MR fingerprinting Deep RecOnstruction NEtwork (DRONE)
Purpose Demonstrate a novel fast method for reconstruction of multi‐dimensional MR fingerprinting (MRF) data using deep learning methods. Methods A neural network (NN) is defined using the TensorFlow framework and trained on simulated MRF data computed with the extended phase graph formalism. The NN...
Saved in:
Published in | Magnetic resonance in medicine Vol. 80; no. 3; pp. 885 - 894 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
01.09.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 0740-3194 1522-2594 1522-2594 |
DOI | 10.1002/mrm.27198 |
Cover
Loading…
Abstract | Purpose
Demonstrate a novel fast method for reconstruction of multi‐dimensional MR fingerprinting (MRF) data using deep learning methods.
Methods
A neural network (NN) is defined using the TensorFlow framework and trained on simulated MRF data computed with the extended phase graph formalism. The NN reconstruction accuracy for noiseless and noisy data is compared to conventional MRF template matching as a function of training data size and is quantified in simulated numerical brain phantom data and International Society for Magnetic Resonance in Medicine/National Institute of Standards and Technology phantom data measured on 1.5T and 3T scanners with an optimized MRF EPI and MRF fast imaging with steady state precession (FISP) sequences with spiral readout. The utility of the method is demonstrated in a healthy subject in vivo at 1.5T.
Results
Network training required 10 to 74 minutes; once trained, data reconstruction required approximately 10 ms for the MRF EPI and 76 ms for the MRF FISP sequence. Reconstruction of simulated, noiseless brain data using the NN resulted in a RMS error (RMSE) of 2.6 ms for T1 and 1.9 ms for T2. The reconstruction error in the presence of noise was less than 10% for both T1 and T2 for SNR greater than 25 dB. Phantom measurements yielded good agreement (R2 = 0.99/0.99 for MRF EPI T1/T2 and 0.94/0.98 for MRF FISP T1/T2) between the T1 and T2 estimated by the NN and reference values from the International Society for Magnetic Resonance in Medicine/National Institute of Standards and Technology phantom.
Conclusion
Reconstruction of MRF data with a NN is accurate, 300‐ to 5000‐fold faster, and more robust to noise and dictionary undersampling than conventional MRF dictionary‐matching. |
---|---|
AbstractList | Purpose
Demonstrate a novel fast method for reconstruction of multi‐dimensional MR fingerprinting (MRF) data using deep learning methods.
Methods
A neural network (NN) is defined using the TensorFlow framework and trained on simulated MRF data computed with the extended phase graph formalism. The NN reconstruction accuracy for noiseless and noisy data is compared to conventional MRF template matching as a function of training data size and is quantified in simulated numerical brain phantom data and International Society for Magnetic Resonance in Medicine/National Institute of Standards and Technology phantom data measured on 1.5T and 3T scanners with an optimized MRF EPI and MRF fast imaging with steady state precession (FISP) sequences with spiral readout. The utility of the method is demonstrated in a healthy subject in vivo at 1.5T.
Results
Network training required 10 to 74 minutes; once trained, data reconstruction required approximately 10 ms for the MRF EPI and 76 ms for the MRF FISP sequence. Reconstruction of simulated, noiseless brain data using the NN resulted in a RMS error (RMSE) of 2.6 ms for T1 and 1.9 ms for T2. The reconstruction error in the presence of noise was less than 10% for both T1 and T2 for SNR greater than 25 dB. Phantom measurements yielded good agreement (R2 = 0.99/0.99 for MRF EPI T1/T2 and 0.94/0.98 for MRF FISP T1/T2) between the T1 and T2 estimated by the NN and reference values from the International Society for Magnetic Resonance in Medicine/National Institute of Standards and Technology phantom.
Conclusion
Reconstruction of MRF data with a NN is accurate, 300‐ to 5000‐fold faster, and more robust to noise and dictionary undersampling than conventional MRF dictionary‐matching. PurposeDemonstrate a novel fast method for reconstruction of multi‐dimensional MR fingerprinting (MRF) data using deep learning methods.MethodsA neural network (NN) is defined using the TensorFlow framework and trained on simulated MRF data computed with the extended phase graph formalism. The NN reconstruction accuracy for noiseless and noisy data is compared to conventional MRF template matching as a function of training data size and is quantified in simulated numerical brain phantom data and International Society for Magnetic Resonance in Medicine/National Institute of Standards and Technology phantom data measured on 1.5T and 3T scanners with an optimized MRF EPI and MRF fast imaging with steady state precession (FISP) sequences with spiral readout. The utility of the method is demonstrated in a healthy subject in vivo at 1.5T.ResultsNetwork training required 10 to 74 minutes; once trained, data reconstruction required approximately 10 ms for the MRF EPI and 76 ms for the MRF FISP sequence. Reconstruction of simulated, noiseless brain data using the NN resulted in a RMS error (RMSE) of 2.6 ms for T1 and 1.9 ms for T2. The reconstruction error in the presence of noise was less than 10% for both T1 and T2 for SNR greater than 25 dB. Phantom measurements yielded good agreement (R2 = 0.99/0.99 for MRF EPI T1/T2 and 0.94/0.98 for MRF FISP T1/T2) between the T1 and T2 estimated by the NN and reference values from the International Society for Magnetic Resonance in Medicine/National Institute of Standards and Technology phantom.ConclusionReconstruction of MRF data with a NN is accurate, 300‐ to 5000‐fold faster, and more robust to noise and dictionary undersampling than conventional MRF dictionary‐matching. |
Author | Zhu, Bo Cohen, Ouri Rosen, Matthew S. |
AuthorAffiliation | 3 Department of Physics, Harvard University, Cambridge, MA 02138 USA 1 Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 13th Street, Charlestown, MA 02129 USA 2 Department of Radiology, Harvard Medical School, Boston, MA 02115 USA |
AuthorAffiliation_xml | – name: 1 Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 13th Street, Charlestown, MA 02129 USA – name: 2 Department of Radiology, Harvard Medical School, Boston, MA 02115 USA – name: 3 Department of Physics, Harvard University, Cambridge, MA 02138 USA |
Author_xml | – sequence: 1 givenname: Ouri surname: Cohen fullname: Cohen, Ouri email: ouri@nmr.mgh.harvard.edu organization: Harvard University – sequence: 2 givenname: Bo surname: Zhu fullname: Zhu, Bo organization: Harvard University – sequence: 3 givenname: Matthew S. surname: Rosen fullname: Rosen, Matthew S. organization: Harvard University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29624736$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1OGzEUha2KqgTKoi9QjdQNLCZce-x4vKmEIKWV8iNFsLYmnpvUdMYO9gyIt69DKAIkurJlf_fonHsOyJ7zDgn5QmFIAdhpG9ohk1SVH8iACsZyJhTfIwOQHPKCKr5PDmK8AQClJP9E9pkaMS6L0YCI6SJbWbfGsAnWdemWXSBusgWauYtd6E1nvctm4-7ehz_Z8cViPhuffCYfV1UT8ejpPCTXP8ZX5z_zyfzy1_nZJDdc8jJHKaA0ShoDWAjKeC3qOj2tKirpMvkFMNSUktXVSEpgNbAlqBoUcqRCmOKQfN_pbvpli7VB14Wq0clqW4UH7SurX_84-1uv_Z0WSVvSMgkcPwkEf9tj7HRro8GmqRz6PmoGjG1RphL67Q164_vgUrxEpThFAQwS9fWlo2cr_zaagJMdYIKPMeDqGaGgt23p1JZ-bCuxp29YY7tqu_AUxjb_m7i3DT68L62ni-lu4i9XmaN0 |
CitedBy_id | crossref_primary_10_3390_info16030218 crossref_primary_10_1016_j_media_2021_102017 crossref_primary_10_1016_j_jmro_2024_100151 crossref_primary_10_1002_nbm_5302 crossref_primary_10_3389_fradi_2024_1498411 crossref_primary_10_1016_j_acra_2022_03_018 crossref_primary_10_1016_j_clinimag_2023_07_004 crossref_primary_10_1016_j_jmr_2021_107042 crossref_primary_10_1016_j_radonc_2024_110345 crossref_primary_10_1109_JPROC_2019_2936998 crossref_primary_10_1002_mrm_29951 crossref_primary_10_1016_j_ejmp_2021_07_013 crossref_primary_10_1007_s00330_021_08126_y crossref_primary_10_1002_mrm_30135 crossref_primary_10_1002_jnr_24863 crossref_primary_10_1002_nbm_4202 crossref_primary_10_1002_mrm_28051 crossref_primary_10_2463_mrms_rev_2021_0040 crossref_primary_10_1007_s11936_019_0762_z crossref_primary_10_1007_s11548_020_02260_6 crossref_primary_10_13104_imri_2021_25_4_300 crossref_primary_10_1002_mrm_29172 crossref_primary_10_1088_1361_6560_aced77 crossref_primary_10_1109_TMI_2022_3216527 crossref_primary_10_1186_s12880_021_00636_x crossref_primary_10_1002_mrm_30045 crossref_primary_10_1016_j_mri_2023_02_002 crossref_primary_10_1002_mrm_28761 crossref_primary_10_1002_mrm_29970 crossref_primary_10_1063_5_0086789 crossref_primary_10_1002_mrm_29173 crossref_primary_10_1002_nbm_4670 crossref_primary_10_1002_mrm_27558 crossref_primary_10_1088_1361_6560_abc04f crossref_primary_10_3390_bioengineering11030236 crossref_primary_10_2196_28114 crossref_primary_10_1016_j_carj_2019_06_002 crossref_primary_10_1097_RLI_0000000000000738 crossref_primary_10_13104_imri_2020_24_4_241 crossref_primary_10_1002_jmri_28739 crossref_primary_10_1002_mrm_30155 crossref_primary_10_3390_cancers13194742 crossref_primary_10_1007_s00259_022_05746_4 crossref_primary_10_1002_nbm_4662 crossref_primary_10_1007_s11222_021_10019_5 crossref_primary_10_1002_mrm_27786 crossref_primary_10_1002_mrm_29721 crossref_primary_10_1088_1361_6560_acc4a6 crossref_primary_10_1109_TBME_2021_3116877 crossref_primary_10_1002_mrm_29194 crossref_primary_10_1002_nbm_4370 crossref_primary_10_21468_SciPostPhys_16_1_013 crossref_primary_10_1016_j_jocmr_2024_100997 crossref_primary_10_1098_rsta_2020_0197 crossref_primary_10_1109_TMI_2020_3018508 crossref_primary_10_1002_mrm_29990 crossref_primary_10_3174_ajnr_A5927 crossref_primary_10_1002_mrm_29074 crossref_primary_10_1109_TRPMS_2019_2897425 crossref_primary_10_1002_mp_13756 crossref_primary_10_1002_mrm_28308 crossref_primary_10_1016_j_pnmrs_2020_10_001 crossref_primary_10_1007_s10334_024_01173_8 crossref_primary_10_1016_j_neuroimage_2021_118237 crossref_primary_10_1049_ipr2_12526 crossref_primary_10_1088_1361_6420_ac70da crossref_primary_10_1088_1361_6560_abeae7 crossref_primary_10_1097_RLI_0000000000000836 crossref_primary_10_13104_imri_2021_25_4_293 crossref_primary_10_1007_s00234_021_02703_0 crossref_primary_10_1016_j_neuroimage_2019_116329 crossref_primary_10_1002_mp_15254 crossref_primary_10_3389_fcvm_2022_928546 crossref_primary_10_1002_mrm_28096 crossref_primary_10_1002_mp_14833 crossref_primary_10_1007_s10334_022_01012_8 crossref_primary_10_1109_TCI_2024_3388869 crossref_primary_10_1002_mrm_28659 crossref_primary_10_1002_mrm_28411 crossref_primary_10_1088_1361_6420_ab356d crossref_primary_10_1002_nbm_4800 crossref_primary_10_1016_j_semradonc_2022_06_007 crossref_primary_10_1162_imag_a_00177 crossref_primary_10_1002_mrm_29629 crossref_primary_10_1007_s10334_023_01140_9 crossref_primary_10_1109_TBME_2024_3446763 crossref_primary_10_1097_RLI_0000000000001114 crossref_primary_10_1016_j_media_2020_101741 crossref_primary_10_1002_mrm_29091 crossref_primary_10_1007_s11051_022_05499_z crossref_primary_10_1002_mrm_29411 crossref_primary_10_1109_TCI_2024_3440008 crossref_primary_10_3389_fcvm_2022_1009131 crossref_primary_10_1002_mrm_28321 crossref_primary_10_1002_mrm_28560 crossref_primary_10_1002_mrm_27912 crossref_primary_10_1016_j_zemedi_2018_11_002 crossref_primary_10_1002_mrm_29657 crossref_primary_10_1002_mrm_28568 crossref_primary_10_1002_jmri_28300 crossref_primary_10_1002_mrm_28688 crossref_primary_10_1016_j_media_2025_103481 crossref_primary_10_1016_j_isci_2024_111209 crossref_primary_10_1016_j_neuroimage_2023_120449 crossref_primary_10_1002_mrm_27221 crossref_primary_10_1002_mrm_29880 crossref_primary_10_1016_j_media_2024_103198 crossref_primary_10_1002_jmri_27440 crossref_primary_10_1007_s10334_025_01238_2 crossref_primary_10_1109_MSP_2022_3183809 crossref_primary_10_3390_bioengineering10040492 crossref_primary_10_1002_nbm_5028 crossref_primary_10_1002_mp_15465 crossref_primary_10_1002_gamm_202470014 crossref_primary_10_1007_s10334_022_01057_9 crossref_primary_10_1097_RMR_0000000000000246 crossref_primary_10_3389_fnhum_2020_00034 crossref_primary_10_1016_j_mri_2019_11_015 crossref_primary_10_1016_j_mri_2024_03_023 crossref_primary_10_1007_s10462_021_10058_4 crossref_primary_10_1109_TMI_2019_2899328 crossref_primary_10_1016_j_mri_2019_11_010 crossref_primary_10_1049_ipr2_12687 crossref_primary_10_1097_RMR_0000000000000249 crossref_primary_10_1002_jmrs_413 crossref_primary_10_1109_TIP_2024_3477980 crossref_primary_10_1016_j_mri_2023_01_011 crossref_primary_10_1002_mrm_28573 crossref_primary_10_1093_bioinformatics_btaa1006 crossref_primary_10_1088_1361_6420_ab4c9a crossref_primary_10_1002_nbm_5133 crossref_primary_10_1038_s41573_019_0024_5 crossref_primary_10_1088_1361_6560_ac101f crossref_primary_10_1177_19714009231173100 crossref_primary_10_1038_s41598_020_70789_2 crossref_primary_10_1016_j_media_2020_101945 crossref_primary_10_1109_TNS_2021_3083894 crossref_primary_10_1002_mrm_29212 crossref_primary_10_1002_nbm_4710 crossref_primary_10_1002_jmri_29679 crossref_primary_10_1002_mrm_29574 crossref_primary_10_1038_s41598_025_88579_z crossref_primary_10_1002_nbm_4954 crossref_primary_10_1016_j_neuroimage_2020_117165 crossref_primary_10_1162_imag_a_00102 crossref_primary_10_1016_j_mri_2020_03_009 crossref_primary_10_1109_TMI_2022_3179981 crossref_primary_10_1109_MSP_2019_2950557 crossref_primary_10_1038_s41551_021_00809_7 crossref_primary_10_1007_s13246_025_01535_z crossref_primary_10_1109_TMI_2021_3066781 crossref_primary_10_1016_j_neuroimage_2020_116619 crossref_primary_10_1016_j_mric_2021_06_010 crossref_primary_10_2200_S00959ED1V01Y201910BME059 crossref_primary_10_1088_2399_6528_ac24d8 crossref_primary_10_1007_s10334_024_01186_3 crossref_primary_10_1002_mp_13727 crossref_primary_10_1002_mrm_29206 crossref_primary_10_1002_mrm_29448 crossref_primary_10_1002_mrm_28117 crossref_primary_10_1002_mrm_29688 crossref_primary_10_1002_mrm_27707 crossref_primary_10_1002_hbm_25232 crossref_primary_10_1109_TMI_2020_3003893 crossref_primary_10_1088_1361_6579_ad2c15 crossref_primary_10_1016_j_mri_2020_09_014 crossref_primary_10_1002_nbm_4651 crossref_primary_10_1200_EDBK_320951 crossref_primary_10_1002_mrm_28704 crossref_primary_10_1002_nbm_4416 crossref_primary_10_1109_MSP_2023_3236483 crossref_primary_10_1002_jmri_27155 crossref_primary_10_1002_mrm_29901 crossref_primary_10_1007_s10334_024_01189_0 crossref_primary_10_1002_mrm_28136 crossref_primary_10_3390_s22031260 crossref_primary_10_1002_jmri_27381 crossref_primary_10_1002_mrm_29905 crossref_primary_10_1002_nbm_4196 crossref_primary_10_1002_mrm_28166 crossref_primary_10_1002_mrm_29014 crossref_primary_10_1002_mrm_30488 crossref_primary_10_13104_imri_2019_23_2_81 crossref_primary_10_1002_mrm_30127 crossref_primary_10_1002_mrm_29814 crossref_primary_10_1016_j_neuroimage_2020_117366 crossref_primary_10_1109_TMI_2023_3302872 crossref_primary_10_1016_j_mri_2021_12_006 crossref_primary_10_1002_jmri_26877 crossref_primary_10_3389_fcvm_2022_991383 crossref_primary_10_1002_mrm_29000 crossref_primary_10_1186_s12968_021_00834_0 crossref_primary_10_1002_mrm_28038 crossref_primary_10_1016_j_jacr_2020_01_007 crossref_primary_10_1038_s41598_022_26266_z crossref_primary_10_13104_imri_2020_24_4_207 |
Cites_doi | 10.1016/j.mri.2017.02.010 10.1016/j.neuroimage.2017.08.030 10.1002/mrm.26867 10.1002/mrm.26889 10.1016/j.mri.2017.08.001 10.1002/jmri.24619 10.1002/mrm.10171 10.1002/mrm.20058 10.1002/mrm.25799 10.1145/1390156.1390294 10.1002/mrm.26561 10.1109/ICIP.2017.8297024 10.1109/TMI.2014.2337321 10.1002/mrm.26509 10.1002/mrm.26521 10.1109/42.712135 10.1002/mrm.26587 10.1002/mrm.25559 10.1038/nature11971 10.1002/mrm.26580 10.1002/mrm.25776 10.1002/mrm.25439 10.1016/j.neunet.2014.09.003 10.1016/0893-6080(89)90020-8 10.1002/mrm.20314 10.1142/S0218488598000094 |
ContentType | Journal Article |
Copyright | 2018 International Society for Magnetic Resonance in Medicine |
Copyright_xml | – notice: 2018 International Society for Magnetic Resonance in Medicine |
DBID | AAYXX CITATION NPM 8FD FR3 K9. M7Z P64 7X8 5PM |
DOI | 10.1002/mrm.27198 |
DatabaseName | CrossRef PubMed Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biochemistry Abstracts 1 Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Biochemistry Abstracts 1 ProQuest Health & Medical Complete (Alumni) Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | Biochemistry Abstracts 1 |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Physics |
EISSN | 1522-2594 |
EndPage | 894 |
ExternalDocumentID | PMC5980718 29624736 10_1002_mrm_27198 MRM27198 |
Genre | rapidPublication Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: MGH/HST Athinoula A. Martinos Center for Biomedical Imaging and the Center for Machine Learning at Martinos – fundername: NIH National Institute for Biomedical Imaging and Bioengineering funderid: F32‐EB022390 – fundername: NIBIB NIH HHS grantid: F32 EB022390 |
GroupedDBID | --- -DZ .3N .55 .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ SV3 TEORI TUS TWZ UB1 V2E V8K W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WRC WUP WVDHM WXI WXSBR X7M XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY NPM 8FD FR3 K9. M7Z P64 7X8 5PM |
ID | FETCH-LOGICAL-c4748-e7508c97cc0e35124d5dd508fa171b19800c1c872da67702d02b09d09e4e155c3 |
IEDL.DBID | DR2 |
ISSN | 0740-3194 1522-2594 |
IngestDate | Thu Aug 21 18:19:20 EDT 2025 Fri Jul 11 16:51:23 EDT 2025 Fri Jul 25 12:15:52 EDT 2025 Mon Jul 21 06:02:40 EDT 2025 Thu Apr 24 23:04:00 EDT 2025 Tue Jul 01 01:21:05 EDT 2025 Wed Jan 22 17:04:33 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | MR fingerprinting deep learning DRONE optimization neural network EPI |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4748-e7508c97cc0e35124d5dd508fa171b19800c1c872da67702d02b09d09e4e155c3 |
Notes | Funding information is supported by NIH National Institute for Biomedical Imaging and Bioengineering F32‐EB022390. This work was also supported in part by the MGH/HST Athinoula A. Martinos Center for Biomedical Imaging and the Center for Machine Learning at Martinos Correction added after online publication 16 April 2018. Due to a publisher's error, not all of the authors' corrections were made prior to publication and have been updated in this version. b.z. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 29624736 |
PQID | 2047433020 |
PQPubID | 1016391 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5980718 proquest_miscellaneous_2022980729 proquest_journals_2047433020 pubmed_primary_29624736 crossref_primary_10_1002_mrm_27198 crossref_citationtrail_10_1002_mrm_27198 wiley_primary_10_1002_mrm_27198_MRM27198 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2018 |
PublicationDateYYYYMMDD | 2018-09-01 |
PublicationDate_xml | – month: 09 year: 2018 text: September 2018 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | Magnetic resonance in medicine |
PublicationTitleAlternate | Magn Reson Med |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 1989; 2 2002; 47 2017; 41 1998; 17 1976; 14 2004; 51 2011; 1 2015; 61 2017; 44 2015; 74 2015; 41 2017; 78 2016; 75 2008 2005; 53 2017 2016 2017; 162 2013; 495 2014 1998; 6 2001; 14 2014; 33 2018; 79 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 Hochreiter S (e_1_2_7_31_1) 2001 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 Karlik B (e_1_2_7_36_1) 2011; 1 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_24_1 e_1_2_7_32_1 Lawless JF (e_1_2_7_33_1) 1976; 14 e_1_2_7_23_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_37_1 |
References_xml | – volume: 79 start-page: 2101 year: 2018 end-page: 2112 article-title: Optimized inversion‐time schedules for quantitative T1 measurements based on high‐resolution multi‐inversion EPI publication-title: Magn Reson Med – volume: 79 start-page: 2392 year: 2018 end-page: 2400 article-title: Low rank approximation methods for MR fingerprinting with large scale dictionaries publication-title: Magn Reson Med – volume: 75 start-page: 2078 year: 2016 end-page: 2085 article-title: Accelerating magnetic resonance fingerprinting (MRF) using t‐blipped simultaneous multislice (SMS) acquisition publication-title: Magn Reson Med – volume: 14 start-page: 237 year: 2001 end-page: 245 – volume: 53 start-page: 237 year: 2005 end-page: 241 article-title: High‐resolution T1 and T2 mapping of the brain in a clinically acceptable time with DESPOT1 and DESPOT2 publication-title: Magn Reson Med – volume: 74 start-page: 523 year: 2015 end-page: 528 article-title: Fast group matching for MR fingerprinting reconstruction publication-title: Magn Reson Med – volume: 33 start-page: 2311 year: 2014 end-page: 2322 article-title: SVD compression for magnetic resonance fingerprinting in the time domain publication-title: IEEE Trans Med Imaging – start-page: 3290 year: 2016 – volume: 162 start-page: 13 year: 2017 end-page: 22 article-title: 3D MR fingerprinting with accelerated stack‐of‐spirals and hybrid sliding‐window and GRAPPA reconstruction publication-title: Neuroimage – volume: 78 start-page: 1724 year: 2017 end-page: 1733 article-title: Magnetic resonance fingerprinting using echo‐planar imaging: joint quantification of T1 and T2∗ relaxation times publication-title: Magn Reson Med – volume: 47 start-page: 1202 year: 2002 end-page: 1210 article-title: Generalized autocalibrating partially parallel acquisitions (GRAPPA) publication-title: Magn Reson Med – year: 2016 – volume: 75 start-page: 2481 year: 2016 end-page: 2492 article-title: Multiscale reconstruction for MR fingerprinting publication-title: Magn Reson Med – year: 2014 – volume: 78 start-page: 1452 year: 2017 end-page: 1457 article-title: Repeatability of magnetic resonance fingerprinting T1 and T2 estimates assessed using the ISMRM/NIST MRI system phantom publication-title: Magn Reson Med – volume: 78 start-page: 1812 year: 2017 end-page: 1823 article-title: Multiparametric estimation of brain hemodynamics with MR fingerprinting ASL publication-title: Magn Reson Med – volume: 2 start-page: 359 year: 1989 end-page: 366 article-title: Multilayer feedforward networks are universal approximators publication-title: Neural Netw – volume: 78 start-page: 1579 year: 2017 end-page: 1588 article-title: Robust sliding‐window reconstruction for accelerating the acquisition of MR fingerprinting publication-title: Magn Reson Med – volume: 1 start-page: 111 year: 2011 end-page: 122 article-title: Performance analysis of various activation functions in generalized MLP architectures of neural networks publication-title: Int J Artif Intell Expert Syst – volume: 6 start-page: 107 year: 1998 end-page: 116 article-title: The vanishing gradient problem during learning recurrent neural nets and problem solutions publication-title: Int J Uncertain Fuzziness Knowl Based Syst – volume: 51 start-page: 661 year: 2004 end-page: 667 article-title: Inversion recovery TrueFISP: quantification of T1, T2, and spin density publication-title: Magn Reson Med – volume: 14 start-page: 307 year: 1976 end-page: 323 article-title: A simulation study of ridge and other regression estimators publication-title: Commun Stat Theory Methods – volume: 495 start-page: 187 year: 2013 end-page: 192 article-title: Magnetic resonance fingerprinting publication-title: Nature – volume: 41 start-page: 15 year: 2017 end-page: 21 article-title: Algorithm comparison for schedule optimization in MR fingerprinting publication-title: Magn Reson Imaging – volume: 74 start-page: 1621 year: 2015 end-page: 1631 article-title: MR fingerprinting using fast imaging with steady state precession (FISP) with spiral readout publication-title: Magn Reson Med – volume: 78 start-page: 1781 year: 2017 end-page: 1789 article-title: Slice profile and B1 corrections in 2D magnetic resonance fingerprinting publication-title: Magn Reson Med – volume: 17 start-page: 463 year: 1998 end-page: 468 article-title: Design and construction of a realistic digital brain phantom publication-title: IEEE Trans Med Imaging – year: 2017 – start-page: 1096 year: 2008 end-page: 1103 – volume: 44 start-page: 72 year: 2017 end-page: 81 article-title: Transverse relaxation of cerebrospinal fluid depends on glucose concentration publication-title: Magn. Reson Imaging – volume: 41 start-page: 266 year: 2015 end-page: 295 article-title: Extended phase graphs: Dephasing, RF pulses, and echoes‐pure and simple publication-title: J. Magn Reson Imaging – volume: 61 start-page: 85 year: 2015 end-page: 117 article-title: Deep learning in neural networks: An overview publication-title: Neural Netw. – ident: e_1_2_7_9_1 doi: 10.1016/j.mri.2017.02.010 – ident: e_1_2_7_16_1 doi: 10.1016/j.neuroimage.2017.08.030 – ident: e_1_2_7_8_1 doi: 10.1002/mrm.26867 – ident: e_1_2_7_10_1 doi: 10.1002/mrm.26889 – ident: e_1_2_7_20_1 – ident: e_1_2_7_35_1 doi: 10.1016/j.mri.2017.08.001 – volume: 1 start-page: 111 year: 2011 ident: e_1_2_7_36_1 article-title: Performance analysis of various activation functions in generalized MLP architectures of neural networks publication-title: Int J Artif Intell Expert Syst – ident: e_1_2_7_25_1 doi: 10.1002/jmri.24619 – start-page: 237 volume-title: A Field Guide to Dynamical Recurrent Neural Networks year: 2001 ident: e_1_2_7_31_1 – ident: e_1_2_7_29_1 – ident: e_1_2_7_14_1 – ident: e_1_2_7_28_1 doi: 10.1002/mrm.10171 – ident: e_1_2_7_34_1 doi: 10.1002/mrm.20058 – ident: e_1_2_7_24_1 doi: 10.1002/mrm.25799 – ident: e_1_2_7_26_1 doi: 10.1145/1390156.1390294 – ident: e_1_2_7_23_1 doi: 10.1002/mrm.26561 – ident: e_1_2_7_5_1 – ident: e_1_2_7_17_1 doi: 10.1109/ICIP.2017.8297024 – volume: 14 start-page: 307 year: 1976 ident: e_1_2_7_33_1 article-title: A simulation study of ridge and other regression estimators publication-title: Commun Stat Theory Methods – ident: e_1_2_7_13_1 – ident: e_1_2_7_7_1 doi: 10.1109/TMI.2014.2337321 – ident: e_1_2_7_30_1 doi: 10.1002/mrm.26509 – ident: e_1_2_7_15_1 doi: 10.1002/mrm.26521 – ident: e_1_2_7_27_1 doi: 10.1109/42.712135 – ident: e_1_2_7_4_1 doi: 10.1002/mrm.26587 – ident: e_1_2_7_19_1 – ident: e_1_2_7_21_1 doi: 10.1002/mrm.25559 – ident: e_1_2_7_2_1 doi: 10.1038/nature11971 – ident: e_1_2_7_18_1 – ident: e_1_2_7_3_1 doi: 10.1002/mrm.26580 – ident: e_1_2_7_22_1 doi: 10.1002/mrm.25776 – ident: e_1_2_7_6_1 doi: 10.1002/mrm.25439 – ident: e_1_2_7_11_1 doi: 10.1016/j.neunet.2014.09.003 – ident: e_1_2_7_12_1 doi: 10.1016/0893-6080(89)90020-8 – ident: e_1_2_7_32_1 doi: 10.1002/mrm.20314 – ident: e_1_2_7_37_1 doi: 10.1142/S0218488598000094 |
SSID | ssj0009974 |
Score | 2.6536884 |
Snippet | Purpose
Demonstrate a novel fast method for reconstruction of multi‐dimensional MR fingerprinting (MRF) data using deep learning methods.
Methods
A neural... PurposeDemonstrate a novel fast method for reconstruction of multi‐dimensional MR fingerprinting (MRF) data using deep learning methods.MethodsA neural network... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 885 |
SubjectTerms | Brain Computer simulation deep learning Dictionaries DRONE EPI Fingerprinting In vivo methods and tests Machine learning Magnetic resonance Medicine MR fingerprinting neural network Neural networks Neuroimaging optimization Reconstruction Robustness (mathematics) Scanners Template matching Training |
Title | MR fingerprinting Deep RecOnstruction NEtwork (DRONE) |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.27198 https://www.ncbi.nlm.nih.gov/pubmed/29624736 https://www.proquest.com/docview/2047433020 https://www.proquest.com/docview/2022980729 https://pubmed.ncbi.nlm.nih.gov/PMC5980718 |
Volume | 80 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS-QwEB9EUO7l9NQ7q57Uw4e9h67Zado0-CS6IsKusCj4cFCaj8XjtIqrL_71TtKPdU8F8a0003aSySS_Saa_AOzacSaU5BSdSDQRR6MjJY2NBMaF28lLxNhn-Q7Tkwt-eplczsF-8y9MxQ_RLrg5z_DjtXPwQk32pqShN_c3XRQUM9P463K1HCAaTamjpKwYmAV344zkDasQw732ydm56BXAfJ0n-RK_-gnoeAn-NKpXeSf_uo8Pqquf_mN1_GTdluFrDUzDg6onfYM5W67A4qDeel-BBZ8rqierkAxG4divBrpFQZc2HR5ZexcSAj2b8tGGw75PMA87R6OzYf_3Glwc988PT6L69IVIc0HGs4QlMi2F1szGBAu4SYyhW-OiJ3qKdGNM93Qm0BSpEAwNQ8WkYdJySyBFx99hvrwt7TqEqc2siYXC1FjOlTvevBAUGmNmEZWRAXQaO-S6piZ3J2Rc5xWpMubUILlvkAB-taJ3FR_HW0JbjTHz2iUnOTKqVhwTPA5gpy0mZ3I7JEVpbx-dDCJVjAKOAH5Utm-_gjJFLuI0ADHTK1oBR9Q9W1L-vfKE3Yl7Z4_U6nijv694PhgN_MXGx0U34QuBuKzKe9uCeTKz_UlA6UFte494Bu2PDNg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5Rqj4utKXQpkCbIg7LIYt34sSx1EvVXbQtZJFWIHFBUfxYtWoJqMClv75j57FdKFLVWxRPEtvjsT-PJ98A7NhZJpTktDuRaCKORkdKGhsJjEt3kpeImY_ynaTjE_7lNDldgg_tvzA1P0TncHOW4edrZ-DOIb03Zw09_3neR0Gb5gfw0GX0dmY5nM7Jo6SsOZgFdzON5C2vEMO97tHF1egOxLwbKfkngvVL0P4zOGsrX0eefO_fXKu-_nWL1_F_W_ccVhpsGn6sB9MLWLLVKjzOm9P3VXjkw0X11UtI8mk48w5B5xd0kdPh0NrLkEDo0ZySNpyMfIx52BtOjyaj3TU42R8dfxpHTQKGSHNB-rMEJzIthdbMxoQMuEmMoVuzciAGiurGmB7oTKApUyEYGoaKScOk5ZZwio7XYbm6qOxrCFObWRMLhamxnCuX4bwUtDvGzCIqIwPotYoodMNO7pJk_ChqXmUsqEMK3yEBbHeilzUlx9-ENlttFo1VXhXIqFlxTAg5gPddMdmTOyQpK3tx42QQqWG05wjgVa387isoU-QiTgMQC8OiE3Bc3Ysl1bevnrM7ce8cULV6Xuv3V7zIp7m_ePPvou_gyfg4PywOP08ONuApYbqsDoPbhGVSud0i3HSt3nrz-A2nHxDx |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VVlRcoJRXoEBAPSyH7HonThyLE2J31RZ2i1ZU6qFSFD8iqtJ0RdsLv56x81iWFglxi-JJMvZ47G_syWeAXVtmQklO0YlEE3E0OlLS2EhgXLidvESUPst3lu4d8YPj5HgN3rf_wtT8EN2Cm_MMP147B1-YcrAkDT3_cd5HQTHzHdjgKctc5DWaL7mjpKwpmAV3A43kLa0Qw0H36OpkdANh3kyU_B3A-hlo8gBOWt3rxJOz_vWV6uuff9A6_mfltuB-g0zDD3VXeghrttqGzWmz974Nd32yqL58BMl0HpZ-OdCtCrq86XBk7SIkCHq4JKQNZ2OfYR72RvPD2fjdYziajL9-3Iua4xcizQVZzxKYyLQUWjMbEy7gJjGGbpXFUAwV6caYHupMoClSIRgahopJw6TlllCKjp_AenVR2WcQpjazJhYKU2M5V-5880JQbIyZRVRGBtBr7ZDrhpvcHZHxPa9ZlTGnBsl9gwTwthNd1IQctwnttMbMG5-8zJFRteKY8HEAb7pi8ia3RVJU9uLaySBSxSjiCOBpbfvuKyhT5CJOAxArvaITcEzdqyXV6TfP2J24dw5JrZ43-t8Vz6fzqb94_u-ir2Hzy2iSf96ffXoB9wjQZXUO3A6sk8XtSwJNV-qVd45fhRUPqQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MR+fingerprinting+Deep+RecOnstruction+NEtwork+%28DRONE%29&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Cohen%2C+Ouri&rft.au=Zhu%2C+Bo&rft.au=Rosen%2C+Matthew+S.&rft.date=2018-09-01&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=80&rft.issue=3&rft.spage=885&rft.epage=894&rft_id=info:doi/10.1002%2Fmrm.27198&rft_id=info%3Apmid%2F29624736&rft.externalDocID=PMC5980718 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon |