The phases and amplitudes of gravity waves propagating and dissipating in the thermosphere: Theory

We derive the high‐frequency, compressible, dissipative dispersion and polarization relations for linear acoustic‐gravity waves (GWs) and acoustic waves (AWs) in a single‐species thermosphere. The wave amplitudes depend explicitly on time, consistent with a wave packet approach. We investigate the p...

Full description

Saved in:
Bibliographic Details
Published inJournal of Geophysical Research: Space Physics Vol. 117; no. A5
Main Authors Vadas, S. L., Nicolls, M. J.
Format Journal Article
LanguageEnglish
Published Washington, DC Blackwell Publishing Ltd 01.05.2012
American Geophysical Union
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We derive the high‐frequency, compressible, dissipative dispersion and polarization relations for linear acoustic‐gravity waves (GWs) and acoustic waves (AWs) in a single‐species thermosphere. The wave amplitudes depend explicitly on time, consistent with a wave packet approach. We investigate the phase shifts and amplitude ratios between the GW components, which include the horizontal (uH′) and vertical (w′) velocity, density (ρ′), pressure (p′), and temperature (T′) perturbations. We show how GWs with large vertical wavelengths λz have dramatically different phase and amplitude relations than those with small λz. For zero viscosity, as ∣λz∣ increases, the phase between uH′ and w′ decreases from 0 to ∼−90°, the phase between uH′ and T′ decreases from ∼90 to 0°, and the phase between T′ and ρ′ decreases from ∼180 to 0° for λH ≫ ∣λz∣, where λH is the horizontal wavelength. This effect lessens substantially with increasing altitudes, primarily because the density scale height H increases. We show how in‐situ satellite measurements of either (1) the 3D neutral wind or (2) ρ′, T′, w′, and the cross‐track wind, can be used to infer a GW's λH, λz, propagation direction, and intrinsic frequency ωIr. We apply this theory to a GW observed by the DE2 satellite. We find a significant region of overlap in parameter space for 5 independent constraints (i.e., T′0/ρ′0, the phase shift between T′ and w′, and the distance between wave crests), which provides a good test and validation of this theory. In a companion paper, we apply this theory to ground‐based observations of a GW over Alaska. Key Points Determine the polarization and dispersion relations of dissipating gravity waves Show how the phases and amplitudes change as a gravity wave dissipates Delineate the method for use with in situ satellite measurements
AbstractList We derive the high-frequency, compressible, dissipative dispersion and polarization relations for linear acoustic-gravity waves (GWs) and acoustic waves (AWs) in a single-species thermosphere. The wave amplitudes depend explicitly on time, consistent with a wave packet approach. We investigate the phase shifts and amplitude ratios between the GW components, which include the horizontal (uH) and vertical (w) velocity, density (), pressure (p), and temperature (T) perturbations. We show how GWs with large vertical wavelengths z have dramatically different phase and amplitude relations than those with small z. For zero viscosity, as z increases, the phase between uH and w decreases from 0 to 90°, the phase between uH and T decreases from 90 to 0°, and the phase between T and decreases from 180 to 0° for H z, where H is the horizontal wavelength. This effect lessens substantially with increasing altitudes, primarily because the density scale height inline equation increases. We show how in-situ satellite measurements of either (1) the 3D neutral wind or (2) , T, w, and the cross-track wind, can be used to infer a GW's H, z, propagation direction, and intrinsic frequency Ir. We apply this theory to a GW observed by the DE2 satellite. We find a significant region of overlap in parameter space for 5 independent constraints (i.e., T0/0, the phase shift between T and w, and the distance between wave crests), which provides a good test and validation of this theory. In a companion paper, we apply this theory to ground-based observations of a GW over Alaska.
We derive the high‐frequency, compressible, dissipative dispersion and polarization relations for linear acoustic‐gravity waves (GWs) and acoustic waves (AWs) in a single‐species thermosphere. The wave amplitudes depend explicitly on time, consistent with a wave packet approach. We investigate the phase shifts and amplitude ratios between the GW components, which include the horizontal ( u H ′) and vertical ( w ′) velocity, density ( ρ ′), pressure ( p ′), and temperature ( T ′) perturbations. We show how GWs with large vertical wavelengths λ z have dramatically different phase and amplitude relations than those with small λ z . For zero viscosity, as ∣ λ z ∣ increases, the phase between u H ′ and w ′ decreases from 0 to ∼−90°, the phase between u H ′ and T ′ decreases from ∼90 to 0°, and the phase between T ′ and ρ ′ decreases from ∼180 to 0° for λ H  ≫ ∣ λ z ∣, where λ H is the horizontal wavelength. This effect lessens substantially with increasing altitudes, primarily because the density scale height increases. We show how in‐situ satellite measurements of either (1) the 3D neutral wind or (2) ρ ′, T ′, w ′, and the cross‐track wind, can be used to infer a GW's λ H , λ z , propagation direction, and intrinsic frequency ω Ir . We apply this theory to a GW observed by the DE2 satellite. We find a significant region of overlap in parameter space for 5 independent constraints (i.e., T ′ 0 / ρ ′ 0 , the phase shift between T ′ and w ′, and the distance between wave crests), which provides a good test and validation of this theory. In a companion paper, we apply this theory to ground‐based observations of a GW over Alaska. Key Points Determine the polarization and dispersion relations of dissipating gravity waves Show how the phases and amplitudes change as a gravity wave dissipates Delineate the method for use with in situ satellite measurements
We derive the high‐frequency, compressible, dissipative dispersion and polarization relations for linear acoustic‐gravity waves (GWs) and acoustic waves (AWs) in a single‐species thermosphere. The wave amplitudes depend explicitly on time, consistent with a wave packet approach. We investigate the phase shifts and amplitude ratios between the GW components, which include the horizontal (uH′) and vertical (w′) velocity, density (ρ′), pressure (p′), and temperature (T′) perturbations. We show how GWs with large vertical wavelengths λz have dramatically different phase and amplitude relations than those with small λz. For zero viscosity, as ∣λz∣ increases, the phase between uH′ and w′ decreases from 0 to ∼−90°, the phase between uH′ and T′ decreases from ∼90 to 0°, and the phase between T′ and ρ′ decreases from ∼180 to 0° for λH ≫ ∣λz∣, where λH is the horizontal wavelength. This effect lessens substantially with increasing altitudes, primarily because the density scale height H increases. We show how in‐situ satellite measurements of either (1) the 3D neutral wind or (2) ρ′, T′, w′, and the cross‐track wind, can be used to infer a GW's λH, λz, propagation direction, and intrinsic frequency ωIr. We apply this theory to a GW observed by the DE2 satellite. We find a significant region of overlap in parameter space for 5 independent constraints (i.e., T′0/ρ′0, the phase shift between T′ and w′, and the distance between wave crests), which provides a good test and validation of this theory. In a companion paper, we apply this theory to ground‐based observations of a GW over Alaska. Key Points Determine the polarization and dispersion relations of dissipating gravity waves Show how the phases and amplitudes change as a gravity wave dissipates Delineate the method for use with in situ satellite measurements
We derive the high-frequency, compressible, dissipative dispersion and polarization relations for linear acoustic-gravity waves (GWs) and acoustic waves (AWs) in a single-species thermosphere. The wave amplitudes depend explicitly on time, consistent with a wave packet approach. We investigate the phase shifts and amplitude ratios between the GW components, which include the horizontal (uH') and vertical (w') velocity, density ( rho '), pressure (p'), and temperature (T') perturbations. We show how GWs with large vertical wavelengths lambda z have dramatically different phase and amplitude relations than those with small lambda z. For zero viscosity, as [mid] lambda z[mid] increases, the phase between uH' and w' decreases from 0 to similar to -90 degree , the phase between uH' and T' decreases from similar to 90 to 0 degree , and the phase between T' and rho ' decreases from similar to 180 to 0 degree for lambda H >> [mid] lambda z[mid], where lambda H is the horizontal wavelength. This effect lessens substantially with increasing altitudes, primarily because the density scale height inline equation increases. We show how in-situ satellite measurements of either (1) the 3D neutral wind or (2) rho ', T', w', and the cross-track wind, can be used to infer a GW's lambda H, lambda z, propagation direction, and intrinsic frequency omega Ir. We apply this theory to a GW observed by the DE2 satellite. We find a significant region of overlap in parameter space for 5 independent constraints (i.e., T'0/ rho '0, the phase shift between T' and w', and the distance between wave crests), which provides a good test and validation of this theory. In a companion paper, we apply this theory to ground-based observations of a GW over Alaska.
Author Nicolls, M. J.
Vadas, S. L.
Author_xml – sequence: 1
  givenname: S. L.
  surname: Vadas
  fullname: Vadas, S. L.
  email: vasha@cora.nwra.com, (vasha@co-ra.com
  organization: CORA Division, Northwest Research Associates, Inc., Boulder, Colorado, USA
– sequence: 2
  givenname: M. J.
  surname: Nicolls
  fullname: Nicolls, M. J.
  organization: Center for Geospace Studies, SRI International, Menlo Park, California, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25982275$$DView record in Pascal Francis
BookMark eNp9kU9LHEEQxRsxkI3xlg8wIIEcHO3u6b-5LZrdVUQhbMixqZ3pWVtnZ8buWc1-e8uMiOSQhqKo4vcej-pPZL_tWk_IF0ZPGOX2lFPGLqeUacHVHplwJlXOOeX7ZEKZMDnlXH8khyndUXxCKkHZhKyWtz7rbyH5lEFbZbDpmzBsKxy7OltHeAzDLnuCR1z0sethDUNo13_ZKqQU-nEObTagE1bcdKnH5r9n6N3F3WfyoYYm-cPXfkB-zX4szxb51c384mx6lZdCC5VXFoByY7hkEoTRzNOKaq2UsMZqK2W1KpnA4KWucSUKVfka6pVnXhQa64B8G30x58PWp8FtQip900Dru21yjNpCKKGtQvToH_Su28YW0yHFDFeWGY3U8UiVsUsp-tr1MWwg7hByLzd372-O-NdXU0glNHWEtgzpTcOlNfgFErli5J5C43f_9XSX859Tzkzx4p6PqpAG_-dNBfHeKV1o6X5fz53k5zNFlwt3XjwDBLCeow
CitedBy_id crossref_primary_10_1002_2016JA022930
crossref_primary_10_1002_2016JA023828
crossref_primary_10_1029_2022JA030954
crossref_primary_10_12737_10413
crossref_primary_10_1002_2013JA019387
crossref_primary_10_1029_2022JD037276
crossref_primary_10_1016_j_asr_2015_06_036
crossref_primary_10_1029_2022JD036985
crossref_primary_10_1016_j_jastp_2020_105488
crossref_primary_10_1029_2019SW002325
crossref_primary_10_1016_j_jastp_2016_10_009
crossref_primary_10_1002_jgra_50249
crossref_primary_10_1007_s00024_022_03028_6
crossref_primary_10_3390_atmos10090546
crossref_primary_10_1002_2017JA024146
crossref_primary_10_1029_2018JA025253
crossref_primary_10_1063_5_0159522
crossref_primary_10_1002_2015RS005910
crossref_primary_10_1002_jgra_50163
crossref_primary_10_1121_1_4902426
crossref_primary_10_1029_2023SW003502
crossref_primary_10_2139_ssrn_3980606
crossref_primary_10_12737_19879
crossref_primary_10_15407_kfnt2017_03_041
crossref_primary_10_1029_2017RG000594
crossref_primary_10_5194_angeo_37_405_2019
crossref_primary_10_1029_2019JA026693
crossref_primary_10_5194_angeo_38_73_2020
crossref_primary_10_1029_2017JD027617
crossref_primary_10_1029_2019JA026694
crossref_primary_10_1002_2013JA018988
crossref_primary_10_1002_2016JA023449
crossref_primary_10_3103_S0884591321050044
crossref_primary_10_1002_2015GL064610
crossref_primary_10_1017_jfm_2015_367
crossref_primary_10_1016_j_asr_2015_01_033
crossref_primary_10_1029_2020JA028011
crossref_primary_10_1016_j_jastp_2013_08_001
crossref_primary_10_15407_kfnt2021_05_003
crossref_primary_10_5194_amt_17_3995_2024
crossref_primary_10_1029_2019RS006858
crossref_primary_10_1002_2015JA021430
crossref_primary_10_1002_2016RS006196
crossref_primary_10_5194_angeo_31_1_2013
crossref_primary_10_1002_2014GL060107
crossref_primary_10_1029_2023JA032154
crossref_primary_10_1016_j_jastp_2016_02_003
crossref_primary_10_1029_2020JA028003
crossref_primary_10_1029_2023JA032199
crossref_primary_10_1016_j_jastp_2016_02_004
crossref_primary_10_12737_10366
crossref_primary_10_15407_kfnt2020_05_015
crossref_primary_10_3103_S0884591320050049
crossref_primary_10_1029_2012JA017542
crossref_primary_10_3389_fspas_2021_651445
crossref_primary_10_1002_2015JD023604
Cites_doi 10.1016/0021-9169(77)90007-1
10.5194/angeo-27-147-2009
10.1029/JA078i013p02278
10.1029/RG012i002p00193
10.1029/RG020i002p00293
10.1063/1.2813343
10.1016/0021-9169(75)90012-4
10.1029/2002JA009370
10.1016/0032-0633(62)90064-8
10.1016/0021-9169(69)90002-6
10.1016/0032-0633(70)90132-7
10.1029/2002JA009433
10.1109/TGRS.1984.350635
10.1016/S0021-9169(68)80029-7
10.1029/JZ071i015p03729
10.1017/S002211206700076X
10.1007/978-94-007-0326-1_9
10.1029/JZ069i013p02847
10.1016/0032-0633(70)90135-2
10.1029/JA074i007p01786
10.1029/2007GL031522
10.1139/p63-194
10.1016/0021-9169(95)00033-X
10.1007/s005850050357
10.1175/1520-0469(2001)058<2249:GWRAMR>2.0.CO;2
10.1029/97JA00491
10.1016/0032-0633(90)90058-X
10.1029/2007JA012766
10.1175/1520-0469(1987)044<0458:TRTLEH>2.0.CO;2
10.1016/0021-9169(87)90044-4
10.1029/JZ063i001p00265
10.1029/2010JD014987
10.1016/0021-9169(87)90003-1
10.1139/p70-185
10.1029/97RS02797
10.1029/2009JA014799
10.1029/2003GL019376
10.1029/96JA03033
10.1016/0021-9169(85)90074-1
10.1029/2000GL011953
10.1029/2001RG000106
10.1029/2006JA011845
10.1016/0021-9169(72)90109-2
10.1029/2001GL013076
10.1029/2009JA014105
10.1029/2012JA017542
10.1029/96JD01660
10.1029/JA083iA09p04131
10.1029/2004JD005574
10.1139/p60-150
10.1016/j.jastp.2009.01.011
10.1029/2005JA011510
10.1007/BF00177800
10.1029/90JA02125
10.1029/2009JA014108
10.1029/2006JA011668
10.1016/j.asr.2008.10.031
10.5194/angeo-26-3841-2008
10.1029/2005JA011415
10.1029/2009JA015053
10.1029/JA084iA08p04371
ContentType Journal Article
Copyright Copyright 2012 by the American Geophysical Union
2015 INIST-CNRS
Copyright_xml – notice: Copyright 2012 by the American Geophysical Union
– notice: 2015 INIST-CNRS
DBID BSCLL
IQODW
AAYXX
CITATION
3V.
7TG
7XB
88I
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
DWQXO
GNUQQ
H8D
HCIFZ
KL.
L7M
M2P
P5Z
P62
PCBAR
PQEST
PQQKQ
PQUKI
Q9U
DOI 10.1029/2011JA017426
DatabaseName Istex
Pascal-Francis
CrossRef
ProQuest Central (Corporate)
Meteorological & Geoastrophysical Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Aerospace Database‎ (1962 - current)
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
Aerospace Database
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Advanced Technologies Database with Aerospace
ProQuest Science Journals
ProQuest Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Earth, Atmospheric & Aquatic Science Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Central (Alumni)
DatabaseTitleList ProQuest Central Student
CrossRef

Meteorological & Geoastrophysical Abstracts - Academic
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Biology
Oceanography
Geology
Astronomy & Astrophysics
Physics
EISSN 2156-2202
2169-9402
EndPage n/a
ExternalDocumentID 2676900741
10_1029_2011JA017426
25982275
JGRA21836
ark_67375_WNG_52DF60TH_D
Genre article
Feature
GeographicLocations United States
Alaska
USA, Alaska
GeographicLocations_xml – name: USA, Alaska
GrantInformation_xml – fundername: NSF, NASA
  funderid: ATM‐0836195; NNH08CE12C; NNH10CC98C
GroupedDBID 12K
1OC
24P
7XC
88I
8FE
8FH
8G5
8R4
8R5
AANLZ
AAXRX
ABUWG
ACAHQ
ACCZN
ACXBN
AEIGN
AEUYR
AFFPM
AHBTC
AITYG
ALMA_UNASSIGNED_HOLDINGS
AMYDB
ATCPS
BBNVY
BENPR
BHPHI
BKSAR
BPHCQ
BRXPI
BSCLL
DCZOG
DRFUL
DRSTM
DU5
DWQXO
GNUQQ
GUQSH
HCIFZ
LATKE
LITHE
LOXES
LUTES
LYRES
M2O
M2P
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
P-X
Q2X
RNS
WHG
WIN
WXSBR
XSW
~OA
~~A
08R
ALUQN
IQODW
AAYXX
CITATION
05W
0R~
33P
3V.
50Y
52M
702
7TG
7XB
8-1
8FD
8FG
8FK
AAESR
AASGY
AAZKR
ACBWZ
ACGOD
ACPOU
ACXQS
ADKYN
ADOZA
ADXAS
ADZMN
AFKRA
AIURR
ARAPS
AZQEC
AZVAB
BFHJK
BGLVJ
BMXJE
CCPQU
D0L
D1K
DPXWK
H8D
HGLYW
HZ~
K6-
KL.
L7M
LEEKS
LK5
M7R
MY~
O9-
P2W
P62
PCBAR
PQEST
PQQKQ
PQUKI
PROAC
Q9U
R.K
SUPJJ
WBKPD
ID FETCH-LOGICAL-c4746-d9aa02882515a4871e0d0776649897955dbc14045c7f498436defafbe1e437e43
IEDL.DBID 8FG
ISSN 0148-0227
2169-9380
IngestDate Fri Oct 25 22:49:06 EDT 2024
Thu Oct 10 20:47:46 EDT 2024
Fri Aug 23 04:10:44 EDT 2024
Sun Oct 22 16:09:16 EDT 2023
Sat Aug 24 00:55:36 EDT 2024
Wed Oct 30 09:56:53 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue A5
Keywords altitude
North America
acoustical waves
amplitude
Neutral wind
temperature
Height
polarization
wavelength
density
high frequency
satellite measurements
Satellite observation
Perturbation
pressure
velocity
trajectory
in situ
phase shift
viscosity
propagation
Gravity wave
Wave packet
three-dimensional models
dispersion
theory
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4746-d9aa02882515a4871e0d0776649897955dbc14045c7f498436defafbe1e437e43
Notes ArticleID:2011JA017426
ark:/67375/WNG-52DF60TH-D
NSF, NASA - No. ATM-0836195; No. NNH08CE12C; No. NNH10CC98C
istex:DED5684BA0BCDE697BD7313380EC151E40F4B2FC
This is a companion to DOI
10.1029/2011JA017542
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 1018269187
PQPubID 54732
PageCount 25
ParticipantIDs proquest_miscellaneous_1093464796
proquest_journals_1018269187
crossref_primary_10_1029_2011JA017426
pascalfrancis_primary_25982275
wiley_primary_10_1029_2011JA017426_JGRA21836
istex_primary_ark_67375_WNG_52DF60TH_D
PublicationCentury 2000
PublicationDate May 2012
PublicationDateYYYYMMDD 2012-05-01
PublicationDate_xml – month: 05
  year: 2012
  text: May 2012
PublicationDecade 2010
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: Washington
PublicationTitle Journal of Geophysical Research: Space Physics
PublicationTitleAlternate J. Geophys. Res
PublicationYear 2012
Publisher Blackwell Publishing Ltd
American Geophysical Union
Publisher_xml – name: Blackwell Publishing Ltd
– name: American Geophysical Union
References Hung, R. J., and J. P. Kuo (1978), Ionospheric observation of gravity-waves associated with hurricane Eloise, J. Geophys. Res., 45, 67-80.
Bishop, R., N. Aponte, G. D. Earle, M. Sulzer, M. Larsen, and G. Peng (2006), Arecibo observations of ionospheric perturbations associated with the passage of tropical storm Odette, J. Geophys. Res., 111, A11320, doi:10.1029/2006JA011668.
Hajkowicz, L. A. (1990), A global study of large scale travelling ionospheric disturbances (TIDs) following a step-like onset of auroral substorms in both hemispheres, Planet. Space Sci., 38, 913-923.
Hocke, K., and K. Schlegel (1996), A review of atmospheric gravity waves and traveling ionospheric disturbances, Ann. Geophys., 14, 917-940.
Dalgarno, A., and F. J. Smith (1962), The thermal conductivity and viscosity of atomic oxygen, Planet. Space Sci., 9, 1-2.
Walterscheid, R. L., and M. P. Hickey (2011), Group velocity and energy flux in the thermosphere: Limits on the validity of group velocity in a viscous atmosphere, J. Geophys. Res., 116, D12101, doi:10.1029/2010JD014987.
Chimonas, G., and W. R. Peltier (1970), The bow wave generated by an auroral arc in supersonic motion, Planet. Space Sci., 18, 599-612.
Volland, H. (1969a), The upper atmosphere as a multiply refractive medium for neutral air motions, J. Atmos. Terr. Phys., 31, 491-514.
Maeda, S. (1985), Numerical solutions of the coupled equations for acoustic-gravity waves in the upper thermosphere, J. Atmos. Terr. Phys., 47, 965-972.
Kelley, M. C. (1997), In situ ionospheric observations of severe weather-related gravity waves and associated small-scale plasma structure, J. Geophys. Res., 102, 329-335.
Hickey, M. P., G. Schubert, and R. L. Walterscheid (2009), The propagation of tsunami-driven gravity waves into the thermosphere and ionosphere, J. Geophys. Res., 114, A08304, doi:10.1029/2009JA014105.
Vadas, S. L. (2007), Horizontal and vertical propagation and dissipation of gravity waves in the thermosphere from lower atmospheric and thermospheric sources, J. Geophys. Res., 112, A06305, doi:10.1029/2006JA011845.
Hocke, K., K. Schlegel, and G. Kirchengast (1996), Phases and amplitudes of TIDs in the high-latitude F-region observed by EISCAT, J. Atmos. Terr. Phys., 58, 245-255.
Volland, H. (1969b), Full wave calculations of gravity wave propagation through the thermosphere, J. Geophys. Res., 74,1786-1795.
Georges, T. M. (1968), HF Doppler studies of traveling ionospheric disturbances, J. Atmos. Terr. Phys., 30, 735-746.
Nicolls, M. J., S. L. Vadas, J. W. Meriwether, M. G. Conde, and D. Hampton (2012), The phases and amplitudes of gravity waves propagating and dissipating in the thermosphere: Application to measurements over Alaska, J. Geophys. Res., doi:10.1029/2012JA017542, in press.
Yanowitch, M. (1967), Effect of viscosity on gravity waves and the upper boundary condition, J. Fluid Mech., 29, 209-231.
Hedin, A. E. (1991), Extension of the MSIS thermosphere model into the middle and lower atmosphere, J. Geophys. Res., 96, 1159-1172.
Francis, S. H. (1973), Acoustic-gravity modes and large-scale traveling ionospheric disturbances of a realistic dissipative atmosphere, J. Geophys. Res., 78, 2278-2301.
Richmond, A. D. (1978), Gravity wave generation, propagation, and dissipation in the thermosphere, J. Geophys. Res., 83, 4131-4145.
Chimonas, G., and C. O. Hines (1970), Atmospheric gravity waves launched by auroral currents, Planet. Space Sci., 18, 565-582.
Hanson, W. B., U. Ponzi, C. Arduini, and M. Di Ruscio (1992), A satellite anemometer, J. Astro. Sci., 40, 429-438.
Kundu, P. (1990), Fluid Dynamics, 638 pp., Academic, San Diego, Calif.
Mayr, H. G., I. Harris, F. A. Herrero, N. W. Spencer, F. Varosi, and W. D. Pesnell (1990), Thermospheric gravity waves: Observations and interpretation using the transfer function model (TEM), Space Sci. Rev., 54, 297-375.
Gross, S. H., C. A. Reber, and F. T. Huang (1984), Large-scale waves in the thermosphere observed by the AE-C satellite, IEEE Trans. Geosci. Remote Sens., 22, 340-352.
Bauer, S. J. (1958), An apparent ionospheric response to the passage of hurricanes, J. Geophys. Res., 63, 265-269.
Earle, G. D., J. H. Klenzing, W. A. Macaulay, M. D. Perdue, and E. L. Patrick (2007), A new satellite-borne neutral wind instrument for thermospheric diagnostics, Rev. Sci. Instrum., 78(11), 114501.
Vadas, S. L., and D. C. Fritts (2001), Gravity wave radiation and mean responses to local body forces in the atmosphere, J. Atmos. Sci., 58, 2249-2279.
Oliver, W. L., Y. Otsuka, M. Sato, T. Takami, and S. Fukao (1997), A climatology of F region gravity wave propagation over the middle and upper atmosphere radar, J. Geophys. Res., 102, 14,499-14,512.
Vadas, S. L., and G. Crowley (2010), Sources of the traveling ionospheric disturbances observed by the ionospheric TIDDBIT sounder near Wallops Island on October 30, 2007, J. Geophys. Res., 115, A07324, doi:10.1029/2009JA015053.
Vadas, S. L., and D. C. Fritts (2005), Thermospheric responses to gravity waves: Influences of increasing viscosity and thermal diffusivity, J. Geophys. Res., 110, D15103, doi:10.1029/2004JD005574.
Hickey, M. P., and K. D. Cole (1987), A quartic dispersion equation for internal gravity waves in the thermosphere, J. Atmos. Terr. Phys., 49, 889-899.
Francis, S. H. (1975), Global propagation of atmospheric gravity waves: A review, J. Atmos. Terr. Phys., 37, 1011-1030.
Vadas, S. L., and D. C. Fritts (2006), Influence of solar variability on gravity wave structure and dissipation in the thermosphere from tropospheric convection, J. Geophys. Res., 111, A10S12, doi:10.1029/2005JA011510.
Einaudi, F., and C. O. Hines (1970), WKB approximation in application to acoustic-gravity waves, Can. J. Phys., 48, 1458-1471.
Innis, J. L., and M. Conde (2002), Characterization of acoustic-gravity waves in the upper thermosphere using Dynamics Explorer 2 Wind and Temperature Spectrometer (WATS) and Neutral Atmosphere Composition Spectrometer (NACS) data, J. Geophys. Res., 107(A12), 1418, doi:10.1029/2002JA009370.
Röttger, J. (1977), Travelling disturbances in the equatorial ionosphere and their association with penetrative cumulus convection, J. Atmos. Terr. Phys., 39, 987-998.
Hickey, M. P., R. L. Walterscheid, and P. G. Richards (2000), Secular variations of atomic oxygen in the mesopause region induced by transient gravity wave packets, Geophys. Res. Lett., 27, 3599-3602.
Vadas, S. L., and H.-L. Liu (2009), The generation of large-scale gravity waves and neutral winds in the thermosphere from the dissipation of convectively-generated gravity waves, J. Geophys. Res., 114, A10310, doi:10.1029/2009JA014108.
Salby, M. L., and R. R. Garcia (1987), Transient response to localized episodic heating in the tropics. Part I: Excitation and short-time, near-field behavior, J. Atmos. Sci., 44(2), 458-498.
Bruinsma, S. L., and J. M. Forbes (2009), Properties of traveling atmospheric disturbances (TADs) inferred from CHAMP accelerometer observations, Adv. Space Res., 43, 369-376.
Liu, H., H. Luhr, S. Watanabe, W. Kohler, V. Henize, and P. Visser (2006), Zonal winds in the equatorial upper thermosphere: Decomposing the solar flux, geomagnetic activity, and seasonal dependencies, J. Geophys. Res., 111, A07307, doi:10.1029/2005JA011415.
Tsugawa T., A. Saito, Y. Otsuka, and M. Yamamoto (2003), Damping of large-scale traveling ionospheric disturbances detected with GPS networks during the geomagnetic storm, J. Geophys. Res., 108(A3), 1127, doi:10.1029/2002JA009433.
Vadas, S. L., and M. J. Nicolls (2008), Using PFISR measurements and gravity wave dissipative theory to determine the neutral, background thermospheric winds, Geophys. Res. Lett., 35, L02105, doi:10.1029/2007GL031522.
Klostermeyer, J. (1972), Numerical calculation of gravity wave propagation in a realistic thermosphere, J. Atmos. Terr. Phys., 34, 765-774.
Hines, C. O. (1964), Minimum vertical scale sizes in the wind structure above 100 km, J. Geophys. Res., 69, 2847-2848.
Pitteway, M. L. V., and C. O. Hines (1963), The viscous damping of atmospheric gravity waves, Can. J. Phys., 41, 1935-1948.
Yeh, K. C., C. H. Liu, and M. Y. Youakim (1975), Attenuation of internal gravity waves in model atmospheres, Ann. Geophys., 31, 321-328.
Eckermann, S., and C. Marks (1996), An idealized ray model of gravity wave-tidal interactions, J. Geophys. Res., 101, 21,195-21,212, doi:10.1029/96JD01660.
DelGenio, A. D., and G. Schubert (1979), Gravity wave propagation in a diffusively separated atmosphere with height-dependent collision frequencies, J. Geophys. Res., 84, 4371-4378.
Vadas, S. L., and D. C. Fritts (2009), Reconstruction of the gravity wave field from convective plumes via ray tracing, Ann. Geophys., 27, 147-177.
Earle, G. D., A. Mwene-Musumba, and S. L. Vadas (2008), Satellite-based measurements of gravity wave-induced mid-latitude plasma density perturbations, J. Geophys. Res., 113, A03303, doi:10.1029/2007JA012766.
Fritts, D. C., and M. J. Alexander (2003), Gravity wave dynamics and effects in the middle atmosphere, Rev. Geophys., 41(1), 1003, doi:10.1029/2001RG000106.
Vadas, S. L., and M. J. Nicolls (2009), Temporal evolution of neutral, thermospheric winds and plasma response using PFISR measurements of gravity waves, J. Atmos. Sol. Terr. Phys., 71, 740-770.
Hocke, K., and T. Tsuda (2001), Gravity waves and ionospheric irregularities over tropical convection zones observed by GPS/MET radio occultation, Geophys. Res. Lett., 28, 2815-2818.
Djuth, F. T., M. P. Sulzer, J. H. Elder, and V. B. Wickwar (1997), High-resolution studies of atmosphere-ionosphere coupling at Arecibo Observatory, Puerto Rico, Radio Sci., 32, 2321-2344.
Midgley, J. E., and H. B. Liemohn (1966), Gravity waves in a realistic atmosphere, J. Geophys. Res., 71, 3729-3748.
Fritts, D. C., and S. Vadas (2008), Gravity wave penetration into the thermosphere: Sensitivity to solar cycle variations and mean winds, Ann. Geophys., 26, 3841-3861.
Hines, C. O. (1960), Internal atmospheric gravity waves at ionospheric heights, Can. J. Phys., 38, 1441-1481.
Djuth, F. T., L. D
2011; 116
1990; 54
1974; 12
2009; 43
1963; 41
1991; 96
1969; 74
1984; 22
1960; 38
1969; 31
1967; 29
2008; 35
2007; 78
1996; 101
2009; 114
1978
1997; 102
1987; 44
2004; 31
1990
1977; 39
2010; 115
1982; 20
2008; 26
2002; 107
2008; 113
2003; 41
2001; 58
1992; 40
1987; 49
2000; 27
2012
2005; 110
1990; 38
2011
1973; 78
1966; 71
1975; 37
1964; 69
1975; 31
1962; 9
2001; 28
1996; 14
1996; 58
1970; 18
2009; 27
2006; 111
1985; 47
2007; 112
2003; 108
1978; 45
1997; 32
2009; 71
1978; 83
1958; 63
1972; 34
1970; 48
1979; 84
1968; 30
e_1_2_8_28_1
Lighthill J. (e_1_2_8_39_1) 1978
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
Yeh K. C. (e_1_2_8_67_1) 1975; 31
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_62_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_57_1
Hung R. J. (e_1_2_8_33_1) 1978; 45
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
Hanson W. B. (e_1_2_8_23_1) 1992; 40
Kundu P. (e_1_2_8_38_1) 1990
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 22
  start-page: 340
  year: 1984
  end-page: 352
  article-title: Large‐scale waves in the thermosphere observed by the AE‐C satellite
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 102
  start-page: 14,499
  year: 1997
  end-page: 14,512
  article-title: A climatology of F region gravity wave propagation over the middle and upper atmosphere radar
  publication-title: J. Geophys. Res.
– volume: 108
  issue: A3
  year: 2003
  article-title: Damping of large‐scale traveling ionospheric disturbances detected with GPS networks during the geomagnetic storm
  publication-title: J. Geophys. Res.
– volume: 43
  start-page: 369
  year: 2009
  end-page: 376
  article-title: Properties of traveling atmospheric disturbances (TADs) inferred from CHAMP accelerometer observations
  publication-title: Adv. Space Res.
– volume: 74
  start-page: 1786
  year: 1969
  end-page: 1795
  article-title: Full wave calculations of gravity wave propagation through the thermosphere
  publication-title: J. Geophys. Res.
– volume: 49
  start-page: 105
  year: 1987
  end-page: 114
  article-title: Source regions of medium scale travelling ionospheric disturbances observed at mid‐latitudes
  publication-title: J. Atmos. Terr. Phys.
– volume: 63
  start-page: 265
  year: 1958
  end-page: 269
  article-title: An apparent ionospheric response to the passage of hurricanes
  publication-title: J. Geophys. Res.
– volume: 37
  start-page: 1011
  year: 1975
  end-page: 1030
  article-title: Global propagation of atmospheric gravity waves: A review
  publication-title: J. Atmos. Terr. Phys.
– volume: 111
  year: 2006
  article-title: Arecibo observations of ionospheric perturbations associated with the passage of tropical storm Odette
  publication-title: J. Geophys. Res.
– volume: 48
  start-page: 1458
  year: 1970
  end-page: 1471
  article-title: WKB approximation in application to acoustic‐gravity waves
  publication-title: Can. J. Phys.
– volume: 45
  start-page: 67
  year: 1978
  end-page: 80
  article-title: Ionospheric observation of gravity‐waves associated with hurricane Eloise
  publication-title: J. Geophys. Res.
– year: 1990
– volume: 110
  year: 2005
  article-title: Thermospheric responses to gravity waves: Influences of increasing viscosity and thermal diffusivity
  publication-title: J. Geophys. Res.
– volume: 39
  start-page: 987
  year: 1977
  end-page: 998
  article-title: Travelling disturbances in the equatorial ionosphere and their association with penetrative cumulus convection
  publication-title: J. Atmos. Terr. Phys.
– volume: 34
  start-page: 765
  year: 1972
  end-page: 774
  article-title: Numerical calculation of gravity wave propagation in a realistic thermosphere
  publication-title: J. Atmos. Terr. Phys.
– volume: 28
  start-page: 2815
  year: 2001
  end-page: 2818
  article-title: Gravity waves and ionospheric irregularities over tropical convection zones observed by GPS/MET radio occultation
  publication-title: Geophys. Res. Lett.
– volume: 83
  start-page: 4131
  year: 1978
  end-page: 4145
  article-title: Gravity wave generation, propagation, and dissipation in the thermosphere
  publication-title: J. Geophys. Res.
– volume: 111
  year: 2006
  article-title: Influence of solar variability on gravity wave structure and dissipation in the thermosphere from tropospheric convection
  publication-title: J. Geophys. Res.
– volume: 27
  start-page: 3599
  year: 2000
  end-page: 3602
  article-title: Secular variations of atomic oxygen in the mesopause region induced by transient gravity wave packets
  publication-title: Geophys. Res. Lett.
– volume: 58
  start-page: 2249
  year: 2001
  end-page: 2279
  article-title: Gravity wave radiation and mean responses to local body forces in the atmosphere
  publication-title: J. Atmos. Sci.
– volume: 78
  start-page: 2278
  year: 1973
  end-page: 2301
  article-title: Acoustic‐gravity modes and large‐scale traveling ionospheric disturbances of a realistic dissipative atmosphere
  publication-title: J. Geophys. Res.
– volume: 71
  start-page: 740
  year: 2009
  end-page: 770
  article-title: Temporal evolution of neutral, thermospheric winds and plasma response using PFISR measurements of gravity waves
  publication-title: J. Atmos. Sol. Terr. Phys.
– volume: 112
  year: 2007
  article-title: Horizontal and vertical propagation and dissipation of gravity waves in the thermosphere from lower atmospheric and thermospheric sources
  publication-title: J. Geophys. Res.
– volume: 31
  start-page: 491
  year: 1969
  end-page: 514
  article-title: The upper atmosphere as a multiply refractive medium for neutral air motions
  publication-title: J. Atmos. Terr. Phys.
– start-page: 131
  year: 2011
  end-page: 139
– volume: 47
  start-page: 965
  year: 1985
  end-page: 972
  article-title: Numerical solutions of the coupled equations for acoustic‐gravity waves in the upper thermosphere
  publication-title: J. Atmos. Terr. Phys.
– volume: 35
  year: 2008
  article-title: Using PFISR measurements and gravity wave dissipative theory to determine the neutral, background thermospheric winds
  publication-title: Geophys. Res. Lett.
– volume: 9
  start-page: 1
  year: 1962
  end-page: 2
  article-title: The thermal conductivity and viscosity of atomic oxygen
  publication-title: Planet. Space Sci.
– volume: 113
  year: 2008
  article-title: Satellite‐based measurements of gravity wave‐induced mid‐latitude plasma density perturbations
  publication-title: J. Geophys. Res.
– volume: 38
  start-page: 1441
  year: 1960
  end-page: 1481
  article-title: Internal atmospheric gravity waves at ionospheric heights
  publication-title: Can. J. Phys.
– volume: 102
  start-page: 329
  year: 1997
  end-page: 335
  article-title: In situ ionospheric observations of severe weather‐related gravity waves and associated small‐scale plasma structure
  publication-title: J. Geophys. Res.
– volume: 107
  issue: A12
  year: 2002
  article-title: Characterization of acoustic‐gravity waves in the upper thermosphere using Dynamics Explorer 2 Wind and Temperature Spectrometer (WATS) and Neutral Atmosphere Composition Spectrometer (NACS) data
  publication-title: J. Geophys. Res.
– volume: 31
  start-page: 321
  year: 1975
  end-page: 328
  article-title: Attenuation of internal gravity waves in model atmospheres
  publication-title: Ann. Geophys.
– volume: 41
  start-page: 1935
  year: 1963
  end-page: 1948
  article-title: The viscous damping of atmospheric gravity waves
  publication-title: Can. J. Phys.
– volume: 49
  start-page: 889
  year: 1987
  end-page: 899
  article-title: A quartic dispersion equation for internal gravity waves in the thermosphere
  publication-title: J. Atmos. Terr. Phys.
– volume: 44
  start-page: 458
  issue: 2
  year: 1987
  end-page: 498
  article-title: Transient response to localized episodic heating in the tropics. Part I: Excitation and short‐time, near‐field behavior
  publication-title: J. Atmos. Sci.
– volume: 12
  start-page: 193
  year: 1974
  end-page: 216
  article-title: Acoustic‐gravity waves in the upper atmosphere
  publication-title: Rev. Geophys.
– volume: 84
  start-page: 4371
  year: 1979
  end-page: 4378
  article-title: Gravity wave propagation in a diffusively separated atmosphere with height‐dependent collision frequencies
  publication-title: J. Geophys. Res.
– volume: 27
  start-page: 147
  year: 2009
  end-page: 177
  article-title: Reconstruction of the gravity wave field from convective plumes via ray tracing
  publication-title: Ann. Geophys.
– volume: 18
  start-page: 599
  year: 1970
  end-page: 612
  article-title: The bow wave generated by an auroral arc in supersonic motion
  publication-title: Planet. Space Sci.
– volume: 116
  year: 2011
  article-title: Group velocity and energy flux in the thermosphere: Limits on the validity of group velocity in a viscous atmosphere
  publication-title: J. Geophys. Res.
– volume: 26
  start-page: 3841
  year: 2008
  end-page: 3861
  article-title: Gravity wave penetration into the thermosphere: Sensitivity to solar cycle variations and mean winds
  publication-title: Ann. Geophys.
– volume: 115
  year: 2010
  article-title: Arecibo's thermospheric gravity waves and the case for an ocean source
  publication-title: J. Geophys. Res.
– volume: 18
  start-page: 565
  year: 1970
  end-page: 582
  article-title: Atmospheric gravity waves launched by auroral currents
  publication-title: Planet. Space Sci.
– volume: 71
  start-page: 3729
  year: 1966
  end-page: 3748
  article-title: Gravity waves in a realistic atmosphere
  publication-title: J. Geophys. Res.
– volume: 115
  year: 2010
  article-title: Sources of the traveling ionospheric disturbances observed by the ionospheric TIDDBIT sounder near Wallops Island on October 30, 2007
  publication-title: J. Geophys. Res.
– volume: 32
  start-page: 2321
  year: 1997
  end-page: 2344
  article-title: High‐resolution studies of atmosphere–ionosphere coupling at Arecibo Observatory, Puerto Rico
  publication-title: Radio Sci.
– volume: 78
  issue: 11
  year: 2007
  article-title: A new satellite‐borne neutral wind instrument for thermospheric diagnostics
  publication-title: Rev. Sci. Instrum.
– volume: 114
  year: 2009
  article-title: The propagation of tsunami‐driven gravity waves into the thermosphere and ionosphere
  publication-title: J. Geophys. Res.
– volume: 29
  start-page: 209
  year: 1967
  end-page: 231
  article-title: Effect of viscosity on gravity waves and the upper boundary condition
  publication-title: J. Fluid Mech.
– year: 2012
  article-title: The phases and amplitudes of gravity waves propagating and dissipating in the thermosphere: Application to measurements over Alaska
  publication-title: J. Geophys. Res.
– volume: 30
  start-page: 735
  year: 1968
  end-page: 746
  article-title: HF Doppler studies of traveling ionospheric disturbances
  publication-title: J. Atmos. Terr. Phys.
– volume: 31
  year: 2004
  article-title: A continuum of gravity waves in the Arecibo thermosphere?
  publication-title: Geophys. Res. Lett.
– volume: 38
  start-page: 913
  year: 1990
  end-page: 923
  article-title: A global study of large scale travelling ionospheric disturbances (TIDs) following a step‐like onset of auroral substorms in both hemispheres
  publication-title: Planet. Space Sci.
– volume: 20
  start-page: 293
  year: 1982
  end-page: 315
  article-title: Atmospheric gravity waves generated in the high‐latitude ionosphere: A review
  publication-title: Rev. Geophys.
– volume: 54
  start-page: 297
  year: 1990
  end-page: 375
  article-title: Thermospheric gravity waves: Observations and interpretation using the transfer function model (TEM)
  publication-title: Space Sci. Rev.
– volume: 40
  start-page: 429
  year: 1992
  end-page: 438
  article-title: A satellite anemometer
  publication-title: J. Astro. Sci.
– volume: 69
  start-page: 2847
  year: 1964
  end-page: 2848
  article-title: Minimum vertical scale sizes in the wind structure above 100 km
  publication-title: J. Geophys. Res.
– volume: 96
  start-page: 1159
  year: 1991
  end-page: 1172
  article-title: Extension of the MSIS thermosphere model into the middle and lower atmosphere
  publication-title: J. Geophys. Res.
– volume: 101
  start-page: 21,195
  year: 1996
  end-page: 21,212
  article-title: An idealized ray model of gravity wave‐tidal interactions
  publication-title: J. Geophys. Res.
– volume: 58
  start-page: 245
  year: 1996
  end-page: 255
  article-title: Phases and amplitudes of TIDs in the high‐latitude F‐region observed by EISCAT
  publication-title: J. Atmos. Terr. Phys.
– year: 1978
– volume: 114
  year: 2009
  article-title: The generation of large‐scale gravity waves and neutral winds in the thermosphere from the dissipation of convectively‐generated gravity waves
  publication-title: J. Geophys. Res.
– volume: 41
  issue: 1
  year: 2003
  article-title: Gravity wave dynamics and effects in the middle atmosphere
  publication-title: Rev. Geophys.
– volume: 14
  start-page: 917
  year: 1996
  end-page: 940
  article-title: A review of atmospheric gravity waves and traveling ionospheric disturbances
  publication-title: Ann. Geophys.
– volume: 111
  year: 2006
  article-title: Zonal winds in the equatorial upper thermosphere: Decomposing the solar flux, geomagnetic activity, and seasonal dependencies
  publication-title: J. Geophys. Res.
– ident: e_1_2_8_48_1
  doi: 10.1016/0021-9169(77)90007-1
– ident: e_1_2_8_56_1
  doi: 10.5194/angeo-27-147-2009
– ident: e_1_2_8_16_1
  doi: 10.1029/JA078i013p02278
– ident: e_1_2_8_66_1
  doi: 10.1029/RG012i002p00193
– ident: e_1_2_8_34_1
  doi: 10.1029/RG020i002p00293
– ident: e_1_2_8_12_1
  doi: 10.1063/1.2813343
– ident: e_1_2_8_17_1
  doi: 10.1016/0021-9169(75)90012-4
– ident: e_1_2_8_35_1
  doi: 10.1029/2002JA009370
– ident: e_1_2_8_7_1
  doi: 10.1016/0032-0633(62)90064-8
– ident: e_1_2_8_61_1
  doi: 10.1016/0021-9169(69)90002-6
– ident: e_1_2_8_5_1
  doi: 10.1016/0032-0633(70)90132-7
– ident: e_1_2_8_50_1
  doi: 10.1029/2002JA009433
– ident: e_1_2_8_21_1
  doi: 10.1109/TGRS.1984.350635
– ident: e_1_2_8_20_1
  doi: 10.1016/S0021-9169(68)80029-7
– volume: 40
  start-page: 429
  year: 1992
  ident: e_1_2_8_23_1
  article-title: A satellite anemometer
  publication-title: J. Astro. Sci.
  contributor:
    fullname: Hanson W. B.
– ident: e_1_2_8_43_1
  doi: 10.1029/JZ071i015p03729
– ident: e_1_2_8_65_1
  doi: 10.1017/S002211206700076X
– ident: e_1_2_8_58_1
  doi: 10.1007/978-94-007-0326-1_9
– ident: e_1_2_8_29_1
  doi: 10.1029/JZ069i013p02847
– ident: e_1_2_8_6_1
  doi: 10.1016/0032-0633(70)90135-2
– ident: e_1_2_8_62_1
  doi: 10.1029/JA074i007p01786
– ident: e_1_2_8_59_1
  doi: 10.1029/2007GL031522
– ident: e_1_2_8_46_1
  doi: 10.1139/p63-194
– ident: e_1_2_8_32_1
  doi: 10.1016/0021-9169(95)00033-X
– ident: e_1_2_8_30_1
  doi: 10.1007/s005850050357
– ident: e_1_2_8_53_1
  doi: 10.1175/1520-0469(2001)058<2249:GWRAMR>2.0.CO;2
– ident: e_1_2_8_45_1
  doi: 10.1029/97JA00491
– ident: e_1_2_8_22_1
  doi: 10.1016/0032-0633(90)90058-X
– volume-title: Fluid Dynamics
  year: 1990
  ident: e_1_2_8_38_1
  contributor:
    fullname: Kundu P.
– ident: e_1_2_8_13_1
  doi: 10.1029/2007JA012766
– ident: e_1_2_8_49_1
  doi: 10.1175/1520-0469(1987)044<0458:TRTLEH>2.0.CO;2
– ident: e_1_2_8_63_1
  doi: 10.1016/0021-9169(87)90044-4
– ident: e_1_2_8_2_1
  doi: 10.1029/JZ063i001p00265
– ident: e_1_2_8_64_1
  doi: 10.1029/2010JD014987
– ident: e_1_2_8_25_1
  doi: 10.1016/0021-9169(87)90003-1
– ident: e_1_2_8_15_1
  doi: 10.1139/p70-185
– ident: e_1_2_8_9_1
  doi: 10.1029/97RS02797
– ident: e_1_2_8_11_1
  doi: 10.1029/2009JA014799
– ident: e_1_2_8_10_1
  doi: 10.1029/2003GL019376
– ident: e_1_2_8_36_1
  doi: 10.1029/96JA03033
– ident: e_1_2_8_41_1
  doi: 10.1016/0021-9169(85)90074-1
– ident: e_1_2_8_26_1
  doi: 10.1029/2000GL011953
– ident: e_1_2_8_18_1
  doi: 10.1029/2001RG000106
– ident: e_1_2_8_51_1
  doi: 10.1029/2006JA011845
– ident: e_1_2_8_37_1
  doi: 10.1016/0021-9169(72)90109-2
– ident: e_1_2_8_31_1
  doi: 10.1029/2001GL013076
– ident: e_1_2_8_27_1
  doi: 10.1029/2009JA014105
– volume: 31
  start-page: 321
  year: 1975
  ident: e_1_2_8_67_1
  article-title: Attenuation of internal gravity waves in model atmospheres
  publication-title: Ann. Geophys.
  contributor:
    fullname: Yeh K. C.
– ident: e_1_2_8_44_1
  doi: 10.1029/2012JA017542
– ident: e_1_2_8_14_1
  doi: 10.1029/96JD01660
– ident: e_1_2_8_47_1
  doi: 10.1029/JA083iA09p04131
– ident: e_1_2_8_54_1
  doi: 10.1029/2004JD005574
– ident: e_1_2_8_28_1
  doi: 10.1139/p60-150
– ident: e_1_2_8_60_1
  doi: 10.1016/j.jastp.2009.01.011
– ident: e_1_2_8_55_1
  doi: 10.1029/2005JA011510
– ident: e_1_2_8_42_1
  doi: 10.1007/BF00177800
– ident: e_1_2_8_24_1
  doi: 10.1029/90JA02125
– volume: 45
  start-page: 67
  year: 1978
  ident: e_1_2_8_33_1
  article-title: Ionospheric observation of gravity‐waves associated with hurricane Eloise
  publication-title: J. Geophys. Res.
  contributor:
    fullname: Hung R. J.
– ident: e_1_2_8_57_1
  doi: 10.1029/2009JA014108
– ident: e_1_2_8_3_1
  doi: 10.1029/2006JA011668
– ident: e_1_2_8_4_1
  doi: 10.1016/j.asr.2008.10.031
– ident: e_1_2_8_19_1
  doi: 10.5194/angeo-26-3841-2008
– volume-title: Waves in Fluids
  year: 1978
  ident: e_1_2_8_39_1
  contributor:
    fullname: Lighthill J.
– ident: e_1_2_8_40_1
  doi: 10.1029/2005JA011415
– ident: e_1_2_8_52_1
  doi: 10.1029/2009JA015053
– ident: e_1_2_8_8_1
  doi: 10.1029/JA084iA08p04371
SSID ssj0000456401
ssj0014561
ssj0030581
ssj0030583
ssj0043761
ssj0030582
ssj0030585
ssj0030584
ssj0030586
ssj0000816915
Score 2.356284
Snippet We derive the high‐frequency, compressible, dissipative dispersion and polarization relations for linear acoustic‐gravity waves (GWs) and acoustic waves (AWs)...
We derive the high-frequency, compressible, dissipative dispersion and polarization relations for linear acoustic-gravity waves (GWs) and acoustic waves (AWs)...
SourceID proquest
crossref
pascalfrancis
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms acoustic-gravity waves
Acoustics
Atmospheric sciences
dissipation
Earth sciences
Earth, ocean, space
Exact sciences and technology
Gravity waves
Theoretical physics
thermosphere
Wave crest
Wavelengths
Title The phases and amplitudes of gravity waves propagating and dissipating in the thermosphere: Theory
URI https://api.istex.fr/ark:/67375/WNG-52DF60TH-D/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2011JA017426
https://www.proquest.com/docview/1018269187
https://search.proquest.com/docview/1093464796
Volume 117
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9sgEEdb87KXaZ-qty5i0tanodoYjNnLlK1NokiLpqrV-oYwBm2aaqdx223__e6wk6UvfUDCGAS6A-7HcdwR8i4PKQjd3LNMSMdEbSumtUqZ9CDvQlXXssTHyV-XxfxcLC7kxaBw6wazys2eGDfqunWoIz9Cz1K80FmpPq2uGEaNwtvVIYTGQzLKuFJ4-Cqns62OBYNK6BjEgEOG6bxMB9v3lOsjFH2LCcxIgZ4VdqTSCAn8B60kbQeECn2EizsQdBfIRkk0fUIeDxCSTnqePyUPfPOM7E86VGq3l3_pIY35XmfRPScVTAW6-gHiqqO2qalFI3J0adnRNlCMPwRInP62t1AAfcMOY9EWOtbF6_podA3fPxsKaBHT-rLt0B2B_0j7t_0vyPn05OzLnA2hFZgTShSs1tYCssB3q9LCmSXzaY2OfQqhS620lHXl0PGOdCpAkciL2gcbKp95kStIL8le0zZ-n1AJdURw3AJUFDZkVQ5MgkzuUuG5cwl5vyGtWfUeNEy8-eba7LIgIYeR7ttKdv0Lrc6UNN-XMyP58bRIz-bmOCHjO4zZNuDRGaGSCTnYcMoMK7Iz_-dPQt5uf8NawgsS2_j2BuvoXBRCaRjMh8jhe0dsFrPTCULM4tX9Pb4mj6Ad7-0kD8je9frGvwEsc12N44Qdk9Hnk-W303-B2-_9
link.rule.ids 315,783,787,12777,21400,27936,27937,33385,33386,33756,33757,43612,43817,74363,74630
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELage4AL4qkGSjES9ETUxLHjNRe00G6XpV2hait6sxw_VISaLJuWx79nxsku20sPkRzHecjjeD7PjL8h5E0RMlC6hU9zLmzKnalSpWSWCg_6LlTOiSFuTj6ZlZMzPj0X573Bre3DKldzYpyoXWPRRr6PzFKsVPlQflj8TDFrFHpX-xQad8kAqapg8TX4eDj7erq2smBaCRXTGDAopKoYZn30e8bUPiq_6QjGJEduhQ29NMAu_oNxkqaFrgpdjosbIHQTykZdNH5IHvQgko46qT8id3z9mGyPWjRrN5d_6R6N5c5q0T4hFQwGurgAhdVSUztqMIwcSS1b2gSKGYgAi9Pf5hdUwLthjjEYDR3bosM-hl3D-feaAl7EY3nZtEhI4N_Tbnf_U3I2Ppx_mqR9coXUcsnL1CljAFvgzlVhYNWS-8whtU_J1VBJJYSrLFLvCCsDVPGidD6YUPnc80LC8Yxs1U3ttwkV0IYHywyARW5CXhUgJigUNuOeWZuQt6uu1YuOQ0NH3zdTelMECdmL_b5uZJY_MO5MCv1tdqQFOxiX2XyiDxKye0Mw6xtYpCOUIiE7K0np_p9s9f8RlJDX68vwN6GLxNS-ucY2quAllwo-5l2U8K1frKdHpyMEmeXz29_4itybzE-O9fHn2ZcX5D48g3VRkztk62p57V8Csrmqdvvh-w9zCvK0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED9BKyFe0PjSAmMzEuyJqIljJzUvU1nXlQLVNG1ib5aT2AKhJV2z8fHf785JS_eyh0hO4iTW3dn3i_3zHcC7xEXodBMbxkIWoShNHiqVRaG06O9cXpZySJuTv83T6bmYXciLjv_UdLTK1ZjoB-qyLmiOfECRpXiq4mE2cB0t4mQ8OVhchZRBilZau3QaD6GfiTSJetD_dDQ_OV3PuFCKCeVTGnAshCoZRh0TPuJqQI5wNkL7FBRnYcNH9Uncf4kzaRoUm2vzXdwBpJuw1vulyRY86QAlG7UW8BQe2OoZbI8amuKuL_-xfebL7QxG8xxyNAy2-IHOq2GmKpkhSjkFuGxY7RhlI0Jczv6Y33gBv43jjSFmtK9Li_eego3nPyuG2JGO5WXdUHAC-5G1O_1fwPnk6OxwGnaJFsJCoKzCUhmDOIN2sUqDfzCxjUoK85MKNVSZkrLMCwrDI4vM4SWRpKV1xuU2tiLJ8HgJvaqu7DYwiXWEK7hB4CiMi_MEVYaFpIiE5UURwPuVaPWijaeh_To4V3pTBQHse7mvK5nlL-KgZVJ_nx9ryceTNDqb6nEAu3cUs36A-9CEmQxgZ6Up3fXPRv-3pgDerm9jz6LlElPZ-obqqESkIlPYmA9ew_e2WM-OT0cEONNX939xDx6h5eqvn-dfXsNjfAVvCZQ70Lte3tg3CHKu893Oem8B9mf24g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+phases+and+amplitudes+of+gravity+waves+propagating+and+dissipating+in+the+thermosphere%3A+Theory&rft.jtitle=Journal+of+geophysical+research.+Space+physics&rft.au=Vadas%2C+S+L&rft.au=Nicolls%2C+M+J&rft.date=2012-05-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=2169-9380&rft.eissn=2169-9402&rft.volume=117&rft.issue=5&rft_id=info:doi/10.1029%2F2011JA017426&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=2676900741
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0148-0227&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0148-0227&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0148-0227&client=summon