Fabrication of Flexible and Transparent Metal Mesh Electrodes Using Surface Energy‐Directed Assembly Process for Touch Screen Panels and Heaters

Transparent conductive electrodes (TCEs) are indispensable components of various optoelectronic devices such as displays, touch screen panels, solar cells, and smart windows. To date, the fabrication processes for metal mesh‐based TCEs are either costly or having limited resolution and throughput. H...

Full description

Saved in:
Bibliographic Details
Published inAdvanced science Vol. 10; no. 34; pp. e2304990 - n/a
Main Authors Yuan, Siqing, Fan, Zebin, Wang, Guangji, Chai, Zhimin, Wang, Tongqing, Zhao, Dewen, Busnaina, Ahmed A., Lu, Xinchun
Format Journal Article
LanguageEnglish
Published Germany John Wiley & Sons, Inc 01.12.2023
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Transparent conductive electrodes (TCEs) are indispensable components of various optoelectronic devices such as displays, touch screen panels, solar cells, and smart windows. To date, the fabrication processes for metal mesh‐based TCEs are either costly or having limited resolution and throughput. Here, a two‐step surface energy‐directed assembly (SEDA) process to efficiently fabricate high resolution silver meshes is introduced. The two‐step SEDA process turns from assembly on a functionalized substrate with hydrophilic mesh patterns into assembly on a functionalized substrate with stripe patterns. During the SEDA process, a three‐phase contact line pins on the hydrophilic pattern regions while recedes on the hydrophobic non‐pattern regions, ensuring that the assembly process can be achieved with excellent selectivity. The necessity of using the two‐step SEDA process rather than a one‐step SEDA process is demonstrated by both experimental results and theoretical analysis. Utilizing the two‐step SEDA process, silver meshes with a line width down to 2 µm are assembled on both rigid and flexible substrates. The thickness of the silver meshes can be tuned by varying the withdraw speed and the assembly times. The assembled silver meshes exhibit excellent optoelectronic properties (sheet resistance of 1.79 Ω/□, optical transmittance of ≈92%, and a FoM value of 2465) as well as excellent mechanical stability. The applications of the assembled silver meshes in touch screen panels and thermal heaters are demonstrated, implying the potential of using the two‐step SEDA process for the fabrication of TCEs for optoelectronic applications. A two‐step surface energy‐directed assembly (SEDA) process is developed to efficiently fabricate high resolution (down to 2 µm) silver meshes on both rigid and flexible substrates. The thickness of the silver meshes can be tuned by varying the withdraw speed and the assembly times. The applications of the silver meshes in touch screen panels and thermal heaters are demonstrated.
AbstractList Transparent conductive electrodes (TCEs) are indispensable components of various optoelectronic devices such as displays, touch screen panels, solar cells, and smart windows. To date, the fabrication processes for metal mesh-based TCEs are either costly or having limited resolution and throughput. Here, a two-step surface energy-directed assembly (SEDA) process to efficiently fabricate high resolution silver meshes is introduced. The two-step SEDA process turns from assembly on a functionalized substrate with hydrophilic mesh patterns into assembly on a functionalized substrate with stripe patterns. During the SEDA process, a three-phase contact line pins on the hydrophilic pattern regions while recedes on the hydrophobic non-pattern regions, ensuring that the assembly process can be achieved with excellent selectivity. The necessity of using the two-step SEDA process rather than a one-step SEDA process is demonstrated by both experimental results and theoretical analysis. Utilizing the two-step SEDA process, silver meshes with a line width down to 2 µm are assembled on both rigid and flexible substrates. The thickness of the silver meshes can be tuned by varying the withdraw speed and the assembly times. The assembled silver meshes exhibit excellent optoelectronic properties (sheet resistance of 1.79 Ω/□, optical transmittance of ≈92%, and a FoM value of 2465) as well as excellent mechanical stability. The applications of the assembled silver meshes in touch screen panels and thermal heaters are demonstrated, implying the potential of using the two-step SEDA process for the fabrication of TCEs for optoelectronic applications.
Transparent conductive electrodes (TCEs) are indispensable components of various optoelectronic devices such as displays, touch screen panels, solar cells, and smart windows. To date, the fabrication processes for metal mesh‐based TCEs are either costly or having limited resolution and throughput. Here, a two‐step surface energy‐directed assembly (SEDA) process to efficiently fabricate high resolution silver meshes is introduced. The two‐step SEDA process turns from assembly on a functionalized substrate with hydrophilic mesh patterns into assembly on a functionalized substrate with stripe patterns. During the SEDA process, a three‐phase contact line pins on the hydrophilic pattern regions while recedes on the hydrophobic non‐pattern regions, ensuring that the assembly process can be achieved with excellent selectivity. The necessity of using the two‐step SEDA process rather than a one‐step SEDA process is demonstrated by both experimental results and theoretical analysis. Utilizing the two‐step SEDA process, silver meshes with a line width down to 2 µm are assembled on both rigid and flexible substrates. The thickness of the silver meshes can be tuned by varying the withdraw speed and the assembly times. The assembled silver meshes exhibit excellent optoelectronic properties (sheet resistance of 1.79 Ω/□, optical transmittance of ≈92%, and a FoM value of 2465) as well as excellent mechanical stability. The applications of the assembled silver meshes in touch screen panels and thermal heaters are demonstrated, implying the potential of using the two‐step SEDA process for the fabrication of TCEs for optoelectronic applications.
