Fabrication of Flexible and Transparent Metal Mesh Electrodes Using Surface Energy‐Directed Assembly Process for Touch Screen Panels and Heaters
Transparent conductive electrodes (TCEs) are indispensable components of various optoelectronic devices such as displays, touch screen panels, solar cells, and smart windows. To date, the fabrication processes for metal mesh‐based TCEs are either costly or having limited resolution and throughput. H...
Saved in:
Published in | Advanced science Vol. 10; no. 34; pp. e2304990 - n/a |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
John Wiley & Sons, Inc
01.12.2023
Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Transparent conductive electrodes (TCEs) are indispensable components of various optoelectronic devices such as displays, touch screen panels, solar cells, and smart windows. To date, the fabrication processes for metal mesh‐based TCEs are either costly or having limited resolution and throughput. Here, a two‐step surface energy‐directed assembly (SEDA) process to efficiently fabricate high resolution silver meshes is introduced. The two‐step SEDA process turns from assembly on a functionalized substrate with hydrophilic mesh patterns into assembly on a functionalized substrate with stripe patterns. During the SEDA process, a three‐phase contact line pins on the hydrophilic pattern regions while recedes on the hydrophobic non‐pattern regions, ensuring that the assembly process can be achieved with excellent selectivity. The necessity of using the two‐step SEDA process rather than a one‐step SEDA process is demonstrated by both experimental results and theoretical analysis. Utilizing the two‐step SEDA process, silver meshes with a line width down to 2 µm are assembled on both rigid and flexible substrates. The thickness of the silver meshes can be tuned by varying the withdraw speed and the assembly times. The assembled silver meshes exhibit excellent optoelectronic properties (sheet resistance of 1.79 Ω/□, optical transmittance of ≈92%, and a FoM value of 2465) as well as excellent mechanical stability. The applications of the assembled silver meshes in touch screen panels and thermal heaters are demonstrated, implying the potential of using the two‐step SEDA process for the fabrication of TCEs for optoelectronic applications.
A two‐step surface energy‐directed assembly (SEDA) process is developed to efficiently fabricate high resolution (down to 2 µm) silver meshes on both rigid and flexible substrates. The thickness of the silver meshes can be tuned by varying the withdraw speed and the assembly times. The applications of the silver meshes in touch screen panels and thermal heaters are demonstrated. |
---|---|
AbstractList | Transparent conductive electrodes (TCEs) are indispensable components of various optoelectronic devices such as displays, touch screen panels, solar cells, and smart windows. To date, the fabrication processes for metal mesh-based TCEs are either costly or having limited resolution and throughput. Here, a two-step surface energy-directed assembly (SEDA) process to efficiently fabricate high resolution silver meshes is introduced. The two-step SEDA process turns from assembly on a functionalized substrate with hydrophilic mesh patterns into assembly on a functionalized substrate with stripe patterns. During the SEDA process, a three-phase contact line pins on the hydrophilic pattern regions while recedes on the hydrophobic non-pattern regions, ensuring that the assembly process can be achieved with excellent selectivity. The necessity of using the two-step SEDA process rather than a one-step SEDA process is demonstrated by both experimental results and theoretical analysis. Utilizing the two-step SEDA process, silver meshes with a line width down to 2 µm are assembled on both rigid and flexible substrates. The thickness of the silver meshes can be tuned by varying the withdraw speed and the assembly times. The assembled silver meshes exhibit excellent optoelectronic properties (sheet resistance of 1.79 Ω/□, optical transmittance of ≈92%, and a FoM value of 2465) as well as excellent mechanical stability. The applications of the assembled silver meshes in touch screen panels and thermal heaters are demonstrated, implying the potential of using the two-step SEDA process for the fabrication of TCEs for optoelectronic applications. Transparent conductive electrodes (TCEs) are indispensable components of various optoelectronic devices such as displays, touch screen panels, solar cells, and smart windows. To date, the fabrication processes for metal mesh‐based TCEs are either costly or having limited resolution and throughput. Here, a two‐step surface energy‐directed assembly (SEDA) process to efficiently fabricate high resolution silver meshes is introduced. The two‐step SEDA process turns from assembly on a functionalized substrate with hydrophilic mesh patterns into assembly on a functionalized substrate with stripe patterns. During the SEDA process, a three‐phase contact line pins on the hydrophilic pattern regions while recedes on the hydrophobic non‐pattern regions, ensuring that the assembly process can be achieved with excellent selectivity. The necessity of using the two‐step SEDA process rather than a one‐step SEDA process is demonstrated by both experimental results and theoretical analysis. Utilizing the two‐step SEDA process, silver meshes with a line width down to 2 µm are assembled on both rigid and flexible substrates. The thickness of the silver meshes can be tuned by varying the withdraw speed and the assembly times. The assembled silver meshes exhibit excellent optoelectronic properties (sheet resistance of 1.79 Ω/□, optical transmittance of ≈92%, and a FoM value of 2465) as well as excellent mechanical stability. The applications of the assembled silver meshes in touch screen panels and thermal heaters are demonstrated, implying the potential of using the two‐step SEDA process for the fabrication of TCEs for optoelectronic applications. Abstract Transparent conductive electrodes (TCEs) are indispensable components of various optoelectronic devices such as displays, touch screen panels, solar cells, and smart windows. To date, the fabrication processes for metal mesh‐based TCEs are either costly or having limited resolution and throughput. Here, a two‐step surface energy‐directed assembly (SEDA) process to efficiently fabricate high resolution silver meshes is introduced. The two‐step SEDA process turns from assembly on a functionalized substrate with hydrophilic mesh patterns into assembly on a functionalized substrate with stripe patterns. During the SEDA process, a three‐phase contact line pins on the hydrophilic pattern regions while recedes on the hydrophobic non‐pattern regions, ensuring that the assembly process can be achieved with excellent selectivity. The necessity of using the two‐step SEDA process rather than a one‐step SEDA process is demonstrated by both experimental results and theoretical analysis. Utilizing the two‐step SEDA process, silver meshes with a line width down to 2 µm are assembled on both rigid and flexible substrates. The thickness of the silver meshes can be tuned by varying the withdraw speed and the assembly times. The assembled silver meshes exhibit excellent optoelectronic properties (sheet resistance of 1.79 Ω/□, optical transmittance of ≈92%, and a FoM value of 2465) as well as excellent mechanical stability. The applications of the assembled silver meshes in touch screen panels and thermal heaters are demonstrated, implying the potential of using the two‐step SEDA process for the fabrication of TCEs for optoelectronic applications. Transparent conductive electrodes (TCEs) are indispensable components of various optoelectronic devices such as displays, touch screen panels, solar cells, and smart windows. To date, the fabrication processes for metal mesh-based TCEs are either costly or having limited resolution and throughput. Here, a two-step surface energy-directed assembly (SEDA) process to efficiently fabricate high resolution silver meshes is introduced. The two-step SEDA process turns from assembly on a functionalized substrate with hydrophilic mesh patterns into assembly on a functionalized substrate with stripe patterns. During the SEDA process, a three-phase contact line pins on the hydrophilic pattern regions while recedes on the hydrophobic non-pattern regions, ensuring that the assembly process can be achieved with excellent selectivity. The necessity of using the two-step SEDA process rather than a one-step SEDA process is demonstrated by both experimental results and theoretical analysis. Utilizing the two-step SEDA process, silver meshes with a line width down to 2 µm are assembled on both rigid and flexible substrates. The thickness of the silver meshes can be tuned by varying the withdraw speed and the assembly times. The assembled silver meshes exhibit excellent optoelectronic properties (sheet resistance of 1.79 Ω/□, optical transmittance of ≈92%, and a FoM value of 2465) as well as excellent mechanical stability. The applications of the assembled silver meshes in touch screen panels and thermal heaters are demonstrated, implying the potential of using the two-step SEDA process for the fabrication of TCEs for optoelectronic applications.Transparent conductive electrodes (TCEs) are indispensable components of various optoelectronic devices such as displays, touch screen panels, solar cells, and smart windows. To date, the fabrication processes for metal mesh-based TCEs are either costly or having limited resolution and throughput. Here, a two-step surface energy-directed assembly (SEDA) process to efficiently fabricate high resolution silver meshes is introduced. The two-step SEDA process turns from assembly on a functionalized substrate with hydrophilic mesh patterns into assembly on a functionalized substrate with stripe patterns. During the SEDA process, a three-phase contact line pins on the hydrophilic pattern regions while recedes on the hydrophobic non-pattern regions, ensuring that the assembly process can be achieved with excellent selectivity. The necessity of using the two-step SEDA process rather than a one-step SEDA process is demonstrated by both experimental results and theoretical analysis. Utilizing the two-step SEDA process, silver meshes with a line width down to 2 µm are assembled on both rigid and flexible substrates. The thickness of the silver meshes can be tuned by varying the withdraw speed and the assembly times. The assembled silver meshes exhibit excellent optoelectronic properties (sheet resistance of 1.79 Ω/□, optical transmittance of ≈92%, and a FoM value of 2465) as well as excellent mechanical stability. The applications of the assembled silver meshes in touch screen panels and thermal heaters are demonstrated, implying the potential of using the two-step SEDA process for the fabrication of TCEs for optoelectronic applications. Transparent conductive electrodes (TCEs) are indispensable components of various optoelectronic devices such as displays, touch screen panels, solar cells, and smart windows. To date, the fabrication processes for metal mesh‐based TCEs are either costly or having limited resolution and throughput. Here, a two‐step surface energy‐directed assembly (SEDA) process to efficiently fabricate high resolution silver meshes is introduced. The two‐step SEDA process turns from assembly on a functionalized substrate with hydrophilic mesh patterns into assembly on a functionalized substrate with stripe patterns. During the SEDA process, a three‐phase contact line pins on the hydrophilic pattern regions while recedes on the hydrophobic non‐pattern regions, ensuring that the assembly process can be achieved with excellent selectivity. The necessity of using the two‐step SEDA process rather than a one‐step SEDA process is demonstrated by both experimental results and theoretical analysis. Utilizing the two‐step SEDA process, silver meshes with a line width down to 2 µm are assembled on both rigid and flexible substrates. The thickness of the silver meshes can be tuned by varying the withdraw speed and the assembly times. The assembled silver meshes exhibit excellent optoelectronic properties (sheet resistance of 1.79 Ω/□, optical transmittance of ≈92%, and a FoM value of 2465) as well as excellent mechanical stability. The applications of the assembled silver meshes in touch screen panels and thermal heaters are demonstrated, implying the potential of using the two‐step SEDA process for the fabrication of TCEs for optoelectronic applications. A two‐step surface energy‐directed assembly (SEDA) process is developed to efficiently fabricate high resolution (down to 2 µm) silver meshes on both rigid and flexible substrates. The thickness of the silver meshes can be tuned by varying the withdraw speed and the assembly times. The applications of the silver meshes in touch screen panels and thermal heaters are demonstrated. |
Author | Fan, Zebin Lu, Xinchun Busnaina, Ahmed A. Zhao, Dewen Wang, Guangji Yuan, Siqing Wang, Tongqing Chai, Zhimin |
Author_xml | – sequence: 1 givenname: Siqing surname: Yuan fullname: Yuan, Siqing organization: Tsinghua University – sequence: 2 givenname: Zebin surname: Fan fullname: Fan, Zebin organization: Tsinghua University – sequence: 3 givenname: Guangji surname: Wang fullname: Wang, Guangji organization: Tsinghua University – sequence: 4 givenname: Zhimin orcidid: 0000-0003-0414-1364 surname: Chai fullname: Chai, Zhimin email: chaizhimin@mail.tsinghua.edu.cn organization: Tsinghua University – sequence: 5 givenname: Tongqing surname: Wang fullname: Wang, Tongqing organization: Tsinghua University – sequence: 6 givenname: Dewen surname: Zhao fullname: Zhao, Dewen organization: Tsinghua University – sequence: 7 givenname: Ahmed A. surname: Busnaina fullname: Busnaina, Ahmed A. organization: Northeastern University – sequence: 8 givenname: Xinchun surname: Lu fullname: Lu, Xinchun organization: Tsinghua University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37818769$$D View this record in MEDLINE/PubMed |
BookMark | eNqFks1uEzEUhUeoiJbSLUtkiQ2bBP9lxl5GbUIrFVGpKVvLY1-njpxxsCdAdjwC4hF5EpyfVqgSYmNb1nfP8fU9L6ujLnZQVa8JHhKM6Xttv-YhxZRhLiV-Vp1QIsWACc6P_jofV2c5LzDGZMQaTsSL6pg1goimlifVr6lukze697FD0aFpgO--DYB0Z9Es6S6vdIKuRx-h16Gs-R5NApg-RQsZ3WXfzdHtOjltAE06SPPN7x8_L3wqCFg0zhmWbdigmxQN5IxcTGgW1-Ye3ZoE0KEb3UHIO7tL0D2k_Kp67nTIcHbYT6u76WR2fjm4_vTh6nx8PTC84XTgbCOpE6RhUrtaSms4a_CIMFk61ZgRIcG0LSNYYic110I2kvO6bQgnpmbstLra69qoF2qV_FKnjYraq91FTHOlU-9NAFX0bO2ExYRQzkcgeBFhVgtrnaFOFq13e61Vil_WkHu19NlACKW7uM6Klt-umaB8a_v2CbqI69SVTgslRUMpE6RQbw7Uul2CfXzew-QKwPeASTHnBE4Z3-_G2CftgyJYbTOithlRjxkpZcMnZQ_K_yw4-HzzATb_odX44vNtPRpR9gdI6c2J |
CitedBy_id | crossref_primary_10_1002_aelm_202400510 crossref_primary_10_1016_j_cej_2025_161172 crossref_primary_10_1016_j_measurement_2025_116704 crossref_primary_10_1002_smll_202409458 crossref_primary_10_1007_s10854_024_12846_4 crossref_primary_10_1021_acsami_4c16375 crossref_primary_10_1021_acsnano_4c04936 crossref_primary_10_1039_D4TC00589A crossref_primary_10_7498_aps_73_20240230 crossref_primary_10_3390_ma17143507 crossref_primary_10_1021_acsaelm_4c01893 |
Cites_doi | 10.1039/C8TC04423F 10.1088/1361-6528/aafb94 10.1021/acs.chemrev.6b00179 10.1021/nl301045a 10.1021/acsnano.2c01514 10.1002/solr.202100830 10.1021/nn201696g 10.1038/nature25494 10.1038/39827 10.1039/C6NR01896C 10.1002/smll.202106006 10.1088/0957-4484/27/6/065202 10.1038/ncomms8647 10.1002/smll.201502988 10.1021/acsnano.7b00229 10.1021/acsami.0c18518 10.1021/acsnano.2c07910 10.1021/acsnano.7b01714 10.1002/adfm.201606641 10.1021/acsami.0c10386 10.1002/adom.202001298 10.1002/adma.202000747 10.1021/acsami.7b08578 10.1038/srep16838 10.1002/aenm.202002536 10.1038/srep11414 10.1002/adfm.201910225 10.1002/adfm.201503705 10.1021/acsnano.8b06176 10.1002/adma.201802803 10.1021/la00017a030 10.1002/anie.202003839 10.1039/CT9252701863 10.1002/aelm.201600529 10.1002/adfm.201806895 10.1039/C6TC05227D 10.1063/1.4952591 10.1002/admt.202000441 10.1021/acsami.5b02487 10.1002/pssa.201330463 10.1002/adma.201902479 10.1002/adma.201707526 10.1002/adem.201901275 10.1002/smll.201602581 10.1039/C4NR06984F 10.1021/acsnano.7b02474 10.1021/acsenergylett.1c01486 10.1002/adma.201503682 10.1002/smll.201802625 10.1038/srep34322 10.1002/adfm.201705955 10.1021/acsami.7b11779 10.1039/c2nr31508d 10.1002/aenm.201300474 10.1002/admi.201900898 10.1021/nn303201g 10.1002/adma.201704738 10.1002/admt.202101277 10.1038/nphoton.2012.282 10.1021/acsami.8b20143 10.1002/adma.200800750 10.1016/j.ces.2016.10.026 10.1002/adma.202007772 10.1002/smll.201600309 10.1002/adma.201300084 10.1021/nn400432z 10.1002/aenm.202202142 10.1002/aelm.202001121 |
ContentType | Journal Article |
Copyright | 2023 The Authors. Advanced Science published by Wiley‐VCH GmbH 2023 The Authors. Advanced Science published by Wiley-VCH GmbH. 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023 The Authors. Advanced Science published by Wiley‐VCH GmbH – notice: 2023 The Authors. Advanced Science published by Wiley-VCH GmbH. – notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION NPM 3V. 7XB 88I 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO GNUQQ GUQSH HCIFZ M2O M2P MBDVC PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI Q9U 7X8 DOA |
DOI | 10.1002/advs.202304990 |
DatabaseName | Wiley Online Library Open Access CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea ProQuest Central Student ProQuest Research Library SciTech Premium Collection Research Library Science Database Research Library (Corporate) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic DOAJ Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Research Library Prep ProQuest Science Journals (Alumni Edition) ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Research Library ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access (Activated by CARLI) url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2198-3844 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_1a0d6f8d0112445e847143da8ddfc2f9 37818769 10_1002_advs_202304990 ADVS6552 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Tsinghua University Initiative Scientific Research Program in China funderid: 523006011 – fundername: National Natural Science Foundation of China funderid: 52205596 – fundername: Start‐up Funding from Tsinghua University in China funderid: 533306002; 042006001 – fundername: State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University in China funderid: SKLT2022C15 – fundername: Start-up Funding from Tsinghua University in China grantid: 533306002 – fundername: Tsinghua University Initiative Scientific Research Program in China grantid: 523006011 – fundername: National Natural Science Foundation of China grantid: 52205596 – fundername: State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University in China grantid: SKLT2022C15 – fundername: Start-up Funding from Tsinghua University in China grantid: 042006001 |
GroupedDBID | 0R~ 1OC 24P 53G 5VS 88I 8G5 AAFWJ AAMMB AAZKR ABDBF ABUWG ACCMX ACGFS ACUHS ACXQS ADBBV ADKYN ADMLS ADZMN AEFGJ AFBPY AFKRA AFPKN AGXDD AIDQK AIDYY ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU AZQEC BCNDV BENPR BPHCQ BRXPI CCPQU DWQXO EBS GNUQQ GODZA GROUPED_DOAJ GUQSH HCIFZ HYE IAO IGS ITC KQ8 M2O M2P O9- OK1 PHGZM PHGZT PIMPY PQQKQ PROAC ROL RPM WIN AAHHS AAYXX ACCFJ ADZOD AEEZP AEQDE AIWBW AJBDE CITATION EJD NPM 3V. 7XB 8FK MBDVC PKEHL PQEST PQUKI Q9U 7X8 PUEGO |
ID | FETCH-LOGICAL-c4742-fd792f81739af699dc43705139001a03189ecbb31090f9a4a8979446b7141c633 |
IEDL.DBID | BENPR |
ISSN | 2198-3844 |
IngestDate | Wed Aug 27 01:26:11 EDT 2025 Fri Jul 11 12:37:43 EDT 2025 Sat Jul 26 00:20:33 EDT 2025 Thu Apr 03 06:54:10 EDT 2025 Tue Jul 01 03:59:58 EDT 2025 Thu Apr 24 23:06:05 EDT 2025 Wed Aug 20 07:27:07 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 34 |
Keywords | flexible and transparent electrodes wetting/dewetting directed assembly silver nanoparticles surface energy |
Language | English |
License | Attribution 2023 The Authors. Advanced Science published by Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4742-fd792f81739af699dc43705139001a03189ecbb31090f9a4a8979446b7141c633 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-0414-1364 |
OpenAccessLink | https://www.proquest.com/docview/2898722381?pq-origsite=%requestingapplication% |
PMID | 37818769 |
PQID | 2898722381 |
PQPubID | 4365299 |
PageCount | 15 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1a0d6f8d0112445e847143da8ddfc2f9 proquest_miscellaneous_2876638243 proquest_journals_2898722381 pubmed_primary_37818769 crossref_citationtrail_10_1002_advs_202304990 crossref_primary_10_1002_advs_202304990 wiley_primary_10_1002_advs_202304990_ADVS6552 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-12-01 |
PublicationDateYYYYMMDD | 2023-12-01 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced science |
PublicationTitleAlternate | Adv Sci (Weinh) |
PublicationYear | 2023 |
Publisher | John Wiley & Sons, Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
References | 2017; 5 2013; 25 2017; 3 2019; 11 2016; 108 2020; 59 2020; 12 2020; 10 2013; 7 2012; 12 2017; 158 2017; 9 2014; 211 1997; 389 2020; 5 2014; 4 2021; 33 2019; 29 2018; 30 2016; 116 1925; 127 2008; 20 2021; 9 2019; 7 2021; 7 2021; 6 2018; 28 2015; 6 2015; 5 2019; 6 2019; 31 2019; 30 2017; 27 2020; 32 2011; 5 2015; 7 2016; 12 2021; 13 2016; 6 2020; 30 2022; 6 2017; 11 2022; 7 2018; 555 2022; 12 2020; 22 2012; 6 2018; 12 2016; 28 2016; 27 2012; 4 2016; 26 2022; 16 2016; 8 2022; 18 2018; 14 1994; 10 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_62_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_67_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_65_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – volume: 6 year: 2022 publication-title: Sol. RRL – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 27 year: 2017 publication-title: Adv. Funct. Mater. – volume: 18 year: 2022 publication-title: Small – volume: 12 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 5 start-page: 6472 year: 2011 publication-title: ACS Nano – volume: 11 start-page: 7950 year: 2017 publication-title: ACS Nano – volume: 12 start-page: 3138 year: 2012 publication-title: Nano Lett. – volume: 14 year: 2018 publication-title: Small – volume: 7 year: 2021 publication-title: Adv. Electron. Mater. – volume: 389 start-page: 827 year: 1997 publication-title: Nature – volume: 12 start-page: 6052 year: 2016 publication-title: Small – volume: 11 start-page: 9301 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 7 start-page: 6567 year: 2015 publication-title: Nanoscale – volume: 108 year: 2016 publication-title: Appl. Phys. Lett. – volume: 7 start-page: 5024 year: 2013 publication-title: ACS Nano – volume: 4 start-page: 6032 year: 2012 publication-title: Nanoscale – volume: 6 start-page: 3906 year: 2021 publication-title: ACS Energy Lett. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 30 year: 2019 publication-title: Nanotechnology – volume: 4 year: 2014 publication-title: Adv. Energy Mater. – volume: 25 start-page: 3209 year: 2013 publication-title: Adv. Mater. – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 6 start-page: 809 year: 2012 publication-title: Nat. Photonics – volume: 22 year: 2020 publication-title: Adv. Eng. Mater. – volume: 12 year: 2022 publication-title: Adv. Energy Mater. – volume: 7 start-page: 1087 year: 2019 publication-title: J. Mater. Chem. C – volume: 26 start-page: 833 year: 2016 publication-title: Adv. Funct. Mater. – volume: 127 start-page: 1863 year: 1925 publication-title: J. Chem. Society – volume: 5 start-page: 2800 year: 2017 publication-title: J. Mater. Chem. C – volume: 7 year: 2022 publication-title: Adv. Mater. Technol. – volume: 28 start-page: 1420 year: 2016 publication-title: Adv. Mater. – volume: 211 start-page: 1801 year: 2014 publication-title: Physica Status Solidi – volume: 16 start-page: 9203 year: 2022 publication-title: ACS Nano – volume: 11 start-page: 4346 year: 2017 publication-title: ACS Nano – volume: 16 year: 2022 publication-title: ACS Nano – volume: 6 year: 2019 publication-title: Adv. Mater. Interfaces – volume: 5 year: 2020 publication-title: Adv. Mater. Technol. – volume: 5 year: 2015 publication-title: Sci. Rep. – volume: 12 start-page: 1400 year: 2016 publication-title: Small – volume: 8 year: 2016 publication-title: Nanoscale – volume: 59 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 12 year: 2018 publication-title: ACS Nano – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 27 year: 2016 publication-title: Nanotechnology – volume: 12 start-page: 3021 year: 2016 publication-title: Small – volume: 9 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 20 start-page: 4408 year: 2008 publication-title: Adv. Mater. – volume: 6 start-page: 9737 year: 2012 publication-title: ACS Nano – volume: 116 year: 2016 publication-title: Chem. Rev. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 11 start-page: 3506 year: 2017 publication-title: ACS Nano – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 3 year: 2017 publication-title: Adv. Electron. Mater. – volume: 7 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 13 start-page: 3493 year: 2021 publication-title: ACS Appl. Mater. Interfaces – volume: 6 year: 2016 publication-title: Sci. Rep. – volume: 10 start-page: 1498 year: 1994 publication-title: Langmuir – volume: 555 start-page: 83 year: 2018 publication-title: Nature – volume: 9 year: 2021 publication-title: Adv. Opt. Mater. – volume: 6 start-page: 7647 year: 2015 publication-title: Nat. Commun. – volume: 158 start-page: 340 year: 2017 publication-title: Chem. Eng. Sci. – ident: e_1_2_8_29_1 doi: 10.1039/C8TC04423F – ident: e_1_2_8_55_1 doi: 10.1088/1361-6528/aafb94 – ident: e_1_2_8_21_1 doi: 10.1021/acs.chemrev.6b00179 – ident: e_1_2_8_33_1 doi: 10.1021/nl301045a – ident: e_1_2_8_3_1 doi: 10.1021/acsnano.2c01514 – ident: e_1_2_8_10_1 doi: 10.1002/solr.202100830 – ident: e_1_2_8_36_1 doi: 10.1021/nn201696g – ident: e_1_2_8_14_1 doi: 10.1038/nature25494 – ident: e_1_2_8_66_1 doi: 10.1038/39827 – ident: e_1_2_8_61_1 doi: 10.1039/C6NR01896C – ident: e_1_2_8_16_1 doi: 10.1002/smll.202106006 – ident: e_1_2_8_45_1 doi: 10.1088/0957-4484/27/6/065202 – ident: e_1_2_8_15_1 doi: 10.1038/ncomms8647 – ident: e_1_2_8_23_1 doi: 10.1002/smll.201502988 – ident: e_1_2_8_37_1 doi: 10.1021/acsnano.7b00229 – ident: e_1_2_8_38_1 doi: 10.1021/acsami.0c18518 – ident: e_1_2_8_57_1 doi: 10.1021/acsnano.2c07910 – ident: e_1_2_8_8_1 doi: 10.1021/acsnano.7b01714 – ident: e_1_2_8_26_1 doi: 10.1002/adfm.201606641 – ident: e_1_2_8_2_1 doi: 10.1021/acsami.0c10386 – ident: e_1_2_8_25_1 doi: 10.1002/adom.202001298 – ident: e_1_2_8_59_1 doi: 10.1002/adma.202000747 – ident: e_1_2_8_19_1 doi: 10.1021/acsami.7b08578 – ident: e_1_2_8_32_1 doi: 10.1038/srep16838 – ident: e_1_2_8_11_1 doi: 10.1002/aenm.202002536 – ident: e_1_2_8_34_1 doi: 10.1038/srep11414 – ident: e_1_2_8_68_1 doi: 10.1002/adfm.201910225 – ident: e_1_2_8_49_1 doi: 10.1002/adfm.201503705 – ident: e_1_2_8_58_1 doi: 10.1021/acsnano.8b06176 – ident: e_1_2_8_4_1 doi: 10.1002/adma.201802803 – ident: e_1_2_8_62_1 doi: 10.1021/la00017a030 – ident: e_1_2_8_63_1 doi: 10.1002/anie.202003839 – ident: e_1_2_8_64_1 doi: 10.1039/CT9252701863 – ident: e_1_2_8_13_1 doi: 10.1002/aelm.201600529 – ident: e_1_2_8_51_1 doi: 10.1002/adfm.201806895 – ident: e_1_2_8_40_1 doi: 10.1039/C6TC05227D – ident: e_1_2_8_52_1 doi: 10.1063/1.4952591 – ident: e_1_2_8_6_1 doi: 10.1002/admt.202000441 – ident: e_1_2_8_47_1 doi: 10.1021/acsami.5b02487 – ident: e_1_2_8_42_1 doi: 10.1002/pssa.201330463 – ident: e_1_2_8_28_1 doi: 10.1002/adma.201902479 – ident: e_1_2_8_44_1 doi: 10.1002/adma.201707526 – ident: e_1_2_8_30_1 doi: 10.1002/adem.201901275 – ident: e_1_2_8_27_1 doi: 10.1002/smll.201602581 – ident: e_1_2_8_50_1 doi: 10.1039/C4NR06984F – ident: e_1_2_8_5_1 doi: 10.1021/acsnano.7b02474 – ident: e_1_2_8_12_1 doi: 10.1021/acsenergylett.1c01486 – ident: e_1_2_8_41_1 doi: 10.1002/adma.201503682 – ident: e_1_2_8_22_1 doi: 10.1002/smll.201802625 – ident: e_1_2_8_67_1 doi: 10.1038/srep34322 – ident: e_1_2_8_18_1 doi: 10.1002/adfm.201705955 – ident: e_1_2_8_56_1 doi: 10.1021/acsami.7b11779 – ident: e_1_2_8_46_1 doi: 10.1039/c2nr31508d – ident: e_1_2_8_43_1 doi: 10.1002/aenm.201300474 – ident: e_1_2_8_60_1 doi: 10.1002/admi.201900898 – ident: e_1_2_8_20_1 doi: 10.1021/nn303201g – ident: e_1_2_8_39_1 doi: 10.1002/adma.201704738 – ident: e_1_2_8_31_1 doi: 10.1002/admt.202101277 – ident: e_1_2_8_17_1 doi: 10.1038/nphoton.2012.282 – ident: e_1_2_8_7_1 doi: 10.1021/acsami.8b20143 – ident: e_1_2_8_35_1 doi: 10.1002/adma.200800750 – ident: e_1_2_8_65_1 doi: 10.1016/j.ces.2016.10.026 – ident: e_1_2_8_48_1 doi: 10.1002/adma.202007772 – ident: e_1_2_8_54_1 doi: 10.1002/smll.201600309 – ident: e_1_2_8_1_1 doi: 10.1002/adma.201300084 – ident: e_1_2_8_53_1 doi: 10.1021/nn400432z – ident: e_1_2_8_9_1 doi: 10.1002/aenm.202202142 – ident: e_1_2_8_24_1 doi: 10.1002/aelm.202001121 |
SSID | ssj0001537418 |
Score | 2.3683486 |
Snippet | Transparent conductive electrodes (TCEs) are indispensable components of various optoelectronic devices such as displays, touch screen panels, solar cells, and... Abstract Transparent conductive electrodes (TCEs) are indispensable components of various optoelectronic devices such as displays, touch screen panels, solar... |
SourceID | doaj proquest pubmed crossref wiley |
SourceType | Open Website Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2304990 |
SubjectTerms | Carbon directed assembly Electrons Flexibility flexible and transparent electrodes Interactive computer systems Manufacturing Nanoparticles Offset printing Plating Screen printing Silver silver nanoparticles surface energy wetting/dewetting |
SummonAdditionalLinks | – databaseName: DOAJ Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LatwwFBUhq2xK06St2zSoEGiyMBlbsmQtmzLDEEgoTALZGT3JYuopk5lCd_2E0k_sl_ReSWMm0JJNN17YQo-r-ziydI8IOeGt0A2rQwnOUZfciFBq6UPpIPY4axseAiYnX12L6S2_vGvutq76wjNhiR44Ce680iMnQutADyESNR69KWdOt84FW4eYugcxb2sxlfKDGdKybFgaR_W5dt-QnTtuK6ED3opCkaz_bwjzMWCNEWfynDzLUJF-TF3cJzu-f0H2szE-0NPMGH12QH5NtFnmn290EegEWS7N3FPdO5royzHna0WvPGBteD7c03G6_8ZBTfHYAJ2tl0FbT8cxG_D3j5_JG3pHcWP4i5l_pzmrgALQpTeLtb2nM4vnduhn3UOMjc1NwbkDpDwkt5PxzadpmS9bKC2H5XEZnFR1aCvJlA5CKWc5k2CxTIE0NZq-8tYYJBIdBaW5bhWYMhcGpqOygrGXZLdf9P41oRXEOMYaZ1kwHPkOGffGaOWqKoykVwUpN8LvbGYixwsx5l3iUK47nKxumKyCfBjKf00cHP8seYFzOZRC7uz4AjSqyxrVPaVRBTnaaEKXDRqaaFUra8Q3BXk_fAZTxP0VkPFijWUk4Le25qwgr5IGDT1hEpCRFDj2qFJPDKQDUDITTVO_-R8jekv2sOZ0CueI7K6Wa_8OsNTKHEez-QNHpRot priority: 102 providerName: Directory of Open Access Journals – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LihQxFA0ybtyI47N1lAiCugjTlaQqyVKlm0YYGegZmF2Rp7Nou6QfwuzmE8RP9Eu8N5WusUERN7WoulRVHufek8c9IeSV1I2tBU8MnKNl0jWJWRUTCxB7gve1TAmTk08-NbNz-fGivvgti7_Xhxgm3BAZ2V8jwK1bH9-IhtrwDeW28zqRgUH7bcyvRfV8Lk9vZllqgfIseMIcjK6Z0FLulBvH_Hj_FXuRKQv4_4l17pPYHIWm98jdQh_pu769D8mtuLxPDgtA1_RNUZF--4D8mFq3KhNytEt0isqXbhGpXQbaS5pjHtiGnkTg33BdX9JJfyZOgDflrQR0vl0l6yOd5AzBn9ffew8ZA8XF4i9ucUVLpgEF8kvPuq2_pHOPe3noqYUaXufPzcDhA818SM6nk7MPM1YOYGBewpCZpaAMT7pSwtjUGBO8FApQLAzUrEV3YKJ3DsVFx8lYabUBeMvGqUpWvhHiETlYdsv4hNAK4p4QdfAiOYkaiEJG56wJVZXGKpoRYbvKb31RJ8dDMhZtr6vMW2ysdmisEXk92H_tdTn-avke23KwQj3tfKNbfW4LPFsoTWiSDuDtgO_UEWO2FMHqEJLnCX7vaNcT2gJy-IQ2WnHkPCPycngM8MQ1F6jjbos2Cjid5lKMyOO-Bw1_IhSwJdVg2XOX-kdBWiAq86au-dP_tH9G7uDNfhPOETnYrLbxOVCpjXuR0fILq08WJw priority: 102 providerName: Wiley-Blackwell |
Title | Fabrication of Flexible and Transparent Metal Mesh Electrodes Using Surface Energy‐Directed Assembly Process for Touch Screen Panels and Heaters |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202304990 https://www.ncbi.nlm.nih.gov/pubmed/37818769 https://www.proquest.com/docview/2898722381 https://www.proquest.com/docview/2876638243 https://doaj.org/article/1a0d6f8d0112445e847143da8ddfc2f9 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LbxMxELZoc-GCKM9AiYyEBBysZtfe9fqEWkgUIVJFpJV6W_lJD2G35IHEv-AnM-N1FpB4XHJIvFm_5pvPY_sbQl6IqtQFzwMDcNRMmDIwLX1gDnyPs7YQIeDl5Pl5ObsU76-KqxRw26RjlXtMjEDtWosx8hNYGFQyRwfz5uYLw6xRuLuaUmgckAFAcAWLr8HZ5Hzx8WeUpeAoz7JXaxznJ9p9RZXuuL2EQPyLN4qi_X9imr8T1-h5pnfJnUQZ6Wk3xkfklm_ukaNklBv6KilHv75Pvk-1WacgHG0DnaLapVl5qhtHOxlzvPu1pXMPnBs-N9d00uXBcfBP8fgAXe7WQVtPJ_FWIOsw0TuK28OfzeobTXcLKNBdetHu7DVdWjy9Qxe6AU8bXzYDiAdi-YBcTicXb2cspVxgVsAimQUnVR6qTHKlQ6mUs4JLsFuuoC81AoDy1hiUEx0HpYWuFBi0KI3MRGZLzh-Sw6Zt_GNCM_B0nBfO8mAEqh5y4Y3RymVZGEuvhoTtu762SY8c02Ks6k5JOa9xqOp-qIbkZV_-plPi-GvJMxzJvhQqaMcv2vWnOhlkDa1xZagc4BswnMKjlxbc6cq5YPMA1Tvez4M6mTW8op-EQ_K8_xkMEndZoI_bHZaRwOKqXPAhedTNn74mXAI_kiW2PU6o_zSkBmqyLIsif_Lvyjwlt_GZ7pTNMTncrnf-GXClrRmRg1wsRmRw-m7-YTlK5jGKkYcfBGAUqw |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5V6QEuiPIMFFgkEHCwGu-uvfYBIQqJUtpEFUml3sw-6SHYJQ9Q_wW_hN_IjL02IPE49ZJDso53PeNvvtnHN4Q8EVmqEs58BOCoIqFTHynpfGQh9lhjEuE9Hk6eTNPxiXh3mpxuke_tWRjcVtliYg3UtjI4R74HiUEmGQaYV-efI6wahaurbQmNxi0O3cVXSNlWLw_egn2fMjYazt-Mo1BVIDIC8sDIW5kzn8WS58qneW6N4BJcE5L_QazQx3NntEbFzIHPlVBZDj4rUi1jEZsUJ0AB8rcFh1SmR7b3h9Pj9z9ndRKOcjCtOuSA7Sn7BVXB6-UsBP5fol9dJOBPzPZ3olxHutF1ci1QVPq68akdsuXKG2QngMCKPg9K1S9ukm8jpZdh0o9Wno5QXVMvHFWlpY1sOp41W9OJA44Pn6szOmzq7lj4p3q7Ap1tll4ZR4f1KcSowWBnKS5Hf9KLCxrOMlCg13RebcwZnRncLUSPVQmRvb7ZGEIKENlb5ORSjHGb9MqqdHcJjSGycp5Yw70WqLLIhdNa5TaO_UC6vE-i9tEXJuifYxmORdEoN7MCTVV0puqTZ13780b5468t99GSXStU7K6_qJYfiwAABYzGpj6zgKfAqBKHrEBwqzJrvWEeurfb-kERYARu0Tl9nzzufgYAwFUdeMbVBttIYI0ZE7xP7jT-0_WES-BjMsWx1w71n4EUQIVmaZKwe__uzCNyZTyfHBVHB9PD--QqXt_s8NklvfVy4x4AT1vrh-HloOTDZb-PPwBX10rs |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtQwFLWqqYTYIMpzoICRQMAimontxMkCIUpnNKV0NGJaqbvgJ10MSZkHqH_B9_B13Js4ASQeq25mkXESO74-9_hxzyXkichSlXDmIwBHFQmd-khJ5yMLvscakwjvMTj5aJpOTsTb0-R0i3xvY2HwWGWLiTVQ28rgGvkAJgaZZOhgBj4ci5jtj1-df44wgxTutLbpNBoTOXQXX2H6tnp5sA99_ZSx8ej4zSQKGQYiI2BOGHkrc-azWPJc-TTPrRFcgpnyHNBbob3nzmiN6plDnyuhshzsV6RaxiI2KS6GAvxvS5gVDXtke280nb3_ucKTcJSGaZUih2yg7BdUCK-3ttAJ_OIJ64QBf2K5v5Pm2uuNr5Nrga7S14197ZAtV94gOwEQVvR5UK1-cZN8Gyu9DAuAtPJ0jEqbeuGoKi1tJNQx7mxNjxzwffhdndFRk4PHwpPqowt0vll6ZRwd1RGJUYPHzlLcmv6kFxc0xDVQoNr0uNqYMzo3eHKIzlQJXr5-2QTcC5DaW-TkUjrjNumVVenuEhqDl-U8sYZ7LVBxkQuntcptHPuhdHmfRO2nL0zQQseUHIuiUXFmBXZV0XVVnzzryp83KiB_LbmHPdmVQvXu-kK1_FgEMCigNTb1mQVsBXaVOGQIgluVWesN81C93dYOigAp8IpuAPTJ4-5vAAPc4YFvXG2wjAQGmTHB--ROYz9dTbgEbiZTbHttUP9pSAG0aJ4mCbv378o8IldgHBbvDqaH98lVvL057LNLeuvlxj0AyrbWD8PYoOTDZQ_HHwaOTyE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fabrication+of+Flexible+and+Transparent+Metal+Mesh+Electrodes+Using+Surface+Energy-Directed+Assembly+Process+for+Touch+Screen+Panels+and+Heaters&rft.jtitle=Advanced+science&rft.au=Yuan%2C+Siqing&rft.au=Fan%2C+Zebin&rft.au=Wang%2C+Guangji&rft.au=Chai%2C+Zhimin&rft.date=2023-12-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=2198-3844&rft.volume=10&rft.issue=34&rft_id=info:doi/10.1002%2Fadvs.202304990&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon |