Costs of acquiring phosphorus by vascular land plants patterns and implications for plant coexistence
We compare carbon (and hence energy) costs of the different modes of phosphorus (P) acquisition by vascular land plants. Phosphorus-acquisition modes are considered to be mechanisms of plants together with their root symbionts and structures such as cluster roots involved in mobilising or absorbing...
Saved in:
Published in | The New phytologist Vol. 217; no. 4; pp. 1420 - 1427 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
New Phytologist Trust
01.03.2018
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We compare carbon (and hence energy) costs of the different modes of phosphorus (P) acquisition by vascular land plants. Phosphorus-acquisition modes are considered to be mechanisms of plants together with their root symbionts and structures such as cluster roots involved in mobilising or absorbing P. Phosphorus sources considered are soluble and insoluble inorganic and organic pools. Costs include operating the P-acquisition mechanisms, and resource requirements to construct and maintain them. For most modes, costs increase as the relevant soil P concentration declines. Costs can thus be divided into a component incurred irrespective of soil Pconcentration, and a component describinghowquickly costs increase as the soil P concentration declines. Differences in sensitivity of costs to soil P concentration arise mainly from how economically mycorrhizal fungal hyphae or roots that explore the soil volume are constructed, and from costs of exudates that hydrolyse or mobilise insoluble P forms. In general, modes of acquisition requiring least carbon at high soil P concentrations experience a steeper increase in costs as soil P concentrations decline. The relationships between costs and concentrations suggest some reasons why different modes coexist, and why the mixture of acquisition modes differs between sites. |
---|---|
AbstractList | Content Summary 1420 I. Introduction 1421 II. Root adaptations that influence P acquisition 1422 III. Costs of P acquisition: general 1423 IV. Costs of P acquisition that are independent of soil P concentrations 1423 V. Costs of P acquisition that increase as soil P concentrations decline 1424 VI. Discussion and conclusions 1424 Acknowledgements 1425 References 1425 SUMMARY: We compare carbon (and hence energy) costs of the different modes of phosphorus (P) acquisition by vascular land plants. Phosphorus-acquisition modes are considered to be mechanisms of plants together with their root symbionts and structures such as cluster roots involved in mobilising or absorbing P. Phosphorus sources considered are soluble and insoluble inorganic and organic pools. Costs include operating the P-acquisition mechanisms, and resource requirements to construct and maintain them. For most modes, costs increase as the relevant soil P concentration declines. Costs can thus be divided into a component incurred irrespective of soil P concentration, and a component describing how quickly costs increase as the soil P concentration declines. Differences in sensitivity of costs to soil P concentration arise mainly from how economically mycorrhizal fungal hyphae or roots that explore the soil volume are constructed, and from costs of exudates that hydrolyse or mobilise insoluble P forms. In general, modes of acquisition requiring least carbon at high soil P concentrations experience a steeper increase in costs as soil P concentrations decline. The relationships between costs and concentrations suggest some reasons why different modes coexist, and why the mixture of acquisition modes differs between sites. Content Summary 1420 I. Introduction 1421 II. Root adaptations that influence P acquisition 1422 III. Costs of P acquisition: general 1423 IV. Costs of P acquisition that are independent of soil P concentrations 1423 V. Costs of P acquisition that increase as soil P concentrations decline 1424 VI. Discussion and conclusions 1424 Acknowledgements 1425 References 1425 Summary We compare carbon (and hence energy) costs of the different modes of phosphorus (P) acquisition by vascular land plants. Phosphorus‐acquisition modes are considered to be mechanisms of plants together with their root symbionts and structures such as cluster roots involved in mobilising or absorbing P. Phosphorus sources considered are soluble and insoluble inorganic and organic pools. Costs include operating the P‐acquisition mechanisms, and resource requirements to construct and maintain them. For most modes, costs increase as the relevant soil P concentration declines. Costs can thus be divided into a component incurred irrespective of soil P concentration, and a component describing how quickly costs increase as the soil P concentration declines. Differences in sensitivity of costs to soil P concentration arise mainly from how economically mycorrhizal fungal hyphae or roots that explore the soil volume are constructed, and from costs of exudates that hydrolyse or mobilise insoluble P forms. In general, modes of acquisition requiring least carbon at high soil P concentrations experience a steeper increase in costs as soil P concentrations decline. The relationships between costs and concentrations suggest some reasons why different modes coexist, and why the mixture of acquisition modes differs between sites. Content Summary 1420 I. Introduction 1421 II. Root adaptations that influence P acquisition 1422 III. Costs of P acquisition: general 1423 IV. Costs of P acquisition that are independent of soil P concentrations 1423 V. Costs of P acquisition that increase as soil P concentrations decline 1424 VI. Discussion and conclusions 1424 Acknowledgements 1425 References 1425 SUMMARY: We compare carbon (and hence energy) costs of the different modes of phosphorus (P) acquisition by vascular land plants. Phosphorus-acquisition modes are considered to be mechanisms of plants together with their root symbionts and structures such as cluster roots involved in mobilising or absorbing P. Phosphorus sources considered are soluble and insoluble inorganic and organic pools. Costs include operating the P-acquisition mechanisms, and resource requirements to construct and maintain them. For most modes, costs increase as the relevant soil P concentration declines. Costs can thus be divided into a component incurred irrespective of soil P concentration, and a component describing how quickly costs increase as the soil P concentration declines. Differences in sensitivity of costs to soil P concentration arise mainly from how economically mycorrhizal fungal hyphae or roots that explore the soil volume are constructed, and from costs of exudates that hydrolyse or mobilise insoluble P forms. In general, modes of acquisition requiring least carbon at high soil P concentrations experience a steeper increase in costs as soil P concentrations decline. The relationships between costs and concentrations suggest some reasons why different modes coexist, and why the mixture of acquisition modes differs between sites.Content Summary 1420 I. Introduction 1421 II. Root adaptations that influence P acquisition 1422 III. Costs of P acquisition: general 1423 IV. Costs of P acquisition that are independent of soil P concentrations 1423 V. Costs of P acquisition that increase as soil P concentrations decline 1424 VI. Discussion and conclusions 1424 Acknowledgements 1425 References 1425 SUMMARY: We compare carbon (and hence energy) costs of the different modes of phosphorus (P) acquisition by vascular land plants. Phosphorus-acquisition modes are considered to be mechanisms of plants together with their root symbionts and structures such as cluster roots involved in mobilising or absorbing P. Phosphorus sources considered are soluble and insoluble inorganic and organic pools. Costs include operating the P-acquisition mechanisms, and resource requirements to construct and maintain them. For most modes, costs increase as the relevant soil P concentration declines. Costs can thus be divided into a component incurred irrespective of soil P concentration, and a component describing how quickly costs increase as the soil P concentration declines. Differences in sensitivity of costs to soil P concentration arise mainly from how economically mycorrhizal fungal hyphae or roots that explore the soil volume are constructed, and from costs of exudates that hydrolyse or mobilise insoluble P forms. In general, modes of acquisition requiring least carbon at high soil P concentrations experience a steeper increase in costs as soil P concentrations decline. The relationships between costs and concentrations suggest some reasons why different modes coexist, and why the mixture of acquisition modes differs between sites. We compare carbon (and hence energy) costs of the different modes of phosphorus (P) acquisition by vascular land plants. Phosphorus-acquisition modes are considered to be mechanisms of plants together with their root symbionts and structures such as cluster roots involved in mobilising or absorbing P. Phosphorus sources considered are soluble and insoluble inorganic and organic pools. Costs include operating the P-acquisition mechanisms, and resource requirements to construct and maintain them. For most modes, costs increase as the relevant soil P concentration declines. Costs can thus be divided into a component incurred irrespective of soil Pconcentration, and a component describinghowquickly costs increase as the soil P concentration declines. Differences in sensitivity of costs to soil P concentration arise mainly from how economically mycorrhizal fungal hyphae or roots that explore the soil volume are constructed, and from costs of exudates that hydrolyse or mobilise insoluble P forms. In general, modes of acquisition requiring least carbon at high soil P concentrations experience a steeper increase in costs as soil P concentrations decline. The relationships between costs and concentrations suggest some reasons why different modes coexist, and why the mixture of acquisition modes differs between sites. |
Author | John A. Raven Mark Westoby Hans Lambers Sally E. Smith |
Author_xml | – sequence: 1 givenname: John A. surname: Raven fullname: Raven, John A. email: j.a.raven@dundee.ac.uk organization: The University of Western Australia – sequence: 2 givenname: Hans surname: Lambers fullname: Lambers, Hans organization: The University of Western Australia – sequence: 3 givenname: Sally E. surname: Smith fullname: Smith, Sally E. organization: The University of Adelaide, Waite Campus – sequence: 4 givenname: Mark surname: Westoby fullname: Westoby, Mark organization: Macquarie University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29292829$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkTtPwzAUhS0EoqUw8ANAkVhgSGs7jh8jqnhJFTCAxBY5jkNdpXFqJ6D-ewx9DJWAa117-c7R9T1HYL-2tQbgFMEhCjWqm-kQEUHZHugjQkXMUcL2QR9CzGNK6FsPHHk_gxCKlOJD0MMiHI5FH6Rj61sf2TKSatEZZ-r3qJlaH9p1PsqX0Yf0qqukiypZF1ET7tYfg4NSVl6frN8BeL29eRnfx5Onu4fx9SRWhBEWa8KYlJCXHNFUSsxFqnVeJiRXUoiSFErBgknKilKKHCquC01kzhDGCmlWJgNwufJtnF102rfZ3HilqzCEtp3PMKQMC5Sg9F8UCZ5wwnFYzQBc7KAz27k6fCRQIoVUcE4Cdb6munyui6xxZi7dMtvsLgBXK0A5673T5RZBMPvOJQu5ZD-5BHa0wyrTytbYunXSVH8pPk2ll79bZ4_P9xvF2Uox8611W4WAEHGB0-QLTymnFw |