Abstract Transparent conductive electrodes (TCEs) are indispensable components of various optoelectronic devices such as displays, touch screen panels, solar cells, and smart windows. To date, the fabrication processes for metal mesh‐based TCEs are either costly or having limited resolution and throughput. Here, a two‐step surface energy‐directed assembly (SEDA) process to efficiently fabricate high resolution silver meshes is introduced. The two‐step SEDA process turns from assembly on a functionalized substrate with hydrophilic mesh patterns into assembly on a functionalized substrate with stripe patterns. During the SEDA process, a three‐phase contact line pins on the hydrophilic pattern regions while recedes on the hydrophobic non‐pattern regions, ensuring that the assembly process can be achieved with excellent selectivity. The necessity of using the two‐step SEDA process rather than a one‐step SEDA process is demonstrated by both experimental results and theoretical analysis. Utilizing the two‐step SEDA process, silver meshes with a line width down to 2 µm are assembled on both rigid and flexible substrates. The thickness of the silver meshes can be tuned by varying the withdraw speed and the assembly times. The assembled silver meshes exhibit excellent optoelectronic properties (sheet resistance of 1.79 Ω/□, optical transmittance of ≈92%, and a FoM value of 2465) as well as excellent mechanical stability. The applications of the assembled silver meshes in touch screen panels and thermal heaters are demonstrated, implying the potential of using the two‐step SEDA process for the fabrication of TCEs for optoelectronic applications.
Transparent conductive electrodes (TCEs) are indispensable components of various optoelectronic devices such as displays, touch screen panels, solar cells, and smart windows. To date, the fabrication processes for metal mesh-based TCEs are either costly or having limited resolution and throughput. Here, a two-step surface energy-directed assembly (SEDA) process to efficiently fabricate high resolution silver meshes is introduced. The two-step SEDA process turns from assembly on a functionalized substrate with hydrophilic mesh patterns into assembly on a functionalized substrate with stripe patterns. During the SEDA process, a three-phase contact line pins on the hydrophilic pattern regions while recedes on the hydrophobic non-pattern regions, ensuring that the assembly process can be achieved with excellent selectivity. The necessity of using the two-step SEDA process rather than a one-step SEDA process is demonstrated by both experimental results and theoretical analysis. Utilizing the two-step SEDA process, silver meshes with a line width down to 2 µm are assembled on both rigid and flexible substrates. The thickness of the silver meshes can be tuned by varying the withdraw speed and the assembly times. The assembled silver meshes exhibit excellent optoelectronic properties (sheet resistance of 1.79 Ω/□, optical transmittance of ≈92%, and a FoM value of 2465) as well as excellent mechanical stability. The applications of the assembled silver meshes in touch screen panels and thermal heaters are demonstrated, implying the potential of using the two-step SEDA process for the fabrication of TCEs for optoelectronic applications.Transparent conductive electrodes (TCEs) are indispensable components of various optoelectronic devices such as displays, touch screen panels, solar cells, and smart windows. To date, the fabrication processes for metal mesh-based TCEs are either costly or having limited resolution and throughput. Here, a two-step surface energy-directed assembly (SEDA) process to efficiently fabricate high resolution silver meshes is introduced. The two-step SEDA process turns from assembly on a functionalized substrate with hydrophilic mesh patterns into assembly on a functionalized substrate with stripe patterns. During the SEDA process, a three-phase contact line pins on the hydrophilic pattern regions while recedes on the hydrophobic non-pattern regions, ensuring that the assembly process can be achieved with excellent selectivity. The necessity of using the two-step SEDA process rather than a one-step SEDA process is demonstrated by both experimental results and theoretical analysis. Utilizing the two-step SEDA process, silver meshes with a line width down to 2 µm are assembled on both rigid and flexible substrates. The thickness of the silver meshes can be tuned by varying the withdraw speed and the assembly times. The assembled silver meshes exhibit excellent optoelectronic properties (sheet resistance of 1.79 Ω/□, optical transmittance of ≈92%, and a FoM value of 2465) as well as excellent mechanical stability. The applications of the assembled silver meshes in touch screen panels and thermal heaters are demonstrated, implying the potential of using the two-step SEDA process for the fabrication of TCEs for optoelectronic applications.
Transparent conductive electrodes (TCEs) are indispensable components of various optoelectronic devices such as displays, touch screen panels, solar cells, and smart windows. To date, the fabrication processes for metal mesh‐based TCEs are either costly or having limited resolution and throughput. Here, a two‐step surface energy‐directed assembly (SEDA) process to efficiently fabricate high resolution silver meshes is introduced. The two‐step SEDA process turns from assembly on a functionalized substrate with hydrophilic mesh patterns into assembly on a functionalized substrate with stripe patterns. During the SEDA process, a three‐phase contact line pins on the hydrophilic pattern regions while recedes on the hydrophobic non‐pattern regions, ensuring that the assembly process can be achieved with excellent selectivity. The necessity of using the two‐step SEDA process rather than a one‐step SEDA process is demonstrated by both experimental results and theoretical analysis. Utilizing the two‐step SEDA process, silver meshes with a line width down to 2 µm are assembled on both rigid and flexible substrates. The thickness of the silver meshes can be tuned by varying the withdraw speed and the assembly times. The assembled silver meshes exhibit excellent optoelectronic properties (sheet resistance of 1.79 Ω/□, optical transmittance of ≈92%, and a FoM value of 2465) as well as excellent mechanical stability. The applications of the assembled silver meshes in touch screen panels and thermal heaters are demonstrated, implying the potential of using the two‐step SEDA process for the fabrication of TCEs for optoelectronic applications. A two‐step surface energy‐directed assembly (SEDA) process is developed to efficiently fabricate high resolution (down to 2 µm) silver meshes on both rigid and flexible substrates. The thickness of the silver meshes can be tuned by varying the withdraw speed and the assembly times. The applications of the silver meshes in touch screen panels and thermal heaters are demonstrated.
