Lipid droplets and fatty acid‐induced lipotoxicity: in a nutshell
Lipid droplets (LDs) are fat storage organelles that are conserved from bacteria to humans. LDs are broken down to supply cells with fatty acids (FAs) that can be used as an energy source or membrane synthesis. An overload of FAs disrupts cellular functions and causes lipotoxicity. Thus, by acting a...
Saved in:
Published in | FEBS letters Vol. 598; no. 10; pp. 1207 - 1214 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
01.05.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Lipid droplets (LDs) are fat storage organelles that are conserved from bacteria to humans. LDs are broken down to supply cells with fatty acids (FAs) that can be used as an energy source or membrane synthesis. An overload of FAs disrupts cellular functions and causes lipotoxicity. Thus, by acting as hubs for storing excess fat, LDs prevent lipotoxicity and preserve cellular homeostasis. LD synthesis and turnover have to be precisely regulated to maintain a balanced lipid distribution and allow for cellular adaptation during stress. Here, we discuss how prolonged exposure to excess lipids affects cellular functions, and the roles of LDs in buffering cellular stress focusing on lipotoxicity.
Fatty acids (FAs) are critical molecules for cell growth, proliferation, and development; but are toxic to cells when present in excess. Eukaryotic cells therefore sequester FAs in organelles called lipid droplets (LDs) until needed. LD synthesis and breakdown are under precise metabolic control, and dysregulation of these pathways is linked to lipotoxicity and diseases. |
---|---|
AbstractList | Lipid droplets (LDs) are fat storage organelles that are conserved from bacteria to humans. LDs are broken down to supply cells with fatty acids (FAs) that can be used as an energy source or membrane synthesis. An overload of FAs disrupts cellular functions and causes lipotoxicity. Thus, by acting as hubs for storing excess fat, LDs prevent lipotoxicity and preserve cellular homeostasis. LD synthesis and turnover have to be precisely regulated to maintain a balanced lipid distribution and allow for cellular adaptation during stress. Here, we discuss how prolonged exposure to excess lipids affects cellular functions, and the roles of LDs in buffering cellular stress focusing on lipotoxicity. Lipid droplets (LDs) are fat storage organelles that are conserved from bacteria to humans. LDs are broken down to supply cells with fatty acids (FAs) that can be used as an energy source or membrane synthesis. An overload of FAs disrupts cellular functions and causes lipotoxicity. Thus, by acting as hubs for storing excess fat, LDs prevent lipotoxicity and preserve cellular homeostasis. LD synthesis and turnover have to be precisely regulated to maintain a balanced lipid distribution and allow for cellular adaptation during stress. Here, we discuss how prolonged exposure to excess lipids affects cellular functions, and the roles of LDs in buffering cellular stress focusing on lipotoxicity. Fatty acids (FAs) are critical molecules for cell growth, proliferation, and development; but are toxic to cells when present in excess. Eukaryotic cells therefore sequester FAs in organelles called lipid droplets (LDs) until needed. LD synthesis and breakdown are under precise metabolic control, and dysregulation of these pathways is linked to lipotoxicity and diseases. Lipid droplets (LDs) are fat storage organelles that are conserved from bacteria to humans. LDs are broken down to supply cells with fatty acids (FAs) that can be used as an energy source or membrane synthesis. An overload of FAs disrupts cellular functions and causes lipotoxicity. Thus, by acting as hubs for storing excess fat, LDs prevent lipotoxicity and preserve cellular homeostasis. LD synthesis and turnover have to be precisely regulated to maintain a balanced lipid distribution and allow for cellular adaptation during stress. Here, we discuss how prolonged exposure to excess lipids affects cellular functions, and the roles of LDs in buffering cellular stress focusing on lipotoxicity.Lipid droplets (LDs) are fat storage organelles that are conserved from bacteria to humans. LDs are broken down to supply cells with fatty acids (FAs) that can be used as an energy source or membrane synthesis. An overload of FAs disrupts cellular functions and causes lipotoxicity. Thus, by acting as hubs for storing excess fat, LDs prevent lipotoxicity and preserve cellular homeostasis. LD synthesis and turnover have to be precisely regulated to maintain a balanced lipid distribution and allow for cellular adaptation during stress. Here, we discuss how prolonged exposure to excess lipids affects cellular functions, and the roles of LDs in buffering cellular stress focusing on lipotoxicity. |
Author | Bandyopadhyay, Sumit Hariri, Hanaa Obaseki, Eseiwi Adebayo, Daniel |
AuthorAffiliation | 1 Department of Biological Sciences, Wayne State University, Detroit, MI, 48202 USA |
AuthorAffiliation_xml | – name: 1 Department of Biological Sciences, Wayne State University, Detroit, MI, 48202 USA |
Author_xml | – sequence: 1 givenname: Eseiwi surname: Obaseki fullname: Obaseki, Eseiwi organization: Wayne State University – sequence: 2 givenname: Daniel surname: Adebayo fullname: Adebayo, Daniel organization: Wayne State University – sequence: 3 givenname: Sumit surname: Bandyopadhyay fullname: Bandyopadhyay, Sumit organization: Wayne State University – sequence: 4 givenname: Hanaa orcidid: 0000-0002-2953-7536 surname: Hariri fullname: Hariri, Hanaa email: hanaa.hariri@wayne.edu organization: Wayne State University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38281809$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1O3DAUha0KBANlzQ5l2U3A1z-J001VRlAqjcSmXVuO7RSjjB1iB5hdH6HP2CeppwOjwqKsLNvnO_fnHKAdH7xF6BjwKWBMzkDUtKSsEqfABBbv0Gz7soNmGAMred3QfXQQ4y3OdwHNHtqngggQuJmh-cINzhRmDENvUyyUN0WnUloVSjvz--cv582krSl6N4QUHp12afWxcL5QhZ9SvLF9_x7tdqqP9ujpPETfLy--za_KxfWXr_PPi1KzmolSt0JzIYzGqqW8rWrdqQ6AaMU56ypmWl7jljDdAgGAthMGsBaiwqrmBHN6iD5tfIepXVqjrU-j6uUwuqUaVzIoJ1_-eHcjf4R7md1IRSvIDh-eHMZwN9mY5NJFnUdQ3oYpSgqccp6L0TelpIGmZjWGKktP_u1r29DzlrPgbCPQY4hxtN1WAliuc5Tr1OQ6Nfk3x0zwV0Teu0ourAdz_X-4asM9uN6u3iojLy_OyQb8A4E8sGM |
CitedBy_id | crossref_primary_10_3390_ijms252111534 crossref_primary_10_3390_biom14121607 crossref_primary_10_3390_ijms26020788 crossref_primary_10_26508_lsa_202302458 crossref_primary_10_1016_j_celrep_2024_114681 crossref_primary_10_1186_s13020_024_01050_5 crossref_primary_10_1002_advs_202409513 crossref_primary_10_3389_fendo_2024_1488309 crossref_primary_10_3390_antiox14030264 crossref_primary_10_1002_1873_3468_14900 |
Cites_doi | 10.1002/hep.27409 10.1016/j.cell.2014.11.006 10.1242/jcs.259402 10.1074/jbc.M109.099333 10.3390/ijms21176358 10.1002/glia.23978 10.2337/db13-0501 10.1073/pnas.2011442117 10.1016/j.bbalip.2014.09.012 10.1097/00041433-200306000-00008 10.1016/j.devcel.2017.06.003 10.1016/j.bbrc.2018.12.039 10.1016/j.cmet.2017.07.012 10.1074/jbc.M110.215434 10.1016/j.cmet.2017.02.010 10.1016/j.jbc.2021.100950 10.1007/978-3-319-48382-5_8 10.1016/j.celrep.2018.08.015 10.3389/fcell.2023.1104725 10.3389/fcell.2021.726261 10.1002/jcb.29889 10.1038/s41580-018-0085-z 10.1016/j.cell.2019.04.001 10.3389/fcell.2022.826688 10.1016/j.bbalip.2017.12.006 10.1016/j.molcel.2019.01.036 10.1126/science.1100747 10.1091/mbc.E17-08-0535 10.1186/s13046-021-02168-2 10.1038/nrm2708 10.1016/j.devcel.2017.06.018 10.1016/j.devcel.2023.07.001 10.1016/j.jlr.2021.100056 10.1074/jbc.M114.601864 10.1074/jbc.M117.809236 10.3390/cancers15194857 10.1172/JCI44442 10.1016/j.cell.2015.09.020 10.1172/JCI36066 10.1007/s00726-016-2247-7 10.1038/s41419-022-04593-3 10.1016/j.devcel.2015.01.029 10.3390/ijms19113445 10.1016/j.ceb.2009.11.014 10.1016/j.cell.2013.06.041 10.1073/pnas.91.23.10878 10.1016/j.molcel.2019.01.037 10.1083/jcb.201610013 10.1083/jcb.201808119 10.1080/15548627.2017.1359451 10.1016/j.bbalip.2017.07.009 10.1074/jbc.M108640200 10.1074/jbc.M109.064469 10.1016/j.molcel.2017.02.026 10.1016/j.cmet.2023.03.018 10.1038/nature07976 10.18632/oncotarget.4479 10.1111/acel.13034 10.1016/j.cmet.2021.07.011 10.1016/B978-0-12-800101-1.00011-9 10.1016/j.cell.2012.03.042 10.1073/pnas.2011124117 10.1038/srep42574 10.1042/BJ20120712 10.1073/pnas.0630588100 |
ContentType | Journal Article |
Copyright | 2024 Federation of European Biochemical Societies. |
Copyright_xml | – notice: 2024 Federation of European Biochemical Societies. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
DOI | 10.1002/1873-3468.14808 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE CrossRef AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry Biology |
EISSN | 1873-3468 |
EndPage | 1214 |
ExternalDocumentID | PMC11126361 38281809 10_1002_1873_3468_14808 FEB214808 |
Genre | reviewArticle Journal Article |
GrantInformation_xml | – fundername: National Institute of General Medical Sciences funderid: 1R35GM150892‐01 – fundername: NIGMS NIH HHS grantid: R35 GM150892 – fundername: NIGMS NIH HHS grantid: 1R35GM150892-01 |
GroupedDBID | --- --K -~X .55 .~1 0R~ 0SF 1B1 1OC 1~. 1~5 24P 29H 2WC 33P 4.4 4G. 53G 5GY 5RE 5VS 6I. 7-5 71M 8P~ AABNK AACTN AAEDW AAESR AAFTH AAHBH AAHHS AAHQN AAIKJ AAIPD AALRI AAMNL AANLZ AAQXK AASGY AAXRX AAXUO AAYCA AAZKR ABBQC ABCUV ABEFU ABFNM ABFRF ABGSF ABJNI ABLJU ABMAC ABQWH ABVKL ABWVN ABXDB ABXGK ACAHQ ACCFJ ACCZN ACGFO ACGFS ACGOF ACIUM ACMXC ACNCT ACPOU ACRPL ACXBN ACXQS ADBBV ADBTR ADEOM ADEZE ADIYS ADKYN ADMGS ADMUD ADNMO ADOZA ADQTV ADUVX ADVLN ADXAS ADZMN ADZOD AEEZP AEFWE AEGXH AEKER AENEX AEQDE AEQOU AEUYR AEXQZ AFBPY AFFNX AFFPM AFGKR AFPWT AFWVQ AFZJQ AGHFR AGYEJ AHBTC AI. AIACR AIAGR AITUG AITYG AIURR AIWBW AJBDE AJRQY AKRWK ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMRAJ AMYDB AZFZN AZVAB BAWUL BFHJK BMXJE C45 CS3 DCZOG DIK DRFUL DRMAN DRSTM DU5 E3Z EBS EJD EMOBN EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FUBAC G-Q GBLVA GI5 GX1 HGLYW HVGLF HZ~ IHE IXB J1W KBYEO L7B LATKE LEEKS LITHE LOXES LUTES LX3 LYRES M41 MEWTI MO0 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MVM MXFUL MXMAN MXSTM N9A NCXOZ O-L O9- OK1 OVD OZT P-8 P-9 P2P P2W PC. Q38 R2- R9- RIG RNS ROL RPZ SCC SDF SDG SDP SEL SES SEW SFE SSZ SUPJJ SV3 TEORI TR2 UHB UNMZH VH1 WBKPD WH7 WIH WIJ WIK WIN WOHZO WXSBR X7M Y6R YK3 ZGI ZZTAW ~02 AAMMB AAYWO AAYXX ACVFH ADCNI ADXHL AEFGJ AEUPX AEYWJ AFPUW AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIGII AKBMS AKYEP CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c4748-cb8c588dc0ab35b67cfaf112ca554f64db570b24cb12111bf8d10c8860a752053 |
ISSN | 0014-5793 1873-3468 |
IngestDate | Thu Aug 21 18:26:34 EDT 2025 Fri Jul 11 18:23:44 EDT 2025 Fri Jul 11 05:17:17 EDT 2025 Mon Jul 21 05:57:12 EDT 2025 Thu Apr 24 23:00:26 EDT 2025 Sun Jul 06 05:04:48 EDT 2025 Wed Jan 22 17:18:50 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | lipid droplet fatty acid autophagy lipolysis lipophagy lipotoxicity |
Language | English |
License | 2024 Federation of European Biochemical Societies. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c4748-cb8c588dc0ab35b67cfaf112ca554f64db570b24cb12111bf8d10c8860a752053 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-2953-7536 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/1873-3468.14808 |
PMID | 38281809 |
PQID | 2919747016 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11126361 proquest_miscellaneous_3153555203 proquest_miscellaneous_2919747016 pubmed_primary_38281809 crossref_primary_10_1002_1873_3468_14808 crossref_citationtrail_10_1002_1873_3468_14808 wiley_primary_10_1002_1873_3468_14808_FEB214808 |
PublicationCentury | 2000 |
PublicationDate | May 2024 |
PublicationDateYYYYMMDD | 2024-05-01 |
PublicationDate_xml | – month: 05 year: 2024 text: May 2024 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | FEBS letters |
PublicationTitleAlternate | FEBS Lett |
PublicationYear | 2024 |
References | 2021; 69 2017; 42 2017; 7 2023; 35 2019; 92 2017; 1862 2013; 62 2002; 277 2015; 32 2003; 14 2019; 18 2021; 122 2012; 447 2022; 135 2010; 22 2018; 1863 2009; 10 2021; 33 2018; 293 2019; 20 2013; 154 2014; 121 2021; 40 2016; 48 2011; 286 2011; 121 2014; 289 2021; 9 2015; 163 2018; 29 2015; 6 2023; 58 2023; 11 2017; 26 2019; 508 2019; 74 2017; 25 2023; 15 2017; 66 2019; 34 2010; 120 2010; 285 2014; 1841 2004; 306 2012; 149 2014; 159 2017; 216 2018; 24 2009; 458 2018; 19 2015; 61 2017; 13 2022; 13 2020; 117 2017 2019; 218 2022; 10 2021; 297 2020; 21 1994; 91 2021; 62 2003; 100 2019; 177 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_42_1 e_1_2_10_40_1 Montgomery MK (e_1_2_10_5_1) 2019; 34 e_1_2_10_2_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_53_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_55_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_57_1 e_1_2_10_58_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_30_1 e_1_2_10_51_1 e_1_2_10_61_1 e_1_2_10_29_1 e_1_2_10_63_1 e_1_2_10_27_1 e_1_2_10_65_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_67_1 e_1_2_10_24_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_41_1 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_54_1 e_1_2_10_17_1 e_1_2_10_38_1 e_1_2_10_56_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_31_1 e_1_2_10_50_1 Jarc E (e_1_2_10_19_1) 2019; 92 e_1_2_10_60_1 e_1_2_10_62_1 e_1_2_10_64_1 e_1_2_10_28_1 e_1_2_10_49_1 e_1_2_10_66_1 e_1_2_10_26_1 e_1_2_10_47_1 e_1_2_10_68_1 |
References_xml | – volume: 40 start-page: 350 year: 2021 article-title: PGRMC1‐dependent lipophagy promotes ferroptosis in paclitaxel‐tolerant persister cancer cells publication-title: J Exp Clin Cancer Res – volume: 62 start-page: 3362 year: 2013 end-page: 3372 article-title: Remodeling the integration of lipid metabolism between liver and adipose tissue by dietary methionine restriction in rats publication-title: Diabetes – volume: 293 start-page: 5544 year: 2018 end-page: 5555 article-title: Homocysteine regulates fatty acid and lipid metabolism in yeast publication-title: J Biol Chem – volume: 14 start-page: 281 year: 2003 end-page: 287 article-title: Lipotoxicity: when tissues overeat publication-title: Curr Opin Lipidol – volume: 22 start-page: 124 year: 2010 end-page: 131 article-title: Mammalian autophagy: core molecular machinery and signaling regulation publication-title: Curr Opin Cell Biol – volume: 122 start-page: 602 year: 2021 end-page: 611 article-title: Lipid droplets and autophagy—links and regulations from yeast to humans publication-title: J Cell Biochem – volume: 25 start-page: 686 year: 2017 end-page: 697 article-title: Ceramide is metabolized to Acylceramide and stored in lipid droplets publication-title: Cell Metab – volume: 120 start-page: 756 year: 2010 end-page: 767 article-title: DGAT1‐dependent triacylglycerol storage by macrophages protects mice from diet‐induced insulin resistance and inflammation publication-title: J Clin Invest – volume: 66 start-page: 180 year: 2017 end-page: 193.e8 article-title: A metabolic function for phospholipid and histone methylation publication-title: Mol Cell – volume: 42 start-page: 9 year: 2017 end-page: 21.e5 article-title: DGAT1‐dependent lipid droplet biogenesis protects mitochondrial function during starvation‐induced autophagy publication-title: Dev Cell – volume: 19 year: 2018 article-title: Reactive oxygen species induces lipid droplet accumulation in HepG2 cells by increasing perilipin 2 expression publication-title: Int J Mol Sci – volume: 1862 start-page: 1221 year: 2017 end-page: 1232 article-title: The perilipin family of lipid droplet proteins: gatekeepers of intracellular lipolysis publication-title: Biochim Biophys Acta Mol Cell Biol Lipids – volume: 277 start-page: 12946 year: 2002 end-page: 12952 article-title: Hormone‐sensitive lipase deficiency in mice changes the plasma lipid profile by affecting the tissue‐specific expression pattern of lipoprotein lipase in adipose tissue and muscle publication-title: J Biol Chem – volume: 1841 start-page: 1648 year: 2014 end-page: 1655 article-title: Sequestration of fatty acids in triglycerides prevents endoplasmic reticulum stress in an in vitro model of cardiomyocyte lipotoxicity publication-title: Biochim Biophys Acta – volume: 100 start-page: 3077 year: 2003 end-page: 3082 article-title: Triglyceride accumulation protects against fatty acid‐induced lipotoxicity publication-title: Proc Natl Acad Sci USA – volume: 289 start-page: 29881 year: 2014 end-page: 29891 article-title: Cardiomyocyte‐specific loss of diacylglycerol acyltransferase 1 (DGAT1) reproduces the abnormalities in lipids found in severe heart failure publication-title: J Biol Chem – volume: 285 start-page: 18528 year: 2010 end-page: 18536 article-title: Specific contribution of methionine and choline in nutritional nonalcoholic steatohepatitis: impact on mitochondrial S‐adenosyl‐l‐methionine and glutathione publication-title: J Biol Chem – volume: 35 start-page: 887 year: 2023 end-page: 905.e11 article-title: FALCON systematically interrogates free fatty acid biology and identifies a novel mediator of lipotoxicity publication-title: Cell Metab – volume: 15 year: 2023 article-title: The combined inhibition of autophagy and diacylglycerol acyltransferase‐mediated lipid droplet biogenesis induces cancer cell death during acute amino acid starvation publication-title: Cancer – volume: 91 start-page: 10878 year: 1994 end-page: 10882 article-title: Beta‐cell lipotoxicity in the pathogenesis of non‐insulin‐dependent diabetes mellitus of obese rats: impairment in adipocyte‐beta‐cell relationships publication-title: Proc Natl Acad Sci USA – volume: 286 start-page: 17467 year: 2011 end-page: 17477 article-title: Monoglyceride lipase deficiency in mice impairs lipolysis and attenuates diet‐induced insulin resistance publication-title: J Biol Chem – volume: 69 start-page: 1540 year: 2021 end-page: 1562 article-title: Astrocytes in stress accumulate lipid droplets publication-title: Glia – volume: 10 start-page: 458 year: 2009 end-page: 467 article-title: Dynamics and diversity in autophagy mechanisms: lessons from yeast publication-title: Nat Rev Mol Cell Biol – volume: 285 start-page: 12289 year: 2010 end-page: 12298 article-title: The N‐terminal region of comparative gene Identification‐58 (CGI‐58) is important for lipid droplet binding and activation of adipose triglyceride lipase publication-title: J Biol Chem – volume: 29 start-page: 396 year: 2018 end-page: 407 article-title: Unbalanced lipolysis results in lipotoxicity and mitochondrial damage in peroxisome‐deficient Pex19 mutants publication-title: Mol Biol Cell – volume: 306 start-page: 1383 year: 2004 end-page: 1386 article-title: Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase publication-title: Science – volume: 218 start-page: 1319 year: 2019 end-page: 1334 article-title: Mdm1 maintains endoplasmic reticulum homeostasis by spatially regulating lipid droplet biogenesis publication-title: J Cell Biol – volume: 177 start-page: 1522 year: 2019 end-page: 1535.e14 article-title: Neuron‐astrocyte metabolic coupling protects against activity‐induced fatty acid toxicity publication-title: Cell – volume: 58 start-page: 1782 year: 2023 end-page: 1800.e10 article-title: Parallel CRISPR‐Cas9 screens identify mechanisms of PLIN2 and lipid droplet regulation publication-title: Dev Cell – volume: 163 start-page: 340 year: 2015 end-page: 353 article-title: Antioxidant role for lipid droplets in a stem cell niche of Drosophila publication-title: Cell – volume: 74 start-page: 32 year: 2019 end-page: 44.e8 article-title: Probing the global cellular responses to lipotoxicity caused by saturated fatty acids publication-title: Mol Cell – volume: 508 start-page: 997 year: 2019 end-page: 1003 article-title: Lipid storage and lipophagy regulates ferroptosis publication-title: Biochem Biophys Res Commun – volume: 117 start-page: 33282 year: 2020 end-page: 33294 article-title: Snx14 proximity labeling reveals a role in saturated fatty acid metabolism and ER homeostasis defective in SCAR20 disease publication-title: Proc Natl Acad Sci USA – volume: 42 start-page: 1 year: 2017 end-page: 2 article-title: Lipid droplets guard mitochondria during autophagy publication-title: Dev Cell – volume: 20 start-page: 137 year: 2019 end-page: 155 article-title: Dynamics and functions of lipid droplets publication-title: Nat Rev Mol Cell Biol – volume: 34 start-page: 134 year: 2019 end-page: 149 article-title: Impact of lipotoxicity on tissue “cross talk” and metabolic regulation publication-title: Phys Ther – volume: 13 start-page: 132 year: 2022 article-title: The regulation, function, and role of lipophagy, a form of selective autophagy, in metabolic disorders publication-title: Cell Death Dis – volume: 121 start-page: 351 year: 2014 end-page: 376 article-title: The impact of dietary methionine restriction on biomarkers of metabolic health publication-title: Prog Mol Biol Transl Sci – volume: 447 start-page: 103 year: 2012 end-page: 114 article-title: A novel pathway of ceramide metabolism in publication-title: Biochem J – volume: 216 start-page: 3199 year: 2017 end-page: 3217 article-title: Pet10p is a yeast perilipin that stabilizes lipid droplets and promotes their assembly publication-title: J Cell Biol – volume: 159 start-page: 1263 year: 2014 end-page: 1276 article-title: Metabolic control of autophagy publication-title: Cell – volume: 297 year: 2021 article-title: Hydrogen sulfide stimulates lipid biogenesis from glutamine that is dependent on the mitochondrial NAD(P)H pool publication-title: J Biol Chem – volume: 18 year: 2019 article-title: Methionine metabolism and methyltransferases in the regulation of aging and lifespan extension across species publication-title: Aging Cell – volume: 154 start-page: 403 year: 2013 end-page: 415 article-title: Methionine inhibits autophagy and promotes growth by inducing the SAM‐responsive methylation of PP2A publication-title: Cell – volume: 92 start-page: 435 year: 2019 end-page: 452 article-title: Lipid droplets and the management of cellular stress publication-title: Yale J Biol Med – volume: 24 start-page: 2596 year: 2018 end-page: 2605.e5 article-title: Triglycerides promote lipid homeostasis during hypoxic stress by balancing fatty acid saturation publication-title: Cell Rep – volume: 13 start-page: 2002 year: 2017 end-page: 2003 article-title: Lipid droplets and lipotoxicity during autophagy publication-title: Autophagy – volume: 7 year: 2017 article-title: Plin5 alleviates myocardial ischaemia/reperfusion injury by reducing oxidative stress through inhibiting the lipolysis of lipid droplets publication-title: Sci Rep – volume: 26 start-page: 407 year: 2017 end-page: 418.e3 article-title: Triglyceride synthesis by DGAT1 protects adipocytes from lipid‐induced ER stress during lipolysis publication-title: Cell Metab – volume: 10 year: 2022 article-title: Structural predictions of the SNX‐RGS proteins suggest they belong to a new class of lipid transfer proteins publication-title: Front Cell Dev Biol – volume: 48 start-page: 1533 year: 2016 end-page: 1540 article-title: Methionine restriction on lipid metabolism and its possible mechanisms publication-title: Amino Acids – volume: 458 start-page: 1131 year: 2009 end-page: 1135 article-title: Autophagy regulates lipid metabolism publication-title: Nature – volume: 9 year: 2021 article-title: Lipid droplet‐organelle contact sites as hubs for fatty acid metabolism, trafficking, and metabolic channeling publication-title: Front Cell Dev Biol – volume: 117 start-page: 32443 year: 2020 end-page: 32452 article-title: Direct lysosome‐based autophagy of lipid droplets in hepatocytes publication-title: Proc Natl Acad Sci USA – volume: 21 year: 2020 article-title: Novel insights and mechanisms of lipotoxicity‐driven insulin resistance publication-title: Int J Mol Sci – volume: 33 start-page: 1507 year: 2021 end-page: 1509 article-title: Ending on a sour note: lipids orchestrate ferroptosis in cancer publication-title: Cell Metab – volume: 6 start-page: 22836 year: 2015 end-page: 22856 article-title: Hypoxia induces triglycerides accumulation in prostate cancer cells and extracellular vesicles supporting growth and invasiveness following reoxygenation publication-title: Oncotarget – volume: 61 start-page: 870 year: 2015 end-page: 882 article-title: Perilipin 5 improves hepatic lipotoxicity by inhibiting lipolysis publication-title: Hepatology – volume: 11 year: 2023 article-title: Lipid droplets and polyunsaturated fatty acid trafficking: balancing life and death publication-title: Front Cell Dev Biol – volume: 135 year: 2022 article-title: Lipophagy at a glance publication-title: J Cell Sci – volume: 74 start-page: 45 year: 2019 end-page: 58.e7 article-title: CHP1 regulates compartmentalized Glycerolipid synthesis by activating GPAT4 publication-title: Mol Cell – volume: 121 start-page: 1402 year: 2011 end-page: 1411 article-title: Lipid profiling identifies a triacylglycerol signature of insulin resistance and improves diabetes prediction in humans publication-title: J Clin Invest – start-page: 197 year: 2017 end-page: 220 – volume: 149 start-page: 1060 issue: 5 year: 2012 end-page: 72 article-title: Ferroptosis: An Iron-Dependent Form of Nonapoptotic Cell Death publication-title: Cell – volume: 62 year: 2021 article-title: Lipid remodeling in response to methionine stress in MDA‐MBA‐468 triple‐negative breast cancer cells publication-title: J Lipid Res – volume: 1863 start-page: 247 year: 2018 end-page: 265 article-title: Lipid droplets induced by secreted phospholipase A2 and unsaturated fatty acids protect breast cancer cells from nutrient and lipotoxic stress publication-title: Biochim Biophys Acta – volume: 32 start-page: 678 year: 2015 end-page: 692 article-title: Fatty acid trafficking in starved cells: regulation by lipid droplet lipolysis, autophagy, and mitochondrial fusion dynamics publication-title: Dev Cell – ident: e_1_2_10_31_1 doi: 10.1002/hep.27409 – volume: 34 start-page: 134 year: 2019 ident: e_1_2_10_5_1 article-title: Impact of lipotoxicity on tissue “cross talk” and metabolic regulation publication-title: Phys Ther – ident: e_1_2_10_41_1 doi: 10.1016/j.cell.2014.11.006 – ident: e_1_2_10_45_1 doi: 10.1242/jcs.259402 – ident: e_1_2_10_63_1 doi: 10.1074/jbc.M109.099333 – ident: e_1_2_10_68_1 doi: 10.3390/ijms21176358 – ident: e_1_2_10_53_1 doi: 10.1002/glia.23978 – ident: e_1_2_10_56_1 doi: 10.2337/db13-0501 – ident: e_1_2_10_46_1 doi: 10.1073/pnas.2011442117 – ident: e_1_2_10_35_1 doi: 10.1016/j.bbalip.2014.09.012 – ident: e_1_2_10_3_1 doi: 10.1097/00041433-200306000-00008 – ident: e_1_2_10_11_1 doi: 10.1016/j.devcel.2017.06.003 – ident: e_1_2_10_21_1 doi: 10.1016/j.bbrc.2018.12.039 – ident: e_1_2_10_9_1 doi: 10.1016/j.cmet.2017.07.012 – ident: e_1_2_10_28_1 doi: 10.1074/jbc.M110.215434 – ident: e_1_2_10_67_1 doi: 10.1016/j.cmet.2017.02.010 – ident: e_1_2_10_51_1 doi: 10.1016/j.jbc.2021.100950 – ident: e_1_2_10_2_1 doi: 10.1007/978-3-319-48382-5_8 – ident: e_1_2_10_39_1 doi: 10.1016/j.celrep.2018.08.015 – ident: e_1_2_10_16_1 doi: 10.3389/fcell.2023.1104725 – ident: e_1_2_10_25_1 doi: 10.3389/fcell.2021.726261 – ident: e_1_2_10_29_1 doi: 10.1002/jcb.29889 – ident: e_1_2_10_38_1 doi: 10.1038/s41580-018-0085-z – ident: e_1_2_10_40_1 doi: 10.1016/j.cell.2019.04.001 – ident: e_1_2_10_24_1 doi: 10.3389/fcell.2022.826688 – ident: e_1_2_10_20_1 doi: 10.1016/j.bbalip.2017.12.006 – ident: e_1_2_10_13_1 doi: 10.1016/j.molcel.2019.01.036 – ident: e_1_2_10_26_1 doi: 10.1126/science.1100747 – ident: e_1_2_10_36_1 doi: 10.1091/mbc.E17-08-0535 – ident: e_1_2_10_23_1 doi: 10.1186/s13046-021-02168-2 – ident: e_1_2_10_43_1 doi: 10.1038/nrm2708 – ident: e_1_2_10_50_1 doi: 10.1016/j.devcel.2017.06.018 – ident: e_1_2_10_14_1 doi: 10.1016/j.devcel.2023.07.001 – ident: e_1_2_10_59_1 doi: 10.1016/j.jlr.2021.100056 – ident: e_1_2_10_37_1 doi: 10.1074/jbc.M114.601864 – ident: e_1_2_10_60_1 doi: 10.1074/jbc.M117.809236 – ident: e_1_2_10_49_1 doi: 10.3390/cancers15194857 – ident: e_1_2_10_64_1 doi: 10.1172/JCI44442 – ident: e_1_2_10_18_1 doi: 10.1016/j.cell.2015.09.020 – ident: e_1_2_10_10_1 doi: 10.1172/JCI36066 – ident: e_1_2_10_55_1 doi: 10.1007/s00726-016-2247-7 – ident: e_1_2_10_47_1 doi: 10.1038/s41419-022-04593-3 – ident: e_1_2_10_48_1 doi: 10.1016/j.devcel.2015.01.029 – ident: e_1_2_10_52_1 doi: 10.3390/ijms19113445 – ident: e_1_2_10_42_1 doi: 10.1016/j.ceb.2009.11.014 – ident: e_1_2_10_61_1 doi: 10.1016/j.cell.2013.06.041 – ident: e_1_2_10_4_1 doi: 10.1073/pnas.91.23.10878 – ident: e_1_2_10_15_1 doi: 10.1016/j.molcel.2019.01.037 – ident: e_1_2_10_34_1 doi: 10.1083/jcb.201610013 – ident: e_1_2_10_7_1 doi: 10.1083/jcb.201808119 – ident: e_1_2_10_12_1 doi: 10.1080/15548627.2017.1359451 – volume: 92 start-page: 435 year: 2019 ident: e_1_2_10_19_1 article-title: Lipid droplets and the management of cellular stress publication-title: Yale J Biol Med – ident: e_1_2_10_30_1 doi: 10.1016/j.bbalip.2017.07.009 – ident: e_1_2_10_27_1 doi: 10.1074/jbc.M108640200 – ident: e_1_2_10_33_1 doi: 10.1074/jbc.M109.064469 – ident: e_1_2_10_62_1 doi: 10.1016/j.molcel.2017.02.026 – ident: e_1_2_10_65_1 doi: 10.1016/j.cmet.2023.03.018 – ident: e_1_2_10_44_1 doi: 10.1038/nature07976 – ident: e_1_2_10_54_1 doi: 10.18632/oncotarget.4479 – ident: e_1_2_10_58_1 doi: 10.1111/acel.13034 – ident: e_1_2_10_22_1 doi: 10.1016/j.cmet.2021.07.011 – ident: e_1_2_10_57_1 doi: 10.1016/B978-0-12-800101-1.00011-9 – ident: e_1_2_10_17_1 doi: 10.1016/j.cell.2012.03.042 – ident: e_1_2_10_6_1 doi: 10.1073/pnas.2011124117 – ident: e_1_2_10_32_1 doi: 10.1038/srep42574 – ident: e_1_2_10_66_1 doi: 10.1042/BJ20120712 – ident: e_1_2_10_8_1 doi: 10.1073/pnas.0630588100 |
SSID | ssj0001819 |
Score | 2.5243323 |
Snippet | Lipid droplets (LDs) are fat storage organelles that are conserved from bacteria to humans. LDs are broken down to supply cells with fatty acids (FAs) that can... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1207 |
SubjectTerms | Animals autophagy energy fatty acid Fatty Acids - metabolism homeostasis Humans lipid droplet Lipid Droplets - metabolism Lipid Metabolism lipids lipolysis lipophagy lipotoxicity organelles |
Title | Lipid droplets and fatty acid‐induced lipotoxicity: in a nutshell |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2F1873-3468.14808 https://www.ncbi.nlm.nih.gov/pubmed/38281809 https://www.proquest.com/docview/2919747016 https://www.proquest.com/docview/3153555203 https://pubmed.ncbi.nlm.nih.gov/PMC11126361 |
Volume | 598 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELdKJwQvCDYY5Z-MhBBSlS2xncTlras6VUyABJvYW-TYiRapS6Y2EZQnPgKfkU_COc6_rlQMXiIrdd049-v5zr77HUKvBIls6YnYEoxGFlPgs44c7llcecwWlDqyTAp7_8GbnbF35-55r7fqRC0VeXggv_8xr-R_pAr3QK46S_YfJNsMCjegDfKFK0gYrjeSsS48rYZqoYPAc0O2HIsczGoh4VnqMAbwugt9yj9PrrI8-5ZIXQiAjvVOhximRb7UsaBdI_V4evR5OC_zfBqL-6Ne7kyJ6-kySr4m7UF_FIpV1qart3ujqVqBS64uVsIElBWXSd5qvEViktxnIhWiu_lAWBvqVytUh1mub4ocHkRGh3KfWpSZajm1knVHvIsmu6MzHWLq3lbrr0NMVumGbjdcsc3ooOO5zdtlrD66v7a6NTGHhp-ZBHqAQA8QlAPcQjsEPAzSRzvjk09fTpplHEwf4ztVM6x5oWxyeO0Z1k2aDT9lM9y26waVdszpfXSvckDw2KDpAepF6S7aG6cizy5X-DUuQ4LLs5ZddPuobt2Z1IUB99CkhB2uYYdBzriEHdaw-_XjZwU43AXcW5ykWOAabg_R2fH0dDKzqloclmQ-45YMuXQ5V9IWIXVDz5exiMFWlwLs0dhjKnR9OyRMhpoz0Aljrhxbcu7ZwncJaPpHqJ9mafQYYSW4jCNdNcvzWeSoUPvYsSs1c51LPW-ADurXGciKqF7XS5kHW0Q4QG-aL1wZjpbtXV_W8gngrenDMZFGWbEMyMjRrjV4QNv7UDAPXBemQwdo38i0-UHKNa-aPRogvibtpoPmcV__JE0uSj53R6fxUc8ZoMMSGH-bRABqgJStJzef-VN0t_0DP0P9fFFEz8GezsMXFfJ_A0Zjwgo |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lipid+droplets+and+fatty+acid%E2%80%90induced+lipotoxicity%3A+in+a+nutshell&rft.jtitle=FEBS+letters&rft.au=Obaseki%2C+Eseiwi&rft.au=Adebayo%2C+Daniel&rft.au=Bandyopadhyay%2C+Sumit&rft.au=Hariri%2C+Hanaa&rft.date=2024-05-01&rft.issn=0014-5793&rft.eissn=1873-3468&rft.volume=598&rft.issue=10&rft.spage=1207&rft.epage=1214&rft_id=info:doi/10.1002%2F1873-3468.14808&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_1873_3468_14808 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0014-5793&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0014-5793&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0014-5793&client=summon |