CitedBy_id | crossref_primary_10_1007_s00572_019_00927_w crossref_primary_10_1038_s41598_022_08337_3 crossref_primary_10_1007_s11104_024_07106_7 crossref_primary_10_1111_nph_17985 crossref_primary_10_1007_s00374_020_01505_5 crossref_primary_10_3389_ffgc_2020_550884 crossref_primary_10_1007_s11104_021_05198_z crossref_primary_10_1111_1365_2745_13746 crossref_primary_10_1111_1365_2745_13468 crossref_primary_10_1016_j_foreco_2023_120823 crossref_primary_10_1111_1365_2745_14277 crossref_primary_10_1111_pce_15487 crossref_primary_10_1016_S2095_3119_21_63628_6 crossref_primary_10_1111_1365_2745_13184 crossref_primary_10_1177_11786221231197416 crossref_primary_10_1016_j_gecco_2024_e03266 crossref_primary_10_3389_ffgc_2021_647360 crossref_primary_10_1111_nph_15688 crossref_primary_10_1016_j_pld_2025_02_004 crossref_primary_10_3389_fmicb_2024_1383813 crossref_primary_10_1016_j_indcrop_2024_118624 crossref_primary_10_1111_ppl_14247 crossref_primary_10_1111_geb_13704 crossref_primary_10_1007_s11104_020_04427_1 crossref_primary_10_1007_s11104_022_05602_2 crossref_primary_10_1111_nph_17973 crossref_primary_10_1007_s11104_021_04886_0 crossref_primary_10_1088_1748_9326_aaeae7 crossref_primary_10_1016_j_tplants_2021_07_003 crossref_primary_10_1007_s11104_022_05517_y crossref_primary_10_1007_s11104_022_05347_y crossref_primary_10_3389_fevo_2023_1106122 crossref_primary_10_1016_j_soilbio_2020_107790 crossref_primary_10_1016_j_foreco_2024_121748 crossref_primary_10_1111_1758_2229_12729 crossref_primary_10_1111_pce_13991 crossref_primary_10_1111_gcb_17104 crossref_primary_10_1111_nph_15833 crossref_primary_10_1111_nph_17854 crossref_primary_10_3389_fpls_2022_1080014 crossref_primary_10_3389_fpls_2022_927435 crossref_primary_10_1016_j_envexpbot_2019_01_002 crossref_primary_10_1016_j_soilbio_2024_109690 crossref_primary_10_1007_s00572_019_00882_6 crossref_primary_10_1007_s11104_022_05464_8 crossref_primary_10_3389_fpls_2023_1277013 crossref_primary_10_1016_j_scienta_2020_109174 crossref_primary_10_1007_s11104_025_07358_x crossref_primary_10_1371_journal_pone_0224938 crossref_primary_10_1002_ajb2_1411 crossref_primary_10_1007_s42729_022_00890_0 crossref_primary_10_1007_s42832_020_0070_2 crossref_primary_10_1186_s12870_020_2283_z crossref_primary_10_1093_jpe_rtae064 crossref_primary_10_3389_fenvs_2022_855815 crossref_primary_10_3390_agronomy12020285 crossref_primary_10_2139_ssrn_4006877 crossref_primary_10_1016_j_apsoil_2021_104323 crossref_primary_10_1007_s11104_024_07150_3 crossref_primary_10_1111_1365_2435_13783 crossref_primary_10_1111_nph_20053 crossref_primary_10_1111_tpj_16184 crossref_primary_10_1016_j_foreco_2024_122323 crossref_primary_10_1111_nph_17435 crossref_primary_10_1016_j_scitotenv_2021_149306 crossref_primary_10_5194_bg_21_455_2024 crossref_primary_10_1007_s10533_018_0525_z crossref_primary_10_1111_1365_2435_13392 crossref_primary_10_1038_s41396_022_01345_1 crossref_primary_10_1007_s11120_022_00977_w crossref_primary_10_1016_j_apsoil_2022_104624 crossref_primary_10_1002_agg2_20320 crossref_primary_10_1111_1365_2745_13111 crossref_primary_10_1007_s11104_021_05146_x crossref_primary_10_1007_s11104_021_04953_6 crossref_primary_10_1007_s11104_024_07071_1 crossref_primary_10_1007_s11104_023_06199_w crossref_primary_10_3389_fpls_2023_1153237 crossref_primary_10_1111_nph_16865 crossref_primary_10_1002_ecs2_3112 crossref_primary_10_1093_aob_mcab032 crossref_primary_10_1007_s11104_019_04241_4 crossref_primary_10_1111_1365_2435_14524 crossref_primary_10_1007_s12355_023_01303_x crossref_primary_10_1111_nph_19167 crossref_primary_10_1007_s11104_020_04584_3 crossref_primary_10_1111_gcb_16501 crossref_primary_10_1111_nph_19566 crossref_primary_10_1111_nph_19567 crossref_primary_10_3390_agronomy12123149 crossref_primary_10_1111_pce_13785 crossref_primary_10_1007_s11104_020_04565_6 crossref_primary_10_1111_ppl_12704 crossref_primary_10_1007_s10123_023_00443_0 crossref_primary_10_1016_j_foreco_2020_118309 crossref_primary_10_1111_1365_2435_13562 crossref_primary_10_3390_agronomy10050617 crossref_primary_10_1007_s11676_020_01195_7 crossref_primary_10_1016_j_tplants_2020_04_013 crossref_primary_10_1111_1365_2435_13452 crossref_primary_10_1186_s12870_020_02558_2 crossref_primary_10_3390_d14080587 crossref_primary_10_3389_fmicb_2021_609386 crossref_primary_10_3389_ffgc_2022_736664 crossref_primary_10_3390_ijms21124201 crossref_primary_10_1111_nph_70001 crossref_primary_10_1016_j_apsoil_2024_105618 crossref_primary_10_1111_nph_70087 crossref_primary_10_1146_annurev_arplant_102720_125738 crossref_primary_10_1111_1365_2745_13413 crossref_primary_10_1038_s41396_021_01112_8 crossref_primary_10_3390_agronomy11112267 crossref_primary_10_3389_fpls_2024_1367176 crossref_primary_10_1016_j_geoderma_2022_115910 crossref_primary_10_1111_1365_2745_14064 crossref_primary_10_1016_j_ecolmodel_2023_110491 crossref_primary_10_1093_aob_mcad199 crossref_primary_10_1007_s11104_024_06740_5 crossref_primary_10_1007_s11104_024_07188_3 crossref_primary_10_1007_s11368_023_03551_6 crossref_primary_10_1002_fes3_370 crossref_primary_10_3389_ffgc_2020_00043 crossref_primary_10_1016_j_scitotenv_2024_176750 crossref_primary_10_1093_femsec_fiz028 crossref_primary_10_3390_agronomy9030127 crossref_primary_10_1007_s11104_022_05549_4 crossref_primary_10_1016_j_soilbio_2024_109605 crossref_primary_10_1007_s11104_024_07043_5 crossref_primary_10_1029_2022MS003204 crossref_primary_10_1007_s11104_021_05112_7 crossref_primary_10_1007_s11104_022_05784_9 crossref_primary_10_1016_j_tree_2022_11_002 crossref_primary_10_1007_s11104_019_04368_4 crossref_primary_10_1111_gcb_15277 crossref_primary_10_1111_1365_2435_13479 crossref_primary_10_1111_nph_17077 crossref_primary_10_1007_s10342_022_01445_9 crossref_primary_10_1007_s11104_023_06045_z crossref_primary_10_1016_j_geoderma_2023_116520 crossref_primary_10_1111_1365_2435_14726 crossref_primary_10_1007_s11104_019_04110_0 crossref_primary_10_1111_pce_13925 crossref_primary_10_1016_j_agee_2021_107487 crossref_primary_10_1111_1365_2745_70017 crossref_primary_10_3389_fpls_2023_1150832 crossref_primary_10_3390_agronomy11020245 crossref_primary_10_3390_plants12162946 crossref_primary_10_1071_FP20007 crossref_primary_10_17221_254_2023_PSE crossref_primary_10_1007_s11104_024_06510_3 crossref_primary_10_1007_s11104_022_05522_1 crossref_primary_10_1093_aob_mcae060 crossref_primary_10_1016_j_scitotenv_2020_136495 crossref_primary_10_1007_s11104_019_03972_8 crossref_primary_10_1016_j_scitotenv_2023_167630 crossref_primary_10_3389_fpls_2019_01215 crossref_primary_10_1111_ejss_13219 crossref_primary_10_1111_nph_18849 |
Cites_doi | 10.1111/1365-2745.12196 10.1111/j.1365-2745.2008.01384.x 10.1111/j.1365-3040.2004.01191.x 10.1139/b04-123 10.2475/ajs.305.2.147 10.1104/pp.111.174581 10.1007/s11104-008-9877-9 10.1007/978-1-4020-8435-5 10.1007/978-94-017-2685-6_31 10.1890/08-0127.1 10.1007/s11104-008-9749-3 10.1111/j.1365-313X.2008.03749.x 10.1111/j.1469-8137.1987.tb04796.x 10.1007/BF02178744 10.1007/s11104-010-0444-9 10.2136/sssaj1991.03615995005500020020x 10.1023/A:1004559628401 10.1111/j.1469-8137.2006.01771.x 10.1111/j.1469-8137.1995.tb05726.x 10.1034/j.1399-3054.2000.110113.x 10.1007/s00572-005-0033-6 10.1007/s11104-017-3292-z 10.1055/s-2003-37974 10.1023/A:1010367501363 10.2136/sssaj1983.03615995004700010021x 10.1016/j.tree.2007.10.008 10.1890/03-8002 10.1046/j.1365-3040.2002.00849.x 10.1007/s11104-011-0731-0 10.1097/00010694-197303000-00005 10.1007/s11104-004-2725-7 10.1111/j.1365-3040.2006.01574.x 10.4067/S0717-66432003000100011 10.1016/j.tplants.2006.09.011 10.1016/S0065-2113(08)60702-6 10.1146/annurev-arplant-042110-103846 10.1111/j.1365-2745.2012.01962.x 10.1111/pce.12117 10.2134/jeq2009.0491 10.1038/378626a0 10.1002/9781118958841.ch14 10.1002/jpln.200424107 10.1111/nph.13203 10.1016/0038-0717(94)90282-8 10.1007/BF01972080 10.1139/b04-060 10.1016/j.gca.2014.05.003 10.1007/s10021-014-9830-0 10.1111/1365-2745.12638 10.1111/j.1365-3040.2012.02547.x 10.1111/j.1469-8137.2009.03128.x 10.1111/nph.14674 10.1071/BT96049 10.1007/s11104-014-2222-6 10.1007/BF00328791 10.1093/oso/9780195124927.001.0001 10.1016/j.geoderma.2017.04.026 10.1038/nplants.2015.50 10.1016/j.plantsci.2007.08.006 10.1002/9780470995563 10.1007/s11104‐017‐3427‐2 10.1007/s00442-013-2747-z 10.1080/00103629809370118 10.1111/j.1472-4669.2009.00194.x 10.1093/aob/mct035 10.1093/aob/mcl114 10.1007/BF02181879 |
ContentType | Journal Article |
Copyright | Copyright © 2018 New Phytologist Trust 2018 The Authors. New Phytologist © 2018 New Phytologist Trust 2018 The Authors. New Phytologist © 2018 New Phytologist Trust. |
Copyright_xml | – notice: Copyright © 2018 New Phytologist Trust – notice: 2018 The Authors. New Phytologist © 2018 New Phytologist Trust – notice: 2018 The Authors. New Phytologist © 2018 New Phytologist Trust. |
DBID | AAYXX CITATION NPM 7QO 7SN 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 7X8 7S9 L.6 |
DOI | 10.1111/nph.14967 |
DatabaseName | CrossRef PubMed Biotechnology Research Abstracts Ecology Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed Aquatic Science & Fisheries Abstracts (ASFA) Professional Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed AGRICOLA Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1469-8137 |
EndPage | 1427 |
ExternalDocumentID | 29292829 10_1111_nph_14967 NPH14967 90018925 |
Genre | reviewArticle Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: Australian Research Council New Zealand (ARC‐NZ) Research Network for Vegetation Function |
GroupedDBID | --- -~X .3N .GA 05W 0R~ 10A 123 1OC 29N 2WC 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 79B 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 A03 AAESR AAEVG AAHBH AAHKG AAHQN AAISJ AAKGQ AAMMB AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABBHK ABCQN ABCUV ABLJU ABPLY ABPVW ABSQW ABTLG ABVKB ABXSQ ACAHQ ACCZN ACFBH ACGFS ACHIC ACNCT ACPOU ACSCC ACSTJ ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADULT ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUPB AEUYR AEYWJ AFAZZ AFBPY AFEBI AFFPM AFGKR AFWVQ AFZJQ AGHNM AGUYK AGXDD AGYGG AHBTC AHXOZ AIDQK AIDYY AILXY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AQVQM ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CBGCD CS3 CUYZI D-E D-F DCZOG DEVKO DIK DPXWK DR2 DRFUL DRSTM E3Z EBS ECGQY EJD F00 F01 F04 F5P G-S G.N GODZA H.T H.X HGLYW HZI HZ~ IHE IPSME IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2W P2X P4D Q.N Q11 QB0 R.K RIG ROL RX1 SA0 SUPJJ TN5 TR2 UB1 W8V W99 WBKPD WIH WIK WIN WNSPC WOHZO WQJ WXSBR WYISQ XG1 YNT YQT ZZTAW ~02 ~IA ~KM ~WT .Y3 24P 31~ AAHHS AASVR ABEFU ABEML ACCFJ ACQPF AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE AS~ CAG COF DOOOF ESX FIJ GTFYD HF~ HGD HQ2 HTVGU IPNFZ JSODD LPU MVM NEJ RCA WHG WRC XOL YXE ZCG AAYXX ABGDZ ADXHL CITATION NPM PKN 7QO 7SN 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c4747-e477aa08f8165aa2895eebf34bca99f4dcc0d7a67dfa9b0c8ede4ab7122c1e7f3 |
IEDL.DBID | DR2 |
ISSN | 0028-646X 1469-8137 |
IngestDate | Fri Jul 11 18:28:11 EDT 2025 Thu Jul 10 22:56:08 EDT 2025 Mon Jul 28 15:40:38 EDT 2025 Wed Feb 19 02:33:28 EST 2025 Thu Apr 24 22:59:02 EDT 2025 Tue Jul 01 03:09:27 EDT 2025 Wed Jan 22 17:05:13 EST 2025 Thu Jul 03 22:17:57 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | soil concentration mycorrhizas trade-offs cluster roots phosphorus (P) |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2018 The Authors. New Phytologist © 2018 New Phytologist Trust. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4747-e477aa08f8165aa2895eebf34bca99f4dcc0d7a67dfa9b0c8ede4ab7122c1e7f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
PMID | 29292829 |
PQID | 1995069884 |
PQPubID | 2026848 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2067291315 proquest_miscellaneous_1983848281 proquest_journals_1995069884 pubmed_primary_29292829 crossref_primary_10_1111_nph_14967 crossref_citationtrail_10_1111_nph_14967 wiley_primary_10_1111_nph_14967_NPH14967 jstor_primary_90018925 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2018 |
PublicationDateYYYYMMDD | 2018-03-01 |
PublicationDate_xml | – month: 03 year: 2018 text: March 2018 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Lancaster |
PublicationTitle | The New phytologist |
PublicationTitleAlternate | New Phytol |
PublicationYear | 2018 |
Publisher | New Phytologist Trust Wiley Subscription Services, Inc |
Publisher_xml | – name: New Phytologist Trust – name: Wiley Subscription Services, Inc |
References | 2014; 139 1987; 106 2004; 27 1991; 55 1979b; 30 2011; 62 1997; 45 2010; 185 1995; 378 1994; 26 1995; 136 2006; 171 2014; 174 2011; 156 2009; 57 2010; 20 1973; 115 1991; 47 2007; 173 2000 2005; 305 2009; 320 2013; 111 2008; 23 2006; 29 2002; 105 2003; 5 2008; 312 1999; 215 2015; 1 1998; 29 2004; 85 1972; 9 2012; 100 2004; 82 2005; 274 2015; 18 2006; 98 2006; 11 2010; 39 2006; 16 2008 2006 1979a; 53 1983; 74 2000; 110 1992 2015; 206 2008; 96 2012; 35 2017; 215 1999 2002; 25 2011; 344 2013; 36 2001; 230 2005; 168 2010; 334 2018 2017 2009; 7 2015 2003; 60 2014; 385 2017; 420 2017; 302 2017; 105 1983; 47 2014; 102 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_62_1 Smith SE (e_1_2_8_54_1) 2008 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_69_1 White PJ (e_1_2_8_70_1) 2008 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_67_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 Hayman DS (e_1_2_8_17_1) 1972; 9 Turner BL (e_1_2_8_65_1) 2017 Griffiths RP (e_1_2_8_12_1) 1992 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_33_1 e_1_2_8_52_1 e_1_2_8_50_1 e_1_2_8_71_1 |
References_xml | – volume: 110 start-page: 96 year: 2000 end-page: 103 article-title: Kinetics of phosphate absorption by mycorrhizal and non‐mycorrhizal Scots pine seedlings publication-title: Physiologia Plantarum – volume: 26 start-page: 331 year: 1994 end-page: 337 article-title: Soil solution chemistry of ectomycorrhizal mats in forest soil publication-title: Soil Biology and Biochemistry – volume: 136 start-page: 247 year: 1995 end-page: 254 article-title: Root hair determines beneficial effect of a species on shoot growth of some pasture species publication-title: New Phytologist – volume: 16 start-page: 299 year: 2006 end-page: 363 article-title: Phylogenetic distribution and evolution of mycorrhizas in land plants publication-title: Mycorrhiza – volume: 174 start-page: 23 year: 2014 end-page: 31 article-title: Does cluster‐root activity of (Proteaceae) benefit phosphorus or micronutrient uptake and growth of neighbouring shrubs? publication-title: Oecologia – volume: 96 start-page: 698 year: 2008 end-page: 702 article-title: Resource partitioning for soil phosphorus: a hypothesis publication-title: Journal of Ecology – volume: 215 start-page: 1438 year: 2017 end-page: 1450 article-title: How functional is a trait? Phosphorus mobilization through root exudates differs little between species with and without specialized dauciform roots publication-title: New Phytologist – volume: 344 start-page: 51 year: 2011 end-page: 71 article-title: Ectomycorrhizal fungi: the symbiotic route to the root for phosphorus in forest soils publication-title: Plant and Soil – volume: 139 start-page: 487 year: 2014 end-page: 507 article-title: Modeling the influence of organic acids on soil weathering publication-title: Geochimica et Cosmochimica Acta – volume: 55 start-page: 410 year: 1991 end-page: 413 article-title: Differential phosphorus retention in soil profiles under no‐till crop production publication-title: Soil Science Society of America Journal – volume: 82 start-page: 1016 year: 2004 end-page: 1045 article-title: Networks of power and influence: the role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioning publication-title: Canadian Journal of Botany – volume: 9 start-page: 463 year: 1972 end-page: 470 article-title: The role of vesicular‐arbuscular mycorrhiza in the removal of phosphorus from soil by plant roots publication-title: Revue d'Ecologie et de Biologie du Sol – start-page: 98 year: 1992 end-page: 105 – volume: 29 start-page: 2383 year: 1998 end-page: 2394 article-title: Influence of crop rotations and tillage systems on phosphorus and potassium stratification and root distribution in the soil profile publication-title: Communications in Soil Science and Plant Analysis – volume: 57 start-page: 1092 year: 2009 end-page: 1102 article-title: Two differentially regulated phosphate transporters from the symbiotic fungus and phosphorus acquisition by ectomycorrhizal publication-title: Plant Journal – volume: 18 start-page: 287 year: 2015 end-page: 309 article-title: Soil development and nutrient availability along a 2 million‐year coastal dune chronosequence under species‐rich Mediterranean shrubland in southwestern Australia publication-title: Ecosystems – volume: 1 start-page: 15050 year: 2015 article-title: Diversity of plant nutrient‐acquisition strategies increases during long‐term ecosystem development publication-title: Nature Plants – volume: 74 start-page: 93 year: 1983 end-page: 100 article-title: Sensitivity of simulated phosphorus uptake to parameters used by a mechanistic‐mathematical model publication-title: Plant and Soil – volume: 23 start-page: 95 year: 2008 end-page: 103 article-title: Plant nutrient‐acquisition strategies change with soil age publication-title: Trends in Ecology & Evolution – volume: 53 start-page: 55 year: 1979a end-page: 65 article-title: The availability of P from phosphate‐goethite bridging complexes – desorption and uptake by ryegrass publication-title: Plant and Soil – volume: 312 start-page: 85 year: 2008 end-page: 99 article-title: Impact of growth and uptake patterns of arbuscular mycorrhizal fungi on plant phosphorus uptake – a modelling study publication-title: Plant and Soil – volume: 29 start-page: 1989 year: 2006 end-page: 1999 article-title: Specialized ‘dauciform’ roots of Cyperaceae are structurally distinct, but functionally analogous with ‘cluster’ roots publication-title: Plant, Cell & Environment – volume: 274 start-page: 101 year: 2005 end-page: 125 article-title: Cluster roots: a curiosity in context publication-title: Plant and Soil – volume: 11 start-page: 529 year: 2006 end-page: 534 article-title: Futile cycling at the plasma membrane: a hallmark of low‐affinity nutrient transport publication-title: Trends in Plant Science – volume: 98 start-page: 693 year: 2006 end-page: 713 article-title: Root structure and functioning for efficient acquisition of phosphorus: matching morphological and physiological traits publication-title: Annals of Botany – year: 2008 – volume: 25 start-page: 665 year: 2002 end-page: 675 article-title: Free amino acid, ammonium and nitrate concentrations in soil solutions of a grazed coastal marsh in relation to plant growth publication-title: Plant, Cell & Environment – volume: 168 start-page: 496 year: 2005 end-page: 502 article-title: A sensitivity analysis for assessing the relevance of fine‐root turnover for P and K uptake publication-title: Journal of Plant Nutrition and Soil Science – year: 2017 article-title: A climosequence of chronosequences in southwestern Australia publication-title: bioRxiv – volume: 420 start-page: 37 year: 2017 end-page: 48 article-title: Taxonomic and ecological patterns in root traits of (Cyperaceae) publication-title: Plant and Soil – volume: 60 start-page: 69 year: 2003 end-page: 73 article-title: Total and organic phosphorus in Chilean volcanic soils publication-title: Gayana Botánica – volume: 171 start-page: 669 year: 2006 end-page: 682 article-title: Modelling the contribution of arbuscular mycorrhizal fungi to plant phosphate uptake publication-title: New Phytologist – volume: 62 start-page: 227 year: 2011 end-page: 250 article-title: Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales publication-title: Annual Review of Plant Biology – volume: 173 start-page: 550 year: 2007 end-page: 558 article-title: Phosphate transport by proteoid roots of publication-title: Plant Science – volume: 35 start-page: 2061 year: 2012 end-page: 2220 article-title: Carbon trading for phosphorus gain: the balance between rhizosphere carboxylates and mycorrhizal symbiosis in plant phosphorus acquisition publication-title: Plant, Cell & Environment – volume: 305 start-page: 147 year: 2005 end-page: 185 article-title: Implications of the evolution of organic acid moieties for basalt weathering over geological time publication-title: American Journal of Science – volume: 82 start-page: 1243 year: 2004 end-page: 1263 article-title: Mycorrhizal fungi as drivers of ecosystem processes in heathland and boreal forest biomes publication-title: Canadian Journal of Botany – volume: 156 start-page: 1050 year: 2011 end-page: 1057 article-title: Roles of arbuscular mycorrhizas in plant phosphorus (P) nutrition: interactions between pathways of P uptake in arbuscular mycorrhizal (AM) roots have important implications for understanding and manipulating plant P acquisition publication-title: Plant Physiology – volume: 27 start-page: 853 year: 2004 end-page: 862 article-title: Effect of respiratory homeostasis on plant growth in cultivars of wheat and rice publication-title: Plant, Cell & Environment – start-page: 409 year: 2015 end-page: 440 – volume: 5 start-page: 2 year: 2003 end-page: 15 article-title: The alternative oxidase: regulation and function publication-title: Plant Biology – volume: 385 start-page: 217 year: 2014 end-page: 228 article-title: Soil fungi appear to have a retarding rather than a stimulating role on soil apatite weathering publication-title: Plant and Soil – volume: 215 start-page: 123 year: 1999 end-page: 134 article-title: Relatively large nitrate efflux can account for the high specific respiratory costs for nitrate transport in slow‐growing grass species publication-title: Plant and Soil – volume: 206 start-page: 507 year: 2015 end-page: 521 article-title: Phosphorus limitation, soil‐borne pathogens and the coexistence of plant species in hyperdiverse forests and shrublands publication-title: New Phytologist – volume: 7 start-page: 171 year: 2009 end-page: 191 article-title: Biological weathering and the long‐term carbon cycle: integrating mycorrhizal evolution and function into the current paradigm publication-title: Geobiology – volume: 320 start-page: 37 year: 2009 end-page: 77 article-title: Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis publication-title: Plant and Soil – volume: 111 start-page: 801 year: 2013 end-page: 809 article-title: does not vary its shoot phosphorus concentration and only marginally decreases its mycorrhizal colonization and cluster‐root dry weight under a wide range of phosphorus supplies publication-title: Annals of Botany – year: 2000 – volume: 100 start-page: 631 year: 2012 end-page: 642 article-title: Experimental assessment of nutrient limitation along a 2‐million year dune chronosequence in the south‐western Australia biodiversity hotspot publication-title: Journal of Ecology – volume: 115 start-page: 199 year: 1973 end-page: 206 article-title: Phosphorus: an indicator of pedogenetic weathering processes publication-title: Soil Science – volume: 105 start-page: 549 year: 2017 end-page: 557 article-title: Native soil‐borne pathogens equalise differences in competitive ability between plants of contrasting nutrient‐acquisition strategies publication-title: Journal of Ecology – volume: 36 start-page: 1911 year: 2013 end-page: 1915 article-title: Interactions between arbuscular mycorrhizal and non‐mycorrhizal plants: do non‐mycorrhizal species at both extremes of nutrient‐availability play the same game? publication-title: Plant, Cell & Environment – volume: 47 start-page: 376 year: 1991 end-page: 391 article-title: Mycorrhizas in ecosystems publication-title: Experientia – volume: 378 start-page: 626 year: 1995 end-page: 629 article-title: A phosphate transporter from the mycorrhizal fungus publication-title: Nature – volume: 39 start-page: 1647 year: 2010 end-page: 1656 article-title: Phosphorus forms and chemistry in the soil profile under long‐term conservation tillage: a phosphorus‐31 nuclear magnetic resonance study publication-title: Journal of Environmental Quality – volume: 85 start-page: 591 year: 2004 end-page: 602 article-title: Nitrogen mineralization: challenges of a changing paradigm publication-title: Ecology – year: 2018 article-title: How belowground interactions contribute to the coexistence of mycorrhizal and non‐mycorrhizal species in severely phosphorus‐impoverished hyperdiverse ecosystems publication-title: Plant and Soil – volume: 47 start-page: 102 year: 1983 end-page: 107 article-title: Organic carbon, nitrogen, and phosphorus concentrations and pH in soil profiles as affected by tillage intensity publication-title: Soil Science Society of America Journal – year: 2006 – volume: 185 start-page: 792 year: 2010 end-page: 802 article-title: A dynamic model of nutrient uptake by root hairs publication-title: New Phytologist – volume: 45 start-page: 41 year: 1997 end-page: 51 article-title: Cluster roots and mycorrhizae in their occurrence and formation in relation to phosphorus supply publication-title: Australian Journal of Botany – volume: 102 start-page: 396 year: 2014 end-page: 410 article-title: Foliar nutrient concentrations and resorption efficiency in plants of contrasting nutrient‐acquisition strategies along a 2‐million‐year dune chronosequence publication-title: Journal of Ecology – volume: 30 start-page: 1 year: 1979b end-page: 50 article-title: Anion absorption by soils and soil materials publication-title: Advances in Agronomy – volume: 230 start-page: 279 year: 2001 end-page: 285 article-title: Mobilization of sparingly soluble inorganic phosphates by the external mycelium of an abuscular mycorrhizal fungus publication-title: Plant and Soil – volume: 302 start-page: 52 year: 2017 end-page: 65 article-title: Small‐scale spatial distribution of phosphorus fractions in soils from silicate parent material with different degree of podzolization publication-title: Geoderma – start-page: 277 year: 1999 end-page: 289 – volume: 105 start-page: 53 year: 2002 end-page: 63 article-title: Leaf N abundance of subarctic plants provides field evidence that ericoid, ectomycorrhizal and non‐ and arbuscular mycorrhizal access different sources of soil nitrogen publication-title: Oecologia – volume: 106 start-page: 129 year: 1987 end-page: 137 article-title: Kinetic characterization of a dual phosphate uptake system in the endomycorrhizal fungus of L publication-title: New Phytologist – volume: 334 start-page: 11 year: 2010 end-page: 31 article-title: Plant mineral nutrition in ancient landscapes: high plant species diversity on infertile soils is linked to functional diversity for nutritional strategies publication-title: Plant and Soil – volume: 20 start-page: 5 year: 2010 end-page: 15 article-title: Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen‐phosphorus interactions publication-title: Ecological Applications – ident: e_1_2_8_16_1 doi: 10.1111/1365-2745.12196 – ident: e_1_2_8_63_1 doi: 10.1111/j.1365-2745.2008.01384.x – ident: e_1_2_8_21_1 doi: 10.1111/j.1365-3040.2004.01191.x – ident: e_1_2_8_39_1 doi: 10.1139/b04-123 – ident: e_1_2_8_35_1 doi: 10.2475/ajs.305.2.147 – start-page: 98 volume-title: Mycorrhizas in ecosystems year: 1992 ident: e_1_2_8_12_1 – ident: e_1_2_8_53_1 doi: 10.1104/pp.111.174581 – ident: e_1_2_8_5_1 doi: 10.1007/s11104-008-9877-9 – volume-title: The ecophysiology of plant–phosphorus interactions. Plant ecophysiology year: 2008 ident: e_1_2_8_70_1 doi: 10.1007/978-1-4020-8435-5 – ident: e_1_2_8_46_1 doi: 10.1007/978-94-017-2685-6_31 – ident: e_1_2_8_67_1 doi: 10.1890/08-0127.1 – ident: e_1_2_8_45_1 doi: 10.1007/s11104-008-9749-3 – ident: e_1_2_8_60_1 doi: 10.1111/j.1365-313X.2008.03749.x – ident: e_1_2_8_59_1 doi: 10.1111/j.1469-8137.1987.tb04796.x – ident: e_1_2_8_50_1 doi: 10.1007/BF02178744 – ident: e_1_2_8_25_1 doi: 10.1007/s11104-010-0444-9 – ident: e_1_2_8_13_1 doi: 10.2136/sssaj1991.03615995005500020020x – ident: e_1_2_8_42_1 doi: 10.1023/A:1004559628401 – ident: e_1_2_8_44_1 doi: 10.1111/j.1469-8137.2006.01771.x – ident: e_1_2_8_47_1 doi: 10.1111/j.1469-8137.1995.tb05726.x – ident: e_1_2_8_66_1 doi: 10.1034/j.1399-3054.2000.110113.x – ident: e_1_2_8_68_1 doi: 10.1007/s00572-005-0033-6 – ident: e_1_2_8_20_1 doi: 10.1007/s11104-017-3292-z – volume-title: Mycorrhizal symbiosis year: 2008 ident: e_1_2_8_54_1 – ident: e_1_2_8_33_1 doi: 10.1055/s-2003-37974 – ident: e_1_2_8_71_1 doi: 10.1023/A:1010367501363 – ident: e_1_2_8_9_1 doi: 10.2136/sssaj1983.03615995004700010021x – ident: e_1_2_8_26_1 doi: 10.1016/j.tree.2007.10.008 – ident: e_1_2_8_43_1 doi: 10.1890/03-8002 – ident: e_1_2_8_18_1 doi: 10.1046/j.1365-3040.2002.00849.x – ident: e_1_2_8_7_1 doi: 10.1007/s11104-011-0731-0 – volume: 9 start-page: 463 year: 1972 ident: e_1_2_8_17_1 article-title: The role of vesicular‐arbuscular mycorrhiza in the removal of phosphorus from soil by plant roots publication-title: Revue d'Ecologie et de Biologie du Sol – ident: e_1_2_8_51_1 doi: 10.1097/00010694-197303000-00005 – ident: e_1_2_8_49_1 doi: 10.1007/s11104-004-2725-7 – ident: e_1_2_8_48_1 doi: 10.1111/j.1365-3040.2006.01574.x – ident: e_1_2_8_3_1 doi: 10.4067/S0717-66432003000100011 – ident: e_1_2_8_4_1 doi: 10.1016/j.tplants.2006.09.011 – ident: e_1_2_8_37_1 doi: 10.1016/S0065-2113(08)60702-6 – ident: e_1_2_8_55_1 doi: 10.1146/annurev-arplant-042110-103846 – ident: e_1_2_8_23_1 doi: 10.1111/j.1365-2745.2012.01962.x – ident: e_1_2_8_28_1 doi: 10.1111/pce.12117 – ident: e_1_2_8_6_1 doi: 10.2134/jeq2009.0491 – ident: e_1_2_8_15_1 doi: 10.1038/378626a0 – ident: e_1_2_8_52_1 doi: 10.1002/9781118958841.ch14 – ident: e_1_2_8_58_1 doi: 10.1002/jpln.200424107 – ident: e_1_2_8_22_1 doi: 10.1111/nph.13203 – ident: e_1_2_8_11_1 doi: 10.1016/0038-0717(94)90282-8 – ident: e_1_2_8_38_1 doi: 10.1007/BF01972080 – ident: e_1_2_8_30_1 doi: 10.1139/b04-060 – ident: e_1_2_8_29_1 doi: 10.1016/j.gca.2014.05.003 – ident: e_1_2_8_64_1 doi: 10.1007/s10021-014-9830-0 – ident: e_1_2_8_2_1 doi: 10.1111/1365-2745.12638 – ident: e_1_2_8_41_1 doi: 10.1111/j.1365-3040.2012.02547.x – ident: e_1_2_8_31_1 doi: 10.1111/j.1469-8137.2009.03128.x – ident: e_1_2_8_14_1 doi: 10.1111/nph.14674 – ident: e_1_2_8_40_1 doi: 10.1071/BT96049 – ident: e_1_2_8_56_1 doi: 10.1007/s11104-014-2222-6 – ident: e_1_2_8_32_1 doi: 10.1007/BF00328791 – ident: e_1_2_8_62_1 doi: 10.1093/oso/9780195124927.001.0001 – ident: e_1_2_8_69_1 doi: 10.1016/j.geoderma.2017.04.026 – ident: e_1_2_8_72_1 doi: 10.1038/nplants.2015.50 – ident: e_1_2_8_57_1 doi: 10.1016/j.plantsci.2007.08.006 – ident: e_1_2_8_10_1 doi: 10.1002/9780470995563 – ident: e_1_2_8_24_1 doi: 10.1007/s11104‐017‐3427‐2 – ident: e_1_2_8_34_1 doi: 10.1007/s00442-013-2747-z – ident: e_1_2_8_19_1 doi: 10.1080/00103629809370118 – ident: e_1_2_8_61_1 doi: 10.1111/j.1472-4669.2009.00194.x – ident: e_1_2_8_8_1 doi: 10.1093/aob/mct035 – ident: e_1_2_8_27_1 doi: 10.1093/aob/mcl114 – ident: e_1_2_8_36_1 doi: 10.1007/BF02181879 – year: 2017 ident: e_1_2_8_65_1 article-title: A climosequence of chronosequences in southwestern Australia publication-title: bioRxiv |
SSID | ssj0009562 |
Score | 2.6078994 |
SecondaryResourceType | review_article |
Snippet | We compare carbon (and hence energy) costs of the different modes of phosphorus (P) acquisition by vascular land plants. Phosphorus-acquisition modes are... Content Summary 1420 I. Introduction 1421 II. Root adaptations that influence P acquisition 1422 III. Costs of P acquisition: general 1423 IV. Costs of P... Content Summary 1420 I. Introduction 1421 II. Root adaptations that influence P acquisition 1422 III. Costs of P acquisition: general 1423 IV. Costs of P... |
SourceID | proquest pubmed crossref wiley jstor |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1420 |
SubjectTerms | Adaptation carbon cluster roots Coexistence Construction costs decline embryophytes energy Energy costs Exudates Hyphae Land acquisition Modes mycorrhizal fungi mycorrhizas Organic phosphorus Phosphorus phosphorus (P) Roots Soil soil concentration Soils Symbionts Tansley review trade‐offs |
Subtitle | patterns and implications for plant coexistence |
Title | Costs of acquiring phosphorus by vascular land plants |
URI | https://www.jstor.org/stable/90018925 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.14967 https://www.ncbi.nlm.nih.gov/pubmed/29292829 https://www.proquest.com/docview/1995069884 https://www.proquest.com/docview/1983848281 https://www.proquest.com/docview/2067291315 |
Volume | 217 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYh9NBL0leSbbZFLT3k4mDLsiy1pzZ0WQoNISSwh4CRZImELraJdw_pr8-M_GBTEgg9GIw9Qs-xvrE-fSLki9aGSSPKCLXKIphvWWRUgmR_JlLPvDEcNzj_PhXzS_5rkS22yLdhL0ynDzH-cEPPCN9rdHBt2g0nr5prcHMlcCc5crUQEJ2zDcFdwQYFZsHFolcVQhbPmPLBXNTRER8Dmg9xa5h4Zrvkaihyxzf5c7xemWP79x81x_-s0yuy0wNS-r0bQa_JlqvekBc_agCNd2-JP6nbVUtrT7VFzjBMdLS5rlu4btctNXd0oLJSpEjSZom8mq-0CbKdVUvx4c0Ga50CSO6sqK1RhjNg9nfkcvbz4mQe9UczRJZDABI5nudax9LLRGRaQ9SWOWd8yo3VSnleWhuXuRZ56bUysZWudFybPGHMJi736R7ZrurKHRBqXSJL1MnPjeCZF5DI-VyaTFoelz6bkKOhkwrb65bj8RnLYohfoNWK0GoT8nk0bTqxjseM9kJPjxYKDyZUDDKaDl1f9I7cFriDPRZKSj4hn8bX4IK4rqIrV6_RRqaSQ-iaPG2DKvlMJWkC2ex3w2osAPiFwgVtqGkYHE-XvTg9m4eb9883PSQvAeTJjjc3Jdur27X7AEBqZT4Gj7kH3WkakA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VggSXlldhaQGDOHBJlTiOY1e9QEW1QLtCqJX2giLbsdWKKoma3UP76_E4D21RKyEOkaJkrPg1mRn78zcAH5TSVGheRshVFnl7SyMtEwT7U5466rRmeMD5eManp-zbPJuvwf5wFqbjhxgX3FAzwv8aFRwXpFe0vGrOvJ5Lnt-D-5jROwRUP-kK5S6nAwczZ3ze8wohjmcsesMadYDE21zNm55rMD2Hm_BrqHSHOPm9u1zoXXP9F5_j_7bqMWz0Pin51E2iJ7Bmq6fw4HPt_carZ-AO6nbRktoRZRA27G0dac7q1l-Xy5boKzKgWQmiJElzgdCaPdIE5s6qJfjwfAW4Tryf3EkRUyMTZ3Dbn8Pp4ZeTg2nUZ2eIDPMxSGRZnisVCycSninlA7fMWu1Spo2S0rHSmLjMFc9Lp6SOjbClZUrnCaUmsblLt2C9qiv7EoixiSiRKj_XnGWO-0LW5UJnwrC4dNkEPg6jVJieuhwzaFwUQwjje60IvTaB96No0_F13Ca0FYZ6lJCYm1BS_6GdYeyLXpfbAg-xx1wKwSbwbnzttRC3VlRl6yXKiFQwH70md8sgUT6VSZr4z7zo5tVYAa8aEve0fUvD7Li77sXsxzTcvPp30bfwcHpyfFQcfZ1934ZH3ucTHYxuB9YXl0v72vtVC_0mqM8faNgeqw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VghCXllfLQgGDOHBJlTiOY9MTtKyW16pCVNoDUmQ7toqokqjZPbS_Ho_z0Ba1EuIQKUrG8msmMxN__gzwRilNheZlhFxlkfe3NNIyQbA_5amjTmuGG5y_zfnshH1eZIsNOBj2wnT8EOMPN7SM8L1GA29Kt2bkVXPqzVzy_BbcZjwWqNJH3-ka4y6nAwUzZ3zR0wohjGcsesUZdXjE6yLNq4Fr8DzTbfg5tLkDnPzeXy31vrn8i87xPzt1H7b6iJS871ToAWzY6iHc-VD7qPHiEbjDul22pHZEGQQNe09HmtO69df5qiX6ggxYVoIYSdKcIbDmHWkCb2fVEnz4aw22TnyU3EkRUyMPZwjaH8PJ9OOPw1nUn80QGeYzkMiyPFcqFk4kPFPKp22ZtdqlTBslpWOlMXGZK56XTkkdG2FLy5TOE0pNYnOX7sBmVVf2CRBjE1EiUX6uOcsc94Wsy4XOhGFx6bIJvB0mqTA9cTmen3FWDAmMH7UijNoEXo-iTcfWcZ3QTpjpUULiyYSS-or2hqkvektuC9zCHnMpBJvAq_G1t0FcWFGVrVcoI1LBfO6a3CyDNPlUJmniq9nt1GpsgDcMiSvavqdBOW5uezE_noWbp_8u-hLuHh9Ni6-f5l-ewT0f8IkOQ7cHm8vzlX3ug6qlfhGM5w8bEx1j |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Costs+of+acquiring+phosphorus+by+vascular+land+plants%3A+patterns+and+implications+for+plant+coexistence&rft.jtitle=The+New+phytologist&rft.au=Raven%2C+John+A&rft.au=Lambers%2C+Hans&rft.au=Smith%2C+Sally+E&rft.au=Westoby%2C+Mark&rft.date=2018-03-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.eissn=1469-8137&rft.volume=217&rft.issue=4&rft.spage=1420&rft_id=info:doi/10.1111%2Fnph.14967&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon |