Costs of acquiring phosphorus by vascular land plants patterns and implications for plant coexistence

We compare carbon (and hence energy) costs of the different modes of phosphorus (P) acquisition by vascular land plants. Phosphorus-acquisition modes are considered to be mechanisms of plants together with their root symbionts and structures such as cluster roots involved in mobilising or absorbing...

Full description

Saved in:
Bibliographic Details
Published inThe New phytologist Vol. 217; no. 4; pp. 1420 - 1427
Main Authors Raven, John A., Lambers, Hans, Smith, Sally E., Westoby, Mark
Format Journal Article
LanguageEnglish
Published England New Phytologist Trust 01.03.2018
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We compare carbon (and hence energy) costs of the different modes of phosphorus (P) acquisition by vascular land plants. Phosphorus-acquisition modes are considered to be mechanisms of plants together with their root symbionts and structures such as cluster roots involved in mobilising or absorbing P. Phosphorus sources considered are soluble and insoluble inorganic and organic pools. Costs include operating the P-acquisition mechanisms, and resource requirements to construct and maintain them. For most modes, costs increase as the relevant soil P concentration declines. Costs can thus be divided into a component incurred irrespective of soil Pconcentration, and a component describinghowquickly costs increase as the soil P concentration declines. Differences in sensitivity of costs to soil P concentration arise mainly from how economically mycorrhizal fungal hyphae or roots that explore the soil volume are constructed, and from costs of exudates that hydrolyse or mobilise insoluble P forms. In general, modes of acquisition requiring least carbon at high soil P concentrations experience a steeper increase in costs as soil P concentrations decline. The relationships between costs and concentrations suggest some reasons why different modes coexist, and why the mixture of acquisition modes differs between sites.
AbstractList Content Summary 1420 I. Introduction 1421 II. Root adaptations that influence P acquisition 1422 III. Costs of P acquisition: general 1423 IV. Costs of P acquisition that are independent of soil P concentrations 1423 V. Costs of P acquisition that increase as soil P concentrations decline 1424 VI. Discussion and conclusions 1424 Acknowledgements 1425 References 1425 SUMMARY: We compare carbon (and hence energy) costs of the different modes of phosphorus (P) acquisition by vascular land plants. Phosphorus-acquisition modes are considered to be mechanisms of plants together with their root symbionts and structures such as cluster roots involved in mobilising or absorbing P. Phosphorus sources considered are soluble and insoluble inorganic and organic pools. Costs include operating the P-acquisition mechanisms, and resource requirements to construct and maintain them. For most modes, costs increase as the relevant soil P concentration declines. Costs can thus be divided into a component incurred irrespective of soil P concentration, and a component describing how quickly costs increase as the soil P concentration declines. Differences in sensitivity of costs to soil P concentration arise mainly from how economically mycorrhizal fungal hyphae or roots that explore the soil volume are constructed, and from costs of exudates that hydrolyse or mobilise insoluble P forms. In general, modes of acquisition requiring least carbon at high soil P concentrations experience a steeper increase in costs as soil P concentrations decline. The relationships between costs and concentrations suggest some reasons why different modes coexist, and why the mixture of acquisition modes differs between sites.
Content Summary 1420 I. Introduction 1421 II. Root adaptations that influence P acquisition 1422 III. Costs of P acquisition: general 1423 IV. Costs of P acquisition that are independent of soil P concentrations 1423 V. Costs of P acquisition that increase as soil P concentrations decline 1424 VI. Discussion and conclusions 1424 Acknowledgements 1425 References 1425 Summary We compare carbon (and hence energy) costs of the different modes of phosphorus (P) acquisition by vascular land plants. Phosphorus‐acquisition modes are considered to be mechanisms of plants together with their root symbionts and structures such as cluster roots involved in mobilising or absorbing P. Phosphorus sources considered are soluble and insoluble inorganic and organic pools. Costs include operating the P‐acquisition mechanisms, and resource requirements to construct and maintain them. For most modes, costs increase as the relevant soil P concentration declines. Costs can thus be divided into a component incurred irrespective of soil P concentration, and a component describing how quickly costs increase as the soil P concentration declines. Differences in sensitivity of costs to soil P concentration arise mainly from how economically mycorrhizal fungal hyphae or roots that explore the soil volume are constructed, and from costs of exudates that hydrolyse or mobilise insoluble P forms. In general, modes of acquisition requiring least carbon at high soil P concentrations experience a steeper increase in costs as soil P concentrations decline. The relationships between costs and concentrations suggest some reasons why different modes coexist, and why the mixture of acquisition modes differs between sites.
Content Summary 1420 I. Introduction 1421 II. Root adaptations that influence P acquisition 1422 III. Costs of P acquisition: general 1423 IV. Costs of P acquisition that are independent of soil P concentrations 1423 V. Costs of P acquisition that increase as soil P concentrations decline 1424 VI. Discussion and conclusions 1424 Acknowledgements 1425 References 1425 SUMMARY: We compare carbon (and hence energy) costs of the different modes of phosphorus (P) acquisition by vascular land plants. Phosphorus-acquisition modes are considered to be mechanisms of plants together with their root symbionts and structures such as cluster roots involved in mobilising or absorbing P. Phosphorus sources considered are soluble and insoluble inorganic and organic pools. Costs include operating the P-acquisition mechanisms, and resource requirements to construct and maintain them. For most modes, costs increase as the relevant soil P concentration declines. Costs can thus be divided into a component incurred irrespective of soil P concentration, and a component describing how quickly costs increase as the soil P concentration declines. Differences in sensitivity of costs to soil P concentration arise mainly from how economically mycorrhizal fungal hyphae or roots that explore the soil volume are constructed, and from costs of exudates that hydrolyse or mobilise insoluble P forms. In general, modes of acquisition requiring least carbon at high soil P concentrations experience a steeper increase in costs as soil P concentrations decline. The relationships between costs and concentrations suggest some reasons why different modes coexist, and why the mixture of acquisition modes differs between sites.Content Summary 1420 I. Introduction 1421 II. Root adaptations that influence P acquisition 1422 III. Costs of P acquisition: general 1423 IV. Costs of P acquisition that are independent of soil P concentrations 1423 V. Costs of P acquisition that increase as soil P concentrations decline 1424 VI. Discussion and conclusions 1424 Acknowledgements 1425 References 1425 SUMMARY: We compare carbon (and hence energy) costs of the different modes of phosphorus (P) acquisition by vascular land plants. Phosphorus-acquisition modes are considered to be mechanisms of plants together with their root symbionts and structures such as cluster roots involved in mobilising or absorbing P. Phosphorus sources considered are soluble and insoluble inorganic and organic pools. Costs include operating the P-acquisition mechanisms, and resource requirements to construct and maintain them. For most modes, costs increase as the relevant soil P concentration declines. Costs can thus be divided into a component incurred irrespective of soil P concentration, and a component describing how quickly costs increase as the soil P concentration declines. Differences in sensitivity of costs to soil P concentration arise mainly from how economically mycorrhizal fungal hyphae or roots that explore the soil volume are constructed, and from costs of exudates that hydrolyse or mobilise insoluble P forms. In general, modes of acquisition requiring least carbon at high soil P concentrations experience a steeper increase in costs as soil P concentrations decline. The relationships between costs and concentrations suggest some reasons why different modes coexist, and why the mixture of acquisition modes differs between sites.
We compare carbon (and hence energy) costs of the different modes of phosphorus (P) acquisition by vascular land plants. Phosphorus-acquisition modes are considered to be mechanisms of plants together with their root symbionts and structures such as cluster roots involved in mobilising or absorbing P. Phosphorus sources considered are soluble and insoluble inorganic and organic pools. Costs include operating the P-acquisition mechanisms, and resource requirements to construct and maintain them. For most modes, costs increase as the relevant soil P concentration declines. Costs can thus be divided into a component incurred irrespective of soil Pconcentration, and a component describinghowquickly costs increase as the soil P concentration declines. Differences in sensitivity of costs to soil P concentration arise mainly from how economically mycorrhizal fungal hyphae or roots that explore the soil volume are constructed, and from costs of exudates that hydrolyse or mobilise insoluble P forms. In general, modes of acquisition requiring least carbon at high soil P concentrations experience a steeper increase in costs as soil P concentrations decline. The relationships between costs and concentrations suggest some reasons why different modes coexist, and why the mixture of acquisition modes differs between sites.
Author John A. Raven
Mark Westoby
Hans Lambers
Sally E. Smith
Author_xml – sequence: 1
  givenname: John A.
  surname: Raven
  fullname: Raven, John A.
  email: j.a.raven@dundee.ac.uk
  organization: The University of Western Australia
– sequence: 2
  givenname: Hans
  surname: Lambers
  fullname: Lambers, Hans
  organization: The University of Western Australia
– sequence: 3
  givenname: Sally E.
  surname: Smith
  fullname: Smith, Sally E.
  organization: The University of Adelaide, Waite Campus
– sequence: 4
  givenname: Mark
  surname: Westoby
  fullname: Westoby, Mark
  organization: Macquarie University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29292829$$D View this record in MEDLINE/PubMed
BookMark eNqFkTtPwzAUhS0EoqUw8ANAkVhgSGs7jh8jqnhJFTCAxBY5jkNdpXFqJ6D-ewx9DJWAa117-c7R9T1HYL-2tQbgFMEhCjWqm-kQEUHZHugjQkXMUcL2QR9CzGNK6FsPHHk_gxCKlOJD0MMiHI5FH6Rj61sf2TKSatEZZ-r3qJlaH9p1PsqX0Yf0qqukiypZF1ET7tYfg4NSVl6frN8BeL29eRnfx5Onu4fx9SRWhBEWa8KYlJCXHNFUSsxFqnVeJiRXUoiSFErBgknKilKKHCquC01kzhDGCmlWJgNwufJtnF102rfZ3HilqzCEtp3PMKQMC5Sg9F8UCZ5wwnFYzQBc7KAz27k6fCRQIoVUcE4Cdb6munyui6xxZi7dMtvsLgBXK0A5673T5RZBMPvOJQu5ZD-5BHa0wyrTytbYunXSVH8pPk2ll79bZ4_P9xvF2Uox8611W4WAEHGB0-QLTymnFw
CitedBy_id crossref_primary_10_1007_s00572_019_00927_w
crossref_primary_10_1038_s41598_022_08337_3
crossref_primary_10_1007_s11104_024_07106_7
crossref_primary_10_1111_nph_17985
crossref_primary_10_1007_s00374_020_01505_5
crossref_primary_10_3389_ffgc_2020_550884
crossref_primary_10_1007_s11104_021_05198_z
crossref_primary_10_1111_1365_2745_13746
crossref_primary_10_1111_1365_2745_13468
crossref_primary_10_1016_j_foreco_2023_120823
crossref_primary_10_1111_1365_2745_14277
crossref_primary_10_1111_pce_15487
crossref_primary_10_1016_S2095_3119_21_63628_6
crossref_primary_10_1111_1365_2745_13184
crossref_primary_10_1177_11786221231197416
crossref_primary_10_1016_j_gecco_2024_e03266
crossref_primary_10_3389_ffgc_2021_647360
crossref_primary_10_1111_nph_15688
crossref_primary_10_1016_j_pld_2025_02_004
crossref_primary_10_3389_fmicb_2024_1383813
crossref_primary_10_1016_j_indcrop_2024_118624
crossref_primary_10_1111_ppl_14247
crossref_primary_10_1111_geb_13704
crossref_primary_10_1007_s11104_020_04427_1
crossref_primary_10_1007_s11104_022_05602_2
crossref_primary_10_1111_nph_17973
crossref_primary_10_1007_s11104_021_04886_0
crossref_primary_10_1088_1748_9326_aaeae7
crossref_primary_10_1016_j_tplants_2021_07_003
crossref_primary_10_1007_s11104_022_05517_y
crossref_primary_10_1007_s11104_022_05347_y
crossref_primary_10_3389_fevo_2023_1106122
crossref_primary_10_1016_j_soilbio_2020_107790
crossref_primary_10_1016_j_foreco_2024_121748
crossref_primary_10_1111_1758_2229_12729
crossref_primary_10_1111_pce_13991
crossref_primary_10_1111_gcb_17104
crossref_primary_10_1111_nph_15833
crossref_primary_10_1111_nph_17854
crossref_primary_10_3389_fpls_2022_1080014
crossref_primary_10_3389_fpls_2022_927435
crossref_primary_10_1016_j_envexpbot_2019_01_002
crossref_primary_10_1016_j_soilbio_2024_109690
crossref_primary_10_1007_s00572_019_00882_6
crossref_primary_10_1007_s11104_022_05464_8
crossref_primary_10_3389_fpls_2023_1277013
crossref_primary_10_1016_j_scienta_2020_109174
crossref_primary_10_1007_s11104_025_07358_x
crossref_primary_10_1371_journal_pone_0224938
crossref_primary_10_1002_ajb2_1411
crossref_primary_10_1007_s42729_022_00890_0
crossref_primary_10_1007_s42832_020_0070_2
crossref_primary_10_1186_s12870_020_2283_z
crossref_primary_10_1093_jpe_rtae064
crossref_primary_10_3389_fenvs_2022_855815
crossref_primary_10_3390_agronomy12020285
crossref_primary_10_2139_ssrn_4006877
crossref_primary_10_1016_j_apsoil_2021_104323
crossref_primary_10_1007_s11104_024_07150_3
crossref_primary_10_1111_1365_2435_13783
crossref_primary_10_1111_nph_20053
crossref_primary_10_1111_tpj_16184
crossref_primary_10_1016_j_foreco_2024_122323
crossref_primary_10_1111_nph_17435
crossref_primary_10_1016_j_scitotenv_2021_149306
crossref_primary_10_5194_bg_21_455_2024
crossref_primary_10_1007_s10533_018_0525_z
crossref_primary_10_1111_1365_2435_13392
crossref_primary_10_1038_s41396_022_01345_1
crossref_primary_10_1007_s11120_022_00977_w
crossref_primary_10_1016_j_apsoil_2022_104624
crossref_primary_10_1002_agg2_20320
crossref_primary_10_1111_1365_2745_13111
crossref_primary_10_1007_s11104_021_05146_x
crossref_primary_10_1007_s11104_021_04953_6
crossref_primary_10_1007_s11104_024_07071_1
crossref_primary_10_1007_s11104_023_06199_w
crossref_primary_10_3389_fpls_2023_1153237
crossref_primary_10_1111_nph_16865
crossref_primary_10_1002_ecs2_3112
crossref_primary_10_1093_aob_mcab032
crossref_primary_10_1007_s11104_019_04241_4
crossref_primary_10_1111_1365_2435_14524
crossref_primary_10_1007_s12355_023_01303_x
crossref_primary_10_1111_nph_19167
crossref_primary_10_1007_s11104_020_04584_3
crossref_primary_10_1111_gcb_16501
crossref_primary_10_1111_nph_19566
crossref_primary_10_1111_nph_19567
crossref_primary_10_3390_agronomy12123149
crossref_primary_10_1111_pce_13785
crossref_primary_10_1007_s11104_020_04565_6
crossref_primary_10_1111_ppl_12704
crossref_primary_10_1007_s10123_023_00443_0
crossref_primary_10_1016_j_foreco_2020_118309
crossref_primary_10_1111_1365_2435_13562
crossref_primary_10_3390_agronomy10050617
crossref_primary_10_1007_s11676_020_01195_7
crossref_primary_10_1016_j_tplants_2020_04_013
crossref_primary_10_1111_1365_2435_13452
crossref_primary_10_1186_s12870_020_02558_2
crossref_primary_10_3390_d14080587
crossref_primary_10_3389_fmicb_2021_609386
crossref_primary_10_3389_ffgc_2022_736664
crossref_primary_10_3390_ijms21124201
crossref_primary_10_1111_nph_70001
crossref_primary_10_1016_j_apsoil_2024_105618
crossref_primary_10_1111_nph_70087
crossref_primary_10_1146_annurev_arplant_102720_125738
crossref_primary_10_1111_1365_2745_13413
crossref_primary_10_1038_s41396_021_01112_8
crossref_primary_10_3390_agronomy11112267
crossref_primary_10_3389_fpls_2024_1367176
crossref_primary_10_1016_j_geoderma_2022_115910
crossref_primary_10_1111_1365_2745_14064
crossref_primary_10_1016_j_ecolmodel_2023_110491
crossref_primary_10_1093_aob_mcad199
crossref_primary_10_1007_s11104_024_06740_5
crossref_primary_10_1007_s11104_024_07188_3
crossref_primary_10_1007_s11368_023_03551_6
crossref_primary_10_1002_fes3_370
crossref_primary_10_3389_ffgc_2020_00043
crossref_primary_10_1016_j_scitotenv_2024_176750
crossref_primary_10_1093_femsec_fiz028
crossref_primary_10_3390_agronomy9030127
crossref_primary_10_1007_s11104_022_05549_4
crossref_primary_10_1016_j_soilbio_2024_109605
crossref_primary_10_1007_s11104_024_07043_5
crossref_primary_10_1029_2022MS003204
crossref_primary_10_1007_s11104_021_05112_7
crossref_primary_10_1007_s11104_022_05784_9
crossref_primary_10_1016_j_tree_2022_11_002
crossref_primary_10_1007_s11104_019_04368_4
crossref_primary_10_1111_gcb_15277
crossref_primary_10_1111_1365_2435_13479
crossref_primary_10_1111_nph_17077
crossref_primary_10_1007_s10342_022_01445_9
crossref_primary_10_1007_s11104_023_06045_z
crossref_primary_10_1016_j_geoderma_2023_116520
crossref_primary_10_1111_1365_2435_14726
crossref_primary_10_1007_s11104_019_04110_0
crossref_primary_10_1111_pce_13925
crossref_primary_10_1016_j_agee_2021_107487
crossref_primary_10_1111_1365_2745_70017
crossref_primary_10_3389_fpls_2023_1150832
crossref_primary_10_3390_agronomy11020245
crossref_primary_10_3390_plants12162946
crossref_primary_10_1071_FP20007
crossref_primary_10_17221_254_2023_PSE
crossref_primary_10_1007_s11104_024_06510_3
crossref_primary_10_1007_s11104_022_05522_1
crossref_primary_10_1093_aob_mcae060
crossref_primary_10_1016_j_scitotenv_2020_136495
crossref_primary_10_1007_s11104_019_03972_8
crossref_primary_10_1016_j_scitotenv_2023_167630
crossref_primary_10_3389_fpls_2019_01215
crossref_primary_10_1111_ejss_13219
crossref_primary_10_1111_nph_18849
Cites_doi 10.1111/1365-2745.12196
10.1111/j.1365-2745.2008.01384.x
10.1111/j.1365-3040.2004.01191.x
10.1139/b04-123
10.2475/ajs.305.2.147
10.1104/pp.111.174581
10.1007/s11104-008-9877-9
10.1007/978-1-4020-8435-5
10.1007/978-94-017-2685-6_31
10.1890/08-0127.1
10.1007/s11104-008-9749-3
10.1111/j.1365-313X.2008.03749.x
10.1111/j.1469-8137.1987.tb04796.x
10.1007/BF02178744
10.1007/s11104-010-0444-9
10.2136/sssaj1991.03615995005500020020x
10.1023/A:1004559628401
10.1111/j.1469-8137.2006.01771.x
10.1111/j.1469-8137.1995.tb05726.x
10.1034/j.1399-3054.2000.110113.x
10.1007/s00572-005-0033-6
10.1007/s11104-017-3292-z
10.1055/s-2003-37974
10.1023/A:1010367501363
10.2136/sssaj1983.03615995004700010021x
10.1016/j.tree.2007.10.008
10.1890/03-8002
10.1046/j.1365-3040.2002.00849.x
10.1007/s11104-011-0731-0
10.1097/00010694-197303000-00005
10.1007/s11104-004-2725-7
10.1111/j.1365-3040.2006.01574.x
10.4067/S0717-66432003000100011
10.1016/j.tplants.2006.09.011
10.1016/S0065-2113(08)60702-6
10.1146/annurev-arplant-042110-103846
10.1111/j.1365-2745.2012.01962.x
10.1111/pce.12117
10.2134/jeq2009.0491
10.1038/378626a0
10.1002/9781118958841.ch14
10.1002/jpln.200424107
10.1111/nph.13203
10.1016/0038-0717(94)90282-8
10.1007/BF01972080
10.1139/b04-060
10.1016/j.gca.2014.05.003
10.1007/s10021-014-9830-0
10.1111/1365-2745.12638
10.1111/j.1365-3040.2012.02547.x
10.1111/j.1469-8137.2009.03128.x
10.1111/nph.14674
10.1071/BT96049
10.1007/s11104-014-2222-6
10.1007/BF00328791
10.1093/oso/9780195124927.001.0001
10.1016/j.geoderma.2017.04.026
10.1038/nplants.2015.50
10.1016/j.plantsci.2007.08.006
10.1002/9780470995563
10.1007/s11104‐017‐3427‐2
10.1007/s00442-013-2747-z
10.1080/00103629809370118
10.1111/j.1472-4669.2009.00194.x
10.1093/aob/mct035
10.1093/aob/mcl114
10.1007/BF02181879
ContentType Journal Article
Copyright Copyright © 2018 New Phytologist Trust
2018 The Authors. New Phytologist © 2018 New Phytologist Trust
2018 The Authors. New Phytologist © 2018 New Phytologist Trust.
Copyright_xml – notice: Copyright © 2018 New Phytologist Trust
– notice: 2018 The Authors. New Phytologist © 2018 New Phytologist Trust
– notice: 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.
DBID AAYXX
CITATION
NPM
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7S9
L.6
DOI 10.1111/nph.14967
DatabaseName CrossRef
PubMed
Biotechnology Research Abstracts
Ecology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList PubMed
AGRICOLA
Aquatic Science & Fisheries Abstracts (ASFA) Professional

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1469-8137
EndPage 1427
ExternalDocumentID 29292829
10_1111_nph_14967
NPH14967
90018925
Genre reviewArticle
Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: Australian Research Council New Zealand (ARC‐NZ) Research Network for Vegetation Function
GroupedDBID ---
-~X
.3N
.GA
05W
0R~
10A
123
1OC
29N
2WC
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
79B
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHKG
AAHQN
AAISJ
AAKGQ
AAMMB
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABLJU
ABPLY
ABPVW
ABSQW
ABTLG
ABVKB
ABXSQ
ACAHQ
ACCZN
ACFBH
ACGFS
ACHIC
ACNCT
ACPOU
ACSCC
ACSTJ
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADULT
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUPB
AEUYR
AEYWJ
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGUYK
AGXDD
AGYGG
AHBTC
AHXOZ
AIDQK
AIDYY
AILXY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AQVQM
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CBGCD
CS3
CUYZI
D-E
D-F
DCZOG
DEVKO
DIK
DPXWK
DR2
DRFUL
DRSTM
E3Z
EBS
ECGQY
EJD
F00
F01
F04
F5P
G-S
G.N
GODZA
H.T
H.X
HGLYW
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
RIG
ROL
RX1
SA0
SUPJJ
TN5
TR2
UB1
W8V
W99
WBKPD
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
YNT
YQT
ZZTAW
~02
~IA
~KM
~WT
.Y3
24P
31~
AAHHS
AASVR
ABEFU
ABEML
ACCFJ
ACQPF
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
AS~
CAG
COF
DOOOF
ESX
FIJ
GTFYD
HF~
HGD
HQ2
HTVGU
IPNFZ
JSODD
LPU
MVM
NEJ
RCA
WHG
WRC
XOL
YXE
ZCG
AAYXX
ABGDZ
ADXHL
CITATION
NPM
PKN
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7S9
L.6
ID FETCH-LOGICAL-c4747-e477aa08f8165aa2895eebf34bca99f4dcc0d7a67dfa9b0c8ede4ab7122c1e7f3
IEDL.DBID DR2
ISSN 0028-646X
1469-8137
IngestDate Fri Jul 11 18:28:11 EDT 2025
Thu Jul 10 22:56:08 EDT 2025
Mon Jul 28 15:40:38 EDT 2025
Wed Feb 19 02:33:28 EST 2025
Thu Apr 24 22:59:02 EDT 2025
Tue Jul 01 03:09:27 EDT 2025
Wed Jan 22 17:05:13 EST 2025
Thu Jul 03 22:17:57 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords soil concentration
mycorrhizas
trade-offs
cluster roots
phosphorus (P)
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2018 The Authors. New Phytologist © 2018 New Phytologist Trust.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4747-e477aa08f8165aa2895eebf34bca99f4dcc0d7a67dfa9b0c8ede4ab7122c1e7f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
PMID 29292829
PQID 1995069884
PQPubID 2026848
PageCount 8
ParticipantIDs proquest_miscellaneous_2067291315
proquest_miscellaneous_1983848281
proquest_journals_1995069884
pubmed_primary_29292829
crossref_primary_10_1111_nph_14967
crossref_citationtrail_10_1111_nph_14967
wiley_primary_10_1111_nph_14967_NPH14967
jstor_primary_90018925
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2018
PublicationDateYYYYMMDD 2018-03-01
PublicationDate_xml – month: 03
  year: 2018
  text: March 2018
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Lancaster
PublicationTitle The New phytologist
PublicationTitleAlternate New Phytol
PublicationYear 2018
Publisher New Phytologist Trust
Wiley Subscription Services, Inc
Publisher_xml – name: New Phytologist Trust
– name: Wiley Subscription Services, Inc
References 2014; 139
1987; 106
2004; 27
1991; 55
1979b; 30
2011; 62
1997; 45
2010; 185
1995; 378
1994; 26
1995; 136
2006; 171
2014; 174
2011; 156
2009; 57
2010; 20
1973; 115
1991; 47
2007; 173
2000
2005; 305
2009; 320
2013; 111
2008; 23
2006; 29
2002; 105
2003; 5
2008; 312
1999; 215
2015; 1
1998; 29
2004; 85
1972; 9
2012; 100
2004; 82
2005; 274
2015; 18
2006; 98
2006; 11
2010; 39
2006; 16
2008
2006
1979a; 53
1983; 74
2000; 110
1992
2015; 206
2008; 96
2012; 35
2017; 215
1999
2002; 25
2011; 344
2013; 36
2001; 230
2005; 168
2010; 334
2018
2017
2009; 7
2015
2003; 60
2014; 385
2017; 420
2017; 302
2017; 105
1983; 47
2014; 102
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_62_1
Smith SE (e_1_2_8_54_1) 2008
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_69_1
White PJ (e_1_2_8_70_1) 2008
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
Hayman DS (e_1_2_8_17_1) 1972; 9
Turner BL (e_1_2_8_65_1) 2017
Griffiths RP (e_1_2_8_12_1) 1992
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_33_1
e_1_2_8_52_1
e_1_2_8_50_1
e_1_2_8_71_1
References_xml – volume: 110
  start-page: 96
  year: 2000
  end-page: 103
  article-title: Kinetics of phosphate absorption by mycorrhizal and non‐mycorrhizal Scots pine seedlings
  publication-title: Physiologia Plantarum
– volume: 26
  start-page: 331
  year: 1994
  end-page: 337
  article-title: Soil solution chemistry of ectomycorrhizal mats in forest soil
  publication-title: Soil Biology and Biochemistry
– volume: 136
  start-page: 247
  year: 1995
  end-page: 254
  article-title: Root hair determines beneficial effect of a species on shoot growth of some pasture species
  publication-title: New Phytologist
– volume: 16
  start-page: 299
  year: 2006
  end-page: 363
  article-title: Phylogenetic distribution and evolution of mycorrhizas in land plants
  publication-title: Mycorrhiza
– volume: 174
  start-page: 23
  year: 2014
  end-page: 31
  article-title: Does cluster‐root activity of (Proteaceae) benefit phosphorus or micronutrient uptake and growth of neighbouring shrubs?
  publication-title: Oecologia
– volume: 96
  start-page: 698
  year: 2008
  end-page: 702
  article-title: Resource partitioning for soil phosphorus: a hypothesis
  publication-title: Journal of Ecology
– volume: 215
  start-page: 1438
  year: 2017
  end-page: 1450
  article-title: How functional is a trait? Phosphorus mobilization through root exudates differs little between species with and without specialized dauciform roots
  publication-title: New Phytologist
– volume: 344
  start-page: 51
  year: 2011
  end-page: 71
  article-title: Ectomycorrhizal fungi: the symbiotic route to the root for phosphorus in forest soils
  publication-title: Plant and Soil
– volume: 139
  start-page: 487
  year: 2014
  end-page: 507
  article-title: Modeling the influence of organic acids on soil weathering
  publication-title: Geochimica et Cosmochimica Acta
– volume: 55
  start-page: 410
  year: 1991
  end-page: 413
  article-title: Differential phosphorus retention in soil profiles under no‐till crop production
  publication-title: Soil Science Society of America Journal
– volume: 82
  start-page: 1016
  year: 2004
  end-page: 1045
  article-title: Networks of power and influence: the role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioning
  publication-title: Canadian Journal of Botany
– volume: 9
  start-page: 463
  year: 1972
  end-page: 470
  article-title: The role of vesicular‐arbuscular mycorrhiza in the removal of phosphorus from soil by plant roots
  publication-title: Revue d'Ecologie et de Biologie du Sol
– start-page: 98
  year: 1992
  end-page: 105
– volume: 29
  start-page: 2383
  year: 1998
  end-page: 2394
  article-title: Influence of crop rotations and tillage systems on phosphorus and potassium stratification and root distribution in the soil profile
  publication-title: Communications in Soil Science and Plant Analysis
– volume: 57
  start-page: 1092
  year: 2009
  end-page: 1102
  article-title: Two differentially regulated phosphate transporters from the symbiotic fungus and phosphorus acquisition by ectomycorrhizal
  publication-title: Plant Journal
– volume: 18
  start-page: 287
  year: 2015
  end-page: 309
  article-title: Soil development and nutrient availability along a 2 million‐year coastal dune chronosequence under species‐rich Mediterranean shrubland in southwestern Australia
  publication-title: Ecosystems
– volume: 1
  start-page: 15050
  year: 2015
  article-title: Diversity of plant nutrient‐acquisition strategies increases during long‐term ecosystem development
  publication-title: Nature Plants
– volume: 74
  start-page: 93
  year: 1983
  end-page: 100
  article-title: Sensitivity of simulated phosphorus uptake to parameters used by a mechanistic‐mathematical model
  publication-title: Plant and Soil
– volume: 23
  start-page: 95
  year: 2008
  end-page: 103
  article-title: Plant nutrient‐acquisition strategies change with soil age
  publication-title: Trends in Ecology & Evolution
– volume: 53
  start-page: 55
  year: 1979a
  end-page: 65
  article-title: The availability of P from phosphate‐goethite bridging complexes – desorption and uptake by ryegrass
  publication-title: Plant and Soil
– volume: 312
  start-page: 85
  year: 2008
  end-page: 99
  article-title: Impact of growth and uptake patterns of arbuscular mycorrhizal fungi on plant phosphorus uptake – a modelling study
  publication-title: Plant and Soil
– volume: 29
  start-page: 1989
  year: 2006
  end-page: 1999
  article-title: Specialized ‘dauciform’ roots of Cyperaceae are structurally distinct, but functionally analogous with ‘cluster’ roots
  publication-title: Plant, Cell & Environment
– volume: 274
  start-page: 101
  year: 2005
  end-page: 125
  article-title: Cluster roots: a curiosity in context
  publication-title: Plant and Soil
– volume: 11
  start-page: 529
  year: 2006
  end-page: 534
  article-title: Futile cycling at the plasma membrane: a hallmark of low‐affinity nutrient transport
  publication-title: Trends in Plant Science
– volume: 98
  start-page: 693
  year: 2006
  end-page: 713
  article-title: Root structure and functioning for efficient acquisition of phosphorus: matching morphological and physiological traits
  publication-title: Annals of Botany
– year: 2008
– volume: 25
  start-page: 665
  year: 2002
  end-page: 675
  article-title: Free amino acid, ammonium and nitrate concentrations in soil solutions of a grazed coastal marsh in relation to plant growth
  publication-title: Plant, Cell & Environment
– volume: 168
  start-page: 496
  year: 2005
  end-page: 502
  article-title: A sensitivity analysis for assessing the relevance of fine‐root turnover for P and K uptake
  publication-title: Journal of Plant Nutrition and Soil Science
– year: 2017
  article-title: A climosequence of chronosequences in southwestern Australia
  publication-title: bioRxiv
– volume: 420
  start-page: 37
  year: 2017
  end-page: 48
  article-title: Taxonomic and ecological patterns in root traits of (Cyperaceae)
  publication-title: Plant and Soil
– volume: 60
  start-page: 69
  year: 2003
  end-page: 73
  article-title: Total and organic phosphorus in Chilean volcanic soils
  publication-title: Gayana Botánica
– volume: 171
  start-page: 669
  year: 2006
  end-page: 682
  article-title: Modelling the contribution of arbuscular mycorrhizal fungi to plant phosphate uptake
  publication-title: New Phytologist
– volume: 62
  start-page: 227
  year: 2011
  end-page: 250
  article-title: Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales
  publication-title: Annual Review of Plant Biology
– volume: 173
  start-page: 550
  year: 2007
  end-page: 558
  article-title: Phosphate transport by proteoid roots of
  publication-title: Plant Science
– volume: 35
  start-page: 2061
  year: 2012
  end-page: 2220
  article-title: Carbon trading for phosphorus gain: the balance between rhizosphere carboxylates and mycorrhizal symbiosis in plant phosphorus acquisition
  publication-title: Plant, Cell & Environment
– volume: 305
  start-page: 147
  year: 2005
  end-page: 185
  article-title: Implications of the evolution of organic acid moieties for basalt weathering over geological time
  publication-title: American Journal of Science
– volume: 82
  start-page: 1243
  year: 2004
  end-page: 1263
  article-title: Mycorrhizal fungi as drivers of ecosystem processes in heathland and boreal forest biomes
  publication-title: Canadian Journal of Botany
– volume: 156
  start-page: 1050
  year: 2011
  end-page: 1057
  article-title: Roles of arbuscular mycorrhizas in plant phosphorus (P) nutrition: interactions between pathways of P uptake in arbuscular mycorrhizal (AM) roots have important implications for understanding and manipulating plant P acquisition
  publication-title: Plant Physiology
– volume: 27
  start-page: 853
  year: 2004
  end-page: 862
  article-title: Effect of respiratory homeostasis on plant growth in cultivars of wheat and rice
  publication-title: Plant, Cell & Environment
– start-page: 409
  year: 2015
  end-page: 440
– volume: 5
  start-page: 2
  year: 2003
  end-page: 15
  article-title: The alternative oxidase: regulation and function
  publication-title: Plant Biology
– volume: 385
  start-page: 217
  year: 2014
  end-page: 228
  article-title: Soil fungi appear to have a retarding rather than a stimulating role on soil apatite weathering
  publication-title: Plant and Soil
– volume: 215
  start-page: 123
  year: 1999
  end-page: 134
  article-title: Relatively large nitrate efflux can account for the high specific respiratory costs for nitrate transport in slow‐growing grass species
  publication-title: Plant and Soil
– volume: 206
  start-page: 507
  year: 2015
  end-page: 521
  article-title: Phosphorus limitation, soil‐borne pathogens and the coexistence of plant species in hyperdiverse forests and shrublands
  publication-title: New Phytologist
– volume: 7
  start-page: 171
  year: 2009
  end-page: 191
  article-title: Biological weathering and the long‐term carbon cycle: integrating mycorrhizal evolution and function into the current paradigm
  publication-title: Geobiology
– volume: 320
  start-page: 37
  year: 2009
  end-page: 77
  article-title: Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis
  publication-title: Plant and Soil
– volume: 111
  start-page: 801
  year: 2013
  end-page: 809
  article-title: does not vary its shoot phosphorus concentration and only marginally decreases its mycorrhizal colonization and cluster‐root dry weight under a wide range of phosphorus supplies
  publication-title: Annals of Botany
– year: 2000
– volume: 100
  start-page: 631
  year: 2012
  end-page: 642
  article-title: Experimental assessment of nutrient limitation along a 2‐million year dune chronosequence in the south‐western Australia biodiversity hotspot
  publication-title: Journal of Ecology
– volume: 115
  start-page: 199
  year: 1973
  end-page: 206
  article-title: Phosphorus: an indicator of pedogenetic weathering processes
  publication-title: Soil Science
– volume: 105
  start-page: 549
  year: 2017
  end-page: 557
  article-title: Native soil‐borne pathogens equalise differences in competitive ability between plants of contrasting nutrient‐acquisition strategies
  publication-title: Journal of Ecology
– volume: 36
  start-page: 1911
  year: 2013
  end-page: 1915
  article-title: Interactions between arbuscular mycorrhizal and non‐mycorrhizal plants: do non‐mycorrhizal species at both extremes of nutrient‐availability play the same game?
  publication-title: Plant, Cell & Environment
– volume: 47
  start-page: 376
  year: 1991
  end-page: 391
  article-title: Mycorrhizas in ecosystems
  publication-title: Experientia
– volume: 378
  start-page: 626
  year: 1995
  end-page: 629
  article-title: A phosphate transporter from the mycorrhizal fungus
  publication-title: Nature
– volume: 39
  start-page: 1647
  year: 2010
  end-page: 1656
  article-title: Phosphorus forms and chemistry in the soil profile under long‐term conservation tillage: a phosphorus‐31 nuclear magnetic resonance study
  publication-title: Journal of Environmental Quality
– volume: 85
  start-page: 591
  year: 2004
  end-page: 602
  article-title: Nitrogen mineralization: challenges of a changing paradigm
  publication-title: Ecology
– year: 2018
  article-title: How belowground interactions contribute to the coexistence of mycorrhizal and non‐mycorrhizal species in severely phosphorus‐impoverished hyperdiverse ecosystems
  publication-title: Plant and Soil
– volume: 47
  start-page: 102
  year: 1983
  end-page: 107
  article-title: Organic carbon, nitrogen, and phosphorus concentrations and pH in soil profiles as affected by tillage intensity
  publication-title: Soil Science Society of America Journal
– year: 2006
– volume: 185
  start-page: 792
  year: 2010
  end-page: 802
  article-title: A dynamic model of nutrient uptake by root hairs
  publication-title: New Phytologist
– volume: 45
  start-page: 41
  year: 1997
  end-page: 51
  article-title: Cluster roots and mycorrhizae in their occurrence and formation in relation to phosphorus supply
  publication-title: Australian Journal of Botany
– volume: 102
  start-page: 396
  year: 2014
  end-page: 410
  article-title: Foliar nutrient concentrations and resorption efficiency in plants of contrasting nutrient‐acquisition strategies along a 2‐million‐year dune chronosequence
  publication-title: Journal of Ecology
– volume: 30
  start-page: 1
  year: 1979b
  end-page: 50
  article-title: Anion absorption by soils and soil materials
  publication-title: Advances in Agronomy
– volume: 230
  start-page: 279
  year: 2001
  end-page: 285
  article-title: Mobilization of sparingly soluble inorganic phosphates by the external mycelium of an abuscular mycorrhizal fungus
  publication-title: Plant and Soil
– volume: 302
  start-page: 52
  year: 2017
  end-page: 65
  article-title: Small‐scale spatial distribution of phosphorus fractions in soils from silicate parent material with different degree of podzolization
  publication-title: Geoderma
– start-page: 277
  year: 1999
  end-page: 289
– volume: 105
  start-page: 53
  year: 2002
  end-page: 63
  article-title: Leaf N abundance of subarctic plants provides field evidence that ericoid, ectomycorrhizal and non‐ and arbuscular mycorrhizal access different sources of soil nitrogen
  publication-title: Oecologia
– volume: 106
  start-page: 129
  year: 1987
  end-page: 137
  article-title: Kinetic characterization of a dual phosphate uptake system in the endomycorrhizal fungus of L
  publication-title: New Phytologist
– volume: 334
  start-page: 11
  year: 2010
  end-page: 31
  article-title: Plant mineral nutrition in ancient landscapes: high plant species diversity on infertile soils is linked to functional diversity for nutritional strategies
  publication-title: Plant and Soil
– volume: 20
  start-page: 5
  year: 2010
  end-page: 15
  article-title: Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen‐phosphorus interactions
  publication-title: Ecological Applications
– ident: e_1_2_8_16_1
  doi: 10.1111/1365-2745.12196
– ident: e_1_2_8_63_1
  doi: 10.1111/j.1365-2745.2008.01384.x
– ident: e_1_2_8_21_1
  doi: 10.1111/j.1365-3040.2004.01191.x
– ident: e_1_2_8_39_1
  doi: 10.1139/b04-123
– ident: e_1_2_8_35_1
  doi: 10.2475/ajs.305.2.147
– start-page: 98
  volume-title: Mycorrhizas in ecosystems
  year: 1992
  ident: e_1_2_8_12_1
– ident: e_1_2_8_53_1
  doi: 10.1104/pp.111.174581
– ident: e_1_2_8_5_1
  doi: 10.1007/s11104-008-9877-9
– volume-title: The ecophysiology of plant–phosphorus interactions. Plant ecophysiology
  year: 2008
  ident: e_1_2_8_70_1
  doi: 10.1007/978-1-4020-8435-5
– ident: e_1_2_8_46_1
  doi: 10.1007/978-94-017-2685-6_31
– ident: e_1_2_8_67_1
  doi: 10.1890/08-0127.1
– ident: e_1_2_8_45_1
  doi: 10.1007/s11104-008-9749-3
– ident: e_1_2_8_60_1
  doi: 10.1111/j.1365-313X.2008.03749.x
– ident: e_1_2_8_59_1
  doi: 10.1111/j.1469-8137.1987.tb04796.x
– ident: e_1_2_8_50_1
  doi: 10.1007/BF02178744
– ident: e_1_2_8_25_1
  doi: 10.1007/s11104-010-0444-9
– ident: e_1_2_8_13_1
  doi: 10.2136/sssaj1991.03615995005500020020x
– ident: e_1_2_8_42_1
  doi: 10.1023/A:1004559628401
– ident: e_1_2_8_44_1
  doi: 10.1111/j.1469-8137.2006.01771.x
– ident: e_1_2_8_47_1
  doi: 10.1111/j.1469-8137.1995.tb05726.x
– ident: e_1_2_8_66_1
  doi: 10.1034/j.1399-3054.2000.110113.x
– ident: e_1_2_8_68_1
  doi: 10.1007/s00572-005-0033-6
– ident: e_1_2_8_20_1
  doi: 10.1007/s11104-017-3292-z
– volume-title: Mycorrhizal symbiosis
  year: 2008
  ident: e_1_2_8_54_1
– ident: e_1_2_8_33_1
  doi: 10.1055/s-2003-37974
– ident: e_1_2_8_71_1
  doi: 10.1023/A:1010367501363
– ident: e_1_2_8_9_1
  doi: 10.2136/sssaj1983.03615995004700010021x
– ident: e_1_2_8_26_1
  doi: 10.1016/j.tree.2007.10.008
– ident: e_1_2_8_43_1
  doi: 10.1890/03-8002
– ident: e_1_2_8_18_1
  doi: 10.1046/j.1365-3040.2002.00849.x
– ident: e_1_2_8_7_1
  doi: 10.1007/s11104-011-0731-0
– volume: 9
  start-page: 463
  year: 1972
  ident: e_1_2_8_17_1
  article-title: The role of vesicular‐arbuscular mycorrhiza in the removal of phosphorus from soil by plant roots
  publication-title: Revue d'Ecologie et de Biologie du Sol
– ident: e_1_2_8_51_1
  doi: 10.1097/00010694-197303000-00005
– ident: e_1_2_8_49_1
  doi: 10.1007/s11104-004-2725-7
– ident: e_1_2_8_48_1
  doi: 10.1111/j.1365-3040.2006.01574.x
– ident: e_1_2_8_3_1
  doi: 10.4067/S0717-66432003000100011
– ident: e_1_2_8_4_1
  doi: 10.1016/j.tplants.2006.09.011
– ident: e_1_2_8_37_1
  doi: 10.1016/S0065-2113(08)60702-6
– ident: e_1_2_8_55_1
  doi: 10.1146/annurev-arplant-042110-103846
– ident: e_1_2_8_23_1
  doi: 10.1111/j.1365-2745.2012.01962.x
– ident: e_1_2_8_28_1
  doi: 10.1111/pce.12117
– ident: e_1_2_8_6_1
  doi: 10.2134/jeq2009.0491
– ident: e_1_2_8_15_1
  doi: 10.1038/378626a0
– ident: e_1_2_8_52_1
  doi: 10.1002/9781118958841.ch14
– ident: e_1_2_8_58_1
  doi: 10.1002/jpln.200424107
– ident: e_1_2_8_22_1
  doi: 10.1111/nph.13203
– ident: e_1_2_8_11_1
  doi: 10.1016/0038-0717(94)90282-8
– ident: e_1_2_8_38_1
  doi: 10.1007/BF01972080
– ident: e_1_2_8_30_1
  doi: 10.1139/b04-060
– ident: e_1_2_8_29_1
  doi: 10.1016/j.gca.2014.05.003
– ident: e_1_2_8_64_1
  doi: 10.1007/s10021-014-9830-0
– ident: e_1_2_8_2_1
  doi: 10.1111/1365-2745.12638
– ident: e_1_2_8_41_1
  doi: 10.1111/j.1365-3040.2012.02547.x
– ident: e_1_2_8_31_1
  doi: 10.1111/j.1469-8137.2009.03128.x
– ident: e_1_2_8_14_1
  doi: 10.1111/nph.14674
– ident: e_1_2_8_40_1
  doi: 10.1071/BT96049
– ident: e_1_2_8_56_1
  doi: 10.1007/s11104-014-2222-6
– ident: e_1_2_8_32_1
  doi: 10.1007/BF00328791
– ident: e_1_2_8_62_1
  doi: 10.1093/oso/9780195124927.001.0001
– ident: e_1_2_8_69_1
  doi: 10.1016/j.geoderma.2017.04.026
– ident: e_1_2_8_72_1
  doi: 10.1038/nplants.2015.50
– ident: e_1_2_8_57_1
  doi: 10.1016/j.plantsci.2007.08.006
– ident: e_1_2_8_10_1
  doi: 10.1002/9780470995563
– ident: e_1_2_8_24_1
  doi: 10.1007/s11104‐017‐3427‐2
– ident: e_1_2_8_34_1
  doi: 10.1007/s00442-013-2747-z
– ident: e_1_2_8_19_1
  doi: 10.1080/00103629809370118
– ident: e_1_2_8_61_1
  doi: 10.1111/j.1472-4669.2009.00194.x
– ident: e_1_2_8_8_1
  doi: 10.1093/aob/mct035
– ident: e_1_2_8_27_1
  doi: 10.1093/aob/mcl114
– ident: e_1_2_8_36_1
  doi: 10.1007/BF02181879
– year: 2017
  ident: e_1_2_8_65_1
  article-title: A climosequence of chronosequences in southwestern Australia
  publication-title: bioRxiv
SSID ssj0009562
Score 2.6078994
SecondaryResourceType review_article
Snippet We compare carbon (and hence energy) costs of the different modes of phosphorus (P) acquisition by vascular land plants. Phosphorus-acquisition modes are...
Content Summary 1420 I. Introduction 1421 II. Root adaptations that influence P acquisition 1422 III. Costs of P acquisition: general 1423 IV. Costs of P...
Content Summary 1420 I. Introduction 1421 II. Root adaptations that influence P acquisition 1422 III. Costs of P acquisition: general 1423 IV. Costs of P...
SourceID proquest
pubmed
crossref
wiley
jstor
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1420
SubjectTerms Adaptation
carbon
cluster roots
Coexistence
Construction costs
decline
embryophytes
energy
Energy costs
Exudates
Hyphae
Land acquisition
Modes
mycorrhizal fungi
mycorrhizas
Organic phosphorus
Phosphorus
phosphorus (P)
Roots
Soil
soil concentration
Soils
Symbionts
Tansley review
trade‐offs
Subtitle patterns and implications for plant coexistence
Title Costs of acquiring phosphorus by vascular land plants
URI https://www.jstor.org/stable/90018925
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.14967
https://www.ncbi.nlm.nih.gov/pubmed/29292829
https://www.proquest.com/docview/1995069884
https://www.proquest.com/docview/1983848281
https://www.proquest.com/docview/2067291315
Volume 217
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYh9NBL0leSbbZFLT3k4mDLsiy1pzZ0WQoNISSwh4CRZImELraJdw_pr8-M_GBTEgg9GIw9Qs-xvrE-fSLki9aGSSPKCLXKIphvWWRUgmR_JlLPvDEcNzj_PhXzS_5rkS22yLdhL0ynDzH-cEPPCN9rdHBt2g0nr5prcHMlcCc5crUQEJ2zDcFdwQYFZsHFolcVQhbPmPLBXNTRER8Dmg9xa5h4Zrvkaihyxzf5c7xemWP79x81x_-s0yuy0wNS-r0bQa_JlqvekBc_agCNd2-JP6nbVUtrT7VFzjBMdLS5rlu4btctNXd0oLJSpEjSZom8mq-0CbKdVUvx4c0Ga50CSO6sqK1RhjNg9nfkcvbz4mQe9UczRJZDABI5nudax9LLRGRaQ9SWOWd8yo3VSnleWhuXuRZ56bUysZWudFybPGHMJi736R7ZrurKHRBqXSJL1MnPjeCZF5DI-VyaTFoelz6bkKOhkwrb65bj8RnLYohfoNWK0GoT8nk0bTqxjseM9kJPjxYKDyZUDDKaDl1f9I7cFriDPRZKSj4hn8bX4IK4rqIrV6_RRqaSQ-iaPG2DKvlMJWkC2ex3w2osAPiFwgVtqGkYHE-XvTg9m4eb9883PSQvAeTJjjc3Jdur27X7AEBqZT4Gj7kH3WkakA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VggSXlldhaQGDOHBJlTiOY1e9QEW1QLtCqJX2giLbsdWKKoma3UP76_E4D21RKyEOkaJkrPg1mRn78zcAH5TSVGheRshVFnl7SyMtEwT7U5466rRmeMD5eManp-zbPJuvwf5wFqbjhxgX3FAzwv8aFRwXpFe0vGrOvJ5Lnt-D-5jROwRUP-kK5S6nAwczZ3ze8wohjmcsesMadYDE21zNm55rMD2Hm_BrqHSHOPm9u1zoXXP9F5_j_7bqMWz0Pin51E2iJ7Bmq6fw4HPt_carZ-AO6nbRktoRZRA27G0dac7q1l-Xy5boKzKgWQmiJElzgdCaPdIE5s6qJfjwfAW4Tryf3EkRUyMTZ3Dbn8Pp4ZeTg2nUZ2eIDPMxSGRZnisVCycSninlA7fMWu1Spo2S0rHSmLjMFc9Lp6SOjbClZUrnCaUmsblLt2C9qiv7EoixiSiRKj_XnGWO-0LW5UJnwrC4dNkEPg6jVJieuhwzaFwUQwjje60IvTaB96No0_F13Ca0FYZ6lJCYm1BS_6GdYeyLXpfbAg-xx1wKwSbwbnzttRC3VlRl6yXKiFQwH70md8sgUT6VSZr4z7zo5tVYAa8aEve0fUvD7Li77sXsxzTcvPp30bfwcHpyfFQcfZ1934ZH3ucTHYxuB9YXl0v72vtVC_0mqM8faNgeqw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VghCXllfLQgGDOHBJlTiOY9MTtKyW16pCVNoDUmQ7toqokqjZPbS_Ho_z0Ba1EuIQKUrG8msmMxN__gzwRilNheZlhFxlkfe3NNIyQbA_5amjTmuGG5y_zfnshH1eZIsNOBj2wnT8EOMPN7SM8L1GA29Kt2bkVXPqzVzy_BbcZjwWqNJH3-ka4y6nAwUzZ3zR0wohjGcsesUZdXjE6yLNq4Fr8DzTbfg5tLkDnPzeXy31vrn8i87xPzt1H7b6iJS871ToAWzY6iHc-VD7qPHiEbjDul22pHZEGQQNe09HmtO69df5qiX6ggxYVoIYSdKcIbDmHWkCb2fVEnz4aw22TnyU3EkRUyMPZwjaH8PJ9OOPw1nUn80QGeYzkMiyPFcqFk4kPFPKp22ZtdqlTBslpWOlMXGZK56XTkkdG2FLy5TOE0pNYnOX7sBmVVf2CRBjE1EiUX6uOcsc94Wsy4XOhGFx6bIJvB0mqTA9cTmen3FWDAmMH7UijNoEXo-iTcfWcZ3QTpjpUULiyYSS-or2hqkvektuC9zCHnMpBJvAq_G1t0FcWFGVrVcoI1LBfO6a3CyDNPlUJmniq9nt1GpsgDcMiSvavqdBOW5uezE_noWbp_8u-hLuHh9Ni6-f5l-ewT0f8IkOQ7cHm8vzlX3ug6qlfhGM5w8bEx1j
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Costs+of+acquiring+phosphorus+by+vascular+land+plants%3A+patterns+and+implications+for+plant+coexistence&rft.jtitle=The+New+phytologist&rft.au=Raven%2C+John+A&rft.au=Lambers%2C+Hans&rft.au=Smith%2C+Sally+E&rft.au=Westoby%2C+Mark&rft.date=2018-03-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.eissn=1469-8137&rft.volume=217&rft.issue=4&rft.spage=1420&rft_id=info:doi/10.1111%2Fnph.14967&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon