Ultra-high-frequency radio-frequency acoustic molecular imaging with saline nanodroplets in living subjects
Molecular imaging is a crucial technique in clinical diagnostics but it relies on radioactive tracers or strong magnetic fields that are unsuitable for many patients, particularly infants and pregnant women. Ultra-high-frequency radio-frequency acoustic (UHF-RF-acoustic) imaging using non-ionizing R...
Saved in:
Published in | Nature nanotechnology Vol. 16; no. 6; pp. 717 - 724 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.06.2021
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Molecular imaging is a crucial technique in clinical diagnostics but it relies on radioactive tracers or strong magnetic fields that are unsuitable for many patients, particularly infants and pregnant women. Ultra-high-frequency radio-frequency acoustic (UHF-RF-acoustic) imaging using non-ionizing RF pulses allows deep-tissue imaging with sub-millimetre spatial resolution. However, lack of biocompatible and targetable contrast agents has prevented the successful in vivo application of UHF-RF-acoustic imaging. Here we report our development of targetable nanodroplets for UHF-RF-acoustic molecular imaging of cancers. We synthesize all-liquid nanodroplets containing hypertonic saline that are stable for at least 2 weeks and can produce high-intensity UHF-RF-acoustic signals. Compared with concentration-matched iron oxide nanoparticles, our nanodroplets produce at least 1,600 times higher UHF-RF-acoustic signals at the same imaging depth. We demonstrate in vivo imaging using the targeted nanodroplets in a prostate cancer xenograft mouse model expressing gastrin release protein receptor (GRPR), and show that targeting specificity is increased by more than 2-fold compared with untargeted nanodroplets or prostate cancer cells not expressing this receptor.
Ultra-high-frequency radio-frequency acoustic molecular imaging is a safe molecular imaging diagnostic option because it does not require radioactive probes or high magnetic fields, but lack of biocompatible targeted contrast agents has so far limited its in vivo application. In this paper the authors present perfluorocarbon nanodroplets containing hypertonic saline solution for targeted molecular imaging of prostate cancer in animal models. |
---|---|
AbstractList | Molecular imaging is a crucial technique in clinical diagnostics but it relies on radioactive tracers or strong magnetic fields that are unsuitable for many patients, particularly infants and pregnant women. Ultra-high-frequency radio-frequency acoustic (UHF-RF-acoustic) imaging using non-ionizing RF pulses allows deep-tissue imaging with sub-millimetre spatial resolution. However, lack of biocompatible and targetable contrast agents has prevented the successful in vivo application of UHF-RF-acoustic imaging. Here we report our development of targetable nanodroplets for UHF-RF-acoustic molecular imaging of cancers. We synthesize all-liquid nanodroplets containing hypertonic saline that are stable for at least 2 weeks and can produce high-intensity UHF-RF-acoustic signals. Compared with concentration-matched iron oxide nanoparticles, our nanodroplets produce at least 1,600 times higher UHF-RF-acoustic signals at the same imaging depth. We demonstrate in vivo imaging using the targeted nanodroplets in a prostate cancer xenograft mouse model expressing gastrin release protein receptor (GRPR), and show that targeting specificity is increased by more than 2-fold compared with untargeted nanodroplets or prostate cancer cells not expressing this receptor.Molecular imaging is a crucial technique in clinical diagnostics but it relies on radioactive tracers or strong magnetic fields that are unsuitable for many patients, particularly infants and pregnant women. Ultra-high-frequency radio-frequency acoustic (UHF-RF-acoustic) imaging using non-ionizing RF pulses allows deep-tissue imaging with sub-millimetre spatial resolution. However, lack of biocompatible and targetable contrast agents has prevented the successful in vivo application of UHF-RF-acoustic imaging. Here we report our development of targetable nanodroplets for UHF-RF-acoustic molecular imaging of cancers. We synthesize all-liquid nanodroplets containing hypertonic saline that are stable for at least 2 weeks and can produce high-intensity UHF-RF-acoustic signals. Compared with concentration-matched iron oxide nanoparticles, our nanodroplets produce at least 1,600 times higher UHF-RF-acoustic signals at the same imaging depth. We demonstrate in vivo imaging using the targeted nanodroplets in a prostate cancer xenograft mouse model expressing gastrin release protein receptor (GRPR), and show that targeting specificity is increased by more than 2-fold compared with untargeted nanodroplets or prostate cancer cells not expressing this receptor. Molecular imaging is a crucial technique in clinical diagnostics but it relies on radioactive tracers or strong magnetic fields that are unsuitable for many patients, particularly infants and pregnant women. Ultra-high-frequency radio-frequency acoustic (UHF-RF-acoustic) imaging using non-ionizing RF pulses allows deep-tissue imaging with sub-millimetre spatial resolution. However, lack of biocompatible and targetable contrast agents has prevented the successful in vivo application of UHF-RF-acoustic imaging. Here we report our development of targetable nanodroplets for UHF-RF-acoustic molecular imaging of cancers. We synthesize all-liquid nanodroplets containing hypertonic saline that are stable for at least 2 weeks and can produce high-intensity UHF-RF-acoustic signals. Compared with concentration-matched iron oxide nanoparticles, our nanodroplets produce at least 1,600 times higher UHF-RF-acoustic signals at the same imaging depth. We demonstrate in vivo imaging using the targeted nanodroplets in a prostate cancer xenograft mouse model expressing gastrin release protein receptor (GRPR), and show that targeting specificity is increased by more than 2-fold compared with untargeted nanodroplets or prostate cancer cells not expressing this receptor. Ultra-high-frequency radio-frequency acoustic molecular imaging is a safe molecular imaging diagnostic option because it does not require radioactive probes or high magnetic fields, but lack of biocompatible targeted contrast agents has so far limited its in vivo application. In this paper the authors present perfluorocarbon nanodroplets containing hypertonic saline solution for targeted molecular imaging of prostate cancer in animal models. Molecular imaging is a crucial technique in clinical diagnostics but it relies on radioactive tracers or strong magnetic fields that are unsuitable for many patients, particularly infants and pregnant women. Ultra-high-frequency radio-frequency acoustic (UHF-RF-acoustic) imaging using non-ionizing RF pulses allows deep-tissue imaging with sub-millimetre spatial resolution. However, lack of biocompatible and targetable contrast agents has prevented the successful in vivo application of UHF-RF-acoustic imaging. Here we report our development of targetable nanodroplets for UHF-RF-acoustic molecular imaging of cancers. We synthesize all-liquid nanodroplets containing hypertonic saline that are stable for at least 2 weeks and can produce high-intensity UHF-RF-acoustic signals. Compared with concentration-matched iron oxide nanoparticles, our nanodroplets produce at least 1,600 times higher UHF-RF-acoustic signals at the same imaging depth. We demonstrate in vivo imaging using the targeted nanodroplets in a prostate cancer xenograft mouse model expressing gastrin release protein receptor (GRPR), and show that targeting specificity is increased by more than 2-fold compared with untargeted nanodroplets or prostate cancer cells not expressing this receptor.Ultra-high-frequency radio-frequency acoustic molecular imaging is a safe molecular imaging diagnostic option because it does not require radioactive probes or high magnetic fields, but lack of biocompatible targeted contrast agents has so far limited its in vivo application. In this paper the authors present perfluorocarbon nanodroplets containing hypertonic saline solution for targeted molecular imaging of prostate cancer in animal models. Molecular imaging is a crucial technique in clinical diagnostics, but it relies on radioactive tracers or high magnetic fields that are unfavorable for many patients, particularly infants and pregnant women. Ultra-high-frequency-radiofrequency-acoustic (UHF-RF-acoustic) imaging using non-ionizing RF pulses allows deep-tissue imaging with sub-millimeter spatial resolution. However, lack of biocompatible and targetable contrast agents has prevented the successful in vivo application of UHF-RF-acoustic imaging. Here, we report our development of targetable nanodroplets for UHF-RF-acoustic molecular imaging of cancers. We synthesize all-liquid nanodroplets containing hypertonic saline that are stable for at least 2 weeks and can produce high intensity UHF-RF-acoustic signals. Compared with concentration-matched iron-oxide nanoparticles, our nanodroplets produce at least 1600 times higher UHF-RF-acoustic signals at the same imaging depth. We demonstrate in vivo imaging using the targeted nanodroplets in a prostate cancer xenograft mouse model expressing gastrin release protein receptor (GRPR), showing targeting specificity by more than two-fold, compared to untargeted nanodroplets or prostate cancer cells not expressing GRPR. Molecular imaging is a crucial technique in clinical diagnostics but it relies on radioactive tracers or strong magnetic fields that are unsuitable for many patients, particularly infants and pregnant women. Ultra-high-frequency radio-frequency acoustic (UHF-RF-acoustic) imaging using non-ionizing RF pulses allows deep-tissue imaging with sub-millimetre spatial resolution. However, lack of biocompatible and targetable contrast agents has prevented the successful in vivo application of UHF-RF-acoustic imaging. Here we report our development of targetable nanodroplets for UHF-RF-acoustic molecular imaging of cancers. We synthesize all-liquid nanodroplets containing hypertonic saline that are stable for at least 2 weeks and can produce high-intensity UHF-RF-acoustic signals. Compared with concentration-matched iron oxide nanoparticles, our nanodroplets produce at least 1,600 times higher UHF-RF-acoustic signals at the same imaging depth. We demonstrate in vivo imaging using the targeted nanodroplets in a prostate cancer xenograft mouse model expressing gastrin release protein receptor (GRPR), and show that targeting specificity is increased by more than 2-fold compared with untargeted nanodroplets or prostate cancer cells not expressing this receptor. |
Author | Chen, Yun-Sheng Chen, Dong-Hua Dionne, Jennifer Zhao, Yang Stoyanova, Tanya Beinat, Corinne Hsu, En-Chi Achterberg, Friso Wang, Hanwei Zlitni, Aimen Gambhir, Sanjiv Sam |
AuthorAffiliation | 1 Department of Radiology, School of Medicine, Canary Center for Cancer Early Detection, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305 2 Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305 5 Department of Electrical and Computer Engineering, University of Illinois at Urbana–Champaign, Urbana, IL 61801 3 Department of Structural Biology, Stanford University, Stanford, CA 94305 4 Department of Bioengineering, Stanford University, Stanford, CA 94305 |
AuthorAffiliation_xml | – name: 3 Department of Structural Biology, Stanford University, Stanford, CA 94305 – name: 2 Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305 – name: 4 Department of Bioengineering, Stanford University, Stanford, CA 94305 – name: 1 Department of Radiology, School of Medicine, Canary Center for Cancer Early Detection, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305 – name: 5 Department of Electrical and Computer Engineering, University of Illinois at Urbana–Champaign, Urbana, IL 61801 |
Author_xml | – sequence: 1 givenname: Yun-Sheng orcidid: 0000-0001-8823-970X surname: Chen fullname: Chen, Yun-Sheng email: yunsheng@illinois.edu organization: Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign – sequence: 2 givenname: Yang orcidid: 0000-0002-0154-3483 surname: Zhao fullname: Zhao, Yang organization: Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Department of Materials Science and Engineering, Stanford University – sequence: 3 givenname: Corinne orcidid: 0000-0003-1718-3272 surname: Beinat fullname: Beinat, Corinne organization: Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine – sequence: 4 givenname: Aimen orcidid: 0000-0002-4790-1573 surname: Zlitni fullname: Zlitni, Aimen organization: Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine – sequence: 5 givenname: En-Chi orcidid: 0000-0002-5671-6169 surname: Hsu fullname: Hsu, En-Chi organization: Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine – sequence: 6 givenname: Dong-Hua orcidid: 0000-0002-5247-0106 surname: Chen fullname: Chen, Dong-Hua organization: Department of Structural Biology, Stanford University – sequence: 7 givenname: Friso orcidid: 0000-0001-7007-859X surname: Achterberg fullname: Achterberg, Friso organization: Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine – sequence: 8 givenname: Hanwei orcidid: 0000-0003-3762-3650 surname: Wang fullname: Wang, Hanwei organization: Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign – sequence: 9 givenname: Tanya orcidid: 0000-0003-0119-9747 surname: Stoyanova fullname: Stoyanova, Tanya organization: Canary Center at Stanford for Cancer Early Detection, Stanford University – sequence: 10 givenname: Jennifer orcidid: 0000-0001-5287-4357 surname: Dionne fullname: Dionne, Jennifer organization: Department of Materials Science and Engineering, Stanford University – sequence: 11 givenname: Sanjiv Sam orcidid: 0000-0002-2711-7554 surname: Gambhir fullname: Gambhir, Sanjiv Sam organization: Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Department of Materials Science and Engineering, Stanford University, Canary Center at Stanford for Cancer Early Detection, Stanford University, Department of Bioengineering, Stanford University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33782588$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUuPFCEUhYkZ4zz0D7gwlbhxg_IsqI2JmfhKJnHjrAlN3aqmpaEFasz8e2l7bMdZDBsgfOdw7z3n6CSmCAi9pOQtJVy_K4LKXmLCKCZE9wOWT9AZVUJjzgd5cjxrdYrOS9kQItnAxDN0yrnSTGp9hn5ch5otXvt5jacMPxeI7rbLdvTp3t26tJTqXbdNAdwSbO781s4-zt0vX9ddscFH6KKNacxpF6CWzscu-Js9UpbVBlwtz9HTyYYCL-72C3T96eP3yy_46tvnr5cfrrATSlRMOefSDSvOmNJOTEQOWk2Si4FZpSgIBdKNtnejVKwHrsCR1UCJE8zygRN-gd4ffHfLagujg9haDGaXW8351iTrzf8v0a_NnG6MFlIMhDeDN3cGObUJlGq2vjgIwUZogzBMEkVFr0Xf0NcP0E1acmztNUqQtpSQjXp1v6JjKX9zaAA7AC6nUjJMR4QSsw_bHMI2LWzzJ2yzd9UPRM5XW33ad-XD41J-kJb2T5wh_yv7EdVvkge_1g |
CitedBy_id | crossref_primary_10_1109_TMI_2024_3447125 crossref_primary_10_1007_s40242_021_1196_1 crossref_primary_10_1039_D1SM01457A crossref_primary_10_3389_fbioe_2023_1323316 crossref_primary_10_1016_j_pacs_2022_100425 crossref_primary_10_1038_s41467_023_41172_2 crossref_primary_10_1016_j_pacs_2022_100347 crossref_primary_10_1007_s00259_022_05726_8 crossref_primary_10_1038_s41551_022_00978_z crossref_primary_10_1002_adfm_202308437 crossref_primary_10_1142_S1793545822300075 crossref_primary_10_2174_0124681873265152231229042106 crossref_primary_10_1002_smll_202406860 crossref_primary_10_1142_S1793545822300142 crossref_primary_10_1039_D4CS00599F crossref_primary_10_1016_j_eng_2024_01_030 crossref_primary_10_1109_TMI_2023_3250647 crossref_primary_10_1038_s41566_024_01387_1 crossref_primary_10_1002_lpor_202400781 crossref_primary_10_1016_j_addr_2025_115551 crossref_primary_10_3390_pharmaceutics14112463 crossref_primary_10_1039_D1MA00969A crossref_primary_10_1063_5_0216061 |
Cites_doi | 10.1126/science.1125949 10.1016/j.addr.2013.09.007 10.1016/0022-3697(61)90054-3 10.1038/nrc882 10.3390/ijms151223616 10.1007/BF02541262 10.1021/ar200106e 10.1021/jp0622942 10.1007/s10404-015-1635-8 10.1177/153303460500400509 10.1039/C7CP00728K 10.7150/thno.17846 10.1118/1.4903277 10.1002/adom.201400166 10.1093/annonc/mdm058 10.1148/radiology.219.2.r01ma19316 10.1038/nrd2290 10.1021/la036396k 10.1021/ja01120a617 10.1038/nmeth.3929 10.1118/1.4729710 10.1118/1.598688 10.2174/1872208311206030200 10.1126/scitranslmed.aao3612 10.1118/1.3466696 10.1016/j.ultsonch.2013.08.005 10.1016/S1359-0294(98)80096-4 10.1016/j.jcis.2004.12.036 10.1118/1.4894804 10.4065/mcp.2010.0260 10.1152/physrev.00049.2010 10.1016/j.crad.2010.03.011 10.1148/radiology.211.1.r99ap05275 10.1038/234149a0 10.1103/PhysRevE.75.061125 10.1038/219856a0 10.1021/la0111248 10.1073/pnas.1312171111 10.1007/s10334-018-0696-6 10.1038/nrclinonc.2016.109 10.1148/radiology.216.1.r00jl30279 10.1006/jcis.2000.7384 10.1155/2019/9480193 10.1016/j.cocis.2007.07.006 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Limited 2021 The Author(s), under exclusive licence to Springer Nature Limited 2021. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Limited 2021 – notice: The Author(s), under exclusive licence to Springer Nature Limited 2021. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QO 7U5 7X7 7XB 88E 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO F28 FR3 FYUFA GHDGH GNUQQ HCIFZ K9. KB. L6V L7M LK8 M0S M1P M7P M7S P5Z P62 P64 PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PTHSS 7X8 5PM |
DOI | 10.1038/s41565-021-00869-5 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Biotechnology Research Abstracts Solid State and Superconductivity Abstracts ProQuest Health & Medical Collection (NC LIVE) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection (via ProQuest SciTech Premium Collection) Natural Science Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection (via ProQuest) ProQuest Health & Medical Complete (Alumni) Materials Science Database ProQuest Engineering Collection Advanced Technologies Database with Aerospace ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Biological Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central ProQuest Health & Medical Research Collection ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Materials Science Database Advanced Technologies Database with Aerospace ProQuest Materials Science Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Materials Science & Engineering Collection ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest Central Student MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1748-3395 |
EndPage | 724 |
ExternalDocumentID | PMC8454903 33782588 10_1038_s41565_021_00869_5 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: Google funderid: https://doi.org/10.13039/100006785 – fundername: U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI) grantid: CCNE-TD U54 CA199075-04 funderid: https://doi.org/10.13039/100000054 – fundername: The Jump ARCHES endowment through the Health Care Engineering Systems Center – fundername: U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS) grantid: 1R21GM139022-01 funderid: https://doi.org/10.13039/100000057 – fundername: Stanford’s Catalyst for Collaborative Solutions – fundername: The Canary Foundation, The Sir Peter Michael Foundation – fundername: NIGMS NIH HHS grantid: R21 GM139022 |
GroupedDBID | --- -~X 0R~ 123 29M 39C 3V. 4.4 53G 5BI 5M7 5S5 6OB 70F 7X7 88E 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 AAEEF AARCD AAYZH AAZLF ABAWZ ABDBF ABJCF ABJNI ABLJU ABUWG ACBWK ACGFS ACIWK ACPRK ACUHS ADBBV AENEX AEUYN AFANA AFBBN AFKRA AFLOW AFRAH AFSHS AFWHJ AGAYW AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ARAPS ARMCB ASPBG AVWKF AXYYD AZFZN BBNVY BENPR BGLVJ BHPHI BKKNO BPHCQ BVXVI CCPQU CS3 D1I DB5 DU5 EBS EE. EJD EMOBN ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA HCIFZ HMCUK HVGLF HZ~ I-F KB. L6V LK8 M1P M7P M7S MM. NNMJJ O9- ODYON P2P P62 PDBOC PQQKQ PROAC PSQYO PTHSS Q2X RNS RNT RNTTT SHXYY SIXXV SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP ~8M AAYXX ABFSG ACSTC AEZWR AFHIU AHWEU AIXLP ALPWD ATHPR CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NFIDA NPM 7QO 7U5 7XB 8FD 8FK AZQEC DWQXO F28 FR3 GNUQQ K9. L7M P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI 7X8 5PM |
ID | FETCH-LOGICAL-c474t-13335c9b32278c4f05987f53492a771e47e5cda6cd5726e37ec0b910c42a39303 |
IEDL.DBID | 7X7 |
ISSN | 1748-3387 1748-3395 |
IngestDate | Thu Aug 21 18:20:19 EDT 2025 Fri Jul 11 00:31:13 EDT 2025 Fri Jul 25 08:57:46 EDT 2025 Thu Apr 03 07:00:57 EDT 2025 Tue Jul 01 01:56:31 EDT 2025 Thu Apr 24 22:59:32 EDT 2025 Fri Feb 21 02:40:37 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c474t-13335c9b32278c4f05987f53492a771e47e5cda6cd5726e37ec0b910c42a39303 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 AUTHOR CONTRIBUTIONS SSG conceived the original idea. Y-SC and SSG designed the experiments. Y-SC developed the contrast agents and performed the in vitro and in vivo imaging. Y-SC, YZ, and HW performed the theoretical study. DHC contributed to cryo-EM. CB, AZ, ECH, TS, and JAD contributed to the discussion of the data and experimental results. Y-SC and SSG drafted the manuscript and all authors contributed to the writing of the manuscript. SSG supervised the entire study. |
ORCID | 0000-0003-0119-9747 0000-0002-0154-3483 0000-0002-4790-1573 0000-0002-5247-0106 0000-0002-5671-6169 0000-0001-5287-4357 0000-0001-7007-859X 0000-0003-1718-3272 0000-0003-3762-3650 0000-0001-8823-970X 0000-0002-2711-7554 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC8454903 |
PMID | 33782588 |
PQID | 2540000745 |
PQPubID | 546299 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8454903 proquest_miscellaneous_2507146846 proquest_journals_2540000745 pubmed_primary_33782588 crossref_primary_10_1038_s41565_021_00869_5 crossref_citationtrail_10_1038_s41565_021_00869_5 springer_journals_10_1038_s41565_021_00869_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-06-01 |
PublicationDateYYYYMMDD | 2021-06-01 |
PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature nanotechnology |
PublicationTitleAbbrev | Nat. Nanotechnol |
PublicationTitleAlternate | Nat Nanotechnol |
PublicationYear | 2021 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Vernikouskaya, Pochert, Lindén, Rasche (CR43) 2019; 32 Pysz, Gambhir, Willmann (CR8) 2010; 65 Chong (CR33) 2015; 19 Omar, Kellnberger, Sergiadis, Razansky, Ntziachristos (CR20) 2012; 39 Weber, Beard, Bohndiek (CR13) 2016; 13 Freire, Dias, Coelho, Coutinho, Marrucho (CR38) 2005; 286 Hussain, Nguyen (CR6) 2014; 66 Atzberger, Kramer (CR37) 2007; 75 Wolf (CR28) 1966 Hilder (CR39) 1968; 45 Garti, Bisperink (CR31) 1998; 3 Willmann, van Bruggen, Dinkelborg, Gambhir (CR7) 2008; 7 Hamilton, Walter, Rubin, Neal (CR2) 2016; 13 Joseph, Noah (CR45) 2012; 6 Gambhir (CR3) 2002; 2 Lin (CR9) 2010; 85 Kruger (CR15) 1999; 211 James, Gambhir (CR10) 2012; 92 Muschiolik (CR32) 2007; 12 Gambhir, Ge, Vermesh, Spitler (CR1) 2018; 10 Wen, Papadopoulos (CR36) 2001; 235 Kruger, Reinecke, Kruger (CR17) 1999; 26 Ogunlade, Beard (CR22) 2016; 42 Mezzenga, Folmer, Hughes (CR35) 2004; 20 Nie, Ou, Yang, Xing (CR25) 2010; 37 Tamarov (CR26) 2017; 19 Doinikov, Sheeran, Bouakaz, Dayton (CR48) 2014; 41 Wu, Huang, Jiang, Jiang (CR24) 2014; 15 Sakai, Kamogawa, Nishiyama, Sakai, Abe (CR47) 2002; 18 Pitt, Singh, Perez, Husseini, Jack (CR49) 2014; 21 Cornelio, Roesler, Schwartsmann (CR50) 2007; 18 Weissleder, Mahmood (CR5) 2001; 219 Engel, Riggi, Fahrenbach (CR29) 1968; 219 Gresham, Barnett, Smith, Schneider (CR30) 1971; 234 Kruger (CR19) 2000; 216 CR14 Lifshitz, Slyozov (CR46) 1961; 19 Weissleder (CR4) 2006; 312 Jokerst, Gambhir (CR12) 2011; 44 Shpak (CR42) 2014; 111 Chen (CR34) 2014; 2 Loskutova, Grishenkov, Ghorbani (CR11) 2019; 2019 Wen, Yang, Zhong, Zhou, Xing (CR18) 2017; 7 Tran (CR44) 2007; 2 CR27 Rotariu, Fraga, Hildebrand (CR41) 1953; 75 CR23 Freire, Gomes, Santos, Marrucho, Coutinho (CR40) 2006; 110 CR21 Ku (CR16) 2005; 4 PJ Atzberger (869_CR37) 2007; 75 L Wen (869_CR36) 2001; 235 ML James (869_CR10) 2012; 92 IM Lifshitz (869_CR46) 1961; 19 RH Engel (869_CR29) 1968; 219 R Mezzenga (869_CR35) 2004; 20 G Rotariu (869_CR41) 1953; 75 L Nie (869_CR25) 2010; 37 G Muschiolik (869_CR32) 2007; 12 SS Gambhir (869_CR3) 2002; 2 RA Kruger (869_CR19) 2000; 216 TD Tran (869_CR44) 2007; 2 N Garti (869_CR31) 1998; 3 R Weissleder (869_CR4) 2006; 312 D Chong (869_CR33) 2015; 19 W Hamilton (869_CR2) 2016; 13 I Vernikouskaya (869_CR43) 2019; 32 JK Willmann (869_CR7) 2008; 7 T Hussain (869_CR6) 2014; 66 K Loskutova (869_CR11) 2019; 2019 M Omar (869_CR20) 2012; 39 LW Wen (869_CR18) 2017; 7 J Weber (869_CR13) 2016; 13 MG Freire (869_CR38) 2005; 286 MH Hilder (869_CR39) 1968; 45 PA Gresham (869_CR30) 1971; 234 RA Kruger (869_CR17) 1999; 26 EC Lin (869_CR9) 2010; 85 GM Joseph (869_CR45) 2012; 6 SS Gambhir (869_CR1) 2018; 10 869_CR21 869_CR23 T Sakai (869_CR47) 2002; 18 869_CR27 DB Cornelio (869_CR50) 2007; 18 WG Pitt (869_CR49) 2014; 21 RA Kruger (869_CR15) 1999; 211 D Wu (869_CR24) 2014; 15 AA Doinikov (869_CR48) 2014; 41 JV Jokerst (869_CR12) 2011; 44 R Weissleder (869_CR5) 2001; 219 AV Wolf (869_CR28) 1966 MA Pysz (869_CR8) 2010; 65 O Shpak (869_CR42) 2014; 111 869_CR14 G Ku (869_CR16) 2005; 4 L Chen (869_CR34) 2014; 2 MG Freire (869_CR40) 2006; 110 K Tamarov (869_CR26) 2017; 19 O Ogunlade (869_CR22) 2016; 42 34903031 - J Urol. 2022 Mar;207(3):727-729. doi: 10.1097/JU.0000000000002363 |
References_xml | – volume: 312 start-page: 1168 year: 2006 end-page: 1171 ident: CR4 article-title: Molecular imaging in cancer publication-title: Science doi: 10.1126/science.1125949 – volume: 66 start-page: 90 year: 2014 end-page: 100 ident: CR6 article-title: Molecular imaging for cancer diagnosis and surgery publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2013.09.007 – volume: 19 start-page: 35 year: 1961 end-page: 50 ident: CR46 article-title: The kinetics of precipitation from supersaturated solid solutions publication-title: J. Phys. Chem. Solids doi: 10.1016/0022-3697(61)90054-3 – volume: 2 start-page: 683 year: 2002 end-page: 693 ident: CR3 article-title: Molecular imaging of cancer with positron emission tomography publication-title: Nat. Rev. Cancer doi: 10.1038/nrc882 – volume: 15 start-page: 23616 year: 2014 ident: CR24 article-title: Contrast agents for photoacoustic and thermoacoustic imaging: a review publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms151223616 – volume: 45 start-page: 703 year: 1968 end-page: 707 ident: CR39 article-title: The solubility of water in edible oils and fats publication-title: J. Am. Oil Chem. Soc. doi: 10.1007/BF02541262 – volume: 44 start-page: 1050 year: 2011 end-page: 1060 ident: CR12 article-title: Molecular imaging with theranostic nanoparticles publication-title: Acc. Chem. Res. doi: 10.1021/ar200106e – volume: 110 start-page: 22923 year: 2006 end-page: 22929 ident: CR40 article-title: Water solubility in linear fluoroalkanes used in blood substitute formulations publication-title: J. Phys. Chem. B doi: 10.1021/jp0622942 – ident: CR21 – volume: 19 start-page: 1071 year: 2015 end-page: 1090 ident: CR33 article-title: Advances in fabricating double-emulsion droplets and their biomedical applications publication-title: Microfluidics Nanofluidics doi: 10.1007/s10404-015-1635-8 – volume: 4 start-page: 559 year: 2005 end-page: 565 ident: CR16 article-title: Thermoacoustic and photoacoustic tomography of thick biological tissues toward breast imaging publication-title: Technol. Cancer Res. Treat. doi: 10.1177/153303460500400509 – volume: 19 start-page: 11510 year: 2017 end-page: 11517 ident: CR26 article-title: Electrolytic conductivity-related radiofrequency heating of aqueous suspensions of nanoparticles for biomedicine publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C7CP00728K – volume: 7 start-page: 1976 year: 2017 end-page: 1989 ident: CR18 article-title: Thermoacoustic imaging and therapy guidance based on ultra-short pulsed microwave pumped thermoelastic effect induced with superparamagnetic iron oxide nanoparticles publication-title: Theranostics doi: 10.7150/thno.17846 – volume: 42 start-page: 170 year: 2016 end-page: 181 ident: CR22 article-title: Exogenous contrast agents for thermoacoustic imaging: an investigation into the underlying sources of contrast publication-title: Med. Phys. doi: 10.1118/1.4903277 – volume: 2 start-page: 845 year: 2014 end-page: 848 ident: CR34 article-title: Photoresponsive monodisperse cholesteric liquid crystalline microshells for tunable omnidirectional lasing enabled by a visible light-driven chiral molecular switch publication-title: Adv. Optical Mater. doi: 10.1002/adom.201400166 – volume: 18 start-page: 1457 year: 2007 end-page: 1466 ident: CR50 article-title: Gastrin-releasing peptide receptor as a molecular target in experimental anticancer therapy publication-title: Ann. Oncol. doi: 10.1093/annonc/mdm058 – volume: 219 start-page: 316 year: 2001 end-page: 333 ident: CR5 article-title: Molecular imaging publication-title: Radiology doi: 10.1148/radiology.219.2.r01ma19316 – volume: 7 start-page: 591 year: 2008 end-page: 607 ident: CR7 article-title: Molecular imaging in drug development publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd2290 – volume: 20 start-page: 3574 year: 2004 end-page: 3582 ident: CR35 article-title: Design of double emulsions by osmotic pressure tailoring publication-title: Langmuir doi: 10.1021/la036396k – volume: 75 start-page: 6357 year: 1953 end-page: 6357 ident: CR41 article-title: The solubility of water in normal perfluoroheptane publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01120a617 – volume: 13 start-page: 639 year: 2016 end-page: 650 ident: CR13 article-title: Contrast agents for molecular photoacoustic imaging publication-title: Nat. Methods doi: 10.1038/nmeth.3929 – ident: CR14 – volume: 39 start-page: 4460 year: 2012 end-page: 4466 ident: CR20 article-title: Near-field thermoacoustic imaging with transmission line pulsers publication-title: Med. Phys. doi: 10.1118/1.4729710 – volume: 26 start-page: 1832 year: 1999 end-page: 1837 ident: CR17 article-title: Thermoacoustic computed tomography—technical considerations publication-title: Med. Phys. doi: 10.1118/1.598688 – volume: 6 start-page: 200 year: 2012 end-page: 211 ident: CR45 article-title: Poloxamer 188 (P188) as a membrane resealing reagent in biomedical applications publication-title: Recent Pat. Biotechnol. doi: 10.2174/1872208311206030200 – volume: 10 start-page: eaao3612 year: 2018 ident: CR1 article-title: Toward achieving precision health publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aao3612 – volume: 37 start-page: 4193 year: 2010 end-page: 4200 ident: CR25 article-title: Thermoacoustic molecular tomography with magnetic nanoparticle contrast agents for targeted tumor detection publication-title: Med. Phys. doi: 10.1118/1.3466696 – volume: 21 start-page: 879 year: 2014 end-page: 891 ident: CR49 article-title: Phase transitions of perfluorocarbon nanoemulsion induced with ultrasound: a mathematical model publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2013.08.005 – volume: 3 start-page: 657 year: 1998 end-page: 667 ident: CR31 article-title: Double emulsions: progress and applications publication-title: Curr. Opin. Colloid Interface Sci. doi: 10.1016/S1359-0294(98)80096-4 – volume: 286 start-page: 224 year: 2005 end-page: 232 ident: CR38 article-title: Aging mechanisms of perfluorocarbon emulsions using image analysis publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2004.12.036 – volume: 41 start-page: 102901 year: 2014 ident: CR48 article-title: Vaporization dynamics of volatile perfluorocarbon droplets: a theoretical model and in vitro validation publication-title: Med. Phys. doi: 10.1118/1.4894804 – ident: CR27 – volume: 85 start-page: 1142 year: 2010 end-page: 1146 ident: CR9 article-title: Radiation risk from medical imaging publication-title: Mayo Clin. Proc. doi: 10.4065/mcp.2010.0260 – ident: CR23 – volume: 2 start-page: 515 year: 2007 end-page: 526 ident: CR44 article-title: Clinical applications of perfluorocarbon nanoparticles for molecular imaging and targeted therapeutics publication-title: Int. J. Nanomed. – volume: 92 start-page: 897 year: 2012 end-page: 965 ident: CR10 article-title: A molecular imaging primer: modalities, imaging agents, and applications publication-title: Physiological Rev. doi: 10.1152/physrev.00049.2010 – volume: 65 start-page: 500 year: 2010 end-page: 516 ident: CR8 article-title: Molecular imaging: current status and emerging strategies publication-title: Clin. Radiol. doi: 10.1016/j.crad.2010.03.011 – volume: 211 start-page: 275 year: 1999 end-page: 278 ident: CR15 article-title: Thermoacoustic CT with radio waves: a medical imaging paradigm publication-title: Radiology doi: 10.1148/radiology.211.1.r99ap05275 – volume: 234 start-page: 149 year: 1971 ident: CR30 article-title: Use of a sustained-release multiple emulsion to extend the period of radioprotection conferred by cysteamine publication-title: Nature doi: 10.1038/234149a0 – volume: 75 start-page: 061125 year: 2007 ident: CR37 article-title: Theoretical framework for microscopic osmotic phenomena publication-title: Phys. Rev. E Stat. Nonlin. Soft Matter Phys. doi: 10.1103/PhysRevE.75.061125 – volume: 219 start-page: 856 year: 1968 end-page: 857 ident: CR29 article-title: Insulin: intestinal absorption as water-in-oil-in-water emulsions publication-title: Nature doi: 10.1038/219856a0 – volume: 18 start-page: 1985 year: 2002 end-page: 1990 ident: CR47 article-title: Molecular diffusion of oil/water emulsions in surfactant-free conditions publication-title: Langmuir doi: 10.1021/la0111248 – volume: 111 start-page: 1697 year: 2014 end-page: 1702 ident: CR42 article-title: Acoustic droplet vaporization is initiated by superharmonic focusing publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1312171111 – volume: 32 start-page: 25 year: 2019 end-page: 36 ident: CR43 article-title: Quantitative F MRI of perfluoro-15-crown-5-ether using uniformity correction of the spin excitation and signal reception publication-title: Magn. Reson. Mater. Phys., Biol. Med. doi: 10.1007/s10334-018-0696-6 – volume: 13 start-page: 740 year: 2016 end-page: 749 ident: CR2 article-title: Improving early diagnosis of symptomatic cancer publication-title: Nat. Rev. Clin. Oncol. doi: 10.1038/nrclinonc.2016.109 – volume: 216 start-page: 279 year: 2000 end-page: 283 ident: CR19 article-title: Breast cancer in vivo: contrast enhancement with thermoacoustic CT at 434 MHz—feasibility study publication-title: Radiology doi: 10.1148/radiology.216.1.r00jl30279 – year: 1966 ident: CR28 publication-title: Aqueous Solutions and Body Fluids – volume: 235 start-page: 398 year: 2001 end-page: 404 ident: CR36 article-title: Effects of osmotic pressure on water transport in W1/O/W2 emulsions publication-title: J. Colloid Interface Sci. doi: 10.1006/jcis.2000.7384 – volume: 2019 start-page: 9480193 year: 2019 ident: CR11 article-title: Review on acoustic droplet vaporization in ultrasound diagnostics and therapeutics publication-title: BioMed. Res. Int. doi: 10.1155/2019/9480193 – volume: 12 start-page: 213 year: 2007 end-page: 220 ident: CR32 article-title: Multiple emulsions for food use publication-title: Curr. Opin. Colloid Interface Sci. doi: 10.1016/j.cocis.2007.07.006 – volume: 66 start-page: 90 year: 2014 ident: 869_CR6 publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2013.09.007 – volume: 234 start-page: 149 year: 1971 ident: 869_CR30 publication-title: Nature doi: 10.1038/234149a0 – volume: 2019 start-page: 9480193 year: 2019 ident: 869_CR11 publication-title: BioMed. Res. Int. doi: 10.1155/2019/9480193 – volume: 4 start-page: 559 year: 2005 ident: 869_CR16 publication-title: Technol. Cancer Res. Treat. doi: 10.1177/153303460500400509 – volume: 3 start-page: 657 year: 1998 ident: 869_CR31 publication-title: Curr. Opin. Colloid Interface Sci. doi: 10.1016/S1359-0294(98)80096-4 – volume: 92 start-page: 897 year: 2012 ident: 869_CR10 publication-title: Physiological Rev. doi: 10.1152/physrev.00049.2010 – volume: 18 start-page: 1457 year: 2007 ident: 869_CR50 publication-title: Ann. Oncol. doi: 10.1093/annonc/mdm058 – volume: 26 start-page: 1832 year: 1999 ident: 869_CR17 publication-title: Med. Phys. doi: 10.1118/1.598688 – volume: 13 start-page: 740 year: 2016 ident: 869_CR2 publication-title: Nat. Rev. Clin. Oncol. doi: 10.1038/nrclinonc.2016.109 – ident: 869_CR21 – volume: 41 start-page: 102901 year: 2014 ident: 869_CR48 publication-title: Med. Phys. doi: 10.1118/1.4894804 – volume: 20 start-page: 3574 year: 2004 ident: 869_CR35 publication-title: Langmuir doi: 10.1021/la036396k – volume: 216 start-page: 279 year: 2000 ident: 869_CR19 publication-title: Radiology doi: 10.1148/radiology.216.1.r00jl30279 – volume: 45 start-page: 703 year: 1968 ident: 869_CR39 publication-title: J. Am. Oil Chem. Soc. doi: 10.1007/BF02541262 – volume: 13 start-page: 639 year: 2016 ident: 869_CR13 publication-title: Nat. Methods doi: 10.1038/nmeth.3929 – volume-title: Aqueous Solutions and Body Fluids year: 1966 ident: 869_CR28 – volume: 219 start-page: 856 year: 1968 ident: 869_CR29 publication-title: Nature doi: 10.1038/219856a0 – volume: 37 start-page: 4193 year: 2010 ident: 869_CR25 publication-title: Med. Phys. doi: 10.1118/1.3466696 – volume: 111 start-page: 1697 year: 2014 ident: 869_CR42 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1312171111 – volume: 42 start-page: 170 year: 2016 ident: 869_CR22 publication-title: Med. Phys. doi: 10.1118/1.4903277 – volume: 19 start-page: 1071 year: 2015 ident: 869_CR33 publication-title: Microfluidics Nanofluidics doi: 10.1007/s10404-015-1635-8 – volume: 65 start-page: 500 year: 2010 ident: 869_CR8 publication-title: Clin. Radiol. doi: 10.1016/j.crad.2010.03.011 – volume: 2 start-page: 515 year: 2007 ident: 869_CR44 publication-title: Int. J. Nanomed. – ident: 869_CR14 – volume: 12 start-page: 213 year: 2007 ident: 869_CR32 publication-title: Curr. Opin. Colloid Interface Sci. doi: 10.1016/j.cocis.2007.07.006 – volume: 19 start-page: 35 year: 1961 ident: 869_CR46 publication-title: J. Phys. Chem. Solids doi: 10.1016/0022-3697(61)90054-3 – volume: 235 start-page: 398 year: 2001 ident: 869_CR36 publication-title: J. Colloid Interface Sci. doi: 10.1006/jcis.2000.7384 – volume: 110 start-page: 22923 year: 2006 ident: 869_CR40 publication-title: J. Phys. Chem. B doi: 10.1021/jp0622942 – volume: 219 start-page: 316 year: 2001 ident: 869_CR5 publication-title: Radiology doi: 10.1148/radiology.219.2.r01ma19316 – volume: 39 start-page: 4460 year: 2012 ident: 869_CR20 publication-title: Med. Phys. doi: 10.1118/1.4729710 – volume: 44 start-page: 1050 year: 2011 ident: 869_CR12 publication-title: Acc. Chem. Res. doi: 10.1021/ar200106e – ident: 869_CR27 – volume: 19 start-page: 11510 year: 2017 ident: 869_CR26 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C7CP00728K – ident: 869_CR23 – volume: 10 start-page: eaao3612 year: 2018 ident: 869_CR1 publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aao3612 – volume: 85 start-page: 1142 year: 2010 ident: 869_CR9 publication-title: Mayo Clin. Proc. doi: 10.4065/mcp.2010.0260 – volume: 75 start-page: 061125 year: 2007 ident: 869_CR37 publication-title: Phys. Rev. E Stat. Nonlin. Soft Matter Phys. doi: 10.1103/PhysRevE.75.061125 – volume: 18 start-page: 1985 year: 2002 ident: 869_CR47 publication-title: Langmuir doi: 10.1021/la0111248 – volume: 7 start-page: 1976 year: 2017 ident: 869_CR18 publication-title: Theranostics doi: 10.7150/thno.17846 – volume: 75 start-page: 6357 year: 1953 ident: 869_CR41 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01120a617 – volume: 15 start-page: 23616 year: 2014 ident: 869_CR24 publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms151223616 – volume: 21 start-page: 879 year: 2014 ident: 869_CR49 publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2013.08.005 – volume: 2 start-page: 683 year: 2002 ident: 869_CR3 publication-title: Nat. Rev. Cancer doi: 10.1038/nrc882 – volume: 7 start-page: 591 year: 2008 ident: 869_CR7 publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd2290 – volume: 286 start-page: 224 year: 2005 ident: 869_CR38 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2004.12.036 – volume: 211 start-page: 275 year: 1999 ident: 869_CR15 publication-title: Radiology doi: 10.1148/radiology.211.1.r99ap05275 – volume: 32 start-page: 25 year: 2019 ident: 869_CR43 publication-title: Magn. Reson. Mater. Phys., Biol. Med. doi: 10.1007/s10334-018-0696-6 – volume: 6 start-page: 200 year: 2012 ident: 869_CR45 publication-title: Recent Pat. Biotechnol. doi: 10.2174/1872208311206030200 – volume: 2 start-page: 845 year: 2014 ident: 869_CR34 publication-title: Adv. Optical Mater. doi: 10.1002/adom.201400166 – volume: 312 start-page: 1168 year: 2006 ident: 869_CR4 publication-title: Science doi: 10.1126/science.1125949 – reference: 34903031 - J Urol. 2022 Mar;207(3):727-729. doi: 10.1097/JU.0000000000002363 |
SSID | ssj0052924 |
Score | 2.4811797 |
Snippet | Molecular imaging is a crucial technique in clinical diagnostics but it relies on radioactive tracers or strong magnetic fields that are unsuitable for many... Molecular imaging is a crucial technique in clinical diagnostics, but it relies on radioactive tracers or high magnetic fields that are unfavorable for many... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 717 |
SubjectTerms | 631/61/350/354 639/925/350/354 639/925/352 639/925/352/2734 639/925/357 Acoustic imaging Acoustics Animal models Animals Biocompatibility Cell Line, Tumor Chemical synthesis Chemistry and Materials Science Contrast agents Contrast media Contrast Media - chemistry Drug Stability Gastrin Humans Hydrocarbons, Fluorinated - chemistry Iron oxides Magnetic fields Male Materials Science Medical imaging Mice Mice, Inbred NOD Molecular Imaging - instrumentation Molecular Imaging - methods Nanoparticles Nanostructures - chemistry Nanotechnology Nanotechnology and Microengineering Perfluorocarbons Phantoms, Imaging Prostate cancer Prostatic Neoplasms - diagnostic imaging Prostatic Neoplasms - metabolism Radio frequency Radio Waves Radioactive tracers Receptors Receptors, Bombesin - genetics Receptors, Bombesin - immunology Receptors, Bombesin - metabolism Saline Solution, Hypertonic - chemistry Saline solutions Spatial discrimination Spatial resolution Ultrahigh frequencies Xenograft Model Antitumor Assays Xenografts Xenotransplantation |
Title | Ultra-high-frequency radio-frequency acoustic molecular imaging with saline nanodroplets in living subjects |
URI | https://link.springer.com/article/10.1038/s41565-021-00869-5 https://www.ncbi.nlm.nih.gov/pubmed/33782588 https://www.proquest.com/docview/2540000745 https://www.proquest.com/docview/2507146846 https://pubmed.ncbi.nlm.nih.gov/PMC8454903 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED_B9gIPiG8CYzISb2Atje04fkIrWpmQqBCiUt8ix05EtC4dTfew_353zsdWJvbSqorTfNzZ97s73_0APiKiQLvvE55MvORSSJxSRWa5QHtkdOUKK6ne-cc8PV3I70u17ANubb-tclgTw0Lt145i5EfoyIS0m1RfLv5yYo2i7GpPofEQ9ql1GWm1Xo4Ol0pMR2qr8Q7QFdN90UwssqOWHBeqTUZnGlG94WrXMN1Bm3c3Tf6TOQ0GafYUnvRIkh13on8GD8rmOTy-1V_wBZwtVvgnnFoS82rTbZq-Yhvr6_Wt37gmBkovdj5Q5bL6PJAXMYrSstYSFGWNbdZ-Q_vNty2rG7aqKRbB2suCQjntS1jMTn5_PeU9uwJ3UkvioBdCOVMIKoZ1skKclelKUbdCq_WklLpUztvUeaWTtBS6dHGB4MLJxAqDlu8V7DXrpnwDzGqDZl86m3gtjY1NbH1lU2XxXGWKKoLJ8Gpz17ceJwaMVR5S4CLLO3HkKI48iCNXEXwaz7noGm_cO_pgkFjeT8I2v1GZCD6Mh3H6UE7ENiW-XBxDFVwporAIXncCHi8nBMInlWUR6B3RjwOoNffukab-E1p0ZxL97lhE8HlQkpvb-v9TvL3_Kd7BoyQoLMWADmBvu7ks3yMk2haHQe_xM5t9O4T949l0Osfv6cn8569r0NMMQQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFTKAXpA5dUGWjASnCBq1o84PqCqApYtfZy6Um_BcRIRsc2WzVaoP8U3MuMk2y4VvfUYxXZiz3vGMwPwFjUKlPs5D_kgl6EUEkkqS2woUB4ZXbrMSsp3PjqOR2P57VSdrsCfPheGrlX2PNEz6nzqyEe-g4aMD7tJtXv-K6SuURRd7VtotGhxUFz-RpOt-bj_GeH7jvPhl5NPo7DrKhA6qSX1XhdCOZMJSgJ1skT9ItGloip9VutBIXWhXG5jlyvN40LowkUZClUnuRUGOT6uew_uS4GSnDLTh197zq-4aZvoatwxmn66S9KJRLLTkKFEudBovKMVYUK1LAhvaLc3L2n-E6n1AnC4Do86zZXttaj2GFaK-gmsXatn-BR-jie4SEglkMNy1l7SvmQzm1fTa8_Ig30LMXbWt-Zl1ZlvlsTIK8waS6ovq209zWd0v33esKpmk4p8H6y5yMh11DyD8Z2c-3NYrad1sQnMaoNqhnSW51oaG5nI5qWNlcW5ymRlAIP-aFPXlTqnjhuT1IfcRZK24EgRHKkHR6oCeL-Yc94W-rh19FYPsbQj-ia9QtEA3ixeI7lSDMbWBR4ujqGMsRi1vgA2WgAvPicEqmsqSQLQS6BfDKBS4Mtv6uqHLwmeSLTzIxHAhx5Jrn7r_7t4cfsuXsOD0cnRYXq4f3zwEh5yj7zkf9qC1fnsothGdWyevfI0wOD7XRPdX0_5Qxs |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3bbtMw9Gh0EoIHxJ3AACPBE1hNYztOHhACtmpjUE2ISnsLjuOIiC4dTSe0X-PrOMdJupWJve0xinOxz_0O8BI1CpT7RcSjUSG5FBJJKk8MFyiPUl3a3Eiqd_4yiXen8tOhOtyAP30tDKVV9jzRM-pibslHPkRDxofdpBqWXVrEwfb43fEvThOkKNLaj9NoUWTfnf5G8615u7eNsH4VReOdbx93eTdhgFupJc1hF0LZNBdUEGplibpGoktFHfuM1iMntVO2MLEtlI5iJ7SzYY4C1srIiBS5P773GmxqsooGsPlhZ3LwtZcDKkrbkboa94-GoO5KdkKRDBsym6gyGk15tClSrtbF4gVd92LK5j9xWy8Ox7fhVqfHsvct4t2BDVffhZvnuhveg5_TGb6EU0NkXi7alO1TtjBFNT93jRzZDxRjR_2gXlYd-dFJjHzErDGkCLPa1PNiQdnuy4ZVNZtV5AlhzUlOjqTmPkyv5OQfwKCe1-4RMKNTVDqkNVGhZWrCNDRFaWJl8FmV5mUAo_5oM9s1Pqf5G7PMB-BFkrXgyBAcmQdHpgJ4vXrmuG37cenqrR5iWccCmuwMYQN4sbqNxEsRGVM7PFxcQ_VjMeqAATxsAbz6nBCovKkkCUCvgX61gBqDr9-pqx--QXgi0eoPRQBveiQ5-63_7-Lx5bt4DteR4LLPe5P9J3Aj8rhLzqgtGCwXJ-4p6mbL_FlHBAy-XzXd_QXxD0it |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultra-high-frequency+radio-frequency+acoustic+molecular+imaging+with+saline+nanodroplets+in+living+subjects&rft.jtitle=Nature+nanotechnology&rft.au=Chen%2C+Yun-Sheng&rft.au=Zhao%2C+Yang&rft.au=Beinat%2C+Corinne&rft.au=Zlitni%2C+Aimen&rft.date=2021-06-01&rft.issn=1748-3395&rft.eissn=1748-3395&rft.volume=16&rft.issue=6&rft.spage=717&rft_id=info:doi/10.1038%2Fs41565-021-00869-5&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1748-3387&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1748-3387&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1748-3387&client=summon |