The phases and amplitudes of gravity waves propagating and dissipating in the thermosphere: Theory
We derive the high‐frequency, compressible, dissipative dispersion and polarization relations for linear acoustic‐gravity waves (GWs) and acoustic waves (AWs) in a single‐species thermosphere. The wave amplitudes depend explicitly on time, consistent with a wave packet approach. We investigate the p...
Saved in:
Published in | Journal of Geophysical Research: Space Physics Vol. 117; no. A5 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
Blackwell Publishing Ltd
01.05.2012
American Geophysical Union |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We derive the high‐frequency, compressible, dissipative dispersion and polarization relations for linear acoustic‐gravity waves (GWs) and acoustic waves (AWs) in a single‐species thermosphere. The wave amplitudes depend explicitly on time, consistent with a wave packet approach. We investigate the phase shifts and amplitude ratios between the GW components, which include the horizontal (uH′) and vertical (w′) velocity, density (ρ′), pressure (p′), and temperature (T′) perturbations. We show how GWs with large vertical wavelengths λz have dramatically different phase and amplitude relations than those with small λz. For zero viscosity, as ∣λz∣ increases, the phase between uH′ and w′ decreases from 0 to ∼−90°, the phase between uH′ and T′ decreases from ∼90 to 0°, and the phase between T′ and ρ′ decreases from ∼180 to 0° for λH ≫ ∣λz∣, where λH is the horizontal wavelength. This effect lessens substantially with increasing altitudes, primarily because the density scale height
H
increases. We show how in‐situ satellite measurements of either (1) the 3D neutral wind or (2) ρ′, T′, w′, and the cross‐track wind, can be used to infer a GW's λH, λz, propagation direction, and intrinsic frequency ωIr. We apply this theory to a GW observed by the DE2 satellite. We find a significant region of overlap in parameter space for 5 independent constraints (i.e., T′0/ρ′0, the phase shift between T′ and w′, and the distance between wave crests), which provides a good test and validation of this theory. In a companion paper, we apply this theory to ground‐based observations of a GW over Alaska.
Key Points
Determine the polarization and dispersion relations of dissipating gravity waves
Show how the phases and amplitudes change as a gravity wave dissipates
Delineate the method for use with in situ satellite measurements |
---|---|
AbstractList | We derive the high-frequency, compressible, dissipative dispersion and polarization relations for linear acoustic-gravity waves (GWs) and acoustic waves (AWs) in a single-species thermosphere. The wave amplitudes depend explicitly on time, consistent with a wave packet approach. We investigate the phase shifts and amplitude ratios between the GW components, which include the horizontal (uH) and vertical (w) velocity, density (), pressure (p), and temperature (T) perturbations. We show how GWs with large vertical wavelengths z have dramatically different phase and amplitude relations than those with small z. For zero viscosity, as z increases, the phase between uH and w decreases from 0 to 90°, the phase between uH and T decreases from 90 to 0°, and the phase between T and decreases from 180 to 0° for H z, where H is the horizontal wavelength. This effect lessens substantially with increasing altitudes, primarily because the density scale height inline equation increases. We show how in-situ satellite measurements of either (1) the 3D neutral wind or (2) , T, w, and the cross-track wind, can be used to infer a GW's H, z, propagation direction, and intrinsic frequency Ir. We apply this theory to a GW observed by the DE2 satellite. We find a significant region of overlap in parameter space for 5 independent constraints (i.e., T0/0, the phase shift between T and w, and the distance between wave crests), which provides a good test and validation of this theory. In a companion paper, we apply this theory to ground-based observations of a GW over Alaska. We derive the high‐frequency, compressible, dissipative dispersion and polarization relations for linear acoustic‐gravity waves (GWs) and acoustic waves (AWs) in a single‐species thermosphere. The wave amplitudes depend explicitly on time, consistent with a wave packet approach. We investigate the phase shifts and amplitude ratios between the GW components, which include the horizontal ( u H ′) and vertical ( w ′) velocity, density ( ρ ′), pressure ( p ′), and temperature ( T ′) perturbations. We show how GWs with large vertical wavelengths λ z have dramatically different phase and amplitude relations than those with small λ z . For zero viscosity, as ∣ λ z ∣ increases, the phase between u H ′ and w ′ decreases from 0 to ∼−90°, the phase between u H ′ and T ′ decreases from ∼90 to 0°, and the phase between T ′ and ρ ′ decreases from ∼180 to 0° for λ H ≫ ∣ λ z ∣, where λ H is the horizontal wavelength. This effect lessens substantially with increasing altitudes, primarily because the density scale height increases. We show how in‐situ satellite measurements of either (1) the 3D neutral wind or (2) ρ ′, T ′, w ′, and the cross‐track wind, can be used to infer a GW's λ H , λ z , propagation direction, and intrinsic frequency ω Ir . We apply this theory to a GW observed by the DE2 satellite. We find a significant region of overlap in parameter space for 5 independent constraints (i.e., T ′ 0 / ρ ′ 0 , the phase shift between T ′ and w ′, and the distance between wave crests), which provides a good test and validation of this theory. In a companion paper, we apply this theory to ground‐based observations of a GW over Alaska. Key Points Determine the polarization and dispersion relations of dissipating gravity waves Show how the phases and amplitudes change as a gravity wave dissipates Delineate the method for use with in situ satellite measurements We derive the high‐frequency, compressible, dissipative dispersion and polarization relations for linear acoustic‐gravity waves (GWs) and acoustic waves (AWs) in a single‐species thermosphere. The wave amplitudes depend explicitly on time, consistent with a wave packet approach. We investigate the phase shifts and amplitude ratios between the GW components, which include the horizontal (uH′) and vertical (w′) velocity, density (ρ′), pressure (p′), and temperature (T′) perturbations. We show how GWs with large vertical wavelengths λz have dramatically different phase and amplitude relations than those with small λz. For zero viscosity, as ∣λz∣ increases, the phase between uH′ and w′ decreases from 0 to ∼−90°, the phase between uH′ and T′ decreases from ∼90 to 0°, and the phase between T′ and ρ′ decreases from ∼180 to 0° for λH ≫ ∣λz∣, where λH is the horizontal wavelength. This effect lessens substantially with increasing altitudes, primarily because the density scale height H increases. We show how in‐situ satellite measurements of either (1) the 3D neutral wind or (2) ρ′, T′, w′, and the cross‐track wind, can be used to infer a GW's λH, λz, propagation direction, and intrinsic frequency ωIr. We apply this theory to a GW observed by the DE2 satellite. We find a significant region of overlap in parameter space for 5 independent constraints (i.e., T′0/ρ′0, the phase shift between T′ and w′, and the distance between wave crests), which provides a good test and validation of this theory. In a companion paper, we apply this theory to ground‐based observations of a GW over Alaska. Key Points Determine the polarization and dispersion relations of dissipating gravity waves Show how the phases and amplitudes change as a gravity wave dissipates Delineate the method for use with in situ satellite measurements We derive the high-frequency, compressible, dissipative dispersion and polarization relations for linear acoustic-gravity waves (GWs) and acoustic waves (AWs) in a single-species thermosphere. The wave amplitudes depend explicitly on time, consistent with a wave packet approach. We investigate the phase shifts and amplitude ratios between the GW components, which include the horizontal (uH') and vertical (w') velocity, density ( rho '), pressure (p'), and temperature (T') perturbations. We show how GWs with large vertical wavelengths lambda z have dramatically different phase and amplitude relations than those with small lambda z. For zero viscosity, as [mid] lambda z[mid] increases, the phase between uH' and w' decreases from 0 to similar to -90 degree , the phase between uH' and T' decreases from similar to 90 to 0 degree , and the phase between T' and rho ' decreases from similar to 180 to 0 degree for lambda H >> [mid] lambda z[mid], where lambda H is the horizontal wavelength. This effect lessens substantially with increasing altitudes, primarily because the density scale height inline equation increases. We show how in-situ satellite measurements of either (1) the 3D neutral wind or (2) rho ', T', w', and the cross-track wind, can be used to infer a GW's lambda H, lambda z, propagation direction, and intrinsic frequency omega Ir. We apply this theory to a GW observed by the DE2 satellite. We find a significant region of overlap in parameter space for 5 independent constraints (i.e., T'0/ rho '0, the phase shift between T' and w', and the distance between wave crests), which provides a good test and validation of this theory. In a companion paper, we apply this theory to ground-based observations of a GW over Alaska. |
Author | Nicolls, M. J. Vadas, S. L. |
Author_xml | – sequence: 1 givenname: S. L. surname: Vadas fullname: Vadas, S. L. email: vasha@cora.nwra.com, (vasha@co-ra.com organization: CORA Division, Northwest Research Associates, Inc., Boulder, Colorado, USA – sequence: 2 givenname: M. J. surname: Nicolls fullname: Nicolls, M. J. organization: Center for Geospace Studies, SRI International, Menlo Park, California, USA |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25982275$$DView record in Pascal Francis |
BookMark | eNp9kU9LHEEQxRsxkI3xlg8wIIEcHO3u6b-5LZrdVUQhbMixqZ3pWVtnZ8buWc1-e8uMiOSQhqKo4vcej-pPZL_tWk_IF0ZPGOX2lFPGLqeUacHVHplwJlXOOeX7ZEKZMDnlXH8khyndUXxCKkHZhKyWtz7rbyH5lEFbZbDpmzBsKxy7OltHeAzDLnuCR1z0sethDUNo13_ZKqQU-nEObTagE1bcdKnH5r9n6N3F3WfyoYYm-cPXfkB-zX4szxb51c384mx6lZdCC5VXFoByY7hkEoTRzNOKaq2UsMZqK2W1KpnA4KWucSUKVfka6pVnXhQa64B8G30x58PWp8FtQip900Dru21yjNpCKKGtQvToH_Su28YW0yHFDFeWGY3U8UiVsUsp-tr1MWwg7hByLzd372-O-NdXU0glNHWEtgzpTcOlNfgFErli5J5C43f_9XSX859Tzkzx4p6PqpAG_-dNBfHeKV1o6X5fz53k5zNFlwt3XjwDBLCeow |
CitedBy_id | crossref_primary_10_1002_2016JA022930 crossref_primary_10_1002_2016JA023828 crossref_primary_10_1029_2022JA030954 crossref_primary_10_12737_10413 crossref_primary_10_1002_2013JA019387 crossref_primary_10_1029_2022JD037276 crossref_primary_10_1016_j_asr_2015_06_036 crossref_primary_10_1029_2022JD036985 crossref_primary_10_1016_j_jastp_2020_105488 crossref_primary_10_1029_2019SW002325 crossref_primary_10_1016_j_jastp_2016_10_009 crossref_primary_10_1002_jgra_50249 crossref_primary_10_1007_s00024_022_03028_6 crossref_primary_10_3390_atmos10090546 crossref_primary_10_1002_2017JA024146 crossref_primary_10_1029_2018JA025253 crossref_primary_10_1063_5_0159522 crossref_primary_10_1002_2015RS005910 crossref_primary_10_1002_jgra_50163 crossref_primary_10_1121_1_4902426 crossref_primary_10_1029_2023SW003502 crossref_primary_10_2139_ssrn_3980606 crossref_primary_10_12737_19879 crossref_primary_10_15407_kfnt2017_03_041 crossref_primary_10_1029_2017RG000594 crossref_primary_10_5194_angeo_37_405_2019 crossref_primary_10_1029_2019JA026693 crossref_primary_10_5194_angeo_38_73_2020 crossref_primary_10_1029_2017JD027617 crossref_primary_10_1029_2019JA026694 crossref_primary_10_1002_2013JA018988 crossref_primary_10_1002_2016JA023449 crossref_primary_10_3103_S0884591321050044 crossref_primary_10_1002_2015GL064610 crossref_primary_10_1017_jfm_2015_367 crossref_primary_10_1016_j_asr_2015_01_033 crossref_primary_10_1029_2020JA028011 crossref_primary_10_1016_j_jastp_2013_08_001 crossref_primary_10_15407_kfnt2021_05_003 crossref_primary_10_5194_amt_17_3995_2024 crossref_primary_10_1029_2019RS006858 crossref_primary_10_1002_2015JA021430 crossref_primary_10_1002_2016RS006196 crossref_primary_10_5194_angeo_31_1_2013 crossref_primary_10_1002_2014GL060107 crossref_primary_10_1029_2023JA032154 crossref_primary_10_1016_j_jastp_2016_02_003 crossref_primary_10_1029_2020JA028003 crossref_primary_10_1029_2023JA032199 crossref_primary_10_1016_j_jastp_2016_02_004 crossref_primary_10_12737_10366 crossref_primary_10_15407_kfnt2020_05_015 crossref_primary_10_3103_S0884591320050049 crossref_primary_10_1029_2012JA017542 crossref_primary_10_3389_fspas_2021_651445 crossref_primary_10_1002_2015JD023604 |
Cites_doi | 10.1016/0021-9169(77)90007-1 10.5194/angeo-27-147-2009 10.1029/JA078i013p02278 10.1029/RG012i002p00193 10.1029/RG020i002p00293 10.1063/1.2813343 10.1016/0021-9169(75)90012-4 10.1029/2002JA009370 10.1016/0032-0633(62)90064-8 10.1016/0021-9169(69)90002-6 10.1016/0032-0633(70)90132-7 10.1029/2002JA009433 10.1109/TGRS.1984.350635 10.1016/S0021-9169(68)80029-7 10.1029/JZ071i015p03729 10.1017/S002211206700076X 10.1007/978-94-007-0326-1_9 10.1029/JZ069i013p02847 10.1016/0032-0633(70)90135-2 10.1029/JA074i007p01786 10.1029/2007GL031522 10.1139/p63-194 10.1016/0021-9169(95)00033-X 10.1007/s005850050357 10.1175/1520-0469(2001)058<2249:GWRAMR>2.0.CO;2 10.1029/97JA00491 10.1016/0032-0633(90)90058-X 10.1029/2007JA012766 10.1175/1520-0469(1987)044<0458:TRTLEH>2.0.CO;2 10.1016/0021-9169(87)90044-4 10.1029/JZ063i001p00265 10.1029/2010JD014987 10.1016/0021-9169(87)90003-1 10.1139/p70-185 10.1029/97RS02797 10.1029/2009JA014799 10.1029/2003GL019376 10.1029/96JA03033 10.1016/0021-9169(85)90074-1 10.1029/2000GL011953 10.1029/2001RG000106 10.1029/2006JA011845 10.1016/0021-9169(72)90109-2 10.1029/2001GL013076 10.1029/2009JA014105 10.1029/2012JA017542 10.1029/96JD01660 10.1029/JA083iA09p04131 10.1029/2004JD005574 10.1139/p60-150 10.1016/j.jastp.2009.01.011 10.1029/2005JA011510 10.1007/BF00177800 10.1029/90JA02125 10.1029/2009JA014108 10.1029/2006JA011668 10.1016/j.asr.2008.10.031 10.5194/angeo-26-3841-2008 10.1029/2005JA011415 10.1029/2009JA015053 10.1029/JA084iA08p04371 |
ContentType | Journal Article |
Copyright | Copyright 2012 by the American Geophysical Union 2015 INIST-CNRS |
Copyright_xml | – notice: Copyright 2012 by the American Geophysical Union – notice: 2015 INIST-CNRS |
DBID | BSCLL IQODW AAYXX CITATION 3V. 7TG 7XB 88I 8FD 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU DWQXO GNUQQ H8D HCIFZ KL. L7M M2P P5Z P62 PCBAR PQEST PQQKQ PQUKI Q9U |
DOI | 10.1029/2011JA017426 |
DatabaseName | Istex Pascal-Francis CrossRef ProQuest Central (Corporate) Meteorological & Geoastrophysical Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Aerospace Database (1962 - current) ProQuest Central Essentials ProQuest Central Technology Collection ProQuest Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One Community College ProQuest Central ProQuest Central Student Aerospace Database SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Advanced Technologies Database with Aerospace ProQuest Science Journals ProQuest Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Earth, Atmospheric & Aquatic Science Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic |
DatabaseTitle | CrossRef ProQuest Central Student Technology Collection Technology Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central Earth, Atmospheric & Aquatic Science Collection Aerospace Database Meteorological & Geoastrophysical Abstracts Natural Science Collection ProQuest Central Korea Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest Central (Alumni) |
DatabaseTitleList | ProQuest Central Student CrossRef Meteorological & Geoastrophysical Abstracts - Academic |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology Biology Oceanography Geology Astronomy & Astrophysics Physics |
EISSN | 2156-2202 2169-9402 |
EndPage | n/a |
ExternalDocumentID | 2676900741 10_1029_2011JA017426 25982275 JGRA21836 ark_67375_WNG_52DF60TH_D |
Genre | article Feature |
GeographicLocations | United States Alaska USA, Alaska |
GeographicLocations_xml | – name: USA, Alaska |
GrantInformation_xml | – fundername: NSF, NASA funderid: ATM‐0836195; NNH08CE12C; NNH10CC98C |
GroupedDBID | 12K 1OC 24P 7XC 88I 8FE 8FH 8G5 8R4 8R5 AANLZ AAXRX ABUWG ACAHQ ACCZN ACXBN AEIGN AEUYR AFFPM AHBTC AITYG ALMA_UNASSIGNED_HOLDINGS AMYDB ATCPS BBNVY BENPR BHPHI BKSAR BPHCQ BRXPI BSCLL DCZOG DRFUL DRSTM DU5 DWQXO GNUQQ GUQSH HCIFZ LATKE LITHE LOXES LUTES LYRES M2O M2P MEWTI MSFUL MSSTM MXFUL MXSTM P-X Q2X RNS WHG WIN WXSBR XSW ~OA ~~A 08R ALUQN IQODW AAYXX CITATION 05W 0R~ 33P 3V. 50Y 52M 702 7TG 7XB 8-1 8FD 8FG 8FK AAESR AASGY AAZKR ACBWZ ACGOD ACPOU ACXQS ADKYN ADOZA ADXAS ADZMN AFKRA AIURR ARAPS AZQEC AZVAB BFHJK BGLVJ BMXJE CCPQU D0L D1K DPXWK H8D HGLYW HZ~ K6- KL. L7M LEEKS LK5 M7R MY~ O9- P2W P62 PCBAR PQEST PQQKQ PQUKI PROAC Q9U R.K SUPJJ WBKPD |
ID | FETCH-LOGICAL-c4746-d9aa02882515a4871e0d0776649897955dbc14045c7f498436defafbe1e437e43 |
IEDL.DBID | 8FG |
ISSN | 0148-0227 2169-9380 |
IngestDate | Fri Oct 25 22:49:06 EDT 2024 Thu Oct 10 20:47:46 EDT 2024 Fri Aug 23 04:10:44 EDT 2024 Sun Oct 22 16:09:16 EDT 2023 Sat Aug 24 00:55:36 EDT 2024 Wed Oct 30 09:56:53 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | A5 |
Keywords | altitude North America acoustical waves amplitude Neutral wind temperature Height polarization wavelength density high frequency satellite measurements Satellite observation Perturbation pressure velocity trajectory in situ phase shift viscosity propagation Gravity wave Wave packet three-dimensional models dispersion theory |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4746-d9aa02882515a4871e0d0776649897955dbc14045c7f498436defafbe1e437e43 |
Notes | ArticleID:2011JA017426 ark:/67375/WNG-52DF60TH-D NSF, NASA - No. ATM-0836195; No. NNH08CE12C; No. NNH10CC98C istex:DED5684BA0BCDE697BD7313380EC151E40F4B2FC This is a companion to DOI 10.1029/2011JA017542 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 1018269187 |
PQPubID | 54732 |
PageCount | 25 |
ParticipantIDs | proquest_miscellaneous_1093464796 proquest_journals_1018269187 crossref_primary_10_1029_2011JA017426 pascalfrancis_primary_25982275 wiley_primary_10_1029_2011JA017426_JGRA21836 istex_primary_ark_67375_WNG_52DF60TH_D |
PublicationCentury | 2000 |
PublicationDate | May 2012 |
PublicationDateYYYYMMDD | 2012-05-01 |
PublicationDate_xml | – month: 05 year: 2012 text: May 2012 |
PublicationDecade | 2010 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC – name: Washington |
PublicationTitle | Journal of Geophysical Research: Space Physics |
PublicationTitleAlternate | J. Geophys. Res |
PublicationYear | 2012 |
Publisher | Blackwell Publishing Ltd American Geophysical Union |
Publisher_xml | – name: Blackwell Publishing Ltd – name: American Geophysical Union |
References | Hung, R. J., and J. P. Kuo (1978), Ionospheric observation of gravity-waves associated with hurricane Eloise, J. Geophys. Res., 45, 67-80. Bishop, R., N. Aponte, G. D. Earle, M. Sulzer, M. Larsen, and G. Peng (2006), Arecibo observations of ionospheric perturbations associated with the passage of tropical storm Odette, J. Geophys. Res., 111, A11320, doi:10.1029/2006JA011668. Hajkowicz, L. A. (1990), A global study of large scale travelling ionospheric disturbances (TIDs) following a step-like onset of auroral substorms in both hemispheres, Planet. Space Sci., 38, 913-923. Hocke, K., and K. Schlegel (1996), A review of atmospheric gravity waves and traveling ionospheric disturbances, Ann. Geophys., 14, 917-940. Dalgarno, A., and F. J. Smith (1962), The thermal conductivity and viscosity of atomic oxygen, Planet. Space Sci., 9, 1-2. Walterscheid, R. L., and M. P. Hickey (2011), Group velocity and energy flux in the thermosphere: Limits on the validity of group velocity in a viscous atmosphere, J. Geophys. Res., 116, D12101, doi:10.1029/2010JD014987. Chimonas, G., and W. R. Peltier (1970), The bow wave generated by an auroral arc in supersonic motion, Planet. Space Sci., 18, 599-612. Volland, H. (1969a), The upper atmosphere as a multiply refractive medium for neutral air motions, J. Atmos. Terr. Phys., 31, 491-514. Maeda, S. (1985), Numerical solutions of the coupled equations for acoustic-gravity waves in the upper thermosphere, J. Atmos. Terr. Phys., 47, 965-972. Kelley, M. C. (1997), In situ ionospheric observations of severe weather-related gravity waves and associated small-scale plasma structure, J. Geophys. Res., 102, 329-335. Hickey, M. P., G. Schubert, and R. L. Walterscheid (2009), The propagation of tsunami-driven gravity waves into the thermosphere and ionosphere, J. Geophys. Res., 114, A08304, doi:10.1029/2009JA014105. Vadas, S. L. (2007), Horizontal and vertical propagation and dissipation of gravity waves in the thermosphere from lower atmospheric and thermospheric sources, J. Geophys. Res., 112, A06305, doi:10.1029/2006JA011845. Hocke, K., K. Schlegel, and G. Kirchengast (1996), Phases and amplitudes of TIDs in the high-latitude F-region observed by EISCAT, J. Atmos. Terr. Phys., 58, 245-255. Volland, H. (1969b), Full wave calculations of gravity wave propagation through the thermosphere, J. Geophys. Res., 74,1786-1795. Georges, T. M. (1968), HF Doppler studies of traveling ionospheric disturbances, J. Atmos. Terr. Phys., 30, 735-746. Nicolls, M. J., S. L. Vadas, J. W. Meriwether, M. G. Conde, and D. Hampton (2012), The phases and amplitudes of gravity waves propagating and dissipating in the thermosphere: Application to measurements over Alaska, J. Geophys. Res., doi:10.1029/2012JA017542, in press. Yanowitch, M. (1967), Effect of viscosity on gravity waves and the upper boundary condition, J. Fluid Mech., 29, 209-231. Hedin, A. E. (1991), Extension of the MSIS thermosphere model into the middle and lower atmosphere, J. Geophys. Res., 96, 1159-1172. Francis, S. H. (1973), Acoustic-gravity modes and large-scale traveling ionospheric disturbances of a realistic dissipative atmosphere, J. Geophys. Res., 78, 2278-2301. Richmond, A. D. (1978), Gravity wave generation, propagation, and dissipation in the thermosphere, J. Geophys. Res., 83, 4131-4145. Chimonas, G., and C. O. Hines (1970), Atmospheric gravity waves launched by auroral currents, Planet. Space Sci., 18, 565-582. Hanson, W. B., U. Ponzi, C. Arduini, and M. Di Ruscio (1992), A satellite anemometer, J. Astro. Sci., 40, 429-438. Kundu, P. (1990), Fluid Dynamics, 638 pp., Academic, San Diego, Calif. Mayr, H. G., I. Harris, F. A. Herrero, N. W. Spencer, F. Varosi, and W. D. Pesnell (1990), Thermospheric gravity waves: Observations and interpretation using the transfer function model (TEM), Space Sci. Rev., 54, 297-375. Gross, S. H., C. A. Reber, and F. T. Huang (1984), Large-scale waves in the thermosphere observed by the AE-C satellite, IEEE Trans. Geosci. Remote Sens., 22, 340-352. Bauer, S. J. (1958), An apparent ionospheric response to the passage of hurricanes, J. Geophys. Res., 63, 265-269. Earle, G. D., J. H. Klenzing, W. A. Macaulay, M. D. Perdue, and E. L. Patrick (2007), A new satellite-borne neutral wind instrument for thermospheric diagnostics, Rev. Sci. Instrum., 78(11), 114501. Vadas, S. L., and D. C. Fritts (2001), Gravity wave radiation and mean responses to local body forces in the atmosphere, J. Atmos. Sci., 58, 2249-2279. Oliver, W. L., Y. Otsuka, M. Sato, T. Takami, and S. Fukao (1997), A climatology of F region gravity wave propagation over the middle and upper atmosphere radar, J. Geophys. Res., 102, 14,499-14,512. Vadas, S. L., and G. Crowley (2010), Sources of the traveling ionospheric disturbances observed by the ionospheric TIDDBIT sounder near Wallops Island on October 30, 2007, J. Geophys. Res., 115, A07324, doi:10.1029/2009JA015053. Vadas, S. L., and D. C. Fritts (2005), Thermospheric responses to gravity waves: Influences of increasing viscosity and thermal diffusivity, J. Geophys. Res., 110, D15103, doi:10.1029/2004JD005574. Hickey, M. P., and K. D. Cole (1987), A quartic dispersion equation for internal gravity waves in the thermosphere, J. Atmos. Terr. Phys., 49, 889-899. Francis, S. H. (1975), Global propagation of atmospheric gravity waves: A review, J. Atmos. Terr. Phys., 37, 1011-1030. Vadas, S. L., and D. C. Fritts (2006), Influence of solar variability on gravity wave structure and dissipation in the thermosphere from tropospheric convection, J. Geophys. Res., 111, A10S12, doi:10.1029/2005JA011510. Einaudi, F., and C. O. Hines (1970), WKB approximation in application to acoustic-gravity waves, Can. J. Phys., 48, 1458-1471. Innis, J. L., and M. Conde (2002), Characterization of acoustic-gravity waves in the upper thermosphere using Dynamics Explorer 2 Wind and Temperature Spectrometer (WATS) and Neutral Atmosphere Composition Spectrometer (NACS) data, J. Geophys. Res., 107(A12), 1418, doi:10.1029/2002JA009370. Röttger, J. (1977), Travelling disturbances in the equatorial ionosphere and their association with penetrative cumulus convection, J. Atmos. Terr. Phys., 39, 987-998. Hickey, M. P., R. L. Walterscheid, and P. G. Richards (2000), Secular variations of atomic oxygen in the mesopause region induced by transient gravity wave packets, Geophys. Res. Lett., 27, 3599-3602. Vadas, S. L., and H.-L. Liu (2009), The generation of large-scale gravity waves and neutral winds in the thermosphere from the dissipation of convectively-generated gravity waves, J. Geophys. Res., 114, A10310, doi:10.1029/2009JA014108. Salby, M. L., and R. R. Garcia (1987), Transient response to localized episodic heating in the tropics. Part I: Excitation and short-time, near-field behavior, J. Atmos. Sci., 44(2), 458-498. Bruinsma, S. L., and J. M. Forbes (2009), Properties of traveling atmospheric disturbances (TADs) inferred from CHAMP accelerometer observations, Adv. Space Res., 43, 369-376. Liu, H., H. Luhr, S. Watanabe, W. Kohler, V. Henize, and P. Visser (2006), Zonal winds in the equatorial upper thermosphere: Decomposing the solar flux, geomagnetic activity, and seasonal dependencies, J. Geophys. Res., 111, A07307, doi:10.1029/2005JA011415. Tsugawa T., A. Saito, Y. Otsuka, and M. Yamamoto (2003), Damping of large-scale traveling ionospheric disturbances detected with GPS networks during the geomagnetic storm, J. Geophys. Res., 108(A3), 1127, doi:10.1029/2002JA009433. Vadas, S. L., and M. J. Nicolls (2008), Using PFISR measurements and gravity wave dissipative theory to determine the neutral, background thermospheric winds, Geophys. Res. Lett., 35, L02105, doi:10.1029/2007GL031522. Klostermeyer, J. (1972), Numerical calculation of gravity wave propagation in a realistic thermosphere, J. Atmos. Terr. Phys., 34, 765-774. Hines, C. O. (1964), Minimum vertical scale sizes in the wind structure above 100 km, J. Geophys. Res., 69, 2847-2848. Pitteway, M. L. V., and C. O. Hines (1963), The viscous damping of atmospheric gravity waves, Can. J. Phys., 41, 1935-1948. Yeh, K. C., C. H. Liu, and M. Y. Youakim (1975), Attenuation of internal gravity waves in model atmospheres, Ann. Geophys., 31, 321-328. Eckermann, S., and C. Marks (1996), An idealized ray model of gravity wave-tidal interactions, J. Geophys. Res., 101, 21,195-21,212, doi:10.1029/96JD01660. DelGenio, A. D., and G. Schubert (1979), Gravity wave propagation in a diffusively separated atmosphere with height-dependent collision frequencies, J. Geophys. Res., 84, 4371-4378. Vadas, S. L., and D. C. Fritts (2009), Reconstruction of the gravity wave field from convective plumes via ray tracing, Ann. Geophys., 27, 147-177. Earle, G. D., A. Mwene-Musumba, and S. L. Vadas (2008), Satellite-based measurements of gravity wave-induced mid-latitude plasma density perturbations, J. Geophys. Res., 113, A03303, doi:10.1029/2007JA012766. Fritts, D. C., and M. J. Alexander (2003), Gravity wave dynamics and effects in the middle atmosphere, Rev. Geophys., 41(1), 1003, doi:10.1029/2001RG000106. Vadas, S. L., and M. J. Nicolls (2009), Temporal evolution of neutral, thermospheric winds and plasma response using PFISR measurements of gravity waves, J. Atmos. Sol. Terr. Phys., 71, 740-770. Hocke, K., and T. Tsuda (2001), Gravity waves and ionospheric irregularities over tropical convection zones observed by GPS/MET radio occultation, Geophys. Res. Lett., 28, 2815-2818. Djuth, F. T., M. P. Sulzer, J. H. Elder, and V. B. Wickwar (1997), High-resolution studies of atmosphere-ionosphere coupling at Arecibo Observatory, Puerto Rico, Radio Sci., 32, 2321-2344. Midgley, J. E., and H. B. Liemohn (1966), Gravity waves in a realistic atmosphere, J. Geophys. Res., 71, 3729-3748. Fritts, D. C., and S. Vadas (2008), Gravity wave penetration into the thermosphere: Sensitivity to solar cycle variations and mean winds, Ann. Geophys., 26, 3841-3861. Hines, C. O. (1960), Internal atmospheric gravity waves at ionospheric heights, Can. J. Phys., 38, 1441-1481. Djuth, F. T., L. D 2011; 116 1990; 54 1974; 12 2009; 43 1963; 41 1991; 96 1969; 74 1984; 22 1960; 38 1969; 31 1967; 29 2008; 35 2007; 78 1996; 101 2009; 114 1978 1997; 102 1987; 44 2004; 31 1990 1977; 39 2010; 115 1982; 20 2008; 26 2002; 107 2008; 113 2003; 41 2001; 58 1992; 40 1987; 49 2000; 27 2012 2005; 110 1990; 38 2011 1973; 78 1966; 71 1975; 37 1964; 69 1975; 31 1962; 9 2001; 28 1996; 14 1996; 58 1970; 18 2009; 27 2006; 111 1985; 47 2007; 112 2003; 108 1978; 45 1997; 32 2009; 71 1978; 83 1958; 63 1972; 34 1970; 48 1979; 84 1968; 30 e_1_2_8_28_1 Lighthill J. (e_1_2_8_39_1) 1978 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 Yeh K. C. (e_1_2_8_67_1) 1975; 31 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_62_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_57_1 Hung R. J. (e_1_2_8_33_1) 1978; 45 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_44_1 e_1_2_8_65_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 Hanson W. B. (e_1_2_8_23_1) 1992; 40 Kundu P. (e_1_2_8_38_1) 1990 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – volume: 22 start-page: 340 year: 1984 end-page: 352 article-title: Large‐scale waves in the thermosphere observed by the AE‐C satellite publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 102 start-page: 14,499 year: 1997 end-page: 14,512 article-title: A climatology of F region gravity wave propagation over the middle and upper atmosphere radar publication-title: J. Geophys. Res. – volume: 108 issue: A3 year: 2003 article-title: Damping of large‐scale traveling ionospheric disturbances detected with GPS networks during the geomagnetic storm publication-title: J. Geophys. Res. – volume: 43 start-page: 369 year: 2009 end-page: 376 article-title: Properties of traveling atmospheric disturbances (TADs) inferred from CHAMP accelerometer observations publication-title: Adv. Space Res. – volume: 74 start-page: 1786 year: 1969 end-page: 1795 article-title: Full wave calculations of gravity wave propagation through the thermosphere publication-title: J. Geophys. Res. – volume: 49 start-page: 105 year: 1987 end-page: 114 article-title: Source regions of medium scale travelling ionospheric disturbances observed at mid‐latitudes publication-title: J. Atmos. Terr. Phys. – volume: 63 start-page: 265 year: 1958 end-page: 269 article-title: An apparent ionospheric response to the passage of hurricanes publication-title: J. Geophys. Res. – volume: 37 start-page: 1011 year: 1975 end-page: 1030 article-title: Global propagation of atmospheric gravity waves: A review publication-title: J. Atmos. Terr. Phys. – volume: 111 year: 2006 article-title: Arecibo observations of ionospheric perturbations associated with the passage of tropical storm Odette publication-title: J. Geophys. Res. – volume: 48 start-page: 1458 year: 1970 end-page: 1471 article-title: WKB approximation in application to acoustic‐gravity waves publication-title: Can. J. Phys. – volume: 45 start-page: 67 year: 1978 end-page: 80 article-title: Ionospheric observation of gravity‐waves associated with hurricane Eloise publication-title: J. Geophys. Res. – year: 1990 – volume: 110 year: 2005 article-title: Thermospheric responses to gravity waves: Influences of increasing viscosity and thermal diffusivity publication-title: J. Geophys. Res. – volume: 39 start-page: 987 year: 1977 end-page: 998 article-title: Travelling disturbances in the equatorial ionosphere and their association with penetrative cumulus convection publication-title: J. Atmos. Terr. Phys. – volume: 34 start-page: 765 year: 1972 end-page: 774 article-title: Numerical calculation of gravity wave propagation in a realistic thermosphere publication-title: J. Atmos. Terr. Phys. – volume: 28 start-page: 2815 year: 2001 end-page: 2818 article-title: Gravity waves and ionospheric irregularities over tropical convection zones observed by GPS/MET radio occultation publication-title: Geophys. Res. Lett. – volume: 83 start-page: 4131 year: 1978 end-page: 4145 article-title: Gravity wave generation, propagation, and dissipation in the thermosphere publication-title: J. Geophys. Res. – volume: 111 year: 2006 article-title: Influence of solar variability on gravity wave structure and dissipation in the thermosphere from tropospheric convection publication-title: J. Geophys. Res. – volume: 27 start-page: 3599 year: 2000 end-page: 3602 article-title: Secular variations of atomic oxygen in the mesopause region induced by transient gravity wave packets publication-title: Geophys. Res. Lett. – volume: 58 start-page: 2249 year: 2001 end-page: 2279 article-title: Gravity wave radiation and mean responses to local body forces in the atmosphere publication-title: J. Atmos. Sci. – volume: 78 start-page: 2278 year: 1973 end-page: 2301 article-title: Acoustic‐gravity modes and large‐scale traveling ionospheric disturbances of a realistic dissipative atmosphere publication-title: J. Geophys. Res. – volume: 71 start-page: 740 year: 2009 end-page: 770 article-title: Temporal evolution of neutral, thermospheric winds and plasma response using PFISR measurements of gravity waves publication-title: J. Atmos. Sol. Terr. Phys. – volume: 112 year: 2007 article-title: Horizontal and vertical propagation and dissipation of gravity waves in the thermosphere from lower atmospheric and thermospheric sources publication-title: J. Geophys. Res. – volume: 31 start-page: 491 year: 1969 end-page: 514 article-title: The upper atmosphere as a multiply refractive medium for neutral air motions publication-title: J. Atmos. Terr. Phys. – start-page: 131 year: 2011 end-page: 139 – volume: 47 start-page: 965 year: 1985 end-page: 972 article-title: Numerical solutions of the coupled equations for acoustic‐gravity waves in the upper thermosphere publication-title: J. Atmos. Terr. Phys. – volume: 35 year: 2008 article-title: Using PFISR measurements and gravity wave dissipative theory to determine the neutral, background thermospheric winds publication-title: Geophys. Res. Lett. – volume: 9 start-page: 1 year: 1962 end-page: 2 article-title: The thermal conductivity and viscosity of atomic oxygen publication-title: Planet. Space Sci. – volume: 113 year: 2008 article-title: Satellite‐based measurements of gravity wave‐induced mid‐latitude plasma density perturbations publication-title: J. Geophys. Res. – volume: 38 start-page: 1441 year: 1960 end-page: 1481 article-title: Internal atmospheric gravity waves at ionospheric heights publication-title: Can. J. Phys. – volume: 102 start-page: 329 year: 1997 end-page: 335 article-title: In situ ionospheric observations of severe weather‐related gravity waves and associated small‐scale plasma structure publication-title: J. Geophys. Res. – volume: 107 issue: A12 year: 2002 article-title: Characterization of acoustic‐gravity waves in the upper thermosphere using Dynamics Explorer 2 Wind and Temperature Spectrometer (WATS) and Neutral Atmosphere Composition Spectrometer (NACS) data publication-title: J. Geophys. Res. – volume: 31 start-page: 321 year: 1975 end-page: 328 article-title: Attenuation of internal gravity waves in model atmospheres publication-title: Ann. Geophys. – volume: 41 start-page: 1935 year: 1963 end-page: 1948 article-title: The viscous damping of atmospheric gravity waves publication-title: Can. J. Phys. – volume: 49 start-page: 889 year: 1987 end-page: 899 article-title: A quartic dispersion equation for internal gravity waves in the thermosphere publication-title: J. Atmos. Terr. Phys. – volume: 44 start-page: 458 issue: 2 year: 1987 end-page: 498 article-title: Transient response to localized episodic heating in the tropics. Part I: Excitation and short‐time, near‐field behavior publication-title: J. Atmos. Sci. – volume: 12 start-page: 193 year: 1974 end-page: 216 article-title: Acoustic‐gravity waves in the upper atmosphere publication-title: Rev. Geophys. – volume: 84 start-page: 4371 year: 1979 end-page: 4378 article-title: Gravity wave propagation in a diffusively separated atmosphere with height‐dependent collision frequencies publication-title: J. Geophys. Res. – volume: 27 start-page: 147 year: 2009 end-page: 177 article-title: Reconstruction of the gravity wave field from convective plumes via ray tracing publication-title: Ann. Geophys. – volume: 18 start-page: 599 year: 1970 end-page: 612 article-title: The bow wave generated by an auroral arc in supersonic motion publication-title: Planet. Space Sci. – volume: 116 year: 2011 article-title: Group velocity and energy flux in the thermosphere: Limits on the validity of group velocity in a viscous atmosphere publication-title: J. Geophys. Res. – volume: 26 start-page: 3841 year: 2008 end-page: 3861 article-title: Gravity wave penetration into the thermosphere: Sensitivity to solar cycle variations and mean winds publication-title: Ann. Geophys. – volume: 115 year: 2010 article-title: Arecibo's thermospheric gravity waves and the case for an ocean source publication-title: J. Geophys. Res. – volume: 18 start-page: 565 year: 1970 end-page: 582 article-title: Atmospheric gravity waves launched by auroral currents publication-title: Planet. Space Sci. – volume: 71 start-page: 3729 year: 1966 end-page: 3748 article-title: Gravity waves in a realistic atmosphere publication-title: J. Geophys. Res. – volume: 115 year: 2010 article-title: Sources of the traveling ionospheric disturbances observed by the ionospheric TIDDBIT sounder near Wallops Island on October 30, 2007 publication-title: J. Geophys. Res. – volume: 32 start-page: 2321 year: 1997 end-page: 2344 article-title: High‐resolution studies of atmosphere–ionosphere coupling at Arecibo Observatory, Puerto Rico publication-title: Radio Sci. – volume: 78 issue: 11 year: 2007 article-title: A new satellite‐borne neutral wind instrument for thermospheric diagnostics publication-title: Rev. Sci. Instrum. – volume: 114 year: 2009 article-title: The propagation of tsunami‐driven gravity waves into the thermosphere and ionosphere publication-title: J. Geophys. Res. – volume: 29 start-page: 209 year: 1967 end-page: 231 article-title: Effect of viscosity on gravity waves and the upper boundary condition publication-title: J. Fluid Mech. – year: 2012 article-title: The phases and amplitudes of gravity waves propagating and dissipating in the thermosphere: Application to measurements over Alaska publication-title: J. Geophys. Res. – volume: 30 start-page: 735 year: 1968 end-page: 746 article-title: HF Doppler studies of traveling ionospheric disturbances publication-title: J. Atmos. Terr. Phys. – volume: 31 year: 2004 article-title: A continuum of gravity waves in the Arecibo thermosphere? publication-title: Geophys. Res. Lett. – volume: 38 start-page: 913 year: 1990 end-page: 923 article-title: A global study of large scale travelling ionospheric disturbances (TIDs) following a step‐like onset of auroral substorms in both hemispheres publication-title: Planet. Space Sci. – volume: 20 start-page: 293 year: 1982 end-page: 315 article-title: Atmospheric gravity waves generated in the high‐latitude ionosphere: A review publication-title: Rev. Geophys. – volume: 54 start-page: 297 year: 1990 end-page: 375 article-title: Thermospheric gravity waves: Observations and interpretation using the transfer function model (TEM) publication-title: Space Sci. Rev. – volume: 40 start-page: 429 year: 1992 end-page: 438 article-title: A satellite anemometer publication-title: J. Astro. Sci. – volume: 69 start-page: 2847 year: 1964 end-page: 2848 article-title: Minimum vertical scale sizes in the wind structure above 100 km publication-title: J. Geophys. Res. – volume: 96 start-page: 1159 year: 1991 end-page: 1172 article-title: Extension of the MSIS thermosphere model into the middle and lower atmosphere publication-title: J. Geophys. Res. – volume: 101 start-page: 21,195 year: 1996 end-page: 21,212 article-title: An idealized ray model of gravity wave‐tidal interactions publication-title: J. Geophys. Res. – volume: 58 start-page: 245 year: 1996 end-page: 255 article-title: Phases and amplitudes of TIDs in the high‐latitude F‐region observed by EISCAT publication-title: J. Atmos. Terr. Phys. – year: 1978 – volume: 114 year: 2009 article-title: The generation of large‐scale gravity waves and neutral winds in the thermosphere from the dissipation of convectively‐generated gravity waves publication-title: J. Geophys. Res. – volume: 41 issue: 1 year: 2003 article-title: Gravity wave dynamics and effects in the middle atmosphere publication-title: Rev. Geophys. – volume: 14 start-page: 917 year: 1996 end-page: 940 article-title: A review of atmospheric gravity waves and traveling ionospheric disturbances publication-title: Ann. Geophys. – volume: 111 year: 2006 article-title: Zonal winds in the equatorial upper thermosphere: Decomposing the solar flux, geomagnetic activity, and seasonal dependencies publication-title: J. Geophys. Res. – ident: e_1_2_8_48_1 doi: 10.1016/0021-9169(77)90007-1 – ident: e_1_2_8_56_1 doi: 10.5194/angeo-27-147-2009 – ident: e_1_2_8_16_1 doi: 10.1029/JA078i013p02278 – ident: e_1_2_8_66_1 doi: 10.1029/RG012i002p00193 – ident: e_1_2_8_34_1 doi: 10.1029/RG020i002p00293 – ident: e_1_2_8_12_1 doi: 10.1063/1.2813343 – ident: e_1_2_8_17_1 doi: 10.1016/0021-9169(75)90012-4 – ident: e_1_2_8_35_1 doi: 10.1029/2002JA009370 – ident: e_1_2_8_7_1 doi: 10.1016/0032-0633(62)90064-8 – ident: e_1_2_8_61_1 doi: 10.1016/0021-9169(69)90002-6 – ident: e_1_2_8_5_1 doi: 10.1016/0032-0633(70)90132-7 – ident: e_1_2_8_50_1 doi: 10.1029/2002JA009433 – ident: e_1_2_8_21_1 doi: 10.1109/TGRS.1984.350635 – ident: e_1_2_8_20_1 doi: 10.1016/S0021-9169(68)80029-7 – volume: 40 start-page: 429 year: 1992 ident: e_1_2_8_23_1 article-title: A satellite anemometer publication-title: J. Astro. Sci. contributor: fullname: Hanson W. B. – ident: e_1_2_8_43_1 doi: 10.1029/JZ071i015p03729 – ident: e_1_2_8_65_1 doi: 10.1017/S002211206700076X – ident: e_1_2_8_58_1 doi: 10.1007/978-94-007-0326-1_9 – ident: e_1_2_8_29_1 doi: 10.1029/JZ069i013p02847 – ident: e_1_2_8_6_1 doi: 10.1016/0032-0633(70)90135-2 – ident: e_1_2_8_62_1 doi: 10.1029/JA074i007p01786 – ident: e_1_2_8_59_1 doi: 10.1029/2007GL031522 – ident: e_1_2_8_46_1 doi: 10.1139/p63-194 – ident: e_1_2_8_32_1 doi: 10.1016/0021-9169(95)00033-X – ident: e_1_2_8_30_1 doi: 10.1007/s005850050357 – ident: e_1_2_8_53_1 doi: 10.1175/1520-0469(2001)058<2249:GWRAMR>2.0.CO;2 – ident: e_1_2_8_45_1 doi: 10.1029/97JA00491 – ident: e_1_2_8_22_1 doi: 10.1016/0032-0633(90)90058-X – volume-title: Fluid Dynamics year: 1990 ident: e_1_2_8_38_1 contributor: fullname: Kundu P. – ident: e_1_2_8_13_1 doi: 10.1029/2007JA012766 – ident: e_1_2_8_49_1 doi: 10.1175/1520-0469(1987)044<0458:TRTLEH>2.0.CO;2 – ident: e_1_2_8_63_1 doi: 10.1016/0021-9169(87)90044-4 – ident: e_1_2_8_2_1 doi: 10.1029/JZ063i001p00265 – ident: e_1_2_8_64_1 doi: 10.1029/2010JD014987 – ident: e_1_2_8_25_1 doi: 10.1016/0021-9169(87)90003-1 – ident: e_1_2_8_15_1 doi: 10.1139/p70-185 – ident: e_1_2_8_9_1 doi: 10.1029/97RS02797 – ident: e_1_2_8_11_1 doi: 10.1029/2009JA014799 – ident: e_1_2_8_10_1 doi: 10.1029/2003GL019376 – ident: e_1_2_8_36_1 doi: 10.1029/96JA03033 – ident: e_1_2_8_41_1 doi: 10.1016/0021-9169(85)90074-1 – ident: e_1_2_8_26_1 doi: 10.1029/2000GL011953 – ident: e_1_2_8_18_1 doi: 10.1029/2001RG000106 – ident: e_1_2_8_51_1 doi: 10.1029/2006JA011845 – ident: e_1_2_8_37_1 doi: 10.1016/0021-9169(72)90109-2 – ident: e_1_2_8_31_1 doi: 10.1029/2001GL013076 – ident: e_1_2_8_27_1 doi: 10.1029/2009JA014105 – volume: 31 start-page: 321 year: 1975 ident: e_1_2_8_67_1 article-title: Attenuation of internal gravity waves in model atmospheres publication-title: Ann. Geophys. contributor: fullname: Yeh K. C. – ident: e_1_2_8_44_1 doi: 10.1029/2012JA017542 – ident: e_1_2_8_14_1 doi: 10.1029/96JD01660 – ident: e_1_2_8_47_1 doi: 10.1029/JA083iA09p04131 – ident: e_1_2_8_54_1 doi: 10.1029/2004JD005574 – ident: e_1_2_8_28_1 doi: 10.1139/p60-150 – ident: e_1_2_8_60_1 doi: 10.1016/j.jastp.2009.01.011 – ident: e_1_2_8_55_1 doi: 10.1029/2005JA011510 – ident: e_1_2_8_42_1 doi: 10.1007/BF00177800 – ident: e_1_2_8_24_1 doi: 10.1029/90JA02125 – volume: 45 start-page: 67 year: 1978 ident: e_1_2_8_33_1 article-title: Ionospheric observation of gravity‐waves associated with hurricane Eloise publication-title: J. Geophys. Res. contributor: fullname: Hung R. J. – ident: e_1_2_8_57_1 doi: 10.1029/2009JA014108 – ident: e_1_2_8_3_1 doi: 10.1029/2006JA011668 – ident: e_1_2_8_4_1 doi: 10.1016/j.asr.2008.10.031 – ident: e_1_2_8_19_1 doi: 10.5194/angeo-26-3841-2008 – volume-title: Waves in Fluids year: 1978 ident: e_1_2_8_39_1 contributor: fullname: Lighthill J. – ident: e_1_2_8_40_1 doi: 10.1029/2005JA011415 – ident: e_1_2_8_52_1 doi: 10.1029/2009JA015053 – ident: e_1_2_8_8_1 doi: 10.1029/JA084iA08p04371 |
SSID | ssj0000456401 ssj0014561 ssj0030581 ssj0030583 ssj0043761 ssj0030582 ssj0030585 ssj0030584 ssj0030586 ssj0000816915 |
Score | 2.356284 |
Snippet | We derive the high‐frequency, compressible, dissipative dispersion and polarization relations for linear acoustic‐gravity waves (GWs) and acoustic waves (AWs)... We derive the high-frequency, compressible, dissipative dispersion and polarization relations for linear acoustic-gravity waves (GWs) and acoustic waves (AWs)... |
SourceID | proquest crossref pascalfrancis wiley istex |
SourceType | Aggregation Database Index Database Publisher |
SubjectTerms | acoustic-gravity waves Acoustics Atmospheric sciences dissipation Earth sciences Earth, ocean, space Exact sciences and technology Gravity waves Theoretical physics thermosphere Wave crest Wavelengths |
Title | The phases and amplitudes of gravity waves propagating and dissipating in the thermosphere: Theory |
URI | https://api.istex.fr/ark:/67375/WNG-52DF60TH-D/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2011JA017426 https://www.proquest.com/docview/1018269187 https://search.proquest.com/docview/1093464796 |
Volume | 117 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9sgEEdb87KXaZ-qty5i0tanodoYjNnLlK1NokiLpqrV-oYwBm2aaqdx223__e6wk6UvfUDCGAS6A-7HcdwR8i4PKQjd3LNMSMdEbSumtUqZ9CDvQlXXssTHyV-XxfxcLC7kxaBw6wazys2eGDfqunWoIz9Cz1K80FmpPq2uGEaNwtvVIYTGQzLKuFJ4-Cqns62OBYNK6BjEgEOG6bxMB9v3lOsjFH2LCcxIgZ4VdqTSCAn8B60kbQeECn2EizsQdBfIRkk0fUIeDxCSTnqePyUPfPOM7E86VGq3l3_pIY35XmfRPScVTAW6-gHiqqO2qalFI3J0adnRNlCMPwRInP62t1AAfcMOY9EWOtbF6_podA3fPxsKaBHT-rLt0B2B_0j7t_0vyPn05OzLnA2hFZgTShSs1tYCssB3q9LCmSXzaY2OfQqhS620lHXl0PGOdCpAkciL2gcbKp95kStIL8le0zZ-n1AJdURw3AJUFDZkVQ5MgkzuUuG5cwl5vyGtWfUeNEy8-eba7LIgIYeR7ttKdv0Lrc6UNN-XMyP58bRIz-bmOCHjO4zZNuDRGaGSCTnYcMoMK7Iz_-dPQt5uf8NawgsS2_j2BuvoXBRCaRjMh8jhe0dsFrPTCULM4tX9Pb4mj6Ad7-0kD8je9frGvwEsc12N44Qdk9Hnk-W303-B2-_9 |
link.rule.ids | 315,783,787,12777,21400,27936,27937,33385,33386,33756,33757,43612,43817,74363,74630 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELage4AL4qkGSjES9ETUxLHjNRe00G6XpV2hait6sxw_VISaLJuWx79nxsku20sPkRzHecjjeD7PjL8h5E0RMlC6hU9zLmzKnalSpWSWCg_6LlTOiSFuTj6ZlZMzPj0X573Bre3DKldzYpyoXWPRRr6PzFKsVPlQflj8TDFrFHpX-xQad8kAqapg8TX4eDj7erq2smBaCRXTGDAopKoYZn30e8bUPiq_6QjGJEduhQ29NMAu_oNxkqaFrgpdjosbIHQTykZdNH5IHvQgko46qT8id3z9mGyPWjRrN5d_6R6N5c5q0T4hFQwGurgAhdVSUztqMIwcSS1b2gSKGYgAi9Pf5hdUwLthjjEYDR3bosM-hl3D-feaAl7EY3nZtEhI4N_Tbnf_U3I2Ppx_mqR9coXUcsnL1CljAFvgzlVhYNWS-8whtU_J1VBJJYSrLFLvCCsDVPGidD6YUPnc80LC8Yxs1U3ttwkV0IYHywyARW5CXhUgJigUNuOeWZuQt6uu1YuOQ0NH3zdTelMECdmL_b5uZJY_MO5MCv1tdqQFOxiX2XyiDxKye0Mw6xtYpCOUIiE7K0np_p9s9f8RlJDX68vwN6GLxNS-ucY2quAllwo-5l2U8K1frKdHpyMEmeXz29_4itybzE-O9fHn2ZcX5D48g3VRkztk62p57V8Csrmqdvvh-w9zCvK0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED9BKyFe0PjSAmMzEuyJqIljJzUvU1nXlQLVNG1ib5aT2AKhJV2z8fHf785JS_eyh0hO4iTW3dn3i_3zHcC7xEXodBMbxkIWoShNHiqVRaG06O9cXpZySJuTv83T6bmYXciLjv_UdLTK1ZjoB-qyLmiOfECRpXiq4mE2cB0t4mQ8OVhchZRBilZau3QaD6GfiTSJetD_dDQ_OV3PuFCKCeVTGnAshCoZRh0TPuJqQI5wNkL7FBRnYcNH9Uncf4kzaRoUm2vzXdwBpJuw1vulyRY86QAlG7UW8BQe2OoZbI8amuKuL_-xfebL7QxG8xxyNAy2-IHOq2GmKpkhSjkFuGxY7RhlI0Jczv6Y33gBv43jjSFmtK9Li_eego3nPyuG2JGO5WXdUHAC-5G1O_1fwPnk6OxwGnaJFsJCoKzCUhmDOIN2sUqDfzCxjUoK85MKNVSZkrLMCwrDI4vM4SWRpKV1xuU2tiLJ8HgJvaqu7DYwiXWEK7hB4CiMi_MEVYaFpIiE5UURwPuVaPWijaeh_To4V3pTBQHse7mvK5nlL-KgZVJ_nx9ryceTNDqb6nEAu3cUs36A-9CEmQxgZ6Up3fXPRv-3pgDerm9jz6LlElPZ-obqqESkIlPYmA9ew_e2WM-OT0cEONNX939xDx6h5eqvn-dfXsNjfAVvCZQ70Lte3tg3CHKu893Oem8B9mf24g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+phases+and+amplitudes+of+gravity+waves+propagating+and+dissipating+in+the+thermosphere%3A+Theory&rft.jtitle=Journal+of+geophysical+research.+Space+physics&rft.au=Vadas%2C+S+L&rft.au=Nicolls%2C+M+J&rft.date=2012-05-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=2169-9380&rft.eissn=2169-9402&rft.volume=117&rft.issue=5&rft_id=info:doi/10.1029%2F2011JA017426&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=2676900741 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0148-0227&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0148-0227&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0148-0227&client=summon |