Elucidating the molecular mechanisms mediating plant salt-stress responses
Excess soluble salts in soil (saline soils) are harmful to most plants. Salt imposes osmotic, ionic, and secondary stresses on plants. Over the past two decades, many determinants of salt tolerance and their regulatory mechanisms have been identified and characterized using molecular genetics and ge...
Saved in:
Published in | The New phytologist Vol. 217; no. 2; pp. 523 - 539 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
New Phytologist Trust
01.01.2018
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Excess soluble salts in soil (saline soils) are harmful to most plants. Salt imposes osmotic, ionic, and secondary stresses on plants. Over the past two decades, many determinants of salt tolerance and their regulatory mechanisms have been identified and characterized using molecular genetics and genomics approaches. This review describes recent progress in deciphering the mechanisms controlling ion homeostasis, cell activity responses, and epigenetic regulation in plants under salt stress. Finally, wehighlight research areas that require further research to reveal new determinants of salt tolerance in plants. |
---|---|
AbstractList | Contents Summary 523 I. Introduction 523 II. Sensing salt stress 524 III. Ion homeostasis regulation 524 IV. Metabolite and cell activity responses to salt stress 527 V. Conclusions and perspectives 532 Acknowledgements 533 References 533 SUMMARY: Excess soluble salts in soil (saline soils) are harmful to most plants. Salt imposes osmotic, ionic, and secondary stresses on plants. Over the past two decades, many determinants of salt tolerance and their regulatory mechanisms have been identified and characterized using molecular genetics and genomics approaches. This review describes recent progress in deciphering the mechanisms controlling ion homeostasis, cell activity responses, and epigenetic regulation in plants under salt stress. Finally, we highlight research areas that require further research to reveal new determinants of salt tolerance in plants. Excess soluble salts in soil (saline soils) are harmful to most plants. Salt imposes osmotic, ionic, and secondary stresses on plants. Over the past two decades, many determinants of salt tolerance and their regulatory mechanisms have been identified and characterized using molecular genetics and genomics approaches. This review describes recent progress in deciphering the mechanisms controlling ion homeostasis, cell activity responses, and epigenetic regulation in plants under salt stress. Finally, wehighlight research areas that require further research to reveal new determinants of salt tolerance in plants. Contents Summary 523 I. Introduction 523 II. Sensing salt stress 524 III. Ion homeostasis regulation 524 IV. Metabolite and cell activity responses to salt stress 527 V. Conclusions and perspectives 532 Acknowledgements 533 References 533 Summary Excess soluble salts in soil (saline soils) are harmful to most plants. Salt imposes osmotic, ionic, and secondary stresses on plants. Over the past two decades, many determinants of salt tolerance and their regulatory mechanisms have been identified and characterized using molecular genetics and genomics approaches. This review describes recent progress in deciphering the mechanisms controlling ion homeostasis, cell activity responses, and epigenetic regulation in plants under salt stress. Finally, we highlight research areas that require further research to reveal new determinants of salt tolerance in plants. Contents Summary 523 I. Introduction 523 II. Sensing salt stress 524 III. Ion homeostasis regulation 524 IV. Metabolite and cell activity responses to salt stress 527 V. Conclusions and perspectives 532 Acknowledgements 533 References 533 SUMMARY: Excess soluble salts in soil (saline soils) are harmful to most plants. Salt imposes osmotic, ionic, and secondary stresses on plants. Over the past two decades, many determinants of salt tolerance and their regulatory mechanisms have been identified and characterized using molecular genetics and genomics approaches. This review describes recent progress in deciphering the mechanisms controlling ion homeostasis, cell activity responses, and epigenetic regulation in plants under salt stress. Finally, we highlight research areas that require further research to reveal new determinants of salt tolerance in plants.Contents Summary 523 I. Introduction 523 II. Sensing salt stress 524 III. Ion homeostasis regulation 524 IV. Metabolite and cell activity responses to salt stress 527 V. Conclusions and perspectives 532 Acknowledgements 533 References 533 SUMMARY: Excess soluble salts in soil (saline soils) are harmful to most plants. Salt imposes osmotic, ionic, and secondary stresses on plants. Over the past two decades, many determinants of salt tolerance and their regulatory mechanisms have been identified and characterized using molecular genetics and genomics approaches. This review describes recent progress in deciphering the mechanisms controlling ion homeostasis, cell activity responses, and epigenetic regulation in plants under salt stress. Finally, we highlight research areas that require further research to reveal new determinants of salt tolerance in plants. |
Author | Yan Guo Yongqing Yang |
Author_xml | – sequence: 1 givenname: Yongqing surname: Yang fullname: Yang, Yongqing organization: China Agricultural University – sequence: 2 givenname: Yan surname: Guo fullname: Guo, Yan email: guoyan@cau.edu.cn organization: China Agricultural University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29205383$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkcFvFCEYxYmpsdvqwT9AM4kXPUz7wbAMHE1TraZRD5p4I8h847JhYAQmpv-9rLvrodHIAUj4vZeP987ISYgBCXlK4YLWdRnmzQXlisEDsqJcqFbSrj8hKwAmW8HF11NylvMWANRasEfklFV23cluRd5f-8W6wRQXvjdlg80UPdrFm9RMaDcmuDzleh3cHpm9CaXJxpc2l4Q5N3WbY8iYH5OHo_EZnxzOc_LlzfXnq5v29uPbd1evb1vLew6t4QNSxq1YU7qbA5gaBwoSFUUF49Cb-oa9YgIl9mKgApiVHRg-8lHB0J2Tl3vfOcUfC-aiJ5ct-joZxiVrBgykZFzK_6JU9V2le9lV9MU9dBuXFOpHKqWAizXnO8PnB2r5VkPRc3KTSXf6GGgFLveATTHnhKO2rtToYijJOK8p6F1lulamf1dWFa_uKY6mf2MP7j-dx7t_g_rDp5uj4tlesc0lpj8KBUCFYqz7BcVSrRA |
CitedBy_id | crossref_primary_10_1038_d41586_019_02289_x crossref_primary_10_3390_plants12163007 crossref_primary_10_3390_biom10060959 crossref_primary_10_3389_fpls_2022_804716 crossref_primary_10_3390_plants8060151 crossref_primary_10_1038_s41598_024_69670_3 crossref_primary_10_1038_s41396_021_00974_2 crossref_primary_10_1038_s41598_020_70520_1 crossref_primary_10_1111_pce_14796 crossref_primary_10_1016_j_scienta_2021_110779 crossref_primary_10_1080_13102818_2022_2128875 crossref_primary_10_1186_s12870_024_05376_y crossref_primary_10_1016_j_envexpbot_2021_104752 crossref_primary_10_1186_s40529_021_00320_x crossref_primary_10_1007_s12298_023_01303_x crossref_primary_10_3390_plants13213018 crossref_primary_10_1111_tpj_16653 crossref_primary_10_3390_ijms19123866 crossref_primary_10_1080_09583157_2020_1833304 crossref_primary_10_1093_plcell_koae001 crossref_primary_10_3390_plants13030378 crossref_primary_10_1007_s40626_022_00262_0 crossref_primary_10_1093_dnares_dsad011 crossref_primary_10_1038_s41477_023_01550_6 crossref_primary_10_3389_fpls_2022_814755 crossref_primary_10_1016_j_sajb_2023_11_049 crossref_primary_10_3389_fpls_2020_00038 crossref_primary_10_3390_plants8060147 crossref_primary_10_1007_s12298_022_01165_9 crossref_primary_10_1016_j_envexpbot_2024_105678 crossref_primary_10_1080_01904167_2024_2415471 crossref_primary_10_1007_s00344_019_10027_w crossref_primary_10_1016_j_xplc_2022_100458 crossref_primary_10_1016_j_envexpbot_2020_104244 crossref_primary_10_1080_07388551_2019_1654973 crossref_primary_10_1007_s42729_024_01848_0 crossref_primary_10_1080_15548627_2020_1847797 crossref_primary_10_3390_genes14061151 crossref_primary_10_1111_aab_12919 crossref_primary_10_3390_metabo11110724 crossref_primary_10_1007_s42729_021_00576_z crossref_primary_10_3389_fphys_2021_672099 crossref_primary_10_38042_biotechstudies_932376 crossref_primary_10_1080_07388551_2019_1616669 crossref_primary_10_1111_tpj_14689 crossref_primary_10_3390_ijms22179402 crossref_primary_10_3390_plants13111487 crossref_primary_10_1007_s10725_022_00810_3 crossref_primary_10_1093_plcell_koad119 crossref_primary_10_3390_f14030486 crossref_primary_10_1093_jxb_eraa339 crossref_primary_10_3390_ijms242216123 crossref_primary_10_1007_s00425_022_03917_z crossref_primary_10_1111_nph_16104 crossref_primary_10_1016_j_plaphy_2025_109494 crossref_primary_10_3390_agronomy14030444 crossref_primary_10_1007_s00344_022_10667_5 crossref_primary_10_1093_plcell_koac283 crossref_primary_10_2139_ssrn_4008762 crossref_primary_10_1007_s00343_022_2130_1 crossref_primary_10_1016_j_stress_2024_100429 crossref_primary_10_3389_fpls_2022_835498 crossref_primary_10_1111_ppl_13505 crossref_primary_10_1016_j_eja_2024_127365 crossref_primary_10_1016_j_biotechadv_2018_06_009 crossref_primary_10_1016_j_envexpbot_2022_105098 crossref_primary_10_3389_fpls_2023_1238507 crossref_primary_10_1021_acs_jafc_1c01598 crossref_primary_10_1016_j_sajb_2023_10_047 crossref_primary_10_3390_ijms24021054 crossref_primary_10_3389_fpls_2023_1092616 crossref_primary_10_3390_ijms24076603 crossref_primary_10_1016_j_sajb_2022_09_033 crossref_primary_10_1016_j_rhisph_2022_100620 crossref_primary_10_3390_plants10091843 crossref_primary_10_1016_j_cj_2020_02_001 crossref_primary_10_1111_pce_14746 crossref_primary_10_3769_radioisotopes_72_235 crossref_primary_10_1111_pce_14745 crossref_primary_10_1007_s00344_021_10526_9 crossref_primary_10_1007_s10725_023_00980_8 crossref_primary_10_1038_s41477_019_0565_y crossref_primary_10_3389_fpls_2021_712257 crossref_primary_10_1093_pcp_pcaa073 crossref_primary_10_1007_s11756_024_01810_6 crossref_primary_10_1111_nph_18340 crossref_primary_10_1016_j_cj_2022_06_007 crossref_primary_10_1007_s11104_021_05108_3 crossref_primary_10_3390_genes13071140 crossref_primary_10_3390_ijms23147879 crossref_primary_10_1016_j_envexpbot_2022_105075 crossref_primary_10_3390_su15031804 crossref_primary_10_3390_ijms241813800 crossref_primary_10_1016_j_envpol_2023_121081 crossref_primary_10_3389_fpls_2024_1503463 crossref_primary_10_1016_j_stress_2025_100770 crossref_primary_10_1016_j_rsci_2024_06_002 crossref_primary_10_3389_fpls_2018_01634 crossref_primary_10_3390_ijms241914762 crossref_primary_10_1016_j_jplph_2020_153218 crossref_primary_10_1016_j_jplph_2020_153217 crossref_primary_10_1016_j_plantsci_2022_111572 crossref_primary_10_3390_plants11070935 crossref_primary_10_1007_s00344_022_10756_5 crossref_primary_10_1007_s00468_022_02380_3 crossref_primary_10_1016_j_devcel_2020_08_005 crossref_primary_10_3389_fpls_2020_594827 crossref_primary_10_1016_j_envexpbot_2024_105665 crossref_primary_10_1186_s12864_024_10000_2 crossref_primary_10_1016_j_plantsci_2019_110260 crossref_primary_10_1038_s41596_024_01068_x crossref_primary_10_3390_ijms25179520 crossref_primary_10_1021_acs_jproteome_2c00559 crossref_primary_10_1111_ppl_13938 crossref_primary_10_3390_horticulturae11030285 crossref_primary_10_1186_s43897_024_00080_9 crossref_primary_10_1186_s12870_024_05515_5 crossref_primary_10_3390_ijms25189794 crossref_primary_10_3389_fpls_2020_00457 crossref_primary_10_1016_j_plaphy_2021_05_002 crossref_primary_10_3390_horticulturae8040302 crossref_primary_10_3390_ijms24043948 crossref_primary_10_1080_11263504_2023_2165567 crossref_primary_10_3389_fpls_2023_1095929 crossref_primary_10_1016_j_plaphy_2025_109685 crossref_primary_10_1371_journal_pone_0243111 crossref_primary_10_3389_fpls_2022_877011 crossref_primary_10_3390_genes13101904 crossref_primary_10_3390_plants11060795 crossref_primary_10_1093_plphys_kiaf050 crossref_primary_10_1186_s12864_025_11355_w crossref_primary_10_1016_j_scienta_2022_111077 crossref_primary_10_1186_s12870_022_03832_1 crossref_primary_10_3390_ijms26051882 crossref_primary_10_1016_j_plgene_2024_100453 crossref_primary_10_1016_j_plaphy_2022_10_033 crossref_primary_10_1016_j_bios_2024_117062 crossref_primary_10_1016_j_envexpbot_2022_104873 crossref_primary_10_12944_CARJ_12_2_05 crossref_primary_10_3390_ijms23010154 crossref_primary_10_1016_j_ecoenv_2019_02_075 crossref_primary_10_1080_15592324_2018_1561121 crossref_primary_10_1007_s12298_024_01495_w crossref_primary_10_1007_s00344_023_11070_4 crossref_primary_10_1016_j_envexpbot_2022_104856 crossref_primary_10_1186_s12864_021_07368_w crossref_primary_10_1016_j_plaphy_2024_109175 crossref_primary_10_1016_j_stress_2025_100781 crossref_primary_10_1007_s11427_020_1683_x crossref_primary_10_1007_s10725_022_00825_w crossref_primary_10_1016_j_micres_2023_127368 crossref_primary_10_1007_s10725_024_01127_z crossref_primary_10_1016_j_jare_2024_08_022 crossref_primary_10_3390_plants13243510 crossref_primary_10_1016_j_plantsci_2024_112130 crossref_primary_10_1186_s12284_023_00635_2 crossref_primary_10_3390_insects15040293 crossref_primary_10_3390_plants13141928 crossref_primary_10_3390_biology11040597 crossref_primary_10_1007_s13580_023_00554_7 crossref_primary_10_1186_s12870_020_02548_4 crossref_primary_10_1016_j_scienta_2024_113835 crossref_primary_10_1186_s12870_020_02467_4 crossref_primary_10_1016_j_scienta_2022_111294 crossref_primary_10_1016_j_ecoenv_2021_112769 crossref_primary_10_3390_ijms20215355 crossref_primary_10_3389_fpls_2020_01192 crossref_primary_10_3389_fpls_2019_00319 crossref_primary_10_1016_j_plaphy_2021_04_022 crossref_primary_10_1007_s11356_022_21785_8 crossref_primary_10_3389_fgene_2023_1232363 crossref_primary_10_1111_ppl_13330 crossref_primary_10_1016_j_plaphy_2020_09_018 crossref_primary_10_1007_s42976_022_00271_4 crossref_primary_10_1016_j_molp_2021_07_020 crossref_primary_10_3390_ijms24043071 crossref_primary_10_3390_plants9050637 crossref_primary_10_3389_fpls_2019_01420 crossref_primary_10_3390_agronomy14122807 crossref_primary_10_1016_j_jtemin_2024_100159 crossref_primary_10_1111_tpj_15946 crossref_primary_10_32615_bp_2022_036 crossref_primary_10_3390_ijms25094957 crossref_primary_10_3390_plants14030394 crossref_primary_10_1186_s12864_023_09585_x crossref_primary_10_3389_fpls_2022_835414 crossref_primary_10_1016_j_plaphy_2020_09_009 crossref_primary_10_1093_pcp_pcz099 crossref_primary_10_1186_s12870_024_04966_0 crossref_primary_10_32604_phyton_2022_023081 crossref_primary_10_3390_ijms26062500 crossref_primary_10_1016_j_indcrop_2024_118651 crossref_primary_10_3389_fgeed_2022_987817 crossref_primary_10_3390_plants12040925 crossref_primary_10_1007_s11104_021_04918_9 crossref_primary_10_1016_j_envpol_2024_123363 crossref_primary_10_1016_j_plaphy_2024_109125 crossref_primary_10_1007_s13562_021_00741_6 crossref_primary_10_3389_fpls_2019_01431 crossref_primary_10_1016_j_isci_2019_10_043 crossref_primary_10_1111_pce_14905 crossref_primary_10_3390_plants12102059 crossref_primary_10_3389_fpls_2022_891361 crossref_primary_10_3389_fpls_2024_1415867 crossref_primary_10_1016_j_ncrops_2024_100057 crossref_primary_10_3390_plants13141990 crossref_primary_10_1111_jac_12585 crossref_primary_10_1134_S1022795423090132 crossref_primary_10_3390_plants12152789 crossref_primary_10_1016_j_devcel_2023_06_012 crossref_primary_10_3389_fpls_2021_650485 crossref_primary_10_1002_ldr_4864 crossref_primary_10_1111_tpj_17091 crossref_primary_10_1016_j_indcrop_2023_117452 crossref_primary_10_3389_fpls_2024_1297812 crossref_primary_10_3390_cells10051064 crossref_primary_10_1016_j_plantsci_2024_112181 crossref_primary_10_1093_plphys_kiaf080 crossref_primary_10_3389_fpls_2024_1375478 crossref_primary_10_1007_s10811_020_02284_0 crossref_primary_10_3389_fpls_2024_1374142 crossref_primary_10_1186_s12864_025_11368_5 crossref_primary_10_1186_s12864_020_07260_z crossref_primary_10_3389_fpls_2021_807739 crossref_primary_10_3390_plants12193495 crossref_primary_10_3389_fpls_2022_1041081 crossref_primary_10_3390_plants10050845 crossref_primary_10_56093_aaz_v63i4_155494 crossref_primary_10_1186_s12870_022_03623_8 crossref_primary_10_1111_jipb_13562 crossref_primary_10_1016_j_plaphy_2021_03_028 crossref_primary_10_1093_plphys_kiaf074 crossref_primary_10_3390_plants11141864 crossref_primary_10_1016_j_scienta_2023_112664 crossref_primary_10_1186_s12870_024_05533_3 crossref_primary_10_1007_s00344_021_10441_z crossref_primary_10_1111_pbi_13927 crossref_primary_10_1111_mpp_13279 crossref_primary_10_1007_s10811_019_01939_x crossref_primary_10_7717_peerj_9742 crossref_primary_10_3390_applmicrobiol3040086 crossref_primary_10_3390_plants11212994 crossref_primary_10_32615_bp_2023_029 crossref_primary_10_1016_j_bbrc_2021_07_011 crossref_primary_10_3389_fpls_2022_939487 crossref_primary_10_3390_agriculture12122049 crossref_primary_10_1111_jipb_13599 crossref_primary_10_1016_j_cpb_2023_100274 crossref_primary_10_1016_j_xplc_2023_100726 crossref_primary_10_3389_fpls_2021_744699 crossref_primary_10_1016_j_plaphy_2024_109151 crossref_primary_10_1016_j_celrep_2024_113825 crossref_primary_10_3390_plants13212984 crossref_primary_10_1186_s12870_024_05084_7 crossref_primary_10_1007_s00299_022_02899_2 crossref_primary_10_1007_s00344_023_11213_7 crossref_primary_10_3390_f14081651 crossref_primary_10_1016_j_jprot_2024_105328 crossref_primary_10_1080_15592324_2019_1573097 crossref_primary_10_3390_agriculture12030350 crossref_primary_10_1093_jxb_eraa524 crossref_primary_10_3390_horticulturae9030338 crossref_primary_10_3389_fmicb_2023_1102547 crossref_primary_10_3389_fpls_2022_1023696 crossref_primary_10_3389_fpls_2021_800081 crossref_primary_10_1515_biol_2019_0021 crossref_primary_10_1039_C8NR10514F crossref_primary_10_12944_CARJ_11_2_03 crossref_primary_10_1016_j_envexpbot_2019_03_024 crossref_primary_10_1007_s12298_018_0594_4 crossref_primary_10_1111_jipb_12689 crossref_primary_10_3389_fpls_2022_928092 crossref_primary_10_1007_s11816_022_00787_5 crossref_primary_10_29133_yyutbd_499322 crossref_primary_10_1016_j_plaphy_2021_09_031 crossref_primary_10_3389_fpls_2022_819658 crossref_primary_10_3390_ijms24065105 crossref_primary_10_1007_s10265_022_01410_y crossref_primary_10_1007_s10725_023_01066_1 crossref_primary_10_1016_j_plantsci_2020_110465 crossref_primary_10_1111_aab_12496 crossref_primary_10_1111_nph_15605 crossref_primary_10_3390_agriculture13040750 crossref_primary_10_1186_s12870_018_1415_1 crossref_primary_10_1016_j_plaphy_2023_108187 crossref_primary_10_1111_plb_13363 crossref_primary_10_1016_j_jplph_2022_153640 crossref_primary_10_1186_s12870_023_04509_z crossref_primary_10_15835_nbha49112192 crossref_primary_10_3389_fpls_2020_00952 crossref_primary_10_1016_j_jgg_2024_12_013 crossref_primary_10_1016_j_indcrop_2022_115763 crossref_primary_10_1186_s12870_023_04629_6 crossref_primary_10_1111_tpj_16065 crossref_primary_10_1134_S0012496620030072 crossref_primary_10_1016_j_scienta_2022_111455 crossref_primary_10_1016_j_flora_2023_152226 crossref_primary_10_1021_acsnano_1c10556 crossref_primary_10_3390_plants13162224 crossref_primary_10_1021_acs_jafc_3c08528 crossref_primary_10_7717_peerj_19132 crossref_primary_10_1111_grs_12417 crossref_primary_10_3390_plants13121713 crossref_primary_10_1111_ppl_13295 crossref_primary_10_1016_j_scitotenv_2024_170205 crossref_primary_10_3390_cimb45070374 crossref_primary_10_3390_genes16020233 crossref_primary_10_3390_ijms252312568 crossref_primary_10_1016_j_plaphy_2019_12_001 crossref_primary_10_1016_j_plaphy_2025_109820 crossref_primary_10_1111_jipb_13793 crossref_primary_10_1093_jxb_erz328 crossref_primary_10_1016_j_scienta_2024_112911 crossref_primary_10_3390_ijms222312848 crossref_primary_10_1016_j_plaphy_2022_12_018 crossref_primary_10_3390_plants9050591 crossref_primary_10_1007_s00299_022_02897_4 crossref_primary_10_1021_acs_jafc_3c05002 crossref_primary_10_3390_ijms26030896 crossref_primary_10_3390_agronomy14092159 crossref_primary_10_3390_f12040454 crossref_primary_10_1016_j_plaphy_2019_12_019 crossref_primary_10_1186_s12870_024_05445_2 crossref_primary_10_1111_ppl_13064 crossref_primary_10_1016_j_cj_2022_03_006 crossref_primary_10_3390_ijms242015480 crossref_primary_10_1021_acs_jafc_0c07908 crossref_primary_10_1111_jipb_13784 crossref_primary_10_1016_j_cj_2022_03_004 crossref_primary_10_3390_plants10102204 crossref_primary_10_1111_tpj_17136 crossref_primary_10_1021_acs_jafc_3c05430 crossref_primary_10_1038_s41598_020_62057_0 crossref_primary_10_3389_fpls_2021_670369 crossref_primary_10_3390_agronomy14040731 crossref_primary_10_1111_jipb_13733 crossref_primary_10_1093_hr_uhac113 crossref_primary_10_1007_s11816_023_00815_y crossref_primary_10_1016_j_plaphy_2024_108683 crossref_primary_10_1016_j_ijbiomac_2023_125007 crossref_primary_10_1016_j_cj_2024_06_014 crossref_primary_10_3390_antiox13040448 crossref_primary_10_1007_s44154_024_00190_w crossref_primary_10_3390_antiox11061114 crossref_primary_10_3390_metabo11090593 crossref_primary_10_1016_j_phytochem_2024_114367 crossref_primary_10_1093_plphys_kiad621 crossref_primary_10_3389_fpls_2022_841154 crossref_primary_10_3389_fpls_2022_978304 crossref_primary_10_1016_j_sajb_2022_11_029 crossref_primary_10_1007_s10653_025_02416_w crossref_primary_10_1111_ppl_13486 crossref_primary_10_1111_tpj_16052 crossref_primary_10_1007_s12633_022_02001_1 crossref_primary_10_1007_s11240_023_02550_2 crossref_primary_10_1016_j_algal_2025_104016 crossref_primary_10_1002_ece3_8138 crossref_primary_10_1016_j_cjac_2022_100211 crossref_primary_10_3390_ijms24043388 crossref_primary_10_2478_s11756_020_00562_3 crossref_primary_10_3389_fpls_2023_1217193 crossref_primary_10_1016_j_ecoenv_2022_113938 crossref_primary_10_1093_jxb_erad086 crossref_primary_10_3390_ijms232416048 crossref_primary_10_1007_s12042_020_09265_0 crossref_primary_10_3390_agronomy11112299 crossref_primary_10_1016_j_plantsci_2020_110441 crossref_primary_10_1016_j_plantsci_2020_110444 crossref_primary_10_3390_plants12020324 crossref_primary_10_3389_fpls_2021_730228 crossref_primary_10_1007_s00299_021_02765_7 crossref_primary_10_3390_plants12213680 crossref_primary_10_1093_jxb_erz367 crossref_primary_10_1071_FP23089 crossref_primary_10_1111_jipb_12899 crossref_primary_10_3390_ijms25105437 crossref_primary_10_1016_j_jaridenv_2021_104650 crossref_primary_10_3390_plants13050744 crossref_primary_10_3390_ijms25010235 crossref_primary_10_1007_s11033_022_07255_x crossref_primary_10_1111_pce_15277 crossref_primary_10_1186_s12870_024_05443_4 crossref_primary_10_1111_jipb_12895 crossref_primary_10_1186_s12870_019_1712_3 crossref_primary_10_3389_fpls_2022_1043204 crossref_primary_10_3390_ijms252312754 crossref_primary_10_7717_peerj_7817 crossref_primary_10_1126_sciadv_ads3653 crossref_primary_10_3390_ijms24076647 crossref_primary_10_3390_genes14081621 crossref_primary_10_1021_acs_jnatprod_8b00801 crossref_primary_10_1093_treephys_tpad001 crossref_primary_10_1007_s43630_024_00568_9 crossref_primary_10_1016_j_tplants_2021_07_017 crossref_primary_10_1016_j_jplph_2020_153237 crossref_primary_10_3390_agronomy14040773 crossref_primary_10_3389_fpls_2021_705883 crossref_primary_10_3390_horticulturae7060132 crossref_primary_10_3390_ijms24010002 crossref_primary_10_24180_ijaws_1033635 crossref_primary_10_1093_plphys_kiab498 crossref_primary_10_1016_j_envexpbot_2023_105445 crossref_primary_10_1016_j_plaphy_2021_07_027 crossref_primary_10_1016_j_plaphy_2024_108874 crossref_primary_10_1016_j_stress_2023_100319 crossref_primary_10_1371_journal_pone_0264847 crossref_primary_10_1111_nph_16538 crossref_primary_10_1111_nph_17628 crossref_primary_10_1016_j_ijbiomac_2024_139393 crossref_primary_10_3390_ijms23179680 crossref_primary_10_3389_fpls_2022_871387 crossref_primary_10_1071_FP23228 crossref_primary_10_1016_j_devcel_2022_09_012 crossref_primary_10_1093_hr_uhae320 crossref_primary_10_1016_j_plaphy_2024_108642 crossref_primary_10_3389_fpls_2023_1135240 crossref_primary_10_3390_ijms24054639 crossref_primary_10_1186_s13068_020_01786_w crossref_primary_10_1016_j_devcel_2022_08_001 crossref_primary_10_1021_acs_jafc_3c06185 crossref_primary_10_1016_j_plaphy_2023_108133 crossref_primary_10_1093_plphys_kiad651 crossref_primary_10_1186_s12864_023_09459_2 crossref_primary_10_3390_agronomy13051249 crossref_primary_10_3389_fpls_2022_1053699 crossref_primary_10_3390_plants10020307 crossref_primary_10_1016_j_plaphy_2022_01_015 crossref_primary_10_1016_j_csbj_2022_11_046 crossref_primary_10_3389_fpls_2022_1072171 crossref_primary_10_1093_plphys_kiae504 crossref_primary_10_1016_j_plaphy_2024_108663 crossref_primary_10_1016_j_scienta_2023_111922 crossref_primary_10_1016_j_celrep_2021_109384 crossref_primary_10_1007_s00299_024_03292_x crossref_primary_10_1016_j_plantsci_2020_110654 crossref_primary_10_3390_ijms24065762 crossref_primary_10_15252_embj_2022112401 crossref_primary_10_1007_s40626_023_00274_4 crossref_primary_10_1111_nph_15240 crossref_primary_10_1186_s13578_021_00633_1 crossref_primary_10_1080_17429145_2025_2453716 crossref_primary_10_1071_FP24101 crossref_primary_10_3390_plants11081055 crossref_primary_10_1016_j_jgg_2023_08_007 crossref_primary_10_1007_s12298_019_00654_8 crossref_primary_10_1093_jxb_eraa191 crossref_primary_10_1016_j_envexpbot_2024_105918 crossref_primary_10_1007_s11103_021_01120_4 crossref_primary_10_1093_treephys_tpaa174 crossref_primary_10_3389_fpls_2022_919177 crossref_primary_10_1016_S2095_3119_20_63262_2 crossref_primary_10_1007_s13762_022_03930_5 crossref_primary_10_1007_s11033_022_07495_x crossref_primary_10_1016_j_pedsph_2024_09_002 crossref_primary_10_3390_ma15144784 crossref_primary_10_3389_fpls_2023_1226041 crossref_primary_10_3390_f14030464 crossref_primary_10_48130_grares_0025_0005 crossref_primary_10_1007_s10681_022_03129_2 crossref_primary_10_3389_fpls_2023_1278954 crossref_primary_10_1007_s00344_023_10980_7 crossref_primary_10_1071_FP23023 crossref_primary_10_3390_ijms25147650 crossref_primary_10_3390_plants13050565 crossref_primary_10_3390_plants13050566 crossref_primary_10_3390_agronomy11030545 crossref_primary_10_1111_pce_15212 crossref_primary_10_1016_j_stress_2024_100409 crossref_primary_10_1016_j_plaphy_2023_108306 crossref_primary_10_1093_plphys_kiae559 crossref_primary_10_1016_j_sajb_2023_09_013 crossref_primary_10_1080_15592324_2025_2479513 crossref_primary_10_1016_j_scienta_2022_110962 crossref_primary_10_1016_j_plaphy_2020_12_027 crossref_primary_10_3389_fgene_2023_1017388 crossref_primary_10_1016_j_stress_2023_100331 crossref_primary_10_3389_fpls_2022_970651 crossref_primary_10_1016_j_algal_2021_102185 crossref_primary_10_3390_ijms20102391 crossref_primary_10_1007_s42729_022_01023_3 crossref_primary_10_1080_15592324_2019_1675472 crossref_primary_10_1007_s11103_022_01272_x crossref_primary_10_1093_aobpla_plab072 crossref_primary_10_1016_j_plantsci_2022_111296 crossref_primary_10_1007_s11738_022_03472_w crossref_primary_10_1186_s12870_024_05145_x crossref_primary_10_1016_j_envexpbot_2024_105926 crossref_primary_10_1016_j_plaphy_2021_08_038 crossref_primary_10_3390_ijms22169009 crossref_primary_10_3390_ijms24054426 crossref_primary_10_1080_17429145_2019_1641635 crossref_primary_10_3389_fpls_2022_982622 crossref_primary_10_3390_plants13050586 crossref_primary_10_1111_tpj_15109 crossref_primary_10_3390_plants13050588 crossref_primary_10_29130_dubited_1171221 crossref_primary_10_3389_fpls_2022_969896 crossref_primary_10_1007_s00344_021_10328_z crossref_primary_10_1016_j_ecoenv_2021_113017 crossref_primary_10_1111_pce_14101 crossref_primary_10_3390_plants13081069 crossref_primary_10_3389_fpls_2022_843994 crossref_primary_10_1007_s10811_022_02692_4 crossref_primary_10_1007_s00344_022_10787_y crossref_primary_10_3389_fpls_2022_1063436 crossref_primary_10_1111_nph_16493 crossref_primary_10_3390_ijms242216450 crossref_primary_10_1007_s10725_022_00866_1 crossref_primary_10_1093_treephys_tpaa018 crossref_primary_10_3390_plants12142665 crossref_primary_10_1073_pnas_2114347118 crossref_primary_10_3390_ijms21031065 crossref_primary_10_1038_s41467_024_46482_7 crossref_primary_10_1016_j_plaphy_2023_02_046 crossref_primary_10_3390_plants12061331 crossref_primary_10_1007_s11103_024_01459_4 crossref_primary_10_1016_j_indcrop_2023_116440 crossref_primary_10_1002_pei3_10122 crossref_primary_10_1007_s00253_022_11838_w crossref_primary_10_3390_agronomy13082129 crossref_primary_10_3390_ijms22084014 crossref_primary_10_3389_fpls_2022_848891 crossref_primary_10_1016_j_envexpbot_2019_103808 crossref_primary_10_3390_agronomy13040959 crossref_primary_10_3390_antiox14010063 crossref_primary_10_3389_fpls_2019_01361 crossref_primary_10_1186_s12284_021_00535_3 crossref_primary_10_3390_ijms21010359 crossref_primary_10_1016_j_stress_2024_100562 crossref_primary_10_1093_treephys_tpaa022 crossref_primary_10_1007_s42729_023_01358_5 crossref_primary_10_1111_pce_14205 crossref_primary_10_1007_s00438_021_01838_2 crossref_primary_10_3389_fpls_2020_568411 crossref_primary_10_1016_j_envexpbot_2023_105299 crossref_primary_10_3389_fpls_2025_1553348 crossref_primary_10_1016_j_plaphy_2023_01_003 crossref_primary_10_1016_j_plaphy_2023_01_001 crossref_primary_10_17221_459_2024_PSE crossref_primary_10_1093_plphys_kiac283 crossref_primary_10_1093_plphys_kiad370 crossref_primary_10_3390_ijms22168625 crossref_primary_10_3390_plants11111498 crossref_primary_10_1111_nph_17323 crossref_primary_10_1093_pcp_pcad036 crossref_primary_10_1016_j_plantsci_2023_111736 crossref_primary_10_3390_plants11111494 crossref_primary_10_1007_s10343_022_00684_5 crossref_primary_10_1186_s12870_020_02342_2 crossref_primary_10_3390_plants13101308 crossref_primary_10_1093_hr_uhae157 crossref_primary_10_1016_j_molp_2023_01_010 crossref_primary_10_15252_embj_2020105086 crossref_primary_10_1016_j_scienta_2021_109898 crossref_primary_10_3390_ijms21103429 crossref_primary_10_3390_ijpb15040076 crossref_primary_10_3390_ijms24129793 crossref_primary_10_1093_plcell_koad019 crossref_primary_10_3390_ijms21010138 crossref_primary_10_3390_ijms23147529 crossref_primary_10_1007_s00425_022_03916_0 crossref_primary_10_1080_03650340_2020_1769075 crossref_primary_10_1111_jac_12672 crossref_primary_10_1038_s41477_023_01551_5 crossref_primary_10_1093_hr_uhad051 crossref_primary_10_1111_ppl_13626 crossref_primary_10_3389_fpls_2023_1211162 crossref_primary_10_1016_j_envexpbot_2023_105276 crossref_primary_10_1093_plphys_kiab189 crossref_primary_10_1099_mgen_0_000928 crossref_primary_10_1016_j_jgg_2025_01_005 crossref_primary_10_1016_j_envexpbot_2020_104124 crossref_primary_10_1038_s41598_021_97872_6 crossref_primary_10_3389_fpls_2021_771746 crossref_primary_10_1007_s11738_020_03109_w crossref_primary_10_3390_agronomy14051079 crossref_primary_10_3390_horticulturae9101140 crossref_primary_10_1080_17429145_2022_2115158 crossref_primary_10_1007_s00299_023_03052_3 crossref_primary_10_3390_plants13172527 crossref_primary_10_1007_s00344_022_10755_6 crossref_primary_10_3390_life13010061 crossref_primary_10_1016_j_jenvman_2023_119488 crossref_primary_10_1016_j_scienta_2023_112115 crossref_primary_10_1093_jxb_erab553 crossref_primary_10_1016_j_plaphy_2020_11_033 crossref_primary_10_1007_s44372_024_00024_z crossref_primary_10_1016_j_envexpbot_2024_105988 crossref_primary_10_1093_plcell_koaf012 crossref_primary_10_1186_s12870_024_06033_0 crossref_primary_10_1016_j_plaphy_2020_04_011 crossref_primary_10_1016_j_xinn_2020_100017 crossref_primary_10_1016_j_micres_2024_127707 crossref_primary_10_1007_s11032_023_01403_2 crossref_primary_10_1016_j_envexpbot_2020_104147 crossref_primary_10_1186_s12870_020_02734_4 crossref_primary_10_1016_j_envexpbot_2021_104689 crossref_primary_10_3390_plants11243532 crossref_primary_10_3390_metabo15030171 crossref_primary_10_3390_ijms23042085 crossref_primary_10_1016_j_celrep_2023_112729 crossref_primary_10_1071_FP21336 crossref_primary_10_3390_ijms22179326 crossref_primary_10_1016_j_plaphy_2020_04_022 crossref_primary_10_1111_plb_12884 crossref_primary_10_1002_tpg2_20521 crossref_primary_10_3390_genes14091771 crossref_primary_10_1016_j_envexpbot_2023_105468 crossref_primary_10_1016_j_plaphy_2022_07_005 crossref_primary_10_1016_j_envexpbot_2021_104698 crossref_primary_10_3390_agronomy14051048 crossref_primary_10_3390_horticulturae9030290 crossref_primary_10_1016_j_stress_2024_100583 crossref_primary_10_1111_ppl_13817 crossref_primary_10_3389_fpls_2022_949541 crossref_primary_10_3390_ijms241311141 crossref_primary_10_1016_j_scienta_2024_113761 crossref_primary_10_1111_tpj_16949 crossref_primary_10_1111_jipb_13061 crossref_primary_10_1007_s11104_022_05560_9 crossref_primary_10_3389_fpls_2022_881039 crossref_primary_10_1071_BT23025 crossref_primary_10_1016_j_envexpbot_2020_104168 crossref_primary_10_3389_fpls_2022_1078083 crossref_primary_10_1111_nph_18278 crossref_primary_10_1007_s10343_025_01128_6 crossref_primary_10_1016_j_scienta_2024_113934 crossref_primary_10_3390_plants13020283 crossref_primary_10_3390_plants10010085 crossref_primary_10_3390_metabo14040181 crossref_primary_10_1016_j_compag_2025_110005 crossref_primary_10_3389_fpls_2023_1173191 crossref_primary_10_1002_ldr_4786 crossref_primary_10_3390_horticulturae10020139 crossref_primary_10_3390_plants12071532 crossref_primary_10_3389_fpls_2022_1008172 crossref_primary_10_1007_s00344_021_10331_4 crossref_primary_10_1016_j_envexpbot_2021_104452 crossref_primary_10_3390_ijms25094612 crossref_primary_10_1016_j_devcel_2019_02_010 crossref_primary_10_1016_j_envexpbot_2019_05_020 crossref_primary_10_3390_agriculture13112051 crossref_primary_10_1111_pce_14835 crossref_primary_10_3389_fpls_2022_891697 crossref_primary_10_3389_fpls_2018_00681 crossref_primary_10_1093_pcp_pcz190 crossref_primary_10_1007_s00709_021_01675_5 crossref_primary_10_1128_spectrum_03404_23 crossref_primary_10_1093_gigascience_giad053 crossref_primary_10_3390_agronomy14020356 crossref_primary_10_1021_acs_jafc_1c01096 crossref_primary_10_3390_biom9090393 crossref_primary_10_1016_j_pbi_2019_08_002 crossref_primary_10_1111_pce_14807 crossref_primary_10_1007_s00122_020_03690_1 crossref_primary_10_3389_fpls_2020_571864 crossref_primary_10_1016_j_plantsci_2024_112267 crossref_primary_10_1016_j_envexpbot_2019_05_016 crossref_primary_10_3390_agronomy8100231 crossref_primary_10_1016_j_plantsci_2024_112261 crossref_primary_10_1093_aob_mcae152 crossref_primary_10_3390_ijms21197105 crossref_primary_10_1016_j_envexpbot_2021_104431 crossref_primary_10_3390_cells10030683 crossref_primary_10_3390_ijms222111461 crossref_primary_10_1016_j_molp_2020_05_010 crossref_primary_10_3389_fpls_2022_952595 crossref_primary_10_3390_ijms252211891 crossref_primary_10_1002_bit_27528 crossref_primary_10_1007_s13562_024_00926_9 crossref_primary_10_1093_plcell_koaf034 crossref_primary_10_1186_s12864_022_08438_3 crossref_primary_10_1111_pce_14820 crossref_primary_10_1016_j_scienta_2025_114031 crossref_primary_10_1134_S1021443722010095 crossref_primary_10_1186_s12870_024_04921_z crossref_primary_10_1016_j_ecoenv_2020_110322 crossref_primary_10_3390_applmicrobiol4030068 crossref_primary_10_1016_j_envexpbot_2021_104427 crossref_primary_10_3389_fmars_2020_00415 crossref_primary_10_1111_jipb_13264 crossref_primary_10_3390_f13050754 crossref_primary_10_1016_j_cj_2024_02_007 crossref_primary_10_1093_jxb_ery201 crossref_primary_10_3389_fpls_2023_1162014 crossref_primary_10_3390_genes12050697 crossref_primary_10_1111_plb_13559 crossref_primary_10_1007_s11427_023_2464_2 crossref_primary_10_3390_ijms241512387 crossref_primary_10_1186_s42397_021_00085_5 crossref_primary_10_1186_s12870_023_04552_w crossref_primary_10_1007_s44279_024_00105_3 crossref_primary_10_1186_s12870_021_03274_1 crossref_primary_10_3390_ijms24044062 crossref_primary_10_3389_fpls_2019_00470 crossref_primary_10_1007_s00425_020_03437_8 crossref_primary_10_1016_j_ijbiomac_2023_126978 crossref_primary_10_3390_ijms23116167 crossref_primary_10_1038_s41598_023_49629_6 crossref_primary_10_1016_j_gene_2022_146906 crossref_primary_10_3390_plants9081010 crossref_primary_10_1016_j_plaphy_2020_01_022 crossref_primary_10_3390_plants14020296 crossref_primary_10_1016_j_jgg_2022_01_007 crossref_primary_10_3389_fpls_2022_881456 crossref_primary_10_1111_ppl_13642 crossref_primary_10_3390_agronomy13010016 crossref_primary_10_1007_s00203_023_03768_6 crossref_primary_10_3390_plants13162307 crossref_primary_10_1007_s00344_022_10592_7 crossref_primary_10_1016_j_scienta_2023_112788 crossref_primary_10_3390_ijms222111897 crossref_primary_10_1038_s41598_025_86256_9 crossref_primary_10_1016_j_jia_2024_08_029 crossref_primary_10_1007_s12192_019_00996_y crossref_primary_10_46653_jhst23062025 crossref_primary_10_1073_pnas_2217957120 crossref_primary_10_1111_ppl_13655 crossref_primary_10_3389_fpls_2021_711429 crossref_primary_10_3389_fpls_2022_1042084 crossref_primary_10_3390_life12071033 crossref_primary_10_1016_j_scienta_2024_113907 crossref_primary_10_1002_pld3_315 crossref_primary_10_1111_jipb_13228 crossref_primary_10_1186_s12870_024_05961_1 crossref_primary_10_3390_microorganisms9112203 crossref_primary_10_1111_nph_18282 crossref_primary_10_1093_gigascience_giad079 crossref_primary_10_1016_j_hpj_2024_01_005 crossref_primary_10_3389_fpls_2022_1042078 crossref_primary_10_3389_fpls_2022_973471 crossref_primary_10_1002_pld3_548 crossref_primary_10_1038_s41467_019_09181_2 crossref_primary_10_1016_j_plaphy_2024_109441 crossref_primary_10_1093_jxb_erz458 crossref_primary_10_1111_jipb_13417 crossref_primary_10_3390_ijms23095231 crossref_primary_10_3390_ijms25189818 crossref_primary_10_1007_s00344_022_10801_3 crossref_primary_10_1094_MPMI_11_21_0281_FI crossref_primary_10_3389_fpls_2025_1527952 crossref_primary_10_1186_s13059_022_02718_7 crossref_primary_10_3389_fpls_2024_1497362 crossref_primary_10_1007_s11103_021_01232_x crossref_primary_10_1007_s42976_023_00441_y crossref_primary_10_3390_ijms22094609 crossref_primary_10_1007_s00344_022_10584_7 crossref_primary_10_1007_s10163_024_02105_3 crossref_primary_10_1186_s12870_024_05413_w crossref_primary_10_1016_j_molp_2023_04_011 crossref_primary_10_1016_j_plaphy_2024_108360 crossref_primary_10_1080_14620316_2023_2218381 crossref_primary_10_1007_s00344_023_11195_6 crossref_primary_10_1007_s00344_020_10187_0 crossref_primary_10_3389_fpls_2022_1010654 crossref_primary_10_3390_ijms20010167 crossref_primary_10_1007_s00709_020_01533_w crossref_primary_10_1007_s12374_022_09347_4 crossref_primary_10_1105_tpc_18_00706 crossref_primary_10_1111_jipb_13640 crossref_primary_10_1016_j_scienta_2022_111332 crossref_primary_10_1016_j_plaphy_2019_04_014 crossref_primary_10_1016_j_plaphy_2021_02_021 crossref_primary_10_1186_s12870_024_05531_5 crossref_primary_10_3390_ijms232214216 crossref_primary_10_1016_j_indcrop_2024_120322 crossref_primary_10_1007_s10265_023_01487_z crossref_primary_10_3390_plants12091889 crossref_primary_10_1007_s11032_020_1100_6 crossref_primary_10_1080_15324982_2021_1959464 crossref_primary_10_3390_biom9070293 crossref_primary_10_1016_j_niox_2024_01_002 crossref_primary_10_48130_grares_0024_0015 crossref_primary_10_1111_ppl_14262 crossref_primary_10_1016_j_plaphy_2024_108379 crossref_primary_10_3390_agronomy13030693 crossref_primary_10_1007_s00299_025_03466_1 crossref_primary_10_1016_j_tplants_2021_02_007 crossref_primary_10_1094_MPMI_09_21_0231_FI crossref_primary_10_3390_ijms231710048 crossref_primary_10_47836_pjtas_47_4_22 crossref_primary_10_1186_s12870_022_03887_0 crossref_primary_10_3389_fpls_2023_1264698 crossref_primary_10_1016_j_indcrop_2022_115865 crossref_primary_10_3390_ijms22063082 crossref_primary_10_1016_j_plaphy_2020_07_013 crossref_primary_10_3390_agronomy10030410 crossref_primary_10_1111_ppl_13184 crossref_primary_10_1016_j_plaphy_2021_03_058 crossref_primary_10_3390_ijms19113298 crossref_primary_10_1371_journal_pone_0288985 crossref_primary_10_3390_genes15050573 crossref_primary_10_3390_ijms22115957 crossref_primary_10_3390_ijms232416146 crossref_primary_10_1016_j_jplph_2022_153711 crossref_primary_10_1016_j_scienta_2025_114027 crossref_primary_10_1007_s12374_019_0141_z crossref_primary_10_3389_fpls_2022_1032646 crossref_primary_10_1021_acsagscitech_0c00063 crossref_primary_10_3389_fpls_2021_672672 crossref_primary_10_3390_agronomy14123044 crossref_primary_10_3390_ijms242417591 crossref_primary_10_1186_s43170_024_00256_9 crossref_primary_10_3390_plants12203559 crossref_primary_10_1016_j_plaphy_2023_108036 crossref_primary_10_1093_plphys_kiad510 crossref_primary_10_1111_ppl_13112 crossref_primary_10_3389_fpls_2025_1497064 crossref_primary_10_1016_j_jenvman_2021_113703 crossref_primary_10_3390_agronomy12122962 crossref_primary_10_3390_plants11223117 crossref_primary_10_1016_j_plaphy_2023_108260 crossref_primary_10_3390_plants11223118 crossref_primary_10_3390_antiox12081618 crossref_primary_10_1016_j_ijbiomac_2024_134857 crossref_primary_10_1016_j_jbiotec_2021_02_001 crossref_primary_10_1007_s11104_022_05767_w crossref_primary_10_1186_s12863_021_00989_w crossref_primary_10_3390_plants10020259 crossref_primary_10_1016_j_cj_2022_12_004 crossref_primary_10_1111_jipb_13601 crossref_primary_10_1093_treephys_tpy028 crossref_primary_10_1007_s00425_024_04330_4 crossref_primary_10_1016_j_indcrop_2024_118441 crossref_primary_10_1016_j_bioelechem_2022_108206 crossref_primary_10_1007_s12298_024_01448_3 crossref_primary_10_1111_jac_70047 crossref_primary_10_32615_ps_2019_084 crossref_primary_10_1007_s11427_021_2024_0 crossref_primary_10_3390_agronomy13123016 crossref_primary_10_1038_s41598_021_83566_6 crossref_primary_10_15252_embj_2022113004 crossref_primary_10_3389_fpls_2024_1283912 crossref_primary_10_1016_j_scitotenv_2019_01_214 crossref_primary_10_3389_fpls_2022_934877 crossref_primary_10_32604_phyton_2022_019572 crossref_primary_10_3390_plants13121638 crossref_primary_10_1016_j_envexpbot_2020_103989 crossref_primary_10_3389_fpls_2020_571025 crossref_primary_10_1007_s12633_021_01466_w crossref_primary_10_1007_s00299_021_02788_0 crossref_primary_10_1111_ppl_13374 crossref_primary_10_3390_ijms23095006 crossref_primary_10_1080_15592324_2020_1856546 crossref_primary_10_1111_nph_15989 crossref_primary_10_1016_j_plaphy_2024_108337 crossref_primary_10_1111_tpj_16395 crossref_primary_10_1007_s00709_022_01789_4 crossref_primary_10_1016_j_plaphy_2021_01_028 crossref_primary_10_1016_j_plaphy_2021_01_029 crossref_primary_10_3390_ijms20102421 crossref_primary_10_1371_journal_pone_0219799 crossref_primary_10_1038_s41438_019_0172_0 crossref_primary_10_1016_j_jplph_2022_153708 crossref_primary_10_1016_j_scienta_2020_109426 crossref_primary_10_1007_s00468_023_02400_w crossref_primary_10_1111_jipb_13622 crossref_primary_10_1111_ppl_70129 crossref_primary_10_1016_j_plaphy_2021_01_027 crossref_primary_10_1016_j_plaphy_2025_109735 crossref_primary_10_1007_s00425_021_03671_8 crossref_primary_10_1007_s11104_024_06976_1 crossref_primary_10_1016_j_plaphy_2023_03_006 crossref_primary_10_1111_tpj_16369 crossref_primary_10_3390_ijms20081990 crossref_primary_10_3390_ijms21218385 crossref_primary_10_3390_plants11091184 crossref_primary_10_1021_acs_jafc_3c07139 crossref_primary_10_1016_j_indcrop_2023_116843 crossref_primary_10_3390_cells10050979 crossref_primary_10_1007_s11033_022_07681_x crossref_primary_10_3390_ijms20133167 crossref_primary_10_1093_pcp_pcab117 crossref_primary_10_1111_pce_14031 crossref_primary_10_1007_s10725_020_00684_3 crossref_primary_10_1111_tpj_15270 crossref_primary_10_1111_pbi_14129 crossref_primary_10_1186_s12870_024_05586_4 crossref_primary_10_1071_FP21165 crossref_primary_10_3389_fpls_2021_724288 crossref_primary_10_1038_s41467_019_14027_y crossref_primary_10_3389_fpls_2020_595055 crossref_primary_10_3389_fpls_2022_1030677 crossref_primary_10_3389_fpls_2022_842726 crossref_primary_10_1016_j_plaphy_2020_06_041 crossref_primary_10_1007_s11356_024_34158_0 crossref_primary_10_1016_j_xplc_2024_101137 crossref_primary_10_1093_plphys_kiae633 crossref_primary_10_1016_j_jgg_2024_09_008 crossref_primary_10_1016_j_plaphy_2020_05_003 crossref_primary_10_1016_j_plaphy_2022_09_029 crossref_primary_10_3390_ijms19020469 crossref_primary_10_1016_j_envexpbot_2023_105576 crossref_primary_10_1111_jipb_13839 crossref_primary_10_1111_tpj_15010 crossref_primary_10_1038_s41438_020_00358_1 crossref_primary_10_1007_s10709_020_00093_4 crossref_primary_10_1016_j_algal_2019_101526 crossref_primary_10_1016_j_indcrop_2024_119170 crossref_primary_10_1093_treephys_tpac053 crossref_primary_10_1186_s12864_025_11270_0 crossref_primary_10_3389_fpls_2020_00425 crossref_primary_10_1007_s43621_025_00855_0 crossref_primary_10_1111_tpj_16580 crossref_primary_10_1007_s10098_024_02761_x crossref_primary_10_1007_s10924_021_02296_y crossref_primary_10_3390_agronomy14040649 crossref_primary_10_3390_ijms25169124 crossref_primary_10_1186_s12870_023_04659_0 crossref_primary_10_1016_j_jare_2025_03_040 crossref_primary_10_1038_s41598_024_54623_7 crossref_primary_10_1007_s00344_023_11033_9 crossref_primary_10_3390_ijms24043623 crossref_primary_10_1016_j_envexpbot_2023_105555 crossref_primary_10_1007_s42106_021_00176_y crossref_primary_10_1016_j_jgg_2022_05_007 crossref_primary_10_1038_s41598_024_77182_3 crossref_primary_10_1016_j_rhisph_2020_100229 crossref_primary_10_3389_fpls_2022_1042855 crossref_primary_10_1093_plcell_koad105 crossref_primary_10_1111_pbi_13464 crossref_primary_10_3389_fpls_2023_1293167 crossref_primary_10_1080_15548627_2024_2394302 crossref_primary_10_1016_j_scienta_2023_112083 crossref_primary_10_1038_s41477_019_0497_6 crossref_primary_10_3390_ijms23063279 crossref_primary_10_1093_treephys_tpaa050 crossref_primary_10_3390_ijms25115950 crossref_primary_10_1016_j_ecoenv_2022_113684 crossref_primary_10_1111_nph_15129 crossref_primary_10_1111_tpj_14144 crossref_primary_10_1186_s12284_022_00608_x crossref_primary_10_1007_s11103_021_01230_z crossref_primary_10_3390_ijms21062177 crossref_primary_10_3390_agriculture15060610 crossref_primary_10_1038_s41586_019_1449_z crossref_primary_10_3390_life12060860 crossref_primary_10_1016_j_cj_2021_02_010 crossref_primary_10_3389_fpls_2022_874579 crossref_primary_10_1111_pbi_14565 crossref_primary_10_3390_plants14050678 crossref_primary_10_1093_plcell_koad117 crossref_primary_10_1134_S1021443724604737 crossref_primary_10_3390_ijms23158480 crossref_primary_10_3389_fpls_2021_741641 crossref_primary_10_1007_s11120_022_00913_y crossref_primary_10_3390_plants12122356 crossref_primary_10_1002_tpg2_20337 crossref_primary_10_1093_hr_uhac067 crossref_primary_10_3390_ijms23063293 crossref_primary_10_3390_ijms25074111 crossref_primary_10_3389_fpls_2022_901782 crossref_primary_10_1186_s12864_021_07922_6 crossref_primary_10_1007_s11738_019_2905_y crossref_primary_10_1093_jxb_erad368 crossref_primary_10_1111_nph_17760 crossref_primary_10_1007_s00343_019_9067_z crossref_primary_10_1111_pbi_13247 crossref_primary_10_1016_j_jenvman_2024_122201 crossref_primary_10_3390_ijms22052399 crossref_primary_10_1007_s11032_023_01383_3 crossref_primary_10_1080_07388551_2022_2093695 crossref_primary_10_1007_s13205_023_03519_w crossref_primary_10_1038_s41467_025_57806_6 crossref_primary_10_3390_agronomy11112338 crossref_primary_10_1111_pce_14450 crossref_primary_10_1186_s12870_020_02550_w crossref_primary_10_1016_j_plaphy_2018_10_037 crossref_primary_10_1007_s10265_021_01284_6 crossref_primary_10_3389_fpls_2022_863233 crossref_primary_10_3390_agronomy12092098 crossref_primary_10_3390_ijms241813998 crossref_primary_10_1007_s12268_023_1965_0 crossref_primary_10_1093_plphys_kiae669 crossref_primary_10_3390_agronomy14071391 crossref_primary_10_1007_s12298_024_01455_4 crossref_primary_10_3390_agronomy14112524 crossref_primary_10_1016_j_ygeno_2021_02_022 crossref_primary_10_1016_j_plaphy_2023_108209 crossref_primary_10_3389_fpls_2022_1077710 crossref_primary_10_3390_biology9060116 crossref_primary_10_1007_s10142_024_01405_z |
Cites_doi | 10.1007/s00726-007-0501-8 10.1016/j.bse.2011.06.016 10.1111/j.1469-8137.2005.01335.x 10.1104/pp.93.1.33 10.1016/j.jplph.2014.02.006 10.1038/srep45490 10.1038/ng1643 10.1046/j.1365-313x.2000.00786.x 10.1093/aob/mcu219 10.1016/S0168-9452(98)00218-0 10.1093/jxb/eru392 10.1104/pp.104.900133 10.3389/fenvs.2014.00053 10.1093/jxb/erx019 10.1093/pcp/pcu059 10.1105/tpc.114.135095 10.1104/pp.122.4.1129 10.1093/jxb/50.Special_Issue.1023 10.1007/s00425-006-0242-z 10.1126/science.7112124 10.1016/j.apsoil.2014.11.008 10.1007/s00438-010-0581-0 10.1073/pnas.0604421103 10.1016/j.jplph.2011.10.004 10.1007/s11105-017-1026-2 10.1186/1471-2156-15-S1-S6 10.1105/tpc.111.095273 10.1073/pnas.94.3.1035 10.1093/mp/ssn058 10.1016/j.plaphy.2003.10.007 10.1073/pnas.1018921108 10.1093/molbev/msu152 10.1101/gr.177659.114 10.1104/pp.116.1.369 10.1104/pp.15.00353 10.1111/pce.12051 10.1104/pp.51.5.875 10.1023/A:1010687711334 10.1016/j.phytochem.2017.04.016 10.1111/j.1469-8137.1979.tb01661.x 10.1126/science.223.4637.701 10.1111/pce.12694 10.1111/j.1744-7909.2010.00892.x 10.1086/692097 10.1093/jxb/ert055 10.1073/pnas.120170197 10.1016/j.jplph.2014.12.009 10.1016/j.cell.2016.08.029 10.1126/science.aag1550 10.1186/1471-2229-13-210 10.1105/tpc.109.069609 10.1111/j.1365-313X.2007.03364.x 10.1093/jxb/erq328 10.1007/BF02703574 10.1016/j.plaphy.2015.12.019 10.1111/j.1365-3040.2007.01637.x 10.1111/pce.12419 10.1111/j.1469-8137.2005.01487.x 10.1186/1471-2229-12-183 10.1086/297301 10.1093/jxb/eru159 10.1104/pp.15.00729 10.1016/S0014-5793(02)03488-9 10.1111/nph.13507 10.1104/pp.106.089151 10.1046/j.1365-313X.2003.01871.x 10.1105/tpc.10.8.1391 10.1073/pnas.1407610111 10.1186/1471-2199-10-29 10.1105/tpc.108.063354 10.1111/j.1365-3040.2009.02055.x 10.1038/ncomms2846 10.1371/journal.pgen.1006832 10.1093/pcp/pcq182 10.1016/j.jplph.2009.04.009 10.1093/pcp/pcm123 10.1111/j.1365-3040.2008.01888.x 10.1016/S0304-4165(99)00155-5 10.1016/S1360-1385(99)01428-4 10.1071/FP03236 10.1104/pp.109.3.735 10.1007/s00709-013-0540-9 10.1105/tpc.113.117887 10.1016/j.ydbio.2005.10.036 10.1093/jxb/erx156 10.1105/tpc.106.042291 10.15835/nbha3927176 10.1111/tpj.12958 10.1016/j.plaphy.2007.05.009 10.1073/pnas.1319955111 10.1007/s12298-016-0371-1 10.1073/pnas.241501798 10.1105/tpc.104.022830 10.1016/j.yjmcc.2004.11.019 10.1104/pp.114.236620 10.1128/MCB.00430-07 10.1105/TPC.010021 10.3389/fpls.2015.00133 10.1073/pnas.1321568111 10.1128/MCB.00429-07 10.1111/plb.12084 10.1016/j.freeradbiomed.2017.02.042 10.1111/j.1365-3040.2009.02041.x 10.1104/pp.16.00533 10.1104/pp.111.173377 10.1104/pp.103.022178 10.1105/tpc.108.064568 10.1007/s00299-012-1348-3 10.1146/annurev.pp.44.060193.002041 10.1007/s00709-013-0496-9 10.1016/j.jssas.2011.03.002 10.1038/emboj.2012.273 10.1007/s11816-011-0210-3 10.1105/tpc.113.117069 10.1093/jxb/erq188 10.1093/jxb/ern153 10.17660/ActaHortic.2003.613.3 10.1093/pcp/pcj090 10.1046/j.1365-3040.2000.00602.x 10.1093/jxb/erv306 10.1016/S0958-1669(02)00298-7 10.2135/cropsci2000.402482x 10.1016/j.plaphy.2009.02.009 10.1111/tpj.12123 10.1104/pp.96.4.1228 10.1016/j.envexpbot.2007.10.009 10.1016/S1360-1385(01)01923-9 10.1046/j.0016-8025.2001.00808.x 10.1105/tpc.111.089581 10.1111/j.1529-8817.2011.00977.x 10.1007/s10725-005-7769-z 10.1093/mp/sst062 10.1007/s00709-015-0792-7 10.1105/tpc.013896 10.1105/tpc.112.107227 10.1016/S0176-1617(11)80758-3 10.1111/j.1399-3054.2009.01297.x 10.1146/annurev.arplant.53.091401.143329 10.1016/j.plaphy.2010.08.016 10.1111/pce.12905 10.1093/jxb/erv312 10.1104/pp.114.248963 10.1007/s00299-012-1242-z 10.1016/j.tplants.2006.06.001 10.1155/2012/859831 10.1105/tpc.110.081356 10.1016/0167-7799(96)80929-2 10.1089/dna.2016.3505 10.1073/pnas.2034853100 10.1111/pce.12274 10.1126/science.210.4470.650 10.1126/science.280.5371.1943 10.1021/pr1007834 10.1038/srep44637 10.1105/tpc.109.066217 10.3390/ijms14035899 10.1111/j.1365-313X.2005.02595.x 10.1080/15592324.2016.1253647 10.1093/emboj/17.9.2566 10.1111/jpi.12243 10.1371/journal.pgen.1003779 10.1105/tpc.112.104182 10.1111/nph.14088 10.1093/jxb/erv142 10.1104/pp.119.1.165 10.1034/j.1399-3054.2000.100410.x 10.1105/tpc.12.9.1667 10.1104/pp.102.017277 10.1016/S1146-609X(01)01120-1 10.1073/pnas.0709453104 10.1093/jxb/ers059 10.1016/j.plaphy.2011.01.023 10.1105/tpc.11.7.1195 10.3389/fpls.2016.00658 10.1016/j.cub.2013.08.042 10.1007/s11105-014-0722-4 10.1146/annurev.arplant.51.1.463 10.1093/pcp/pcu125 10.1186/s12870-014-0226-2 10.1079/PAVSNNR20094013 10.1093/mp/sst072 10.1016/j.jmb.2012.09.015 10.1104/pp.113.3.881 10.1242/jeb.01730 10.1021/pr4012624 10.1007/s11103-006-9103-1 10.1093/aob/mcu239 10.1371/journal.pone.0041274 10.1104/pp.113.4.1177 10.1104/pp.107.109413 10.1186/s12870-016-0714-7 10.1371/journal.pone.0106070 10.1016/j.tplants.2009.08.009 10.1093/jxb/erp333 10.3389/fpls.2017.00855 10.1073/pnas.1519555113 10.1371/journal.pone.0040203 10.1007/978-1-4614-8824-8_3 10.1371/journal.pone.0059423 10.1093/jxb/erq154 10.1186/1471-2229-12-132 10.1073/pnas.122224699 10.1186/s12870-015-0451-3 10.1105/tpc.105.035626 10.1074/jbc.M307982200 10.1093/pcp/pcp143 10.1016/S0065-2296(08)60311-0 10.1242/jcs.109116 10.1104/pp.115.1.159 10.1093/jxb/eri301 10.1105/tpc.113.112896 10.1128/MCB.01989-06 10.1093/jxb/err130 10.1111/pce.12033 10.1126/science.270.5244.1986 10.1105/tpc.112.106393 10.1111/nph.12997 10.1016/j.tplants.2008.03.008 10.1104/pp.16.00334 10.1093/pcp/pct049 10.1016/S0098-8472(02)00058-8 10.1038/srep27551 10.1104/pp.010634 10.5402/2012/927436 10.1126/science.aac6014 10.3389/fpls.2016.00081 10.1104/pp.104.042234 10.1016/j.bbrc.2015.08.089 10.1038/nature13593 10.1093/jxb/erg277 10.1104/pp.103.025379 10.1016/j.cell.2015.08.028 10.1104/pp.15.00030 10.1023/A:1026712426180 10.1016/j.jplph.2008.03.002 10.1111/j.1469-8137.2010.03422.x 10.1111/j.1365-313X.2007.03249.x 10.1111/jipb.12005 10.1073/pnas.97.7.3735 10.1093/jxb/eru173 10.1007/s11103-016-0520-5 10.1111/j.1469-8137.2010.03545.x 10.1073/pnas.91.1.306 10.1016/S0076-6879(07)28024-3 10.3389/fpls.2014.00151 10.1007/s10725-014-9943-7 10.1093/pcp/pcr121 10.1016/j.plaphy.2015.06.014 10.1021/jf2021623 10.1242/dev.135111 10.1242/dev.02753 10.1016/j.cell.2005.11.035 10.4161/psb.6.1.14202 10.1016/S0005-2736(00)00135-8 10.1007/s00709-014-0691-3 10.1016/j.envexpbot.2012.01.007 10.1093/jxb/erp290 |
ContentType | Journal Article |
Copyright | 2017 New Phytologist Trust 2017 The Authors. New Phytologist © 2017 New Phytologist Trust 2017 The Authors. New Phytologist © 2017 New Phytologist Trust. Copyright © 2018 New Phytologist Trust |
Copyright_xml | – notice: 2017 New Phytologist Trust – notice: 2017 The Authors. New Phytologist © 2017 New Phytologist Trust – notice: 2017 The Authors. New Phytologist © 2017 New Phytologist Trust. – notice: Copyright © 2018 New Phytologist Trust |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7SN 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 7X8 7S9 L.6 |
DOI | 10.1111/nph.14920 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Ecology Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Aquatic Science & Fisheries Abstracts (ASFA) Professional Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1469-8137 |
EndPage | 539 |
ExternalDocumentID | 29205383 10_1111_nph_14920 NPH14920 90016922 |
Genre | reviewArticle Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: National Genetically Modified Organisms Breeding Major Projects funderid: 2016ZX08009002 – fundername: National Natural Science Foundation of China funderid: 31430012; 31670260 – fundername: NSFC International Collaborative Research Project funderid: 31210103903 – fundername: Foundation for Innovative Research Group of the National Natural Science Foundation of China funderid: 31121002 – fundername: National Basic Research Program of China funderid: 2015CB910202 |
GroupedDBID | --- -~X .3N .GA 05W 0R~ 10A 123 1OC 29N 2WC 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 79B 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 A03 AAESR AAEVG AAHBH AAHKG AAHQN AAISJ AAKGQ AAMMB AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABBHK ABCQN ABCUV ABLJU ABPLY ABPVW ABSQW ABTLG ABVKB ABXSQ ACAHQ ACCZN ACFBH ACGFS ACHIC ACNCT ACPOU ACSCC ACSTJ ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADULT ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUPB AEUYR AEYWJ AFAZZ AFBPY AFEBI AFFPM AFGKR AFWVQ AFZJQ AGHNM AGUYK AGXDD AGYGG AHBTC AHXOZ AIDQK AIDYY AILXY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AQVQM ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CBGCD CS3 CUYZI D-E D-F DCZOG DEVKO DIK DPXWK DR2 DRFUL DRSTM E3Z EBS ECGQY EJD F00 F01 F04 F5P G-S G.N GODZA H.T H.X HGLYW HZI HZ~ IHE IPSME IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2W P2X P4D Q.N Q11 QB0 R.K RIG ROL RX1 SA0 SUPJJ TN5 TR2 UB1 W8V W99 WBKPD WIH WIK WIN WNSPC WOHZO WQJ WXSBR WYISQ XG1 YNT YQT ZZTAW ~02 ~IA ~KM ~WT .Y3 24P 31~ AAHHS AASVR ABEFU ABEML ACCFJ ACQPF AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE AS~ CAG COF DOOOF ESX FIJ GTFYD HF~ HGD HQ2 HTVGU IPNFZ JSODD LPU MVM NEJ RCA WHG WRC XOL YXE ZCG AAYXX ABGDZ ADXHL CITATION CGR CUY CVF ECM EIF NPM PKN 7QO 7SN 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c4740-a4de124c65112920029fd108e91e90fd7a4c6e7926e8e76d1602c830a4f4f90d3 |
IEDL.DBID | DR2 |
ISSN | 0028-646X 1469-8137 |
IngestDate | Fri Jul 11 18:30:03 EDT 2025 Fri Jul 11 06:12:33 EDT 2025 Sun Jul 13 04:36:37 EDT 2025 Wed Feb 19 02:34:37 EST 2025 Thu Jul 03 08:28:53 EDT 2025 Thu Apr 24 23:06:47 EDT 2025 Wed Jan 22 16:47:00 EST 2025 Thu Jul 03 22:18:04 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | glycophytes cytoskeletal dynamics ion and osmotic homeostasis salt-induced stress developmental adjustment antioxidant defense cell activity responses epigenetic regulation |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2017 The Authors. New Phytologist © 2017 New Phytologist Trust. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4740-a4de124c65112920029fd108e91e90fd7a4c6e7926e8e76d1602c830a4f4f90d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
PMID | 29205383 |
PQID | 1990465448 |
PQPubID | 2026848 |
PageCount | 17 |
ParticipantIDs | proquest_miscellaneous_2020882488 proquest_miscellaneous_1973020783 proquest_journals_1990465448 pubmed_primary_29205383 crossref_citationtrail_10_1111_nph_14920 crossref_primary_10_1111_nph_14920 wiley_primary_10_1111_nph_14920_NPH14920 jstor_primary_90016922 |
PublicationCentury | 2000 |
PublicationDate | January 2018 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – month: 01 year: 2018 text: January 2018 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Lancaster |
PublicationTitle | The New phytologist |
PublicationTitleAlternate | New Phytol |
PublicationYear | 2018 |
Publisher | New Phytologist Trust Wiley Subscription Services, Inc |
Publisher_xml | – name: New Phytologist Trust – name: Wiley Subscription Services, Inc |
References | 1998; 280 2013; 126 2013; 64 2002; 99 2010; 188 2008; 34 2008; 31 2016; 39 2016; 38 2012; 12 2004; 31 1998; 17 2013; 54 2000; 12 2015; 252 2011a; 62 1999; 50 2008; 20 2012; 24 2014a; 9 1998; 10 2000; 1465 2010; 9 2007; 19 2004; 42 2003; 613 1999; 29 2002; 531 2017; 68 2008; 59 2010; 284 2008; 53 2001; 22 2016; 16 2011; 6 2011; 5 2012; 31 2016; 11 2015; 350 2016; 6 2016; 7 2015; 115 2013; 74 2016; 212 1999; 1472 2017; 140 2001; 33 2006; 103 1999; 119 2016; 22 2017; 40 2009b; 166 2013; 25 2014b; 26 2002; 53 2013; 23 2007; 144 2016; 100 2007; 30 2014; 171 1980; 210 2014; 65 2010; 61 2007; 134 2014; 5 2013; 14 1997; 94 2014; 2 2017; 36 2013; 13 2017; 35 2015; 176 2016; 113 2016; 354 1999; 11 2008; 63 2014; 165 2014; 166 2001; 13 2014; 55 2007; 27 2015; 162 2014; 514 2015; 6 2015; 168 2015; 169 2006; 11 2015; 96 1999; 140 1993; 141 2007; 52 2012; 424 2002; 25 2013; 36 2011; 108 2005; 166 2013; 32 2010; 138 2005; 167 2017; 13 1995; 109 2016; 253 2014 2009; 4 2009; 2 2007; 45 2017; 106 2007; 48 2007; 104 2013; 4 1991; 96 2015; 75 2002; 13 2011; 62 2011; 52 2014; 24 2016; 143 2011; 59 2013; 8 2014; 251 2013; 6 2003; 54 2013; 9 2010; 22 2009; 14 2009; 10 2015; 84 2015; 87 2000; 97 2014; 16 2014; 15 2014; 14 2014; 13 2003; 49 2000; 122 2007; 63 2010; 33 2015; 59 1984; 223 1993; 44 2006b; 224 2003; 36 2016; 167 2016; 92 1995; 156 1996; 14 2009; 217 1995; 270 2010; 48 2004; 279 2005; 123 2011b; 39 2015; 66 2006; 47 2000; 109 2002; 128 2014; 37 2009a; 47 2016; 171 1994; 91 1979; 82 2010; 52 2003; 100 2014; 31 2016; 172 1997; 113 1997; 115 2017; 7 2017; 8 1973; 51 2015; 38 2015; 465 2000; 43 2015; 33 2003; 13 2000; 51 2003; 15 2011; 10 1998; 116 2008; 146 2012; 169 2007; 428 2006a; 289 2011; 156 2012; 54 2015; 1153 2004; 134 2004; 136 2009; 50 1982; 217 2009; 166 2005; 30 2011; 23 2005; 37 2005; 38 2012; 63 1990; 93 2001; 98 2015; 15 2009; 21 2000; 23 2008; 13 2015; 208 1999; 4 2015; 205 2011; 39 2011c; 23 2014; 111 2012; 79 2017; 178 2003; 133 2005; 44 2005; 46 2003; 131 2012; 3 2015; 27 2001; 6 2004; 16 2000; 40 2005; 208 2005; 54 2013; 250 2011; 47 2012; 6 2012; 7 2011; 49 2011; 189 2005; 56 2012; 9 e_1_2_7_3_1 e_1_2_7_104_1 e_1_2_7_127_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_83_1 Hong Z (e_1_2_7_89_1) 2000; 122 e_1_2_7_191_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_142_1 e_1_2_7_165_1 e_1_2_7_188_1 e_1_2_7_202_1 e_1_2_7_248_1 e_1_2_7_225_1 e_1_2_7_263_1 e_1_2_7_240_1 e_1_2_7_116_1 e_1_2_7_94_1 e_1_2_7_71_1 e_1_2_7_180_1 e_1_2_7_23_1 e_1_2_7_33_1 Zhang H (e_1_2_7_249_1) 2016; 7 e_1_2_7_56_1 e_1_2_7_79_1 e_1_2_7_131_1 e_1_2_7_154_1 e_1_2_7_237_1 e_1_2_7_177_1 e_1_2_7_214_1 e_1_2_7_252_1 e_1_2_7_139_1 e_1_2_7_4_1 e_1_2_7_128_1 e_1_2_7_105_1 Pirzad A (e_1_2_7_166_1) 2011; 5 e_1_2_7_82_1 e_1_2_7_120_1 e_1_2_7_192_1 e_1_2_7_44_1 e_1_2_7_67_1 e_1_2_7_143_1 Abdallah SB (e_1_2_7_2_1) 2016; 38 e_1_2_7_29_1 e_1_2_7_203_1 e_1_2_7_226_1 e_1_2_7_241_1 e_1_2_7_264_1 Serrano R (e_1_2_7_189_1) 1999; 50 e_1_2_7_117_1 e_1_2_7_70_1 e_1_2_7_93_1 e_1_2_7_181_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_78_1 e_1_2_7_193_1 e_1_2_7_238_1 e_1_2_7_132_1 e_1_2_7_155_1 e_1_2_7_178_1 e_1_2_7_215_1 e_1_2_7_230_1 e_1_2_7_253_1 e_1_2_7_106_1 e_1_2_7_129_1 Arya A (e_1_2_7_12_1) 2012; 9 e_1_2_7_9_1 e_1_2_7_81_1 e_1_2_7_121_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_170_1 e_1_2_7_227_1 e_1_2_7_182_1 e_1_2_7_28_1 e_1_2_7_144_1 e_1_2_7_167_1 e_1_2_7_204_1 e_1_2_7_265_1 e_1_2_7_242_1 e_1_2_7_118_1 e_1_2_7_110_1 e_1_2_7_92_1 e_1_2_7_31_1 e_1_2_7_77_1 e_1_2_7_54_1 e_1_2_7_171_1 e_1_2_7_216_1 e_1_2_7_194_1 e_1_2_7_239_1 e_1_2_7_39_1 e_1_2_7_133_1 e_1_2_7_156_1 e_1_2_7_179_1 e_1_2_7_254_1 e_1_2_7_231_1 e_1_2_7_107_1 Fu HH (e_1_2_7_61_1) 1998; 10 e_1_2_7_80_1 e_1_2_7_122_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_88_1 e_1_2_7_65_1 e_1_2_7_205_1 e_1_2_7_228_1 e_1_2_7_160_1 e_1_2_7_183_1 e_1_2_7_27_1 e_1_2_7_145_1 e_1_2_7_220_1 e_1_2_7_243_1 e_1_2_7_266_1 e_1_2_7_168_1 e_1_2_7_119_1 e_1_2_7_91_1 e_1_2_7_111_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_99_1 e_1_2_7_172_1 e_1_2_7_195_1 e_1_2_7_217_1 e_1_2_7_38_1 e_1_2_7_134_1 e_1_2_7_232_1 e_1_2_7_255_1 e_1_2_7_157_1 e_1_2_7_7_1 e_1_2_7_100_1 e_1_2_7_123_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_87_1 e_1_2_7_161_1 e_1_2_7_184_1 e_1_2_7_206_1 e_1_2_7_26_1 e_1_2_7_229_1 e_1_2_7_49_1 e_1_2_7_146_1 e_1_2_7_169_1 e_1_2_7_244_1 e_1_2_7_221_1 e_1_2_7_90_1 e_1_2_7_112_1 e_1_2_7_52_1 e_1_2_7_98_1 e_1_2_7_75_1 e_1_2_7_150_1 e_1_2_7_196_1 Kishor PBK (e_1_2_7_115_1) 2005; 54 e_1_2_7_37_1 e_1_2_7_173_1 e_1_2_7_218_1 e_1_2_7_256_1 e_1_2_7_135_1 e_1_2_7_158_1 e_1_2_7_233_1 e_1_2_7_210_1 e_1_2_7_109_1 e_1_2_7_8_1 e_1_2_7_124_1 e_1_2_7_101_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_63_1 e_1_2_7_86_1 e_1_2_7_185_1 e_1_2_7_207_1 e_1_2_7_48_1 e_1_2_7_162_1 e_1_2_7_245_1 e_1_2_7_147_1 e_1_2_7_222_1 e_1_2_7_260_1 e_1_2_7_113_1 e_1_2_7_51_1 e_1_2_7_74_1 e_1_2_7_97_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_151_1 e_1_2_7_174_1 e_1_2_7_219_1 e_1_2_7_197_1 e_1_2_7_234_1 e_1_2_7_257_1 e_1_2_7_136_1 e_1_2_7_211_1 e_1_2_7_159_1 e_1_2_7_5_1 e_1_2_7_102_1 e_1_2_7_125_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_85_1 e_1_2_7_47_1 e_1_2_7_140_1 e_1_2_7_163_1 e_1_2_7_208_1 e_1_2_7_223_1 Blumwald E (e_1_2_7_25_1) 2003; 13 e_1_2_7_186_1 e_1_2_7_246_1 e_1_2_7_148_1 e_1_2_7_200_1 Kawa D (e_1_2_7_108_1) 2016; 172 e_1_2_7_261_1 e_1_2_7_114_1 e_1_2_7_73_1 e_1_2_7_50_1 e_1_2_7_96_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_58_1 e_1_2_7_152_1 e_1_2_7_175_1 e_1_2_7_212_1 e_1_2_7_258_1 e_1_2_7_198_1 e_1_2_7_235_1 e_1_2_7_137_1 e_1_2_7_250_1 e_1_2_7_6_1 e_1_2_7_126_1 e_1_2_7_103_1 e_1_2_7_18_1 e_1_2_7_84_1 e_1_2_7_209_1 e_1_2_7_190_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_69_1 e_1_2_7_141_1 e_1_2_7_201_1 e_1_2_7_224_1 e_1_2_7_247_1 e_1_2_7_164_1 e_1_2_7_187_1 e_1_2_7_149_1 e_1_2_7_262_1 e_1_2_7_72_1 e_1_2_7_95_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_130_1 e_1_2_7_153_1 e_1_2_7_176_1 e_1_2_7_199_1 e_1_2_7_213_1 e_1_2_7_236_1 e_1_2_7_259_1 e_1_2_7_138_1 e_1_2_7_251_1 |
References_xml | – volume: 171 start-page: 779 year: 2014 end-page: 788 article-title: Enhanced salt‐induced antioxidative responses involve a contribution of polyamine biosynthesis in grapevine plants publication-title: Journal of Plant Physiology – volume: 19 start-page: 1415 year: 2007 end-page: 1431 article-title: SCABP8/CBL10, a putative calcium sensor, interacts with the protein kinase SOS2 to protect Arabidopsis shoots from salt stress publication-title: Plant Cell – volume: 2 start-page: 53 year: 2014 article-title: Reactive oxygen species (ROS) and response of antioxidants as ROS‐scavengers during environmental stress in plants publication-title: Frontiers in Environmental Science – volume: 131 start-page: 1628 year: 2003 end-page: 1637 article-title: Glucosylglycerol, a compatible solute, sustains cell division under salt stress publication-title: Plant Physiology – volume: 109 start-page: 735 year: 1995 end-page: 742 article-title: Ion homeostasis in NaCl stress environment publication-title: Plant Physiology – volume: 169 start-page: 1072 year: 2015 end-page: 1089 article-title: Differential role for trehalose metabolism in salt‐stressed maize publication-title: Plant Physiology – volume: 188 start-page: 762 year: 2010 end-page: 773 article-title: Phosphatidic acid mediates salt stress response by regulation of MPK6 in publication-title: New Phytologist – volume: 55 start-page: 1354 year: 2014 end-page: 1365 article-title: Induced and constitutive DNA methylation in a salinity‐tolerant wheat introgression line publication-title: Plant & Cell Physiology – volume: 38 start-page: 1 year: 2016 end-page: 13 article-title: Salt stress (NaCl) affects plant growth and branch pathways of carotenoid and flavonoid biosyntheses in publication-title: Acta Physiologiae Plantarum – volume: 52 start-page: 1766 year: 2011 end-page: 1775 article-title: Mannitol transport and mannitol dehydrogenase activities are coordinated in under salt and osmotic stresses publication-title: Plant & Cell Physiology – volume: 140 start-page: 52 year: 2017 article-title: Evaluation of proline functions in saline conditions publication-title: Phytochemistry – volume: 30 start-page: 101 year: 2005 end-page: 116 article-title: Sugar signaling and gene expression in relation to carbohydrate metabolism under abiotic stresses in plants publication-title: Journal of Biosciences – volume: 6 start-page: 27551 year: 2016 article-title: Small RNA transcriptomes of mangroves evolve adaptively in extreme environments publication-title: Scientific Reports – volume: 6 start-page: 206 year: 2001 end-page: 211 article-title: Vacuolar H pyrophosphatases: from the evolutionary backwaters into the main stream publication-title: Trends in Plant Science – volume: 113 start-page: E5242 year: 2016 end-page: E5249 article-title: Rapid hyperosmotic‐induced Ca responses in exhibit sensory potentiation and involvement of plastidial KEA transporters publication-title: Proceedings of the National Academy of Sciences, USA – volume: 54 start-page: 936 year: 2012 end-page: 952 article-title: Regulation of leaf senescence and crop genetic improvement publication-title: Journal of Integrative Plant Biology – volume: 24 start-page: 1821 year: 2014 end-page: 1829 article-title: Environmentally responsive genome‐wide accumulation of mutations and epimutations publication-title: Genome Research – volume: 109 start-page: 435 year: 2000 end-page: 442 article-title: Differential response of antioxidant compounds to salinity stress in salt‐tolerant and salt‐sensitive seedlings of foxtail millet ( ) publication-title: Physiologia Plantarum – volume: 35 start-page: 333 year: 2017 end-page: 342 article-title: A thioredoxin‐dependent glutathione peroxidase (OsGPX5) is required for rice normal development and salt stress tolerance publication-title: Plant Molecular Biology Reporter – volume: 43 start-page: 471 year: 2000 end-page: 475 article-title: Effect of glycine betaine on chloroplast ultrastructure, chlorophyll and protein content and RUBPCO activities in tomato grown under drought or salinity publication-title: Biologia Plantarum – volume: 84 start-page: 56 year: 2015 end-page: 69 article-title: Transcription factor WRKY46 modulates the development of Arabidopsis lateral roots in osmotic/salt stress conditions via regulation of ABA signaling and auxin homeostasis publication-title: Plant Journal – volume: 14 start-page: 5899 year: 2013 end-page: 5919 article-title: A rice immunophilin gene, , confers tolerance to environmental stress in Arabidopsis and rice publication-title: International Journal of Molecular Sciences – volume: 16 start-page: 21 year: 2016 article-title: A comparative gene analysis with rice identified orthologous group II HKT genes and their association with Na concentration in bread wheat publication-title: BMC Plant Biology – volume: 253 start-page: 101 year: 2016 end-page: 110 article-title: Early osmotic, antioxidant, ionic, and redox responses to salinity in leaves and roots of Indian mustard ( L.) publication-title: Protoplasma – volume: 45 start-page: 705 year: 2007 end-page: 710 article-title: Osmoregulation in , Part II: Photosynthesis and starch contribute carbon for glycerol synthesis during a salt stress in publication-title: Plant Physiology & Biochemistry – volume: 33 start-page: 453 year: 2010 end-page: 467 article-title: Reactive oxygen species homeostasis and signaling during drought and salinity stresses publication-title: Plant, Cell & Environment – volume: 61 start-page: 3787 year: 2010 end-page: 3798 article-title: A comparative study of salt tolerance parameters in 11 wild relatives of publication-title: Journal of Experimental Botany – volume: 144 start-page: 1029 year: 2007 end-page: 1038 