Entropy—enthalpy compensation: Fact or artifact?

The phenomenon of entropy–enthalpy (S‐H) compensation is widely invoked as an explanatory principle in thermodynamic analyses of proteins, ligands, and nucleic acids. It has been suggested that this compensation is an intrinsic property of either complex, fluctuating, or aqueous systems. The questio...

Full description

Saved in:
Bibliographic Details
Published inProtein science Vol. 10; no. 3; pp. 661 - 667
Main Author Sharp, Kim
Format Journal Article
LanguageEnglish
Published Bristol Cold Spring Harbor Laboratory Press 01.03.2001
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The phenomenon of entropy–enthalpy (S‐H) compensation is widely invoked as an explanatory principle in thermodynamic analyses of proteins, ligands, and nucleic acids. It has been suggested that this compensation is an intrinsic property of either complex, fluctuating, or aqueous systems. The questions examined here are whether the observed compensation is extra‐thermodynamic (i.e., reflects anything more than the well‐known laws of statistical thermodynamics) and if so, what does it reveal about the system? Compensation is rather variably defined in the literature and different usages are discussed. The most precise and interesting one, which is considered here, is a linear relationship between ΔH and ΔS for some series of perturbations or changes in experimental variable. Some recent thermodynamic data on proteins purporting to show compensation is analyzed and shown to be better explained by other causes. A general statistical mechanical model of a complex system is analyzed to explore whether and under what conditions extra‐thermodynamic compensation can occur and what it reveals about the system. This model shows that the most likely behavior to be seen is linear S‐H compensation over a rather limited range of perturbations with a compensation temperature Tc = dΔH/dΔS within 20% of the experimental temperature. This behavior is insensitive to the details of the model, thus revealing little extra‐thermodynamic or causal information about the system. In addition, it will likely be difficult to distinguish this from more trivial forms of compensation in real experimental systems.
AbstractList The phenomenon of entropy-enthalpy (S-H) compensation is widely invoked as an explanatory principle in thermodynamic analyses of proteins, ligands, and nucleic acids. It has been suggested that this compensation is an intrinsic property of either complex, fluctuating, or aqueous systems. The questions examined here are whether the observed compensation is extra-thermodynamic (i.e., reflects anything more than the well-known laws of statistical thermodynamics) and if so, what does it reveal about the system? Compensation is rather variably defined in the literature and different usages are discussed. The most precise and interesting one, which is considered here, is a linear relationship between DeltaH and DeltaS for some series of perturbations or changes in experimental variable. Some recent thermodynamic data on proteins purporting to show compensation is analyzed and shown to be better explained by other causes. A general statistical mechanical model of a complex system is analyzed to explore whether and under what conditions extra-thermodynamic compensation can occur and what it reveals about the system. This model shows that the most likely behavior to be seen is linear S-H compensation over a rather limited range of perturbations with a compensation temperature Tc = dDeltaH/dDeltaS within 20% of the experimental temperature. This behavior is insensitive to the details of the model, thus revealing little extra-thermodynamic or causal information about the system. In addition, it will likely be difficult to distinguish this from more trivial forms of compensation in real experimental systems.
The phenomenon of entropy–enthalpy (S‐H) compensation is widely invoked as an explanatory principle in thermodynamic analyses of proteins, ligands, and nucleic acids. It has been suggested that this compensation is an intrinsic property of either complex, fluctuating, or aqueous systems. The questions examined here are whether the observed compensation is extra‐thermodynamic (i.e., reflects anything more than the well‐known laws of statistical thermodynamics) and if so, what does it reveal about the system? Compensation is rather variably defined in the literature and different usages are discussed. The most precise and interesting one, which is considered here, is a linear relationship between ΔH and ΔS for some series of perturbations or changes in experimental variable. Some recent thermodynamic data on proteins purporting to show compensation is analyzed and shown to be better explained by other causes. A general statistical mechanical model of a complex system is analyzed to explore whether and under what conditions extra‐thermodynamic compensation can occur and what it reveals about the system. This model shows that the most likely behavior to be seen is linear S‐H compensation over a rather limited range of perturbations with a compensation temperature Tc = dΔH/dΔS within 20% of the experimental temperature. This behavior is insensitive to the details of the model, thus revealing little extra‐thermodynamic or causal information about the system. In addition, it will likely be difficult to distinguish this from more trivial forms of compensation in real experimental systems.
Abstract The phenomenon of entropy–enthalpy (S‐H) compensation is widely invoked as an explanatory principle in thermodynamic analyses of proteins, ligands, and nucleic acids. It has been suggested that this compensation is an intrinsic property of either complex, fluctuating, or aqueous systems. The questions examined here are whether the observed compensation is extra‐thermodynamic (i.e., reflects anything more than the well‐known laws of statistical thermodynamics) and if so, what does it reveal about the system? Compensation is rather variably defined in the literature and different usages are discussed. The most precise and interesting one, which is considered here, is a linear relationship between ΔH and ΔS for some series of perturbations or changes in experimental variable. Some recent thermodynamic data on proteins purporting to show compensation is analyzed and shown to be better explained by other causes. A general statistical mechanical model of a complex system is analyzed to explore whether and under what conditions extra‐thermodynamic compensation can occur and what it reveals about the system. This model shows that the most likely behavior to be seen is linear S‐H compensation over a rather limited range of perturbations with a compensation temperature Tc = dΔH/dΔS within 20% of the experimental temperature. This behavior is insensitive to the details of the model, thus revealing little extra‐thermodynamic or causal information about the system. In addition, it will likely be difficult to distinguish this from more trivial forms of compensation in real experimental systems.
Author Sharp, Kim
AuthorAffiliation Johnson Research Foundation, Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
AuthorAffiliation_xml – name: Johnson Research Foundation, Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
Author_xml – sequence: 1
  givenname: Kim
  surname: Sharp
  fullname: Sharp, Kim
  email: sharpk@mail.med.upenn.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/11344335$$D View this record in MEDLINE/PubMed
BookMark eNp1kM9Kw0AQhxdRtFbBJ5CcxEvamd3NZuNBkWJVEBRR8LZsko2NpNm4myq9-RA-oU9iaot_Dp5mYD6-3_DbJuu1rQ0hewgDRIRh4wcsloBrpIdcJKFMxMM66UEiMJRMyC2y7f0TAHCkbJNsITLOGYt6hJ7VrbPN_OPt3dTtRFfNPMjstDG1121p66NgrLM2sC7Qri2Lbj_ZIRuFrrzZXc0-uR-f3Y0uwqvr88vR6VWY8ZhjGIEUgiNEaSwNJqJgEGsmDNV5BAxpQjNIophpbnJZpLmkSQ5RnIIpaGRQsD45XnqbWTo1edb953SlGldOtZsrq0v191KXE_VoXxRlXT5bCA5WAmefZ8a3alr6zFSVro2deRWDpBFnvAMPl2DmrPfOFN8hCGpRsGq8-iq4Q_d_P_UDrhrtgOESeC0rM_9XpG5urxFACGSfRLKGug
CitedBy_id crossref_primary_10_1002_mabi_201800425
crossref_primary_10_1002_bip_20457
crossref_primary_10_1007_s00396_010_2308_5
crossref_primary_10_1016_j_fluid_2015_05_048
crossref_primary_10_1021_ja047115d
crossref_primary_10_1021_ja208503y
crossref_primary_10_1016_j_bbagen_2022_130153
crossref_primary_10_1093_nar_gkt237
crossref_primary_10_1093_nar_gkv414
crossref_primary_10_1016_j_bpc_2015_05_009
crossref_primary_10_1021_ct5004109
crossref_primary_10_1039_C6CP07888E
crossref_primary_10_1002_jmr_1025
crossref_primary_10_1021_jm100112j
crossref_primary_10_1021_acs_jpcb_6b05890
crossref_primary_10_1111_gcb_15053
crossref_primary_10_1146_annurev_biophys_070816_033743
crossref_primary_10_1021_ol0475966
crossref_primary_10_1021_ct100245n
crossref_primary_10_1016_j_compbiolchem_2018_06_005
crossref_primary_10_1021_acs_jpcb_5b09925
crossref_primary_10_1016_j_bbamem_2010_06_006
crossref_primary_10_1016_j_colsurfb_2015_06_013
crossref_primary_10_1039_C6CP07899K
crossref_primary_10_1002_adsu_201900043
crossref_primary_10_1021_jp506716d
crossref_primary_10_3390_molecules28207216
crossref_primary_10_1016_j_drudis_2019_01_014
crossref_primary_10_1016_S0301_4622_02_00282_X
crossref_primary_10_1016_j_bpj_2022_01_005
crossref_primary_10_1063_1_1644094
crossref_primary_10_1529_biophysj_108_142448
crossref_primary_10_1142_S0219633604001161
crossref_primary_10_1371_journal_pcbi_1000722
crossref_primary_10_1002_asia_200600360
crossref_primary_10_3390_ijms231911381
crossref_primary_10_1002_cbic_201000341
crossref_primary_10_1016_j_chemphys_2018_04_007
crossref_primary_10_1016_j_fluid_2014_03_021
crossref_primary_10_1134_S002315841401011X
crossref_primary_10_1021_ma049903t
crossref_primary_10_1002_cmdc_201400013
crossref_primary_10_1021_acs_jpclett_4c00734
crossref_primary_10_1016_j_bpc_2006_05_006
crossref_primary_10_1016_j_jcis_2009_05_064
crossref_primary_10_1039_B915870G
crossref_primary_10_1007_s00706_020_02710_6
crossref_primary_10_1021_jp210265d
crossref_primary_10_1002_anie_201602797
crossref_primary_10_1021_jm030373l
crossref_primary_10_1021_acs_macromol_0c01746
crossref_primary_10_1021_jp045922t
crossref_primary_10_1002_ange_200200565
crossref_primary_10_1016_j_chroma_2016_03_041
crossref_primary_10_1134_S0036024416120268
crossref_primary_10_1007_s11172_015_1189_7
crossref_primary_10_1046_j_1432_1033_2003_03889_x
crossref_primary_10_1016_j_molliq_2018_11_107
crossref_primary_10_1063_1_4996448
crossref_primary_10_3390_molecules26113091
crossref_primary_10_1002_prot_24741
crossref_primary_10_1103_PhysRevE_98_032128
crossref_primary_10_1021_acs_jcim_2c00507
crossref_primary_10_1021_acsomega_3c07563
crossref_primary_10_1021_jacs_1c08198
crossref_primary_10_1021_acs_jpcb_2c09043
crossref_primary_10_1073_pnas_1104989108
crossref_primary_10_1007_s10450_017_9900_7
crossref_primary_10_1016_j_addr_2003_10_019
crossref_primary_10_1016_j_bbabio_2014_11_002
crossref_primary_10_1016_j_bcab_2017_01_008
crossref_primary_10_1021_acs_jpca_6b08079
crossref_primary_10_1111_j_1365_2435_2006_01109_x
crossref_primary_10_1002_1873_3468_13556
crossref_primary_10_1016_j_molliq_2013_09_030
crossref_primary_10_1515_hf_2015_0251
crossref_primary_10_1002_anie_200200565
crossref_primary_10_1021_acs_chemrev_5b00583
crossref_primary_10_1021_acs_jpcb_9b07448
crossref_primary_10_1021_cb5008025
crossref_primary_10_1016_j_foodhyd_2015_04_017
crossref_primary_10_1021_ja054519c
crossref_primary_10_1007_s00231_016_1916_0
crossref_primary_10_1021_la102613f
crossref_primary_10_1002_hlca_200790091
crossref_primary_10_1007_s11144_020_01898_2
crossref_primary_10_1021_bi400590h
crossref_primary_10_1016_j_jmb_2008_10_056
crossref_primary_10_1002_app_25766
crossref_primary_10_1007_s00706_021_02804_9
crossref_primary_10_1021_la803272y
crossref_primary_10_3390_biophysica4020021
crossref_primary_10_1021_bm5004515
crossref_primary_10_1080_02656736_2017_1363418
crossref_primary_10_1063_1_4733951
crossref_primary_10_1016_j_bbapap_2005_12_007
crossref_primary_10_3390_ijms241310630
crossref_primary_10_1002_asia_200900679
crossref_primary_10_1021_acs_jctc_1c00714
crossref_primary_10_1016_j_chemphys_2008_09_004
crossref_primary_10_1021_ja9056739
crossref_primary_10_1021_bi701778x
crossref_primary_10_3390_su15086596
crossref_primary_10_1002_polb_24557
crossref_primary_10_1016_j_jmb_2005_09_045
crossref_primary_10_1021_acs_jpcb_1c00269
crossref_primary_10_3389_fendo_2022_1029177
crossref_primary_10_1002_prot_23166
crossref_primary_10_1016_j_ab_2008_08_010
crossref_primary_10_1111_febs_12360
crossref_primary_10_2478_s11532_011_0103_x
crossref_primary_10_1002_jmr_1074
crossref_primary_10_1021_ja075975z
crossref_primary_10_1016_j_tet_2004_07_079
crossref_primary_10_1002_bip_23106
crossref_primary_10_1002_chem_201002340
crossref_primary_10_1016_j_ejps_2015_09_011
crossref_primary_10_1021_bi901392k
crossref_primary_10_1021_ie403054z
crossref_primary_10_1021_ja4075776
crossref_primary_10_1038_s41598_023_45803_y
crossref_primary_10_1529_biophysj_105_063396
crossref_primary_10_1038_nrd4486
crossref_primary_10_1016_j_biortech_2013_12_016
crossref_primary_10_1021_ic101220v
crossref_primary_10_1021_jp305476x
crossref_primary_10_1080_00268976_2016_1225129
crossref_primary_10_1021_ci2002395
crossref_primary_10_1007_s10822_005_8483_7
crossref_primary_10_3389_fmolb_2023_1210576
crossref_primary_10_1074_jbc_M110_154989
crossref_primary_10_1007_s10847_010_9831_3
crossref_primary_10_1007_s11144_017_1340_6
crossref_primary_10_1002_bip_20983
crossref_primary_10_1021_ja073902
crossref_primary_10_1529_biophysj_104_049494
crossref_primary_10_3390_molecules27207009
crossref_primary_10_1039_c2sm25160d
crossref_primary_10_1021_ja011746f
crossref_primary_10_1016_j_mam_2021_101042
crossref_primary_10_1371_journal_pone_0191138
crossref_primary_10_3390_e16084375
crossref_primary_10_1021_jp2012039
crossref_primary_10_1016_j_foodres_2017_03_004
crossref_primary_10_1021_acsomega_9b01440
crossref_primary_10_1038_s41557_021_00646_w
crossref_primary_10_1016_j_cis_2018_03_003
crossref_primary_10_1039_b820487j
crossref_primary_10_1021_jp210769q
crossref_primary_10_1016_j_chroma_2009_10_022
crossref_primary_10_1016_j_molliq_2020_113833
crossref_primary_10_1021_jacs_7b00229
crossref_primary_10_1088_1674_1056_26_3_030506
crossref_primary_10_1002_chem_201300587
crossref_primary_10_1111_j_1432_1033_2004_4142_x
crossref_primary_10_1016_j_cplett_2022_139412
crossref_primary_10_1016_j_bmc_2015_02_052
crossref_primary_10_1021_bi1004359
crossref_primary_10_1016_j_colsurfa_2016_02_007
crossref_primary_10_1021_ie0207257
crossref_primary_10_3390_molecules27217561
crossref_primary_10_1016_j_bpj_2009_02_015
crossref_primary_10_1093_nar_gkq124
crossref_primary_10_1021_ja056600l
crossref_primary_10_1021_jp075784i
crossref_primary_10_1529_biophysj_108_130609
crossref_primary_10_1016_S0301_4622_01_00222_8
crossref_primary_10_1039_c4ra00348a
crossref_primary_10_1016_j_jct_2014_10_014
crossref_primary_10_1007_s10930_019_09822_x
crossref_primary_10_1002_ejlt_202100098
crossref_primary_10_1002_bip_20963
crossref_primary_10_1016_j_tet_2007_06_065
crossref_primary_10_1007_s10847_009_9593_y
crossref_primary_10_1016_S0040_4020_01_01090_0
crossref_primary_10_1111_j_1742_4658_2011_08124_x
crossref_primary_10_1002_app_38110
crossref_primary_10_1002_prot_21617
crossref_primary_10_1021_jp304537m
crossref_primary_10_1039_c3cp52158c
crossref_primary_10_1021_acs_jpcc_6b07954
crossref_primary_10_1021_bi3006169
crossref_primary_10_1016_j_jmb_2011_07_028
crossref_primary_10_1016_j_jphotochem_2023_115190
crossref_primary_10_1021_ja071642q
crossref_primary_10_1016_j_jmb_2009_10_015
crossref_primary_10_1016_j_bpc_2017_03_001
crossref_primary_10_1074_jbc_M110_154914
crossref_primary_10_1021_ct400003r
crossref_primary_10_1016_j_cplett_2023_140329
crossref_primary_10_1002_anie_202006457
crossref_primary_10_1039_D3CP05347D
crossref_primary_10_1007_s40828_016_0034_4
crossref_primary_10_1016_j_fluid_2014_05_020
crossref_primary_10_1021_ja910535j
crossref_primary_10_1021_la303281d
crossref_primary_10_1007_s11172_020_2868_6
crossref_primary_10_1016_j_cocis_2013_10_002
crossref_primary_10_1016_j_jmb_2012_09_009
crossref_primary_10_1140_epjst_e2013_01818_y
crossref_primary_10_1016_j_foodres_2017_05_025
crossref_primary_10_1073_pnas_0401160101
crossref_primary_10_1134_S0036024413120224
crossref_primary_10_1515_zpch_2017_1007
crossref_primary_10_1016_S0040_4039_03_00013_3
crossref_primary_10_3390_ijms24065528
crossref_primary_10_1021_jp401049h
crossref_primary_10_1021_acs_jctc_9b00145
crossref_primary_10_3390_su15064795
crossref_primary_10_1016_j_cbi_2012_09_012
crossref_primary_10_1074_jbc_M103348200
crossref_primary_10_1016_j_aej_2022_08_035
crossref_primary_10_1039_C4NR03811H
crossref_primary_10_1021_ol049181q
crossref_primary_10_1073_pnas_1213180109
crossref_primary_10_1039_c3ra47960a
crossref_primary_10_1128_JVI_01900_05
crossref_primary_10_1016_j_jmb_2008_09_073
crossref_primary_10_1007_s00706_012_0839_9
crossref_primary_10_1002_hlca_201400156
crossref_primary_10_1021_cb300191k
crossref_primary_10_1146_annurev_biophys_083012_130318
crossref_primary_10_1002_ijch_202000032
crossref_primary_10_1021_acs_biochem_7b00156
crossref_primary_10_1016_j_abb_2006_03_027
crossref_primary_10_1111_j_1742_4658_2009_06939_x
crossref_primary_10_1002_ange_201602797
crossref_primary_10_1007_s00706_012_0842_1
crossref_primary_10_1016_j_biortech_2012_03_094
crossref_primary_10_1063_1_4960435
crossref_primary_10_1002_cbic_200800126
crossref_primary_10_1134_S1070363219120053
crossref_primary_10_1021_acs_joc_8b02797
crossref_primary_10_1021_bi802339c
crossref_primary_10_1021_acs_biomac_7b00994
crossref_primary_10_1021_ja904698q
crossref_primary_10_3390_liquids3010002
crossref_primary_10_1007_BF02703768
crossref_primary_10_1002_bip_22556
crossref_primary_10_1002_chem_202200529
crossref_primary_10_1002_prot_24875
crossref_primary_10_1021_acs_jpcb_5b04262
crossref_primary_10_1039_B603168B
crossref_primary_10_1021_cr010031s
crossref_primary_10_1134_S0036024422110309
crossref_primary_10_1021_acs_jctc_5b00405
crossref_primary_10_1088_0953_8984_17_18_006
crossref_primary_10_1088_1742_5468_ab4e91
crossref_primary_10_1002_bkcs_11681
crossref_primary_10_1016_j_bmc_2013_01_043
crossref_primary_10_7498_aps_69_20200707
crossref_primary_10_1016_j_abb_2012_08_009
crossref_primary_10_1016_j_fluid_2004_06_023
crossref_primary_10_1016_j_sbi_2017_06_001
crossref_primary_10_1002_prot_10189
crossref_primary_10_1039_C9NJ03325D
crossref_primary_10_1016_j_jbiosc_2017_02_002
crossref_primary_10_1002_pro_692
crossref_primary_10_1002_ange_202006457
crossref_primary_10_1021_acs_chemrev_5b00630
crossref_primary_10_1021_la034783o
crossref_primary_10_1021_jz301672e
crossref_primary_10_1002_bip_20926
crossref_primary_10_1021_ct501161t
crossref_primary_10_1039_c2sm07021a
crossref_primary_10_1080_0144235X_2013_802109
crossref_primary_10_1021_acsomega_0c00332
crossref_primary_10_1002_pro_5013
crossref_primary_10_1021_la200917y
crossref_primary_10_1080_07391102_2004_10506973
crossref_primary_10_1038_s42004_019_0242_0
crossref_primary_10_1016_j_ifacol_2019_12_551
crossref_primary_10_1021_jp2043174
crossref_primary_10_1021_ja066961g
crossref_primary_10_1063_1_1648013
crossref_primary_10_1039_C4MD00057A
crossref_primary_10_1002_ijch_201100044
crossref_primary_10_1002_jmr_896
crossref_primary_10_1016_j_cplett_2006_10_038
crossref_primary_10_1261_rna_2235010
crossref_primary_10_1007_s10973_022_11200_2
crossref_primary_10_1021_acs_chemrev_2c00659
crossref_primary_10_1016_j_heliyon_2019_e01839
crossref_primary_10_1021_acs_jpcc_6b11571
crossref_primary_10_1021_ie504110n
crossref_primary_10_1007_s12038_017_9719_0
crossref_primary_10_1021_bi5002344
crossref_primary_10_1016_j_biortech_2012_09_087
crossref_primary_10_1074_jbc_R114_565515
crossref_primary_10_1371_journal_pone_0135421
crossref_primary_10_1016_j_ijbiomac_2018_08_012
crossref_primary_10_1021_acs_jpcb_5b09219
crossref_primary_10_1002_bip_20599
crossref_primary_10_1016_S0040_4020_03_00978_5
crossref_primary_10_1021_cr050262p
crossref_primary_10_1146_annurev_biochem_060410_105819
crossref_primary_10_1016_j_bpj_2022_05_008
crossref_primary_10_1021_jm501511f
crossref_primary_10_1074_jbc_AC117_001649
crossref_primary_10_1021_jz1012142
crossref_primary_10_1039_c1dt10055f
crossref_primary_10_1002_ange_200802947
crossref_primary_10_1016_j_enzmictec_2016_04_012
crossref_primary_10_1016_j_jmb_2004_08_019
crossref_primary_10_1002_cmdc_201800438
crossref_primary_10_1016_j_bbagrm_2014_04_014
crossref_primary_10_1110_ps_04912605
crossref_primary_10_1186_1752_153X_1_29
crossref_primary_10_1038_nmat4409
crossref_primary_10_1517_17460441_2012_666235
crossref_primary_10_1021_jacs_8b02129
crossref_primary_10_1209_0295_5075_92_13004
crossref_primary_10_1529_biophysj_106_082115
crossref_primary_10_1002_jssc_200400043
crossref_primary_10_1039_C1CP22666E
crossref_primary_10_1246_cl_2012_1374
crossref_primary_10_1007_s13361_018_2034_7
crossref_primary_10_1529_biophysj_104_045179
crossref_primary_10_1007_s10953_022_01180_0
crossref_primary_10_1016_j_molliq_2019_03_060
crossref_primary_10_1021_ja500094z
crossref_primary_10_1111_php_12760
crossref_primary_10_1021_acs_chemmater_9b01908
crossref_primary_10_1002_cphc_202100033
crossref_primary_10_1002_anie_200802947
crossref_primary_10_1016_j_cis_2021_102375
crossref_primary_10_1021_acs_jctc_7b00899
crossref_primary_10_1021_bi500711x
crossref_primary_10_1080_07391102_2020_1734488
crossref_primary_10_1093_nar_gkaa283
crossref_primary_10_1073_pnas_0404311101
Cites_doi 10.1063/1.472728
10.1016/S0021-9258(18)35764-8
10.1016/S0065-3233(08)60377-0
10.1006/jmbi.1999.2924
10.1021/bi991718y
10.1021/bi00285a025
10.1016/0076-6879(95)59065-X
10.1021/ja974061h
10.1063/1.477669
10.1021/j100003a031
10.1038/261566a0
10.1002/bip.1970.360091002
10.1063/1.447824
ContentType Journal Article
Copyright Copyright © 2001 The Protein Society
Copyright © Copyright 2001 The Protein Society
Copyright_xml – notice: Copyright © 2001 The Protein Society
– notice: Copyright © Copyright 2001 The Protein Society
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
5PM
DOI 10.1110/ps.37801
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1469-896X
EndPage 667
ExternalDocumentID 10_1110_ps_37801
11344335
PRO100661
Genre miscellaneous
Research Support, U.S. Gov't, Non-P.H.S
Research Support, U.S. Gov't, P.H.S
Journal Article
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: GM 54105
– fundername: NIGMS NIH HHS
  grantid: R01 GM054105
GroupedDBID ---
.GJ
05W
0R~
123
1L6
1OC
24P
29P
2WC
31~
33P
3SF
3WU
4.4
52U
53G
5RE
6TJ
8-0
8-1
8UM
A00
A8Z
AAESR
AAEVG
AAHHS
AAIHA
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCUV
ABGDZ
ABLJU
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACIWK
ACPOU
ACPRK
ACQPF
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
AOIJS
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
C1A
C45
CAG
COF
CS3
DCZOG
DIK
DRFUL
DRSTM
DU5
E3Z
EBD
EBS
EJD
EMOBN
ESTFP
F5P
G-S
GODZA
GX1
HGLYW
HH5
HYE
HZ~
IH2
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
NNB
O66
O9-
OIG
OK1
OVD
P2P
P2W
P4E
PQQKQ
QRW
RCA
RIG
ROL
RPM
RWI
SJN
SUPJJ
SV3
TEORI
TR2
WBKPD
WIH
WIK
WIN
WNSPC
WOHZO
WOQ
WXSBR
WYISQ
WYJ
XV2
Y6R
YKV
ZGI
ZXP
ZZTAW
~02
~S-
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
5PM
ID FETCH-LOGICAL-c4741-508664105b78e196f307a36e2ad5031292c09573a4ed8fbd829d057b0ef25e163
IEDL.DBID RPM
ISSN 0961-8368
IngestDate Tue Sep 17 20:49:55 EDT 2024
Sat Aug 17 03:43:43 EDT 2024
Fri Aug 23 03:51:20 EDT 2024
Sat Sep 28 07:37:10 EDT 2024
Sat Aug 24 00:50:02 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4741-508664105b78e196f307a36e2ad5031292c09573a4ed8fbd829d057b0ef25e163
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Reprint requests to: Kim Sharp, Johnson Research Foundation, Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA ; e-mail: sharpk@mail.med.upenn.edu; fax: 215-898-4217.
Article and publication are at www.proteinscience.org/cgi/doi/10.1110/
OpenAccessLink https://europepmc.org/articles/pmc2374136?pdf=render
PMID 11344335
PQID 70825434
PQPubID 23479
PageCount 7
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2374136
proquest_miscellaneous_70825434
crossref_primary_10_1110_ps_37801
pubmed_primary_11344335
wiley_primary_10_1110_ps_37801_PRO100661
PublicationCentury 2000
PublicationDate March 2001
PublicationDateYYYYMMDD 2001-03-01
PublicationDate_xml – month: 03
  year: 2001
  text: March 2001
PublicationDecade 2000
PublicationPlace Bristol
PublicationPlace_xml – name: Bristol
– name: United States
PublicationTitle Protein science
PublicationTitleAlternate Protein Sci
PublicationYear 2001
Publisher Cold Spring Harbor Laboratory Press
Publisher_xml – name: Cold Spring Harbor Laboratory Press
References 1970; 9
1984; 81
1976; 261
2000; 39
1992; 267
1999; 290
1995; 99
1988; 39
1986
1995; 259
1998; 109
1983; 22
1998; 120
1996; 105
10625500 - Biochemistry. 2000 Jan 11;39(1):248-54
4918636 - Biopolymers. 1970;9(10):1125-227
10395831 - J Mol Biol. 1999 Jul 16;290(3):811-22
8538476 - Methods Enzymol. 1995;259:628-720
3072868 - Adv Protein Chem. 1988;39:191-234
1447179 - J Biol Chem. 1992 Dec 5;267(34):24297-301
6615806 - Biochemistry. 1983 Aug 2;22(16):3884-96
e_1_2_5_15_1
e_1_2_5_14_1
e_1_2_5_9_1
e_1_2_5_11_1
e_1_2_5_7_1
e_1_2_5_10_1
e_1_2_5_13_1
e_1_2_5_5_1
e_1_2_5_12_1
e_1_2_5_4_1
e_1_2_5_3_1
e_1_2_5_2_1
Hill T. (e_1_2_5_6_1) 1986
Kuroki R. (e_1_2_5_8_1) 1992; 267
References_xml – year: 1986
– volume: 261
  start-page: 566
  year: 1976
  end-page: 567
  article-title: Statistical interpretation of enthalpy–entropy compensation
  publication-title: Nature.
– volume: 120
  start-page: 4526
  year: 1998
  end-page: 4527
  article-title: Entropy–enthalpy compensation in solvation and ligand binding revisited
  publication-title: J. Am. Chem. Soc.
– volume: 39
  start-page: 191
  year: 1988
  end-page: 234
  article-title: Stability of protein structure and hydrophobic interaction
  publication-title: Adv. Prot. Chem.
– volume: 81
  start-page: 2016
  year: 1984
  end-page: 2027
  article-title: Solvation thermodynamics of nonionic solutes
  publication-title: J. Chem. Phys.
– volume: 259
  start-page: 628
  year: 1995
  article-title: On the interpretation of data from isothermal processes
  publication-title: Meth. Enzymol.
– volume: 9
  start-page: 1125
  year: 1970
  end-page: 1227
  article-title: Enthalpy–entropy compensation phenomena in water solutions of proteins and small molecules: A ubiquitous property of water
  publication-title: Biopolymers.
– volume: 39
  start-page: 248
  year: 2000
  end-page: 254
  article-title: Comparisons of pressure and temperature activation parameters for amide hydrogen exchange in T4 lysozyme
  publication-title: Biochemistry
– volume: 267
  start-page: 24297
  year: 1992
  end-page: 24301
  article-title: Thermodynamic changes in binding of Ca to a mutant human lysozyme
  publication-title: J. Biol. Chem.
– volume: 290
  start-page: 811
  year: 1999
  end-page: 822
  article-title: Experimental study of the protein folding landscape: Unfolding reactions in Cytochrome c
  publication-title: J. Mol. Biol.
– volume: 22
  start-page: 3884
  year: 1983
  end-page: 3896
  article-title: Enthalpy–entropy compensation and heat capacity changes for protein ligand interactions: General thermodynamic models and data for the binding of nucleotides to Ribonuclease A
  publication-title: Biochemistry
– volume: 109
  start-page: 10015
  year: 1998
  end-page: 10017
  article-title: Entropy–enthalpy compensation: Conformational fluctuation and induced fit
  publication-title: J. Chem. Phys.
– volume: 99
  start-page: 1052
  year: 1995
  end-page: 1059
  article-title: Van't Hoff revisited: Enthalpy of association of protein subunits
  publication-title: J. Phys. Chem.
– volume: 105
  start-page: 9292
  year: 1996
  end-page: 9299
  article-title: Entropy–enthalpy compensation: Perturbation and relaxation in thermodynamic systems
  publication-title: J. Phys. Chem.
– ident: e_1_2_5_14_1
  doi: 10.1063/1.472728
– volume-title: An Introduction to Statistical Thermodynamics
  year: 1986
  ident: e_1_2_5_6_1
  contributor:
    fullname: Hill T.
– volume: 267
  start-page: 24297
  year: 1992
  ident: e_1_2_5_8_1
  article-title: Thermodynamic changes in binding of Ca2 + to a mutant human lysozyme
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)35764-8
  contributor:
    fullname: Kuroki R.
– ident: e_1_2_5_12_1
  doi: 10.1016/S0065-3233(08)60377-0
– ident: e_1_2_5_11_1
  doi: 10.1006/jmbi.1999.2924
– ident: e_1_2_5_3_1
  doi: 10.1021/bi991718y
– ident: e_1_2_5_4_1
  doi: 10.1021/bi00285a025
– ident: e_1_2_5_9_1
  doi: 10.1016/0076-6879(95)59065-X
– ident: e_1_2_5_5_1
  doi: 10.1021/ja974061h
– ident: e_1_2_5_13_1
  doi: 10.1063/1.477669
– ident: e_1_2_5_15_1
  doi: 10.1021/j100003a031
– ident: e_1_2_5_7_1
  doi: 10.1038/261566a0
– ident: e_1_2_5_10_1
  doi: 10.1002/bip.1970.360091002
– ident: e_1_2_5_2_1
  doi: 10.1063/1.447824
SSID ssj0004123
Score 2.2565353
Snippet The phenomenon of entropy–enthalpy (S‐H) compensation is widely invoked as an explanatory principle in thermodynamic analyses of proteins, ligands, and nucleic...
The phenomenon of entropy-enthalpy (S-H) compensation is widely invoked as an explanatory principle in thermodynamic analyses of proteins, ligands, and nucleic...
Abstract The phenomenon of entropy–enthalpy (S‐H) compensation is widely invoked as an explanatory principle in thermodynamic analyses of proteins, ligands,...
The phenomenon of entropy–enthalpy (S-H) compensation is widely invoked as an explanatory principle in thermodynamic analyses of proteins, ligands, and nucleic...
SourceID pubmedcentral
proquest
crossref
pubmed
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 661
SubjectTerms Calcium-Binding Proteins - chemistry
Chemical Phenomena
Chemistry, Physical
Cytochrome c Group - chemistry
enthalpy compensation
Entropy
For the Record
Models, Chemical
Protein Folding
protein thermodynamics
Proteins - chemistry
Thermodynamics
Title Entropy—enthalpy compensation: Fact or artifact?
URI https://onlinelibrary.wiley.com/doi/abs/10.1110%2Fps.37801
https://www.ncbi.nlm.nih.gov/pubmed/11344335
https://search.proquest.com/docview/70825434
https://pubmed.ncbi.nlm.nih.gov/PMC2374136
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB7Ui17Et_VZQcRLd7dJkzZeRBYXH_hAFLyVJE1RcLvFXQ9780f4C_0lTtLWB-LFc0uTfplkvmm_mQHYZYwrhTQ8IHkYBcj_s0AKLYMOF7nuCDwQE5s7fHHJT-6is3t2PwGsyYVxon2tHlvFU79VPD44bWXZ1-1GJ9a-vugSin6Q8vYkTKKBNiF6kwwZkqp_PA-DhPKkrjiLbq5dDls0xiPZVgoNaRRR1-Ttmzv6xTF_SyW_U1jng3pzMFuTR_-omuQ8TJhiARaPCgyc-2N_z3dyTvedfAGmu00rt0Ugx1aPXo7fX99wgAf5VI59qyXHENYtzIHfk3rkD559-_421-FwCe56x7fdk6BulhDoCNEIkGhxbjWbKk4MbqscN6-k3BCZMdy4RBCEnsVURiZLcpUlRGTI1VTH5IQZZGXLMFUMCrMKPidGKoORI1MiYloIFQpNLHIspJpyD3YazNKyqomRVrFEJy2HqYPYg-0GzBRf1v6FkIUZvAzT2AWlNPJgpYL26xn1mngQ_wD98wZbCvvnFbQQVxK7tggP9t3y_Dmt9PrmKrQ0K1z79yDrMPMlRNuAqdHzi9lEZjJSW8jJT8-3nD1-AHo44V0
link.rule.ids 230,315,730,783,787,888,27936,27937,53804,53806
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB1RONBL1QItaSkEqUK9ZDfxV2IuFVqx2haWogokbpHtOAKJzUbscthbf0R_Ib-EsZMUEOLCOVHsPHs8b5I3MwDfOBdaIw2PSJmwCPl_ESlpVBQLWZpY4oGYudzh8YkYnbNfF_xiCXiXC-NF-0Zf9arrSa-6uvTaynpi-p1OrH86HhCKfpCK_htYQXuNWRekd-mQCWk6yIskyqjI2pqz6Oj69axHUzyUXa3QhDJGfZu3Rw7pGct8LpZ8TGK9Fxq-h3ctfQwPmml-gCVbrcH6QYWh82QR7oVe0Om_lK_B6qBr5rYO5NAp0uvF3d9_OMCluq4XoVOTYxDrl2Y_HCozD6c3oUPAZTv82IDz4eHZYBS17RIiwxCPCKmWEE61qdPMomGVaL6KCktUwdF0iSQIPk-pYrbISl1kRBbI1nRsS8It8rKPsFxNK7sJoSBWaYuxI9eScSOlTqQhDjmeUENFALsdZnndVMXIm2gizutZ7iEOYKcDM8eXdf8hVGWnt7M89WEpZQF8aqB9eEa7JgGkT0D_f4Mrhv30Cu4RXxS73RMBfPfL8-K08tM_vxNHtJLPrx5kB1ZHZ-Pj_PjnydEXePsgS9uC5fnNrf2KPGWut_2uvAczvOO6
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BTtwwEB21VKJcEIUWQqEEqap6ySaxYyfmgtDCipYCq6pI3CLbcQQSm43Y5bA3PoIv7JcwdhJYhHrpOVHsvPF43iTPMwBfGeNKIQ0PSBknAfL_IpBCyyDiotSRwA0xs2eHT8_48UXy85JdzrX6cqJ9ra571c2oV11fOW1lPdJhpxMLh6d9QjEOUh7WRRm-hXfosxHvEvXuSGRMmi7yPA4yyrO27iwGu7Ce9GiKG7OtFxrTJKGu1dtcUHrFNF8LJueJrItEgxVYbimkf9BM9QO8MdUqrB1UmD6PZv4334k63dfyVXjf7xq6rQE5sqr0evb3_gEHuJI39cy3inJMZJ159vyB1FN_fOtbFOyJh_2PcDE4-tM_DtqWCYFOEJMA6RbnVrmp0sygc5XowpJyQ2TB0H2JIGgAllKZmCIrVZERUSBjU5EpCTPIzT7BQjWuzAb4nBipDOaPTImEaSFULDSxyLGYaso92O0wy-umMkbeZBRRXk9yB7EHOx2YOb6s_RchKzO-m-SpS01p4sF6A-3zM1qbeJC-AP3pBlsQ--UVXCeuMHa7Ljz47szzz2nlw9_nsSVb8eZ_D7IDi8PDQf7rx9nJZ1h6VqZtwcL09s5sI1WZqi9uUT4CkEDkzQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Entropy-enthalpy+compensation%3A+fact+or+artifact%3F&rft.jtitle=Protein+science&rft.au=Sharp%2C+K&rft.date=2001-03-01&rft.issn=0961-8368&rft.volume=10&rft.issue=3&rft.spage=661&rft_id=info:doi/10.1110%2Fps.37801&rft_id=info%3Apmid%2F11344335&rft.externalDocID=11344335
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0961-8368&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0961-8368&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0961-8368&client=summon