Entropy—enthalpy compensation: Fact or artifact?
The phenomenon of entropy–enthalpy (S‐H) compensation is widely invoked as an explanatory principle in thermodynamic analyses of proteins, ligands, and nucleic acids. It has been suggested that this compensation is an intrinsic property of either complex, fluctuating, or aqueous systems. The questio...
Saved in:
Published in | Protein science Vol. 10; no. 3; pp. 661 - 667 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Bristol
Cold Spring Harbor Laboratory Press
01.03.2001
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The phenomenon of entropy–enthalpy (S‐H) compensation is widely invoked as an explanatory principle in thermodynamic analyses of proteins, ligands, and nucleic acids. It has been suggested that this compensation is an intrinsic property of either complex, fluctuating, or aqueous systems. The questions examined here are whether the observed compensation is extra‐thermodynamic (i.e., reflects anything more than the well‐known laws of statistical thermodynamics) and if so, what does it reveal about the system? Compensation is rather variably defined in the literature and different usages are discussed. The most precise and interesting one, which is considered here, is a linear relationship between ΔH and ΔS for some series of perturbations or changes in experimental variable. Some recent thermodynamic data on proteins purporting to show compensation is analyzed and shown to be better explained by other causes. A general statistical mechanical model of a complex system is analyzed to explore whether and under what conditions extra‐thermodynamic compensation can occur and what it reveals about the system. This model shows that the most likely behavior to be seen is linear S‐H compensation over a rather limited range of perturbations with a compensation temperature Tc = dΔH/dΔS within 20% of the experimental temperature. This behavior is insensitive to the details of the model, thus revealing little extra‐thermodynamic or causal information about the system. In addition, it will likely be difficult to distinguish this from more trivial forms of compensation in real experimental systems. |
---|---|
AbstractList | The phenomenon of entropy-enthalpy (S-H) compensation is widely invoked as an explanatory principle in thermodynamic analyses of proteins, ligands, and nucleic acids. It has been suggested that this compensation is an intrinsic property of either complex, fluctuating, or aqueous systems. The questions examined here are whether the observed compensation is extra-thermodynamic (i.e., reflects anything more than the well-known laws of statistical thermodynamics) and if so, what does it reveal about the system? Compensation is rather variably defined in the literature and different usages are discussed. The most precise and interesting one, which is considered here, is a linear relationship between DeltaH and DeltaS for some series of perturbations or changes in experimental variable. Some recent thermodynamic data on proteins purporting to show compensation is analyzed and shown to be better explained by other causes. A general statistical mechanical model of a complex system is analyzed to explore whether and under what conditions extra-thermodynamic compensation can occur and what it reveals about the system. This model shows that the most likely behavior to be seen is linear S-H compensation over a rather limited range of perturbations with a compensation temperature Tc = dDeltaH/dDeltaS within 20% of the experimental temperature. This behavior is insensitive to the details of the model, thus revealing little extra-thermodynamic or causal information about the system. In addition, it will likely be difficult to distinguish this from more trivial forms of compensation in real experimental systems. The phenomenon of entropy–enthalpy (S‐H) compensation is widely invoked as an explanatory principle in thermodynamic analyses of proteins, ligands, and nucleic acids. It has been suggested that this compensation is an intrinsic property of either complex, fluctuating, or aqueous systems. The questions examined here are whether the observed compensation is extra‐thermodynamic (i.e., reflects anything more than the well‐known laws of statistical thermodynamics) and if so, what does it reveal about the system? Compensation is rather variably defined in the literature and different usages are discussed. The most precise and interesting one, which is considered here, is a linear relationship between ΔH and ΔS for some series of perturbations or changes in experimental variable. Some recent thermodynamic data on proteins purporting to show compensation is analyzed and shown to be better explained by other causes. A general statistical mechanical model of a complex system is analyzed to explore whether and under what conditions extra‐thermodynamic compensation can occur and what it reveals about the system. This model shows that the most likely behavior to be seen is linear S‐H compensation over a rather limited range of perturbations with a compensation temperature Tc = dΔH/dΔS within 20% of the experimental temperature. This behavior is insensitive to the details of the model, thus revealing little extra‐thermodynamic or causal information about the system. In addition, it will likely be difficult to distinguish this from more trivial forms of compensation in real experimental systems. Abstract The phenomenon of entropy–enthalpy (S‐H) compensation is widely invoked as an explanatory principle in thermodynamic analyses of proteins, ligands, and nucleic acids. It has been suggested that this compensation is an intrinsic property of either complex, fluctuating, or aqueous systems. The questions examined here are whether the observed compensation is extra‐thermodynamic (i.e., reflects anything more than the well‐known laws of statistical thermodynamics) and if so, what does it reveal about the system? Compensation is rather variably defined in the literature and different usages are discussed. The most precise and interesting one, which is considered here, is a linear relationship between ΔH and ΔS for some series of perturbations or changes in experimental variable. Some recent thermodynamic data on proteins purporting to show compensation is analyzed and shown to be better explained by other causes. A general statistical mechanical model of a complex system is analyzed to explore whether and under what conditions extra‐thermodynamic compensation can occur and what it reveals about the system. This model shows that the most likely behavior to be seen is linear S‐H compensation over a rather limited range of perturbations with a compensation temperature Tc = dΔH/dΔS within 20% of the experimental temperature. This behavior is insensitive to the details of the model, thus revealing little extra‐thermodynamic or causal information about the system. In addition, it will likely be difficult to distinguish this from more trivial forms of compensation in real experimental systems. |
Author | Sharp, Kim |
AuthorAffiliation | Johnson Research Foundation, Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA |
AuthorAffiliation_xml | – name: Johnson Research Foundation, Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA |
Author_xml | – sequence: 1 givenname: Kim surname: Sharp fullname: Sharp, Kim email: sharpk@mail.med.upenn.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/11344335$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kM9Kw0AQhxdRtFbBJ5CcxEvamd3NZuNBkWJVEBRR8LZsko2NpNm4myq9-RA-oU9iaot_Dp5mYD6-3_DbJuu1rQ0hewgDRIRh4wcsloBrpIdcJKFMxMM66UEiMJRMyC2y7f0TAHCkbJNsITLOGYt6hJ7VrbPN_OPt3dTtRFfNPMjstDG1121p66NgrLM2sC7Qri2Lbj_ZIRuFrrzZXc0-uR-f3Y0uwqvr88vR6VWY8ZhjGIEUgiNEaSwNJqJgEGsmDNV5BAxpQjNIophpbnJZpLmkSQ5RnIIpaGRQsD45XnqbWTo1edb953SlGldOtZsrq0v191KXE_VoXxRlXT5bCA5WAmefZ8a3alr6zFSVro2deRWDpBFnvAMPl2DmrPfOFN8hCGpRsGq8-iq4Q_d_P_UDrhrtgOESeC0rM_9XpG5urxFACGSfRLKGug |
CitedBy_id | crossref_primary_10_1002_mabi_201800425 crossref_primary_10_1002_bip_20457 crossref_primary_10_1007_s00396_010_2308_5 crossref_primary_10_1016_j_fluid_2015_05_048 crossref_primary_10_1021_ja047115d crossref_primary_10_1021_ja208503y crossref_primary_10_1016_j_bbagen_2022_130153 crossref_primary_10_1093_nar_gkt237 crossref_primary_10_1093_nar_gkv414 crossref_primary_10_1016_j_bpc_2015_05_009 crossref_primary_10_1021_ct5004109 crossref_primary_10_1039_C6CP07888E crossref_primary_10_1002_jmr_1025 crossref_primary_10_1021_jm100112j crossref_primary_10_1021_acs_jpcb_6b05890 crossref_primary_10_1111_gcb_15053 crossref_primary_10_1146_annurev_biophys_070816_033743 crossref_primary_10_1021_ol0475966 crossref_primary_10_1021_ct100245n crossref_primary_10_1016_j_compbiolchem_2018_06_005 crossref_primary_10_1021_acs_jpcb_5b09925 crossref_primary_10_1016_j_bbamem_2010_06_006 crossref_primary_10_1016_j_colsurfb_2015_06_013 crossref_primary_10_1039_C6CP07899K crossref_primary_10_1002_adsu_201900043 crossref_primary_10_1021_jp506716d crossref_primary_10_3390_molecules28207216 crossref_primary_10_1016_j_drudis_2019_01_014 crossref_primary_10_1016_S0301_4622_02_00282_X crossref_primary_10_1016_j_bpj_2022_01_005 crossref_primary_10_1063_1_1644094 crossref_primary_10_1529_biophysj_108_142448 crossref_primary_10_1142_S0219633604001161 crossref_primary_10_1371_journal_pcbi_1000722 crossref_primary_10_1002_asia_200600360 crossref_primary_10_3390_ijms231911381 crossref_primary_10_1002_cbic_201000341 crossref_primary_10_1016_j_chemphys_2018_04_007 crossref_primary_10_1016_j_fluid_2014_03_021 crossref_primary_10_1134_S002315841401011X crossref_primary_10_1021_ma049903t crossref_primary_10_1002_cmdc_201400013 crossref_primary_10_1021_acs_jpclett_4c00734 crossref_primary_10_1016_j_bpc_2006_05_006 crossref_primary_10_1016_j_jcis_2009_05_064 crossref_primary_10_1039_B915870G crossref_primary_10_1007_s00706_020_02710_6 crossref_primary_10_1021_jp210265d crossref_primary_10_1002_anie_201602797 crossref_primary_10_1021_jm030373l crossref_primary_10_1021_acs_macromol_0c01746 crossref_primary_10_1021_jp045922t crossref_primary_10_1002_ange_200200565 crossref_primary_10_1016_j_chroma_2016_03_041 crossref_primary_10_1134_S0036024416120268 crossref_primary_10_1007_s11172_015_1189_7 crossref_primary_10_1046_j_1432_1033_2003_03889_x crossref_primary_10_1016_j_molliq_2018_11_107 crossref_primary_10_1063_1_4996448 crossref_primary_10_3390_molecules26113091 crossref_primary_10_1002_prot_24741 crossref_primary_10_1103_PhysRevE_98_032128 crossref_primary_10_1021_acs_jcim_2c00507 crossref_primary_10_1021_acsomega_3c07563 crossref_primary_10_1021_jacs_1c08198 crossref_primary_10_1021_acs_jpcb_2c09043 crossref_primary_10_1073_pnas_1104989108 crossref_primary_10_1007_s10450_017_9900_7 crossref_primary_10_1016_j_addr_2003_10_019 crossref_primary_10_1016_j_bbabio_2014_11_002 crossref_primary_10_1016_j_bcab_2017_01_008 crossref_primary_10_1021_acs_jpca_6b08079 crossref_primary_10_1111_j_1365_2435_2006_01109_x crossref_primary_10_1002_1873_3468_13556 crossref_primary_10_1016_j_molliq_2013_09_030 crossref_primary_10_1515_hf_2015_0251 crossref_primary_10_1002_anie_200200565 crossref_primary_10_1021_acs_chemrev_5b00583 crossref_primary_10_1021_acs_jpcb_9b07448 crossref_primary_10_1021_cb5008025 crossref_primary_10_1016_j_foodhyd_2015_04_017 crossref_primary_10_1021_ja054519c crossref_primary_10_1007_s00231_016_1916_0 crossref_primary_10_1021_la102613f crossref_primary_10_1002_hlca_200790091 crossref_primary_10_1007_s11144_020_01898_2 crossref_primary_10_1021_bi400590h crossref_primary_10_1016_j_jmb_2008_10_056 crossref_primary_10_1002_app_25766 crossref_primary_10_1007_s00706_021_02804_9 crossref_primary_10_1021_la803272y crossref_primary_10_3390_biophysica4020021 crossref_primary_10_1021_bm5004515 crossref_primary_10_1080_02656736_2017_1363418 crossref_primary_10_1063_1_4733951 crossref_primary_10_1016_j_bbapap_2005_12_007 crossref_primary_10_3390_ijms241310630 crossref_primary_10_1002_asia_200900679 crossref_primary_10_1021_acs_jctc_1c00714 crossref_primary_10_1016_j_chemphys_2008_09_004 crossref_primary_10_1021_ja9056739 crossref_primary_10_1021_bi701778x crossref_primary_10_3390_su15086596 crossref_primary_10_1002_polb_24557 crossref_primary_10_1016_j_jmb_2005_09_045 crossref_primary_10_1021_acs_jpcb_1c00269 crossref_primary_10_3389_fendo_2022_1029177 crossref_primary_10_1002_prot_23166 crossref_primary_10_1016_j_ab_2008_08_010 crossref_primary_10_1111_febs_12360 crossref_primary_10_2478_s11532_011_0103_x crossref_primary_10_1002_jmr_1074 crossref_primary_10_1021_ja075975z crossref_primary_10_1016_j_tet_2004_07_079 crossref_primary_10_1002_bip_23106 crossref_primary_10_1002_chem_201002340 crossref_primary_10_1016_j_ejps_2015_09_011 crossref_primary_10_1021_bi901392k crossref_primary_10_1021_ie403054z crossref_primary_10_1021_ja4075776 crossref_primary_10_1038_s41598_023_45803_y crossref_primary_10_1529_biophysj_105_063396 crossref_primary_10_1038_nrd4486 crossref_primary_10_1016_j_biortech_2013_12_016 crossref_primary_10_1021_ic101220v crossref_primary_10_1021_jp305476x crossref_primary_10_1080_00268976_2016_1225129 crossref_primary_10_1021_ci2002395 crossref_primary_10_1007_s10822_005_8483_7 crossref_primary_10_3389_fmolb_2023_1210576 crossref_primary_10_1074_jbc_M110_154989 crossref_primary_10_1007_s10847_010_9831_3 crossref_primary_10_1007_s11144_017_1340_6 crossref_primary_10_1002_bip_20983 crossref_primary_10_1021_ja073902 crossref_primary_10_1529_biophysj_104_049494 crossref_primary_10_3390_molecules27207009 crossref_primary_10_1039_c2sm25160d crossref_primary_10_1021_ja011746f crossref_primary_10_1016_j_mam_2021_101042 crossref_primary_10_1371_journal_pone_0191138 crossref_primary_10_3390_e16084375 crossref_primary_10_1021_jp2012039 crossref_primary_10_1016_j_foodres_2017_03_004 crossref_primary_10_1021_acsomega_9b01440 crossref_primary_10_1038_s41557_021_00646_w crossref_primary_10_1016_j_cis_2018_03_003 crossref_primary_10_1039_b820487j crossref_primary_10_1021_jp210769q crossref_primary_10_1016_j_chroma_2009_10_022 crossref_primary_10_1016_j_molliq_2020_113833 crossref_primary_10_1021_jacs_7b00229 crossref_primary_10_1088_1674_1056_26_3_030506 crossref_primary_10_1002_chem_201300587 crossref_primary_10_1111_j_1432_1033_2004_4142_x crossref_primary_10_1016_j_cplett_2022_139412 crossref_primary_10_1016_j_bmc_2015_02_052 crossref_primary_10_1021_bi1004359 crossref_primary_10_1016_j_colsurfa_2016_02_007 crossref_primary_10_1021_ie0207257 crossref_primary_10_3390_molecules27217561 crossref_primary_10_1016_j_bpj_2009_02_015 crossref_primary_10_1093_nar_gkq124 crossref_primary_10_1021_ja056600l crossref_primary_10_1021_jp075784i crossref_primary_10_1529_biophysj_108_130609 crossref_primary_10_1016_S0301_4622_01_00222_8 crossref_primary_10_1039_c4ra00348a crossref_primary_10_1016_j_jct_2014_10_014 crossref_primary_10_1007_s10930_019_09822_x crossref_primary_10_1002_ejlt_202100098 crossref_primary_10_1002_bip_20963 crossref_primary_10_1016_j_tet_2007_06_065 crossref_primary_10_1007_s10847_009_9593_y crossref_primary_10_1016_S0040_4020_01_01090_0 crossref_primary_10_1111_j_1742_4658_2011_08124_x crossref_primary_10_1002_app_38110 crossref_primary_10_1002_prot_21617 crossref_primary_10_1021_jp304537m crossref_primary_10_1039_c3cp52158c crossref_primary_10_1021_acs_jpcc_6b07954 crossref_primary_10_1021_bi3006169 crossref_primary_10_1016_j_jmb_2011_07_028 crossref_primary_10_1016_j_jphotochem_2023_115190 crossref_primary_10_1021_ja071642q crossref_primary_10_1016_j_jmb_2009_10_015 crossref_primary_10_1016_j_bpc_2017_03_001 crossref_primary_10_1074_jbc_M110_154914 crossref_primary_10_1021_ct400003r crossref_primary_10_1016_j_cplett_2023_140329 crossref_primary_10_1002_anie_202006457 crossref_primary_10_1039_D3CP05347D crossref_primary_10_1007_s40828_016_0034_4 crossref_primary_10_1016_j_fluid_2014_05_020 crossref_primary_10_1021_ja910535j crossref_primary_10_1021_la303281d crossref_primary_10_1007_s11172_020_2868_6 crossref_primary_10_1016_j_cocis_2013_10_002 crossref_primary_10_1016_j_jmb_2012_09_009 crossref_primary_10_1140_epjst_e2013_01818_y crossref_primary_10_1016_j_foodres_2017_05_025 crossref_primary_10_1073_pnas_0401160101 crossref_primary_10_1134_S0036024413120224 crossref_primary_10_1515_zpch_2017_1007 crossref_primary_10_1016_S0040_4039_03_00013_3 crossref_primary_10_3390_ijms24065528 crossref_primary_10_1021_jp401049h crossref_primary_10_1021_acs_jctc_9b00145 crossref_primary_10_3390_su15064795 crossref_primary_10_1016_j_cbi_2012_09_012 crossref_primary_10_1074_jbc_M103348200 crossref_primary_10_1016_j_aej_2022_08_035 crossref_primary_10_1039_C4NR03811H crossref_primary_10_1021_ol049181q crossref_primary_10_1073_pnas_1213180109 crossref_primary_10_1039_c3ra47960a crossref_primary_10_1128_JVI_01900_05 crossref_primary_10_1016_j_jmb_2008_09_073 crossref_primary_10_1007_s00706_012_0839_9 crossref_primary_10_1002_hlca_201400156 crossref_primary_10_1021_cb300191k crossref_primary_10_1146_annurev_biophys_083012_130318 crossref_primary_10_1002_ijch_202000032 crossref_primary_10_1021_acs_biochem_7b00156 crossref_primary_10_1016_j_abb_2006_03_027 crossref_primary_10_1111_j_1742_4658_2009_06939_x crossref_primary_10_1002_ange_201602797 crossref_primary_10_1007_s00706_012_0842_1 crossref_primary_10_1016_j_biortech_2012_03_094 crossref_primary_10_1063_1_4960435 crossref_primary_10_1002_cbic_200800126 crossref_primary_10_1134_S1070363219120053 crossref_primary_10_1021_acs_joc_8b02797 crossref_primary_10_1021_bi802339c crossref_primary_10_1021_acs_biomac_7b00994 crossref_primary_10_1021_ja904698q crossref_primary_10_3390_liquids3010002 crossref_primary_10_1007_BF02703768 crossref_primary_10_1002_bip_22556 crossref_primary_10_1002_chem_202200529 crossref_primary_10_1002_prot_24875 crossref_primary_10_1021_acs_jpcb_5b04262 crossref_primary_10_1039_B603168B crossref_primary_10_1021_cr010031s crossref_primary_10_1134_S0036024422110309 crossref_primary_10_1021_acs_jctc_5b00405 crossref_primary_10_1088_0953_8984_17_18_006 crossref_primary_10_1088_1742_5468_ab4e91 crossref_primary_10_1002_bkcs_11681 crossref_primary_10_1016_j_bmc_2013_01_043 crossref_primary_10_7498_aps_69_20200707 crossref_primary_10_1016_j_abb_2012_08_009 crossref_primary_10_1016_j_fluid_2004_06_023 crossref_primary_10_1016_j_sbi_2017_06_001 crossref_primary_10_1002_prot_10189 crossref_primary_10_1039_C9NJ03325D crossref_primary_10_1016_j_jbiosc_2017_02_002 crossref_primary_10_1002_pro_692 crossref_primary_10_1002_ange_202006457 crossref_primary_10_1021_acs_chemrev_5b00630 crossref_primary_10_1021_la034783o crossref_primary_10_1021_jz301672e crossref_primary_10_1002_bip_20926 crossref_primary_10_1021_ct501161t crossref_primary_10_1039_c2sm07021a crossref_primary_10_1080_0144235X_2013_802109 crossref_primary_10_1021_acsomega_0c00332 crossref_primary_10_1002_pro_5013 crossref_primary_10_1021_la200917y crossref_primary_10_1080_07391102_2004_10506973 crossref_primary_10_1038_s42004_019_0242_0 crossref_primary_10_1016_j_ifacol_2019_12_551 crossref_primary_10_1021_jp2043174 crossref_primary_10_1021_ja066961g crossref_primary_10_1063_1_1648013 crossref_primary_10_1039_C4MD00057A crossref_primary_10_1002_ijch_201100044 crossref_primary_10_1002_jmr_896 crossref_primary_10_1016_j_cplett_2006_10_038 crossref_primary_10_1261_rna_2235010 crossref_primary_10_1007_s10973_022_11200_2 crossref_primary_10_1021_acs_chemrev_2c00659 crossref_primary_10_1016_j_heliyon_2019_e01839 crossref_primary_10_1021_acs_jpcc_6b11571 crossref_primary_10_1021_ie504110n crossref_primary_10_1007_s12038_017_9719_0 crossref_primary_10_1021_bi5002344 crossref_primary_10_1016_j_biortech_2012_09_087 crossref_primary_10_1074_jbc_R114_565515 crossref_primary_10_1371_journal_pone_0135421 crossref_primary_10_1016_j_ijbiomac_2018_08_012 crossref_primary_10_1021_acs_jpcb_5b09219 crossref_primary_10_1002_bip_20599 crossref_primary_10_1016_S0040_4020_03_00978_5 crossref_primary_10_1021_cr050262p crossref_primary_10_1146_annurev_biochem_060410_105819 crossref_primary_10_1016_j_bpj_2022_05_008 crossref_primary_10_1021_jm501511f crossref_primary_10_1074_jbc_AC117_001649 crossref_primary_10_1021_jz1012142 crossref_primary_10_1039_c1dt10055f crossref_primary_10_1002_ange_200802947 crossref_primary_10_1016_j_enzmictec_2016_04_012 crossref_primary_10_1016_j_jmb_2004_08_019 crossref_primary_10_1002_cmdc_201800438 crossref_primary_10_1016_j_bbagrm_2014_04_014 crossref_primary_10_1110_ps_04912605 crossref_primary_10_1186_1752_153X_1_29 crossref_primary_10_1038_nmat4409 crossref_primary_10_1517_17460441_2012_666235 crossref_primary_10_1021_jacs_8b02129 crossref_primary_10_1209_0295_5075_92_13004 crossref_primary_10_1529_biophysj_106_082115 crossref_primary_10_1002_jssc_200400043 crossref_primary_10_1039_C1CP22666E crossref_primary_10_1246_cl_2012_1374 crossref_primary_10_1007_s13361_018_2034_7 crossref_primary_10_1529_biophysj_104_045179 crossref_primary_10_1007_s10953_022_01180_0 crossref_primary_10_1016_j_molliq_2019_03_060 crossref_primary_10_1021_ja500094z crossref_primary_10_1111_php_12760 crossref_primary_10_1021_acs_chemmater_9b01908 crossref_primary_10_1002_cphc_202100033 crossref_primary_10_1002_anie_200802947 crossref_primary_10_1016_j_cis_2021_102375 crossref_primary_10_1021_acs_jctc_7b00899 crossref_primary_10_1021_bi500711x crossref_primary_10_1080_07391102_2020_1734488 crossref_primary_10_1093_nar_gkaa283 crossref_primary_10_1073_pnas_0404311101 |
Cites_doi | 10.1063/1.472728 10.1016/S0021-9258(18)35764-8 10.1016/S0065-3233(08)60377-0 10.1006/jmbi.1999.2924 10.1021/bi991718y 10.1021/bi00285a025 10.1016/0076-6879(95)59065-X 10.1021/ja974061h 10.1063/1.477669 10.1021/j100003a031 10.1038/261566a0 10.1002/bip.1970.360091002 10.1063/1.447824 |
ContentType | Journal Article |
Copyright | Copyright © 2001 The Protein Society Copyright © Copyright 2001 The Protein Society |
Copyright_xml | – notice: Copyright © 2001 The Protein Society – notice: Copyright © Copyright 2001 The Protein Society |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 5PM |
DOI | 10.1110/ps.37801 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1469-896X |
EndPage | 667 |
ExternalDocumentID | 10_1110_ps_37801 11344335 PRO100661 |
Genre | miscellaneous Research Support, U.S. Gov't, Non-P.H.S Research Support, U.S. Gov't, P.H.S Journal Article |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: GM 54105 – fundername: NIGMS NIH HHS grantid: R01 GM054105 |
GroupedDBID | --- .GJ 05W 0R~ 123 1L6 1OC 24P 29P 2WC 31~ 33P 3SF 3WU 4.4 52U 53G 5RE 6TJ 8-0 8-1 8UM A00 A8Z AAESR AAEVG AAHHS AAIHA AANLZ AAONW AASGY AAXRX AAZKR ABCUV ABGDZ ABLJU ACAHQ ACCFJ ACCZN ACFBH ACGFO ACGFS ACIWK ACPOU ACPRK ACQPF ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB AOIJS ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI C1A C45 CAG COF CS3 DCZOG DIK DRFUL DRSTM DU5 E3Z EBD EBS EJD EMOBN ESTFP F5P G-S GODZA GX1 HGLYW HH5 HYE HZ~ IH2 LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ NNB O66 O9- OIG OK1 OVD P2P P2W P4E PQQKQ QRW RCA RIG ROL RPM RWI SJN SUPJJ SV3 TEORI TR2 WBKPD WIH WIK WIN WNSPC WOHZO WOQ WXSBR WYISQ WYJ XV2 Y6R YKV ZGI ZXP ZZTAW ~02 ~S- CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 5PM |
ID | FETCH-LOGICAL-c4741-508664105b78e196f307a36e2ad5031292c09573a4ed8fbd829d057b0ef25e163 |
IEDL.DBID | RPM |
ISSN | 0961-8368 |
IngestDate | Tue Sep 17 20:49:55 EDT 2024 Sat Aug 17 03:43:43 EDT 2024 Fri Aug 23 03:51:20 EDT 2024 Sat Sep 28 07:37:10 EDT 2024 Sat Aug 24 00:50:02 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4741-508664105b78e196f307a36e2ad5031292c09573a4ed8fbd829d057b0ef25e163 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Reprint requests to: Kim Sharp, Johnson Research Foundation, Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA ; e-mail: sharpk@mail.med.upenn.edu; fax: 215-898-4217. Article and publication are at www.proteinscience.org/cgi/doi/10.1110/ |
OpenAccessLink | https://europepmc.org/articles/pmc2374136?pdf=render |
PMID | 11344335 |
PQID | 70825434 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2374136 proquest_miscellaneous_70825434 crossref_primary_10_1110_ps_37801 pubmed_primary_11344335 wiley_primary_10_1110_ps_37801_PRO100661 |
PublicationCentury | 2000 |
PublicationDate | March 2001 |
PublicationDateYYYYMMDD | 2001-03-01 |
PublicationDate_xml | – month: 03 year: 2001 text: March 2001 |
PublicationDecade | 2000 |
PublicationPlace | Bristol |
PublicationPlace_xml | – name: Bristol – name: United States |
PublicationTitle | Protein science |
PublicationTitleAlternate | Protein Sci |
PublicationYear | 2001 |
Publisher | Cold Spring Harbor Laboratory Press |
Publisher_xml | – name: Cold Spring Harbor Laboratory Press |
References | 1970; 9 1984; 81 1976; 261 2000; 39 1992; 267 1999; 290 1995; 99 1988; 39 1986 1995; 259 1998; 109 1983; 22 1998; 120 1996; 105 10625500 - Biochemistry. 2000 Jan 11;39(1):248-54 4918636 - Biopolymers. 1970;9(10):1125-227 10395831 - J Mol Biol. 1999 Jul 16;290(3):811-22 8538476 - Methods Enzymol. 1995;259:628-720 3072868 - Adv Protein Chem. 1988;39:191-234 1447179 - J Biol Chem. 1992 Dec 5;267(34):24297-301 6615806 - Biochemistry. 1983 Aug 2;22(16):3884-96 e_1_2_5_15_1 e_1_2_5_14_1 e_1_2_5_9_1 e_1_2_5_11_1 e_1_2_5_7_1 e_1_2_5_10_1 e_1_2_5_13_1 e_1_2_5_5_1 e_1_2_5_12_1 e_1_2_5_4_1 e_1_2_5_3_1 e_1_2_5_2_1 Hill T. (e_1_2_5_6_1) 1986 Kuroki R. (e_1_2_5_8_1) 1992; 267 |
References_xml | – year: 1986 – volume: 261 start-page: 566 year: 1976 end-page: 567 article-title: Statistical interpretation of enthalpy–entropy compensation publication-title: Nature. – volume: 120 start-page: 4526 year: 1998 end-page: 4527 article-title: Entropy–enthalpy compensation in solvation and ligand binding revisited publication-title: J. Am. Chem. Soc. – volume: 39 start-page: 191 year: 1988 end-page: 234 article-title: Stability of protein structure and hydrophobic interaction publication-title: Adv. Prot. Chem. – volume: 81 start-page: 2016 year: 1984 end-page: 2027 article-title: Solvation thermodynamics of nonionic solutes publication-title: J. Chem. Phys. – volume: 259 start-page: 628 year: 1995 article-title: On the interpretation of data from isothermal processes publication-title: Meth. Enzymol. – volume: 9 start-page: 1125 year: 1970 end-page: 1227 article-title: Enthalpy–entropy compensation phenomena in water solutions of proteins and small molecules: A ubiquitous property of water publication-title: Biopolymers. – volume: 39 start-page: 248 year: 2000 end-page: 254 article-title: Comparisons of pressure and temperature activation parameters for amide hydrogen exchange in T4 lysozyme publication-title: Biochemistry – volume: 267 start-page: 24297 year: 1992 end-page: 24301 article-title: Thermodynamic changes in binding of Ca to a mutant human lysozyme publication-title: J. Biol. Chem. – volume: 290 start-page: 811 year: 1999 end-page: 822 article-title: Experimental study of the protein folding landscape: Unfolding reactions in Cytochrome c publication-title: J. Mol. Biol. – volume: 22 start-page: 3884 year: 1983 end-page: 3896 article-title: Enthalpy–entropy compensation and heat capacity changes for protein ligand interactions: General thermodynamic models and data for the binding of nucleotides to Ribonuclease A publication-title: Biochemistry – volume: 109 start-page: 10015 year: 1998 end-page: 10017 article-title: Entropy–enthalpy compensation: Conformational fluctuation and induced fit publication-title: J. Chem. Phys. – volume: 99 start-page: 1052 year: 1995 end-page: 1059 article-title: Van't Hoff revisited: Enthalpy of association of protein subunits publication-title: J. Phys. Chem. – volume: 105 start-page: 9292 year: 1996 end-page: 9299 article-title: Entropy–enthalpy compensation: Perturbation and relaxation in thermodynamic systems publication-title: J. Phys. Chem. – ident: e_1_2_5_14_1 doi: 10.1063/1.472728 – volume-title: An Introduction to Statistical Thermodynamics year: 1986 ident: e_1_2_5_6_1 contributor: fullname: Hill T. – volume: 267 start-page: 24297 year: 1992 ident: e_1_2_5_8_1 article-title: Thermodynamic changes in binding of Ca2 + to a mutant human lysozyme publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)35764-8 contributor: fullname: Kuroki R. – ident: e_1_2_5_12_1 doi: 10.1016/S0065-3233(08)60377-0 – ident: e_1_2_5_11_1 doi: 10.1006/jmbi.1999.2924 – ident: e_1_2_5_3_1 doi: 10.1021/bi991718y – ident: e_1_2_5_4_1 doi: 10.1021/bi00285a025 – ident: e_1_2_5_9_1 doi: 10.1016/0076-6879(95)59065-X – ident: e_1_2_5_5_1 doi: 10.1021/ja974061h – ident: e_1_2_5_13_1 doi: 10.1063/1.477669 – ident: e_1_2_5_15_1 doi: 10.1021/j100003a031 – ident: e_1_2_5_7_1 doi: 10.1038/261566a0 – ident: e_1_2_5_10_1 doi: 10.1002/bip.1970.360091002 – ident: e_1_2_5_2_1 doi: 10.1063/1.447824 |
SSID | ssj0004123 |
Score | 2.2565353 |
Snippet | The phenomenon of entropy–enthalpy (S‐H) compensation is widely invoked as an explanatory principle in thermodynamic analyses of proteins, ligands, and nucleic... The phenomenon of entropy-enthalpy (S-H) compensation is widely invoked as an explanatory principle in thermodynamic analyses of proteins, ligands, and nucleic... Abstract The phenomenon of entropy–enthalpy (S‐H) compensation is widely invoked as an explanatory principle in thermodynamic analyses of proteins, ligands,... The phenomenon of entropy–enthalpy (S-H) compensation is widely invoked as an explanatory principle in thermodynamic analyses of proteins, ligands, and nucleic... |
SourceID | pubmedcentral proquest crossref pubmed wiley |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 661 |
SubjectTerms | Calcium-Binding Proteins - chemistry Chemical Phenomena Chemistry, Physical Cytochrome c Group - chemistry enthalpy compensation Entropy For the Record Models, Chemical Protein Folding protein thermodynamics Proteins - chemistry Thermodynamics |
Title | Entropy—enthalpy compensation: Fact or artifact? |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1110%2Fps.37801 https://www.ncbi.nlm.nih.gov/pubmed/11344335 https://search.proquest.com/docview/70825434 https://pubmed.ncbi.nlm.nih.gov/PMC2374136 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB7Ui17Et_VZQcRLd7dJkzZeRBYXH_hAFLyVJE1RcLvFXQ9780f4C_0lTtLWB-LFc0uTfplkvmm_mQHYZYwrhTQ8IHkYBcj_s0AKLYMOF7nuCDwQE5s7fHHJT-6is3t2PwGsyYVxon2tHlvFU79VPD44bWXZ1-1GJ9a-vugSin6Q8vYkTKKBNiF6kwwZkqp_PA-DhPKkrjiLbq5dDls0xiPZVgoNaRRR1-Ttmzv6xTF_SyW_U1jng3pzMFuTR_-omuQ8TJhiARaPCgyc-2N_z3dyTvedfAGmu00rt0Ugx1aPXo7fX99wgAf5VI59qyXHENYtzIHfk3rkD559-_421-FwCe56x7fdk6BulhDoCNEIkGhxbjWbKk4MbqscN6-k3BCZMdy4RBCEnsVURiZLcpUlRGTI1VTH5IQZZGXLMFUMCrMKPidGKoORI1MiYloIFQpNLHIspJpyD3YazNKyqomRVrFEJy2HqYPYg-0GzBRf1v6FkIUZvAzT2AWlNPJgpYL26xn1mngQ_wD98wZbCvvnFbQQVxK7tggP9t3y_Dmt9PrmKrQ0K1z79yDrMPMlRNuAqdHzi9lEZjJSW8jJT8-3nD1-AHo44V0 |
link.rule.ids | 230,315,730,783,787,888,27936,27937,53804,53806 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB1RONBL1QItaSkEqUK9ZDfxV2IuFVqx2haWogokbpHtOAKJzUbscthbf0R_Ib-EsZMUEOLCOVHsPHs8b5I3MwDfOBdaIw2PSJmwCPl_ESlpVBQLWZpY4oGYudzh8YkYnbNfF_xiCXiXC-NF-0Zf9arrSa-6uvTaynpi-p1OrH86HhCKfpCK_htYQXuNWRekd-mQCWk6yIskyqjI2pqz6Oj69axHUzyUXa3QhDJGfZu3Rw7pGct8LpZ8TGK9Fxq-h3ctfQwPmml-gCVbrcH6QYWh82QR7oVe0Om_lK_B6qBr5rYO5NAp0uvF3d9_OMCluq4XoVOTYxDrl2Y_HCozD6c3oUPAZTv82IDz4eHZYBS17RIiwxCPCKmWEE61qdPMomGVaL6KCktUwdF0iSQIPk-pYrbISl1kRBbI1nRsS8It8rKPsFxNK7sJoSBWaYuxI9eScSOlTqQhDjmeUENFALsdZnndVMXIm2gizutZ7iEOYKcDM8eXdf8hVGWnt7M89WEpZQF8aqB9eEa7JgGkT0D_f4Mrhv30Cu4RXxS73RMBfPfL8-K08tM_vxNHtJLPrx5kB1ZHZ-Pj_PjnydEXePsgS9uC5fnNrf2KPGWut_2uvAczvOO6 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BTtwwEB21VKJcEIUWQqEEqap6ySaxYyfmgtDCipYCq6pI3CLbcQQSm43Y5bA3PoIv7JcwdhJYhHrpOVHsvPF43iTPMwBfGeNKIQ0PSBknAfL_IpBCyyDiotSRwA0xs2eHT8_48UXy85JdzrX6cqJ9ra571c2oV11fOW1lPdJhpxMLh6d9QjEOUh7WRRm-hXfosxHvEvXuSGRMmi7yPA4yyrO27iwGu7Ce9GiKG7OtFxrTJKGu1dtcUHrFNF8LJueJrItEgxVYbimkf9BM9QO8MdUqrB1UmD6PZv4334k63dfyVXjf7xq6rQE5sqr0evb3_gEHuJI39cy3inJMZJ159vyB1FN_fOtbFOyJh_2PcDE4-tM_DtqWCYFOEJMA6RbnVrmp0sygc5XowpJyQ2TB0H2JIGgAllKZmCIrVZERUSBjU5EpCTPIzT7BQjWuzAb4nBipDOaPTImEaSFULDSxyLGYaso92O0wy-umMkbeZBRRXk9yB7EHOx2YOb6s_RchKzO-m-SpS01p4sF6A-3zM1qbeJC-AP3pBlsQ--UVXCeuMHa7Ljz47szzz2nlw9_nsSVb8eZ_D7IDi8PDQf7rx9nJZ1h6VqZtwcL09s5sI1WZqi9uUT4CkEDkzQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Entropy-enthalpy+compensation%3A+fact+or+artifact%3F&rft.jtitle=Protein+science&rft.au=Sharp%2C+K&rft.date=2001-03-01&rft.issn=0961-8368&rft.volume=10&rft.issue=3&rft.spage=661&rft_id=info:doi/10.1110%2Fps.37801&rft_id=info%3Apmid%2F11344335&rft.externalDocID=11344335 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0961-8368&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0961-8368&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0961-8368&client=summon |