MR fingerprinting Deep RecOnstruction NEtwork (DRONE)

Purpose Demonstrate a novel fast method for reconstruction of multi‐dimensional MR fingerprinting (MRF) data using deep learning methods. Methods A neural network (NN) is defined using the TensorFlow framework and trained on simulated MRF data computed with the extended phase graph formalism. The NN...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance in medicine Vol. 80; no. 3; pp. 885 - 894
Main Authors Cohen, Ouri, Zhu, Bo, Rosen, Matthew S.
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.09.2018
Subjects
Online AccessGet full text
ISSN0740-3194
1522-2594
1522-2594
DOI10.1002/mrm.27198

Cover

Loading…
Abstract Purpose Demonstrate a novel fast method for reconstruction of multi‐dimensional MR fingerprinting (MRF) data using deep learning methods. Methods A neural network (NN) is defined using the TensorFlow framework and trained on simulated MRF data computed with the extended phase graph formalism. The NN reconstruction accuracy for noiseless and noisy data is compared to conventional MRF template matching as a function of training data size and is quantified in simulated numerical brain phantom data and International Society for Magnetic Resonance in Medicine/National Institute of Standards and Technology phantom data measured on 1.5T and 3T scanners with an optimized MRF EPI and MRF fast imaging with steady state precession (FISP) sequences with spiral readout. The utility of the method is demonstrated in a healthy subject in vivo at 1.5T. Results Network training required 10 to 74 minutes; once trained, data reconstruction required approximately 10 ms for the MRF EPI and 76 ms for the MRF FISP sequence. Reconstruction of simulated, noiseless brain data using the NN resulted in a RMS error (RMSE) of 2.6 ms for T1 and 1.9 ms for T2. The reconstruction error in the presence of noise was less than 10% for both T1 and T2 for SNR greater than 25 dB. Phantom measurements yielded good agreement (R2 = 0.99/0.99 for MRF EPI T1/T2 and 0.94/0.98 for MRF FISP T1/T2) between the T1 and T2 estimated by the NN and reference values from the International Society for Magnetic Resonance in Medicine/National Institute of Standards and Technology phantom. Conclusion Reconstruction of MRF data with a NN is accurate, 300‐ to 5000‐fold faster, and more robust to noise and dictionary undersampling than conventional MRF dictionary‐matching.
AbstractList Purpose Demonstrate a novel fast method for reconstruction of multi‐dimensional MR fingerprinting (MRF) data using deep learning methods. Methods A neural network (NN) is defined using the TensorFlow framework and trained on simulated MRF data computed with the extended phase graph formalism. The NN reconstruction accuracy for noiseless and noisy data is compared to conventional MRF template matching as a function of training data size and is quantified in simulated numerical brain phantom data and International Society for Magnetic Resonance in Medicine/National Institute of Standards and Technology phantom data measured on 1.5T and 3T scanners with an optimized MRF EPI and MRF fast imaging with steady state precession (FISP) sequences with spiral readout. The utility of the method is demonstrated in a healthy subject in vivo at 1.5T. Results Network training required 10 to 74 minutes; once trained, data reconstruction required approximately 10 ms for the MRF EPI and 76 ms for the MRF FISP sequence. Reconstruction of simulated, noiseless brain data using the NN resulted in a RMS error (RMSE) of 2.6 ms for T1 and 1.9 ms for T2. The reconstruction error in the presence of noise was less than 10% for both T1 and T2 for SNR greater than 25 dB. Phantom measurements yielded good agreement (R2 = 0.99/0.99 for MRF EPI T1/T2 and 0.94/0.98 for MRF FISP T1/T2) between the T1 and T2 estimated by the NN and reference values from the International Society for Magnetic Resonance in Medicine/National Institute of Standards and Technology phantom. Conclusion Reconstruction of MRF data with a NN is accurate, 300‐ to 5000‐fold faster, and more robust to noise and dictionary undersampling than conventional MRF dictionary‐matching.
PurposeDemonstrate a novel fast method for reconstruction of multi‐dimensional MR fingerprinting (MRF) data using deep learning methods.MethodsA neural network (NN) is defined using the TensorFlow framework and trained on simulated MRF data computed with the extended phase graph formalism. The NN reconstruction accuracy for noiseless and noisy data is compared to conventional MRF template matching as a function of training data size and is quantified in simulated numerical brain phantom data and International Society for Magnetic Resonance in Medicine/National Institute of Standards and Technology phantom data measured on 1.5T and 3T scanners with an optimized MRF EPI and MRF fast imaging with steady state precession (FISP) sequences with spiral readout. The utility of the method is demonstrated in a healthy subject in vivo at 1.5T.ResultsNetwork training required 10 to 74 minutes; once trained, data reconstruction required approximately 10 ms for the MRF EPI and 76 ms for the MRF FISP sequence. Reconstruction of simulated, noiseless brain data using the NN resulted in a RMS error (RMSE) of 2.6 ms for T1 and 1.9 ms for T2. The reconstruction error in the presence of noise was less than 10% for both T1 and T2 for SNR greater than 25 dB. Phantom measurements yielded good agreement (R2 = 0.99/0.99 for MRF EPI T1/T2 and 0.94/0.98 for MRF FISP T1/T2) between the T1 and T2 estimated by the NN and reference values from the International Society for Magnetic Resonance in Medicine/National Institute of Standards and Technology phantom.ConclusionReconstruction of MRF data with a NN is accurate, 300‐ to 5000‐fold faster, and more robust to noise and dictionary undersampling than conventional MRF dictionary‐matching.
Author Zhu, Bo
Cohen, Ouri
Rosen, Matthew S.
AuthorAffiliation 3 Department of Physics, Harvard University, Cambridge, MA 02138 USA
1 Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 13th Street, Charlestown, MA 02129 USA
2 Department of Radiology, Harvard Medical School, Boston, MA 02115 USA
AuthorAffiliation_xml – name: 1 Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 13th Street, Charlestown, MA 02129 USA
– name: 2 Department of Radiology, Harvard Medical School, Boston, MA 02115 USA
– name: 3 Department of Physics, Harvard University, Cambridge, MA 02138 USA
Author_xml – sequence: 1
  givenname: Ouri
  surname: Cohen
  fullname: Cohen, Ouri
  email: ouri@nmr.mgh.harvard.edu
  organization: Harvard University
– sequence: 2
  givenname: Bo
  surname: Zhu
  fullname: Zhu, Bo
  organization: Harvard University
– sequence: 3
  givenname: Matthew S.
  surname: Rosen
  fullname: Rosen, Matthew S.
  organization: Harvard University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29624736$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1OGzEUha2KqgTKoi9QjdQNLCZce-x4vKmEIKWV8iNFsLYmnpvUdMYO9gyIt69DKAIkurJlf_fonHsOyJ7zDgn5QmFIAdhpG9ohk1SVH8iACsZyJhTfIwOQHPKCKr5PDmK8AQClJP9E9pkaMS6L0YCI6SJbWbfGsAnWdemWXSBusgWauYtd6E1nvctm4-7ehz_Z8cViPhuffCYfV1UT8ejpPCTXP8ZX5z_zyfzy1_nZJDdc8jJHKaA0ShoDWAjKeC3qOj2tKirpMvkFMNSUktXVSEpgNbAlqBoUcqRCmOKQfN_pbvpli7VB14Wq0clqW4UH7SurX_84-1uv_Z0WSVvSMgkcPwkEf9tj7HRro8GmqRz6PmoGjG1RphL67Q164_vgUrxEpThFAQwS9fWlo2cr_zaagJMdYIKPMeDqGaGgt23p1JZ-bCuxp29YY7tqu_AUxjb_m7i3DT68L62ni-lu4i9XmaN0
CitedBy_id crossref_primary_10_3390_info16030218
crossref_primary_10_1016_j_media_2021_102017
crossref_primary_10_1016_j_jmro_2024_100151
crossref_primary_10_1002_nbm_5302
crossref_primary_10_3389_fradi_2024_1498411
crossref_primary_10_1016_j_acra_2022_03_018
crossref_primary_10_1016_j_clinimag_2023_07_004
crossref_primary_10_1016_j_jmr_2021_107042
crossref_primary_10_1016_j_radonc_2024_110345
crossref_primary_10_1109_JPROC_2019_2936998
crossref_primary_10_1002_mrm_29951
crossref_primary_10_1016_j_ejmp_2021_07_013
crossref_primary_10_1007_s00330_021_08126_y
crossref_primary_10_1002_mrm_30135
crossref_primary_10_1002_jnr_24863
crossref_primary_10_1002_nbm_4202
crossref_primary_10_1002_mrm_28051
crossref_primary_10_2463_mrms_rev_2021_0040
crossref_primary_10_1007_s11936_019_0762_z
crossref_primary_10_1007_s11548_020_02260_6
crossref_primary_10_13104_imri_2021_25_4_300
crossref_primary_10_1002_mrm_29172
crossref_primary_10_1088_1361_6560_aced77
crossref_primary_10_1109_TMI_2022_3216527
crossref_primary_10_1186_s12880_021_00636_x
crossref_primary_10_1002_mrm_30045
crossref_primary_10_1016_j_mri_2023_02_002
crossref_primary_10_1002_mrm_28761
crossref_primary_10_1002_mrm_29970
crossref_primary_10_1063_5_0086789
crossref_primary_10_1002_mrm_29173
crossref_primary_10_1002_nbm_4670
crossref_primary_10_1002_mrm_27558
crossref_primary_10_1088_1361_6560_abc04f
crossref_primary_10_3390_bioengineering11030236
crossref_primary_10_2196_28114
crossref_primary_10_1016_j_carj_2019_06_002
crossref_primary_10_1097_RLI_0000000000000738
crossref_primary_10_13104_imri_2020_24_4_241
crossref_primary_10_1002_jmri_28739
crossref_primary_10_1002_mrm_30155
crossref_primary_10_3390_cancers13194742
crossref_primary_10_1007_s00259_022_05746_4
crossref_primary_10_1002_nbm_4662
crossref_primary_10_1007_s11222_021_10019_5
crossref_primary_10_1002_mrm_27786
crossref_primary_10_1002_mrm_29721
crossref_primary_10_1088_1361_6560_acc4a6
crossref_primary_10_1109_TBME_2021_3116877
crossref_primary_10_1002_mrm_29194
crossref_primary_10_1002_nbm_4370
crossref_primary_10_21468_SciPostPhys_16_1_013
crossref_primary_10_1016_j_jocmr_2024_100997
crossref_primary_10_1098_rsta_2020_0197
crossref_primary_10_1109_TMI_2020_3018508
crossref_primary_10_1002_mrm_29990
crossref_primary_10_3174_ajnr_A5927
crossref_primary_10_1002_mrm_29074
crossref_primary_10_1109_TRPMS_2019_2897425
crossref_primary_10_1002_mp_13756
crossref_primary_10_1002_mrm_28308
crossref_primary_10_1016_j_pnmrs_2020_10_001
crossref_primary_10_1007_s10334_024_01173_8
crossref_primary_10_1016_j_neuroimage_2021_118237
crossref_primary_10_1049_ipr2_12526
crossref_primary_10_1088_1361_6420_ac70da
crossref_primary_10_1088_1361_6560_abeae7
crossref_primary_10_1097_RLI_0000000000000836
crossref_primary_10_13104_imri_2021_25_4_293
crossref_primary_10_1007_s00234_021_02703_0
crossref_primary_10_1016_j_neuroimage_2019_116329
crossref_primary_10_1002_mp_15254
crossref_primary_10_3389_fcvm_2022_928546
crossref_primary_10_1002_mrm_28096
crossref_primary_10_1002_mp_14833
crossref_primary_10_1007_s10334_022_01012_8
crossref_primary_10_1109_TCI_2024_3388869
crossref_primary_10_1002_mrm_28659
crossref_primary_10_1002_mrm_28411
crossref_primary_10_1088_1361_6420_ab356d
crossref_primary_10_1002_nbm_4800
crossref_primary_10_1016_j_semradonc_2022_06_007
crossref_primary_10_1162_imag_a_00177
crossref_primary_10_1002_mrm_29629
crossref_primary_10_1007_s10334_023_01140_9
crossref_primary_10_1109_TBME_2024_3446763
crossref_primary_10_1097_RLI_0000000000001114
crossref_primary_10_1016_j_media_2020_101741
crossref_primary_10_1002_mrm_29091
crossref_primary_10_1007_s11051_022_05499_z
crossref_primary_10_1002_mrm_29411
crossref_primary_10_1109_TCI_2024_3440008
crossref_primary_10_3389_fcvm_2022_1009131
crossref_primary_10_1002_mrm_28321
crossref_primary_10_1002_mrm_28560
crossref_primary_10_1002_mrm_27912
crossref_primary_10_1016_j_zemedi_2018_11_002
crossref_primary_10_1002_mrm_29657
crossref_primary_10_1002_mrm_28568
crossref_primary_10_1002_jmri_28300
crossref_primary_10_1002_mrm_28688
crossref_primary_10_1016_j_media_2025_103481
crossref_primary_10_1016_j_isci_2024_111209
crossref_primary_10_1016_j_neuroimage_2023_120449
crossref_primary_10_1002_mrm_27221
crossref_primary_10_1002_mrm_29880
crossref_primary_10_1016_j_media_2024_103198
crossref_primary_10_1002_jmri_27440
crossref_primary_10_1007_s10334_025_01238_2
crossref_primary_10_1109_MSP_2022_3183809
crossref_primary_10_3390_bioengineering10040492
crossref_primary_10_1002_nbm_5028
crossref_primary_10_1002_mp_15465
crossref_primary_10_1002_gamm_202470014
crossref_primary_10_1007_s10334_022_01057_9
crossref_primary_10_1097_RMR_0000000000000246
crossref_primary_10_3389_fnhum_2020_00034
crossref_primary_10_1016_j_mri_2019_11_015
crossref_primary_10_1016_j_mri_2024_03_023
crossref_primary_10_1007_s10462_021_10058_4
crossref_primary_10_1109_TMI_2019_2899328
crossref_primary_10_1016_j_mri_2019_11_010
crossref_primary_10_1049_ipr2_12687
crossref_primary_10_1097_RMR_0000000000000249
crossref_primary_10_1002_jmrs_413
crossref_primary_10_1109_TIP_2024_3477980
crossref_primary_10_1016_j_mri_2023_01_011
crossref_primary_10_1002_mrm_28573
crossref_primary_10_1093_bioinformatics_btaa1006
crossref_primary_10_1088_1361_6420_ab4c9a
crossref_primary_10_1002_nbm_5133
crossref_primary_10_1038_s41573_019_0024_5
crossref_primary_10_1088_1361_6560_ac101f
crossref_primary_10_1177_19714009231173100
crossref_primary_10_1038_s41598_020_70789_2
crossref_primary_10_1016_j_media_2020_101945
crossref_primary_10_1109_TNS_2021_3083894
crossref_primary_10_1002_mrm_29212
crossref_primary_10_1002_nbm_4710
crossref_primary_10_1002_jmri_29679
crossref_primary_10_1002_mrm_29574
crossref_primary_10_1038_s41598_025_88579_z
crossref_primary_10_1002_nbm_4954
crossref_primary_10_1016_j_neuroimage_2020_117165
crossref_primary_10_1162_imag_a_00102
crossref_primary_10_1016_j_mri_2020_03_009
crossref_primary_10_1109_TMI_2022_3179981
crossref_primary_10_1109_MSP_2019_2950557
crossref_primary_10_1038_s41551_021_00809_7
crossref_primary_10_1007_s13246_025_01535_z
crossref_primary_10_1109_TMI_2021_3066781
crossref_primary_10_1016_j_neuroimage_2020_116619
crossref_primary_10_1016_j_mric_2021_06_010
crossref_primary_10_2200_S00959ED1V01Y201910BME059
crossref_primary_10_1088_2399_6528_ac24d8
crossref_primary_10_1007_s10334_024_01186_3
crossref_primary_10_1002_mp_13727
crossref_primary_10_1002_mrm_29206
crossref_primary_10_1002_mrm_29448
crossref_primary_10_1002_mrm_28117
crossref_primary_10_1002_mrm_29688
crossref_primary_10_1002_mrm_27707
crossref_primary_10_1002_hbm_25232
crossref_primary_10_1109_TMI_2020_3003893
crossref_primary_10_1088_1361_6579_ad2c15
crossref_primary_10_1016_j_mri_2020_09_014
crossref_primary_10_1002_nbm_4651
crossref_primary_10_1200_EDBK_320951
crossref_primary_10_1002_mrm_28704
crossref_primary_10_1002_nbm_4416
crossref_primary_10_1109_MSP_2023_3236483
crossref_primary_10_1002_jmri_27155
crossref_primary_10_1002_mrm_29901
crossref_primary_10_1007_s10334_024_01189_0
crossref_primary_10_1002_mrm_28136
crossref_primary_10_3390_s22031260
crossref_primary_10_1002_jmri_27381
crossref_primary_10_1002_mrm_29905
crossref_primary_10_1002_nbm_4196
crossref_primary_10_1002_mrm_28166
crossref_primary_10_1002_mrm_29014
crossref_primary_10_1002_mrm_30488
crossref_primary_10_13104_imri_2019_23_2_81
crossref_primary_10_1002_mrm_30127
crossref_primary_10_1002_mrm_29814
crossref_primary_10_1016_j_neuroimage_2020_117366
crossref_primary_10_1109_TMI_2023_3302872
crossref_primary_10_1016_j_mri_2021_12_006
crossref_primary_10_1002_jmri_26877
crossref_primary_10_3389_fcvm_2022_991383
crossref_primary_10_1002_mrm_29000
crossref_primary_10_1186_s12968_021_00834_0
crossref_primary_10_1002_mrm_28038
crossref_primary_10_1016_j_jacr_2020_01_007
crossref_primary_10_1038_s41598_022_26266_z
crossref_primary_10_13104_imri_2020_24_4_207
Cites_doi 10.1016/j.mri.2017.02.010
10.1016/j.neuroimage.2017.08.030
10.1002/mrm.26867
10.1002/mrm.26889
10.1016/j.mri.2017.08.001
10.1002/jmri.24619
10.1002/mrm.10171
10.1002/mrm.20058
10.1002/mrm.25799
10.1145/1390156.1390294
10.1002/mrm.26561
10.1109/ICIP.2017.8297024
10.1109/TMI.2014.2337321
10.1002/mrm.26509
10.1002/mrm.26521
10.1109/42.712135
10.1002/mrm.26587
10.1002/mrm.25559
10.1038/nature11971
10.1002/mrm.26580
10.1002/mrm.25776
10.1002/mrm.25439
10.1016/j.neunet.2014.09.003
10.1016/0893-6080(89)90020-8
10.1002/mrm.20314
10.1142/S0218488598000094
ContentType Journal Article
Copyright 2018 International Society for Magnetic Resonance in Medicine
Copyright_xml – notice: 2018 International Society for Magnetic Resonance in Medicine
DBID AAYXX
CITATION
NPM
8FD
FR3
K9.
M7Z
P64
7X8
5PM
DOI 10.1002/mrm.27198
DatabaseName CrossRef
PubMed
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
Biochemistry Abstracts 1
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 894
ExternalDocumentID PMC5980718
29624736
10_1002_mrm_27198
MRM27198
Genre rapidPublication
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: MGH/HST Athinoula A. Martinos Center for Biomedical Imaging and the Center for Machine Learning at Martinos
– fundername: NIH National Institute for Biomedical Imaging and Bioengineering
  funderid: F32‐EB022390
– fundername: NIBIB NIH HHS
  grantid: F32 EB022390
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
NPM
8FD
FR3
K9.
M7Z
P64
7X8
5PM
ID FETCH-LOGICAL-c4748-e7508c97cc0e35124d5dd508fa171b19800c1c872da67702d02b09d09e4e155c3
IEDL.DBID DR2
ISSN 0740-3194
1522-2594
IngestDate Thu Aug 21 18:19:20 EDT 2025
Fri Jul 11 16:51:23 EDT 2025
Fri Jul 25 12:15:52 EDT 2025
Mon Jul 21 06:02:40 EDT 2025
Thu Apr 24 23:04:00 EDT 2025
Tue Jul 01 01:21:05 EDT 2025
Wed Jan 22 17:04:33 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords MR fingerprinting
deep learning
DRONE
optimization
neural network
EPI
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4748-e7508c97cc0e35124d5dd508fa171b19800c1c872da67702d02b09d09e4e155c3
Notes Funding information
is supported by NIH National Institute for Biomedical Imaging and Bioengineering F32‐EB022390. This work was also supported in part by the MGH/HST Athinoula A. Martinos Center for Biomedical Imaging and the Center for Machine Learning at Martinos
Correction added after online publication 16 April 2018. Due to a publisher's error, not all of the authors' corrections were made prior to publication and have been updated in this version.
b.z.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 29624736
PQID 2047433020
PQPubID 1016391
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5980718
proquest_miscellaneous_2022980729
proquest_journals_2047433020
pubmed_primary_29624736
crossref_primary_10_1002_mrm_27198
crossref_citationtrail_10_1002_mrm_27198
wiley_primary_10_1002_mrm_27198_MRM27198
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2018
PublicationDateYYYYMMDD 2018-09-01
PublicationDate_xml – month: 09
  year: 2018
  text: September 2018
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn Reson Med
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 1989; 2
2002; 47
2017; 41
1998; 17
1976; 14
2004; 51
2011; 1
2015; 61
2017; 44
2015; 74
2015; 41
2017; 78
2016; 75
2008
2005; 53
2017
2016
2017; 162
2013; 495
2014
1998; 6
2001; 14
2014; 33
2018; 79
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
Hochreiter S (e_1_2_7_31_1) 2001
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
Karlik B (e_1_2_7_36_1) 2011; 1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_24_1
e_1_2_7_32_1
Lawless JF (e_1_2_7_33_1) 1976; 14
e_1_2_7_23_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_37_1
References_xml – volume: 79
  start-page: 2101
  year: 2018
  end-page: 2112
  article-title: Optimized inversion‐time schedules for quantitative T1 measurements based on high‐resolution multi‐inversion EPI
  publication-title: Magn Reson Med
– volume: 79
  start-page: 2392
  year: 2018
  end-page: 2400
  article-title: Low rank approximation methods for MR fingerprinting with large scale dictionaries
  publication-title: Magn Reson Med
– volume: 75
  start-page: 2078
  year: 2016
  end-page: 2085
  article-title: Accelerating magnetic resonance fingerprinting (MRF) using t‐blipped simultaneous multislice (SMS) acquisition
  publication-title: Magn Reson Med
– volume: 14
  start-page: 237
  year: 2001
  end-page: 245
– volume: 53
  start-page: 237
  year: 2005
  end-page: 241
  article-title: High‐resolution T1 and T2 mapping of the brain in a clinically acceptable time with DESPOT1 and DESPOT2
  publication-title: Magn Reson Med
– volume: 74
  start-page: 523
  year: 2015
  end-page: 528
  article-title: Fast group matching for MR fingerprinting reconstruction
  publication-title: Magn Reson Med
– volume: 33
  start-page: 2311
  year: 2014
  end-page: 2322
  article-title: SVD compression for magnetic resonance fingerprinting in the time domain
  publication-title: IEEE Trans Med Imaging
– start-page: 3290
  year: 2016
– volume: 162
  start-page: 13
  year: 2017
  end-page: 22
  article-title: 3D MR fingerprinting with accelerated stack‐of‐spirals and hybrid sliding‐window and GRAPPA reconstruction
  publication-title: Neuroimage
– volume: 78
  start-page: 1724
  year: 2017
  end-page: 1733
  article-title: Magnetic resonance fingerprinting using echo‐planar imaging: joint quantification of T1 and T2∗ relaxation times
  publication-title: Magn Reson Med
– volume: 47
  start-page: 1202
  year: 2002
  end-page: 1210
  article-title: Generalized autocalibrating partially parallel acquisitions (GRAPPA)
  publication-title: Magn Reson Med
– year: 2016
– volume: 75
  start-page: 2481
  year: 2016
  end-page: 2492
  article-title: Multiscale reconstruction for MR fingerprinting
  publication-title: Magn Reson Med
– year: 2014
– volume: 78
  start-page: 1452
  year: 2017
  end-page: 1457
  article-title: Repeatability of magnetic resonance fingerprinting T1 and T2 estimates assessed using the ISMRM/NIST MRI system phantom
  publication-title: Magn Reson Med
– volume: 78
  start-page: 1812
  year: 2017
  end-page: 1823
  article-title: Multiparametric estimation of brain hemodynamics with MR fingerprinting ASL
  publication-title: Magn Reson Med
– volume: 2
  start-page: 359
  year: 1989
  end-page: 366
  article-title: Multilayer feedforward networks are universal approximators
  publication-title: Neural Netw
– volume: 78
  start-page: 1579
  year: 2017
  end-page: 1588
  article-title: Robust sliding‐window reconstruction for accelerating the acquisition of MR fingerprinting
  publication-title: Magn Reson Med
– volume: 1
  start-page: 111
  year: 2011
  end-page: 122
  article-title: Performance analysis of various activation functions in generalized MLP architectures of neural networks
  publication-title: Int J Artif Intell Expert Syst
– volume: 6
  start-page: 107
  year: 1998
  end-page: 116
  article-title: The vanishing gradient problem during learning recurrent neural nets and problem solutions
  publication-title: Int J Uncertain Fuzziness Knowl Based Syst
– volume: 51
  start-page: 661
  year: 2004
  end-page: 667
  article-title: Inversion recovery TrueFISP: quantification of T1, T2, and spin density
  publication-title: Magn Reson Med
– volume: 14
  start-page: 307
  year: 1976
  end-page: 323
  article-title: A simulation study of ridge and other regression estimators
  publication-title: Commun Stat Theory Methods
– volume: 495
  start-page: 187
  year: 2013
  end-page: 192
  article-title: Magnetic resonance fingerprinting
  publication-title: Nature
– volume: 41
  start-page: 15
  year: 2017
  end-page: 21
  article-title: Algorithm comparison for schedule optimization in MR fingerprinting
  publication-title: Magn Reson Imaging
– volume: 74
  start-page: 1621
  year: 2015
  end-page: 1631
  article-title: MR fingerprinting using fast imaging with steady state precession (FISP) with spiral readout
  publication-title: Magn Reson Med
– volume: 78
  start-page: 1781
  year: 2017
  end-page: 1789
  article-title: Slice profile and B1 corrections in 2D magnetic resonance fingerprinting
  publication-title: Magn Reson Med
– volume: 17
  start-page: 463
  year: 1998
  end-page: 468
  article-title: Design and construction of a realistic digital brain phantom
  publication-title: IEEE Trans Med Imaging
– year: 2017
– start-page: 1096
  year: 2008
  end-page: 1103
– volume: 44
  start-page: 72
  year: 2017
  end-page: 81
  article-title: Transverse relaxation of cerebrospinal fluid depends on glucose concentration
  publication-title: Magn. Reson Imaging
– volume: 41
  start-page: 266
  year: 2015
  end-page: 295
  article-title: Extended phase graphs: Dephasing, RF pulses, and echoes‐pure and simple
  publication-title: J. Magn Reson Imaging
– volume: 61
  start-page: 85
  year: 2015
  end-page: 117
  article-title: Deep learning in neural networks: An overview
  publication-title: Neural Netw.
– ident: e_1_2_7_9_1
  doi: 10.1016/j.mri.2017.02.010
– ident: e_1_2_7_16_1
  doi: 10.1016/j.neuroimage.2017.08.030
– ident: e_1_2_7_8_1
  doi: 10.1002/mrm.26867
– ident: e_1_2_7_10_1
  doi: 10.1002/mrm.26889
– ident: e_1_2_7_20_1
– ident: e_1_2_7_35_1
  doi: 10.1016/j.mri.2017.08.001
– volume: 1
  start-page: 111
  year: 2011
  ident: e_1_2_7_36_1
  article-title: Performance analysis of various activation functions in generalized MLP architectures of neural networks
  publication-title: Int J Artif Intell Expert Syst
– ident: e_1_2_7_25_1
  doi: 10.1002/jmri.24619
– start-page: 237
  volume-title: A Field Guide to Dynamical Recurrent Neural Networks
  year: 2001
  ident: e_1_2_7_31_1
– ident: e_1_2_7_29_1
– ident: e_1_2_7_14_1
– ident: e_1_2_7_28_1
  doi: 10.1002/mrm.10171
– ident: e_1_2_7_34_1
  doi: 10.1002/mrm.20058
– ident: e_1_2_7_24_1
  doi: 10.1002/mrm.25799
– ident: e_1_2_7_26_1
  doi: 10.1145/1390156.1390294
– ident: e_1_2_7_23_1
  doi: 10.1002/mrm.26561
– ident: e_1_2_7_5_1
– ident: e_1_2_7_17_1
  doi: 10.1109/ICIP.2017.8297024
– volume: 14
  start-page: 307
  year: 1976
  ident: e_1_2_7_33_1
  article-title: A simulation study of ridge and other regression estimators
  publication-title: Commun Stat Theory Methods
– ident: e_1_2_7_13_1
– ident: e_1_2_7_7_1
  doi: 10.1109/TMI.2014.2337321
– ident: e_1_2_7_30_1
  doi: 10.1002/mrm.26509
– ident: e_1_2_7_15_1
  doi: 10.1002/mrm.26521
– ident: e_1_2_7_27_1
  doi: 10.1109/42.712135
– ident: e_1_2_7_4_1
  doi: 10.1002/mrm.26587
– ident: e_1_2_7_19_1
– ident: e_1_2_7_21_1
  doi: 10.1002/mrm.25559
– ident: e_1_2_7_2_1
  doi: 10.1038/nature11971
– ident: e_1_2_7_18_1
– ident: e_1_2_7_3_1
  doi: 10.1002/mrm.26580
– ident: e_1_2_7_22_1
  doi: 10.1002/mrm.25776
– ident: e_1_2_7_6_1
  doi: 10.1002/mrm.25439
– ident: e_1_2_7_11_1
  doi: 10.1016/j.neunet.2014.09.003
– ident: e_1_2_7_12_1
  doi: 10.1016/0893-6080(89)90020-8
– ident: e_1_2_7_32_1
  doi: 10.1002/mrm.20314
– ident: e_1_2_7_37_1
  doi: 10.1142/S0218488598000094
SSID ssj0009974
Score 2.6536884
Snippet Purpose Demonstrate a novel fast method for reconstruction of multi‐dimensional MR fingerprinting (MRF) data using deep learning methods. Methods A neural...
PurposeDemonstrate a novel fast method for reconstruction of multi‐dimensional MR fingerprinting (MRF) data using deep learning methods.MethodsA neural network...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 885
SubjectTerms Brain
Computer simulation
deep learning
Dictionaries
DRONE
EPI
Fingerprinting
In vivo methods and tests
Machine learning
Magnetic resonance
Medicine
MR fingerprinting
neural network
Neural networks
Neuroimaging
optimization
Reconstruction
Robustness (mathematics)
Scanners
Template matching
Training
Title MR fingerprinting Deep RecOnstruction NEtwork (DRONE)
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.27198
https://www.ncbi.nlm.nih.gov/pubmed/29624736
https://www.proquest.com/docview/2047433020
https://www.proquest.com/docview/2022980729
https://pubmed.ncbi.nlm.nih.gov/PMC5980718
Volume 80
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS-QwEB9EUO7l9NQ7q57Uw4e9h67Zado0-CS6IsKusCj4cFCaj8XjtIqrL_71TtKPdU8F8a0003aSySS_Saa_AOzacSaU5BSdSDQRR6MjJY2NBMaF28lLxNhn-Q7Tkwt-eplczsF-8y9MxQ_RLrg5z_DjtXPwQk32pqShN_c3XRQUM9P463K1HCAaTamjpKwYmAV344zkDasQw732ydm56BXAfJ0n-RK_-gnoeAn-NKpXeSf_uo8Pqquf_mN1_GTdluFrDUzDg6onfYM5W67A4qDeel-BBZ8rqierkAxG4divBrpFQZc2HR5ZexcSAj2b8tGGw75PMA87R6OzYf_3Glwc988PT6L69IVIc0HGs4QlMi2F1szGBAu4SYyhW-OiJ3qKdGNM93Qm0BSpEAwNQ8WkYdJySyBFx99hvrwt7TqEqc2siYXC1FjOlTvevBAUGmNmEZWRAXQaO-S6piZ3J2Rc5xWpMubUILlvkAB-taJ3FR_HW0JbjTHz2iUnOTKqVhwTPA5gpy0mZ3I7JEVpbx-dDCJVjAKOAH5Utm-_gjJFLuI0ADHTK1oBR9Q9W1L-vfKE3Yl7Z4_U6nijv694PhgN_MXGx0U34QuBuKzKe9uCeTKz_UlA6UFte494Bu2PDNg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5Rqj4utKXQpkCbIg7LIYt34sSx1EvVXbQtZJFWIHFBUfxYtWoJqMClv75j57FdKFLVWxRPEtvjsT-PJ98A7NhZJpTktDuRaCKORkdKGhsJjEt3kpeImY_ynaTjE_7lNDldgg_tvzA1P0TncHOW4edrZ-DOIb03Zw09_3neR0Gb5gfw0GX0dmY5nM7Jo6SsOZgFdzON5C2vEMO97tHF1egOxLwbKfkngvVL0P4zOGsrX0eefO_fXKu-_nWL1_F_W_ccVhpsGn6sB9MLWLLVKjzOm9P3VXjkw0X11UtI8mk48w5B5xd0kdPh0NrLkEDo0ZySNpyMfIx52BtOjyaj3TU42R8dfxpHTQKGSHNB-rMEJzIthdbMxoQMuEmMoVuzciAGiurGmB7oTKApUyEYGoaKScOk5ZZwio7XYbm6qOxrCFObWRMLhamxnCuX4bwUtDvGzCIqIwPotYoodMNO7pJk_ChqXmUsqEMK3yEBbHeilzUlx9-ENlttFo1VXhXIqFlxTAg5gPddMdmTOyQpK3tx42QQqWG05wjgVa387isoU-QiTgMQC8OiE3Bc3Ysl1bevnrM7ce8cULV6Xuv3V7zIp7m_ePPvou_gyfg4PywOP08ONuApYbqsDoPbhGVSud0i3HSt3nrz-A2nHxDx
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VVlRcoJRXoEBAPSyH7HonThyLE2J31RZ2i1ZU6qFSFD8iqtJ0RdsLv56x81iWFglxi-JJMvZ47G_syWeAXVtmQklO0YlEE3E0OlLS2EhgXLidvESUPst3lu4d8YPj5HgN3rf_wtT8EN2Cm_MMP147B1-YcrAkDT3_cd5HQTHzHdjgKctc5DWaL7mjpKwpmAV3A43kLa0Qw0H36OpkdANh3kyU_B3A-hlo8gBOWt3rxJOz_vWV6uuff9A6_mfltuB-g0zDD3VXeghrttqGzWmz974Nd32yqL58BMl0HpZ-OdCtCrq86XBk7SIkCHq4JKQNZ2OfYR72RvPD2fjdYziajL9-3Iua4xcizQVZzxKYyLQUWjMbEy7gJjGGbpXFUAwV6caYHupMoClSIRgahopJw6TlllCKjp_AenVR2WcQpjazJhYKU2M5V-5880JQbIyZRVRGBtBr7ZDrhpvcHZHxPa9ZlTGnBsl9gwTwthNd1IQctwnttMbMG5-8zJFRteKY8HEAb7pi8ia3RVJU9uLaySBSxSjiCOBpbfvuKyhT5CJOAxArvaITcEzdqyXV6TfP2J24dw5JrZ43-t8Vz6fzqb94_u-ir2Hzy2iSf96ffXoB9wjQZXUO3A6sk8XtSwJNV-qVd45fhRUPqQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MR+fingerprinting+Deep+RecOnstruction+NEtwork+%28DRONE%29&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Cohen%2C+Ouri&rft.au=Zhu%2C+Bo&rft.au=Rosen%2C+Matthew+S.&rft.date=2018-09-01&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=80&rft.issue=3&rft.spage=885&rft.epage=894&rft_id=info:doi/10.1002%2Fmrm.27198&rft_id=info%3Apmid%2F29624736&rft.externalDocID=PMC5980718
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon