Joint modeling of survival time and longitudinal data with subject-specific changepoints in the covariates

Joint models are frequently used in survival analysis to assess the relationship between time‐to‐event data and time‐dependent covariates, which are measured longitudinally but often with errors. Routinely, a linear mixed‐effects model is used to describe the longitudinal data process, while the sur...

Full description

Saved in:
Bibliographic Details
Published inStatistics in medicine Vol. 30; no. 3; pp. 232 - 249
Main Authors Tapsoba, Jean de Dieu, Lee, Shen-Ming, Wang, C. Y.
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Ltd 10.02.2011
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0277-6715
1097-0258
1097-0258
DOI10.1002/sim.4107

Cover

Abstract Joint models are frequently used in survival analysis to assess the relationship between time‐to‐event data and time‐dependent covariates, which are measured longitudinally but often with errors. Routinely, a linear mixed‐effects model is used to describe the longitudinal data process, while the survival times are assumed to follow the proportional hazards model. However, in some practical situations, individual covariate profiles may contain changepoints. In this article, we assume a two‐phase polynomial random effects with subject‐specific changepoint model for the longitudinal data process and the proportional hazards model for the survival times. Our main interest is in the estimation of the parameter in the hazards model. We incorporate a smooth transition function into the changepoint model for the longitudinal data and develop the corrected score and conditional score estimators, which do not require any assumption regarding the underlying distribution of the random effects or that of the changepoints. The estimators are shown to be asymptotically equivalent and their finite‐sample performance is examined via simulations. The methods are applied to AIDS clinical trial data. Copyright © 2010 John Wiley & Sons, Ltd.
AbstractList Joint models are frequently used in survival analysis to assess the relationship between time-to-event data and time-dependent covariates, which are measured longitudinally but often with errors. Routinely, a linear mixed-effects model is used to describe the longitudinal data process, while the survival times are assumed to follow the proportional hazards model. However, in some practical situations, individual covariate profiles may contain changepoints. In this article, we assume a two-phase polynomial random effects with subject-specific changepoint model for the longitudinal data process and the proportional hazards model for the survival times. Our main interest is in the estimation of the parameter in the hazards model. We incorporate a smooth transition function into the changepoint model for the longitudinal data and develop the corrected score and conditional score estimators, which do not require any assumption regarding the underlying distribution of the random effects or that of the changepoints. The estimators are shown to be asymptotically equivalent and their finite-sample performance is examined via simulations. The methods are applied to AIDS clinical trial data. [PUBLICATION ABSTRACT]
Joint models are frequently used in survival analysis to assess the relationship between time‐to‐event data and time‐dependent covariates, which are measured longitudinally but often with errors. Routinely, a linear mixed‐effects model is used to describe the longitudinal data process, while the survival times are assumed to follow the proportional hazards model. However, in some practical situations, individual covariate profiles may contain changepoints. In this article, we assume a two‐phase polynomial random effects with subject‐specific changepoint model for the longitudinal data process and the proportional hazards model for the survival times. Our main interest is in the estimation of the parameter in the hazards model. We incorporate a smooth transition function into the changepoint model for the longitudinal data and develop the corrected score and conditional score estimators, which do not require any assumption regarding the underlying distribution of the random effects or that of the changepoints. The estimators are shown to be asymptotically equivalent and their finite‐sample performance is examined via simulations. The methods are applied to AIDS clinical trial data. Copyright © 2010 John Wiley & Sons, Ltd.
Joint models are frequently used in survival analysis to assess the relationship between time-to-event data and time-dependent covariates, which are measured longitudinally but often with errors. Routinely, a linear mixed-effects model is used to describe the longitudinal data process, while the survival times are assumed to follow the proportional hazards model. However, in some practical situations, individual covariate profiles may contain changepoints. In this article, we assume a two-phase polynomial random effects with subject-specific changepoint model for the longitudinal data process and the proportional hazards model for the survival times. Our main interest is in the estimation of the parameter in the hazards model. We incorporate a smooth transition function into the changepoint model for the longitudinal data and develop the corrected score and conditional score estimators, which do not require any assumption regarding the underlying distribution of the random effects or that of the changepoints. The estimators are shown to be asymptotically equivalent and their finite-sample performance is examined via simulations. The methods are applied to AIDS clinical trial data.Joint models are frequently used in survival analysis to assess the relationship between time-to-event data and time-dependent covariates, which are measured longitudinally but often with errors. Routinely, a linear mixed-effects model is used to describe the longitudinal data process, while the survival times are assumed to follow the proportional hazards model. However, in some practical situations, individual covariate profiles may contain changepoints. In this article, we assume a two-phase polynomial random effects with subject-specific changepoint model for the longitudinal data process and the proportional hazards model for the survival times. Our main interest is in the estimation of the parameter in the hazards model. We incorporate a smooth transition function into the changepoint model for the longitudinal data and develop the corrected score and conditional score estimators, which do not require any assumption regarding the underlying distribution of the random effects or that of the changepoints. The estimators are shown to be asymptotically equivalent and their finite-sample performance is examined via simulations. The methods are applied to AIDS clinical trial data.
Joint models are frequently used in survival analysis to assess the relationship between time-to-event data and time-dependent covariates, which are measured longitudinally but often with errors. Routinely, a linear mixed-effects model is used to describe the longitudinal data process, while the survival times are assumed to follow the proportional hazards model. However, in some practical situations, individual covariate profiles may contain changepoints. In this article, we assume a two-phase polynomial random effects with subject-specific changepoint model for the longitudinal data process and the proportional hazards model for the survival times. Our main interest is in the estimation of the parameter in the hazards model. We incorporate a smooth transition function into the changepoint model for the longitudinal data and develop the corrected score and conditional score estimators, which do not require any assumption regarding the underlying distribution of the random effects or that of the changepoints. The estimators are shown to be asymptotically equivalent and their finite-sample performance is examined via simulations. The methods are applied to AIDS clinical trial data.
Author Tapsoba, Jean de Dieu
Wang, C. Y.
Lee, Shen-Ming
AuthorAffiliation 2 Division of Public Health, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, U.S.A
1 Department of Statistics, Feng Chia University, Taichung, Taiwan 40724, R.O.C
AuthorAffiliation_xml – name: 2 Division of Public Health, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, U.S.A
– name: 1 Department of Statistics, Feng Chia University, Taichung, Taiwan 40724, R.O.C
Author_xml – sequence: 1
  givenname: Jean de Dieu
  surname: Tapsoba
  fullname: Tapsoba, Jean de Dieu
  organization: Department of Statistics, Feng Chia University, Taichung, Taiwan 40724, Republic of China
– sequence: 2
  givenname: Shen-Ming
  surname: Lee
  fullname: Lee, Shen-Ming
  organization: Department of Statistics, Feng Chia University, Taichung, Taiwan 40724, Republic of China
– sequence: 3
  givenname: C. Y.
  surname: Wang
  fullname: Wang, C. Y.
  email: cywang@fhcrc.org
  organization: Division of Public Health, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, U.S.A
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21213341$$D View this record in MEDLINE/PubMed
BookMark eNp10U9v0zAYBnALDbFuIPEJkMWFXVL8J7aTCxKaWLtpjAMgEBfLcZz2LYldYqdj355E3SY2wcmS_fOj136O0IEP3iH0kpI5JYS9jdDNc0rUEzSjpFQZYaI4QDPClMqkouIQHcW4IYRSwdQzdMgoo5zndIY2FwF8wl2oXQt-hUOD49DvYGdanKBz2Pgat8GvIA01-HG3Nsnga0jrEVYbZ1MWt85CAxbbtfErt50SIwaP09phG3amB5NcfI6eNqaN7sXteoy-nn34crrMLj8tzk_fX2Y2V7nKTNOUqnKUykLWkrsqz0tpKynqykpixmcaSrjKC8E4U5TnlnBR5twYxhQpJT9G7_a526HqXG2dT71p9baHzvQ3OhjQD088rPUq7DQnomSyGAPe3Ab04dfgYtIdROva1ngXhqgLxkqSEzHJ14_kJgz9-EsjEpxIRhQb0au_57kf5K6EEcz3wPYhxt412kIyCcI0HrSaEj21rMeW9dTyeOHk0YW7zH_QbE-voXU3_3X68_nHhx5icr_vvel_aqm4Evrb1UJfLJbfr8SPpZb8D4y6xaI
CODEN SMEDDA
CitedBy_id crossref_primary_10_1002_sim_8469
crossref_primary_10_1080_01621459_2014_896805
crossref_primary_10_1097_EDE_0000000000000723
crossref_primary_10_1515_ijb_2018_0028
crossref_primary_10_1002_wics_1641
crossref_primary_10_1080_07350015_2015_1026438
crossref_primary_10_1002_sim_70021
crossref_primary_10_1111_biom_12510
Cites_doi 10.1093/biomet/69.2.331
10.1111/j.1541-0420.2007.00890.x
10.1056/NEJM199610103351501
10.1111/j.0006-341X.2000.00487.x
10.1111/j.1541-0420.2007.00896.x
10.1002/sim.4780141108
10.1111/j.1541-0420.2005.00349.x
10.1111/j.1541‐0420.2009.01308.x
10.1093/biomet/58.3.525
10.1093/biomet/88.2.447
10.1111/j.1541-0420.2005.00443.x
10.2307/2532348
10.1214/aos/1176345976
10.1093/biostatistics/3.4.511
10.2307/2533329
10.1111/j.0006-341X.2002.00037.x
10.1002/sim.1991
10.1002/sim.4780141106
10.1111/j.2517-6161.1972.tb00899.x
10.1111/j.0006-341X.2001.00253.x
10.1002/sim.3131
10.2307/2533118
ContentType Journal Article
Copyright Copyright © 2010 John Wiley & Sons, Ltd.
Copyright John Wiley and Sons, Limited Feb 10, 2011
Copyright_xml – notice: Copyright © 2010 John Wiley & Sons, Ltd.
– notice: Copyright John Wiley and Sons, Limited Feb 10, 2011
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
5PM
DOI 10.1002/sim.4107
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)
CrossRef
MEDLINE - Academic

MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Statistics
Public Health
EISSN 1097-0258
EndPage 249
ExternalDocumentID PMC3059268
2273043391
21213341
10_1002_sim_4107
SIM4107
ark_67375_WNG_JGHXN5ZH_6
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: P01 CA053996
– fundername: NIEHS NIH HHS
  grantid: R01ES17030
– fundername: NIEHS NIH HHS
  grantid: R01 ES017030
– fundername: NCI NIH HHS
  grantid: CA53996
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5RE
5VS
66C
6PF
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABOCM
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WUP
WWH
WXSBR
WYISQ
XBAML
XG1
XV2
ZZTAW
~IA
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
5PM
ID FETCH-LOGICAL-c4747-aff97be11686d63eb4496cb65dbc60a410a10374852327134c035943aa2270963
IEDL.DBID DR2
ISSN 0277-6715
1097-0258
IngestDate Thu Aug 21 18:14:42 EDT 2025
Fri Jul 11 12:04:15 EDT 2025
Sun Jul 13 04:16:36 EDT 2025
Mon Jul 21 06:06:56 EDT 2025
Tue Jul 01 05:27:25 EDT 2025
Thu Apr 24 22:58:47 EDT 2025
Wed Jan 22 17:05:06 EST 2025
Wed Oct 30 09:53:29 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
Copyright © 2010 John Wiley & Sons, Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4747-aff97be11686d63eb4496cb65dbc60a410a10374852327134c035943aa2270963
Notes istex:4AC99318943FDBAD8FBCF9284C47831D3903402E
ark:/67375/WNG-JGHXN5ZH-6
ArticleID:SIM4107
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
cywang@fhcrc.org.
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/3059268
PMID 21213341
PQID 853062072
PQPubID 48361
PageCount 18
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3059268
proquest_miscellaneous_822904058
proquest_journals_853062072
pubmed_primary_21213341
crossref_citationtrail_10_1002_sim_4107
crossref_primary_10_1002_sim_4107
wiley_primary_10_1002_sim_4107_SIM4107
istex_primary_ark_67375_WNG_JGHXN5ZH_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 10 February 2011
PublicationDateYYYYMMDD 2011-02-10
PublicationDate_xml – month: 02
  year: 2011
  text: 10 February 2011
  day: 10
PublicationDecade 2010
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: England
– name: New York
PublicationTitle Statistics in medicine
PublicationTitleAlternate Statist. Med
PublicationYear 2011
Publisher John Wiley & Sons, Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Ltd
– name: Wiley Subscription Services, Inc
References Wang Y, Taylor JMG. Inference for smooth curves in longitudinal data with application to AIDS clinical trial. Statistics in Medicine 1995; 14:1205-1218. DOI: 10.1002/sim.4780141106.
Anderson PK, Gill RD. Cox's regression model for counting process: a large sample study. Annals of Statistics 1982; 10:1100-1120.
Faucett CL, Schenker N, Taylor JM. Survival analysis using auxiliary variables via multiple imputations with application to AIDS clinical trial data. Biometrics 2002; 58:37-47.
Nakamura T. Proportional hazards model with covariates subject to measurement error. Biometrics 1992; 48:829-838.
Hammer SM, Katzenstein DA, Huges MD, Gundacker H, Schooley RT, Haubrich MR, Henry WK, Lederman MM, Phair JP, Niu M, Hirch MS, Merigan TC. A trial comparing nucleoside monotherapy with combination therapy in HIV-infected adults with CD4 cell counts from 200 to 500 per cubic millimeter. The New England Journal of Medicine 1996; 335:1081-1090.
Diggle PJ, Sousa I, Chetwynd AG. Joint modelling of repeated measurements and time-to-event outcomes: the fourth Armitage lecture. Statistics in Medicine 2008; 27:2981-2998. DOI: 10.1002/sim.3131.
Song X, Huang Y. On corrected score approach for proportional hazards model with covariate measurement error. Biometrics 2005; 61:702-714.
Kiuchi AS, Hartigan JA, Holford TR, Rubinstein P, Stevens CE. Change points in the series of T4 counts prior to AIDS. Biometrics 1995; 51:236-248.
Durbán M, Harezlak J, Wand MP, Carroll RJ. Simple fitting of subject-specific curves for longitudinal data. Statistics in Medicine 2005; 24:1153-1167. DOI: 10.1002/sim.1991.
Ding J, Wang JL. Modeling longitudinal data with nonparametric multiplicative random effects jointly with survival data. Biometrics 2008; 64:546-556.
Cox DR. Regression models and life tables (with Discussion). Journal of the Royal Statistical Society, Series B 1972; 34:187-220.
Kong F, Gu M. Consistent estimation in Cox proportional hazards model with covariate measurement errors. Statistica Sinica 1999; 9:953-969.
Bacon DW, Watts DG. Estimating the transition between two intersecting straight lines. Biometrika 1971; 58:525-534.
Song X, Davidian M, Tsiatis AA. An estimator for the proportional hazards model with multiple longitudinal covariates measured with error. Biostatistics 2002; 3:511-528.
Rudin W. Principle of Mathematical Analysis. McGraw-Hill: New York, 1964.
Seber GAF, Wild CJ. Nonlinear Regression. Wiley: New York, 2003; 433-489.
Rice J, Wu C. Nonparametric mixed effects models for unequally sampled noisy curves. Biometrics 2001; 57:253-259.
Tsiatis AA, Davidian M. A semiparametric estimator for the proportional hazards model with longitudinal covariates measured with error. Biometrika 2001; 88:447-458.
Stefanski LA, Carroll RJ. Conditional scores and optimal scores in generalized linear measurement error models. Biometrika 1987; 74:703-716.
Prentice R. Covariate measurement errors and parameter estimates in failure time regression. Biometrika 1982; 69:331-342.
Song X, Wang CY. Semiparametric approaches for joint modeling of survival time and longitudinal data with time-varying coefficients. Biometrics 2008; 64:557-566.
Jacqmin-Gadda H, Commenges D, Dartigues JF. Random changepoint model for joint modeling of cognitive decline and dementia. Biometrics 2006; 62:254-260.
Wang CY, Wang N, Wang S. Regression analysis when covariates are regression parameters of a random effect model for observed longitudinal measurements. Biometrics 2000; 56:487-495.
Anderson S, Jones H. Smoothing splines for longitudinal data. Statistics in Medicine 1995; 14:1235-1248. DOI: 10.1002/sim.4780141108.
Wulfsohn M, Tsiatis AA. A joint model for survival and longitudinal data measured with error. Biometrics 1997; 53:330-339.
Wu L, Liu W, Hu XJ. Joint inference on HIV viral dynamics and immune suppression in presence of measurement errors. Biometrics 2009; DOI: 10.1111/j.1541-0420.2009.01308.x.
Wang CY. Corrected score estimator for joint modeling of longitudinal and failure time data. Statistica Sinica 2006; 16:235-253.
1995; 51
2002; 58
1987; 74
1995; 14
2006; 16
1982; 10
2009
2002; 3
2003
2005; 61
2001; 88
2005; 24
1999; 9
1982; 69
2006; 62
1997; 53
2000; 56
2008; 27
1971; 58
1964
1992; 48
2008; 64
1996; 335
1972; 34
2001; 57
e_1_2_10_22_2
e_1_2_10_23_2
e_1_2_10_20_2
e_1_2_10_21_2
Seber GAF (e_1_2_10_15_2) 2003
Rudin W (e_1_2_10_27_2) 1964
e_1_2_10_3_2
e_1_2_10_17_2
Kong F (e_1_2_10_19_2) 1999; 9
e_1_2_10_4_2
e_1_2_10_16_2
e_1_2_10_7_2
e_1_2_10_13_2
e_1_2_10_6_2
e_1_2_10_14_2
e_1_2_10_9_2
e_1_2_10_11_2
e_1_2_10_8_2
e_1_2_10_12_2
e_1_2_10_10_2
Stefanski LA (e_1_2_10_18_2) 1987; 74
Cox DR (e_1_2_10_2_2) 1972; 34
e_1_2_10_28_2
e_1_2_10_26_2
Wang CY (e_1_2_10_5_2) 2006; 16
e_1_2_10_24_2
e_1_2_10_25_2
References_xml – reference: Song X, Wang CY. Semiparametric approaches for joint modeling of survival time and longitudinal data with time-varying coefficients. Biometrics 2008; 64:557-566.
– reference: Wang Y, Taylor JMG. Inference for smooth curves in longitudinal data with application to AIDS clinical trial. Statistics in Medicine 1995; 14:1205-1218. DOI: 10.1002/sim.4780141106.
– reference: Seber GAF, Wild CJ. Nonlinear Regression. Wiley: New York, 2003; 433-489.
– reference: Hammer SM, Katzenstein DA, Huges MD, Gundacker H, Schooley RT, Haubrich MR, Henry WK, Lederman MM, Phair JP, Niu M, Hirch MS, Merigan TC. A trial comparing nucleoside monotherapy with combination therapy in HIV-infected adults with CD4 cell counts from 200 to 500 per cubic millimeter. The New England Journal of Medicine 1996; 335:1081-1090.
– reference: Stefanski LA, Carroll RJ. Conditional scores and optimal scores in generalized linear measurement error models. Biometrika 1987; 74:703-716.
– reference: Jacqmin-Gadda H, Commenges D, Dartigues JF. Random changepoint model for joint modeling of cognitive decline and dementia. Biometrics 2006; 62:254-260.
– reference: Song X, Huang Y. On corrected score approach for proportional hazards model with covariate measurement error. Biometrics 2005; 61:702-714.
– reference: Faucett CL, Schenker N, Taylor JM. Survival analysis using auxiliary variables via multiple imputations with application to AIDS clinical trial data. Biometrics 2002; 58:37-47.
– reference: Ding J, Wang JL. Modeling longitudinal data with nonparametric multiplicative random effects jointly with survival data. Biometrics 2008; 64:546-556.
– reference: Nakamura T. Proportional hazards model with covariates subject to measurement error. Biometrics 1992; 48:829-838.
– reference: Tsiatis AA, Davidian M. A semiparametric estimator for the proportional hazards model with longitudinal covariates measured with error. Biometrika 2001; 88:447-458.
– reference: Rice J, Wu C. Nonparametric mixed effects models for unequally sampled noisy curves. Biometrics 2001; 57:253-259.
– reference: Kong F, Gu M. Consistent estimation in Cox proportional hazards model with covariate measurement errors. Statistica Sinica 1999; 9:953-969.
– reference: Prentice R. Covariate measurement errors and parameter estimates in failure time regression. Biometrika 1982; 69:331-342.
– reference: Anderson PK, Gill RD. Cox's regression model for counting process: a large sample study. Annals of Statistics 1982; 10:1100-1120.
– reference: Wulfsohn M, Tsiatis AA. A joint model for survival and longitudinal data measured with error. Biometrics 1997; 53:330-339.
– reference: Bacon DW, Watts DG. Estimating the transition between two intersecting straight lines. Biometrika 1971; 58:525-534.
– reference: Anderson S, Jones H. Smoothing splines for longitudinal data. Statistics in Medicine 1995; 14:1235-1248. DOI: 10.1002/sim.4780141108.
– reference: Wu L, Liu W, Hu XJ. Joint inference on HIV viral dynamics and immune suppression in presence of measurement errors. Biometrics 2009; DOI: 10.1111/j.1541-0420.2009.01308.x.
– reference: Wang CY. Corrected score estimator for joint modeling of longitudinal and failure time data. Statistica Sinica 2006; 16:235-253.
– reference: Durbán M, Harezlak J, Wand MP, Carroll RJ. Simple fitting of subject-specific curves for longitudinal data. Statistics in Medicine 2005; 24:1153-1167. DOI: 10.1002/sim.1991.
– reference: Rudin W. Principle of Mathematical Analysis. McGraw-Hill: New York, 1964.
– reference: Cox DR. Regression models and life tables (with Discussion). Journal of the Royal Statistical Society, Series B 1972; 34:187-220.
– reference: Song X, Davidian M, Tsiatis AA. An estimator for the proportional hazards model with multiple longitudinal covariates measured with error. Biostatistics 2002; 3:511-528.
– reference: Kiuchi AS, Hartigan JA, Holford TR, Rubinstein P, Stevens CE. Change points in the series of T4 counts prior to AIDS. Biometrics 1995; 51:236-248.
– reference: Wang CY, Wang N, Wang S. Regression analysis when covariates are regression parameters of a random effect model for observed longitudinal measurements. Biometrics 2000; 56:487-495.
– reference: Diggle PJ, Sousa I, Chetwynd AG. Joint modelling of repeated measurements and time-to-event outcomes: the fourth Armitage lecture. Statistics in Medicine 2008; 27:2981-2998. DOI: 10.1002/sim.3131.
– volume: 3
  start-page: 511
  year: 2002
  end-page: 528
  article-title: An estimator for the proportional hazards model with multiple longitudinal covariates measured with error
  publication-title: Biostatistics
– volume: 61
  start-page: 702
  year: 2005
  end-page: 714
  article-title: On corrected score approach for proportional hazards model with covariate measurement error
  publication-title: Biometrics
– year: 1964
– volume: 16
  start-page: 235
  year: 2006
  end-page: 253
  article-title: Corrected score estimator for joint modeling of longitudinal and failure time data
  publication-title: Statistica Sinica
– volume: 48
  start-page: 829
  year: 1992
  end-page: 838
  article-title: Proportional hazards model with covariates subject to measurement error
  publication-title: Biometrics
– volume: 64
  start-page: 546
  year: 2008
  end-page: 556
  article-title: Modeling longitudinal data with nonparametric multiplicative random effects jointly with survival data
  publication-title: Biometrics
– start-page: 433
  year: 2003
  end-page: 489
– volume: 58
  start-page: 525
  year: 1971
  end-page: 534
  article-title: Estimating the transition between two intersecting straight lines
  publication-title: Biometrika
– volume: 88
  start-page: 447
  year: 2001
  end-page: 458
  article-title: A semiparametric estimator for the proportional hazards model with longitudinal covariates measured with error
  publication-title: Biometrika
– volume: 335
  start-page: 1081
  year: 1996
  end-page: 1090
  article-title: A trial comparing nucleoside monotherapy with combination therapy in HIV‐infected adults with CD4 cell counts from 200 to 500 per cubic millimeter
  publication-title: The New England Journal of Medicine
– volume: 74
  start-page: 703
  year: 1987
  end-page: 716
  article-title: Conditional scores and optimal scores in generalized linear measurement error models
  publication-title: Biometrika
– volume: 69
  start-page: 331
  year: 1982
  end-page: 342
  article-title: Covariate measurement errors and parameter estimates in failure time regression
  publication-title: Biometrika
– volume: 51
  start-page: 236
  year: 1995
  end-page: 248
  article-title: Change points in the series of T4 counts prior to AIDS
  publication-title: Biometrics
– volume: 34
  start-page: 187
  year: 1972
  end-page: 220
  article-title: Regression models and life tables (with Discussion)
  publication-title: Journal of the Royal Statistical Society, Series B
– volume: 10
  start-page: 1100
  year: 1982
  end-page: 1120
  article-title: Cox's regression model for counting process: a large sample study
  publication-title: Annals of Statistics
– volume: 62
  start-page: 254
  year: 2006
  end-page: 260
  article-title: Random changepoint model for joint modeling of cognitive decline and dementia
  publication-title: Biometrics
– volume: 57
  start-page: 253
  year: 2001
  end-page: 259
  article-title: Nonparametric mixed effects models for unequally sampled noisy curves
  publication-title: Biometrics
– volume: 24
  start-page: 1153
  year: 2005
  end-page: 1167
  article-title: Simple fitting of subject‐specific curves for longitudinal data
  publication-title: Statistics in Medicine
– volume: 64
  start-page: 557
  year: 2008
  end-page: 566
  article-title: Semiparametric approaches for joint modeling of survival time and longitudinal data with time‐varying coefficients
  publication-title: Biometrics
– year: 2009
  article-title: Joint inference on HIV viral dynamics and immune suppression in presence of measurement errors
  publication-title: Biometrics
– volume: 27
  start-page: 2981
  year: 2008
  end-page: 2998
  article-title: Joint modelling of repeated measurements and time‐to‐event outcomes: the fourth Armitage lecture
  publication-title: Statistics in Medicine
– volume: 56
  start-page: 487
  year: 2000
  end-page: 495
  article-title: Regression analysis when covariates are regression parameters of a random effect model for observed longitudinal measurements
  publication-title: Biometrics
– volume: 14
  start-page: 1235
  year: 1995
  end-page: 1248
  article-title: Smoothing splines for longitudinal data
  publication-title: Statistics in Medicine
– volume: 9
  start-page: 953
  year: 1999
  end-page: 969
  article-title: Consistent estimation in Cox proportional hazards model with covariate measurement errors
  publication-title: Statistica Sinica
– volume: 53
  start-page: 330
  year: 1997
  end-page: 339
  article-title: A joint model for survival and longitudinal data measured with error
  publication-title: Biometrics
– volume: 14
  start-page: 1205
  year: 1995
  end-page: 1218
  article-title: Inference for smooth curves in longitudinal data with application to AIDS clinical trial
  publication-title: Statistics in Medicine
– volume: 58
  start-page: 37
  year: 2002
  end-page: 47
  article-title: Survival analysis using auxiliary variables via multiple imputations with application to AIDS clinical trial data
  publication-title: Biometrics
– volume: 74
  start-page: 703
  year: 1987
  ident: e_1_2_10_18_2
  article-title: Conditional scores and optimal scores in generalized linear measurement error models
  publication-title: Biometrika
– ident: e_1_2_10_3_2
  doi: 10.1093/biomet/69.2.331
– volume: 16
  start-page: 235
  year: 2006
  ident: e_1_2_10_5_2
  article-title: Corrected score estimator for joint modeling of longitudinal and failure time data
  publication-title: Statistica Sinica
– ident: e_1_2_10_10_2
  doi: 10.1111/j.1541-0420.2007.00890.x
– volume: 9
  start-page: 953
  year: 1999
  ident: e_1_2_10_19_2
  article-title: Consistent estimation in Cox proportional hazards model with covariate measurement errors
  publication-title: Statistica Sinica
– ident: e_1_2_10_20_2
  doi: 10.1056/NEJM199610103351501
– ident: e_1_2_10_9_2
  doi: 10.1111/j.0006-341X.2000.00487.x
– ident: e_1_2_10_25_2
  doi: 10.1111/j.1541-0420.2007.00896.x
– ident: e_1_2_10_22_2
  doi: 10.1002/sim.4780141108
– ident: e_1_2_10_28_2
  doi: 10.1111/j.1541-0420.2005.00349.x
– volume-title: Principle of Mathematical Analysis
  year: 1964
  ident: e_1_2_10_27_2
– ident: e_1_2_10_11_2
  doi: 10.1111/j.1541‐0420.2009.01308.x
– ident: e_1_2_10_16_2
  doi: 10.1093/biomet/58.3.525
– ident: e_1_2_10_8_2
  doi: 10.1093/biomet/88.2.447
– ident: e_1_2_10_14_2
  doi: 10.1111/j.1541-0420.2005.00443.x
– ident: e_1_2_10_17_2
  doi: 10.2307/2532348
– start-page: 433
  volume-title: Nonlinear Regression
  year: 2003
  ident: e_1_2_10_15_2
– ident: e_1_2_10_26_2
  doi: 10.1214/aos/1176345976
– ident: e_1_2_10_7_2
  doi: 10.1093/biostatistics/3.4.511
– ident: e_1_2_10_12_2
  doi: 10.2307/2533329
– ident: e_1_2_10_13_2
  doi: 10.1111/j.0006-341X.2002.00037.x
– ident: e_1_2_10_24_2
  doi: 10.1002/sim.1991
– ident: e_1_2_10_21_2
  doi: 10.1002/sim.4780141106
– volume: 34
  start-page: 187
  year: 1972
  ident: e_1_2_10_2_2
  article-title: Regression models and life tables (with Discussion)
  publication-title: Journal of the Royal Statistical Society, Series B
  doi: 10.1111/j.2517-6161.1972.tb00899.x
– ident: e_1_2_10_23_2
  doi: 10.1111/j.0006-341X.2001.00253.x
– ident: e_1_2_10_4_2
  doi: 10.1002/sim.3131
– ident: e_1_2_10_6_2
  doi: 10.2307/2533118
SSID ssj0011527
Score 2.040365
Snippet Joint models are frequently used in survival analysis to assess the relationship between time‐to‐event data and time‐dependent covariates, which are measured...
Joint models are frequently used in survival analysis to assess the relationship between time-to-event data and time-dependent covariates, which are measured...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 232
SubjectTerms Acquired Immunodeficiency Syndrome - blood
Acquired Immunodeficiency Syndrome - diagnosis
Acquired Immunodeficiency Syndrome - mortality
Acquired Immunodeficiency Syndrome - prevention & control
Algorithms
Bias
CD4 Lymphocyte Count
changepoint
Computer Simulation
conditional score
corrected score
Double-Blind Method
Hazards
HIV Infections - blood
HIV Infections - drug therapy
HIV Infections - mortality
Humans
Linear Models
Longitudinal Studies - methods
measurement error
Medical statistics
Models, Statistical
Monte Carlo Method
Parameter estimation
proportional hazards
Proportional Hazards Models
random effects
Randomized Controlled Trials as Topic
Simulation
Statistical Distributions
Statistical methods
Survival Analysis
Title Joint modeling of survival time and longitudinal data with subject-specific changepoints in the covariates
URI https://api.istex.fr/ark:/67375/WNG-JGHXN5ZH-6/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.4107
https://www.ncbi.nlm.nih.gov/pubmed/21213341
https://www.proquest.com/docview/853062072
https://www.proquest.com/docview/822904058
https://pubmed.ncbi.nlm.nih.gov/PMC3059268
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELZQkVAlxM8CJRSQkVA5ZZs4iZ09IqBdVto9ABUrOFi244hVl6RqNghx4hF4Rp6EGTsJLBQJccohEyd2xuPP45lvCHlsI1vmBeehSMsoTEUagR1kWWiUyrnFGkgueHy-4NOTdLbMll1UJebCeH6IweGGM8PZa5zgSjeHP0lDm9XHcRq7RPI44Uib__zVwBwV99Va8YSSizjreWcjdtg_uLUSXcZB_XwRzPwzWvJXFOuWoaPr5H3fAR99cjpuN3psvvzG7fh_PbxBrnXolD716nSTXLLViFyZd-fvI3LVe_moT14akV3Eqp7q-RZZz-pVtaGutg4siLQuadOCJQJdpljCnqqqoOsaCyS1BRbjohieStETDIIaHULfv37D1E8MX6I-JfkM22zoqqKAVKmpP8HeHuHxbXJy9OLNs2nYFXMIDWiACFVZToS2ccxzXvDE6jSdcKN5VmjDIwX9VLHjwoGdMcMEV4PkgmmiFGMC9lnJHbJT1ZW9S2hZiEmMlbAENFLqLE9snNncMF0AYklYQJ70P1aajukcC26spedoZhJGVuLIBuTRIHnm2T0ukDlwujEIqPNTjIYTmXy7OJaz4-lykb2bSh6Q_V55ZGcIGgloKOIsEvBRdLgLMxiPZVRl6xZEkHIfcHMekD2vacOrGBLuAc4IiNjSwUEAycG371SrD44kHOz4hHFo88Cp2F-7J1-_nOP13r8K7pNd71dnsITfJzub89Y-AGC20Q_dFPwBKHE2ZA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VrQSVEI_l0VAeRkLllG3iTeysOCGgTZfuHqAVqwrJchJHXXVJqu4GIU78BH4jv4SZOAksFAlxyiETJ3bG48_jmW8AnhrP5FEmhCuD3HMDGXhoB3noplpHwlANpDp4fDwR8XEwmobTNXje5sJYfojO4UYzo7bXNMHJIb37kzV0MfvYD3zKJN8IEGfQzuvV2447ym_rtdIZpZB-2DLPeny3fXJlLdqgYf18GdD8M17yVxxbL0R7N-BD2wUbf3LWr5ZJP_3yG7vjf_bxJlxvACp7YTXqFqyZogdXxs0RfA-uWUcfs_lLPdgkuGrZnm_DfFTOiiWry-vgmsjKnC0qNEaozoyq2DNdZGxeUo2kKqN6XIwiVBk5g1EwIZ_Q96_fKPuTIpiYzUo-pzYXbFYwBKssLT_h9p4Q8h043nt99DJ2m3oObopKIF2d50OZGN8XkcjEwCRBMBRpIsIsSYWnsZ_ar-lwcHPMKcc1JX7BYKA15xK3WoO7sF6UhdkClmdy6FMxLImN5EkYDYwfmijlSYagZcAdeNb-WZU2ZOdUc2OuLE0zVziyikbWgSed5Lkl-LhEZqdWjk5AX5xRQJwM1fvJvhrtx9NJeBIr4cB2qz2qsQULhYDIE9yT-FGsu4uTmE5mdGHKCkWIdR-hc-TAPatq3as4ce4h1HBArihhJ0D84Kt3itlpzROOpnzIBba5U-vYX7un3h2M6Xr_XwUfw9X4aHyoDg8mb7Zh07rZOa7oD2B9eVGZh4jTlsmjej7-AGzuOoM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-hTZomIT7KVxgfRkLjKV3iJHb6iICuK7RCwEQFD5aTOFq1LqnWBiGe-BP4G_lLuIuTQGFIiKc85OLEzvn88_nudwCPjWfyOBPClWHuuaEMPbSDPHJTrWNhqAZSHTw-mYrRcTieRbMmqpJyYSw_ROdwo5lR22ua4MssP_hJGrqan_VDnxLJt0OBQIIA0ZuOOspvy7XSEaWQftQSz3r8oH1yYynaplH9fBHO_DNc8lcYW69Dw6vwse2BDT857VfrpJ9--Y3c8f-6eA2uNPCUPbX6dB0umaIHO5PmAL4Hl62bj9nspR7sEli1XM83YDEu58Wa1cV1cEVkZc5WFZoiVGZGNeyZLjK2KKlCUpVRNS5G8amMXMEomJBH6PvXb5T7SfFLzOYkL6nNFZsXDKEqS8tPuLknfHwTjocv3j0buU01BzdFFZCuzvOBTIzvi1hkIjBJGA5EmogoS1Lhaeyn9msyHNwac8pwTYldMAy05lziRiu4BVtFWZg7wPJMDnwqhSWxkTyJ4sD4kYlTnmQIWQLuwJP2x6q0oTqnihsLZUmaucKRVTSyDjzqJJeW3uMCmf1aNzoBfX5K4XAyUu-nh2p8OJpNow8jJRzYa5VHNZZgpRAOeYJ7Ej-KdXdxCtO5jC5MWaEIce4jcI4duG01rXsVJ8Y9BBoOyA0d7ASIHXzzTjE_qVnC0ZAPuMA292sV-2v31NujCV3v_qvgQ9h5_XyoXh1NX-7BrvWxc1zO78HW-rwy9xGkrZMH9Wz8AZuxOTI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Joint+modeling+of+survival+time+and+longitudinal+data+with+subject-specific+changepoints+in+the+covariates&rft.jtitle=Statistics+in+medicine&rft.au=Tapsoba%2C+Jean+de+Dieu&rft.au=Lee%2C+Shen-Ming&rft.au=Wang%2C+C+Y&rft.date=2011-02-10&rft.issn=1097-0258&rft.eissn=1097-0258&rft.volume=30&rft.issue=3&rft.spage=232&rft_id=info:doi/10.1002%2Fsim.4107&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon