Lipid droplets and fatty acid‐induced lipotoxicity: in a nutshell

Lipid droplets (LDs) are fat storage organelles that are conserved from bacteria to humans. LDs are broken down to supply cells with fatty acids (FAs) that can be used as an energy source or membrane synthesis. An overload of FAs disrupts cellular functions and causes lipotoxicity. Thus, by acting a...

Full description

Saved in:
Bibliographic Details
Published inFEBS letters Vol. 598; no. 10; pp. 1207 - 1214
Main Authors Obaseki, Eseiwi, Adebayo, Daniel, Bandyopadhyay, Sumit, Hariri, Hanaa
Format Journal Article
LanguageEnglish
Published England 01.05.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Lipid droplets (LDs) are fat storage organelles that are conserved from bacteria to humans. LDs are broken down to supply cells with fatty acids (FAs) that can be used as an energy source or membrane synthesis. An overload of FAs disrupts cellular functions and causes lipotoxicity. Thus, by acting as hubs for storing excess fat, LDs prevent lipotoxicity and preserve cellular homeostasis. LD synthesis and turnover have to be precisely regulated to maintain a balanced lipid distribution and allow for cellular adaptation during stress. Here, we discuss how prolonged exposure to excess lipids affects cellular functions, and the roles of LDs in buffering cellular stress focusing on lipotoxicity. Fatty acids (FAs) are critical molecules for cell growth, proliferation, and development; but are toxic to cells when present in excess. Eukaryotic cells therefore sequester FAs in organelles called lipid droplets (LDs) until needed. LD synthesis and breakdown are under precise metabolic control, and dysregulation of these pathways is linked to lipotoxicity and diseases.
AbstractList Lipid droplets (LDs) are fat storage organelles that are conserved from bacteria to humans. LDs are broken down to supply cells with fatty acids (FAs) that can be used as an energy source or membrane synthesis. An overload of FAs disrupts cellular functions and causes lipotoxicity. Thus, by acting as hubs for storing excess fat, LDs prevent lipotoxicity and preserve cellular homeostasis. LD synthesis and turnover have to be precisely regulated to maintain a balanced lipid distribution and allow for cellular adaptation during stress. Here, we discuss how prolonged exposure to excess lipids affects cellular functions, and the roles of LDs in buffering cellular stress focusing on lipotoxicity.
Lipid droplets (LDs) are fat storage organelles that are conserved from bacteria to humans. LDs are broken down to supply cells with fatty acids (FAs) that can be used as an energy source or membrane synthesis. An overload of FAs disrupts cellular functions and causes lipotoxicity. Thus, by acting as hubs for storing excess fat, LDs prevent lipotoxicity and preserve cellular homeostasis. LD synthesis and turnover have to be precisely regulated to maintain a balanced lipid distribution and allow for cellular adaptation during stress. Here, we discuss how prolonged exposure to excess lipids affects cellular functions, and the roles of LDs in buffering cellular stress focusing on lipotoxicity. Fatty acids (FAs) are critical molecules for cell growth, proliferation, and development; but are toxic to cells when present in excess. Eukaryotic cells therefore sequester FAs in organelles called lipid droplets (LDs) until needed. LD synthesis and breakdown are under precise metabolic control, and dysregulation of these pathways is linked to lipotoxicity and diseases.
Lipid droplets (LDs) are fat storage organelles that are conserved from bacteria to humans. LDs are broken down to supply cells with fatty acids (FAs) that can be used as an energy source or membrane synthesis. An overload of FAs disrupts cellular functions and causes lipotoxicity. Thus, by acting as hubs for storing excess fat, LDs prevent lipotoxicity and preserve cellular homeostasis. LD synthesis and turnover have to be precisely regulated to maintain a balanced lipid distribution and allow for cellular adaptation during stress. Here, we discuss how prolonged exposure to excess lipids affects cellular functions, and the roles of LDs in buffering cellular stress focusing on lipotoxicity.Lipid droplets (LDs) are fat storage organelles that are conserved from bacteria to humans. LDs are broken down to supply cells with fatty acids (FAs) that can be used as an energy source or membrane synthesis. An overload of FAs disrupts cellular functions and causes lipotoxicity. Thus, by acting as hubs for storing excess fat, LDs prevent lipotoxicity and preserve cellular homeostasis. LD synthesis and turnover have to be precisely regulated to maintain a balanced lipid distribution and allow for cellular adaptation during stress. Here, we discuss how prolonged exposure to excess lipids affects cellular functions, and the roles of LDs in buffering cellular stress focusing on lipotoxicity.
Author Bandyopadhyay, Sumit
Hariri, Hanaa
Obaseki, Eseiwi
Adebayo, Daniel
AuthorAffiliation 1 Department of Biological Sciences, Wayne State University, Detroit, MI, 48202 USA
AuthorAffiliation_xml – name: 1 Department of Biological Sciences, Wayne State University, Detroit, MI, 48202 USA
Author_xml – sequence: 1
  givenname: Eseiwi
  surname: Obaseki
  fullname: Obaseki, Eseiwi
  organization: Wayne State University
– sequence: 2
  givenname: Daniel
  surname: Adebayo
  fullname: Adebayo, Daniel
  organization: Wayne State University
– sequence: 3
  givenname: Sumit
  surname: Bandyopadhyay
  fullname: Bandyopadhyay, Sumit
  organization: Wayne State University
– sequence: 4
  givenname: Hanaa
  orcidid: 0000-0002-2953-7536
  surname: Hariri
  fullname: Hariri, Hanaa
  email: hanaa.hariri@wayne.edu
  organization: Wayne State University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38281809$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1O3DAUha0KBANlzQ5l2U3A1z-J001VRlAqjcSmXVuO7RSjjB1iB5hdH6HP2CeppwOjwqKsLNvnO_fnHKAdH7xF6BjwKWBMzkDUtKSsEqfABBbv0Gz7soNmGAMred3QfXQQ4y3OdwHNHtqngggQuJmh-cINzhRmDENvUyyUN0WnUloVSjvz--cv582krSl6N4QUHp12afWxcL5QhZ9SvLF9_x7tdqqP9ujpPETfLy--za_KxfWXr_PPi1KzmolSt0JzIYzGqqW8rWrdqQ6AaMU56ypmWl7jljDdAgGAthMGsBaiwqrmBHN6iD5tfIepXVqjrU-j6uUwuqUaVzIoJ1_-eHcjf4R7md1IRSvIDh-eHMZwN9mY5NJFnUdQ3oYpSgqccp6L0TelpIGmZjWGKktP_u1r29DzlrPgbCPQY4hxtN1WAliuc5Tr1OQ6Nfk3x0zwV0Teu0ourAdz_X-4asM9uN6u3iojLy_OyQb8A4E8sGM
CitedBy_id crossref_primary_10_3390_ijms252111534
crossref_primary_10_3390_biom14121607
crossref_primary_10_3390_ijms26020788
crossref_primary_10_26508_lsa_202302458
crossref_primary_10_1016_j_celrep_2024_114681
crossref_primary_10_1186_s13020_024_01050_5
crossref_primary_10_1002_advs_202409513
crossref_primary_10_3389_fendo_2024_1488309
crossref_primary_10_3390_antiox14030264
crossref_primary_10_1002_1873_3468_14900
Cites_doi 10.1002/hep.27409
10.1016/j.cell.2014.11.006
10.1242/jcs.259402
10.1074/jbc.M109.099333
10.3390/ijms21176358
10.1002/glia.23978
10.2337/db13-0501
10.1073/pnas.2011442117
10.1016/j.bbalip.2014.09.012
10.1097/00041433-200306000-00008
10.1016/j.devcel.2017.06.003
10.1016/j.bbrc.2018.12.039
10.1016/j.cmet.2017.07.012
10.1074/jbc.M110.215434
10.1016/j.cmet.2017.02.010
10.1016/j.jbc.2021.100950
10.1007/978-3-319-48382-5_8
10.1016/j.celrep.2018.08.015
10.3389/fcell.2023.1104725
10.3389/fcell.2021.726261
10.1002/jcb.29889
10.1038/s41580-018-0085-z
10.1016/j.cell.2019.04.001
10.3389/fcell.2022.826688
10.1016/j.bbalip.2017.12.006
10.1016/j.molcel.2019.01.036
10.1126/science.1100747
10.1091/mbc.E17-08-0535
10.1186/s13046-021-02168-2
10.1038/nrm2708
10.1016/j.devcel.2017.06.018
10.1016/j.devcel.2023.07.001
10.1016/j.jlr.2021.100056
10.1074/jbc.M114.601864
10.1074/jbc.M117.809236
10.3390/cancers15194857
10.1172/JCI44442
10.1016/j.cell.2015.09.020
10.1172/JCI36066
10.1007/s00726-016-2247-7
10.1038/s41419-022-04593-3
10.1016/j.devcel.2015.01.029
10.3390/ijms19113445
10.1016/j.ceb.2009.11.014
10.1016/j.cell.2013.06.041
10.1073/pnas.91.23.10878
10.1016/j.molcel.2019.01.037
10.1083/jcb.201610013
10.1083/jcb.201808119
10.1080/15548627.2017.1359451
10.1016/j.bbalip.2017.07.009
10.1074/jbc.M108640200
10.1074/jbc.M109.064469
10.1016/j.molcel.2017.02.026
10.1016/j.cmet.2023.03.018
10.1038/nature07976
10.18632/oncotarget.4479
10.1111/acel.13034
10.1016/j.cmet.2021.07.011
10.1016/B978-0-12-800101-1.00011-9
10.1016/j.cell.2012.03.042
10.1073/pnas.2011124117
10.1038/srep42574
10.1042/BJ20120712
10.1073/pnas.0630588100
ContentType Journal Article
Copyright 2024 Federation of European Biochemical Societies.
Copyright_xml – notice: 2024 Federation of European Biochemical Societies.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
DOI 10.1002/1873-3468.14808
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE
CrossRef
AGRICOLA

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
Biology
EISSN 1873-3468
EndPage 1214
ExternalDocumentID PMC11126361
38281809
10_1002_1873_3468_14808
FEB214808
Genre reviewArticle
Journal Article
GrantInformation_xml – fundername: National Institute of General Medical Sciences
  funderid: 1R35GM150892‐01
– fundername: NIGMS NIH HHS
  grantid: R35 GM150892
– fundername: NIGMS NIH HHS
  grantid: 1R35GM150892-01
GroupedDBID ---
--K
-~X
.55
.~1
0R~
0SF
1B1
1OC
1~.
1~5
24P
29H
2WC
33P
4.4
4G.
53G
5GY
5RE
5VS
6I.
7-5
71M
8P~
AABNK
AACTN
AAEDW
AAESR
AAFTH
AAHBH
AAHHS
AAHQN
AAIKJ
AAIPD
AALRI
AAMNL
AANLZ
AAQXK
AASGY
AAXRX
AAXUO
AAYCA
AAZKR
ABBQC
ABCUV
ABEFU
ABFNM
ABFRF
ABGSF
ABJNI
ABLJU
ABMAC
ABQWH
ABVKL
ABWVN
ABXDB
ABXGK
ACAHQ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACIUM
ACMXC
ACNCT
ACPOU
ACRPL
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADEZE
ADIYS
ADKYN
ADMGS
ADMUD
ADNMO
ADOZA
ADQTV
ADUVX
ADVLN
ADXAS
ADZMN
ADZOD
AEEZP
AEFWE
AEGXH
AEKER
AENEX
AEQDE
AEQOU
AEUYR
AEXQZ
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AGHFR
AGYEJ
AHBTC
AI.
AIACR
AIAGR
AITUG
AITYG
AIURR
AIWBW
AJBDE
AJRQY
AKRWK
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMRAJ
AMYDB
AZFZN
AZVAB
BAWUL
BFHJK
BMXJE
C45
CS3
DCZOG
DIK
DRFUL
DRMAN
DRSTM
DU5
E3Z
EBS
EJD
EMOBN
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FUBAC
G-Q
GBLVA
GI5
GX1
HGLYW
HVGLF
HZ~
IHE
IXB
J1W
KBYEO
L7B
LATKE
LEEKS
LITHE
LOXES
LUTES
LX3
LYRES
M41
MEWTI
MO0
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MVM
MXFUL
MXMAN
MXSTM
N9A
NCXOZ
O-L
O9-
OK1
OVD
OZT
P-8
P-9
P2P
P2W
PC.
Q38
R2-
R9-
RIG
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SEL
SES
SEW
SFE
SSZ
SUPJJ
SV3
TEORI
TR2
UHB
UNMZH
VH1
WBKPD
WH7
WIH
WIJ
WIK
WIN
WOHZO
WXSBR
X7M
Y6R
YK3
ZGI
ZZTAW
~02
AAMMB
AAYWO
AAYXX
ACVFH
ADCNI
ADXHL
AEFGJ
AEUPX
AEYWJ
AFPUW
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIGII
AKBMS
AKYEP
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c4748-cb8c588dc0ab35b67cfaf112ca554f64db570b24cb12111bf8d10c8860a752053
ISSN 0014-5793
1873-3468
IngestDate Thu Aug 21 18:26:34 EDT 2025
Fri Jul 11 18:23:44 EDT 2025
Fri Jul 11 05:17:17 EDT 2025
Mon Jul 21 05:57:12 EDT 2025
Thu Apr 24 23:00:26 EDT 2025
Sun Jul 06 05:04:48 EDT 2025
Wed Jan 22 17:18:50 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords lipid droplet
fatty acid
autophagy
lipolysis
lipophagy
lipotoxicity
Language English
License 2024 Federation of European Biochemical Societies.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4748-cb8c588dc0ab35b67cfaf112ca554f64db570b24cb12111bf8d10c8860a752053
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-2953-7536
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/1873-3468.14808
PMID 38281809
PQID 2919747016
PQPubID 23479
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11126361
proquest_miscellaneous_3153555203
proquest_miscellaneous_2919747016
pubmed_primary_38281809
crossref_primary_10_1002_1873_3468_14808
crossref_citationtrail_10_1002_1873_3468_14808
wiley_primary_10_1002_1873_3468_14808_FEB214808
PublicationCentury 2000
PublicationDate May 2024
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: May 2024
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle FEBS letters
PublicationTitleAlternate FEBS Lett
PublicationYear 2024
References 2021; 69
2017; 42
2017; 7
2023; 35
2019; 92
2017; 1862
2013; 62
2002; 277
2015; 32
2003; 14
2019; 18
2021; 122
2012; 447
2022; 135
2010; 22
2018; 1863
2009; 10
2021; 33
2018; 293
2019; 20
2013; 154
2014; 121
2021; 40
2016; 48
2011; 286
2011; 121
2014; 289
2021; 9
2015; 163
2018; 29
2015; 6
2023; 58
2023; 11
2017; 26
2019; 508
2019; 74
2017; 25
2023; 15
2017; 66
2019; 34
2010; 120
2010; 285
2014; 1841
2004; 306
2012; 149
2014; 159
2017; 216
2018; 24
2009; 458
2018; 19
2015; 61
2017; 13
2022; 13
2020; 117
2017
2019; 218
2022; 10
2021; 297
2020; 21
1994; 91
2021; 62
2003; 100
2019; 177
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_42_1
e_1_2_10_40_1
Montgomery MK (e_1_2_10_5_1) 2019; 34
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_53_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_55_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_57_1
e_1_2_10_58_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_30_1
e_1_2_10_51_1
e_1_2_10_61_1
e_1_2_10_29_1
e_1_2_10_63_1
e_1_2_10_27_1
e_1_2_10_65_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_67_1
e_1_2_10_24_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_41_1
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_54_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_56_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_31_1
e_1_2_10_50_1
Jarc E (e_1_2_10_19_1) 2019; 92
e_1_2_10_60_1
e_1_2_10_62_1
e_1_2_10_64_1
e_1_2_10_28_1
e_1_2_10_49_1
e_1_2_10_66_1
e_1_2_10_26_1
e_1_2_10_47_1
e_1_2_10_68_1
References_xml – volume: 40
  start-page: 350
  year: 2021
  article-title: PGRMC1‐dependent lipophagy promotes ferroptosis in paclitaxel‐tolerant persister cancer cells
  publication-title: J Exp Clin Cancer Res
– volume: 62
  start-page: 3362
  year: 2013
  end-page: 3372
  article-title: Remodeling the integration of lipid metabolism between liver and adipose tissue by dietary methionine restriction in rats
  publication-title: Diabetes
– volume: 293
  start-page: 5544
  year: 2018
  end-page: 5555
  article-title: Homocysteine regulates fatty acid and lipid metabolism in yeast
  publication-title: J Biol Chem
– volume: 14
  start-page: 281
  year: 2003
  end-page: 287
  article-title: Lipotoxicity: when tissues overeat
  publication-title: Curr Opin Lipidol
– volume: 22
  start-page: 124
  year: 2010
  end-page: 131
  article-title: Mammalian autophagy: core molecular machinery and signaling regulation
  publication-title: Curr Opin Cell Biol
– volume: 122
  start-page: 602
  year: 2021
  end-page: 611
  article-title: Lipid droplets and autophagy—links and regulations from yeast to humans
  publication-title: J Cell Biochem
– volume: 25
  start-page: 686
  year: 2017
  end-page: 697
  article-title: Ceramide is metabolized to Acylceramide and stored in lipid droplets
  publication-title: Cell Metab
– volume: 120
  start-page: 756
  year: 2010
  end-page: 767
  article-title: DGAT1‐dependent triacylglycerol storage by macrophages protects mice from diet‐induced insulin resistance and inflammation
  publication-title: J Clin Invest
– volume: 66
  start-page: 180
  year: 2017
  end-page: 193.e8
  article-title: A metabolic function for phospholipid and histone methylation
  publication-title: Mol Cell
– volume: 42
  start-page: 9
  year: 2017
  end-page: 21.e5
  article-title: DGAT1‐dependent lipid droplet biogenesis protects mitochondrial function during starvation‐induced autophagy
  publication-title: Dev Cell
– volume: 19
  year: 2018
  article-title: Reactive oxygen species induces lipid droplet accumulation in HepG2 cells by increasing perilipin 2 expression
  publication-title: Int J Mol Sci
– volume: 1862
  start-page: 1221
  year: 2017
  end-page: 1232
  article-title: The perilipin family of lipid droplet proteins: gatekeepers of intracellular lipolysis
  publication-title: Biochim Biophys Acta Mol Cell Biol Lipids
– volume: 277
  start-page: 12946
  year: 2002
  end-page: 12952
  article-title: Hormone‐sensitive lipase deficiency in mice changes the plasma lipid profile by affecting the tissue‐specific expression pattern of lipoprotein lipase in adipose tissue and muscle
  publication-title: J Biol Chem
– volume: 1841
  start-page: 1648
  year: 2014
  end-page: 1655
  article-title: Sequestration of fatty acids in triglycerides prevents endoplasmic reticulum stress in an in vitro model of cardiomyocyte lipotoxicity
  publication-title: Biochim Biophys Acta
– volume: 100
  start-page: 3077
  year: 2003
  end-page: 3082
  article-title: Triglyceride accumulation protects against fatty acid‐induced lipotoxicity
  publication-title: Proc Natl Acad Sci USA
– volume: 289
  start-page: 29881
  year: 2014
  end-page: 29891
  article-title: Cardiomyocyte‐specific loss of diacylglycerol acyltransferase 1 (DGAT1) reproduces the abnormalities in lipids found in severe heart failure
  publication-title: J Biol Chem
– volume: 285
  start-page: 18528
  year: 2010
  end-page: 18536
  article-title: Specific contribution of methionine and choline in nutritional nonalcoholic steatohepatitis: impact on mitochondrial S‐adenosyl‐l‐methionine and glutathione
  publication-title: J Biol Chem
– volume: 35
  start-page: 887
  year: 2023
  end-page: 905.e11
  article-title: FALCON systematically interrogates free fatty acid biology and identifies a novel mediator of lipotoxicity
  publication-title: Cell Metab
– volume: 15
  year: 2023
  article-title: The combined inhibition of autophagy and diacylglycerol acyltransferase‐mediated lipid droplet biogenesis induces cancer cell death during acute amino acid starvation
  publication-title: Cancer
– volume: 91
  start-page: 10878
  year: 1994
  end-page: 10882
  article-title: Beta‐cell lipotoxicity in the pathogenesis of non‐insulin‐dependent diabetes mellitus of obese rats: impairment in adipocyte‐beta‐cell relationships
  publication-title: Proc Natl Acad Sci USA
– volume: 286
  start-page: 17467
  year: 2011
  end-page: 17477
  article-title: Monoglyceride lipase deficiency in mice impairs lipolysis and attenuates diet‐induced insulin resistance
  publication-title: J Biol Chem
– volume: 69
  start-page: 1540
  year: 2021
  end-page: 1562
  article-title: Astrocytes in stress accumulate lipid droplets
  publication-title: Glia
– volume: 10
  start-page: 458
  year: 2009
  end-page: 467
  article-title: Dynamics and diversity in autophagy mechanisms: lessons from yeast
  publication-title: Nat Rev Mol Cell Biol
– volume: 285
  start-page: 12289
  year: 2010
  end-page: 12298
  article-title: The N‐terminal region of comparative gene Identification‐58 (CGI‐58) is important for lipid droplet binding and activation of adipose triglyceride lipase
  publication-title: J Biol Chem
– volume: 29
  start-page: 396
  year: 2018
  end-page: 407
  article-title: Unbalanced lipolysis results in lipotoxicity and mitochondrial damage in peroxisome‐deficient Pex19 mutants
  publication-title: Mol Biol Cell
– volume: 306
  start-page: 1383
  year: 2004
  end-page: 1386
  article-title: Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase
  publication-title: Science
– volume: 218
  start-page: 1319
  year: 2019
  end-page: 1334
  article-title: Mdm1 maintains endoplasmic reticulum homeostasis by spatially regulating lipid droplet biogenesis
  publication-title: J Cell Biol
– volume: 177
  start-page: 1522
  year: 2019
  end-page: 1535.e14
  article-title: Neuron‐astrocyte metabolic coupling protects against activity‐induced fatty acid toxicity
  publication-title: Cell
– volume: 58
  start-page: 1782
  year: 2023
  end-page: 1800.e10
  article-title: Parallel CRISPR‐Cas9 screens identify mechanisms of PLIN2 and lipid droplet regulation
  publication-title: Dev Cell
– volume: 163
  start-page: 340
  year: 2015
  end-page: 353
  article-title: Antioxidant role for lipid droplets in a stem cell niche of Drosophila
  publication-title: Cell
– volume: 74
  start-page: 32
  year: 2019
  end-page: 44.e8
  article-title: Probing the global cellular responses to lipotoxicity caused by saturated fatty acids
  publication-title: Mol Cell
– volume: 508
  start-page: 997
  year: 2019
  end-page: 1003
  article-title: Lipid storage and lipophagy regulates ferroptosis
  publication-title: Biochem Biophys Res Commun
– volume: 117
  start-page: 33282
  year: 2020
  end-page: 33294
  article-title: Snx14 proximity labeling reveals a role in saturated fatty acid metabolism and ER homeostasis defective in SCAR20 disease
  publication-title: Proc Natl Acad Sci USA
– volume: 42
  start-page: 1
  year: 2017
  end-page: 2
  article-title: Lipid droplets guard mitochondria during autophagy
  publication-title: Dev Cell
– volume: 20
  start-page: 137
  year: 2019
  end-page: 155
  article-title: Dynamics and functions of lipid droplets
  publication-title: Nat Rev Mol Cell Biol
– volume: 34
  start-page: 134
  year: 2019
  end-page: 149
  article-title: Impact of lipotoxicity on tissue “cross talk” and metabolic regulation
  publication-title: Phys Ther
– volume: 13
  start-page: 132
  year: 2022
  article-title: The regulation, function, and role of lipophagy, a form of selective autophagy, in metabolic disorders
  publication-title: Cell Death Dis
– volume: 121
  start-page: 351
  year: 2014
  end-page: 376
  article-title: The impact of dietary methionine restriction on biomarkers of metabolic health
  publication-title: Prog Mol Biol Transl Sci
– volume: 447
  start-page: 103
  year: 2012
  end-page: 114
  article-title: A novel pathway of ceramide metabolism in
  publication-title: Biochem J
– volume: 216
  start-page: 3199
  year: 2017
  end-page: 3217
  article-title: Pet10p is a yeast perilipin that stabilizes lipid droplets and promotes their assembly
  publication-title: J Cell Biol
– volume: 159
  start-page: 1263
  year: 2014
  end-page: 1276
  article-title: Metabolic control of autophagy
  publication-title: Cell
– volume: 297
  year: 2021
  article-title: Hydrogen sulfide stimulates lipid biogenesis from glutamine that is dependent on the mitochondrial NAD(P)H pool
  publication-title: J Biol Chem
– volume: 18
  year: 2019
  article-title: Methionine metabolism and methyltransferases in the regulation of aging and lifespan extension across species
  publication-title: Aging Cell
– volume: 154
  start-page: 403
  year: 2013
  end-page: 415
  article-title: Methionine inhibits autophagy and promotes growth by inducing the SAM‐responsive methylation of PP2A
  publication-title: Cell
– volume: 92
  start-page: 435
  year: 2019
  end-page: 452
  article-title: Lipid droplets and the management of cellular stress
  publication-title: Yale J Biol Med
– volume: 24
  start-page: 2596
  year: 2018
  end-page: 2605.e5
  article-title: Triglycerides promote lipid homeostasis during hypoxic stress by balancing fatty acid saturation
  publication-title: Cell Rep
– volume: 13
  start-page: 2002
  year: 2017
  end-page: 2003
  article-title: Lipid droplets and lipotoxicity during autophagy
  publication-title: Autophagy
– volume: 7
  year: 2017
  article-title: Plin5 alleviates myocardial ischaemia/reperfusion injury by reducing oxidative stress through inhibiting the lipolysis of lipid droplets
  publication-title: Sci Rep
– volume: 26
  start-page: 407
  year: 2017
  end-page: 418.e3
  article-title: Triglyceride synthesis by DGAT1 protects adipocytes from lipid‐induced ER stress during lipolysis
  publication-title: Cell Metab
– volume: 10
  year: 2022
  article-title: Structural predictions of the SNX‐RGS proteins suggest they belong to a new class of lipid transfer proteins
  publication-title: Front Cell Dev Biol
– volume: 48
  start-page: 1533
  year: 2016
  end-page: 1540
  article-title: Methionine restriction on lipid metabolism and its possible mechanisms
  publication-title: Amino Acids
– volume: 458
  start-page: 1131
  year: 2009
  end-page: 1135
  article-title: Autophagy regulates lipid metabolism
  publication-title: Nature
– volume: 9
  year: 2021
  article-title: Lipid droplet‐organelle contact sites as hubs for fatty acid metabolism, trafficking, and metabolic channeling
  publication-title: Front Cell Dev Biol
– volume: 117
  start-page: 32443
  year: 2020
  end-page: 32452
  article-title: Direct lysosome‐based autophagy of lipid droplets in hepatocytes
  publication-title: Proc Natl Acad Sci USA
– volume: 21
  year: 2020
  article-title: Novel insights and mechanisms of lipotoxicity‐driven insulin resistance
  publication-title: Int J Mol Sci
– volume: 33
  start-page: 1507
  year: 2021
  end-page: 1509
  article-title: Ending on a sour note: lipids orchestrate ferroptosis in cancer
  publication-title: Cell Metab
– volume: 6
  start-page: 22836
  year: 2015
  end-page: 22856
  article-title: Hypoxia induces triglycerides accumulation in prostate cancer cells and extracellular vesicles supporting growth and invasiveness following reoxygenation
  publication-title: Oncotarget
– volume: 61
  start-page: 870
  year: 2015
  end-page: 882
  article-title: Perilipin 5 improves hepatic lipotoxicity by inhibiting lipolysis
  publication-title: Hepatology
– volume: 11
  year: 2023
  article-title: Lipid droplets and polyunsaturated fatty acid trafficking: balancing life and death
  publication-title: Front Cell Dev Biol
– volume: 135
  year: 2022
  article-title: Lipophagy at a glance
  publication-title: J Cell Sci
– volume: 74
  start-page: 45
  year: 2019
  end-page: 58.e7
  article-title: CHP1 regulates compartmentalized Glycerolipid synthesis by activating GPAT4
  publication-title: Mol Cell
– volume: 121
  start-page: 1402
  year: 2011
  end-page: 1411
  article-title: Lipid profiling identifies a triacylglycerol signature of insulin resistance and improves diabetes prediction in humans
  publication-title: J Clin Invest
– start-page: 197
  year: 2017
  end-page: 220
– volume: 149
  start-page: 1060
  issue: 5
  year: 2012
  end-page: 72
  article-title: Ferroptosis: An Iron-Dependent Form of Nonapoptotic Cell Death
  publication-title: Cell
– volume: 62
  year: 2021
  article-title: Lipid remodeling in response to methionine stress in MDA‐MBA‐468 triple‐negative breast cancer cells
  publication-title: J Lipid Res
– volume: 1863
  start-page: 247
  year: 2018
  end-page: 265
  article-title: Lipid droplets induced by secreted phospholipase A2 and unsaturated fatty acids protect breast cancer cells from nutrient and lipotoxic stress
  publication-title: Biochim Biophys Acta
– volume: 32
  start-page: 678
  year: 2015
  end-page: 692
  article-title: Fatty acid trafficking in starved cells: regulation by lipid droplet lipolysis, autophagy, and mitochondrial fusion dynamics
  publication-title: Dev Cell
– ident: e_1_2_10_31_1
  doi: 10.1002/hep.27409
– volume: 34
  start-page: 134
  year: 2019
  ident: e_1_2_10_5_1
  article-title: Impact of lipotoxicity on tissue “cross talk” and metabolic regulation
  publication-title: Phys Ther
– ident: e_1_2_10_41_1
  doi: 10.1016/j.cell.2014.11.006
– ident: e_1_2_10_45_1
  doi: 10.1242/jcs.259402
– ident: e_1_2_10_63_1
  doi: 10.1074/jbc.M109.099333
– ident: e_1_2_10_68_1
  doi: 10.3390/ijms21176358
– ident: e_1_2_10_53_1
  doi: 10.1002/glia.23978
– ident: e_1_2_10_56_1
  doi: 10.2337/db13-0501
– ident: e_1_2_10_46_1
  doi: 10.1073/pnas.2011442117
– ident: e_1_2_10_35_1
  doi: 10.1016/j.bbalip.2014.09.012
– ident: e_1_2_10_3_1
  doi: 10.1097/00041433-200306000-00008
– ident: e_1_2_10_11_1
  doi: 10.1016/j.devcel.2017.06.003
– ident: e_1_2_10_21_1
  doi: 10.1016/j.bbrc.2018.12.039
– ident: e_1_2_10_9_1
  doi: 10.1016/j.cmet.2017.07.012
– ident: e_1_2_10_28_1
  doi: 10.1074/jbc.M110.215434
– ident: e_1_2_10_67_1
  doi: 10.1016/j.cmet.2017.02.010
– ident: e_1_2_10_51_1
  doi: 10.1016/j.jbc.2021.100950
– ident: e_1_2_10_2_1
  doi: 10.1007/978-3-319-48382-5_8
– ident: e_1_2_10_39_1
  doi: 10.1016/j.celrep.2018.08.015
– ident: e_1_2_10_16_1
  doi: 10.3389/fcell.2023.1104725
– ident: e_1_2_10_25_1
  doi: 10.3389/fcell.2021.726261
– ident: e_1_2_10_29_1
  doi: 10.1002/jcb.29889
– ident: e_1_2_10_38_1
  doi: 10.1038/s41580-018-0085-z
– ident: e_1_2_10_40_1
  doi: 10.1016/j.cell.2019.04.001
– ident: e_1_2_10_24_1
  doi: 10.3389/fcell.2022.826688
– ident: e_1_2_10_20_1
  doi: 10.1016/j.bbalip.2017.12.006
– ident: e_1_2_10_13_1
  doi: 10.1016/j.molcel.2019.01.036
– ident: e_1_2_10_26_1
  doi: 10.1126/science.1100747
– ident: e_1_2_10_36_1
  doi: 10.1091/mbc.E17-08-0535
– ident: e_1_2_10_23_1
  doi: 10.1186/s13046-021-02168-2
– ident: e_1_2_10_43_1
  doi: 10.1038/nrm2708
– ident: e_1_2_10_50_1
  doi: 10.1016/j.devcel.2017.06.018
– ident: e_1_2_10_14_1
  doi: 10.1016/j.devcel.2023.07.001
– ident: e_1_2_10_59_1
  doi: 10.1016/j.jlr.2021.100056
– ident: e_1_2_10_37_1
  doi: 10.1074/jbc.M114.601864
– ident: e_1_2_10_60_1
  doi: 10.1074/jbc.M117.809236
– ident: e_1_2_10_49_1
  doi: 10.3390/cancers15194857
– ident: e_1_2_10_64_1
  doi: 10.1172/JCI44442
– ident: e_1_2_10_18_1
  doi: 10.1016/j.cell.2015.09.020
– ident: e_1_2_10_10_1
  doi: 10.1172/JCI36066
– ident: e_1_2_10_55_1
  doi: 10.1007/s00726-016-2247-7
– ident: e_1_2_10_47_1
  doi: 10.1038/s41419-022-04593-3
– ident: e_1_2_10_48_1
  doi: 10.1016/j.devcel.2015.01.029
– ident: e_1_2_10_52_1
  doi: 10.3390/ijms19113445
– ident: e_1_2_10_42_1
  doi: 10.1016/j.ceb.2009.11.014
– ident: e_1_2_10_61_1
  doi: 10.1016/j.cell.2013.06.041
– ident: e_1_2_10_4_1
  doi: 10.1073/pnas.91.23.10878
– ident: e_1_2_10_15_1
  doi: 10.1016/j.molcel.2019.01.037
– ident: e_1_2_10_34_1
  doi: 10.1083/jcb.201610013
– ident: e_1_2_10_7_1
  doi: 10.1083/jcb.201808119
– ident: e_1_2_10_12_1
  doi: 10.1080/15548627.2017.1359451
– volume: 92
  start-page: 435
  year: 2019
  ident: e_1_2_10_19_1
  article-title: Lipid droplets and the management of cellular stress
  publication-title: Yale J Biol Med
– ident: e_1_2_10_30_1
  doi: 10.1016/j.bbalip.2017.07.009
– ident: e_1_2_10_27_1
  doi: 10.1074/jbc.M108640200
– ident: e_1_2_10_33_1
  doi: 10.1074/jbc.M109.064469
– ident: e_1_2_10_62_1
  doi: 10.1016/j.molcel.2017.02.026
– ident: e_1_2_10_65_1
  doi: 10.1016/j.cmet.2023.03.018
– ident: e_1_2_10_44_1
  doi: 10.1038/nature07976
– ident: e_1_2_10_54_1
  doi: 10.18632/oncotarget.4479
– ident: e_1_2_10_58_1
  doi: 10.1111/acel.13034
– ident: e_1_2_10_22_1
  doi: 10.1016/j.cmet.2021.07.011
– ident: e_1_2_10_57_1
  doi: 10.1016/B978-0-12-800101-1.00011-9
– ident: e_1_2_10_17_1
  doi: 10.1016/j.cell.2012.03.042
– ident: e_1_2_10_6_1
  doi: 10.1073/pnas.2011124117
– ident: e_1_2_10_32_1
  doi: 10.1038/srep42574
– ident: e_1_2_10_66_1
  doi: 10.1042/BJ20120712
– ident: e_1_2_10_8_1
  doi: 10.1073/pnas.0630588100
SSID ssj0001819
Score 2.5243323
Snippet Lipid droplets (LDs) are fat storage organelles that are conserved from bacteria to humans. LDs are broken down to supply cells with fatty acids (FAs) that can...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1207
SubjectTerms Animals
autophagy
energy
fatty acid
Fatty Acids - metabolism
homeostasis
Humans
lipid droplet
Lipid Droplets - metabolism
Lipid Metabolism
lipids
lipolysis
lipophagy
lipotoxicity
organelles
Title Lipid droplets and fatty acid‐induced lipotoxicity: in a nutshell
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2F1873-3468.14808
https://www.ncbi.nlm.nih.gov/pubmed/38281809
https://www.proquest.com/docview/2919747016
https://www.proquest.com/docview/3153555203
https://pubmed.ncbi.nlm.nih.gov/PMC11126361
Volume 598
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELdKJwQvCDYY5Z-MhBBSlS2xncTlras6VUyABJvYW-TYiRapS6Y2EZQnPgKfkU_COc6_rlQMXiIrdd049-v5zr77HUKvBIls6YnYEoxGFlPgs44c7llcecwWlDqyTAp7_8GbnbF35-55r7fqRC0VeXggv_8xr-R_pAr3QK46S_YfJNsMCjegDfKFK0gYrjeSsS48rYZqoYPAc0O2HIsczGoh4VnqMAbwugt9yj9PrrI8-5ZIXQiAjvVOhximRb7UsaBdI_V4evR5OC_zfBqL-6Ne7kyJ6-kySr4m7UF_FIpV1qart3ujqVqBS64uVsIElBWXSd5qvEViktxnIhWiu_lAWBvqVytUh1mub4ocHkRGh3KfWpSZajm1knVHvIsmu6MzHWLq3lbrr0NMVumGbjdcsc3ooOO5zdtlrD66v7a6NTGHhp-ZBHqAQA8QlAPcQjsEPAzSRzvjk09fTpplHEwf4ztVM6x5oWxyeO0Z1k2aDT9lM9y26waVdszpfXSvckDw2KDpAepF6S7aG6cizy5X-DUuQ4LLs5ZddPuobt2Z1IUB99CkhB2uYYdBzriEHdaw-_XjZwU43AXcW5ykWOAabg_R2fH0dDKzqloclmQ-45YMuXQ5V9IWIXVDz5exiMFWlwLs0dhjKnR9OyRMhpoz0Aljrhxbcu7ZwncJaPpHqJ9mafQYYSW4jCNdNcvzWeSoUPvYsSs1c51LPW-ADurXGciKqF7XS5kHW0Q4QG-aL1wZjpbtXV_W8gngrenDMZFGWbEMyMjRrjV4QNv7UDAPXBemQwdo38i0-UHKNa-aPRogvibtpoPmcV__JE0uSj53R6fxUc8ZoMMSGH-bRABqgJStJzef-VN0t_0DP0P9fFFEz8GezsMXFfJ_A0Zjwgo
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lipid+droplets+and+fatty+acid%E2%80%90induced+lipotoxicity%3A+in+a+nutshell&rft.jtitle=FEBS+letters&rft.au=Obaseki%2C+Eseiwi&rft.au=Adebayo%2C+Daniel&rft.au=Bandyopadhyay%2C+Sumit&rft.au=Hariri%2C+Hanaa&rft.date=2024-05-01&rft.issn=0014-5793&rft.eissn=1873-3468&rft.volume=598&rft.issue=10&rft.spage=1207&rft.epage=1214&rft_id=info:doi/10.1002%2F1873-3468.14808&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_1873_3468_14808
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0014-5793&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0014-5793&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0014-5793&client=summon