Mechanism and Kinetics of the Carbothermal Nitridation Synthesis of α-Silicon Nitride
The carbothermal nitridation synthesis of α‐Si3 N4is studied using electron microscopy techniques(FEG/SEM and TEM) and chemical composition analysis to characterize the reaction at various degrees of conversion. The reaction follows a nucleation‐growth mechanism. Without “seed”α‐Si3N4in the precurso...
Saved in:
Published in | Journal of the American Ceramic Society Vol. 80; no. 11; pp. 2853 - 2863 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Westerville, Ohio
American Ceramics Society
01.11.1997
Blackwell Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The carbothermal nitridation synthesis of α‐Si3 N4is studied using electron microscopy techniques(FEG/SEM and TEM) and chemical composition analysis to characterize the reaction at various degrees of conversion. The reaction follows a nucleation‐growth mechanism. Without “seed”α‐Si3N4in the precursor, the reaction rate is controlled by the formation of nuclei which are associated with a Si‐O‐C intermediate phase. In the presence of “seed,” the limiting step is growth of α‐Si3N4 onto the “seed” nuclei. Growth appears to follow a gas‐phase route and is characterized by an irregular porous layer which grows onto the “seed.” The porous structure is the result of reaction around car‐bon particles which are consumed during the process. The presence of admixed “seed” Si3N4in the precursor formu‐lation increases the reaction rate since the nucleation step is eliminated. An activation energy of E = 457 ± 55 kJ/mol for the overall reaction closely approximates that previously reported for the formation of SiO. This result, along with the finding that residual crystalline SiO2 is present at all stages of the reaction, indicates that the overall reactionrate is controlled by the reduction of SiO2. Since reaction at the carbon and SiO2 contact points is fast, the rate‐limiting step is most likely the gas‐phase carbon reduction of SiO2with CO. |
---|---|
AbstractList | The carbothermal nitridation synthesis of alpha -Si sub 3 N sub 4 is studied using electron microscopy techniques (FEG/SEM and TEM) and chemical composition analysis to characterize the reaction at various degrees of conversion. The reaction follows a nucleation-growth mechanism. Without "seed" alpha -Si sub 3 N sub 4 in the precursor, the reaction rate is controlled by the formation of nuclei which are associated with a Si-O-C intermediate phase. In the presence of "seed", the limiting step is growth of alpha -Si sub 3 N sub 4 onto the "seed" nuclei. Growth appears to follow a gas-phase route and is characterized by an irregular porous layer which grows onto the "seed". The porous structure is the result of reaction around carbon particles which are consumed during the process. The presence of admixed "seed" Si sub 3 N sub 4 in the precursor formulation increases the reaction rate since the nucleation step is eliminated. An activation energy of E=457plus/minus55 kJ/mol for the overall reaction closely approximates that previously reported for the formation of SiO. This result, along with the finding that residual crystalline SiO sub 2 is present at all stages of the reaction, indicates that the overall reaction rate is controlled by the reduction of SiO sub 2 . Since reaction at the carbon and SiO sub 2 contact points is fast, the rate-limiting step is most likely the gas-phase carbon reduction of SiO sub 2 with CO. The carbothermal nitridation synthesis of alpha-Si3N4 is studied using electron microscopy techniques and chemical composition analysis to characterize the reaction at various degrees of conversion. The reaction follows a nucleation-growth mechanism. Without 'seed' alpha-Si3N4 in the precursor, the reaction rate is controlled by the formation of nuclei which are associated with a Si-O-C intermediate phase. In the presence of 'seed', the limiting step is growth of alpha-Si3N4 onto the 'seed' nuclei. Growth appears to follow a gas-phase route and is characterized by an irregular porous layer which grows onto the 'seed'. The porous structure is the result of reaction around carbon particles which are consumed during the process. The presence of admixed 'seed' Si3N4 in the precursor formulation increases the reaction rate since the nucleation step is eliminated. An activation energy of 457 +/- 55 kJ/mol for the overall reaction closely approximates that previously reported for the formation of SiO. This result, along with the finding that residual crystalline SiO2 is present at all stages of the reaction, indicates that the overall reaction rate is controlled by the reduction of SiO2. (Author) The carbothermal nitridation synthesis of α‐Si 3 N 4 is studied using electron microscopy techniques(FEG/SEM and TEM) and chemical composition analysis to characterize the reaction at various degrees of conversion. The reaction follows a nucleation‐growth mechanism. Without “seed”α‐Si 3 N 4 in the precursor, the reaction rate is controlled by the formation of nuclei which are associated with a Si‐O‐C intermediate phase. In the presence of “seed,” the limiting step is growth of α‐Si 3 N 4 onto the “seed” nuclei. Growth appears to follow a gas‐phase route and is characterized by an irregular porous layer which grows onto the “seed.” The porous structure is the result of reaction around car‐bon particles which are consumed during the process. The presence of admixed “seed” Si 3 N 4 in the precursor formu‐lation increases the reaction rate since the nucleation step is eliminated. An activation energy of E = 457 ± 55 kJ/mol for the overall reaction closely approximates that previously reported for the formation of SiO. This result, along with the finding that residual crystalline SiO 2 is present at all stages of the reaction, indicates that the overall reactionrate is controlled by the reduction of SiO 2 . Since reaction at the carbon and SiO 2 contact points is fast, the rate‐limiting step is most likely the gas‐phase carbon reduction of SiO 2 with CO. The carbothermal nitridation synthesis of α‐Si3 N4is studied using electron microscopy techniques(FEG/SEM and TEM) and chemical composition analysis to characterize the reaction at various degrees of conversion. The reaction follows a nucleation‐growth mechanism. Without “seed”α‐Si3N4in the precursor, the reaction rate is controlled by the formation of nuclei which are associated with a Si‐O‐C intermediate phase. In the presence of “seed,” the limiting step is growth of α‐Si3N4 onto the “seed” nuclei. Growth appears to follow a gas‐phase route and is characterized by an irregular porous layer which grows onto the “seed.” The porous structure is the result of reaction around car‐bon particles which are consumed during the process. The presence of admixed “seed” Si3N4in the precursor formu‐lation increases the reaction rate since the nucleation step is eliminated. An activation energy of E = 457 ± 55 kJ/mol for the overall reaction closely approximates that previously reported for the formation of SiO. This result, along with the finding that residual crystalline SiO2 is present at all stages of the reaction, indicates that the overall reactionrate is controlled by the reduction of SiO2. Since reaction at the carbon and SiO2 contact points is fast, the rate‐limiting step is most likely the gas‐phase carbon reduction of SiO2with CO. |
Author | Weimer, Alan W. Beaman, Donald R. McCoy, Jeffrey W. Eisman, Glenn A. Susnitzky, David W. |
Author_xml | – sequence: 1 givenname: Alan W. surname: Weimer fullname: Weimer, Alan W. organization: Ceramics and Advanced Materials Research, The Dow Chemical Company, Midland, Michigan 48667 – sequence: 2 givenname: Glenn A. surname: Eisman fullname: Eisman, Glenn A. organization: Ceramics and Advanced Materials Research, The Dow Chemical Company, Midland, Michigan 48667 – sequence: 3 givenname: David W. surname: Susnitzky fullname: Susnitzky, David W. organization: Ceramics and Advanced Materials Research, The Dow Chemical Company, Midland, Michigan 48667 – sequence: 4 givenname: Donald R. surname: Beaman fullname: Beaman, Donald R. organization: Ceramics and Advanced Materials Research, The Dow Chemical Company, Midland, Michigan 48667 – sequence: 5 givenname: Jeffrey W. surname: McCoy fullname: McCoy, Jeffrey W. organization: Ceramics and Advanced Materials Research, The Dow Chemical Company, Midland, Michigan 48667 |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2074542$$DView record in Pascal Francis |
BookMark | eNqVkc1u1DAUhS3USp3-vENUIXYZru3EjllRojJASysxFJaW49iqh4zT2hkx81i8CM-E04y6YAXeXPv687k6PsfowPfeIHSOYY7Ter1KpcQ5EZjNsRB8PjRACdD59gWa4XJ_dYBmAEByXhE4QscxrtIRi6qYoW-fjb5X3sV1pnybXTlvBqdj1ttsuDdZrULTp01Yqy67cUNwrRpc77Plzqd2dE_k71_50nVOp_7EmFN0aFUXzdm-nqC795df6w_59e3iY31xneuCFzSvKGNYKNo2AhdtxS3TnFghLDeGMUEMAWFLzGxbVaJpkkGLqVYMWkZAYUtP0KtJ9yH0jxsTB7l2UZuuU970mygJY0AB2D-AJa84pQk8_wtc9ZvgkwlJMBcAJccJejNBOvQxBmPlQ3BrFXYSgxyDkSs5BiPH35djMHIfjNymxy_3E1TUqrNBee3iswIBXpQFSdjbCfvpOrP7jwHy00V9Sapy9JJPEi4OZvssocIPyTjlpfx-s5CLul5-4QWR7-gfmQay2w |
CODEN | JACTAW |
CitedBy_id | crossref_primary_10_1016_j_ceramint_2022_10_247 crossref_primary_10_1016_j_proeng_2012_01_1319 crossref_primary_10_1016_j_ceramint_2018_08_011 crossref_primary_10_1080_10426914_2018_1544708 crossref_primary_10_35414_akufemubid_1242691 crossref_primary_10_1016_j_ceramint_2018_12_118 crossref_primary_10_1111_jace_16545 crossref_primary_10_1007_s10971_019_05051_x crossref_primary_10_1007_s43207_024_00388_8 crossref_primary_10_1016_j_ceramint_2011_05_035 crossref_primary_10_1016_j_jascer_2014_09_004 crossref_primary_10_1007_s12274_023_6381_8 crossref_primary_10_1039_C4RA03127J crossref_primary_10_1016_j_jhazmat_2012_05_048 crossref_primary_10_1016_j_ceramint_2020_11_166 crossref_primary_10_1016_j_apt_2021_06_023 crossref_primary_10_1179_1743676115Y_0000000061 crossref_primary_10_1016_j_apt_2024_104376 crossref_primary_10_1016_j_jeurceramsoc_2006_08_021 crossref_primary_10_1016_j_powtec_2023_118279 crossref_primary_10_1002_1527_2648_20020717_4_7_478__AID_ADEM478_3_0_CO_2_P crossref_primary_10_1021_acssuschemeng_7b04139 crossref_primary_10_1016_j_ceramint_2024_06_234 crossref_primary_10_1134_S0040579522050293 crossref_primary_10_1111_j_1744_7402_2009_02366_x crossref_primary_10_1016_j_jeurceramsoc_2014_11_005 crossref_primary_10_1111_jace_18893 crossref_primary_10_1016_S0927_796X_00_00008_5 crossref_primary_10_1016_j_powtec_2012_11_036 crossref_primary_10_1016_j_ceramint_2018_08_052 crossref_primary_10_1016_j_polymdegradstab_2012_06_021 crossref_primary_10_1016_S0167_2738_01_00800_1 crossref_primary_10_1016_S1359_8368_99_00039_6 crossref_primary_10_1557_jmr_2017_252 crossref_primary_10_1111_j_1551_2916_2007_02046_x crossref_primary_10_1111_j_1551_2916_2009_03530_x crossref_primary_10_1021_cm9803859 crossref_primary_10_1111_j_1551_2916_2010_03974_x crossref_primary_10_1016_j_actamat_2005_03_011 crossref_primary_10_1016_j_ceramint_2018_08_078 crossref_primary_10_1007_s11837_015_1705_0 crossref_primary_10_1016_j_ceramint_2023_12_159 crossref_primary_10_1111_jace_15710 crossref_primary_10_1016_j_ceramint_2020_08_098 crossref_primary_10_1016_j_ceramint_2009_06_009 crossref_primary_10_3724_SP_J_1077_2008_00763 crossref_primary_10_1111_j_1551_2916_2004_00075_x crossref_primary_10_1111_j_1551_2916_2009_03448_x crossref_primary_10_1111_j_1151_2916_1999_tb01978_x crossref_primary_10_1111_j_1551_2916_2008_02285_x crossref_primary_10_1016_j_jnucmat_2014_07_030 crossref_primary_10_1111_j_1151_2916_2001_tb01031_x crossref_primary_10_1007_s10853_009_3509_5 crossref_primary_10_1007_s10971_022_05879_w crossref_primary_10_1016_j_powtec_2013_10_030 crossref_primary_10_1080_10426914_2010_515640 crossref_primary_10_1016_S0955_2219_98_00005_3 crossref_primary_10_1016_j_porgcoat_2017_05_012 crossref_primary_10_3139_146_110903 crossref_primary_10_1080_09500839_2020_1723811 crossref_primary_10_1111_j_1551_2916_2007_02049_x crossref_primary_10_4028_www_scientific_net_MSF_554_163 |
Cites_doi | 10.1016/0955-2219(92)90052-F 10.1111/j.1151-2916.1966.tb13287.x 10.4164/sptj.26.157 10.1016/0955-2219(92)90008-2 10.1007/BF00356080 10.1007/BF01160824 10.1007/978-94-009-6851-6_12 10.1111/j.1151-2916.1982.tb09951.x 10.1063/1.1750631 10.1111/j.1151-2916.1992.tb07838.x 10.1007/BF00545189 10.1111/j.1151-2916.1991.tb07292.x 10.1111/j.1551-2916.1988.tb00167.x 10.1063/1.1750380 10.1179/mst.1991.7.4.289 10.1063/1.1750872 10.1007/BF00541410 10.1111/j.1151-2916.1984.tb19684.x 10.1016/0955-2219(89)90004-6 |
ContentType | Journal Article |
Copyright | 1998 INIST-CNRS Copyright American Ceramic Society Nov 1997 |
Copyright_xml | – notice: 1998 INIST-CNRS – notice: Copyright American Ceramic Society Nov 1997 |
DBID | BSCLL IQODW AAYXX CITATION 7QQ 7SR 8FD JG9 H8D L7M |
DOI | 10.1111/j.1151-2916.1997.tb03203.x |
DatabaseName | Istex Pascal-Francis CrossRef Ceramic Abstracts Engineered Materials Abstracts Technology Research Database Materials Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Ceramic Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Materials Research Database Technology Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Visual Arts Engineering Applied Sciences |
EISSN | 1551-2916 |
EndPage | 2863 |
ExternalDocumentID | 41352176 10_1111_j_1151_2916_1997_tb03203_x 2074542 JACE2853 ark_67375_WNG_GCCSR742_B |
Genre | article |
GroupedDBID | .3N .4S .DC .GA .Y3 05W 0R~ 10A 1OB 1OC 29L 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8WZ 930 A03 A6W AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABDPE ABEFU ABEML ABJNI ABPVW ABTAH ACAHQ ACBEA ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOD ACIWK ACKIV ACNCT ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADMHG ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFNX AFFPM AFGKR AFPWT AFZJQ AHBTC AHEFC AI. AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CAG CO8 COF CS3 D-E D-F DC6 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EAD EAP EBO EBS EDO EJD EMK ESX F00 F01 F04 FEDTE FOJGT FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ H~9 I-F IRD ITF ITG ITH IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NDZJH NF~ O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QF4 QM1 QN7 QO4 R.K RAX RIWAO RJQFR ROL RX1 SAMSI SJN SUPJJ TAE TH9 TN5 TUS UB1 UPT V8K VH1 W8V W99 WBKPD WFSAM WH7 WIH WIK WOHZO WQJ WRC WTY WXSBR WYISQ XG1 YQT ZCG ZE2 ZY4 ZZTAW ~02 ~IA ~WT G8K 08R AAJUZ ABCVL ABHUG ABPTK ACSMX ACXME ADAWD ADDAD AFVGU AGJLS IQODW PK8 AAYXX CITATION 7QQ 7SR 8FD JG9 H8D L7M |
ID | FETCH-LOGICAL-c4743-836619a3db914d87f6c72f99f7ee6692e209f516fd889bb997f13ca60d620a1f3 |
IEDL.DBID | DR2 |
ISSN | 0002-7820 |
IngestDate | Fri Oct 25 23:05:03 EDT 2024 Fri Oct 25 04:30:16 EDT 2024 Thu Oct 10 16:01:38 EDT 2024 Fri Aug 23 00:37:34 EDT 2024 Sun Oct 29 17:06:58 EDT 2023 Sat Aug 24 01:02:23 EDT 2024 Wed Oct 30 09:52:52 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | Carbothermy Chemical preparation Silicon Nitrides Reaction mechanism Nitriding Kinetics Experimental study Powder Non oxide ceramics Structural ceramic |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4743-836619a3db914d87f6c72f99f7ee6692e209f516fd889bb997f13ca60d620a1f3 |
Notes | ark:/67375/WNG-GCCSR742-B istex:8161645E299F42A5650EDDDE261915074145614A ArticleID:JACE2853 Department of Chemical Engineering, University of Colorado, Boulder, Colorado 80309–0424. Manuscript No. 192018. Received February 15, 1996; approved April 7, 1997. Member, American Ceramic Society. Supported by the U.S. Department of Energy, Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Transportation Technologies, as part of the Ceramic Technology Project of the Propulsion System Materials Program, under Contract No. DE–AC05–840R21400 with Martin Marietta Energy Systems, Inc. ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 217900571 |
PQPubID | 23500 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_26603006 proquest_miscellaneous_26578733 proquest_journals_217900571 crossref_primary_10_1111_j_1151_2916_1997_tb03203_x pascalfrancis_primary_2074542 wiley_primary_10_1111_j_1151_2916_1997_tb03203_x_JACE2853 istex_primary_ark_67375_WNG_GCCSR742_B |
PublicationCentury | 1900 |
PublicationDate | November 1997 |
PublicationDateYYYYMMDD | 1997-11-01 |
PublicationDate_xml | – month: 11 year: 1997 text: November 1997 |
PublicationDecade | 1990 |
PublicationPlace | Westerville, Ohio |
PublicationPlace_xml | – name: Westerville, Ohio – name: Malden,MA – name: Columbus |
PublicationTitle | Journal of the American Ceramic Society |
PublicationYear | 1997 |
Publisher | American Ceramics Society Blackwell Wiley Subscription Services, Inc |
Publisher_xml | – name: American Ceramics Society – name: Blackwell – name: Wiley Subscription Services, Inc |
References | B. G. Durham, M. J. Murtha, and G. Burnet, "Si3N4 by Carbothermal Ammonolysis of Silica," Adv. Ceram. Mater., 3 [1] 45-48 (1988). M. Ekelund, B. Forslund, and J. Zheng, "Control of Particle Size in Si3N4 Powders Prepared by High-Pressure Carbothermal Nitridation," J. Mater. Sci., 21 [21] 5749 (1996). N. Klinger, E. L. Strauss, and K. L. Komarek, "Reactions Between Silica and Graphite," J. Am. Ceram. Soc., 49, 369 (1966). Z. Strnad, Glass-Ceramic Materials: Liquid Phase Separation, Nucleation and Crystallization in Glasses; pp. 70-72. Elsevier, New York , 1986. M. V. Vlasova, T. S. Bartnitskaya, L. L. Sukhikh, L. A. Krushinskaya, T. V. Tomila, and S. Yu. Artyuch, "Mechanism of Si3N4 Nucleation during Carbothermal Reduction of Silica," J. Mater. Sci., 30, 5263-71 (1995). K. Komeya and H. Inoue, "Synthesis of the Alpha Form of Silicon Nitride from Silica," J. Mater. Sci. Lett., 10, 1243-46 (1975). M. Avrami, "Kinetics of Phase Change. I," J. Chem. Phys., 7, 1103 (1939). H. Inoue, K. Komeya, and A. Tsuge, "Synthesis of Silicon Nitride Powder from Silica Reduction," J. Am. Ceram. Soc., 65, C-205 (1982). S.-C. Zhang and W. R. Cannon, "Preparation of Silicon Nitride from Silica," J. Am Ceram. Soc., [10] 691-95 (1984). S. A. Siddiqi and A. Hendry, "The Influence of Iron on the Preparation of Silicon Nitride from Silica," J. Mater. Sci., 20, 3230-38 (1985). M. Avrami Kinetics of Phase Change, III," J. Chem. Phys., 9, 177 (1941). Yamaguchi, A., "Effects of Oxygen and Nitrogen Partial Pressures on the Stability of Metals, Carbides, Nitrides, and Oxides in Refractories which Contain Carbon," Refractories, 38 [4] 2-11 (1986). J. C. Russ, Computer-Assisted Microscopy. The Measurement and Analysis of Images; pp. 182, 192. Plenum Press, New York , 1990. M. Tsukada, J. Naito, T. Masuda, and M. Horio, "Submicron Ceramic Powder Synthesis by a Fluidized Bed of Microcontainer Particles," Funtai Kogaku Kaishi, 26, [3] 157 (1989). M. Ekelund and B. Forslund, "Reactions within Quartz-Carbon Mixtures in a Nitrogen Atmosphere," J. Eur. Ceram. Soc., 9, 107-19 (1992). S. J. P. Durham, K. Shanker, and R. A. L. Drew, "Carbothermal Synthesis of Silicon Nitride: Effect of Reaction Conditions," J. Am. Ceram. Soc., 74 [1] 31-37 (1991). B. V. Erofeyev, "A Generalized Equation of Chemical Kinetics and Its Application in Reactions Involving Solids," C.R. Acad. Sci. URSS, 52, 511 (1946). M. Ekelund and B. Forslund, "Carbothermal Preparation of Silicon Nitride: Influence of Starting Material and Synthesis Parameters," J. Am. Ceram. Soc., 75, 532-39 (1992). T. Licko, V. Figusch, and J. Puchyova, "Synthesis of Silicon Nitride by Carbothermal Reduction and Nitriding of Silica: Control of Kinetics and Morphology," J. Eur. Ceram. Soc., 9, 219-30 (1992). M. Avrami, "Kinetics of Phase Change. II," J. Chem. Phys., 8, 212 (1940). I. A. Rahman and F. L. Riley, "The Control of Morphology in Silicon Nitride Powder from Rice Husk," J. Eur. Ceram. Soc., 5, 11-22 (1989). Y. W. Cho and J. A. Charles, "Synthesis of Nitrogen Ceramic Powders by Carbothermal Reduction and Nitridation. Part 1. Silicon Nitride," Mater. Sci. Technol., 7, 289-98 (1991). 1995; 30 1989; 5 1990; 12 1941; 9 1994; Vol. 89–91 192 1991; 74 1986; 38 1993 1991 1975; 10 1992; 75 1989; 26 1985; 20 1976; 4 1946; 52 1992; 9 1988; 3 1966; 49 1940; 8 1982; 65 1987 1986 1984 1983 7 1939; 7 1996; 21 1989 1975; 6 Hendry A. (e_1_2_1_12_2) 1975 Ekelund M. (e_1_2_1_15_2) 1990 Bandyopadhyay S. (e_1_2_1_2_2) 1994 e_1_2_1_22_2 Zhuang Yl. (e_1_2_1_6_2) 1991 e_1_2_1_23_2 e_1_2_1_20_2 e_1_2_1_21_2 e_1_2_1_26_2 e_1_2_1_27_2 Hofman H. (e_1_2_1_19_2) 1993 e_1_2_1_24_2 Russ J. C. (e_1_2_1_25_2) Erofeyev B. V. (e_1_2_1_31_2) 1946; 52 Durham S. J. P. (e_1_2_1_8_2) 1989 e_1_2_1_28_2 e_1_2_1_29_2 Ekelund M. (e_1_2_1_16_2) 1989 Cho Y. W. (e_1_2_1_7_2); 7 Strnad Z. (e_1_2_1_32_2) 1986 Figusch V. (e_1_2_1_11_2) 1987 Tomkins F. C. (e_1_2_1_30_2) 1976 e_1_2_1_4_2 e_1_2_1_5_2 e_1_2_1_34_2 e_1_2_1_33_2 e_1_2_1_10_2 Peck D.‐H. (e_1_2_1_3_2) 1994 e_1_2_1_13_2 Yamaguchi A. (e_1_2_1_14_2) 1986; 38 e_1_2_1_17_2 e_1_2_1_9_2 e_1_2_1_18_2 |
References_xml | – volume: 7 start-page: 289 end-page: 98 article-title: Synthesis of Nitrogen Ceramic Powders by Carbothermal Reduction and Nitridation. Part 1. Silicon Nitride publication-title: Mater. Sci. Technol. – start-page: 105 year: 1993 end-page: 20 – volume: Vol. 89–91 start-page: 55 year: 1994 end-page: 62 – start-page: 149 year: 1983 end-page: 56 – volume: 65 start-page: C year: 1982 end-page: 205 article-title: Synthesis of Silicon Nitride Powder from Silica Reduction publication-title: J. Am. Ceram. Soc. – start-page: 70 year: 1986 end-page: 72 – start-page: 313 year: 1989 – volume: 20 start-page: 3230 year: 1985 end-page: 38 article-title: The Influence of Iron on the Preparation of Silicon Nitride from Silica publication-title: J. Mater. Sci. – volume: 30 start-page: 5263 year: 1995 end-page: 71 article-title: Mechanism of Si N Nucleation during Carbothermal Reduction of Silica publication-title: J. Mater. Sci. – volume: 74 start-page: 31 issue: 1 year: 1991 end-page: 37 article-title: Carbothermal Synthesis of Silicon Nitride: Effect of Reaction Conditions publication-title: J. Am. Ceram. Soc. – volume: 52 start-page: 511 year: 1946 article-title: A Generalized Equation of Chemical Kinetics and Its Application in Reactions Involving Solids publication-title: C.R. Acad. Sci. URSS – volume: 9 start-page: 219 year: 1992 end-page: 30 article-title: Synthesis of Silicon Nitride by Carbothermal Reduction and Nitriding of Silica: Control of Kinetics and Morphology publication-title: J. Eur. Ceram. Soc. – volume: 7 start-page: 1103 year: 1939 article-title: Kinetics of Phase Change. I publication-title: J. Chem. Phys. – volume: 8 start-page: 212 year: 1940 article-title: Kinetics of Phase Change. II publication-title: J. Chem. Phys. – volume: 5 start-page: 11 year: 1989 end-page: 22 article-title: The Control of Morphology in Silicon Nitride Powder from Rice Husk publication-title: J. Eur. Ceram. Soc. – start-page: 182 year: 192 – start-page: 517 year: 1987 end-page: 26 – volume: 9 start-page: 107 year: 1992 end-page: 19 article-title: Reactions within Quartz‐Carbon Mixtures in a Nitrogen Atmosphere publication-title: J. Eur. Ceram. Soc. – volume: 9 start-page: 177 year: 1941 article-title: Kinetics of Phase Change, III publication-title: J. Chem. Phys. – volume: 6 start-page: 199 year: 1975 end-page: 209 – volume: 75 start-page: 532 year: 1992 end-page: 39 article-title: Carbothermal Preparation of Silicon Nitride: Influence of Starting Material and Synthesis Parameters publication-title: J. Am. Ceram. Soc. – start-page: 691 issue: 10 year: 1984 end-page: 95 article-title: Preparation of Silicon Nitride from Silica publication-title: J. Am Ceram. Soc. – volume: 26 start-page: 157 issue: 3 year: 1989 article-title: Submicron Ceramic Powder Synthesis by a Fluidized Bed of Microcontainer Particles publication-title: Funtai Kogaku Kaishi – volume: 4 start-page: 206 year: 1976 end-page: 12 – volume: 3 start-page: 45 issue: 1 year: 1988 end-page: 48 article-title: Si N by Carbothermal Ammonolysis of Silica publication-title: Adv. Ceram. Mater. – start-page: 325 year: 1991 end-page: 28 – volume: 38 start-page: 2 issue: 4 year: 1986 end-page: 11 article-title: Effects of Oxygen and Nitrogen Partial Pressures on the Stability of Metals, Carbides, Nitrides, and Oxides in Refractories which Contain Carbon publication-title: Refractories – volume: 10 start-page: 1243 year: 1975 end-page: 46 article-title: Synthesis of the Alpha Form of Silicon Nitride from Silica publication-title: J. Mater. Sci. Lett. – volume: 21 start-page: 5749 issue: 21 year: 1996 article-title: Control of Particle Size in Si N Powders Prepared by High‐Pressure Carbothermal Nitridation publication-title: J. Mater. Sci. – volume: 49 start-page: 369 year: 1966 article-title: Reactions Between Silica and Graphite publication-title: J. Am. Ceram. Soc. – volume: Vol. 89–91 start-page: 15 year: 1994 end-page: 18 – volume: 12 start-page: 337 year: 1990 end-page: 45 – start-page: 101 year: 1989 end-page: 14 – ident: e_1_2_1_10_2 doi: 10.1016/0955-2219(92)90052-F – start-page: 325 volume-title: Advanced Structural Materials year: 1991 ident: e_1_2_1_6_2 contributor: fullname: Zhuang Yl. – ident: e_1_2_1_34_2 doi: 10.1111/j.1151-2916.1966.tb13287.x – ident: e_1_2_1_26_2 doi: 10.4164/sptj.26.157 – ident: e_1_2_1_22_2 doi: 10.1016/0955-2219(92)90008-2 – ident: e_1_2_1_5_2 doi: 10.1007/BF00356080 – ident: e_1_2_1_17_2 doi: 10.1007/BF01160824 – start-page: 206 volume-title: Treatise on Solid State Chemistry year: 1976 ident: e_1_2_1_30_2 contributor: fullname: Tomkins F. C. – volume: 52 start-page: 511 year: 1946 ident: e_1_2_1_31_2 article-title: A Generalized Equation of Chemical Kinetics and Its Application in Reactions Involving Solids publication-title: C.R. Acad. Sci. URSS contributor: fullname: Erofeyev B. V. – ident: e_1_2_1_20_2 doi: 10.1007/978-94-009-6851-6_12 – start-page: 15 volume-title: Key Engineering Materials year: 1994 ident: e_1_2_1_3_2 contributor: fullname: Peck D.‐H. – ident: e_1_2_1_21_2 doi: 10.1111/j.1151-2916.1982.tb09951.x – start-page: 182 volume-title: Computer‐Assisted Microscopy. The Measurement and Analysis of Images ident: e_1_2_1_25_2 contributor: fullname: Russ J. C. – ident: e_1_2_1_28_2 doi: 10.1063/1.1750631 – start-page: 517 volume-title: High Tech Ceramics year: 1987 ident: e_1_2_1_11_2 contributor: fullname: Figusch V. – ident: e_1_2_1_18_2 doi: 10.1111/j.1151-2916.1992.tb07838.x – ident: e_1_2_1_4_2 doi: 10.1007/BF00545189 – start-page: 337 volume-title: Ceramic Transactions year: 1990 ident: e_1_2_1_15_2 contributor: fullname: Ekelund M. – ident: e_1_2_1_9_2 doi: 10.1111/j.1151-2916.1991.tb07292.x – start-page: 55 volume-title: Key Engineering Materials year: 1994 ident: e_1_2_1_2_2 contributor: fullname: Bandyopadhyay S. – start-page: 105 volume-title: Silicon Nitride Ceramics– Scientific and Technological Advances year: 1993 ident: e_1_2_1_19_2 contributor: fullname: Hofman H. – start-page: 70 volume-title: Glass‐Ceramic Materials: Liquid Phase Separation, Nucleation and Crystallization in Glasses year: 1986 ident: e_1_2_1_32_2 contributor: fullname: Strnad Z. – ident: e_1_2_1_23_2 doi: 10.1111/j.1551-2916.1988.tb00167.x – ident: e_1_2_1_27_2 doi: 10.1063/1.1750380 – start-page: 199 volume-title: Special Ceramics year: 1975 ident: e_1_2_1_12_2 contributor: fullname: Hendry A. – start-page: 313 volume-title: Ceramic Powder Processing Science II year: 1989 ident: e_1_2_1_8_2 contributor: fullname: Durham S. J. P. – volume: 7 start-page: 289 ident: e_1_2_1_7_2 article-title: Synthesis of Nitrogen Ceramic Powders by Carbothermal Reduction and Nitridation. Part 1. Silicon Nitride publication-title: Mater. Sci. Technol. doi: 10.1179/mst.1991.7.4.289 contributor: fullname: Cho Y. W. – ident: e_1_2_1_29_2 doi: 10.1063/1.1750872 – ident: e_1_2_1_13_2 doi: 10.1007/BF00541410 – start-page: 101 volume-title: Ceramic Materials and Components for Engines year: 1989 ident: e_1_2_1_16_2 contributor: fullname: Ekelund M. – ident: e_1_2_1_33_2 doi: 10.1111/j.1151-2916.1984.tb19684.x – ident: e_1_2_1_24_2 doi: 10.1016/0955-2219(89)90004-6 – volume: 38 start-page: 2 issue: 4 year: 1986 ident: e_1_2_1_14_2 article-title: Effects of Oxygen and Nitrogen Partial Pressures on the Stability of Metals, Carbides, Nitrides, and Oxides in Refractories which Contain Carbon publication-title: Refractories contributor: fullname: Yamaguchi A. |
SSID | ssj0001984 |
Score | 1.8592683 |
Snippet | The carbothermal nitridation synthesis of α‐Si3 N4is studied using electron microscopy techniques(FEG/SEM and TEM) and chemical composition analysis to... The carbothermal nitridation synthesis of α‐Si 3 N 4 is studied using electron microscopy techniques(FEG/SEM and TEM) and chemical composition analysis to... The carbothermal nitridation synthesis of alpha-Si3N4 is studied using electron microscopy techniques and chemical composition analysis to characterize the... The carbothermal nitridation synthesis of alpha -Si sub 3 N sub 4 is studied using electron microscopy techniques (FEG/SEM and TEM) and chemical composition... |
SourceID | proquest crossref pascalfrancis wiley istex |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 2853 |
SubjectTerms | Applied sciences Building materials. Ceramics. Glasses Ceramic industries Chemical industry and chemicals Exact sciences and technology Structural ceramics Technical ceramics |
Title | Mechanism and Kinetics of the Carbothermal Nitridation Synthesis of α-Silicon Nitride |
URI | https://api.istex.fr/ark:/67375/WNG-GCCSR742-B/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1151-2916.1997.tb03203.x https://www.proquest.com/docview/217900571 https://search.proquest.com/docview/26578733 https://search.proquest.com/docview/26603006 |
Volume | 80 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQucCBf0RoCzkgblkldmLHxzb0R0XdQ5fC3iwntqWobBZtdqW2Jx6BV-mL9CF4Emac7LKLBBKCY5KZSJ7M2J-dmW8IeWMSC0AZApCbzEZpYlwkjTFRbpmDXbNOje91eDrkx-fpyTgb9-XRWAvT8UOsDtwwMvx8jQGuy3YzyGG1iijgGyy5E3jGyWjMBogoEyYwv-vd2U8uKdhdp0ssjCRxPQNpn9bzm1dtrFZ30fCXmD2pWzCg6zpfbEDTdYDrV6jDh2SyHFuXmHIxWMzLQXX9C-3j_xr8I_Kgh7LhXud7j8kd2zwh99cIDuHqY90uOpn2KRmfWqwzrttJqBsTvgc5JIkOpy4EGBoWelb6erAJaAzr-azu-j2Fo6sGbre1l7y9-f7126j-DB7c9FL2GTk_PPhQHEd9Z4eoSpETNWcAC6RmppRJanLheCWok9IJazmX1NJYuizhzuS5LEsYoEtYpXlsOI114thzstVMG_uChKDDea4rUEAmfFGyLBFcpnFeWSNEFRC2_ILqS0fgodY2PmBFhVZUaEXVW1FdBuSt_9grFT27wBQ4kalPwyN1VBSjM5FStR-Q3Q1vWClQwGZZSgOyvfQO1c8OraJIiwZAOQnI69VTCGv8V6MbO12ACMeplLE_SXCYoGMeEOk95S9Gp072igMKQO3lP-huk3ueytfXZe6QrflsYXcBoM3LVz7wfgCS6i2H |
link.rule.ids | 315,783,787,1378,27938,27939,46308,46732 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwEB5V7QE48I-altIcELesEjuxk2NZ2i5tdw_dFvZmObEtRaXZarMrFU48Aq_Ci_AQPAljJ1l2kUBCcEwyE8mTGfuzM_MNwEsVaQTKGIBMJTqII2WCTCkVpJoa3DXLWLleh8MRG1zGJ5NksgHDrham4YdYHrjZyHDztQ1weyC9HuW4XAUEAY6tueP2kJOSkPYQUm5h_FPb0ODN-U82Kdxfxx0atjRxLQdpm9jzm3etrVdb1vS3Nn9S1mhC0_S-WAOnqxDXrVFHD6DqRtekplz1FvO8V3z6hfjxvw3_Idxv0ax_0LjfI9jQ1WO4t8JxiFfvynrRyNRPYDLUttS4rK99WSn_FOUsT7Q_NT4iUb8vZ7krCbtGjVE5n5VNyyd__LHC23XpJL99_f75y7j8gE5ctVL6KVweHV70B0Hb3CEoYkuLmlJEBpmkKs-iWKXcsIITk2WGa81YRjQJM5NEzKg0zfIcB2giWkgWKkZCGRn6DDaraaW3wUcdxlJZoIIlw-c5TSLOsjhMC604Lzyg3ScUNw2Hh1jZ-6AVhbWisFYUrRXFrQev3NdeqsjZlc2C44l4PzoWx_3--JzHRLz2YG_NHZYKBOFZEhMPdjv3EO0EUQtimdEQK0ce7C-fYmTb3zWy0tMFijA7m1L6JwmGc3TIPMicq_zF6MTJQf-QIFbb-QfdfbgzuBieibO3o9NduOuYfV2Z5nPYnM8Weg_x2jx_4aLwB14AMaE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQKyE48I8aSmkOiFtWie3Y8bGk3ZaWrlCXwt4sJ7alqGy22uxKbU88Aq_Ci_AQPAljJ7vsIoGE4JhkJpInM_ZnZ-YbhF7qxABQhgBkOjURTbSNhNY6ygyxsGtWVPteh6cDdnROj0fpqCuPdrUwLT_E8sDNRYafr12AX2q7HuSwWkUY8I0ruePujJPgmPQAUW5SRmKX4LV_9pNMCrbXdAGGHUtcR0Ha5fX85l1ry9Wms_yVS59UDVjQtq0v1rDpKsL1S1T_PhovBtdmplz05rOiV978wvv4v0b_AN3rsGy41zrfQ3TL1I_Q3RWGQ7j6UDXzVqZ5jEanxhUaV804VLUOT0DOsUSHExsCDg1zNS18QdgYNAbVbFq1DZ_C4XUNt5vKS377-v3zl2H1CVy47qTME3TeP3ifH0Vda4eopI4UNSOAC4QiuhAJ1Rm3rOTYCmG5MYwJbHAsbJowq7NMFAUM0CakVCzWDMcqseQp2qgntdlCIegwlqkSFBwVPi9ImnAmaJyVRnNeBogsvqC8bBk85MrOB6wonRWls6LsrCivAvTKf-ylippeuBw4nsqPg0N5mOfDM06xfB2gnTVvWCpgAGcpxQHaXniH7KaHRmLHiwZIOQnQ7vIpxLX7WaNqM5mDCHNzKSF_kmAwQ8csQMJ7yl-MTh7v5QcYkNqzf9DdRbff7ffl2zeDk210x9P6-hrN52hjNp2bHQBrs-KFj8EflEAwUA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanism+and+Kinetics+of+the+Carbothermal+Nitridation+Synthesis+of+%CE%B1%E2%80%90Silicon+Nitride&rft.jtitle=Journal+of+the+American+Ceramic+Society&rft.au=Weimer%2C+Alan+W.&rft.au=Eisman%2C+Glenn+A.&rft.au=Susnitzky%2C+David+W.&rft.au=Beaman%2C+Donald+R.&rft.date=1997-11-01&rft.pub=American+Ceramics+Society&rft.issn=0002-7820&rft.eissn=1551-2916&rft.volume=80&rft.issue=11&rft.spage=2853&rft.epage=2863&rft_id=info:doi/10.1111%2Fj.1151-2916.1997.tb03203.x&rft.externalDBID=10.1111%252Fj.1151-2916.1997.tb03203.x&rft.externalDocID=JACE2853 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7820&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7820&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7820&client=summon |