Mechanism and Kinetics of the Carbothermal Nitridation Synthesis of α-Silicon Nitride

The carbothermal nitridation synthesis of α‐Si3 N4is studied using electron microscopy techniques(FEG/SEM and TEM) and chemical composition analysis to characterize the reaction at various degrees of conversion. The reaction follows a nucleation‐growth mechanism. Without “seed”α‐Si3N4in the precurso...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Ceramic Society Vol. 80; no. 11; pp. 2853 - 2863
Main Authors Weimer, Alan W., Eisman, Glenn A., Susnitzky, David W., Beaman, Donald R., McCoy, Jeffrey W.
Format Journal Article
LanguageEnglish
Published Westerville, Ohio American Ceramics Society 01.11.1997
Blackwell
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The carbothermal nitridation synthesis of α‐Si3 N4is studied using electron microscopy techniques(FEG/SEM and TEM) and chemical composition analysis to characterize the reaction at various degrees of conversion. The reaction follows a nucleation‐growth mechanism. Without “seed”α‐Si3N4in the precursor, the reaction rate is controlled by the formation of nuclei which are associated with a Si‐O‐C intermediate phase. In the presence of “seed,” the limiting step is growth of α‐Si3N4 onto the “seed” nuclei. Growth appears to follow a gas‐phase route and is characterized by an irregular porous layer which grows onto the “seed.” The porous structure is the result of reaction around car‐bon particles which are consumed during the process. The presence of admixed “seed” Si3N4in the precursor formu‐lation increases the reaction rate since the nucleation step is eliminated. An activation energy of E = 457 ± 55 kJ/mol for the overall reaction closely approximates that previously reported for the formation of SiO. This result, along with the finding that residual crystalline SiO2 is present at all stages of the reaction, indicates that the overall reactionrate is controlled by the reduction of SiO2. Since reaction at the carbon and SiO2 contact points is fast, the rate‐limiting step is most likely the gas‐phase carbon reduction of SiO2with CO.
AbstractList The carbothermal nitridation synthesis of alpha -Si sub 3 N sub 4 is studied using electron microscopy techniques (FEG/SEM and TEM) and chemical composition analysis to characterize the reaction at various degrees of conversion. The reaction follows a nucleation-growth mechanism. Without "seed" alpha -Si sub 3 N sub 4 in the precursor, the reaction rate is controlled by the formation of nuclei which are associated with a Si-O-C intermediate phase. In the presence of "seed", the limiting step is growth of alpha -Si sub 3 N sub 4 onto the "seed" nuclei. Growth appears to follow a gas-phase route and is characterized by an irregular porous layer which grows onto the "seed". The porous structure is the result of reaction around carbon particles which are consumed during the process. The presence of admixed "seed" Si sub 3 N sub 4 in the precursor formulation increases the reaction rate since the nucleation step is eliminated. An activation energy of E=457plus/minus55 kJ/mol for the overall reaction closely approximates that previously reported for the formation of SiO. This result, along with the finding that residual crystalline SiO sub 2 is present at all stages of the reaction, indicates that the overall reaction rate is controlled by the reduction of SiO sub 2 . Since reaction at the carbon and SiO sub 2 contact points is fast, the rate-limiting step is most likely the gas-phase carbon reduction of SiO sub 2 with CO.
The carbothermal nitridation synthesis of alpha-Si3N4 is studied using electron microscopy techniques and chemical composition analysis to characterize the reaction at various degrees of conversion. The reaction follows a nucleation-growth mechanism. Without 'seed' alpha-Si3N4 in the precursor, the reaction rate is controlled by the formation of nuclei which are associated with a Si-O-C intermediate phase. In the presence of 'seed', the limiting step is growth of alpha-Si3N4 onto the 'seed' nuclei. Growth appears to follow a gas-phase route and is characterized by an irregular porous layer which grows onto the 'seed'. The porous structure is the result of reaction around carbon particles which are consumed during the process. The presence of admixed 'seed' Si3N4 in the precursor formulation increases the reaction rate since the nucleation step is eliminated. An activation energy of 457 +/- 55 kJ/mol for the overall reaction closely approximates that previously reported for the formation of SiO. This result, along with the finding that residual crystalline SiO2 is present at all stages of the reaction, indicates that the overall reaction rate is controlled by the reduction of SiO2. (Author)
The carbothermal nitridation synthesis of α‐Si 3 N 4 is studied using electron microscopy techniques(FEG/SEM and TEM) and chemical composition analysis to characterize the reaction at various degrees of conversion. The reaction follows a nucleation‐growth mechanism. Without “seed”α‐Si 3 N 4 in the precursor, the reaction rate is controlled by the formation of nuclei which are associated with a Si‐O‐C intermediate phase. In the presence of “seed,” the limiting step is growth of α‐Si 3 N 4 onto the “seed” nuclei. Growth appears to follow a gas‐phase route and is characterized by an irregular porous layer which grows onto the “seed.” The porous structure is the result of reaction around car‐bon particles which are consumed during the process. The presence of admixed “seed” Si 3 N 4 in the precursor formu‐lation increases the reaction rate since the nucleation step is eliminated. An activation energy of E = 457 ± 55 kJ/mol for the overall reaction closely approximates that previously reported for the formation of SiO. This result, along with the finding that residual crystalline SiO 2 is present at all stages of the reaction, indicates that the overall reactionrate is controlled by the reduction of SiO 2 . Since reaction at the carbon and SiO 2 contact points is fast, the rate‐limiting step is most likely the gas‐phase carbon reduction of SiO 2 with CO.
The carbothermal nitridation synthesis of α‐Si3 N4is studied using electron microscopy techniques(FEG/SEM and TEM) and chemical composition analysis to characterize the reaction at various degrees of conversion. The reaction follows a nucleation‐growth mechanism. Without “seed”α‐Si3N4in the precursor, the reaction rate is controlled by the formation of nuclei which are associated with a Si‐O‐C intermediate phase. In the presence of “seed,” the limiting step is growth of α‐Si3N4 onto the “seed” nuclei. Growth appears to follow a gas‐phase route and is characterized by an irregular porous layer which grows onto the “seed.” The porous structure is the result of reaction around car‐bon particles which are consumed during the process. The presence of admixed “seed” Si3N4in the precursor formu‐lation increases the reaction rate since the nucleation step is eliminated. An activation energy of E = 457 ± 55 kJ/mol for the overall reaction closely approximates that previously reported for the formation of SiO. This result, along with the finding that residual crystalline SiO2 is present at all stages of the reaction, indicates that the overall reactionrate is controlled by the reduction of SiO2. Since reaction at the carbon and SiO2 contact points is fast, the rate‐limiting step is most likely the gas‐phase carbon reduction of SiO2with CO.
Author Weimer, Alan W.
Beaman, Donald R.
McCoy, Jeffrey W.
Eisman, Glenn A.
Susnitzky, David W.
Author_xml – sequence: 1
  givenname: Alan W.
  surname: Weimer
  fullname: Weimer, Alan W.
  organization: Ceramics and Advanced Materials Research, The Dow Chemical Company, Midland, Michigan 48667
– sequence: 2
  givenname: Glenn A.
  surname: Eisman
  fullname: Eisman, Glenn A.
  organization: Ceramics and Advanced Materials Research, The Dow Chemical Company, Midland, Michigan 48667
– sequence: 3
  givenname: David W.
  surname: Susnitzky
  fullname: Susnitzky, David W.
  organization: Ceramics and Advanced Materials Research, The Dow Chemical Company, Midland, Michigan 48667
– sequence: 4
  givenname: Donald R.
  surname: Beaman
  fullname: Beaman, Donald R.
  organization: Ceramics and Advanced Materials Research, The Dow Chemical Company, Midland, Michigan 48667
– sequence: 5
  givenname: Jeffrey W.
  surname: McCoy
  fullname: McCoy, Jeffrey W.
  organization: Ceramics and Advanced Materials Research, The Dow Chemical Company, Midland, Michigan 48667
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2074542$$DView record in Pascal Francis
BookMark eNqVkc1u1DAUhS3USp3-vENUIXYZru3EjllRojJASysxFJaW49iqh4zT2hkx81i8CM-E04y6YAXeXPv687k6PsfowPfeIHSOYY7Ter1KpcQ5EZjNsRB8PjRACdD59gWa4XJ_dYBmAEByXhE4QscxrtIRi6qYoW-fjb5X3sV1pnybXTlvBqdj1ttsuDdZrULTp01Yqy67cUNwrRpc77Plzqd2dE_k71_50nVOp_7EmFN0aFUXzdm-nqC795df6w_59e3iY31xneuCFzSvKGNYKNo2AhdtxS3TnFghLDeGMUEMAWFLzGxbVaJpkkGLqVYMWkZAYUtP0KtJ9yH0jxsTB7l2UZuuU970mygJY0AB2D-AJa84pQk8_wtc9ZvgkwlJMBcAJccJejNBOvQxBmPlQ3BrFXYSgxyDkSs5BiPH35djMHIfjNymxy_3E1TUqrNBee3iswIBXpQFSdjbCfvpOrP7jwHy00V9Sapy9JJPEi4OZvssocIPyTjlpfx-s5CLul5-4QWR7-gfmQay2w
CODEN JACTAW
CitedBy_id crossref_primary_10_1016_j_ceramint_2022_10_247
crossref_primary_10_1016_j_proeng_2012_01_1319
crossref_primary_10_1016_j_ceramint_2018_08_011
crossref_primary_10_1080_10426914_2018_1544708
crossref_primary_10_35414_akufemubid_1242691
crossref_primary_10_1016_j_ceramint_2018_12_118
crossref_primary_10_1111_jace_16545
crossref_primary_10_1007_s10971_019_05051_x
crossref_primary_10_1007_s43207_024_00388_8
crossref_primary_10_1016_j_ceramint_2011_05_035
crossref_primary_10_1016_j_jascer_2014_09_004
crossref_primary_10_1007_s12274_023_6381_8
crossref_primary_10_1039_C4RA03127J
crossref_primary_10_1016_j_jhazmat_2012_05_048
crossref_primary_10_1016_j_ceramint_2020_11_166
crossref_primary_10_1016_j_apt_2021_06_023
crossref_primary_10_1179_1743676115Y_0000000061
crossref_primary_10_1016_j_apt_2024_104376
crossref_primary_10_1016_j_jeurceramsoc_2006_08_021
crossref_primary_10_1016_j_powtec_2023_118279
crossref_primary_10_1002_1527_2648_20020717_4_7_478__AID_ADEM478_3_0_CO_2_P
crossref_primary_10_1021_acssuschemeng_7b04139
crossref_primary_10_1016_j_ceramint_2024_06_234
crossref_primary_10_1134_S0040579522050293
crossref_primary_10_1111_j_1744_7402_2009_02366_x
crossref_primary_10_1016_j_jeurceramsoc_2014_11_005
crossref_primary_10_1111_jace_18893
crossref_primary_10_1016_S0927_796X_00_00008_5
crossref_primary_10_1016_j_powtec_2012_11_036
crossref_primary_10_1016_j_ceramint_2018_08_052
crossref_primary_10_1016_j_polymdegradstab_2012_06_021
crossref_primary_10_1016_S0167_2738_01_00800_1
crossref_primary_10_1016_S1359_8368_99_00039_6
crossref_primary_10_1557_jmr_2017_252
crossref_primary_10_1111_j_1551_2916_2007_02046_x
crossref_primary_10_1111_j_1551_2916_2009_03530_x
crossref_primary_10_1021_cm9803859
crossref_primary_10_1111_j_1551_2916_2010_03974_x
crossref_primary_10_1016_j_actamat_2005_03_011
crossref_primary_10_1016_j_ceramint_2018_08_078
crossref_primary_10_1007_s11837_015_1705_0
crossref_primary_10_1016_j_ceramint_2023_12_159
crossref_primary_10_1111_jace_15710
crossref_primary_10_1016_j_ceramint_2020_08_098
crossref_primary_10_1016_j_ceramint_2009_06_009
crossref_primary_10_3724_SP_J_1077_2008_00763
crossref_primary_10_1111_j_1551_2916_2004_00075_x
crossref_primary_10_1111_j_1551_2916_2009_03448_x
crossref_primary_10_1111_j_1151_2916_1999_tb01978_x
crossref_primary_10_1111_j_1551_2916_2008_02285_x
crossref_primary_10_1016_j_jnucmat_2014_07_030
crossref_primary_10_1111_j_1151_2916_2001_tb01031_x
crossref_primary_10_1007_s10853_009_3509_5
crossref_primary_10_1007_s10971_022_05879_w
crossref_primary_10_1016_j_powtec_2013_10_030
crossref_primary_10_1080_10426914_2010_515640
crossref_primary_10_1016_S0955_2219_98_00005_3
crossref_primary_10_1016_j_porgcoat_2017_05_012
crossref_primary_10_3139_146_110903
crossref_primary_10_1080_09500839_2020_1723811
crossref_primary_10_1111_j_1551_2916_2007_02049_x
crossref_primary_10_4028_www_scientific_net_MSF_554_163
Cites_doi 10.1016/0955-2219(92)90052-F
10.1111/j.1151-2916.1966.tb13287.x
10.4164/sptj.26.157
10.1016/0955-2219(92)90008-2
10.1007/BF00356080
10.1007/BF01160824
10.1007/978-94-009-6851-6_12
10.1111/j.1151-2916.1982.tb09951.x
10.1063/1.1750631
10.1111/j.1151-2916.1992.tb07838.x
10.1007/BF00545189
10.1111/j.1151-2916.1991.tb07292.x
10.1111/j.1551-2916.1988.tb00167.x
10.1063/1.1750380
10.1179/mst.1991.7.4.289
10.1063/1.1750872
10.1007/BF00541410
10.1111/j.1151-2916.1984.tb19684.x
10.1016/0955-2219(89)90004-6
ContentType Journal Article
Copyright 1998 INIST-CNRS
Copyright American Ceramic Society Nov 1997
Copyright_xml – notice: 1998 INIST-CNRS
– notice: Copyright American Ceramic Society Nov 1997
DBID BSCLL
IQODW
AAYXX
CITATION
7QQ
7SR
8FD
JG9
H8D
L7M
DOI 10.1111/j.1151-2916.1997.tb03203.x
DatabaseName Istex
Pascal-Francis
CrossRef
Ceramic Abstracts
Engineered Materials Abstracts
Technology Research Database
Materials Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Ceramic Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Materials Research Database
Technology Research Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Visual Arts
Engineering
Applied Sciences
EISSN 1551-2916
EndPage 2863
ExternalDocumentID 41352176
10_1111_j_1151_2916_1997_tb03203_x
2074542
JACE2853
ark_67375_WNG_GCCSR742_B
Genre article
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1OB
1OC
29L
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8WZ
930
A03
A6W
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEFU
ABEML
ABJNI
ABPVW
ABTAH
ACAHQ
ACBEA
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACKIV
ACNCT
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMHG
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AHEFC
AI.
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
CO8
COF
CS3
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBO
EBS
EDO
EJD
EMK
ESX
F00
F01
F04
FEDTE
FOJGT
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
H~9
I-F
IRD
ITF
ITG
ITH
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NDZJH
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QF4
QM1
QN7
QO4
R.K
RAX
RIWAO
RJQFR
ROL
RX1
SAMSI
SJN
SUPJJ
TAE
TH9
TN5
TUS
UB1
UPT
V8K
VH1
W8V
W99
WBKPD
WFSAM
WH7
WIH
WIK
WOHZO
WQJ
WRC
WTY
WXSBR
WYISQ
XG1
YQT
ZCG
ZE2
ZY4
ZZTAW
~02
~IA
~WT
G8K
08R
AAJUZ
ABCVL
ABHUG
ABPTK
ACSMX
ACXME
ADAWD
ADDAD
AFVGU
AGJLS
IQODW
PK8
AAYXX
CITATION
7QQ
7SR
8FD
JG9
H8D
L7M
ID FETCH-LOGICAL-c4743-836619a3db914d87f6c72f99f7ee6692e209f516fd889bb997f13ca60d620a1f3
IEDL.DBID DR2
ISSN 0002-7820
IngestDate Fri Oct 25 23:05:03 EDT 2024
Fri Oct 25 04:30:16 EDT 2024
Thu Oct 10 16:01:38 EDT 2024
Fri Aug 23 00:37:34 EDT 2024
Sun Oct 29 17:06:58 EDT 2023
Sat Aug 24 01:02:23 EDT 2024
Wed Oct 30 09:52:52 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Carbothermy
Chemical preparation
Silicon Nitrides
Reaction mechanism
Nitriding
Kinetics
Experimental study
Powder
Non oxide ceramics
Structural ceramic
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4743-836619a3db914d87f6c72f99f7ee6692e209f516fd889bb997f13ca60d620a1f3
Notes ark:/67375/WNG-GCCSR742-B
istex:8161645E299F42A5650EDDDE261915074145614A
ArticleID:JACE2853
Department of Chemical Engineering, University of Colorado, Boulder, Colorado 80309–0424.
Manuscript No. 192018. Received February 15, 1996; approved April 7, 1997.
Member, American Ceramic Society.
Supported by the U.S. Department of Energy, Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Transportation Technologies, as part of the Ceramic Technology Project of the Propulsion System Materials Program, under Contract No. DE–AC05–840R21400 with Martin Marietta Energy Systems, Inc.
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 217900571
PQPubID 23500
PageCount 11
ParticipantIDs proquest_miscellaneous_26603006
proquest_miscellaneous_26578733
proquest_journals_217900571
crossref_primary_10_1111_j_1151_2916_1997_tb03203_x
pascalfrancis_primary_2074542
wiley_primary_10_1111_j_1151_2916_1997_tb03203_x_JACE2853
istex_primary_ark_67375_WNG_GCCSR742_B
PublicationCentury 1900
PublicationDate November 1997
PublicationDateYYYYMMDD 1997-11-01
PublicationDate_xml – month: 11
  year: 1997
  text: November 1997
PublicationDecade 1990
PublicationPlace Westerville, Ohio
PublicationPlace_xml – name: Westerville, Ohio
– name: Malden,MA
– name: Columbus
PublicationTitle Journal of the American Ceramic Society
PublicationYear 1997
Publisher American Ceramics Society
Blackwell
Wiley Subscription Services, Inc
Publisher_xml – name: American Ceramics Society
– name: Blackwell
– name: Wiley Subscription Services, Inc
References B. G. Durham, M. J. Murtha, and G. Burnet, "Si3N4 by Carbothermal Ammonolysis of Silica," Adv. Ceram. Mater., 3 [1] 45-48 (1988).
M. Ekelund, B. Forslund, and J. Zheng, "Control of Particle Size in Si3N4 Powders Prepared by High-Pressure Carbothermal Nitridation," J. Mater. Sci., 21 [21] 5749 (1996).
N. Klinger, E. L. Strauss, and K. L. Komarek, "Reactions Between Silica and Graphite," J. Am. Ceram. Soc., 49, 369 (1966).
Z. Strnad, Glass-Ceramic Materials: Liquid Phase Separation, Nucleation and Crystallization in Glasses; pp. 70-72. Elsevier, New York , 1986.
M. V. Vlasova, T. S. Bartnitskaya, L. L. Sukhikh, L. A. Krushinskaya, T. V. Tomila, and S. Yu. Artyuch, "Mechanism of Si3N4 Nucleation during Carbothermal Reduction of Silica," J. Mater. Sci., 30, 5263-71 (1995).
K. Komeya and H. Inoue, "Synthesis of the Alpha Form of Silicon Nitride from Silica," J. Mater. Sci. Lett., 10, 1243-46 (1975).
M. Avrami, "Kinetics of Phase Change. I," J. Chem. Phys., 7, 1103 (1939).
H. Inoue, K. Komeya, and A. Tsuge, "Synthesis of Silicon Nitride Powder from Silica Reduction," J. Am. Ceram. Soc., 65, C-205 (1982).
S.-C. Zhang and W. R. Cannon, "Preparation of Silicon Nitride from Silica," J. Am Ceram. Soc., [10] 691-95 (1984).
S. A. Siddiqi and A. Hendry, "The Influence of Iron on the Preparation of Silicon Nitride from Silica," J. Mater. Sci., 20, 3230-38 (1985).
M. Avrami Kinetics of Phase Change, III," J. Chem. Phys., 9, 177 (1941).
Yamaguchi, A., "Effects of Oxygen and Nitrogen Partial Pressures on the Stability of Metals, Carbides, Nitrides, and Oxides in Refractories which Contain Carbon," Refractories, 38 [4] 2-11 (1986).
J. C. Russ, Computer-Assisted Microscopy. The Measurement and Analysis of Images; pp. 182, 192. Plenum Press, New York , 1990.
M. Tsukada, J. Naito, T. Masuda, and M. Horio, "Submicron Ceramic Powder Synthesis by a Fluidized Bed of Microcontainer Particles," Funtai Kogaku Kaishi, 26, [3] 157 (1989).
M. Ekelund and B. Forslund, "Reactions within Quartz-Carbon Mixtures in a Nitrogen Atmosphere," J. Eur. Ceram. Soc., 9, 107-19 (1992).
S. J. P. Durham, K. Shanker, and R. A. L. Drew, "Carbothermal Synthesis of Silicon Nitride: Effect of Reaction Conditions," J. Am. Ceram. Soc., 74 [1] 31-37 (1991).
B. V. Erofeyev, "A Generalized Equation of Chemical Kinetics and Its Application in Reactions Involving Solids," C.R. Acad. Sci. URSS, 52, 511 (1946).
M. Ekelund and B. Forslund, "Carbothermal Preparation of Silicon Nitride: Influence of Starting Material and Synthesis Parameters," J. Am. Ceram. Soc., 75, 532-39 (1992).
T. Licko, V. Figusch, and J. Puchyova, "Synthesis of Silicon Nitride by Carbothermal Reduction and Nitriding of Silica: Control of Kinetics and Morphology," J. Eur. Ceram. Soc., 9, 219-30 (1992).
M. Avrami, "Kinetics of Phase Change. II," J. Chem. Phys., 8, 212 (1940).
I. A. Rahman and F. L. Riley, "The Control of Morphology in Silicon Nitride Powder from Rice Husk," J. Eur. Ceram. Soc., 5, 11-22 (1989).
Y. W. Cho and J. A. Charles, "Synthesis of Nitrogen Ceramic Powders by Carbothermal Reduction and Nitridation. Part 1. Silicon Nitride," Mater. Sci. Technol., 7, 289-98 (1991).
1995; 30
1989; 5
1990; 12
1941; 9
1994; Vol. 89–91
192
1991; 74
1986; 38
1993
1991
1975; 10
1992; 75
1989; 26
1985; 20
1976; 4
1946; 52
1992; 9
1988; 3
1966; 49
1940; 8
1982; 65
1987
1986
1984
1983
7
1939; 7
1996; 21
1989
1975; 6
Hendry A. (e_1_2_1_12_2) 1975
Ekelund M. (e_1_2_1_15_2) 1990
Bandyopadhyay S. (e_1_2_1_2_2) 1994
e_1_2_1_22_2
Zhuang Yl. (e_1_2_1_6_2) 1991
e_1_2_1_23_2
e_1_2_1_20_2
e_1_2_1_21_2
e_1_2_1_26_2
e_1_2_1_27_2
Hofman H. (e_1_2_1_19_2) 1993
e_1_2_1_24_2
Russ J. C. (e_1_2_1_25_2)
Erofeyev B. V. (e_1_2_1_31_2) 1946; 52
Durham S. J. P. (e_1_2_1_8_2) 1989
e_1_2_1_28_2
e_1_2_1_29_2
Ekelund M. (e_1_2_1_16_2) 1989
Cho Y. W. (e_1_2_1_7_2); 7
Strnad Z. (e_1_2_1_32_2) 1986
Figusch V. (e_1_2_1_11_2) 1987
Tomkins F. C. (e_1_2_1_30_2) 1976
e_1_2_1_4_2
e_1_2_1_5_2
e_1_2_1_34_2
e_1_2_1_33_2
e_1_2_1_10_2
Peck D.‐H. (e_1_2_1_3_2) 1994
e_1_2_1_13_2
Yamaguchi A. (e_1_2_1_14_2) 1986; 38
e_1_2_1_17_2
e_1_2_1_9_2
e_1_2_1_18_2
References_xml – volume: 7
  start-page: 289
  end-page: 98
  article-title: Synthesis of Nitrogen Ceramic Powders by Carbothermal Reduction and Nitridation. Part 1. Silicon Nitride
  publication-title: Mater. Sci. Technol.
– start-page: 105
  year: 1993
  end-page: 20
– volume: Vol. 89–91
  start-page: 55
  year: 1994
  end-page: 62
– start-page: 149
  year: 1983
  end-page: 56
– volume: 65
  start-page: C
  year: 1982
  end-page: 205
  article-title: Synthesis of Silicon Nitride Powder from Silica Reduction
  publication-title: J. Am. Ceram. Soc.
– start-page: 70
  year: 1986
  end-page: 72
– start-page: 313
  year: 1989
– volume: 20
  start-page: 3230
  year: 1985
  end-page: 38
  article-title: The Influence of Iron on the Preparation of Silicon Nitride from Silica
  publication-title: J. Mater. Sci.
– volume: 30
  start-page: 5263
  year: 1995
  end-page: 71
  article-title: Mechanism of Si N Nucleation during Carbothermal Reduction of Silica
  publication-title: J. Mater. Sci.
– volume: 74
  start-page: 31
  issue: 1
  year: 1991
  end-page: 37
  article-title: Carbothermal Synthesis of Silicon Nitride: Effect of Reaction Conditions
  publication-title: J. Am. Ceram. Soc.
– volume: 52
  start-page: 511
  year: 1946
  article-title: A Generalized Equation of Chemical Kinetics and Its Application in Reactions Involving Solids
  publication-title: C.R. Acad. Sci. URSS
– volume: 9
  start-page: 219
  year: 1992
  end-page: 30
  article-title: Synthesis of Silicon Nitride by Carbothermal Reduction and Nitriding of Silica: Control of Kinetics and Morphology
  publication-title: J. Eur. Ceram. Soc.
– volume: 7
  start-page: 1103
  year: 1939
  article-title: Kinetics of Phase Change. I
  publication-title: J. Chem. Phys.
– volume: 8
  start-page: 212
  year: 1940
  article-title: Kinetics of Phase Change. II
  publication-title: J. Chem. Phys.
– volume: 5
  start-page: 11
  year: 1989
  end-page: 22
  article-title: The Control of Morphology in Silicon Nitride Powder from Rice Husk
  publication-title: J. Eur. Ceram. Soc.
– start-page: 182
  year: 192
– start-page: 517
  year: 1987
  end-page: 26
– volume: 9
  start-page: 107
  year: 1992
  end-page: 19
  article-title: Reactions within Quartz‐Carbon Mixtures in a Nitrogen Atmosphere
  publication-title: J. Eur. Ceram. Soc.
– volume: 9
  start-page: 177
  year: 1941
  article-title: Kinetics of Phase Change, III
  publication-title: J. Chem. Phys.
– volume: 6
  start-page: 199
  year: 1975
  end-page: 209
– volume: 75
  start-page: 532
  year: 1992
  end-page: 39
  article-title: Carbothermal Preparation of Silicon Nitride: Influence of Starting Material and Synthesis Parameters
  publication-title: J. Am. Ceram. Soc.
– start-page: 691
  issue: 10
  year: 1984
  end-page: 95
  article-title: Preparation of Silicon Nitride from Silica
  publication-title: J. Am Ceram. Soc.
– volume: 26
  start-page: 157
  issue: 3
  year: 1989
  article-title: Submicron Ceramic Powder Synthesis by a Fluidized Bed of Microcontainer Particles
  publication-title: Funtai Kogaku Kaishi
– volume: 4
  start-page: 206
  year: 1976
  end-page: 12
– volume: 3
  start-page: 45
  issue: 1
  year: 1988
  end-page: 48
  article-title: Si N by Carbothermal Ammonolysis of Silica
  publication-title: Adv. Ceram. Mater.
– start-page: 325
  year: 1991
  end-page: 28
– volume: 38
  start-page: 2
  issue: 4
  year: 1986
  end-page: 11
  article-title: Effects of Oxygen and Nitrogen Partial Pressures on the Stability of Metals, Carbides, Nitrides, and Oxides in Refractories which Contain Carbon
  publication-title: Refractories
– volume: 10
  start-page: 1243
  year: 1975
  end-page: 46
  article-title: Synthesis of the Alpha Form of Silicon Nitride from Silica
  publication-title: J. Mater. Sci. Lett.
– volume: 21
  start-page: 5749
  issue: 21
  year: 1996
  article-title: Control of Particle Size in Si N Powders Prepared by High‐Pressure Carbothermal Nitridation
  publication-title: J. Mater. Sci.
– volume: 49
  start-page: 369
  year: 1966
  article-title: Reactions Between Silica and Graphite
  publication-title: J. Am. Ceram. Soc.
– volume: Vol. 89–91
  start-page: 15
  year: 1994
  end-page: 18
– volume: 12
  start-page: 337
  year: 1990
  end-page: 45
– start-page: 101
  year: 1989
  end-page: 14
– ident: e_1_2_1_10_2
  doi: 10.1016/0955-2219(92)90052-F
– start-page: 325
  volume-title: Advanced Structural Materials
  year: 1991
  ident: e_1_2_1_6_2
  contributor:
    fullname: Zhuang Yl.
– ident: e_1_2_1_34_2
  doi: 10.1111/j.1151-2916.1966.tb13287.x
– ident: e_1_2_1_26_2
  doi: 10.4164/sptj.26.157
– ident: e_1_2_1_22_2
  doi: 10.1016/0955-2219(92)90008-2
– ident: e_1_2_1_5_2
  doi: 10.1007/BF00356080
– ident: e_1_2_1_17_2
  doi: 10.1007/BF01160824
– start-page: 206
  volume-title: Treatise on Solid State Chemistry
  year: 1976
  ident: e_1_2_1_30_2
  contributor:
    fullname: Tomkins F. C.
– volume: 52
  start-page: 511
  year: 1946
  ident: e_1_2_1_31_2
  article-title: A Generalized Equation of Chemical Kinetics and Its Application in Reactions Involving Solids
  publication-title: C.R. Acad. Sci. URSS
  contributor:
    fullname: Erofeyev B. V.
– ident: e_1_2_1_20_2
  doi: 10.1007/978-94-009-6851-6_12
– start-page: 15
  volume-title: Key Engineering Materials
  year: 1994
  ident: e_1_2_1_3_2
  contributor:
    fullname: Peck D.‐H.
– ident: e_1_2_1_21_2
  doi: 10.1111/j.1151-2916.1982.tb09951.x
– start-page: 182
  volume-title: Computer‐Assisted Microscopy. The Measurement and Analysis of Images
  ident: e_1_2_1_25_2
  contributor:
    fullname: Russ J. C.
– ident: e_1_2_1_28_2
  doi: 10.1063/1.1750631
– start-page: 517
  volume-title: High Tech Ceramics
  year: 1987
  ident: e_1_2_1_11_2
  contributor:
    fullname: Figusch V.
– ident: e_1_2_1_18_2
  doi: 10.1111/j.1151-2916.1992.tb07838.x
– ident: e_1_2_1_4_2
  doi: 10.1007/BF00545189
– start-page: 337
  volume-title: Ceramic Transactions
  year: 1990
  ident: e_1_2_1_15_2
  contributor:
    fullname: Ekelund M.
– ident: e_1_2_1_9_2
  doi: 10.1111/j.1151-2916.1991.tb07292.x
– start-page: 55
  volume-title: Key Engineering Materials
  year: 1994
  ident: e_1_2_1_2_2
  contributor:
    fullname: Bandyopadhyay S.
– start-page: 105
  volume-title: Silicon Nitride Ceramics– Scientific and Technological Advances
  year: 1993
  ident: e_1_2_1_19_2
  contributor:
    fullname: Hofman H.
– start-page: 70
  volume-title: Glass‐Ceramic Materials: Liquid Phase Separation, Nucleation and Crystallization in Glasses
  year: 1986
  ident: e_1_2_1_32_2
  contributor:
    fullname: Strnad Z.
– ident: e_1_2_1_23_2
  doi: 10.1111/j.1551-2916.1988.tb00167.x
– ident: e_1_2_1_27_2
  doi: 10.1063/1.1750380
– start-page: 199
  volume-title: Special Ceramics
  year: 1975
  ident: e_1_2_1_12_2
  contributor:
    fullname: Hendry A.
– start-page: 313
  volume-title: Ceramic Powder Processing Science II
  year: 1989
  ident: e_1_2_1_8_2
  contributor:
    fullname: Durham S. J. P.
– volume: 7
  start-page: 289
  ident: e_1_2_1_7_2
  article-title: Synthesis of Nitrogen Ceramic Powders by Carbothermal Reduction and Nitridation. Part 1. Silicon Nitride
  publication-title: Mater. Sci. Technol.
  doi: 10.1179/mst.1991.7.4.289
  contributor:
    fullname: Cho Y. W.
– ident: e_1_2_1_29_2
  doi: 10.1063/1.1750872
– ident: e_1_2_1_13_2
  doi: 10.1007/BF00541410
– start-page: 101
  volume-title: Ceramic Materials and Components for Engines
  year: 1989
  ident: e_1_2_1_16_2
  contributor:
    fullname: Ekelund M.
– ident: e_1_2_1_33_2
  doi: 10.1111/j.1151-2916.1984.tb19684.x
– ident: e_1_2_1_24_2
  doi: 10.1016/0955-2219(89)90004-6
– volume: 38
  start-page: 2
  issue: 4
  year: 1986
  ident: e_1_2_1_14_2
  article-title: Effects of Oxygen and Nitrogen Partial Pressures on the Stability of Metals, Carbides, Nitrides, and Oxides in Refractories which Contain Carbon
  publication-title: Refractories
  contributor:
    fullname: Yamaguchi A.
SSID ssj0001984
Score 1.8592683
Snippet The carbothermal nitridation synthesis of α‐Si3 N4is studied using electron microscopy techniques(FEG/SEM and TEM) and chemical composition analysis to...
The carbothermal nitridation synthesis of α‐Si 3 N 4 is studied using electron microscopy techniques(FEG/SEM and TEM) and chemical composition analysis to...
The carbothermal nitridation synthesis of alpha-Si3N4 is studied using electron microscopy techniques and chemical composition analysis to characterize the...
The carbothermal nitridation synthesis of alpha -Si sub 3 N sub 4 is studied using electron microscopy techniques (FEG/SEM and TEM) and chemical composition...
SourceID proquest
crossref
pascalfrancis
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 2853
SubjectTerms Applied sciences
Building materials. Ceramics. Glasses
Ceramic industries
Chemical industry and chemicals
Exact sciences and technology
Structural ceramics
Technical ceramics
Title Mechanism and Kinetics of the Carbothermal Nitridation Synthesis of α-Silicon Nitride
URI https://api.istex.fr/ark:/67375/WNG-GCCSR742-B/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1151-2916.1997.tb03203.x
https://www.proquest.com/docview/217900571
https://search.proquest.com/docview/26578733
https://search.proquest.com/docview/26603006
Volume 80
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQucCBf0RoCzkgblkldmLHxzb0R0XdQ5fC3iwntqWobBZtdqW2Jx6BV-mL9CF4Emac7LKLBBKCY5KZSJ7M2J-dmW8IeWMSC0AZApCbzEZpYlwkjTFRbpmDXbNOje91eDrkx-fpyTgb9-XRWAvT8UOsDtwwMvx8jQGuy3YzyGG1iijgGyy5E3jGyWjMBogoEyYwv-vd2U8uKdhdp0ssjCRxPQNpn9bzm1dtrFZ30fCXmD2pWzCg6zpfbEDTdYDrV6jDh2SyHFuXmHIxWMzLQXX9C-3j_xr8I_Kgh7LhXud7j8kd2zwh99cIDuHqY90uOpn2KRmfWqwzrttJqBsTvgc5JIkOpy4EGBoWelb6erAJaAzr-azu-j2Fo6sGbre1l7y9-f7126j-DB7c9FL2GTk_PPhQHEd9Z4eoSpETNWcAC6RmppRJanLheCWok9IJazmX1NJYuizhzuS5LEsYoEtYpXlsOI114thzstVMG_uChKDDea4rUEAmfFGyLBFcpnFeWSNEFRC2_ILqS0fgodY2PmBFhVZUaEXVW1FdBuSt_9grFT27wBQ4kalPwyN1VBSjM5FStR-Q3Q1vWClQwGZZSgOyvfQO1c8OraJIiwZAOQnI69VTCGv8V6MbO12ACMeplLE_SXCYoGMeEOk95S9Gp072igMKQO3lP-huk3ueytfXZe6QrflsYXcBoM3LVz7wfgCS6i2H
link.rule.ids 315,783,787,1378,27938,27939,46308,46732
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwEB5V7QE48I-altIcELesEjuxk2NZ2i5tdw_dFvZmObEtRaXZarMrFU48Aq_Ci_AQPAljJ1l2kUBCcEwyE8mTGfuzM_MNwEsVaQTKGIBMJTqII2WCTCkVpJoa3DXLWLleh8MRG1zGJ5NksgHDrham4YdYHrjZyHDztQ1weyC9HuW4XAUEAY6tueP2kJOSkPYQUm5h_FPb0ODN-U82Kdxfxx0atjRxLQdpm9jzm3etrVdb1vS3Nn9S1mhC0_S-WAOnqxDXrVFHD6DqRtekplz1FvO8V3z6hfjxvw3_Idxv0ax_0LjfI9jQ1WO4t8JxiFfvynrRyNRPYDLUttS4rK99WSn_FOUsT7Q_NT4iUb8vZ7krCbtGjVE5n5VNyyd__LHC23XpJL99_f75y7j8gE5ctVL6KVweHV70B0Hb3CEoYkuLmlJEBpmkKs-iWKXcsIITk2WGa81YRjQJM5NEzKg0zfIcB2giWkgWKkZCGRn6DDaraaW3wUcdxlJZoIIlw-c5TSLOsjhMC604Lzyg3ScUNw2Hh1jZ-6AVhbWisFYUrRXFrQev3NdeqsjZlc2C44l4PzoWx_3--JzHRLz2YG_NHZYKBOFZEhMPdjv3EO0EUQtimdEQK0ce7C-fYmTb3zWy0tMFijA7m1L6JwmGc3TIPMicq_zF6MTJQf-QIFbb-QfdfbgzuBieibO3o9NduOuYfV2Z5nPYnM8Weg_x2jx_4aLwB14AMaE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQKyE48I8aSmkOiFtWie3Y8bGk3ZaWrlCXwt4sJ7alqGy22uxKbU88Aq_Ci_AQPAljJ7vsIoGE4JhkJpInM_ZnZ-YbhF7qxABQhgBkOjURTbSNhNY6ygyxsGtWVPteh6cDdnROj0fpqCuPdrUwLT_E8sDNRYafr12AX2q7HuSwWkUY8I0ruePujJPgmPQAUW5SRmKX4LV_9pNMCrbXdAGGHUtcR0Ha5fX85l1ry9Wms_yVS59UDVjQtq0v1rDpKsL1S1T_PhovBtdmplz05rOiV978wvv4v0b_AN3rsGy41zrfQ3TL1I_Q3RWGQ7j6UDXzVqZ5jEanxhUaV804VLUOT0DOsUSHExsCDg1zNS18QdgYNAbVbFq1DZ_C4XUNt5vKS377-v3zl2H1CVy47qTME3TeP3ifH0Vda4eopI4UNSOAC4QiuhAJ1Rm3rOTYCmG5MYwJbHAsbJowq7NMFAUM0CakVCzWDMcqseQp2qgntdlCIegwlqkSFBwVPi9ImnAmaJyVRnNeBogsvqC8bBk85MrOB6wonRWls6LsrCivAvTKf-ylippeuBw4nsqPg0N5mOfDM06xfB2gnTVvWCpgAGcpxQHaXniH7KaHRmLHiwZIOQnQ7vIpxLX7WaNqM5mDCHNzKSF_kmAwQ8csQMJ7yl-MTh7v5QcYkNqzf9DdRbff7ffl2zeDk210x9P6-hrN52hjNp2bHQBrs-KFj8EflEAwUA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanism+and+Kinetics+of+the+Carbothermal+Nitridation+Synthesis+of+%CE%B1%E2%80%90Silicon+Nitride&rft.jtitle=Journal+of+the+American+Ceramic+Society&rft.au=Weimer%2C+Alan+W.&rft.au=Eisman%2C+Glenn+A.&rft.au=Susnitzky%2C+David+W.&rft.au=Beaman%2C+Donald+R.&rft.date=1997-11-01&rft.pub=American+Ceramics+Society&rft.issn=0002-7820&rft.eissn=1551-2916&rft.volume=80&rft.issue=11&rft.spage=2853&rft.epage=2863&rft_id=info:doi/10.1111%2Fj.1151-2916.1997.tb03203.x&rft.externalDBID=10.1111%252Fj.1151-2916.1997.tb03203.x&rft.externalDocID=JACE2853
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7820&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7820&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7820&client=summon