Ultra-high-frequency radio-frequency acoustic molecular imaging with saline nanodroplets in living subjects

Molecular imaging is a crucial technique in clinical diagnostics but it relies on radioactive tracers or strong magnetic fields that are unsuitable for many patients, particularly infants and pregnant women. Ultra-high-frequency radio-frequency acoustic (UHF-RF-acoustic) imaging using non-ionizing R...

Full description

Saved in:
Bibliographic Details
Published inNature nanotechnology Vol. 16; no. 6; pp. 717 - 724
Main Authors Chen, Yun-Sheng, Zhao, Yang, Beinat, Corinne, Zlitni, Aimen, Hsu, En-Chi, Chen, Dong-Hua, Achterberg, Friso, Wang, Hanwei, Stoyanova, Tanya, Dionne, Jennifer, Gambhir, Sanjiv Sam
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.06.2021
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Molecular imaging is a crucial technique in clinical diagnostics but it relies on radioactive tracers or strong magnetic fields that are unsuitable for many patients, particularly infants and pregnant women. Ultra-high-frequency radio-frequency acoustic (UHF-RF-acoustic) imaging using non-ionizing RF pulses allows deep-tissue imaging with sub-millimetre spatial resolution. However, lack of biocompatible and targetable contrast agents has prevented the successful in vivo application of UHF-RF-acoustic imaging. Here we report our development of targetable nanodroplets for UHF-RF-acoustic molecular imaging of cancers. We synthesize all-liquid nanodroplets containing hypertonic saline that are stable for at least 2 weeks and can produce high-intensity UHF-RF-acoustic signals. Compared with concentration-matched iron oxide nanoparticles, our nanodroplets produce at least 1,600 times higher UHF-RF-acoustic signals at the same imaging depth. We demonstrate in vivo imaging using the targeted nanodroplets in a prostate cancer xenograft mouse model expressing gastrin release protein receptor (GRPR), and show that targeting specificity is increased by more than 2-fold compared with untargeted nanodroplets or prostate cancer cells not expressing this receptor. Ultra-high-frequency radio-frequency acoustic molecular imaging is a safe molecular imaging diagnostic option because it does not require radioactive probes or high magnetic fields, but lack of biocompatible targeted contrast agents has so far limited its in vivo application. In this paper the authors present perfluorocarbon nanodroplets containing hypertonic saline solution for targeted molecular imaging of prostate cancer in animal models.
AbstractList Molecular imaging is a crucial technique in clinical diagnostics but it relies on radioactive tracers or strong magnetic fields that are unsuitable for many patients, particularly infants and pregnant women. Ultra-high-frequency radio-frequency acoustic (UHF-RF-acoustic) imaging using non-ionizing RF pulses allows deep-tissue imaging with sub-millimetre spatial resolution. However, lack of biocompatible and targetable contrast agents has prevented the successful in vivo application of UHF-RF-acoustic imaging. Here we report our development of targetable nanodroplets for UHF-RF-acoustic molecular imaging of cancers. We synthesize all-liquid nanodroplets containing hypertonic saline that are stable for at least 2 weeks and can produce high-intensity UHF-RF-acoustic signals. Compared with concentration-matched iron oxide nanoparticles, our nanodroplets produce at least 1,600 times higher UHF-RF-acoustic signals at the same imaging depth. We demonstrate in vivo imaging using the targeted nanodroplets in a prostate cancer xenograft mouse model expressing gastrin release protein receptor (GRPR), and show that targeting specificity is increased by more than 2-fold compared with untargeted nanodroplets or prostate cancer cells not expressing this receptor.Molecular imaging is a crucial technique in clinical diagnostics but it relies on radioactive tracers or strong magnetic fields that are unsuitable for many patients, particularly infants and pregnant women. Ultra-high-frequency radio-frequency acoustic (UHF-RF-acoustic) imaging using non-ionizing RF pulses allows deep-tissue imaging with sub-millimetre spatial resolution. However, lack of biocompatible and targetable contrast agents has prevented the successful in vivo application of UHF-RF-acoustic imaging. Here we report our development of targetable nanodroplets for UHF-RF-acoustic molecular imaging of cancers. We synthesize all-liquid nanodroplets containing hypertonic saline that are stable for at least 2 weeks and can produce high-intensity UHF-RF-acoustic signals. Compared with concentration-matched iron oxide nanoparticles, our nanodroplets produce at least 1,600 times higher UHF-RF-acoustic signals at the same imaging depth. We demonstrate in vivo imaging using the targeted nanodroplets in a prostate cancer xenograft mouse model expressing gastrin release protein receptor (GRPR), and show that targeting specificity is increased by more than 2-fold compared with untargeted nanodroplets or prostate cancer cells not expressing this receptor.
Molecular imaging is a crucial technique in clinical diagnostics but it relies on radioactive tracers or strong magnetic fields that are unsuitable for many patients, particularly infants and pregnant women. Ultra-high-frequency radio-frequency acoustic (UHF-RF-acoustic) imaging using non-ionizing RF pulses allows deep-tissue imaging with sub-millimetre spatial resolution. However, lack of biocompatible and targetable contrast agents has prevented the successful in vivo application of UHF-RF-acoustic imaging. Here we report our development of targetable nanodroplets for UHF-RF-acoustic molecular imaging of cancers. We synthesize all-liquid nanodroplets containing hypertonic saline that are stable for at least 2 weeks and can produce high-intensity UHF-RF-acoustic signals. Compared with concentration-matched iron oxide nanoparticles, our nanodroplets produce at least 1,600 times higher UHF-RF-acoustic signals at the same imaging depth. We demonstrate in vivo imaging using the targeted nanodroplets in a prostate cancer xenograft mouse model expressing gastrin release protein receptor (GRPR), and show that targeting specificity is increased by more than 2-fold compared with untargeted nanodroplets or prostate cancer cells not expressing this receptor. Ultra-high-frequency radio-frequency acoustic molecular imaging is a safe molecular imaging diagnostic option because it does not require radioactive probes or high magnetic fields, but lack of biocompatible targeted contrast agents has so far limited its in vivo application. In this paper the authors present perfluorocarbon nanodroplets containing hypertonic saline solution for targeted molecular imaging of prostate cancer in animal models.
Molecular imaging is a crucial technique in clinical diagnostics but it relies on radioactive tracers or strong magnetic fields that are unsuitable for many patients, particularly infants and pregnant women. Ultra-high-frequency radio-frequency acoustic (UHF-RF-acoustic) imaging using non-ionizing RF pulses allows deep-tissue imaging with sub-millimetre spatial resolution. However, lack of biocompatible and targetable contrast agents has prevented the successful in vivo application of UHF-RF-acoustic imaging. Here we report our development of targetable nanodroplets for UHF-RF-acoustic molecular imaging of cancers. We synthesize all-liquid nanodroplets containing hypertonic saline that are stable for at least 2 weeks and can produce high-intensity UHF-RF-acoustic signals. Compared with concentration-matched iron oxide nanoparticles, our nanodroplets produce at least 1,600 times higher UHF-RF-acoustic signals at the same imaging depth. We demonstrate in vivo imaging using the targeted nanodroplets in a prostate cancer xenograft mouse model expressing gastrin release protein receptor (GRPR), and show that targeting specificity is increased by more than 2-fold compared with untargeted nanodroplets or prostate cancer cells not expressing this receptor.Ultra-high-frequency radio-frequency acoustic molecular imaging is a safe molecular imaging diagnostic option because it does not require radioactive probes or high magnetic fields, but lack of biocompatible targeted contrast agents has so far limited its in vivo application. In this paper the authors present perfluorocarbon nanodroplets containing hypertonic saline solution for targeted molecular imaging of prostate cancer in animal models.
Molecular imaging is a crucial technique in clinical diagnostics, but it relies on radioactive tracers or high magnetic fields that are unfavorable for many patients, particularly infants and pregnant women. Ultra-high-frequency-radiofrequency-acoustic (UHF-RF-acoustic) imaging using non-ionizing RF pulses allows deep-tissue imaging with sub-millimeter spatial resolution. However, lack of biocompatible and targetable contrast agents has prevented the successful in vivo application of UHF-RF-acoustic imaging. Here, we report our development of targetable nanodroplets for UHF-RF-acoustic molecular imaging of cancers. We synthesize all-liquid nanodroplets containing hypertonic saline that are stable for at least 2 weeks and can produce high intensity UHF-RF-acoustic signals. Compared with concentration-matched iron-oxide nanoparticles, our nanodroplets produce at least 1600 times higher UHF-RF-acoustic signals at the same imaging depth. We demonstrate in vivo imaging using the targeted nanodroplets in a prostate cancer xenograft mouse model expressing gastrin release protein receptor (GRPR), showing targeting specificity by more than two-fold, compared to untargeted nanodroplets or prostate cancer cells not expressing GRPR.
Molecular imaging is a crucial technique in clinical diagnostics but it relies on radioactive tracers or strong magnetic fields that are unsuitable for many patients, particularly infants and pregnant women. Ultra-high-frequency radio-frequency acoustic (UHF-RF-acoustic) imaging using non-ionizing RF pulses allows deep-tissue imaging with sub-millimetre spatial resolution. However, lack of biocompatible and targetable contrast agents has prevented the successful in vivo application of UHF-RF-acoustic imaging. Here we report our development of targetable nanodroplets for UHF-RF-acoustic molecular imaging of cancers. We synthesize all-liquid nanodroplets containing hypertonic saline that are stable for at least 2 weeks and can produce high-intensity UHF-RF-acoustic signals. Compared with concentration-matched iron oxide nanoparticles, our nanodroplets produce at least 1,600 times higher UHF-RF-acoustic signals at the same imaging depth. We demonstrate in vivo imaging using the targeted nanodroplets in a prostate cancer xenograft mouse model expressing gastrin release protein receptor (GRPR), and show that targeting specificity is increased by more than 2-fold compared with untargeted nanodroplets or prostate cancer cells not expressing this receptor.
Author Chen, Yun-Sheng
Chen, Dong-Hua
Dionne, Jennifer
Zhao, Yang
Stoyanova, Tanya
Beinat, Corinne
Hsu, En-Chi
Achterberg, Friso
Wang, Hanwei
Zlitni, Aimen
Gambhir, Sanjiv Sam
AuthorAffiliation 1 Department of Radiology, School of Medicine, Canary Center for Cancer Early Detection, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305
2 Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305
5 Department of Electrical and Computer Engineering, University of Illinois at Urbana–Champaign, Urbana, IL 61801
3 Department of Structural Biology, Stanford University, Stanford, CA 94305
4 Department of Bioengineering, Stanford University, Stanford, CA 94305
AuthorAffiliation_xml – name: 3 Department of Structural Biology, Stanford University, Stanford, CA 94305
– name: 2 Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305
– name: 4 Department of Bioengineering, Stanford University, Stanford, CA 94305
– name: 1 Department of Radiology, School of Medicine, Canary Center for Cancer Early Detection, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305
– name: 5 Department of Electrical and Computer Engineering, University of Illinois at Urbana–Champaign, Urbana, IL 61801
Author_xml – sequence: 1
  givenname: Yun-Sheng
  orcidid: 0000-0001-8823-970X
  surname: Chen
  fullname: Chen, Yun-Sheng
  email: yunsheng@illinois.edu
  organization: Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign
– sequence: 2
  givenname: Yang
  orcidid: 0000-0002-0154-3483
  surname: Zhao
  fullname: Zhao, Yang
  organization: Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Department of Materials Science and Engineering, Stanford University
– sequence: 3
  givenname: Corinne
  orcidid: 0000-0003-1718-3272
  surname: Beinat
  fullname: Beinat, Corinne
  organization: Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine
– sequence: 4
  givenname: Aimen
  orcidid: 0000-0002-4790-1573
  surname: Zlitni
  fullname: Zlitni, Aimen
  organization: Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine
– sequence: 5
  givenname: En-Chi
  orcidid: 0000-0002-5671-6169
  surname: Hsu
  fullname: Hsu, En-Chi
  organization: Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine
– sequence: 6
  givenname: Dong-Hua
  orcidid: 0000-0002-5247-0106
  surname: Chen
  fullname: Chen, Dong-Hua
  organization: Department of Structural Biology, Stanford University
– sequence: 7
  givenname: Friso
  orcidid: 0000-0001-7007-859X
  surname: Achterberg
  fullname: Achterberg, Friso
  organization: Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine
– sequence: 8
  givenname: Hanwei
  orcidid: 0000-0003-3762-3650
  surname: Wang
  fullname: Wang, Hanwei
  organization: Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign
– sequence: 9
  givenname: Tanya
  orcidid: 0000-0003-0119-9747
  surname: Stoyanova
  fullname: Stoyanova, Tanya
  organization: Canary Center at Stanford for Cancer Early Detection, Stanford University
– sequence: 10
  givenname: Jennifer
  orcidid: 0000-0001-5287-4357
  surname: Dionne
  fullname: Dionne, Jennifer
  organization: Department of Materials Science and Engineering, Stanford University
– sequence: 11
  givenname: Sanjiv Sam
  orcidid: 0000-0002-2711-7554
  surname: Gambhir
  fullname: Gambhir, Sanjiv Sam
  organization: Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Department of Materials Science and Engineering, Stanford University, Canary Center at Stanford for Cancer Early Detection, Stanford University, Department of Bioengineering, Stanford University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33782588$$D View this record in MEDLINE/PubMed
BookMark eNp9kUuPFCEUhYkZ4zz0D7gwlbhxg_IsqI2JmfhKJnHjrAlN3aqmpaEFasz8e2l7bMdZDBsgfOdw7z3n6CSmCAi9pOQtJVy_K4LKXmLCKCZE9wOWT9AZVUJjzgd5cjxrdYrOS9kQItnAxDN0yrnSTGp9hn5ch5otXvt5jacMPxeI7rbLdvTp3t26tJTqXbdNAdwSbO781s4-zt0vX9ddscFH6KKNacxpF6CWzscu-Js9UpbVBlwtz9HTyYYCL-72C3T96eP3yy_46tvnr5cfrrATSlRMOefSDSvOmNJOTEQOWk2Si4FZpSgIBdKNtnejVKwHrsCR1UCJE8zygRN-gd4ffHfLagujg9haDGaXW8351iTrzf8v0a_NnG6MFlIMhDeDN3cGObUJlGq2vjgIwUZogzBMEkVFr0Xf0NcP0E1acmztNUqQtpSQjXp1v6JjKX9zaAA7AC6nUjJMR4QSsw_bHMI2LWzzJ2yzd9UPRM5XW33ad-XD41J-kJb2T5wh_yv7EdVvkge_1g
CitedBy_id crossref_primary_10_1109_TMI_2024_3447125
crossref_primary_10_1007_s40242_021_1196_1
crossref_primary_10_1039_D1SM01457A
crossref_primary_10_3389_fbioe_2023_1323316
crossref_primary_10_1016_j_pacs_2022_100425
crossref_primary_10_1038_s41467_023_41172_2
crossref_primary_10_1016_j_pacs_2022_100347
crossref_primary_10_1007_s00259_022_05726_8
crossref_primary_10_1038_s41551_022_00978_z
crossref_primary_10_1002_adfm_202308437
crossref_primary_10_1142_S1793545822300075
crossref_primary_10_2174_0124681873265152231229042106
crossref_primary_10_1002_smll_202406860
crossref_primary_10_1142_S1793545822300142
crossref_primary_10_1039_D4CS00599F
crossref_primary_10_1016_j_eng_2024_01_030
crossref_primary_10_1109_TMI_2023_3250647
crossref_primary_10_1038_s41566_024_01387_1
crossref_primary_10_1002_lpor_202400781
crossref_primary_10_1016_j_addr_2025_115551
crossref_primary_10_3390_pharmaceutics14112463
crossref_primary_10_1039_D1MA00969A
crossref_primary_10_1063_5_0216061
Cites_doi 10.1126/science.1125949
10.1016/j.addr.2013.09.007
10.1016/0022-3697(61)90054-3
10.1038/nrc882
10.3390/ijms151223616
10.1007/BF02541262
10.1021/ar200106e
10.1021/jp0622942
10.1007/s10404-015-1635-8
10.1177/153303460500400509
10.1039/C7CP00728K
10.7150/thno.17846
10.1118/1.4903277
10.1002/adom.201400166
10.1093/annonc/mdm058
10.1148/radiology.219.2.r01ma19316
10.1038/nrd2290
10.1021/la036396k
10.1021/ja01120a617
10.1038/nmeth.3929
10.1118/1.4729710
10.1118/1.598688
10.2174/1872208311206030200
10.1126/scitranslmed.aao3612
10.1118/1.3466696
10.1016/j.ultsonch.2013.08.005
10.1016/S1359-0294(98)80096-4
10.1016/j.jcis.2004.12.036
10.1118/1.4894804
10.4065/mcp.2010.0260
10.1152/physrev.00049.2010
10.1016/j.crad.2010.03.011
10.1148/radiology.211.1.r99ap05275
10.1038/234149a0
10.1103/PhysRevE.75.061125
10.1038/219856a0
10.1021/la0111248
10.1073/pnas.1312171111
10.1007/s10334-018-0696-6
10.1038/nrclinonc.2016.109
10.1148/radiology.216.1.r00jl30279
10.1006/jcis.2000.7384
10.1155/2019/9480193
10.1016/j.cocis.2007.07.006
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Limited 2021
The Author(s), under exclusive licence to Springer Nature Limited 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Limited 2021
– notice: The Author(s), under exclusive licence to Springer Nature Limited 2021.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7U5
7X7
7XB
88E
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
F28
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB.
L6V
L7M
LK8
M0S
M1P
M7P
M7S
P5Z
P62
P64
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
7X8
5PM
DOI 10.1038/s41565-021-00869-5
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
ProQuest Health & Medical Collection (NC LIVE)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection (via ProQuest SciTech Premium Collection)
Natural Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection (via ProQuest)
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Materials Science Database
Advanced Technologies Database with Aerospace
ProQuest Materials Science Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

ProQuest Central Student

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1748-3395
EndPage 724
ExternalDocumentID PMC8454903
33782588
10_1038_s41565_021_00869_5
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Google
  funderid: https://doi.org/10.13039/100006785
– fundername: U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)
  grantid: CCNE-TD U54 CA199075-04
  funderid: https://doi.org/10.13039/100000054
– fundername: The Jump ARCHES endowment through the Health Care Engineering Systems Center
– fundername: U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
  grantid: 1R21GM139022-01
  funderid: https://doi.org/10.13039/100000057
– fundername: Stanford’s Catalyst for Collaborative Solutions
– fundername: The Canary Foundation, The Sir Peter Michael Foundation
– fundername: NIGMS NIH HHS
  grantid: R21 GM139022
GroupedDBID ---
-~X
0R~
123
29M
39C
3V.
4.4
53G
5BI
5M7
5S5
6OB
70F
7X7
88E
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
AAEEF
AARCD
AAYZH
AAZLF
ABAWZ
ABDBF
ABJCF
ABJNI
ABLJU
ABUWG
ACBWK
ACGFS
ACIWK
ACPRK
ACUHS
ADBBV
AENEX
AEUYN
AFANA
AFBBN
AFKRA
AFLOW
AFRAH
AFSHS
AFWHJ
AGAYW
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
BBNVY
BENPR
BGLVJ
BHPHI
BKKNO
BPHCQ
BVXVI
CCPQU
CS3
D1I
DB5
DU5
EBS
EE.
EJD
EMOBN
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
HCIFZ
HMCUK
HVGLF
HZ~
I-F
KB.
L6V
LK8
M1P
M7P
M7S
MM.
NNMJJ
O9-
ODYON
P2P
P62
PDBOC
PQQKQ
PROAC
PSQYO
PTHSS
Q2X
RNS
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
~8M
AAYXX
ABFSG
ACSTC
AEZWR
AFHIU
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NFIDA
NPM
7QO
7U5
7XB
8FD
8FK
AZQEC
DWQXO
F28
FR3
GNUQQ
K9.
L7M
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
7X8
5PM
ID FETCH-LOGICAL-c474t-13335c9b32278c4f05987f53492a771e47e5cda6cd5726e37ec0b910c42a39303
IEDL.DBID 7X7
ISSN 1748-3387
1748-3395
IngestDate Thu Aug 21 18:20:19 EDT 2025
Fri Jul 11 00:31:13 EDT 2025
Fri Jul 25 08:57:46 EDT 2025
Thu Apr 03 07:00:57 EDT 2025
Tue Jul 01 01:56:31 EDT 2025
Thu Apr 24 22:59:32 EDT 2025
Fri Feb 21 02:40:37 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-13335c9b32278c4f05987f53492a771e47e5cda6cd5726e37ec0b910c42a39303
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
AUTHOR CONTRIBUTIONS
SSG conceived the original idea. Y-SC and SSG designed the experiments. Y-SC developed the contrast agents and performed the in vitro and in vivo imaging. Y-SC, YZ, and HW performed the theoretical study. DHC contributed to cryo-EM. CB, AZ, ECH, TS, and JAD contributed to the discussion of the data and experimental results. Y-SC and SSG drafted the manuscript and all authors contributed to the writing of the manuscript. SSG supervised the entire study.
ORCID 0000-0003-0119-9747
0000-0002-0154-3483
0000-0002-4790-1573
0000-0002-5247-0106
0000-0002-5671-6169
0000-0001-5287-4357
0000-0001-7007-859X
0000-0003-1718-3272
0000-0003-3762-3650
0000-0001-8823-970X
0000-0002-2711-7554
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC8454903
PMID 33782588
PQID 2540000745
PQPubID 546299
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8454903
proquest_miscellaneous_2507146846
proquest_journals_2540000745
pubmed_primary_33782588
crossref_primary_10_1038_s41565_021_00869_5
crossref_citationtrail_10_1038_s41565_021_00869_5
springer_journals_10_1038_s41565_021_00869_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-06-01
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature nanotechnology
PublicationTitleAbbrev Nat. Nanotechnol
PublicationTitleAlternate Nat Nanotechnol
PublicationYear 2021
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Vernikouskaya, Pochert, Lindén, Rasche (CR43) 2019; 32
Pysz, Gambhir, Willmann (CR8) 2010; 65
Chong (CR33) 2015; 19
Omar, Kellnberger, Sergiadis, Razansky, Ntziachristos (CR20) 2012; 39
Weber, Beard, Bohndiek (CR13) 2016; 13
Freire, Dias, Coelho, Coutinho, Marrucho (CR38) 2005; 286
Hussain, Nguyen (CR6) 2014; 66
Atzberger, Kramer (CR37) 2007; 75
Wolf (CR28) 1966
Hilder (CR39) 1968; 45
Garti, Bisperink (CR31) 1998; 3
Willmann, van Bruggen, Dinkelborg, Gambhir (CR7) 2008; 7
Hamilton, Walter, Rubin, Neal (CR2) 2016; 13
Joseph, Noah (CR45) 2012; 6
Gambhir (CR3) 2002; 2
Lin (CR9) 2010; 85
Kruger (CR15) 1999; 211
James, Gambhir (CR10) 2012; 92
Muschiolik (CR32) 2007; 12
Gambhir, Ge, Vermesh, Spitler (CR1) 2018; 10
Wen, Papadopoulos (CR36) 2001; 235
Kruger, Reinecke, Kruger (CR17) 1999; 26
Ogunlade, Beard (CR22) 2016; 42
Mezzenga, Folmer, Hughes (CR35) 2004; 20
Nie, Ou, Yang, Xing (CR25) 2010; 37
Tamarov (CR26) 2017; 19
Doinikov, Sheeran, Bouakaz, Dayton (CR48) 2014; 41
Wu, Huang, Jiang, Jiang (CR24) 2014; 15
Sakai, Kamogawa, Nishiyama, Sakai, Abe (CR47) 2002; 18
Pitt, Singh, Perez, Husseini, Jack (CR49) 2014; 21
Cornelio, Roesler, Schwartsmann (CR50) 2007; 18
Weissleder, Mahmood (CR5) 2001; 219
Engel, Riggi, Fahrenbach (CR29) 1968; 219
Gresham, Barnett, Smith, Schneider (CR30) 1971; 234
Kruger (CR19) 2000; 216
CR14
Lifshitz, Slyozov (CR46) 1961; 19
Weissleder (CR4) 2006; 312
Jokerst, Gambhir (CR12) 2011; 44
Shpak (CR42) 2014; 111
Chen (CR34) 2014; 2
Loskutova, Grishenkov, Ghorbani (CR11) 2019; 2019
Wen, Yang, Zhong, Zhou, Xing (CR18) 2017; 7
Tran (CR44) 2007; 2
CR27
Rotariu, Fraga, Hildebrand (CR41) 1953; 75
CR23
Freire, Gomes, Santos, Marrucho, Coutinho (CR40) 2006; 110
CR21
Ku (CR16) 2005; 4
PJ Atzberger (869_CR37) 2007; 75
L Wen (869_CR36) 2001; 235
ML James (869_CR10) 2012; 92
IM Lifshitz (869_CR46) 1961; 19
RH Engel (869_CR29) 1968; 219
R Mezzenga (869_CR35) 2004; 20
G Rotariu (869_CR41) 1953; 75
L Nie (869_CR25) 2010; 37
G Muschiolik (869_CR32) 2007; 12
SS Gambhir (869_CR3) 2002; 2
RA Kruger (869_CR19) 2000; 216
TD Tran (869_CR44) 2007; 2
N Garti (869_CR31) 1998; 3
R Weissleder (869_CR4) 2006; 312
D Chong (869_CR33) 2015; 19
W Hamilton (869_CR2) 2016; 13
I Vernikouskaya (869_CR43) 2019; 32
JK Willmann (869_CR7) 2008; 7
T Hussain (869_CR6) 2014; 66
K Loskutova (869_CR11) 2019; 2019
M Omar (869_CR20) 2012; 39
LW Wen (869_CR18) 2017; 7
J Weber (869_CR13) 2016; 13
MG Freire (869_CR38) 2005; 286
MH Hilder (869_CR39) 1968; 45
PA Gresham (869_CR30) 1971; 234
RA Kruger (869_CR17) 1999; 26
EC Lin (869_CR9) 2010; 85
GM Joseph (869_CR45) 2012; 6
SS Gambhir (869_CR1) 2018; 10
869_CR21
869_CR23
T Sakai (869_CR47) 2002; 18
869_CR27
DB Cornelio (869_CR50) 2007; 18
WG Pitt (869_CR49) 2014; 21
RA Kruger (869_CR15) 1999; 211
D Wu (869_CR24) 2014; 15
AA Doinikov (869_CR48) 2014; 41
JV Jokerst (869_CR12) 2011; 44
R Weissleder (869_CR5) 2001; 219
AV Wolf (869_CR28) 1966
MA Pysz (869_CR8) 2010; 65
O Shpak (869_CR42) 2014; 111
869_CR14
G Ku (869_CR16) 2005; 4
L Chen (869_CR34) 2014; 2
MG Freire (869_CR40) 2006; 110
K Tamarov (869_CR26) 2017; 19
O Ogunlade (869_CR22) 2016; 42
34903031 - J Urol. 2022 Mar;207(3):727-729. doi: 10.1097/JU.0000000000002363
References_xml – volume: 312
  start-page: 1168
  year: 2006
  end-page: 1171
  ident: CR4
  article-title: Molecular imaging in cancer
  publication-title: Science
  doi: 10.1126/science.1125949
– volume: 66
  start-page: 90
  year: 2014
  end-page: 100
  ident: CR6
  article-title: Molecular imaging for cancer diagnosis and surgery
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2013.09.007
– volume: 19
  start-page: 35
  year: 1961
  end-page: 50
  ident: CR46
  article-title: The kinetics of precipitation from supersaturated solid solutions
  publication-title: J. Phys. Chem. Solids
  doi: 10.1016/0022-3697(61)90054-3
– volume: 2
  start-page: 683
  year: 2002
  end-page: 693
  ident: CR3
  article-title: Molecular imaging of cancer with positron emission tomography
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc882
– volume: 15
  start-page: 23616
  year: 2014
  ident: CR24
  article-title: Contrast agents for photoacoustic and thermoacoustic imaging: a review
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms151223616
– volume: 45
  start-page: 703
  year: 1968
  end-page: 707
  ident: CR39
  article-title: The solubility of water in edible oils and fats
  publication-title: J. Am. Oil Chem. Soc.
  doi: 10.1007/BF02541262
– volume: 44
  start-page: 1050
  year: 2011
  end-page: 1060
  ident: CR12
  article-title: Molecular imaging with theranostic nanoparticles
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar200106e
– volume: 110
  start-page: 22923
  year: 2006
  end-page: 22929
  ident: CR40
  article-title: Water solubility in linear fluoroalkanes used in blood substitute formulations
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp0622942
– ident: CR21
– volume: 19
  start-page: 1071
  year: 2015
  end-page: 1090
  ident: CR33
  article-title: Advances in fabricating double-emulsion droplets and their biomedical applications
  publication-title: Microfluidics Nanofluidics
  doi: 10.1007/s10404-015-1635-8
– volume: 4
  start-page: 559
  year: 2005
  end-page: 565
  ident: CR16
  article-title: Thermoacoustic and photoacoustic tomography of thick biological tissues toward breast imaging
  publication-title: Technol. Cancer Res. Treat.
  doi: 10.1177/153303460500400509
– volume: 19
  start-page: 11510
  year: 2017
  end-page: 11517
  ident: CR26
  article-title: Electrolytic conductivity-related radiofrequency heating of aqueous suspensions of nanoparticles for biomedicine
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C7CP00728K
– volume: 7
  start-page: 1976
  year: 2017
  end-page: 1989
  ident: CR18
  article-title: Thermoacoustic imaging and therapy guidance based on ultra-short pulsed microwave pumped thermoelastic effect induced with superparamagnetic iron oxide nanoparticles
  publication-title: Theranostics
  doi: 10.7150/thno.17846
– volume: 42
  start-page: 170
  year: 2016
  end-page: 181
  ident: CR22
  article-title: Exogenous contrast agents for thermoacoustic imaging: an investigation into the underlying sources of contrast
  publication-title: Med. Phys.
  doi: 10.1118/1.4903277
– volume: 2
  start-page: 845
  year: 2014
  end-page: 848
  ident: CR34
  article-title: Photoresponsive monodisperse cholesteric liquid crystalline microshells for tunable omnidirectional lasing enabled by a visible light-driven chiral molecular switch
  publication-title: Adv. Optical Mater.
  doi: 10.1002/adom.201400166
– volume: 18
  start-page: 1457
  year: 2007
  end-page: 1466
  ident: CR50
  article-title: Gastrin-releasing peptide receptor as a molecular target in experimental anticancer therapy
  publication-title: Ann. Oncol.
  doi: 10.1093/annonc/mdm058
– volume: 219
  start-page: 316
  year: 2001
  end-page: 333
  ident: CR5
  article-title: Molecular imaging
  publication-title: Radiology
  doi: 10.1148/radiology.219.2.r01ma19316
– volume: 7
  start-page: 591
  year: 2008
  end-page: 607
  ident: CR7
  article-title: Molecular imaging in drug development
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/nrd2290
– volume: 20
  start-page: 3574
  year: 2004
  end-page: 3582
  ident: CR35
  article-title: Design of double emulsions by osmotic pressure tailoring
  publication-title: Langmuir
  doi: 10.1021/la036396k
– volume: 75
  start-page: 6357
  year: 1953
  end-page: 6357
  ident: CR41
  article-title: The solubility of water in normal perfluoroheptane
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01120a617
– volume: 13
  start-page: 639
  year: 2016
  end-page: 650
  ident: CR13
  article-title: Contrast agents for molecular photoacoustic imaging
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3929
– ident: CR14
– volume: 39
  start-page: 4460
  year: 2012
  end-page: 4466
  ident: CR20
  article-title: Near-field thermoacoustic imaging with transmission line pulsers
  publication-title: Med. Phys.
  doi: 10.1118/1.4729710
– volume: 26
  start-page: 1832
  year: 1999
  end-page: 1837
  ident: CR17
  article-title: Thermoacoustic computed tomography—technical considerations
  publication-title: Med. Phys.
  doi: 10.1118/1.598688
– volume: 6
  start-page: 200
  year: 2012
  end-page: 211
  ident: CR45
  article-title: Poloxamer 188 (P188) as a membrane resealing reagent in biomedical applications
  publication-title: Recent Pat. Biotechnol.
  doi: 10.2174/1872208311206030200
– volume: 10
  start-page: eaao3612
  year: 2018
  ident: CR1
  article-title: Toward achieving precision health
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.aao3612
– volume: 37
  start-page: 4193
  year: 2010
  end-page: 4200
  ident: CR25
  article-title: Thermoacoustic molecular tomography with magnetic nanoparticle contrast agents for targeted tumor detection
  publication-title: Med. Phys.
  doi: 10.1118/1.3466696
– volume: 21
  start-page: 879
  year: 2014
  end-page: 891
  ident: CR49
  article-title: Phase transitions of perfluorocarbon nanoemulsion induced with ultrasound: a mathematical model
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2013.08.005
– volume: 3
  start-page: 657
  year: 1998
  end-page: 667
  ident: CR31
  article-title: Double emulsions: progress and applications
  publication-title: Curr. Opin. Colloid Interface Sci.
  doi: 10.1016/S1359-0294(98)80096-4
– volume: 286
  start-page: 224
  year: 2005
  end-page: 232
  ident: CR38
  article-title: Aging mechanisms of perfluorocarbon emulsions using image analysis
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2004.12.036
– volume: 41
  start-page: 102901
  year: 2014
  ident: CR48
  article-title: Vaporization dynamics of volatile perfluorocarbon droplets: a theoretical model and in vitro validation
  publication-title: Med. Phys.
  doi: 10.1118/1.4894804
– ident: CR27
– volume: 85
  start-page: 1142
  year: 2010
  end-page: 1146
  ident: CR9
  article-title: Radiation risk from medical imaging
  publication-title: Mayo Clin. Proc.
  doi: 10.4065/mcp.2010.0260
– ident: CR23
– volume: 2
  start-page: 515
  year: 2007
  end-page: 526
  ident: CR44
  article-title: Clinical applications of perfluorocarbon nanoparticles for molecular imaging and targeted therapeutics
  publication-title: Int. J. Nanomed.
– volume: 92
  start-page: 897
  year: 2012
  end-page: 965
  ident: CR10
  article-title: A molecular imaging primer: modalities, imaging agents, and applications
  publication-title: Physiological Rev.
  doi: 10.1152/physrev.00049.2010
– volume: 65
  start-page: 500
  year: 2010
  end-page: 516
  ident: CR8
  article-title: Molecular imaging: current status and emerging strategies
  publication-title: Clin. Radiol.
  doi: 10.1016/j.crad.2010.03.011
– volume: 211
  start-page: 275
  year: 1999
  end-page: 278
  ident: CR15
  article-title: Thermoacoustic CT with radio waves: a medical imaging paradigm
  publication-title: Radiology
  doi: 10.1148/radiology.211.1.r99ap05275
– volume: 234
  start-page: 149
  year: 1971
  ident: CR30
  article-title: Use of a sustained-release multiple emulsion to extend the period of radioprotection conferred by cysteamine
  publication-title: Nature
  doi: 10.1038/234149a0
– volume: 75
  start-page: 061125
  year: 2007
  ident: CR37
  article-title: Theoretical framework for microscopic osmotic phenomena
  publication-title: Phys. Rev. E Stat. Nonlin. Soft Matter Phys.
  doi: 10.1103/PhysRevE.75.061125
– volume: 219
  start-page: 856
  year: 1968
  end-page: 857
  ident: CR29
  article-title: Insulin: intestinal absorption as water-in-oil-in-water emulsions
  publication-title: Nature
  doi: 10.1038/219856a0
– volume: 18
  start-page: 1985
  year: 2002
  end-page: 1990
  ident: CR47
  article-title: Molecular diffusion of oil/water emulsions in surfactant-free conditions
  publication-title: Langmuir
  doi: 10.1021/la0111248
– volume: 111
  start-page: 1697
  year: 2014
  end-page: 1702
  ident: CR42
  article-title: Acoustic droplet vaporization is initiated by superharmonic focusing
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1312171111
– volume: 32
  start-page: 25
  year: 2019
  end-page: 36
  ident: CR43
  article-title: Quantitative F MRI of perfluoro-15-crown-5-ether using uniformity correction of the spin excitation and signal reception
  publication-title: Magn. Reson. Mater. Phys., Biol. Med.
  doi: 10.1007/s10334-018-0696-6
– volume: 13
  start-page: 740
  year: 2016
  end-page: 749
  ident: CR2
  article-title: Improving early diagnosis of symptomatic cancer
  publication-title: Nat. Rev. Clin. Oncol.
  doi: 10.1038/nrclinonc.2016.109
– volume: 216
  start-page: 279
  year: 2000
  end-page: 283
  ident: CR19
  article-title: Breast cancer in vivo: contrast enhancement with thermoacoustic CT at 434 MHz—feasibility study
  publication-title: Radiology
  doi: 10.1148/radiology.216.1.r00jl30279
– year: 1966
  ident: CR28
  publication-title: Aqueous Solutions and Body Fluids
– volume: 235
  start-page: 398
  year: 2001
  end-page: 404
  ident: CR36
  article-title: Effects of osmotic pressure on water transport in W1/O/W2 emulsions
  publication-title: J. Colloid Interface Sci.
  doi: 10.1006/jcis.2000.7384
– volume: 2019
  start-page: 9480193
  year: 2019
  ident: CR11
  article-title: Review on acoustic droplet vaporization in ultrasound diagnostics and therapeutics
  publication-title: BioMed. Res. Int.
  doi: 10.1155/2019/9480193
– volume: 12
  start-page: 213
  year: 2007
  end-page: 220
  ident: CR32
  article-title: Multiple emulsions for food use
  publication-title: Curr. Opin. Colloid Interface Sci.
  doi: 10.1016/j.cocis.2007.07.006
– volume: 66
  start-page: 90
  year: 2014
  ident: 869_CR6
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2013.09.007
– volume: 234
  start-page: 149
  year: 1971
  ident: 869_CR30
  publication-title: Nature
  doi: 10.1038/234149a0
– volume: 2019
  start-page: 9480193
  year: 2019
  ident: 869_CR11
  publication-title: BioMed. Res. Int.
  doi: 10.1155/2019/9480193
– volume: 4
  start-page: 559
  year: 2005
  ident: 869_CR16
  publication-title: Technol. Cancer Res. Treat.
  doi: 10.1177/153303460500400509
– volume: 3
  start-page: 657
  year: 1998
  ident: 869_CR31
  publication-title: Curr. Opin. Colloid Interface Sci.
  doi: 10.1016/S1359-0294(98)80096-4
– volume: 92
  start-page: 897
  year: 2012
  ident: 869_CR10
  publication-title: Physiological Rev.
  doi: 10.1152/physrev.00049.2010
– volume: 18
  start-page: 1457
  year: 2007
  ident: 869_CR50
  publication-title: Ann. Oncol.
  doi: 10.1093/annonc/mdm058
– volume: 26
  start-page: 1832
  year: 1999
  ident: 869_CR17
  publication-title: Med. Phys.
  doi: 10.1118/1.598688
– volume: 13
  start-page: 740
  year: 2016
  ident: 869_CR2
  publication-title: Nat. Rev. Clin. Oncol.
  doi: 10.1038/nrclinonc.2016.109
– ident: 869_CR21
– volume: 41
  start-page: 102901
  year: 2014
  ident: 869_CR48
  publication-title: Med. Phys.
  doi: 10.1118/1.4894804
– volume: 20
  start-page: 3574
  year: 2004
  ident: 869_CR35
  publication-title: Langmuir
  doi: 10.1021/la036396k
– volume: 216
  start-page: 279
  year: 2000
  ident: 869_CR19
  publication-title: Radiology
  doi: 10.1148/radiology.216.1.r00jl30279
– volume: 45
  start-page: 703
  year: 1968
  ident: 869_CR39
  publication-title: J. Am. Oil Chem. Soc.
  doi: 10.1007/BF02541262
– volume: 13
  start-page: 639
  year: 2016
  ident: 869_CR13
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3929
– volume-title: Aqueous Solutions and Body Fluids
  year: 1966
  ident: 869_CR28
– volume: 219
  start-page: 856
  year: 1968
  ident: 869_CR29
  publication-title: Nature
  doi: 10.1038/219856a0
– volume: 37
  start-page: 4193
  year: 2010
  ident: 869_CR25
  publication-title: Med. Phys.
  doi: 10.1118/1.3466696
– volume: 111
  start-page: 1697
  year: 2014
  ident: 869_CR42
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1312171111
– volume: 42
  start-page: 170
  year: 2016
  ident: 869_CR22
  publication-title: Med. Phys.
  doi: 10.1118/1.4903277
– volume: 19
  start-page: 1071
  year: 2015
  ident: 869_CR33
  publication-title: Microfluidics Nanofluidics
  doi: 10.1007/s10404-015-1635-8
– volume: 65
  start-page: 500
  year: 2010
  ident: 869_CR8
  publication-title: Clin. Radiol.
  doi: 10.1016/j.crad.2010.03.011
– volume: 2
  start-page: 515
  year: 2007
  ident: 869_CR44
  publication-title: Int. J. Nanomed.
– ident: 869_CR14
– volume: 12
  start-page: 213
  year: 2007
  ident: 869_CR32
  publication-title: Curr. Opin. Colloid Interface Sci.
  doi: 10.1016/j.cocis.2007.07.006
– volume: 19
  start-page: 35
  year: 1961
  ident: 869_CR46
  publication-title: J. Phys. Chem. Solids
  doi: 10.1016/0022-3697(61)90054-3
– volume: 235
  start-page: 398
  year: 2001
  ident: 869_CR36
  publication-title: J. Colloid Interface Sci.
  doi: 10.1006/jcis.2000.7384
– volume: 110
  start-page: 22923
  year: 2006
  ident: 869_CR40
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp0622942
– volume: 219
  start-page: 316
  year: 2001
  ident: 869_CR5
  publication-title: Radiology
  doi: 10.1148/radiology.219.2.r01ma19316
– volume: 39
  start-page: 4460
  year: 2012
  ident: 869_CR20
  publication-title: Med. Phys.
  doi: 10.1118/1.4729710
– volume: 44
  start-page: 1050
  year: 2011
  ident: 869_CR12
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar200106e
– ident: 869_CR27
– volume: 19
  start-page: 11510
  year: 2017
  ident: 869_CR26
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C7CP00728K
– ident: 869_CR23
– volume: 10
  start-page: eaao3612
  year: 2018
  ident: 869_CR1
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.aao3612
– volume: 85
  start-page: 1142
  year: 2010
  ident: 869_CR9
  publication-title: Mayo Clin. Proc.
  doi: 10.4065/mcp.2010.0260
– volume: 75
  start-page: 061125
  year: 2007
  ident: 869_CR37
  publication-title: Phys. Rev. E Stat. Nonlin. Soft Matter Phys.
  doi: 10.1103/PhysRevE.75.061125
– volume: 18
  start-page: 1985
  year: 2002
  ident: 869_CR47
  publication-title: Langmuir
  doi: 10.1021/la0111248
– volume: 7
  start-page: 1976
  year: 2017
  ident: 869_CR18
  publication-title: Theranostics
  doi: 10.7150/thno.17846
– volume: 75
  start-page: 6357
  year: 1953
  ident: 869_CR41
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01120a617
– volume: 15
  start-page: 23616
  year: 2014
  ident: 869_CR24
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms151223616
– volume: 21
  start-page: 879
  year: 2014
  ident: 869_CR49
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2013.08.005
– volume: 2
  start-page: 683
  year: 2002
  ident: 869_CR3
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc882
– volume: 7
  start-page: 591
  year: 2008
  ident: 869_CR7
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/nrd2290
– volume: 286
  start-page: 224
  year: 2005
  ident: 869_CR38
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2004.12.036
– volume: 211
  start-page: 275
  year: 1999
  ident: 869_CR15
  publication-title: Radiology
  doi: 10.1148/radiology.211.1.r99ap05275
– volume: 32
  start-page: 25
  year: 2019
  ident: 869_CR43
  publication-title: Magn. Reson. Mater. Phys., Biol. Med.
  doi: 10.1007/s10334-018-0696-6
– volume: 6
  start-page: 200
  year: 2012
  ident: 869_CR45
  publication-title: Recent Pat. Biotechnol.
  doi: 10.2174/1872208311206030200
– volume: 2
  start-page: 845
  year: 2014
  ident: 869_CR34
  publication-title: Adv. Optical Mater.
  doi: 10.1002/adom.201400166
– volume: 312
  start-page: 1168
  year: 2006
  ident: 869_CR4
  publication-title: Science
  doi: 10.1126/science.1125949
– reference: 34903031 - J Urol. 2022 Mar;207(3):727-729. doi: 10.1097/JU.0000000000002363
SSID ssj0052924
Score 2.4811797
Snippet Molecular imaging is a crucial technique in clinical diagnostics but it relies on radioactive tracers or strong magnetic fields that are unsuitable for many...
Molecular imaging is a crucial technique in clinical diagnostics, but it relies on radioactive tracers or high magnetic fields that are unfavorable for many...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 717
SubjectTerms 631/61/350/354
639/925/350/354
639/925/352
639/925/352/2734
639/925/357
Acoustic imaging
Acoustics
Animal models
Animals
Biocompatibility
Cell Line, Tumor
Chemical synthesis
Chemistry and Materials Science
Contrast agents
Contrast media
Contrast Media - chemistry
Drug Stability
Gastrin
Humans
Hydrocarbons, Fluorinated - chemistry
Iron oxides
Magnetic fields
Male
Materials Science
Medical imaging
Mice
Mice, Inbred NOD
Molecular Imaging - instrumentation
Molecular Imaging - methods
Nanoparticles
Nanostructures - chemistry
Nanotechnology
Nanotechnology and Microengineering
Perfluorocarbons
Phantoms, Imaging
Prostate cancer
Prostatic Neoplasms - diagnostic imaging
Prostatic Neoplasms - metabolism
Radio frequency
Radio Waves
Radioactive tracers
Receptors
Receptors, Bombesin - genetics
Receptors, Bombesin - immunology
Receptors, Bombesin - metabolism
Saline Solution, Hypertonic - chemistry
Saline solutions
Spatial discrimination
Spatial resolution
Ultrahigh frequencies
Xenograft Model Antitumor Assays
Xenografts
Xenotransplantation
Title Ultra-high-frequency radio-frequency acoustic molecular imaging with saline nanodroplets in living subjects
URI https://link.springer.com/article/10.1038/s41565-021-00869-5
https://www.ncbi.nlm.nih.gov/pubmed/33782588
https://www.proquest.com/docview/2540000745
https://www.proquest.com/docview/2507146846
https://pubmed.ncbi.nlm.nih.gov/PMC8454903
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED_B9gIPiG8CYzISb2Atje04fkIrWpmQqBCiUt8ix05EtC4dTfew_353zsdWJvbSqorTfNzZ97s73_0APiKiQLvvE55MvORSSJxSRWa5QHtkdOUKK6ne-cc8PV3I70u17ANubb-tclgTw0Lt145i5EfoyIS0m1RfLv5yYo2i7GpPofEQ9ql1GWm1Xo4Ol0pMR2qr8Q7QFdN90UwssqOWHBeqTUZnGlG94WrXMN1Bm3c3Tf6TOQ0GafYUnvRIkh13on8GD8rmOTy-1V_wBZwtVvgnnFoS82rTbZq-Yhvr6_Wt37gmBkovdj5Q5bL6PJAXMYrSstYSFGWNbdZ-Q_vNty2rG7aqKRbB2suCQjntS1jMTn5_PeU9uwJ3UkvioBdCOVMIKoZ1skKclelKUbdCq_WklLpUztvUeaWTtBS6dHGB4MLJxAqDlu8V7DXrpnwDzGqDZl86m3gtjY1NbH1lU2XxXGWKKoLJ8Gpz17ceJwaMVR5S4CLLO3HkKI48iCNXEXwaz7noGm_cO_pgkFjeT8I2v1GZCD6Mh3H6UE7ENiW-XBxDFVwporAIXncCHi8nBMInlWUR6B3RjwOoNffukab-E1p0ZxL97lhE8HlQkpvb-v9TvL3_Kd7BoyQoLMWADmBvu7ks3yMk2haHQe_xM5t9O4T949l0Osfv6cn8569r0NMMQQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFTKAXpA5dUGWjASnCBq1o84PqCqApYtfZy6Um_BcRIRsc2WzVaoP8U3MuMk2y4VvfUYxXZiz3vGMwPwFjUKlPs5D_kgl6EUEkkqS2woUB4ZXbrMSsp3PjqOR2P57VSdrsCfPheGrlX2PNEz6nzqyEe-g4aMD7tJtXv-K6SuURRd7VtotGhxUFz-RpOt-bj_GeH7jvPhl5NPo7DrKhA6qSX1XhdCOZMJSgJ1skT9ItGloip9VutBIXWhXG5jlyvN40LowkUZClUnuRUGOT6uew_uS4GSnDLTh197zq-4aZvoatwxmn66S9KJRLLTkKFEudBovKMVYUK1LAhvaLc3L2n-E6n1AnC4Do86zZXttaj2GFaK-gmsXatn-BR-jie4SEglkMNy1l7SvmQzm1fTa8_Ig30LMXbWt-Zl1ZlvlsTIK8waS6ovq209zWd0v33esKpmk4p8H6y5yMh11DyD8Z2c-3NYrad1sQnMaoNqhnSW51oaG5nI5qWNlcW5ymRlAIP-aFPXlTqnjhuT1IfcRZK24EgRHKkHR6oCeL-Yc94W-rh19FYPsbQj-ia9QtEA3ixeI7lSDMbWBR4ujqGMsRi1vgA2WgAvPicEqmsqSQLQS6BfDKBS4Mtv6uqHLwmeSLTzIxHAhx5Jrn7r_7t4cfsuXsOD0cnRYXq4f3zwEh5yj7zkf9qC1fnsothGdWyevfI0wOD7XRPdX0_5Qxs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3bbtMw9Gh0EoIHxJ3AACPBE1hNYztOHhACtmpjUE2ISnsLjuOIiC4dTSe0X-PrOMdJupWJve0xinOxz_0O8BI1CpT7RcSjUSG5FBJJKk8MFyiPUl3a3Eiqd_4yiXen8tOhOtyAP30tDKVV9jzRM-pibslHPkRDxofdpBqWXVrEwfb43fEvThOkKNLaj9NoUWTfnf5G8615u7eNsH4VReOdbx93eTdhgFupJc1hF0LZNBdUEGplibpGoktFHfuM1iMntVO2MLEtlI5iJ7SzYY4C1srIiBS5P773GmxqsooGsPlhZ3LwtZcDKkrbkboa94-GoO5KdkKRDBsym6gyGk15tClSrtbF4gVd92LK5j9xWy8Ox7fhVqfHsvct4t2BDVffhZvnuhveg5_TGb6EU0NkXi7alO1TtjBFNT93jRzZDxRjR_2gXlYd-dFJjHzErDGkCLPa1PNiQdnuy4ZVNZtV5AlhzUlOjqTmPkyv5OQfwKCe1-4RMKNTVDqkNVGhZWrCNDRFaWJl8FmV5mUAo_5oM9s1Pqf5G7PMB-BFkrXgyBAcmQdHpgJ4vXrmuG37cenqrR5iWccCmuwMYQN4sbqNxEsRGVM7PFxcQ_VjMeqAATxsAbz6nBCovKkkCUCvgX61gBqDr9-pqx--QXgi0eoPRQBveiQ5-63_7-Lx5bt4DteR4LLPe5P9J3Aj8rhLzqgtGCwXJ-4p6mbL_FlHBAy-XzXd_QXxD0it
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultra-high-frequency+radio-frequency+acoustic+molecular+imaging+with+saline+nanodroplets+in+living+subjects&rft.jtitle=Nature+nanotechnology&rft.au=Chen%2C+Yun-Sheng&rft.au=Zhao%2C+Yang&rft.au=Beinat%2C+Corinne&rft.au=Zlitni%2C+Aimen&rft.date=2021-06-01&rft.issn=1748-3395&rft.eissn=1748-3395&rft.volume=16&rft.issue=6&rft.spage=717&rft_id=info:doi/10.1038%2Fs41565-021-00869-5&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1748-3387&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1748-3387&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1748-3387&client=summon