article-title: Differential regulation of sorbitol and sucrose loading into the phloem of in response to salt stress publication-title: Plant Physiology – start-page: 49 year: 2014 end-page: 89 – volume: 37 start-page: 2024 year: 2014 end-page: 2035 article-title: A step towards understanding plant responses to multiple environmental stresses: a genome‐wide study publication-title: Plant, Cell & Environment – volume: 13 start-page: 210 year: 2013 article-title: MiR394 and LCR are involved in Arabidopsis salt and drought stress responses in an abscisic acid‐dependent manner publication-title: BMC Plant Biology – volume: 52 start-page: 473 year: 2007 end-page: 484 article-title: The calcium sensor CBL10 mediates salt tolerance by regulating ion homeostasis in Arabidopsis publication-title: Plant Journal – volume: 11 start-page: 1195 year: 1999 end-page: 1206 article-title: A recessive Arabidopsis mutant that grows photoautotrophically under salt stress shows enhanced active oxygen detoxification publication-title: Plant Cell – volume: 171 start-page: 369 year: 2016 end-page: 379 article-title: Arabidopsis CALCINEURIN B‐LIKE10 functions independently of the SOS pathway during reproductive development in saline conditions publication-title: Plant Physiology – volume: 23 start-page: 2044 year: 2013 end-page: 2050 article-title: Halotropism is a response of plant roots to avoid a saline environment publication-title: Current Biology – volume: 33 start-page: 56 year: 2015 end-page: 68 article-title: Metabolomic analysis revealed differential adaptation to salinity and alkalinity stress in kentucky bluegrass ( ) publication-title: Plant Molecular Biology Reporter – volume: 62 start-page: 4787 year: 2011 end-page: 4803 article-title: Global gene expression analysis of transgenic, mannitol‐producing, and salt‐tolerant indicates widespread changes in abiotic and biotic stress‐related genes publication-title: Journal of Experimental Botany – volume: 5 start-page: 151 year: 2014 end-page: 160 article-title: Tolerance to drought and salt stress in plants: unraveling the signaling networks publication-title: Frontiers in Plant Science – volume: 31 start-page: 203 year: 2004 end-page: 216 article-title: Die and let live: leaf senescence contributes to plant survival under drought stress publication-title: Functional Plant Biology – volume: 133 start-page: 307 year: 2003 end-page: 318 article-title: Sodium influx and accumulation in Arabidopsis publication-title: Plant Physiology – volume: 62 start-page: 975 year: 2011a end-page: 988 article-title: Characterization of a common wheat ( L.) gene involved in abiotic stress responses publication-title: Journal of Experimental Botany – volume: 96 start-page: 217 year: 2015 end-page: 221 article-title: Suppressed expression of choline monooxygenase in sugar beet on the accumulation of glycine betaine publication-title: Plant Physiology & Biochemistry – volume: 49 start-page: 441 year: 2011 end-page: 448 article-title: Expression of three galactinol synthase isoforms in l. and accumulation of raffinose and stachyose in response to abiotic stresses publication-title: Plant Physiology & Biochemistry – volume: 39 start-page: 9 year: 2011 end-page: 17 article-title: Soluble carbohydrates as osmolytes in several halophytes from a mediterranean salt marsh publication-title: Notulae Botanicae Horti Agrobotanici Cluj‐Napoca – volume: 97 start-page: 3735 year: 2000 end-page: 3740 article-title: The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium‐binding protein SOS3 publication-title: Proceedings of the National Academy of Sciences, USA – volume: 6 start-page: 89 year: 2012 end-page: 96 article-title: Accumulation of trehalose increases soluble sugar contents in rice plants conferring tolerance to drought and salt stress publication-title: Plant Biotechnology Reports – volume: 7 start-page: 45490 year: 2017 article-title: Thiourea priming enhances salt tolerance through co‐ordinated regulation of microRNAs and hormones in publication-title: Scientific Reports – volume: 143 start-page: 3350 year: 2016 end-page: 3362 article-title: Modeling halotropism: a key role for root tip architecture and reflux loop remodeling in redistributing auxin publication-title: Development – volume: 33 start-page: 543 year: 2010 end-page: 551 article-title: Analysis of the salt‐stress response at cell‐type resolution publication-title: Plant, Cell & Environment – volume: 22 start-page: 291 year: 2016 end-page: 306 article-title: Manganese‐induced salt stress tolerance in rice seedlings: regulation of ion homeostasis, antioxidant defense and glyoxalase systems publication-title: Physiology and Molecular Biology of Plants – volume: 96 start-page: 1228 year: 1991 end-page: 1236 article-title: Effects of salt stress on amino acid, organic acid, and carbohydrate composition of roots, bacteroids, and cytosol of alfalfa ( L.) publication-title: Plant Physiology – volume: 6 start-page: 1781 year: 2013 end-page: 1794 article-title: Inositol polyphosphate phosphatidylinositol 5‐phosphatase9 (At5ptase9) controls plant salt tolerance by regulating endocytosis publication-title: Molecular Plant – volume: 138 start-page: 60 year: 2010 end-page: 73 article-title: Fine and coarse regulation of reactive oxygen species in the salt tolerant mutants of barnyard grass and their wild‐type parents under salt stress publication-title: Physiologia Plantarum – volume: 51 start-page: 875 year: 1973 end-page: 878 article-title: The role of glycerol in the osmotic regulation of the halophilic alga publication-title: Plant Physiology – volume: 44 start-page: 357 year: 1993 end-page: 384 article-title: Quaternary ammonium and tertiary sulfonium compounds in higher plants publication-title: Annual Review of Plant Biology – volume: 280 start-page: 1943 year: 1998 end-page: 1945 article-title: A calcium sensor homolog required for plant salt tolerance publication-title: Science – volume: 14 start-page: 1 year: 2014 end-page: 13 article-title: Identification and characterization of microRNAs related to salt stress in broccoli, using high‐throughput sequencing and bioinformatics analysis publication-title: BMC Plant Biology – volume: 13 start-page: e1006832 year: 2017 article-title: The Arabidopsis leucine‐rich repeat receptor kinase MIK2/LRR‐KISS connects cell wall integrity sensing, root growth and response to abiotic and biotic stresses publication-title: PLoS Genetics – volume: 134 start-page: 681 year: 2007 end-page: 690 article-title: Auxin‐dependent regulation of lateral root positioning in the basal meristem of Arabidopsis publication-title: Development – volume: 25 start-page: 324 year: 2013 end-page: 341 article-title: Endodermal ABA signaling promotes lateral root quiescence during salt stress in Arabidopsis seedlings publication-title: Plant Cell – volume: 24 start-page: 1127 year: 2012 end-page: 1142 article-title: Ion exchangers NHX1 and NHX2 mediate active potassium uptake into vacuoles to regulate cell turgor and stomatal function in Arabidopsis publication-title: Plant Cell – volume: 8 start-page: e59423 year: 2013 article-title: High‐throughput sequencing of small RNA transcriptome reveals salt stress regulated microRNAs in sugarcane publication-title: PLoS ONE – volume: 54 start-page: 971 year: 2013 end-page: 981 article-title: Cytokinin response factor 6 negatively regulates leaf senescence and is induced in response to cytokinin and numerous abiotic stresses publication-title: Plant & Cell Physiology – volume: 111 start-page: 10013 year: 2014 end-page: 10018 article-title: OsNAP connects abscisic acid and leaf senescence by fine‐tuning abscisic acid biosynthesis and directly targeting senescence‐associated genes in rice publication-title: Proceedings of the National Academy of Sciences, USA – volume: 66 start-page: 5997 year: 2015 end-page: 6008 article-title: Salt‐induced transcription factor MYB74 is regulated by the RNA‐directed DNA methylation pathway in Arabidopsis publication-title: Journal of Experimental Botany – volume: 100 start-page: 37 year: 2016 end-page: 46 article-title: Histone acetylation influences the transcriptional activation of pox in L. and L. under salt stress publication-title: Plant Physiology & Biochemistry – volume: 9 start-page: e106070 year: 2014a article-title: Transcriptional regulation of cell cycle genes in response to abiotic stresses correlates with dynamic changes in histone modifications in maize publication-title: PLoS ONE – volume: 212 start-page: 345 year: 2016 end-page: 353 article-title: The triple mutants reveal the essential functions of CBFs in cold acclimation and allow the definition of CBF regulons in Arabidopsis publication-title: New Phytologist – volume: 169 start-page: 285 year: 2012 end-page: 293 article-title: Tipburn in salt‐affected lettuce ( L.) plants results from local oxidative stress publication-title: Journal of Plant Physiology – volume: 16 start-page: 558 year: 2014 end-page: 570 article-title: The overexpression of a maize mitogen‐activated protein kinase gene (ZmMPK5) confers salt stress tolerance and induces defence responses in tobacco publication-title: Plant Biology – volume: 210 start-page: 650 year: 1980 end-page: 651 article-title: Carbon‐13 nuclear magnetic resonance study of osmoregulation in a blue‐green alga publication-title: Science – volume: 14 start-page: 89 year: 1996 end-page: 97 article-title: Strategies for engineering water‐stress tolerance in plants publication-title: Trends in Biotechnology – volume: 25 start-page: 239 year: 2002 end-page: 250 article-title: Comparative physiology of salt and water stress publication-title: Plant, Cell & Environment – volume: 27 start-page: 7781 year: 2007 end-page: 7790 article-title: SOS2 promotes salt tolerance in part by interacting with the vaculoar H ‐ATPase and upregulating its transport activity publication-title: Molecular and Cellular Biology – volume: 111 start-page: 6497 year: 2014 end-page: 6502 article-title: Salt stress‐induced Ca waves are associated with rapid, long‐distance root‐to‐shoot signaling in plants publication-title: Proceedings of the National Academy of Sciences, USA – volume: 178 start-page: 485 year: 2017 end-page: 493 article-title: SALT OVERLY SENSITIVE 2 (SOS2) and interacting partners SOS3 and ABSCISIC ACID–INSENSITIVE 2 (ABI2) promote red‐light‐dependent germination and seedling deetiolation in Arabidopsis publication-title: International Journal of Plant Sciences – volume: 44 start-page: 928 year: 2005 end-page: 938 article-title: Enhanced salt tolerance mediated by AtHKT1 transporter‐induced Na unloading from xylem parenchyma cells publication-title: Plant Journal – volume: 48 start-page: 1534 year: 2007 end-page: 1547 article-title: Salt tolerance requires cortical microtubule reorganization in Arabidopsis publication-title: Plant & Cell Physiology – volume: 23 start-page: 396 year: 2011c end-page: 411 article-title: Arabidopsis floral initiator SKB1 confers high salt tolerance by regulating transcription publication-title: Plant Cell – volume: 428 start-page: 419 year: 2007 end-page: 438 article-title: Mechanisms of high salinity tolerance in plants publication-title: Methods in Enzymology – volume: 104 start-page: 19631 year: 2007 end-page: 19636 article-title: Delayed leaf senescence induces extreme drought tolerance in a flowering plant publication-title: Proceedings of the National Academy of Sciences, USA – volume: 13 start-page: 1383 year: 2001 end-page: 1400 article-title: Molecular characterization of functional domains in the protein kinase SOS2 that is required for plant salt tolerance publication-title: Plant Cell – volume: 1472 start-page: 519 year: 1999 end-page: 528 article-title: Involvement of the compatible solutes trehalose and sucrose in the response to salt stress of a cyanobacterial Scytonema, species isolated from desert soils publication-title: Biochimica et Biophysica Acta – volume: 156 start-page: 2235 year: 2011 end-page: 2243 article-title: Phosphorylation of SOS3‐like calcium‐binding proteins by their interacting SOS2‐like protein kinases is a common regulatory mechanism in Arabidopsis publication-title: Plant Physiology – volume: 205 start-page: 216 year: 2015 end-page: 239 article-title: New insights into plant salt acclimation: the roles of vesicle trafficking and reactive oxygen species signalling in mitochondria and the endomembrane system publication-title: New Phytologist – volume: 146 start-page: 178 year: 2008 end-page: 188 article-title: Salt modulates gravity signaling pathway to regulate growth direction of primary roots in Arabidopsis publication-title: Plant Physiology – volume: 100 start-page: 11771 year: 2003 end-page: 11776 article-title: A novel domain in the protein kinase SOS2 mediates interaction with the protein phosphatase 2C ABI2 publication-title: Proceedings of the National Academy of Sciences, USA – volume: 7 start-page: 44637 year: 2017 end-page: 44647 article-title: EIN3 and SOS2 synergistically modulate plant salt tolerance publication-title: Scientific Reports – volume: 7 start-page: 420 year: 2016 end-page: 428 article-title: Differential activation of the wheat SnRK2 family by abiotic stresses publication-title: Frontiers in Plant Science – volume: 7 start-page: e40203 year: 2012 article-title: Salt stress induced variation in DNA methylation pattern and its influence on gene expression in contrasting rice genotypes publication-title: PLoS ONE – volume: 165 start-page: 119 year: 2014 end-page: 128 article-title: Plastid osmotic stress activates cellular stress responses in Arabidopsis publication-title: Plant Physiology – volume: 33 start-page: 13 year: 2001 end-page: 17 article-title: Partitioning of carbohydrates in salt‐sensitive and salt‐tolerant soybean callus cultures under salinity stress and its subsequent relief publication-title: Plant Growth Regulation – volume: 26 start-page: 1166 year: 2014b end-page: 1182 article-title: Inhibition of the Arabidopsis salt overly sensitive pathway by 14‐3‐3 proteins publication-title: Plant Cell – volume: 36 start-page: 229 year: 2003 end-page: 239 article-title: Vacuolar cation/H exchange, ion homeostasis, and leaf development are altered in a T‐DNA insertional mutant of AtNHX1, the Arabidopsis vacuolar Na /H antiporter publication-title: Plant Journal – volume: 48 start-page: 909 year: 2010 end-page: 930 article-title: Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants publication-title: Plant Physiology and Biochemistry – volume: 270 start-page: 1986 year: 1995 end-page: 1988 article-title: Inhibition of leaf senescence by autoregulated production of cytokinin publication-title: Science – volume: 59 start-page: 91 year: 2015 end-page: 101 article-title: Melatonin delays leaf senescence and enhances salt stress tolerance in rice publication-title: Journal of Pineal Research – volume: 40 start-page: 482 year: 2000 end-page: 487 article-title: Osmotic and salt stress‐induced alteration in soluble carbohydrate content in wheat seedlings publication-title: Crop Science – volume: 5 start-page: 2483 year: 2011 end-page: 2488 article-title: Effect of water stress on leaf relative water content, chlorophyll, proline and soluble carbohydrates in L publication-title: Journal of Medicinal Plants Research – volume: 47 start-page: 1158 year: 2006 end-page: 1168 article-title: Salt stress affects cortical microtubule organization and helical growth in Arabidopsis publication-title: Plant & Cell Physiology – volume: 13 start-page: 146 year: 2002 end-page: 150 article-title: Engineering salt tolerance publication-title: Current Opinion in Biotechnology – volume: 97 start-page: 6896 year: 2000 end-page: 6901 article-title: The salt tolerance gene SOS1 encodes a putative Na /H antiporter publication-title: Proceedings of the National Academy of Sciences, USA – volume: 63 start-page: 3297 year: 2012 end-page: 3306 article-title: HD2C interacts with HDA6 and is involved in ABA and salt stress response in Arabidopsis publication-title: Journal of Experimental Botany – volume: 75 start-page: 187 year: 2015 end-page: 197 article-title: The mitigating effect of cysteine on growth inhibition in salt‐stressed barley seeds is related to its own reducing capacity rather than its effects on antioxidant system publication-title: Plant Growth Regulation – volume: 68 start-page: 2951 year: 2017 end-page: 2962 article-title: A bioassay‐guided fractionation system to identify endogenous small molecules that activate plasma membrane H ‐ATPase activity in Arabidopsis publication-title: Journal of Experimental Botany – volume: 36 start-page: 1009 year: 2013 end-page: 1018 article-title: γ‐Aminobutyric acid transaminase deficiency impairs central carbon metabolism and leads to cell wall defects during salt stress in Arabidopsis roots publication-title: Plant, Cell & Environment – volume: 13 start-page: 368 year: 2008 end-page: 374 article-title: Small RNA metabolism in Arabidopsis publication-title: Trends in Plant Science – volume: 2 start-page: 22 year: 2009 end-page: 31 article-title: Overexpression of SOS (Salt Overly Sensitive) genes increases salt tolerance in transgenic Arabidopsis publication-title: Molecular Plant – volume: 111 start-page: 4532 year: 2014 end-page: 4541 article-title: Structural basis of the regulatory mechanism of the plant CIPK family of protein kinases controlling ion homeostasis and abiotic stress publication-title: Proceedings of the National Academy of Sciences, USA – volume: 14 start-page: 660 year: 2009 end-page: 668 article-title: HKT transporter‐mediated salinity resistance mechanisms in Arabidopsis and monocot crop plants publication-title: Trends in Plant Science – volume: 25 start-page: 4544 year: 2013 end-page: 4559 article-title: The actin‐related Protein2/3 complex regulates mitochondrial‐associated calcium signaling during salt stress in Arabidopsis publication-title: Plant Cell – volume: 46 start-page: 153 year: 2005 end-page: 160 article-title: Carbohydrate depletion in roots and leaves of salt‐stressed potted L publication-title: Journal of Plant Growth Regulation – volume: 31 start-page: 4359 year: 2012 end-page: 4370 article-title: ROS‐mediated vascular homeostatic control of root‐to‐shoot soil Na delivery in Arabidopsis publication-title: EMBO Journal – volume: 52 start-page: 360 year: 2010 end-page: 376 article-title: Abiotic and biotic stresses and changes in the lignin content and composition in plants publication-title: Journal of Integrative Plant Biology – volume: 9 start-page: e1003779 year: 2013 article-title: A pre‐mRNA‐splicing factor is required for RNA‐directed DNA methylation in Arabidopsis publication-title: Plos Genetics – volume: 223 start-page: 701 year: 1984 end-page: 703 article-title: Preservation of membranes in anhydrobiotic organisms: the role of trehalose publication-title: Science – volume: 32 start-page: 139 year: 2013 end-page: 148 article-title: Arabidopsis SOS3 plays an important role in salt tolerance by mediating calcium‐dependent microfilament reorganization publication-title: Plant Cell Reports – volume: 24 start-page: 5106 year: 2012 end-page: 5122 article-title: Ubiquitin‐specific protease16 modulates salt tolerance in Arabidopsis by regulating Na /H antiport activity and serine hydroxymethyltransferase stability publication-title: Plant Cell – volume: 6 start-page: 29 year: 2011 end-page: 31 article-title: Cytoskeleton and plant salt stress tolerance publication-title: Plant Signaling & Behavior – volume: 465 start-page: 790 year: 2015 end-page: 796 article-title: Comparative analysis of DNA methylation changes in two rice genotypes under salt stress and subsequent recovery publication-title: Biochemical & Biophysical Research Communications. – volume: 63 start-page: 19 year: 2008 end-page: 27 article-title: Synthesis of organic osmolytes and salt tolerance mechanisms in publication-title: Environmental & Experimental Botany – volume: 68 start-page: 1283 year: 2017 end-page: 1298 article-title: Redox and reactive oxygen species network in acclimation for salinity tolerance in sugar beet publication-title: Journal of Experimental Botany – volume: 37 start-page: 1141 year: 2005 end-page: 1146 article-title: A rice quantitative trait locus for salt tolerance encodes a sodium transporter publication-title: Nature Genetics – volume: 113 start-page: 881 year: 1997 end-page: 893 article-title: Growth, water relations, and accumulation of organic and inorganic solutes in roots of maize seedlings during salt stress publication-title: Plant Physiology – volume: 141 start-page: 188 year: 1993 end-page: 194 article-title: Proline accumulation as drought tolerance selection criterion: its relationship to membrane integrity and chloroplast ultra structure in L publication-title: Journal of Plant Physiology – volume: 9 start-page: 6595 year: 2010 end-page: 6604 article-title: Wheat mitochondrial proteomes provide new links between antioxidant defense and plant salinity tolerance publication-title: Journal of Proteome Research – volume: 29 start-page: 113 year: 1999 end-page: 189 article-title: The NaCl induced inhibition of shoot growth: the case for distributed nutrition with special consideration of calcium publication-title: Advances in Botanical Research – volume: 17 start-page: 2566 year: 1998 end-page: 2573 article-title: Glucose sensing and signaling by two glucose receptors in the yeast publication-title: EMBO Journal – volume: 10 start-page: 1 year: 2009 end-page: 10 article-title: Members of miR‐169 family are induced by high salinity and transiently inhibit the NF‐YA transcription factor publication-title: BMC Molecular Biology – volume: 98 start-page: 14150 year: 2001 end-page: 14155 article-title: AtHKT1 is a salt tolerance determinant that controls Na entry into plant roots publication-title: Proceedings of the National Academy of Sciences, USA – volume: 66 start-page: 5983 year: 2015 end-page: 5996 article-title: Differential molecular response of monodehydroascorbate reductase and glutathione reductase by nitration and s‐nitrosylation publication-title: Journal of Experimental Botany – volume: 613 start-page: 39 year: 2003 end-page: 46 article-title: Effect of salt stress on water relations and antioxidant activity in tomato publication-title: Acta Horticulturae – volume: 31 start-page: 2094 year: 2014 end-page: 2107 article-title: Distinct roles for SOS1 in the convergent evolution of salt tolerance in and publication-title: Molecular Biology and Evolution – volume: 10 start-page: 81 year: 2011 end-page: 87 article-title: Is salinity tolerance related to osmolytes accumulation in L. seedlings? publication-title: Journal of the Saudi Society of Agricultural Sciences – volume: 56 start-page: 3041 year: 2005 end-page: 3049 article-title: Increased sensitivity to salt stress in an ascorbate‐deficient Arabidopsis mutant publication-title: Journal of Experimental Botany – volume: 79 start-page: 37 year: 2012 end-page: 43 article-title: Salinity‐induced changes in phenolic compounds in leaves and roots of four olive cultivars ( L) and their relationship to antioxidant activity publication-title: Environmental & Experimental Botany – volume: 47 start-page: 570 year: 2009a end-page: 577 article-title: Analysis of antioxidant enzyme activity during germination of alfalfa under salt and drought stresses publication-title: Plant Physiology & Biochemistry – volume: 166 start-page: 371 year: 2005 end-page: 382 article-title: Sulfur and phytoplankton: acquisition, metabolism and impact on the environment publication-title: New Phytologist – volume: 10 start-page: 63 year: 1998 end-page: 74 article-title: AtKUP1: a dual‐affinity K transporter from Arabidopsis publication-title: Plant Cell – volume: 49 start-page: 69 year: 2003 end-page: 76 article-title: Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress publication-title: Environmental & Experimental Botany – volume: 251 start-page: 219 year: 2014 end-page: 231 article-title: Co‐expression of the Arabidopsis SOS genes enhances salt tolerance in transgenic tall fescue ( Schreb.) publication-title: Protoplasma – volume: 166 start-page: 1637 year: 2009b end-page: 1645 article-title: Auxin redistribution modulates plastic development of root system architecture under salt stress in publication-title: Journal of Plant Physiology – volume: 11 start-page: 372 year: 2006 end-page: 374 article-title: Nomenclature for HKT transporters, key determinants of plant salinity tolerance publication-title: Trends in Plant Science – volume: 176 start-page: 101 year: 2015 end-page: 107 article-title: Differential accumulation of glycinebetaine and choline monooxygenase in bladder hairs and lamina leaves of , under high salinity publication-title: Journal of Plant Physiology – volume: 289 start-page: 3 year: 2006a end-page: 16 article-title: Plant microRNA: a small regulatory molecule with big impact publication-title: Developmental Biology – volume: 224 start-page: 545 year: 2006b end-page: 555 article-title: Nitric oxide enhances salt tolerance in maize seedlings through increasing activities of proton‐pump and Na /H antiport in the tonoplast publication-title: Planta – volume: 93 start-page: 33 year: 1990 end-page: 39 article-title: Correlation of xylem sap cytokinin levels with monocarpic senescence in soybean publication-title: Plant Physiology – volume: 61 start-page: 563 year: 2010 end-page: 574 article-title: Salinity induces carbohydrate accumulation and sugar‐regulated starch biosynthetic genes in tomato ( L. cv. ‘Micro‐Tom’) fruits in an ABA‐ and osmotic stress‐independent manner publication-title: Journal of Experimental Botany – volume: 21 start-page: 1607 year: 2009 end-page: 1619 article-title: Phosphorylation of SOS3LIKE CALCIUM BINDING PROTEIN8 by SOS2 protein kinase stabilizes their protein complex and regulates salt tolerance in Arabidopsis publication-title: Plant Cell – volume: 34 start-page: 35 year: 2008 end-page: 45 article-title: Polyamines and abiotic stress: recent advances publication-title: Amino Acids – volume: 74 start-page: 258 year: 2013 end-page: 266 article-title: Calcineurin B‐like protein CBL10 directly interacts with AKT1 and modulates K homeostasis in Arabidopsis publication-title: Plant Journal – volume: 99 start-page: 8436 year: 2002 end-page: 8441 article-title: Regulation of SOS1, a plasma membrane Na /H exchanger in , by SOS2 and SOS3 publication-title: Proceedings of the National Academy of Sciences, USA – volume: 27 start-page: 7771 year: 2007 end-page: 7780 article-title: Interaction of SOS2 with nucleoside diphosphate kinase 2 and catalases reveals a point of connection between salt stress and H O signaling in publication-title: Molecular Cell Biology – volume: 63 start-page: 491 year: 2007 end-page: 503 article-title: Different phosphorylation mechanisms are involved in the activation of sucrose non‐fermenting 1 related protein kinases 2 by osmotic stresses and abscisic acid publication-title: Plant Molecular Biology – volume: 39 start-page: 471 year: 2011b end-page: 476 article-title: Effects of salt and drought stress on alkaloid production in endophyte‐infected drunken horse grass ( ) publication-title: Biochemical Systematics & Ecology – volume: 119 start-page: 165 year: 1999 end-page: 172 article-title: Myo‐inositol‐dependent sodium uptake in ice plant publication-title: Plant Physiology – volume: 40 start-page: 1127 year: 2017 end-page: 1142 article-title: A ROP2‐RIC1 pathway fine tunes microtubule reorganisation for salt tolerance in Arabidopsis publication-title: Plant, Cell & Environment – volume: 51 start-page: 463 year: 2000 end-page: 499 article-title: Plant cellular and molecular responses to high salt publication-title: Annual Review of Plant Physiology and Plant Molecular Biology – volume: 10 start-page: 1391 year: 1998 end-page: 1406 article-title: Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought‐ and low‐temperature‐responsive gene expression, respectively, in Arabidopsis publication-title: Plant Cell – volume: 128 start-page: 236 year: 2002 end-page: 246 article-title: Leaf senescence induced by mild water deficit follows the same sequence of macroscopic, biochemical, and molecular events as monocarpic senescence in pea publication-title: Plant Physiology – volume: 39 start-page: 1366 year: 2016 end-page: 1380 article-title: A sucrose transporter‐interacting protein disulphide isomerase affects redox homeostasis and links sucrose partitioning with abiotic stress tolerance publication-title: Plant, Cell & Environment – volume: 16 start-page: 2001 year: 2004 end-page: 2019 article-title: Novel and stress‐regulated microRNAs and other small RNAs from Arabidopsis publication-title: Plant Cell – volume: 25 start-page: 2132 year: 2013 end-page: 2154 article-title: A spatio‐temporal understanding of growth regulation during the salt stress response in Arabidopsis publication-title: Plant Cell – volume: 9 start-page: 883 year: 2012 end-page: 892 article-title: Antioxidant and hypoglycemic activities of leaf extracts of three Popular species publication-title: Journal of Chemistry – volume: 531 start-page: 157 year: 2002 end-page: 161 article-title: Altered shoot/root Na distribution and bifurcating salt sensitivity in Arabidopsis by genetic disruption of the Na transporter AtHKT1 publication-title: FEBS Letters – volume: 36 start-page: 283 year: 2017 end-page: 294 article-title: Salt‐induced tissue‐specific cytosine methylation downregulates expression of HKT genes in contrasting wheat L.) genotypes publication-title: DNA & Cell Biology – volume: 140 start-page: 103 year: 1999 end-page: 125 article-title: Polyamines and environmental challenges: recent development publication-title: Plant Science – volume: 1153 start-page: 433 year: 2015 end-page: 447 article-title: Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress publication-title: Annals of Botany – volume: 4 start-page: 281 year: 1999 end-page: 287 article-title: Molecular pieces to the puzzle of the interaction between potassium and sodium uptake in plants publication-title: Trends in Plant Science – volume: 122 start-page: 1129 year: 2000 end-page: 1136 article-title: Removal of feedback inhibition of D1‐pyrroline‐5‐carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress publication-title: Plant Physiology – volume: 91 start-page: 306 year: 1994 end-page: 310 article-title: Osmoprotective compounds in the Plumbaginaceae – a natural experiment in metabolic engineering of stress tolerance publication-title: Proceedings of the National Academy of Sciences, USA – volume: 354 start-page: aag1550 year: 2016 article-title: A transcription factor hierarchy defines an environmental stress response network publication-title: Science – volume: 94 start-page: 1035 year: 1997 end-page: 1040 article-title: Arabidopsis thaliana CBF1 encodes an AP2 domain‐containing transcriptional activator that binds to the C‐repeat/DRE, a cis‐acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit publication-title: Proceedings of the National Academy of Sciences, USA – volume: 106 start-page: 315 year: 2017 end-page: 328 article-title: Melatonin and nitric oxide regulate sunflower seedling growth under salt stress accompanying differential expression of Cu/Zn sod and Mn SOD publication-title: Free Radical Biology & Medicine – volume: 134 start-page: 118 year: 2004 end-page: 128 article-title: Induction of salt and osmotic stress tolerance by overexpression of an intracellular vesicle trafficking protein AtRAB7 (AtRABG3E) publication-title: Plant Physiology – volume: 92 start-page: 391 year: 2016 end-page: 400 article-title: Stability and localization of 14‐3‐3 proteins are involved in salt tolerance in Arabidopsis publication-title: Plant Molecular Biology – volume: 27 start-page: 908 year: 2015 end-page: 925 article-title: A chaperone function of NO CATALASE ACTIVITY1 is required to maintain catalase activity and for multiple stress responses in Arabidopsis publication-title: Plant Cell – volume: 208 start-page: 2819 year: 2005 end-page: 2830 article-title: Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses publication-title: Journal of Experimental Biology – volume: 61 start-page: 3345 year: 2010 end-page: 3353 article-title: Involvement of Arabidopsis histone deacetylase HDA6 in ABA and salt stress response publication-title: Journal of Experimental Botany – volume: 136 start-page: 3884 year: 2004 end-page: 3891 article-title: New views on the plant cytoskeleton publication-title: Plant Physiology – volume: 30 start-page: 497 year: 2007 end-page: 507 article-title: The Na transporter AtHKT1;1 controls retrieval of Na from the xylem in Arabidopsis publication-title: Plant, Cell & Environment – volume: 7 start-page: 81 year: 2016 end-page: 90 article-title: Salt stress affects the redox status of Arabidopsis root meristems publication-title: Frontiers in Plant Science – volume: 1465 start-page: 140 year: 2000 end-page: 151 article-title: Sodium transport in plant cells publication-title: Biochimica et Biophysica Acta – volume: 171 start-page: 2744 year: 2016 end-page: 2759 article-title: Mutational evidence for the critical role of CBF transcription factors in cold acclimation in Arabidopsis publication-title: Plant Physiology – volume: 12 start-page: 1667 year: 2000 end-page: 1677 article-title: SOS3 function in plant salt tolerance requires n‐myristoylation and calcium binding publication-title: Plant Cell – volume: 65 start-page: 2963 year: 2014 end-page: 2979 article-title: Life and death under salt stress: same players, different timing? publication-title: Journal of Experimental Botany – volume: 6 start-page: 1344 year: 2013 end-page: 1354 article-title: A bi‐functional xyloglucan galactosyltransferase is an indispensable salt stress tolerance determinant in Arabidopsis publication-title: Molecular Plant – volume: 82 start-page: 671 year: 1979 end-page: 678 article-title: Sorbitol, a compatible osmotic solute in publication-title: New Phytologist – volume: 66 start-page: 3339 year: 2015 end-page: 3352 article-title: Increased tolerance to salt stress in OPDA‐deficient rice mutants is linked to an increased ROS‐scavenging activity publication-title: Journal of Experimental Botany – volume: 123 start-page: 1279 year: 2005 end-page: 1291 article-title: Endogenous siRNAs derived from a pair of natural cis‐antisense transcripts regulate salt tolerance in Arabidopsis publication-title: Cell – volume: 172 start-page: 690 year: 2016 end-page: 706 article-title: Phosphate‐dependent root system architecture responses to salt stress publication-title: Plant Physiology – volume: 208 start-page: 803 year: 2015 end-page: 816 article-title: Chloride‐inducible transient apoplastic alkalinizations induce stomata closure by controlling abscisic acid distribution between leaf apoplast and guard cells in salt‐stressed publication-title: New Phytologist – volume: 59 start-page: 651 year: 2008 end-page: 681 article-title: Mechanisms of salinity tolerance publication-title: Annual Review of Plant Biology – volume: 103 start-page: 18008 year: 2006 end-page: 18013 article-title: Suppression of Arabidopsis vesicle‐SNARE expression inhibited fusion of H O ‐containing vesicles with tonoplast and increased salt tolerance publication-title: Proceedings of the National Academy of Sciences, USA – volume: 169 start-page: 148 year: 2015 end-page: 165 article-title: and regulate ethylene response of roots and coleoptiles and negatively affect salt tolerance in rice publication-title: Plant Physiology – volume: 6 start-page: 133 year: 2015 article-title: Target or barrier? The cell wall of early‐ and later‐diverging plants vs cadmium toxicity: differences in the response mechanisms publication-title: Frontiers in Plant Science – volume: 22 start-page: 187 year: 2001 end-page: 200 article-title: Genetic variation and plasticity of , under saline conditions publication-title: Acta Oecologica – volume: 217 start-page: 1214 year: 1982 end-page: 1222 article-title: Living with water stress: evolution of osmolyte systems publication-title: Science – volume: 252 start-page: 461 year: 2015 end-page: 475 article-title: Trehalose pretreatment induces salt tolerance in rice ( L.) seedlings: oxidative damage and co‐induction of antioxidant defense and glyoxalase systems publication-title: Protoplasma – volume: 38 start-page: 600 year: 2015 end-page: 613 article-title: Virus‐induced gene silencing reveals control of reactive oxygen species accumulation and salt tolerance in tomato by γ‐aminobutyric acid metabolic pathway publication-title: Plant, Cell & Environment – volume: 47 start-page: 517 year: 2011 end-page: 523 article-title: Regulation of biosynthesis of dimethylsulfoniopropionate and its uptake in sterile mutant of (chlorophyta) publication-title: Journal of Phycology – volume: 108 start-page: 2611 year: 2011 end-page: 2616 article-title: Activation of the plasma membrane Na /H antiporter Salt‐Overly‐Sensitive 1 (SOS1) by phosphorylation of an auto‐inhibitory C‐terminal domain publication-title: Proceedings of the National Academy of Sciences, USA – volume: 4 start-page: 273 year: 2013 end-page: 275 article-title: Release of SOS2 kinase from sequestration with GIGANTEA determines salt tolerance in Arabidopsis publication-title: Nature Communications – volume: 23 start-page: 853 year: 2000 end-page: 862 article-title: Tolerance of pea ( L.) to long‐term salt stress is associated with induction of antioxidant defences publication-title: Plant, Cell & Environment – volume: 4 start-page: 1 year: 2009 end-page: 7 article-title: Dehydroascorbate reductase and salt stress publication-title: Cab Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources – volume: 15 start-page: 2058 year: 2003 end-page: 2075 article-title: Involvement of the secretory pathway and the cytoskeleton in intracellular targeting and tubule assembly of grapevine fan leaf virus movement protein in tobacco BY‐2 cells publication-title: Plant Cell – volume: 23 start-page: 267 year: 2000 end-page: 278 article-title: Cell‐type‐specific calcium responses to drought, salt and cold in the Arabidopsis root publication-title: Plant Journal – volume: 279 start-page: 207 year: 2004 end-page: 215 article-title: Regulation of vacuolar Na /H exchange in by the salt‐overly‐sensitive (SOS) pathway publication-title: Journal of Biological Chemistry – volume: 15 start-page: 1 year: 2014 end-page: 11 article-title: Genome‐wide analysis of salt‐responsive and novel microRNAs in by deep sequencing publication-title: BMC Genetics – volume: 13 start-page: 261 year: 2003 end-page: 275 article-title: Engineering salt tolerance in plants publication-title: Current Opinion in Biotechnology – volume: 53 start-page: 247 year: 2002 end-page: 273 article-title: Salt and drought stress signal transduction in plants publication-title: Annual Review of Plant Biology – volume: 116 start-page: 369 year: 1998 end-page: 378 article-title: Identification and stereospecificity of the first three enzymes of 3‐dimethylsulfoniopropionate biosynthesis in a chlorophyte alga publication-title: Plant Physiology – volume: 15 start-page: 63 year: 2015 end-page: 79 article-title: High‐throughput deep sequencing reveals that microRNAs play important roles in salt tolerance of euhalophyte publication-title: BMC Plant Biology – volume: 167 start-page: 645 year: 2005 end-page: 663 article-title: Genes and salt tolerance: bringing them together publication-title: New Phytologist – volume: 55 start-page: 1859 year: 2014 end-page: 1863 article-title: Epigenetic memory for stress response and Adaptation in plants publication-title: Plant Cell Physiology – volume: 162 start-page: 1353 year: 2015 end-page: 1364 article-title: A mechanism for sustained cellulose synthesis during salt stress publication-title: Cell – volume: 59 start-page: 11676 year: 2011 end-page: 11682 article-title: Effects of salinity stress on carotenoids, anthocyanins, and color of diverse tomato genotypes publication-title: Journal of Agricultural & Food Chemistry – volume: 42 start-page: 57 year: 2004 end-page: 63 article-title: Transgenic tobacco plants accumulating osmolytes show reduced oxidative damage under freezing stress publication-title: Plant Physiology & Biochemistry – volume: 31 start-page: 1864 year: 2008 end-page: 1881 article-title: Carbon monoxide enhances salt tolerance by nitric oxide‐mediated maintenance of ion homeostasis and up‐regulation of antioxidant defense in wheat seedling roots publication-title: Plant, Cell & Environment – volume: 3 start-page: 1 year: 2012 end-page: 13 article-title: Ion transporters and abiotic stress tolerance in plants publication-title: ISRN Molecular Biology – volume: 284 start-page: 477 year: 2010 end-page: 488 article-title: Global expression profiling of rice microRNAs by one‐tube stem‐loop reverse transcription quantitative PCR revealed important roles of microRNAs in abiotic stress responses publication-title: Molecular Genetics & Genomics – volume: 61 start-page: 211 year: 2010 end-page: 224 article-title: Mild salinity stimulates a stress‐induced morphogenic response in roots publication-title: Journal of Experimental Botany – volume: 64 start-page: 1953 year: 2013 end-page: 1966 article-title: Hydrogen sulfide induces systemic tolerance to salinity and non‐ionic osmotic stress in strawberry plants through modification of reactive species biosynthesis and transcriptional regulation of multiple defence pathways publication-title: Journal of Experimental Botany – volume: 31 start-page: 1219 year: 2012 end-page: 1226 article-title: Disrupted actin dynamics trigger an increment in the reactive oxygen species levels in the Arabidopsis root under salt stress publication-title: Plant Cell Report – volume: 424 start-page: 283 year: 2012 end-page: 294 article-title: Structural insights on the plant salt‐overly‐sensitive 1 (SOS1) Na /H antiporter publication-title: Journal of Molecular Biology – volume: 136 start-page: 2500 year: 2004 end-page: 2511 article-title: AtHKT1 facilitates Na homeostasis and K nutrition publication-title: Plant Physiology – volume: 11 start-page: e1253647 year: 2016 article-title: Protein phosphatase type 2C PP2CA together with ABI1 inhibits SnRK2.4 activity and regulates plant responses to salinity publication-title: Plant Signaling & Behavior – volume: 166 start-page: 1387 year: 2014 end-page: 1402 article-title: Capturing Arabidopsis root architecture dynamics with root‐fit reveals diversity in responses to salinity publication-title: Plant Physiology – volume: 8 start-page: 855 year: 2017 article-title: Short term effect of salt shock on ethylene and polyamines depends on plant salt sensitivity publication-title: Frontiers in Plant Science – volume: 53 start-page: 554 year: 2008 end-page: 565 article-title: Reactive oxygen species mediate Na ‐induced SOS1 mRNA stability in Arabidopsis publication-title: Plant Journal – volume: 50 start-page: 1023 year: 1999 end-page: 1036 article-title: A glimpse of the mechanisms of ion homeostasis during salt stress publication-title: Journal of Experimental Botany – volume: 7 start-page: e41274 year: 2012 article-title: The dynamic changes of DNA methylation and histone modifications of salt responsive transcription factor genes in soybean publication-title: PLoS ONE – volume: 13 start-page: 2495 year: 2014 end-page: 2510 article-title: Quantitative proteomics analysis reveals that the nuclear cap‐binding complex proteins Arabidopsis CBP20 and CBP80 modulate the salt stress response publication-title: Journal of Proteome Research – volume: 217 start-page: 2163 year: 2009 end-page: 2178 article-title: Shoot Na exclusion and increased salinity tolerance engineered by cell type‐specific alteration of Na transport in Arabidopsis publication-title: Plant Cell – volume: 12 start-page: 1 year: 2012 end-page: 11 article-title: High throughput sequencing reveals novel and abiotic stress‐regulated microRNAs in the inflorescences of rice publication-title: BMC Plant Biology – volume: 66 start-page: 695 year: 2015 end-page: 707 article-title: Melatonin enhances plant growth and abiotic stress tolerance in soybean plants publication-title: Journal of Experimental Botany – volume: 52 start-page: 149 year: 2011 end-page: 161 article-title: Regulated gene expression by a distal enhancer element and DNA methylation in the promoter plays an important role in salt tolerance publication-title: Plant & Cell Physiology – volume: 514 start-page: 367 year: 2014 end-page: 371 article-title: OSCA1 mediates osmotic‐stress‐evoked Ca increases vital for osmosensing in Arabidopsis publication-title: Nature – volume: 36 start-page: 1171 year: 2013 end-page: 1191 article-title: Two closely linked tomato HKT coding genes are positional candidates for the major tomato QTL involved in Na /K homeostasis publication-title: Plant, Cell & Environment – volume: 20 start-page: 3065 year: 2008 end-page: 3079 article-title: Two leucine‐rich repeat receptor kinases mediate signaling, linking cell wall biosynthesis and acc synthase in Arabidopsis publication-title: Plant Cell – volume: 54 start-page: 2553 year: 2003 end-page: 2562 article-title: Proline induces the expression of salt‐stress‐responsive proteins and may improve the adaptation of L. to salt‐stress publication-title: Journal of Experimental Botany – volume: 115 start-page: 159 year: 1997 end-page: 169 article-title: Effects of osmoprotectants upon NaCl stress in rice publication-title: Plant Physiology – volume: 27 start-page: 5214 year: 2007 end-page: 5224 article-title: An enhancer mutant of Arabidopsis salt overly sensitive 3 mediates both ion homeostasis and the oxidative stress response publication-title: Molecular & Cellular Biology – volume: 115 start-page: 481 year: 2015 end-page: 494 article-title: Rapid regulation of the plasma membrane H ‐ATPase activity is essential to salinity tolerance in two halophyte species, and publication-title: Annals of Botany – volume: 12 start-page: 1 year: 2012 end-page: 12 article-title: MicroRNAs targeting dead‐box helicases are involved in salinity stress response in rice ( L.) publication-title: BMC Plant Biology – volume: 167 start-page: 313 year: 2016 end-page: 324 article-title: Abiotic stress signaling and responses in plants publication-title: Cell – volume: 50 start-page: 2023 year: 2009 end-page: 2033 article-title: Dynamic aspects of ion accumulation by vesicle traffic under salt stress in Arabidopsis publication-title: Plant & Cell Physiology – volume: 113 start-page: 1177 year: 1997 end-page: 1183 article-title: Increased resistance to oxidative stress in transgenic plants by targeting mannitol biosynthesis to chloroplasts publication-title: Plant Physiology – volume: 126 start-page: 4823 year: 2013 end-page: 4833 article-title: Plant leaf senescence and death‐regulation by multiple layers of control and implications for aging in general publication-title: Journal of Cell Science – volume: 22 start-page: 1313 year: 2010 end-page: 1332 article-title: The Arabidopsis chaperone J3 regulates the plasma membrane H ‐ATPase through interaction with the PKS5 kinase publication-title: Plant Cell – volume: 87 start-page: 108 year: 2015 end-page: 117 article-title: Improving salt stress responses of the symbiosis in alfalfa using salt‐tolerant cultivar and rhizobial strain publication-title: Applied Soil Ecology – volume: 250 start-page: 1157 year: 2013 end-page: 1167 article-title: Regulation of some carbohydrate metabolism‐related genes, starch and soluble sugar contents, photosynthetic activities and yield attributes of two contrasting rice genotypes subjected to salt stress publication-title: Protoplasma – volume: 54 start-page: 271 year: 2005 end-page: 275 article-title: Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance publication-title: Current Science – volume: 38 start-page: 917 year: 2005 end-page: 925 article-title: Roles of KATP channels as metabolic sensors in acute metabolic changes publication-title: Journal of Molecular and Cellular Cardiology – volume: 23 start-page: 3482 year: 2011 end-page: 3497 article-title: The Arabidopsis Na /H antiporters NHX1 and NHX2 control vacuolar pH and K homeostasis to regulate growth, flower development, and reproduction publication-title: Plant Cell – volume: 59 start-page: 3039 year: 2008 end-page: 3050 article-title: Hormonal changes during salinity‐induced leaf senescence in tomato ( L.) publication-title: Journal of Experimental Botany – volume: 156 start-page: 774 year: 1995 end-page: 783 article-title: Growth and microtubule orientation of roots subjected to osmotic stress publication-title: International Journal of Plant Sciences – volume: 24 start-page: 4555 year: 2012 end-page: 4576 article-title: Phosphatidic acid regulates microtubule organization by interacting with MAP65‐1 in response to salt stress in Arabidopsis publication-title: Plant Cell – volume: 166 start-page: 146 year: 2009 end-page: 156 article-title: Proline and glycinebetaine induce antioxidant defense gene expression and suppress cell death in cultured tobacco cells under salt stress publication-title: Journal of Plant Physiology – volume: 7 start-page: 658 year: 2016 article-title: Identification of rapeseed microRNAs involved in early stage seed germination under salt and drought stresses publication-title: Frontiers in Plant Science – volume: 189 start-page: 1122 year: 2011 end-page: 1134 article-title: SOS3 mediates lateral root development under low salt stress through regulation of auxin redistribution and maxima in Arabidopsis publication-title: New Phytologist – volume: 65 start-page: 3993 year: 2014 end-page: 4008 article-title: Salt stress and senescence: identification of cross‐talk regulatory components publication-title: Journal of Experimental Botany – volume: 350 start-page: 438 year: 2015 end-page: 441 article-title: Mechanosensitive channel MSL8 regulates osmotic forces during pollen hydration and germination publication-title: Science – volume: 168 start-page: 343 year: 2015 end-page: 356 article-title: Salt stress reduces root meristem size by nitric oxide‐mediated modulation of auxin accumulation and signaling in Arabidopsis publication-title: Plant Physiology – volume: 19 start-page: 1617 year: 2007 end-page: 1634 article-title: Arabidopsis protein kinase PKS5 inhibits the plasma membrane H ‐ATPase by preventing interaction with 14‐3‐3 protein publication-title: Plant Cell – ident: e_1_2_7_77_1 doi: 10.1007/s00726-007-0501-8 – ident: e_1_2_7_252_1 doi: 10.1016/j.bse.2011.06.016 – ident: e_1_2_7_73_1 doi: 10.1111/j.1469-8137.2005.01335.x – ident: e_1_2_7_155_1 doi: 10.1104/pp.93.1.33 – ident: e_1_2_7_95_1 doi: 10.1016/j.jplph.2014.02.006 – ident: e_1_2_7_202_1 doi: 10.1038/srep45490 – ident: e_1_2_7_179_1 doi: 10.1038/ng1643 – ident: e_1_2_7_111_1 doi: 10.1046/j.1365-313x.2000.00786.x – ident: e_1_2_7_32_1 doi: 10.1093/aob/mcu219 – ident: e_1_2_7_33_1 doi: 10.1016/S0168-9452(98)00218-0 – ident: e_1_2_7_227_1 doi: 10.1093/jxb/eru392 – ident: e_1_2_7_226_1 doi: 10.1104/pp.104.900133 – ident: e_1_2_7_46_1 doi: 10.3389/fenvs.2014.00053 – ident: e_1_2_7_91_1 doi: 10.1093/jxb/erx019 – ident: e_1_2_7_221_1 doi: 10.1093/pcp/pcu059 – ident: e_1_2_7_124_1 doi: 10.1105/tpc.114.135095 – volume: 10 start-page: 63 year: 1998 ident: e_1_2_7_61_1 article-title: AtKUP1: a dual‐affinity K+ transporter from Arabidopsis publication-title: Plant Cell – volume: 122 start-page: 1129 year: 2000 ident: e_1_2_7_89_1 article-title: Removal of feedback inhibition of D1‐pyrroline‐5‐carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress publication-title: Plant Physiology doi: 10.1104/pp.122.4.1129 – volume: 50 start-page: 1023 year: 1999 ident: e_1_2_7_189_1 article-title: A glimpse of the mechanisms of ion homeostasis during salt stress publication-title: Journal of Experimental Botany doi: 10.1093/jxb/50.Special_Issue.1023 – ident: e_1_2_7_253_1 doi: 10.1007/s00425-006-0242-z – ident: e_1_2_7_237_1 doi: 10.1126/science.7112124 – ident: e_1_2_7_23_1 doi: 10.1016/j.apsoil.2014.11.008 – ident: e_1_2_7_192_1 doi: 10.1007/s00438-010-0581-0 – ident: e_1_2_7_122_1 doi: 10.1073/pnas.0604421103 – ident: e_1_2_7_36_1 doi: 10.1016/j.jplph.2011.10.004 – ident: e_1_2_7_224_1 doi: 10.1007/s11105-017-1026-2 – ident: e_1_2_7_195_1 doi: 10.1186/1471-2156-15-S1-S6 – ident: e_1_2_7_17_1 doi: 10.1105/tpc.111.095273 – ident: e_1_2_7_204_1 doi: 10.1073/pnas.94.3.1035 – ident: e_1_2_7_239_1 doi: 10.1093/mp/ssn058 – ident: e_1_2_7_163_1 doi: 10.1016/j.plaphy.2003.10.007 – ident: e_1_2_7_173_1 doi: 10.1073/pnas.1018921108 – ident: e_1_2_7_100_1 doi: 10.1093/molbev/msu152 – ident: e_1_2_7_104_1 doi: 10.1101/gr.177659.114 – ident: e_1_2_7_205_1 doi: 10.1104/pp.116.1.369 – ident: e_1_2_7_238_1 doi: 10.1104/pp.15.00353 – ident: e_1_2_7_13_1 doi: 10.1111/pce.12051 – ident: e_1_2_7_22_1 doi: 10.1104/pp.51.5.875 – ident: e_1_2_7_132_1 doi: 10.1023/A:1010687711334 – ident: e_1_2_7_138_1 doi: 10.1016/j.phytochem.2017.04.016 – ident: e_1_2_7_4_1 doi: 10.1111/j.1469-8137.1979.tb01661.x – ident: e_1_2_7_45_1 doi: 10.1126/science.223.4637.701 – ident: e_1_2_7_55_1 doi: 10.1111/pce.12694 – ident: e_1_2_7_147_1 doi: 10.1111/j.1744-7909.2010.00892.x – ident: e_1_2_7_211_1 doi: 10.1086/692097 – ident: e_1_2_7_42_1 doi: 10.1093/jxb/ert055 – ident: e_1_2_7_193_1 doi: 10.1073/pnas.120170197 – ident: e_1_2_7_213_1 doi: 10.1016/j.jplph.2014.12.009 – ident: e_1_2_7_264_1 doi: 10.1016/j.cell.2016.08.029 – ident: e_1_2_7_199_1 doi: 10.1126/science.aag1550 – volume: 38 start-page: 1 year: 2016 ident: e_1_2_7_2_1 article-title: Salt stress (NaCl) affects plant growth and branch pathways of carotenoid and flavonoid biosyntheses in Solanum nigrum publication-title: Acta Physiologiae Plantarum – ident: e_1_2_7_198_1 doi: 10.1186/1471-2229-13-210 – ident: e_1_2_7_240_1 doi: 10.1105/tpc.109.069609 – ident: e_1_2_7_43_1 doi: 10.1111/j.1365-313X.2007.03364.x – ident: e_1_2_7_250_1 doi: 10.1093/jxb/erq328 – ident: e_1_2_7_79_1 doi: 10.1007/BF02703574 – ident: e_1_2_7_243_1 doi: 10.1016/j.plaphy.2015.12.019 – ident: e_1_2_7_47_1 doi: 10.1111/j.1365-3040.2007.01637.x – ident: e_1_2_7_16_1 doi: 10.1111/pce.12419 – ident: e_1_2_7_150_1 doi: 10.1111/j.1469-8137.2005.01487.x – ident: e_1_2_7_136_1 doi: 10.1186/1471-2229-12-183 – ident: e_1_2_7_24_1 doi: 10.1086/297301 – ident: e_1_2_7_97_1 doi: 10.1093/jxb/eru159 – ident: e_1_2_7_87_1 doi: 10.1104/pp.15.00729 – ident: e_1_2_7_139_1 doi: 10.1016/S0014-5793(02)03488-9 – ident: e_1_2_7_67_1 doi: 10.1111/nph.13507 – ident: e_1_2_7_168_1 doi: 10.1104/pp.106.089151 – ident: e_1_2_7_8_1 doi: 10.1046/j.1365-313X.2003.01871.x – ident: e_1_2_7_130_1 doi: 10.1105/tpc.10.8.1391 – ident: e_1_2_7_39_1 doi: 10.1073/pnas.1407610111 – ident: e_1_2_7_255_1 doi: 10.1186/1471-2199-10-29 – ident: e_1_2_7_151_1 doi: 10.1111/j.1469-8137.2005.01487.x – ident: e_1_2_7_234_1 doi: 10.1105/tpc.108.063354 – ident: e_1_2_7_51_1 doi: 10.1111/j.1365-3040.2009.02055.x – ident: e_1_2_7_112_1 doi: 10.1038/ncomms2846 – ident: e_1_2_7_216_1 doi: 10.1371/journal.pgen.1006832 – ident: e_1_2_7_14_1 doi: 10.1093/pcp/pcq182 – ident: e_1_2_7_225_1 doi: 10.1016/j.jplph.2009.04.009 – ident: e_1_2_7_219_1 doi: 10.1093/pcp/pcm123 – ident: e_1_2_7_232_1 doi: 10.1111/j.1365-3040.2008.01888.x – ident: e_1_2_7_160_1 doi: 10.1016/S0304-4165(99)00155-5 – ident: e_1_2_7_188_1 doi: 10.1016/S1360-1385(99)01428-4 – ident: e_1_2_7_148_1 doi: 10.1071/FP03236 – ident: e_1_2_7_154_1 doi: 10.1104/pp.109.3.735 – ident: e_1_2_7_135_1 doi: 10.1007/s00709-013-0540-9 – ident: e_1_2_7_257_1 doi: 10.1105/tpc.113.117887 – ident: e_1_2_7_247_1 doi: 10.1016/j.ydbio.2005.10.036 – ident: e_1_2_7_83_1 doi: 10.1093/jxb/erx156 – ident: e_1_2_7_171_1 doi: 10.1105/tpc.106.042291 – ident: e_1_2_7_71_1 doi: 10.15835/nbha3927176 – ident: e_1_2_7_50_1 doi: 10.1111/tpj.12958 – ident: e_1_2_7_76_1 doi: 10.1016/j.plaphy.2007.05.009 – ident: e_1_2_7_41_1 doi: 10.1073/pnas.1319955111 – ident: e_1_2_7_174_1 doi: 10.1007/s12298-016-0371-1 – ident: e_1_2_7_185_1 doi: 10.1073/pnas.241501798 – ident: e_1_2_7_208_1 doi: 10.1105/tpc.104.022830 – ident: e_1_2_7_142_1 doi: 10.1016/j.yjmcc.2004.11.019 – ident: e_1_2_7_229_1 doi: 10.1104/pp.114.236620 – ident: e_1_2_7_20_1 doi: 10.1128/MCB.00430-07 – ident: e_1_2_7_78_1 doi: 10.1105/TPC.010021 – ident: e_1_2_7_162_1 doi: 10.3389/fpls.2015.00133 – volume: 13 start-page: 261 year: 2003 ident: e_1_2_7_25_1 article-title: Engineering salt tolerance in plants publication-title: Current Opinion in Biotechnology – ident: e_1_2_7_126_1 doi: 10.1073/pnas.1321568111 – ident: e_1_2_7_218_1 doi: 10.1128/MCB.00429-07 – ident: e_1_2_7_248_1 doi: 10.1111/plb.12084 – ident: e_1_2_7_11_1 doi: 10.1016/j.freeradbiomed.2017.02.042 – ident: e_1_2_7_143_1 doi: 10.1111/j.1365-3040.2009.02041.x – ident: e_1_2_7_256_1 doi: 10.1104/pp.16.00533 – ident: e_1_2_7_53_1 doi: 10.1104/pp.111.173377 – ident: e_1_2_7_57_1 doi: 10.1104/pp.103.022178 – ident: e_1_2_7_144_1 doi: 10.1105/tpc.108.064568 – ident: e_1_2_7_241_1 doi: 10.1007/s00299-012-1348-3 – ident: e_1_2_7_181_1 doi: 10.1146/annurev.pp.44.060193.002041 – ident: e_1_2_7_29_1 doi: 10.1007/s00709-013-0496-9 – ident: e_1_2_7_152_1 doi: 10.1016/j.jssas.2011.03.002 – ident: e_1_2_7_103_1 doi: 10.1038/emboj.2012.273 – ident: e_1_2_7_177_1 doi: 10.1007/s11816-011-0210-3 – ident: e_1_2_7_259_1 doi: 10.1105/tpc.113.117069 – ident: e_1_2_7_158_1 doi: 10.1093/jxb/erq188 – ident: e_1_2_7_70_1 doi: 10.1093/jxb/ern153 – ident: e_1_2_7_48_1 doi: 10.17660/ActaHortic.2003.613.3 – ident: e_1_2_7_194_1 doi: 10.1093/pcp/pcj090 – ident: e_1_2_7_88_1 doi: 10.1046/j.1365-3040.2000.00602.x – ident: e_1_2_7_21_1 doi: 10.1093/jxb/erv306 – ident: e_1_2_7_7_1 doi: 10.1016/S0958-1669(02)00298-7 – ident: e_1_2_7_109_1 doi: 10.2135/cropsci2000.402482x – ident: e_1_2_7_223_1 doi: 10.1016/j.plaphy.2009.02.009 – ident: e_1_2_7_178_1 doi: 10.1111/tpj.12123 – ident: e_1_2_7_60_1 doi: 10.1104/pp.96.4.1228 – ident: e_1_2_7_121_1 doi: 10.1016/j.envexpbot.2007.10.009 – ident: e_1_2_7_52_1 doi: 10.1016/S1360-1385(01)01923-9 – ident: e_1_2_7_149_1 doi: 10.1046/j.0016-8025.2001.00808.x – ident: e_1_2_7_19_1 doi: 10.1105/tpc.111.089581 – ident: e_1_2_7_98_1 doi: 10.1111/j.1529-8817.2011.00977.x – ident: e_1_2_7_9_1 doi: 10.1007/s10725-005-7769-z – ident: e_1_2_7_125_1 doi: 10.1093/mp/sst062 – ident: e_1_2_7_176_1 doi: 10.1007/s00709-015-0792-7 – ident: e_1_2_7_119_1 doi: 10.1105/tpc.013896 – ident: e_1_2_7_54_1 doi: 10.1105/tpc.112.107227 – ident: e_1_2_7_217_1 doi: 10.1016/S0176-1617(11)80758-3 – ident: e_1_2_7_3_1 doi: 10.1111/j.1399-3054.2009.01297.x – ident: e_1_2_7_263_1 doi: 10.1146/annurev.arplant.53.091401.143329 – ident: e_1_2_7_72_1 doi: 10.1016/j.plaphy.2010.08.016 – ident: e_1_2_7_123_1 doi: 10.1111/pce.12905 – ident: e_1_2_7_233_1 doi: 10.1093/jxb/erv312 – ident: e_1_2_7_106_1 doi: 10.1104/pp.114.248963 – ident: e_1_2_7_131_1 doi: 10.1007/s00299-012-1242-z – ident: e_1_2_7_167_1 doi: 10.1016/j.tplants.2006.06.001 – volume: 9 start-page: 883 year: 2012 ident: e_1_2_7_12_1 article-title: Antioxidant and hypoglycemic activities of leaf extracts of three Popular Terminalia species publication-title: Journal of Chemistry doi: 10.1155/2012/859831 – ident: e_1_2_7_254_1 doi: 10.1105/tpc.110.081356 – ident: e_1_2_7_27_1 doi: 10.1016/0167-7799(96)80929-2 – volume: 5 start-page: 2483 year: 2011 ident: e_1_2_7_166_1 article-title: Effect of water stress on leaf relative water content, chlorophyll, proline and soluble carbohydrates in Matricaria chamomilla L publication-title: Journal of Medicinal Plants Research – ident: e_1_2_7_118_1 doi: 10.1089/dna.2016.3505 – ident: e_1_2_7_157_1 doi: 10.1073/pnas.2034853100 – ident: e_1_2_7_190_1 doi: 10.1111/pce.12274 – ident: e_1_2_7_30_1 doi: 10.1126/science.210.4470.650 – ident: e_1_2_7_129_1 doi: 10.1126/science.280.5371.1943 – ident: e_1_2_7_99_1 doi: 10.1021/pr1007834 – ident: e_1_2_7_172_1 doi: 10.1038/srep44637 – ident: e_1_2_7_128_1 doi: 10.1105/tpc.109.066217 – ident: e_1_2_7_161_1 doi: 10.3390/ijms14035899 – ident: e_1_2_7_207_1 doi: 10.1111/j.1365-313X.2005.02595.x – ident: e_1_2_7_117_1 doi: 10.1080/15592324.2016.1253647 – ident: e_1_2_7_159_1 doi: 10.1093/emboj/17.9.2566 – ident: e_1_2_7_127_1 doi: 10.1111/jpi.12243 – ident: e_1_2_7_94_1 doi: 10.1371/journal.pgen.1003779 – ident: e_1_2_7_251_1 doi: 10.1105/tpc.112.104182 – ident: e_1_2_7_101_1 doi: 10.1111/nph.14088 – ident: e_1_2_7_86_1 doi: 10.1093/jxb/erv142 – ident: e_1_2_7_153_1 doi: 10.1104/pp.119.1.165 – ident: e_1_2_7_201_1 doi: 10.1034/j.1399-3054.2000.100410.x – ident: e_1_2_7_96_1 doi: 10.1105/tpc.12.9.1667 – ident: e_1_2_7_59_1 doi: 10.1104/pp.102.017277 – ident: e_1_2_7_197_1 doi: 10.1016/S1146-609X(01)01120-1 – ident: e_1_2_7_182_1 doi: 10.1073/pnas.0709453104 – ident: e_1_2_7_134_1 doi: 10.1093/jxb/ers059 – ident: e_1_2_7_187_1 doi: 10.1016/j.plaphy.2011.01.023 – ident: e_1_2_7_212_1 doi: 10.1105/tpc.11.7.1195 – ident: e_1_2_7_102_1 doi: 10.3389/fpls.2016.00658 – ident: e_1_2_7_63_1 doi: 10.1016/j.cub.2013.08.042 – ident: e_1_2_7_92_1 doi: 10.1007/s11105-014-0722-4 – ident: e_1_2_7_85_1 doi: 10.1146/annurev.arplant.51.1.463 – ident: e_1_2_7_114_1 doi: 10.1093/pcp/pcu125 – ident: e_1_2_7_210_1 doi: 10.1186/s12870-014-0226-2 – ident: e_1_2_7_6_1 doi: 10.1079/PAVSNNR20094013 – ident: e_1_2_7_74_1 doi: 10.1093/mp/sst072 – ident: e_1_2_7_156_1 doi: 10.1016/j.jmb.2012.09.015 – ident: e_1_2_7_183_1 doi: 10.1104/pp.113.3.881 – ident: e_1_2_7_236_1 doi: 10.1242/jeb.01730 – ident: e_1_2_7_116_1 doi: 10.1021/pr4012624 – ident: e_1_2_7_34_1 doi: 10.1007/s11103-006-9103-1 – ident: e_1_2_7_196_1 doi: 10.1093/aob/mcu239 – ident: e_1_2_7_200_1 doi: 10.1371/journal.pone.0041274 – ident: e_1_2_7_191_1 doi: 10.1104/pp.113.4.1177 – volume: 54 start-page: 271 year: 2005 ident: e_1_2_7_115_1 article-title: Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance publication-title: Current Science – ident: e_1_2_7_206_1 doi: 10.1104/pp.107.109413 – volume: 7 start-page: 420 year: 2016 ident: e_1_2_7_249_1 article-title: Differential activation of the wheat SnRK2 family by abiotic stresses publication-title: Frontiers in Plant Science – ident: e_1_2_7_10_1 doi: 10.1186/s12870-016-0714-7 – ident: e_1_2_7_260_1 doi: 10.1371/journal.pone.0106070 – ident: e_1_2_7_90_1 doi: 10.1016/j.tplants.2009.08.009 – ident: e_1_2_7_242_1 doi: 10.1093/jxb/erp333 – ident: e_1_2_7_246_1 doi: 10.3389/fpls.2017.00855 – ident: e_1_2_7_203_1 doi: 10.1073/pnas.1519555113 – ident: e_1_2_7_107_1 doi: 10.1371/journal.pone.0040203 – ident: e_1_2_7_186_1 doi: 10.1007/978-1-4614-8824-8_3 – ident: e_1_2_7_37_1 doi: 10.1371/journal.pone.0059423 – ident: e_1_2_7_40_1 doi: 10.1093/jxb/erq154 – ident: e_1_2_7_18_1 doi: 10.1186/1471-2229-12-132 – ident: e_1_2_7_169_1 doi: 10.1073/pnas.122224699 – ident: e_1_2_7_58_1 doi: 10.1186/s12870-015-0451-3 – ident: e_1_2_7_62_1 doi: 10.1105/tpc.105.035626 – ident: e_1_2_7_170_1 doi: 10.1074/jbc.M307982200 – ident: e_1_2_7_81_1 doi: 10.1093/pcp/pcp143 – ident: e_1_2_7_120_1 doi: 10.1016/S0065-2296(08)60311-0 – ident: e_1_2_7_230_1 doi: 10.1242/jcs.109116 – ident: e_1_2_7_65_1 doi: 10.1104/pp.115.1.159 – ident: e_1_2_7_93_1 doi: 10.1093/jxb/eri301 – ident: e_1_2_7_68_1 doi: 10.1105/tpc.113.112896 – ident: e_1_2_7_262_1 doi: 10.1128/MCB.01989-06 – ident: e_1_2_7_38_1 doi: 10.1093/jxb/err130 – ident: e_1_2_7_180_1 doi: 10.1111/pce.12033 – ident: e_1_2_7_64_1 doi: 10.1126/science.270.5244.1986 – ident: e_1_2_7_261_1 doi: 10.1105/tpc.112.106393 – ident: e_1_2_7_66_1 doi: 10.1111/nph.12997 – ident: e_1_2_7_175_1 doi: 10.1016/j.tplants.2008.03.008 – ident: e_1_2_7_145_1 doi: 10.1104/pp.16.00334 – ident: e_1_2_7_266_1 doi: 10.1093/pcp/pct049 – ident: e_1_2_7_141_1 doi: 10.1016/S0098-8472(02)00058-8 – ident: e_1_2_7_228_1 doi: 10.1038/srep27551 – ident: e_1_2_7_165_1 doi: 10.1104/pp.010634 – ident: e_1_2_7_35_1 doi: 10.5402/2012/927436 – ident: e_1_2_7_82_1 doi: 10.1126/science.aac6014 – ident: e_1_2_7_105_1 doi: 10.3389/fpls.2016.00081 – ident: e_1_2_7_184_1 doi: 10.1104/pp.104.042234 – ident: e_1_2_7_222_1 doi: 10.1016/j.bbrc.2015.08.089 – ident: e_1_2_7_245_1 doi: 10.1038/nature13593 – ident: e_1_2_7_110_1 doi: 10.1093/jxb/erg277 – ident: e_1_2_7_140_1 doi: 10.1104/pp.103.025379 – ident: e_1_2_7_56_1 doi: 10.1016/j.cell.2015.08.028 – ident: e_1_2_7_133_1 doi: 10.1104/pp.15.00030 – ident: e_1_2_7_137_1 doi: 10.1023/A:1026712426180 – ident: e_1_2_7_15_1 doi: 10.1016/j.jplph.2008.03.002 – ident: e_1_2_7_244_1 doi: 10.1111/j.1469-8137.2010.03422.x – ident: e_1_2_7_113_1 doi: 10.1111/j.1365-313X.2007.03249.x – ident: e_1_2_7_231_1 doi: 10.1111/jipb.12005 – ident: e_1_2_7_80_1 doi: 10.1073/pnas.97.7.3735 – ident: e_1_2_7_5_1 doi: 10.1093/jxb/eru173 – ident: e_1_2_7_209_1 doi: 10.1007/s11103-016-0520-5 – ident: e_1_2_7_258_1 doi: 10.1111/j.1469-8137.2010.03545.x – ident: e_1_2_7_84_1 doi: 10.1073/pnas.91.1.306 – ident: e_1_2_7_214_1 doi: 10.1016/S0076-6879(07)28024-3 – ident: e_1_2_7_75_1 doi: 10.3389/fpls.2014.00151 – ident: e_1_2_7_69_1 doi: 10.1007/s10725-014-9943-7 – ident: e_1_2_7_44_1 doi: 10.1093/pcp/pcr121 – ident: e_1_2_7_235_1 doi: 10.1016/j.plaphy.2015.06.014 – ident: e_1_2_7_28_1 doi: 10.1021/jf2021623 – volume: 172 start-page: 690 year: 2016 ident: e_1_2_7_108_1 article-title: Phosphate‐dependent root system architecture responses to salt stress publication-title: Plant Physiology – ident: e_1_2_7_215_1 doi: 10.1242/dev.135111 – ident: e_1_2_7_49_1 doi: 10.1242/dev.02753 – ident: e_1_2_7_31_1 doi: 10.1016/j.cell.2005.11.035 – ident: e_1_2_7_220_1 doi: 10.4161/psb.6.1.14202 – ident: e_1_2_7_26_1 doi: 10.1016/S0005-2736(00)00135-8 – ident: e_1_2_7_146_1 doi: 10.1007/s00709-014-0691-3 – ident: e_1_2_7_164_1 doi: 10.1016/j.envexpbot.2012.01.007 – ident: e_1_2_7_265_1 doi: 10.1093/jxb/erp290 |
SSID | ssj0009562 |
Score | 2.696894 |
SecondaryResourceType | review_article |
Snippet | Excess soluble salts in soil (saline soils) are harmful to most plants. Salt imposes osmotic, ionic, and secondary stresses on plants. Over the past two... Contents Summary 523 I. Introduction 523 II. Sensing salt stress 524 III. Ion homeostasis regulation 524 IV. Metabolite and cell activity responses to salt... Contents Summary 523 I. Introduction 523 II. Sensing salt stress 524 III. Ion homeostasis regulation 524 IV. Metabolite and cell activity responses to salt... |
SourceID | proquest pubmed crossref wiley jstor |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 523 |
SubjectTerms | Abiotic stress antioxidant defense cell activity responses cytoskeletal dynamics Determinants developmental adjustment epigenetic regulation epigenetics Genetics genomics glycophytes Homeostasis Homeostasis - drug effects ion and osmotic homeostasis Ions Metabolites Metabolome - drug effects Molecular modelling Plants - drug effects Plants - genetics Regulatory mechanisms (biology) Saline soils Salt salt stress Salt tolerance Salts salt‐induced stress Sodium Chloride - pharmacology Soil soil salts Stress, Physiological - drug effects Stress, Physiological - genetics Stresses Tansley review |
Title | Elucidating the molecular mechanisms mediating plant salt-stress responses |
URI | https://www.jstor.org/stable/90016922 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.14920 https://www.ncbi.nlm.nih.gov/pubmed/29205383 https://www.proquest.com/docview/1990465448 https://www.proquest.com/docview/1973020783 https://www.proquest.com/docview/2020882488 |
Volume | 217 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS_QwEB5EPHh5_X6tX1Tx4KXSZrNpiycVZREVkVfYwwslbVJd3O0udvegJ3-Cv9Ff4kzSFhUF8VbIBNJMJvMkmXkGYJdloULgIL2M8dzjKpcegljfC2UepO2WSnNDpH1xKTo3_Kzb7k7BQZ0LY_khmgs3sgyzX5OBy7R8Z-TF6A7NPGZ0XqdYLQJE1-wd4a5gNQOz4KJbsQpRFE_T84MvsuGIXwHNj7jVOJ7TOfhfD9nGm9zvT8bpfvb0ic3xl_80D38qQOoe2hW0AFO6WISZoyGCxsclOD_pT7IepUAUty5iRXdQl9N1B5qShnvloHRN-okRGfVRU24p--PX5xebh-I-2DBcXS7DzenJv-OOVxVg8DIect-TXGn0_5kwqIzCOeJcBX6k40DHfq5CiW06jJnQkQ6FCoTPsqjlS57zPPZVawWmi2GhV8Ftt6gWoEpVKiVuG0KGkgrQSoVfnDHlwF6tiiSr2MmpSEY_qU8pODeJmRsHdhrRkaXk-EpoxeizkYgJ3MaMObBRKzipzLVMAvTJRCzHIwe2m2Y0NHo9kYUeTkgGN0NGr57fyzAqeRox3BQd-GsXTzMAmkD0Lth7zyyB78eeXF51zMfaz0XXYRahXGQvhzZgevww0ZsIl8bplrGLN9vsD7s |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1RT9swED5VDGm8sMEGywZbQHvgJShxXSeReNlYUYFSTRNIfZkiJ3ZYRZtWpH3YnvgJ_EZ-ye7sJIIJpIm3SD5Ljs93_mzffQfwmWWhQuAgvYzx3OMqlx6CWN8LZR6knbZKc0OkfTYQvQt-MuwMW3BQ58JYfojmwo0sw_hrMnC6kL5n5cXsF9p5zPDA_oIqehNz_rcf7B7lrmA1B7PgYljxClEcT9P1wW5kAxIfg5oPkavZeo5ewc960Dbi5Gp_MU_3sz__8Dk-969ew2qFSd0vdhGtQUsX67D8dYq48fcb6HfHi2xEWRDFpYtw0Z3UFXXdiaa84VE5KV2TgWJEZmNUllvK8fzu5tamorjXNhJXl2_h4qh7ftjzqhoMXsZD7nuSK40QIBMGmFFER5yrwI90HOjYz1UosU2HMRM60qFQgfBZFrV9yXOex75qb8BSMS30O3A7bSoHqFKVSomeQ8hQUg1aqfCLM6Yc2Kt1kWQVQTnVyRgn9UEF5yYxc-PAbiM6s6wcjwltGIU2EjHh25gxB7ZqDSeVxZZJgNsyccvxyIGdphltjR5QZKGnC5JBf8jo4fNpGUZVTyOGftGBTbt6mgHQBOIGg733zBp4euzJ4HvPfLz_f9FP8LJ3ftZP-seD0w-wgsgusndFW7A0v17obURP8_SjMZK_yzUT1w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB5VpUJcym8h0EJAHHpJlXi9TqyeoO1qgbKqEJX2gBQ5sQ1Vd7OrZvcApz5Cn7FPwoydRG3VSohbJI8lx-MZf7ZnvgF4z8pUI3BQUcm4jbi2KkIQG0epsknR7-nCOiLtryMxPOafx_3xCuy2uTCeH6K7cCPLcP6aDHyu7RUjr-a_0Mwlw_P6PS5iSXUb9r-xK4y7grUUzIKLcUMrRGE8Xddrm5GPR7wNaV4Hrm7nGTyEH-2YfcDJ6c5yUeyUf27QOf7nTz2C9QaRhh_8EnoMK6Z6AmsfZ4gafz-Fw4PJsjyhHIjqZ4hgMZy29XTDqaGs4ZN6Wocu_8SJzCeoqrBWk8Xl-YVPRAnPfByuqZ_B8eDg-94waiowRCVPeRwprg0CgFI4WEbxHNLqJM6MTIyMrU4VtplUMmEykwqdiJiVWS9W3HIrY93bgNVqVpkXEPZ7VAxQF7pQCv2GUKmiCrRK4xdnTAew3aoiLxt6cqqSMcnbYwrOTe7mJoB3nejcc3LcJrTh9NlJSEK3krEANlsF54291nmCmzIxy_EsgLddM1oaPZ-oysyWJIPekNGz590yjGqeZgy9YgDP_eLpBkATiNsL9t52S-Duseejo6H7ePnvom_g_tH-ID_8NPryCh4grMv8RdEmrC7OlmYLodOieO1M5C-CrhKG |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Elucidating+the+molecular+mechanisms+mediating+plant+salt-stress+responses&rft.jtitle=The+New+phytologist&rft.au=Yongqing+Yang&rft.au=Yan+Guo&rft.date=2018-01-01&rft.pub=New+Phytologist+Trust&rft.issn=0028-646X&rft.eissn=1469-8137&rft.volume=217&rft.issue=2&rft.spage=523&rft.epage=539&rft_id=info:doi/10.1111%2Fnph.14920&rft.externalDocID=90016922 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon |