_r0Ka6deuCThSVaD3lsHrQRSWaP3_Lx5d_hfPYAOVynyaHOw9hhusk1AUVL0J6_PTs_AE_a959bQTdAJfrlqz_gBjcz8r
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+Intelligence-based+methods+in+head+and+neck+cancer+diagnosis%3A+an+overview&rft.jtitle=British+journal+of+cancer&rft.au=Mahmood%2C+Hanya&rft.au=Shaban%2C+Muhammad&rft.au=Rajpoot%2C+Nasir&rft.au=Khurram%2C+Syed+A&rft.date=2021-06-08&rft.issn=1532-1827&rft.eissn=1532-1827&rft.volume=124&rft.issue=12&rft.spage=1934&rft_id=info:doi/10.1038%2Fs41416-021-01386-x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0007-0920&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0007-0920&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0007-0920&client=summon