Author Fan, Zebin
Lu, Xinchun
Busnaina, Ahmed A.
Zhao, Dewen
Wang, Guangji
Yuan, Siqing
Wang, Tongqing
Chai, Zhimin
Author_xml – sequence: 1
  givenname: Siqing
  surname: Yuan
  fullname: Yuan, Siqing
  organization: Tsinghua University
– sequence: 2
  givenname: Zebin
  surname: Fan
  fullname: Fan, Zebin
  organization: Tsinghua University
– sequence: 3
  givenname: Guangji
  surname: Wang
  fullname: Wang, Guangji
  organization: Tsinghua University
– sequence: 4
  givenname: Zhimin
  orcidid: 0000-0003-0414-1364
  surname: Chai
  fullname: Chai, Zhimin
  email: chaizhimin@mail.tsinghua.edu.cn
  organization: Tsinghua University
– sequence: 5
  givenname: Tongqing
  surname: Wang
  fullname: Wang, Tongqing
  organization: Tsinghua University
– sequence: 6
  givenname: Dewen
  surname: Zhao
  fullname: Zhao, Dewen
  organization: Tsinghua University
– sequence: 7
  givenname: Ahmed A.
  surname: Busnaina
  fullname: Busnaina, Ahmed A.
  organization: Northeastern University
– sequence: 8
  givenname: Xinchun
  surname: Lu
  fullname: Lu, Xinchun
  organization: Tsinghua University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37818769$$D View this record in MEDLINE/PubMed
BookMark eNqFks1uEzEUhUeoiJbSLUtkiQ2bBP9lxl5GbUIrFVGpKVvLY1-njpxxsCdAdjwC4hF5EpyfVqgSYmNb1nfP8fU9L6ujLnZQVa8JHhKM6Xttv-YhxZRhLiV-Vp1QIsWACc6P_jofV2c5LzDGZMQaTsSL6pg1goimlifVr6lukze697FD0aFpgO--DYB0Z9Es6S6vdIKuRx-h16Gs-R5NApg-RQsZ3WXfzdHtOjltAE06SPPN7x8_L3wqCFg0zhmWbdigmxQN5IxcTGgW1-Ye3ZoE0KEb3UHIO7tL0D2k_Kp67nTIcHbYT6u76WR2fjm4_vTh6nx8PTC84XTgbCOpE6RhUrtaSms4a_CIMFk61ZgRIcG0LSNYYic110I2kvO6bQgnpmbstLra69qoF2qV_FKnjYraq91FTHOlU-9NAFX0bO2ExYRQzkcgeBFhVgtrnaFOFq13e61Vil_WkHu19NlACKW7uM6Klt-umaB8a_v2CbqI69SVTgslRUMpE6RQbw7Uul2CfXzew-QKwPeASTHnBE4Z3-_G2CftgyJYbTOithlRjxkpZcMnZQ_K_yw4-HzzATb_odX44vNtPRpR9gdI6c2J
CitedBy_id crossref_primary_10_1002_aelm_202400510
crossref_primary_10_1016_j_cej_2025_161172
crossref_primary_10_1016_j_measurement_2025_116704
crossref_primary_10_1002_smll_202409458
crossref_primary_10_1007_s10854_024_12846_4
crossref_primary_10_1021_acsami_4c16375
crossref_primary_10_1021_acsnano_4c04936
crossref_primary_10_1039_D4TC00589A
crossref_primary_10_7498_aps_73_20240230
crossref_primary_10_3390_ma17143507
crossref_primary_10_1021_acsaelm_4c01893
Cites_doi 10.1039/C8TC04423F
10.1088/1361-6528/aafb94
10.1021/acs.chemrev.6b00179
10.1021/nl301045a
10.1021/acsnano.2c01514
10.1002/solr.202100830
10.1021/nn201696g
10.1038/nature25494
10.1038/39827
10.1039/C6NR01896C
10.1002/smll.202106006
10.1088/0957-4484/27/6/065202
10.1038/ncomms8647
10.1002/smll.201502988
10.1021/acsnano.7b00229
10.1021/acsami.0c18518
10.1021/acsnano.2c07910
10.1021/acsnano.7b01714
10.1002/adfm.201606641
10.1021/acsami.0c10386
10.1002/adom.202001298
10.1002/adma.202000747
10.1021/acsami.7b08578
10.1038/srep16838
10.1002/aenm.202002536
10.1038/srep11414
10.1002/adfm.201910225
10.1002/adfm.201503705
10.1021/acsnano.8b06176
10.1002/adma.201802803
10.1021/la00017a030
10.1002/anie.202003839
10.1039/CT9252701863
10.1002/aelm.201600529
10.1002/adfm.201806895
10.1039/C6TC05227D
10.1063/1.4952591
10.1002/admt.202000441
10.1021/acsami.5b02487
10.1002/pssa.201330463
10.1002/adma.201902479
10.1002/adma.201707526
10.1002/adem.201901275
10.1002/smll.201602581
10.1039/C4NR06984F
10.1021/acsnano.7b02474
10.1021/acsenergylett.1c01486
10.1002/adma.201503682
10.1002/smll.201802625
10.1038/srep34322
10.1002/adfm.201705955
10.1021/acsami.7b11779
10.1039/c2nr31508d
10.1002/aenm.201300474
10.1002/admi.201900898
10.1021/nn303201g
10.1002/adma.201704738
10.1002/admt.202101277
10.1038/nphoton.2012.282
10.1021/acsami.8b20143
10.1002/adma.200800750
10.1016/j.ces.2016.10.026
10.1002/adma.202007772
10.1002/smll.201600309
10.1002/adma.201300084
10.1021/nn400432z
10.1002/aenm.202202142
10.1002/aelm.202001121
ContentType Journal Article
Copyright 2023 The Authors. Advanced Science published by Wiley‐VCH GmbH
2023 The Authors. Advanced Science published by Wiley-VCH GmbH.
2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Authors. Advanced Science published by Wiley‐VCH GmbH
– notice: 2023 The Authors. Advanced Science published by Wiley-VCH GmbH.
– notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
NPM
3V.
7XB
88I
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
M2O
M2P
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
Q9U
7X8
DOA
DOI 10.1002/advs.202304990
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
Research Library
Science Database
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
DOAJ Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Research Library Prep
ProQuest Science Journals (Alumni Edition)
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
CrossRef

PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access (Activated by CARLI)
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2198-3844
EndPage n/a
ExternalDocumentID oai_doaj_org_article_1a0d6f8d0112445e847143da8ddfc2f9
37818769
10_1002_advs_202304990
ADVS6552
Genre article
Journal Article
GrantInformation_xml – fundername: Tsinghua University Initiative Scientific Research Program in China
  funderid: 523006011
– fundername: National Natural Science Foundation of China
  funderid: 52205596
– fundername: Start‐up Funding from Tsinghua University in China
  funderid: 533306002; 042006001
– fundername: State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University in China
  funderid: SKLT2022C15
– fundername: Start-up Funding from Tsinghua University in China
  grantid: 533306002
– fundername: Tsinghua University Initiative Scientific Research Program in China
  grantid: 523006011
– fundername: National Natural Science Foundation of China
  grantid: 52205596
– fundername: State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University in China
  grantid: SKLT2022C15
– fundername: Start-up Funding from Tsinghua University in China
  grantid: 042006001
GroupedDBID 0R~
1OC
24P
53G
5VS
88I
8G5
AAFWJ
AAMMB
AAZKR
ABDBF
ABUWG
ACCMX
ACGFS
ACUHS
ACXQS
ADBBV
ADKYN
ADMLS
ADZMN
AEFGJ
AFBPY
AFKRA
AFPKN
AGXDD
AIDQK
AIDYY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
AZQEC
BCNDV
BENPR
BPHCQ
BRXPI
CCPQU
DWQXO
EBS
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
HCIFZ
HYE
IAO
IGS
ITC
KQ8
M2O
M2P
O9-
OK1
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
ROL
RPM
WIN
AAHHS
AAYXX
ACCFJ
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
EJD
NPM
3V.
7XB
8FK
MBDVC
PKEHL
PQEST
PQUKI
Q9U
7X8
PUEGO
ID FETCH-LOGICAL-c4742-fd792f81739af699dc43705139001a03189ecbb31090f9a4a8979446b7141c633
IEDL.DBID BENPR
ISSN 2198-3844
IngestDate Wed Aug 27 01:26:11 EDT 2025
Fri Jul 11 12:37:43 EDT 2025
Sat Jul 26 00:20:33 EDT 2025
Thu Apr 03 06:54:10 EDT 2025
Tue Jul 01 03:59:58 EDT 2025
Thu Apr 24 23:06:05 EDT 2025
Wed Aug 20 07:27:07 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 34
Keywords flexible and transparent electrodes
wetting/dewetting
directed assembly
silver nanoparticles
surface energy
Language English
License Attribution
2023 The Authors. Advanced Science published by Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4742-fd792f81739af699dc43705139001a03189ecbb31090f9a4a8979446b7141c633
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0414-1364
OpenAccessLink https://www.proquest.com/docview/2898722381?pq-origsite=%requestingapplication%
PMID 37818769
PQID 2898722381
PQPubID 4365299
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_1a0d6f8d0112445e847143da8ddfc2f9
proquest_miscellaneous_2876638243
proquest_journals_2898722381
pubmed_primary_37818769
crossref_citationtrail_10_1002_advs_202304990
crossref_primary_10_1002_advs_202304990
wiley_primary_10_1002_advs_202304990_ADVS6552
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced science
PublicationTitleAlternate Adv Sci (Weinh)
PublicationYear 2023
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2017; 5
2013; 25
2017; 3
2019; 11
2016; 108
2020; 59
2020; 12
2020; 10
2013; 7
2012; 12
2017; 158
2017; 9
2014; 211
1997; 389
2020; 5
2014; 4
2021; 33
2019; 29
2018; 30
2016; 116
1925; 127
2008; 20
2021; 9
2019; 7
2021; 7
2021; 6
2018; 28
2015; 6
2015; 5
2019; 6
2019; 31
2019; 30
2017; 27
2020; 32
2011; 5
2015; 7
2016; 12
2021; 13
2016; 6
2020; 30
2022; 6
2017; 11
2022; 7
2018; 555
2022; 12
2020; 22
2012; 6
2018; 12
2016; 28
2016; 27
2012; 4
2016; 26
2022; 16
2016; 8
2022; 18
2018; 14
1994; 10
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_62_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 6
  year: 2022
  publication-title: Sol. RRL
– volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 27
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 18
  year: 2022
  publication-title: Small
– volume: 12
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 5
  start-page: 6472
  year: 2011
  publication-title: ACS Nano
– volume: 11
  start-page: 7950
  year: 2017
  publication-title: ACS Nano
– volume: 12
  start-page: 3138
  year: 2012
  publication-title: Nano Lett.
– volume: 14
  year: 2018
  publication-title: Small
– volume: 7
  year: 2021
  publication-title: Adv. Electron. Mater.
– volume: 389
  start-page: 827
  year: 1997
  publication-title: Nature
– volume: 12
  start-page: 6052
  year: 2016
  publication-title: Small
– volume: 11
  start-page: 9301
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 7
  start-page: 6567
  year: 2015
  publication-title: Nanoscale
– volume: 108
  year: 2016
  publication-title: Appl. Phys. Lett.
– volume: 7
  start-page: 5024
  year: 2013
  publication-title: ACS Nano
– volume: 4
  start-page: 6032
  year: 2012
  publication-title: Nanoscale
– volume: 6
  start-page: 3906
  year: 2021
  publication-title: ACS Energy Lett.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 30
  year: 2019
  publication-title: Nanotechnology
– volume: 4
  year: 2014
  publication-title: Adv. Energy Mater.
– volume: 25
  start-page: 3209
  year: 2013
  publication-title: Adv. Mater.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 6
  start-page: 809
  year: 2012
  publication-title: Nat. Photonics
– volume: 22
  year: 2020
  publication-title: Adv. Eng. Mater.
– volume: 12
  year: 2022
  publication-title: Adv. Energy Mater.
– volume: 7
  start-page: 1087
  year: 2019
  publication-title: J. Mater. Chem. C
– volume: 26
  start-page: 833
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 127
  start-page: 1863
  year: 1925
  publication-title: J. Chem. Society
– volume: 5
  start-page: 2800
  year: 2017
  publication-title: J. Mater. Chem. C
– volume: 7
  year: 2022
  publication-title: Adv. Mater. Technol.
– volume: 28
  start-page: 1420
  year: 2016
  publication-title: Adv. Mater.
– volume: 211
  start-page: 1801
  year: 2014
  publication-title: Physica Status Solidi
– volume: 16
  start-page: 9203
  year: 2022
  publication-title: ACS Nano
– volume: 11
  start-page: 4346
  year: 2017
  publication-title: ACS Nano
– volume: 16
  year: 2022
  publication-title: ACS Nano
– volume: 6
  year: 2019
  publication-title: Adv. Mater. Interfaces
– volume: 5
  year: 2020
  publication-title: Adv. Mater. Technol.
– volume: 5
  year: 2015
  publication-title: Sci. Rep.
– volume: 12
  start-page: 1400
  year: 2016
  publication-title: Small
– volume: 8
  year: 2016
  publication-title: Nanoscale
– volume: 59
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 12
  year: 2018
  publication-title: ACS Nano
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 27
  year: 2016
  publication-title: Nanotechnology
– volume: 12
  start-page: 3021
  year: 2016
  publication-title: Small
– volume: 9
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 20
  start-page: 4408
  year: 2008
  publication-title: Adv. Mater.
– volume: 6
  start-page: 9737
  year: 2012
  publication-title: ACS Nano
– volume: 116
  year: 2016
  publication-title: Chem. Rev.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 11
  start-page: 3506
  year: 2017
  publication-title: ACS Nano
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 3
  year: 2017
  publication-title: Adv. Electron. Mater.
– volume: 7
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 13
  start-page: 3493
  year: 2021
  publication-title: ACS Appl. Mater. Interfaces
– volume: 6
  year: 2016
  publication-title: Sci. Rep.
– volume: 10
  start-page: 1498
  year: 1994
  publication-title: Langmuir
– volume: 555
  start-page: 83
  year: 2018
  publication-title: Nature
– volume: 9
  year: 2021
  publication-title: Adv. Opt. Mater.
– volume: 6
  start-page: 7647
  year: 2015
  publication-title: Nat. Commun.
– volume: 158
  start-page: 340
  year: 2017
  publication-title: Chem. Eng. Sci.
– ident: e_1_2_8_29_1
  doi: 10.1039/C8TC04423F
– ident: e_1_2_8_55_1
  doi: 10.1088/1361-6528/aafb94
– ident: e_1_2_8_21_1
  doi: 10.1021/acs.chemrev.6b00179
– ident: e_1_2_8_33_1
  doi: 10.1021/nl301045a
– ident: e_1_2_8_3_1
  doi: 10.1021/acsnano.2c01514
– ident: e_1_2_8_10_1
  doi: 10.1002/solr.202100830
– ident: e_1_2_8_36_1
  doi: 10.1021/nn201696g
– ident: e_1_2_8_14_1
  doi: 10.1038/nature25494
– ident: e_1_2_8_66_1
  doi: 10.1038/39827
– ident: e_1_2_8_61_1
  doi: 10.1039/C6NR01896C
– ident: e_1_2_8_16_1
  doi: 10.1002/smll.202106006
– ident: e_1_2_8_45_1
  doi: 10.1088/0957-4484/27/6/065202
– ident: e_1_2_8_15_1
  doi: 10.1038/ncomms8647
– ident: e_1_2_8_23_1
  doi: 10.1002/smll.201502988
– ident: e_1_2_8_37_1
  doi: 10.1021/acsnano.7b00229
– ident: e_1_2_8_38_1
  doi: 10.1021/acsami.0c18518
– ident: e_1_2_8_57_1
  doi: 10.1021/acsnano.2c07910
– ident: e_1_2_8_8_1
  doi: 10.1021/acsnano.7b01714
– ident: e_1_2_8_26_1
  doi: 10.1002/adfm.201606641
– ident: e_1_2_8_2_1
  doi: 10.1021/acsami.0c10386
– ident: e_1_2_8_25_1
  doi: 10.1002/adom.202001298
– ident: e_1_2_8_59_1
  doi: 10.1002/adma.202000747
– ident: e_1_2_8_19_1
  doi: 10.1021/acsami.7b08578
– ident: e_1_2_8_32_1
  doi: 10.1038/srep16838
– ident: e_1_2_8_11_1
  doi: 10.1002/aenm.202002536
– ident: e_1_2_8_34_1
  doi: 10.1038/srep11414
– ident: e_1_2_8_68_1
  doi: 10.1002/adfm.201910225
– ident: e_1_2_8_49_1
  doi: 10.1002/adfm.201503705
– ident: e_1_2_8_58_1
  doi: 10.1021/acsnano.8b06176
– ident: e_1_2_8_4_1
  doi: 10.1002/adma.201802803
– ident: e_1_2_8_62_1
  doi: 10.1021/la00017a030
– ident: e_1_2_8_63_1
  doi: 10.1002/anie.202003839
– ident: e_1_2_8_64_1
  doi: 10.1039/CT9252701863
– ident: e_1_2_8_13_1
  doi: 10.1002/aelm.201600529
– ident: e_1_2_8_51_1
  doi: 10.1002/adfm.201806895
– ident: e_1_2_8_40_1
  doi: 10.1039/C6TC05227D
– ident: e_1_2_8_52_1
  doi: 10.1063/1.4952591
– ident: e_1_2_8_6_1
  doi: 10.1002/admt.202000441
– ident: e_1_2_8_47_1
  doi: 10.1021/acsami.5b02487
– ident: e_1_2_8_42_1
  doi: 10.1002/pssa.201330463
– ident: e_1_2_8_28_1
  doi: 10.1002/adma.201902479
– ident: e_1_2_8_44_1
  doi: 10.1002/adma.201707526
– ident: e_1_2_8_30_1
  doi: 10.1002/adem.201901275
– ident: e_1_2_8_27_1
  doi: 10.1002/smll.201602581
– ident: e_1_2_8_50_1
  doi: 10.1039/C4NR06984F
– ident: e_1_2_8_5_1
  doi: 10.1021/acsnano.7b02474
– ident: e_1_2_8_12_1
  doi: 10.1021/acsenergylett.1c01486
– ident: e_1_2_8_41_1
  doi: 10.1002/adma.201503682
– ident: e_1_2_8_22_1
  doi: 10.1002/smll.201802625
– ident: e_1_2_8_67_1
  doi: 10.1038/srep34322
– ident: e_1_2_8_18_1
  doi: 10.1002/adfm.201705955
– ident: e_1_2_8_56_1
  doi: 10.1021/acsami.7b11779
– ident: e_1_2_8_46_1
  doi: 10.1039/c2nr31508d
– ident: e_1_2_8_43_1
  doi: 10.1002/aenm.201300474
– ident: e_1_2_8_60_1
  doi: 10.1002/admi.201900898
– ident: e_1_2_8_20_1
  doi: 10.1021/nn303201g
– ident: e_1_2_8_39_1
  doi: 10.1002/adma.201704738
– ident: e_1_2_8_31_1
  doi: 10.1002/admt.202101277
– ident: e_1_2_8_17_1
  doi: 10.1038/nphoton.2012.282
– ident: e_1_2_8_7_1
  doi: 10.1021/acsami.8b20143
– ident: e_1_2_8_35_1
  doi: 10.1002/adma.200800750
– ident: e_1_2_8_65_1
  doi: 10.1016/j.ces.2016.10.026
– ident: e_1_2_8_48_1
  doi: 10.1002/adma.202007772
– ident: e_1_2_8_54_1
  doi: 10.1002/smll.201600309
– ident: e_1_2_8_1_1
  doi: 10.1002/adma.201300084
– ident: e_1_2_8_53_1
  doi: 10.1021/nn400432z
– ident: e_1_2_8_9_1
  doi: 10.1002/aenm.202202142
– ident: e_1_2_8_24_1
  doi: 10.1002/aelm.202001121
SSID ssj0001537418
Score 2.3683486
Snippet Transparent conductive electrodes (TCEs) are indispensable components of various optoelectronic devices such as displays, touch screen panels, solar cells, and...
Abstract Transparent conductive electrodes (TCEs) are indispensable components of various optoelectronic devices such as displays, touch screen panels, solar...
SourceID doaj
proquest
pubmed
crossref
wiley
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2304990
SubjectTerms Carbon
directed assembly
Electrons
Flexibility
flexible and transparent electrodes
Interactive computer systems
Manufacturing
Nanoparticles
Offset printing
Plating
Screen printing
Silver
silver nanoparticles
surface energy
wetting/dewetting
SummonAdditionalLinks – databaseName: DOAJ Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LatwwFBUhq2xK06St2zSoEGiyMBlbsmQtmzLDEEgoTALZGT3JYuopk5lCd_2E0k_sl_ReSWMm0JJNN17YQo-r-ziydI8IOeGt0A2rQwnOUZfciFBq6UPpIPY4axseAiYnX12L6S2_vGvutq76wjNhiR44Ce680iMnQutADyESNR69KWdOt84FW4eYugcxb2sxlfKDGdKybFgaR_W5dt-QnTtuK6ED3opCkaz_bwjzMWCNEWfynDzLUJF-TF3cJzu-f0H2szE-0NPMGH12QH5NtFnmn290EegEWS7N3FPdO5royzHna0WvPGBteD7c03G6_8ZBTfHYAJ2tl0FbT8cxG_D3j5_JG3pHcWP4i5l_pzmrgALQpTeLtb2nM4vnduhn3UOMjc1NwbkDpDwkt5PxzadpmS9bKC2H5XEZnFR1aCvJlA5CKWc5k2CxTIE0NZq-8tYYJBIdBaW5bhWYMhcGpqOygrGXZLdf9P41oRXEOMYaZ1kwHPkOGffGaOWqKoykVwUpN8LvbGYixwsx5l3iUK47nKxumKyCfBjKf00cHP8seYFzOZRC7uz4AjSqyxrVPaVRBTnaaEKXDRqaaFUra8Q3BXk_fAZTxP0VkPFijWUk4Le25qwgr5IGDT1hEpCRFDj2qFJPDKQDUDITTVO_-R8jekv2sOZ0CueI7K6Wa_8OsNTKHEez-QNHpRot
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LihQxFA0ybtyI47N1lAiCugjTlaQqyVKlm0YYGegZmF2Rp7Nou6QfwuzmE8RP9Eu8N5WusUERN7WoulRVHufek8c9IeSV1I2tBU8MnKNl0jWJWRUTCxB7gve1TAmTk08-NbNz-fGivvgti7_Xhxgm3BAZ2V8jwK1bH9-IhtrwDeW28zqRgUH7bcyvRfV8Lk9vZllqgfIseMIcjK6Z0FLulBvH_Hj_FXuRKQv4_4l17pPYHIWm98jdQh_pu769D8mtuLxPDgtA1_RNUZF--4D8mFq3KhNytEt0isqXbhGpXQbaS5pjHtiGnkTg33BdX9JJfyZOgDflrQR0vl0l6yOd5AzBn9ffew8ZA8XF4i9ucUVLpgEF8kvPuq2_pHOPe3noqYUaXufPzcDhA818SM6nk7MPM1YOYGBewpCZpaAMT7pSwtjUGBO8FApQLAzUrEV3YKJ3DsVFx8lYabUBeMvGqUpWvhHiETlYdsv4hNAK4p4QdfAiOYkaiEJG56wJVZXGKpoRYbvKb31RJ8dDMhZtr6vMW2ysdmisEXk92H_tdTn-avke23KwQj3tfKNbfW4LPFsoTWiSDuDtgO_UEWO2FMHqEJLnCX7vaNcT2gJy-IQ2WnHkPCPycngM8MQ1F6jjbos2Cjid5lKMyOO-Bw1_IhSwJdVg2XOX-kdBWiAq86au-dP_tH9G7uDNfhPOETnYrLbxOVCpjXuR0fILq08WJw
  priority: 102
  providerName: Wiley-Blackwell
Title Fabrication of Flexible and Transparent Metal Mesh Electrodes Using Surface Energy‐Directed Assembly Process for Touch Screen Panels and Heaters
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202304990
https://www.ncbi.nlm.nih.gov/pubmed/37818769
https://www.proquest.com/docview/2898722381
https://www.proquest.com/docview/2876638243
https://doaj.org/article/1a0d6f8d0112445e847143da8ddfc2f9
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LbxMxELZoc-GCKM9AiYyEBBysZtfe9fqEWkgUIVJFpJV6W_lJD2G35IHEv-AnM-N1FpB4XHJIvFm_5pvPY_sbQl6IqtQFzwMDcNRMmDIwLX1gDnyPs7YQIeDl5Pl5ObsU76-KqxRw26RjlXtMjEDtWosx8hNYGFQyRwfz5uYLw6xRuLuaUmgckAFAcAWLr8HZ5Hzx8WeUpeAoz7JXaxznJ9p9RZXuuL2EQPyLN4qi_X9imr8T1-h5pnfJnUQZ6Wk3xkfklm_ukaNklBv6KilHv75Pvk-1WacgHG0DnaLapVl5qhtHOxlzvPu1pXMPnBs-N9d00uXBcfBP8fgAXe7WQVtPJ_FWIOsw0TuK28OfzeobTXcLKNBdetHu7DVdWjy9Qxe6AU8bXzYDiAdi-YBcTicXb2cspVxgVsAimQUnVR6qTHKlQ6mUs4JLsFuuoC81AoDy1hiUEx0HpYWuFBi0KI3MRGZLzh-Sw6Zt_GNCM_B0nBfO8mAEqh5y4Y3RymVZGEuvhoTtu762SY8c02Ks6k5JOa9xqOp-qIbkZV_-plPi-GvJMxzJvhQqaMcv2vWnOhlkDa1xZagc4BswnMKjlxbc6cq5YPMA1Tvez4M6mTW8op-EQ_K8_xkMEndZoI_bHZaRwOKqXPAhedTNn74mXAI_kiW2PU6o_zSkBmqyLIsif_Lvyjwlt_GZ7pTNMTncrnf-GXClrRmRg1wsRmRw-m7-YTlK5jGKkYcfBGAUqw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5V6QEuiPIMFFgkEHCwGu-uvfYBIQqJUtpEFUml3sw-6SHYJQ9Q_wW_hN_IjL02IPE49ZJDso53PeNvvtnHN4Q8EVmqEs58BOCoIqFTHynpfGQh9lhjEuE9Hk6eTNPxiXh3mpxuke_tWRjcVtliYg3UtjI4R74HiUEmGQaYV-efI6wahaurbQmNxi0O3cVXSNlWLw_egn2fMjYazt-Mo1BVIDIC8sDIW5kzn8WS58qneW6N4BJcE5L_QazQx3NntEbFzIHPlVBZDj4rUi1jEZsUJ0AB8rcFh1SmR7b3h9Pj9z9ndRKOcjCtOuSA7Sn7BVXB6-UsBP5fol9dJOBPzPZ3olxHutF1ci1QVPq68akdsuXKG2QngMCKPg9K1S9ukm8jpZdh0o9Wno5QXVMvHFWlpY1sOp41W9OJA44Pn6szOmzq7lj4p3q7Ap1tll4ZR4f1KcSowWBnKS5Hf9KLCxrOMlCg13RebcwZnRncLUSPVQmRvb7ZGEIKENlb5ORSjHGb9MqqdHcJjSGycp5Yw70WqLLIhdNa5TaO_UC6vE-i9tEXJuifYxmORdEoN7MCTVV0puqTZ13780b5468t99GSXStU7K6_qJYfiwAABYzGpj6zgKfAqBKHrEBwqzJrvWEeurfb-kERYARu0Tl9nzzufgYAwFUdeMbVBttIYI0ZE7xP7jT-0_WES-BjMsWx1w71n4EUQIVmaZKwe__uzCNyZTyfHBVHB9PD--QqXt_s8NklvfVy4x4AT1vrh-HloOTDZb-PPwBX10rs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtQwFLWqqYTYIMpzoICRQMAimontxMkCIUpnNKV0NGJaqbvgJ10MSZkHqH_B9_B13Js4ASQeq25mkXESO74-9_hxzyXkichSlXDmIwBHFQmd-khJ5yMLvscakwjvMTj5aJpOTsTb0-R0i3xvY2HwWGWLiTVQ28rgGvkAJgaZZOhgBj4ci5jtj1-df44wgxTutLbpNBoTOXQXX2H6tnp5sA99_ZSx8ej4zSQKGQYiI2BOGHkrc-azWPJc-TTPrRFcgpnyHNBbob3nzmiN6plDnyuhshzsV6RaxiI2KS6GAvxvS5gVDXtke280nb3_ucKTcJSGaZUih2yg7BdUCK-3ttAJ_OIJ64QBf2K5v5Pm2uuNr5Nrga7S14197ZAtV94gOwEQVvR5UK1-cZN8Gyu9DAuAtPJ0jEqbeuGoKi1tJNQx7mxNjxzwffhdndFRk4PHwpPqowt0vll6ZRwd1RGJUYPHzlLcmv6kFxc0xDVQoNr0uNqYMzo3eHKIzlQJXr5-2QTcC5DaW-TkUjrjNumVVenuEhqDl-U8sYZ7LVBxkQuntcptHPuhdHmfRO2nL0zQQseUHIuiUXFmBXZV0XVVnzzryp83KiB_LbmHPdmVQvXu-kK1_FgEMCigNTb1mQVsBXaVOGQIgluVWesN81C93dYOigAp8IpuAPTJ4-5vAAPc4YFvXG2wjAQGmTHB--ROYz9dTbgEbiZTbHttUP9pSAG0aJ4mCbv378o8IldgHBbvDqaH98lVvL057LNLeuvlxj0AyrbWD8PYoOTDZQ_HHwaOTyE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fabrication+of+Flexible+and+Transparent+Metal+Mesh+Electrodes+Using+Surface+Energy-Directed+Assembly+Process+for+Touch+Screen+Panels+and+Heaters&rft.jtitle=Advanced+science&rft.au=Yuan%2C+Siqing&rft.au=Fan%2C+Zebin&rft.au=Wang%2C+Guangji&rft.au=Chai%2C+Zhimin&rft.date=2023-12-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=2198-3844&rft.volume=10&rft.issue=34&rft_id=info:doi/10.1002%2Fadvs.202304990&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon