Elucidating the molecular mechanisms mediating plant salt-stress responses

Excess soluble salts in soil (saline soils) are harmful to most plants. Salt imposes osmotic, ionic, and secondary stresses on plants. Over the past two decades, many determinants of salt tolerance and their regulatory mechanisms have been identified and characterized using molecular genetics and ge...

Full description

Saved in:
Bibliographic Details
Published inThe New phytologist Vol. 217; no. 2; pp. 523 - 539
Main Authors Yang, Yongqing, Guo, Yan
Format Journal Article
LanguageEnglish
Published England New Phytologist Trust 01.01.2018
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Excess soluble salts in soil (saline soils) are harmful to most plants. Salt imposes osmotic, ionic, and secondary stresses on plants. Over the past two decades, many determinants of salt tolerance and their regulatory mechanisms have been identified and characterized using molecular genetics and genomics approaches. This review describes recent progress in deciphering the mechanisms controlling ion homeostasis, cell activity responses, and epigenetic regulation in plants under salt stress. Finally, wehighlight research areas that require further research to reveal new determinants of salt tolerance in plants.
AbstractList Contents Summary 523 I. Introduction 523 II. Sensing salt stress 524 III. Ion homeostasis regulation 524 IV. Metabolite and cell activity responses to salt stress 527 V. Conclusions and perspectives 532 Acknowledgements 533 References 533 SUMMARY: Excess soluble salts in soil (saline soils) are harmful to most plants. Salt imposes osmotic, ionic, and secondary stresses on plants. Over the past two decades, many determinants of salt tolerance and their regulatory mechanisms have been identified and characterized using molecular genetics and genomics approaches. This review describes recent progress in deciphering the mechanisms controlling ion homeostasis, cell activity responses, and epigenetic regulation in plants under salt stress. Finally, we highlight research areas that require further research to reveal new determinants of salt tolerance in plants.
Excess soluble salts in soil (saline soils) are harmful to most plants. Salt imposes osmotic, ionic, and secondary stresses on plants. Over the past two decades, many determinants of salt tolerance and their regulatory mechanisms have been identified and characterized using molecular genetics and genomics approaches. This review describes recent progress in deciphering the mechanisms controlling ion homeostasis, cell activity responses, and epigenetic regulation in plants under salt stress. Finally, wehighlight research areas that require further research to reveal new determinants of salt tolerance in plants.
Contents Summary 523 I. Introduction 523 II. Sensing salt stress 524 III. Ion homeostasis regulation 524 IV. Metabolite and cell activity responses to salt stress 527 V. Conclusions and perspectives 532 Acknowledgements 533 References 533 Summary Excess soluble salts in soil (saline soils) are harmful to most plants. Salt imposes osmotic, ionic, and secondary stresses on plants. Over the past two decades, many determinants of salt tolerance and their regulatory mechanisms have been identified and characterized using molecular genetics and genomics approaches. This review describes recent progress in deciphering the mechanisms controlling ion homeostasis, cell activity responses, and epigenetic regulation in plants under salt stress. Finally, we highlight research areas that require further research to reveal new determinants of salt tolerance in plants.
Contents Summary 523 I. Introduction 523 II. Sensing salt stress 524 III. Ion homeostasis regulation 524 IV. Metabolite and cell activity responses to salt stress 527 V. Conclusions and perspectives 532 Acknowledgements 533 References 533 SUMMARY: Excess soluble salts in soil (saline soils) are harmful to most plants. Salt imposes osmotic, ionic, and secondary stresses on plants. Over the past two decades, many determinants of salt tolerance and their regulatory mechanisms have been identified and characterized using molecular genetics and genomics approaches. This review describes recent progress in deciphering the mechanisms controlling ion homeostasis, cell activity responses, and epigenetic regulation in plants under salt stress. Finally, we highlight research areas that require further research to reveal new determinants of salt tolerance in plants.Contents Summary 523 I. Introduction 523 II. Sensing salt stress 524 III. Ion homeostasis regulation 524 IV. Metabolite and cell activity responses to salt stress 527 V. Conclusions and perspectives 532 Acknowledgements 533 References 533 SUMMARY: Excess soluble salts in soil (saline soils) are harmful to most plants. Salt imposes osmotic, ionic, and secondary stresses on plants. Over the past two decades, many determinants of salt tolerance and their regulatory mechanisms have been identified and characterized using molecular genetics and genomics approaches. This review describes recent progress in deciphering the mechanisms controlling ion homeostasis, cell activity responses, and epigenetic regulation in plants under salt stress. Finally, we highlight research areas that require further research to reveal new determinants of salt tolerance in plants.
Author Yan Guo
Yongqing Yang
Author_xml – sequence: 1
  givenname: Yongqing
  surname: Yang
  fullname: Yang, Yongqing
  organization: China Agricultural University
– sequence: 2
  givenname: Yan
  surname: Guo
  fullname: Guo, Yan
  email: guoyan@cau.edu.cn
  organization: China Agricultural University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29205383$$D View this record in MEDLINE/PubMed
BookMark eNqFkcFvFCEYxYmpsdvqwT9AM4kXPUz7wbAMHE1TraZRD5p4I8h847JhYAQmpv-9rLvrodHIAUj4vZeP987ISYgBCXlK4YLWdRnmzQXlisEDsqJcqFbSrj8hKwAmW8HF11NylvMWANRasEfklFV23cluRd5f-8W6wRQXvjdlg80UPdrFm9RMaDcmuDzleh3cHpm9CaXJxpc2l4Q5N3WbY8iYH5OHo_EZnxzOc_LlzfXnq5v29uPbd1evb1vLew6t4QNSxq1YU7qbA5gaBwoSFUUF49Cb-oa9YgIl9mKgApiVHRg-8lHB0J2Tl3vfOcUfC-aiJ5ct-joZxiVrBgykZFzK_6JU9V2le9lV9MU9dBuXFOpHKqWAizXnO8PnB2r5VkPRc3KTSXf6GGgFLveATTHnhKO2rtToYijJOK8p6F1lulamf1dWFa_uKY6mf2MP7j-dx7t_g_rDp5uj4tlesc0lpj8KBUCFYqz7BcVSrRA
CitedBy_id crossref_primary_10_1038_d41586_019_02289_x
crossref_primary_10_3390_plants12163007
crossref_primary_10_3390_biom10060959
crossref_primary_10_3389_fpls_2022_804716
crossref_primary_10_3390_plants8060151
crossref_primary_10_1038_s41598_024_69670_3
crossref_primary_10_1038_s41396_021_00974_2
crossref_primary_10_1038_s41598_020_70520_1
crossref_primary_10_1111_pce_14796
crossref_primary_10_1016_j_scienta_2021_110779
crossref_primary_10_1080_13102818_2022_2128875
crossref_primary_10_1186_s12870_024_05376_y
crossref_primary_10_1016_j_envexpbot_2021_104752
crossref_primary_10_1186_s40529_021_00320_x
crossref_primary_10_1007_s12298_023_01303_x
crossref_primary_10_3390_plants13213018
crossref_primary_10_1111_tpj_16653
crossref_primary_10_3390_ijms19123866
crossref_primary_10_1080_09583157_2020_1833304
crossref_primary_10_1093_plcell_koae001
crossref_primary_10_3390_plants13030378
crossref_primary_10_1007_s40626_022_00262_0
crossref_primary_10_1093_dnares_dsad011
crossref_primary_10_1038_s41477_023_01550_6
crossref_primary_10_3389_fpls_2022_814755
crossref_primary_10_1016_j_sajb_2023_11_049
crossref_primary_10_3389_fpls_2020_00038
crossref_primary_10_3390_plants8060147
crossref_primary_10_1007_s12298_022_01165_9
crossref_primary_10_1016_j_envexpbot_2024_105678
crossref_primary_10_1080_01904167_2024_2415471
crossref_primary_10_1007_s00344_019_10027_w
crossref_primary_10_1016_j_xplc_2022_100458
crossref_primary_10_1016_j_envexpbot_2020_104244
crossref_primary_10_1080_07388551_2019_1654973
crossref_primary_10_1007_s42729_024_01848_0
crossref_primary_10_1080_15548627_2020_1847797
crossref_primary_10_3390_genes14061151
crossref_primary_10_1111_aab_12919
crossref_primary_10_3390_metabo11110724
crossref_primary_10_1007_s42729_021_00576_z
crossref_primary_10_3389_fphys_2021_672099
crossref_primary_10_38042_biotechstudies_932376
crossref_primary_10_1080_07388551_2019_1616669
crossref_primary_10_1111_tpj_14689
crossref_primary_10_3390_ijms22179402
crossref_primary_10_3390_plants13111487
crossref_primary_10_1007_s10725_022_00810_3
crossref_primary_10_1093_plcell_koad119
crossref_primary_10_3390_f14030486
crossref_primary_10_1093_jxb_eraa339
crossref_primary_10_3390_ijms242216123
crossref_primary_10_1007_s00425_022_03917_z
crossref_primary_10_1111_nph_16104
crossref_primary_10_1016_j_plaphy_2025_109494
crossref_primary_10_3390_agronomy14030444
crossref_primary_10_1007_s00344_022_10667_5
crossref_primary_10_1093_plcell_koac283
crossref_primary_10_2139_ssrn_4008762
crossref_primary_10_1007_s00343_022_2130_1
crossref_primary_10_1016_j_stress_2024_100429
crossref_primary_10_3389_fpls_2022_835498
crossref_primary_10_1111_ppl_13505
crossref_primary_10_1016_j_eja_2024_127365
crossref_primary_10_1016_j_biotechadv_2018_06_009
crossref_primary_10_1016_j_envexpbot_2022_105098
crossref_primary_10_3389_fpls_2023_1238507
crossref_primary_10_1021_acs_jafc_1c01598
crossref_primary_10_1016_j_sajb_2023_10_047
crossref_primary_10_3390_ijms24021054
crossref_primary_10_3389_fpls_2023_1092616
crossref_primary_10_3390_ijms24076603
crossref_primary_10_1016_j_sajb_2022_09_033
crossref_primary_10_1016_j_rhisph_2022_100620
crossref_primary_10_3390_plants10091843
crossref_primary_10_1016_j_cj_2020_02_001
crossref_primary_10_1111_pce_14746
crossref_primary_10_3769_radioisotopes_72_235
crossref_primary_10_1111_pce_14745
crossref_primary_10_1007_s00344_021_10526_9
crossref_primary_10_1007_s10725_023_00980_8
crossref_primary_10_1038_s41477_019_0565_y
crossref_primary_10_3389_fpls_2021_712257
crossref_primary_10_1093_pcp_pcaa073
crossref_primary_10_1007_s11756_024_01810_6
crossref_primary_10_1111_nph_18340
crossref_primary_10_1016_j_cj_2022_06_007
crossref_primary_10_1007_s11104_021_05108_3
crossref_primary_10_3390_genes13071140
crossref_primary_10_3390_ijms23147879
crossref_primary_10_1016_j_envexpbot_2022_105075
crossref_primary_10_3390_su15031804
crossref_primary_10_3390_ijms241813800
crossref_primary_10_1016_j_envpol_2023_121081
crossref_primary_10_3389_fpls_2024_1503463
crossref_primary_10_1016_j_stress_2025_100770
crossref_primary_10_1016_j_rsci_2024_06_002
crossref_primary_10_3389_fpls_2018_01634
crossref_primary_10_3390_ijms241914762
crossref_primary_10_1016_j_jplph_2020_153218
crossref_primary_10_1016_j_jplph_2020_153217
crossref_primary_10_1016_j_plantsci_2022_111572
crossref_primary_10_3390_plants11070935
crossref_primary_10_1007_s00344_022_10756_5
crossref_primary_10_1007_s00468_022_02380_3
crossref_primary_10_1016_j_devcel_2020_08_005
crossref_primary_10_3389_fpls_2020_594827
crossref_primary_10_1016_j_envexpbot_2024_105665
crossref_primary_10_1186_s12864_024_10000_2
crossref_primary_10_1016_j_plantsci_2019_110260
crossref_primary_10_1038_s41596_024_01068_x
crossref_primary_10_3390_ijms25179520
crossref_primary_10_1021_acs_jproteome_2c00559
crossref_primary_10_1111_ppl_13938
crossref_primary_10_3390_horticulturae11030285
crossref_primary_10_1186_s43897_024_00080_9
crossref_primary_10_1186_s12870_024_05515_5
crossref_primary_10_3390_ijms25189794
crossref_primary_10_3389_fpls_2020_00457
crossref_primary_10_1016_j_plaphy_2021_05_002
crossref_primary_10_3390_horticulturae8040302
crossref_primary_10_3390_ijms24043948
crossref_primary_10_1080_11263504_2023_2165567
crossref_primary_10_3389_fpls_2023_1095929
crossref_primary_10_1016_j_plaphy_2025_109685
crossref_primary_10_1371_journal_pone_0243111
crossref_primary_10_3389_fpls_2022_877011
crossref_primary_10_3390_genes13101904
crossref_primary_10_3390_plants11060795
crossref_primary_10_1093_plphys_kiaf050
crossref_primary_10_1186_s12864_025_11355_w
crossref_primary_10_1016_j_scienta_2022_111077
crossref_primary_10_1186_s12870_022_03832_1
crossref_primary_10_3390_ijms26051882
crossref_primary_10_1016_j_plgene_2024_100453
crossref_primary_10_1016_j_plaphy_2022_10_033
crossref_primary_10_1016_j_bios_2024_117062
crossref_primary_10_1016_j_envexpbot_2022_104873
crossref_primary_10_12944_CARJ_12_2_05
crossref_primary_10_3390_ijms23010154
crossref_primary_10_1016_j_ecoenv_2019_02_075
crossref_primary_10_1080_15592324_2018_1561121
crossref_primary_10_1007_s12298_024_01495_w
crossref_primary_10_1007_s00344_023_11070_4
crossref_primary_10_1016_j_envexpbot_2022_104856
crossref_primary_10_1186_s12864_021_07368_w
crossref_primary_10_1016_j_plaphy_2024_109175
crossref_primary_10_1016_j_stress_2025_100781
crossref_primary_10_1007_s11427_020_1683_x
crossref_primary_10_1007_s10725_022_00825_w
crossref_primary_10_1016_j_micres_2023_127368
crossref_primary_10_1007_s10725_024_01127_z
crossref_primary_10_1016_j_jare_2024_08_022
crossref_primary_10_3390_plants13243510
crossref_primary_10_1016_j_plantsci_2024_112130
crossref_primary_10_1186_s12284_023_00635_2
crossref_primary_10_3390_insects15040293
crossref_primary_10_3390_plants13141928
crossref_primary_10_3390_biology11040597
crossref_primary_10_1007_s13580_023_00554_7
crossref_primary_10_1186_s12870_020_02548_4
crossref_primary_10_1016_j_scienta_2024_113835
crossref_primary_10_1186_s12870_020_02467_4
crossref_primary_10_1016_j_scienta_2022_111294
crossref_primary_10_1016_j_ecoenv_2021_112769
crossref_primary_10_3390_ijms20215355
crossref_primary_10_3389_fpls_2020_01192
crossref_primary_10_3389_fpls_2019_00319
crossref_primary_10_1016_j_plaphy_2021_04_022
crossref_primary_10_1007_s11356_022_21785_8
crossref_primary_10_3389_fgene_2023_1232363
crossref_primary_10_1111_ppl_13330
crossref_primary_10_1016_j_plaphy_2020_09_018
crossref_primary_10_1007_s42976_022_00271_4
crossref_primary_10_1016_j_molp_2021_07_020
crossref_primary_10_3390_ijms24043071
crossref_primary_10_3390_plants9050637
crossref_primary_10_3389_fpls_2019_01420
crossref_primary_10_3390_agronomy14122807
crossref_primary_10_1016_j_jtemin_2024_100159
crossref_primary_10_1111_tpj_15946
crossref_primary_10_32615_bp_2022_036
crossref_primary_10_3390_ijms25094957
crossref_primary_10_3390_plants14030394
crossref_primary_10_1186_s12864_023_09585_x
crossref_primary_10_3389_fpls_2022_835414
crossref_primary_10_1016_j_plaphy_2020_09_009
crossref_primary_10_1093_pcp_pcz099
crossref_primary_10_1186_s12870_024_04966_0
crossref_primary_10_32604_phyton_2022_023081
crossref_primary_10_3390_ijms26062500
crossref_primary_10_1016_j_indcrop_2024_118651
crossref_primary_10_3389_fgeed_2022_987817
crossref_primary_10_3390_plants12040925
crossref_primary_10_1007_s11104_021_04918_9
crossref_primary_10_1016_j_envpol_2024_123363
crossref_primary_10_1016_j_plaphy_2024_109125
crossref_primary_10_1007_s13562_021_00741_6
crossref_primary_10_3389_fpls_2019_01431
crossref_primary_10_1016_j_isci_2019_10_043
crossref_primary_10_1111_pce_14905
crossref_primary_10_3390_plants12102059
crossref_primary_10_3389_fpls_2022_891361
crossref_primary_10_3389_fpls_2024_1415867
crossref_primary_10_1016_j_ncrops_2024_100057
crossref_primary_10_3390_plants13141990
crossref_primary_10_1111_jac_12585
crossref_primary_10_1134_S1022795423090132
crossref_primary_10_3390_plants12152789
crossref_primary_10_1016_j_devcel_2023_06_012
crossref_primary_10_3389_fpls_2021_650485
crossref_primary_10_1002_ldr_4864
crossref_primary_10_1111_tpj_17091
crossref_primary_10_1016_j_indcrop_2023_117452
crossref_primary_10_3389_fpls_2024_1297812
crossref_primary_10_3390_cells10051064
crossref_primary_10_1016_j_plantsci_2024_112181
crossref_primary_10_1093_plphys_kiaf080
crossref_primary_10_3389_fpls_2024_1375478
crossref_primary_10_1007_s10811_020_02284_0
crossref_primary_10_3389_fpls_2024_1374142
crossref_primary_10_1186_s12864_025_11368_5
crossref_primary_10_1186_s12864_020_07260_z
crossref_primary_10_3389_fpls_2021_807739
crossref_primary_10_3390_plants12193495
crossref_primary_10_3389_fpls_2022_1041081
crossref_primary_10_3390_plants10050845
crossref_primary_10_56093_aaz_v63i4_155494
crossref_primary_10_1186_s12870_022_03623_8
crossref_primary_10_1111_jipb_13562
crossref_primary_10_1016_j_plaphy_2021_03_028
crossref_primary_10_1093_plphys_kiaf074
crossref_primary_10_3390_plants11141864
crossref_primary_10_1016_j_scienta_2023_112664
crossref_primary_10_1186_s12870_024_05533_3
crossref_primary_10_1007_s00344_021_10441_z
crossref_primary_10_1111_pbi_13927
crossref_primary_10_1111_mpp_13279
crossref_primary_10_1007_s10811_019_01939_x
crossref_primary_10_7717_peerj_9742
crossref_primary_10_3390_applmicrobiol3040086
crossref_primary_10_3390_plants11212994
crossref_primary_10_32615_bp_2023_029
crossref_primary_10_1016_j_bbrc_2021_07_011
crossref_primary_10_3389_fpls_2022_939487
crossref_primary_10_3390_agriculture12122049
crossref_primary_10_1111_jipb_13599
crossref_primary_10_1016_j_cpb_2023_100274
crossref_primary_10_1016_j_xplc_2023_100726
crossref_primary_10_3389_fpls_2021_744699
crossref_primary_10_1016_j_plaphy_2024_109151
crossref_primary_10_1016_j_celrep_2024_113825
crossref_primary_10_3390_plants13212984
crossref_primary_10_1186_s12870_024_05084_7
crossref_primary_10_1007_s00299_022_02899_2
crossref_primary_10_1007_s00344_023_11213_7
crossref_primary_10_3390_f14081651
crossref_primary_10_1016_j_jprot_2024_105328
crossref_primary_10_1080_15592324_2019_1573097
crossref_primary_10_3390_agriculture12030350
crossref_primary_10_1093_jxb_eraa524
crossref_primary_10_3390_horticulturae9030338
crossref_primary_10_3389_fmicb_2023_1102547
crossref_primary_10_3389_fpls_2022_1023696
crossref_primary_10_3389_fpls_2021_800081
crossref_primary_10_1515_biol_2019_0021
crossref_primary_10_1039_C8NR10514F
crossref_primary_10_12944_CARJ_11_2_03
crossref_primary_10_1016_j_envexpbot_2019_03_024
crossref_primary_10_1007_s12298_018_0594_4
crossref_primary_10_1111_jipb_12689
crossref_primary_10_3389_fpls_2022_928092
crossref_primary_10_1007_s11816_022_00787_5
crossref_primary_10_29133_yyutbd_499322
crossref_primary_10_1016_j_plaphy_2021_09_031
crossref_primary_10_3389_fpls_2022_819658
crossref_primary_10_3390_ijms24065105
crossref_primary_10_1007_s10265_022_01410_y
crossref_primary_10_1007_s10725_023_01066_1
crossref_primary_10_1016_j_plantsci_2020_110465
crossref_primary_10_1111_aab_12496
crossref_primary_10_1111_nph_15605
crossref_primary_10_3390_agriculture13040750
crossref_primary_10_1186_s12870_018_1415_1
crossref_primary_10_1016_j_plaphy_2023_108187
crossref_primary_10_1111_plb_13363
crossref_primary_10_1016_j_jplph_2022_153640
crossref_primary_10_1186_s12870_023_04509_z
crossref_primary_10_15835_nbha49112192
crossref_primary_10_3389_fpls_2020_00952
crossref_primary_10_1016_j_jgg_2024_12_013
crossref_primary_10_1016_j_indcrop_2022_115763
crossref_primary_10_1186_s12870_023_04629_6
crossref_primary_10_1111_tpj_16065
crossref_primary_10_1134_S0012496620030072
crossref_primary_10_1016_j_scienta_2022_111455
crossref_primary_10_1016_j_flora_2023_152226
crossref_primary_10_1021_acsnano_1c10556
crossref_primary_10_3390_plants13162224
crossref_primary_10_1021_acs_jafc_3c08528
crossref_primary_10_7717_peerj_19132
crossref_primary_10_1111_grs_12417
crossref_primary_10_3390_plants13121713
crossref_primary_10_1111_ppl_13295
crossref_primary_10_1016_j_scitotenv_2024_170205
crossref_primary_10_3390_cimb45070374
crossref_primary_10_3390_genes16020233
crossref_primary_10_3390_ijms252312568
crossref_primary_10_1016_j_plaphy_2019_12_001
crossref_primary_10_1016_j_plaphy_2025_109820
crossref_primary_10_1111_jipb_13793
crossref_primary_10_1093_jxb_erz328
crossref_primary_10_1016_j_scienta_2024_112911
crossref_primary_10_3390_ijms222312848
crossref_primary_10_1016_j_plaphy_2022_12_018
crossref_primary_10_3390_plants9050591
crossref_primary_10_1007_s00299_022_02897_4
crossref_primary_10_1021_acs_jafc_3c05002
crossref_primary_10_3390_ijms26030896
crossref_primary_10_3390_agronomy14092159
crossref_primary_10_3390_f12040454
crossref_primary_10_1016_j_plaphy_2019_12_019
crossref_primary_10_1186_s12870_024_05445_2
crossref_primary_10_1111_ppl_13064
crossref_primary_10_1016_j_cj_2022_03_006
crossref_primary_10_3390_ijms242015480
crossref_primary_10_1021_acs_jafc_0c07908
crossref_primary_10_1111_jipb_13784
crossref_primary_10_1016_j_cj_2022_03_004
crossref_primary_10_3390_plants10102204
crossref_primary_10_1111_tpj_17136
crossref_primary_10_1021_acs_jafc_3c05430
crossref_primary_10_1038_s41598_020_62057_0
crossref_primary_10_3389_fpls_2021_670369
crossref_primary_10_3390_agronomy14040731
crossref_primary_10_1111_jipb_13733
crossref_primary_10_1093_hr_uhac113
crossref_primary_10_1007_s11816_023_00815_y
crossref_primary_10_1016_j_plaphy_2024_108683
crossref_primary_10_1016_j_ijbiomac_2023_125007
crossref_primary_10_1016_j_cj_2024_06_014
crossref_primary_10_3390_antiox13040448
crossref_primary_10_1007_s44154_024_00190_w
crossref_primary_10_3390_antiox11061114
crossref_primary_10_3390_metabo11090593
crossref_primary_10_1016_j_phytochem_2024_114367
crossref_primary_10_1093_plphys_kiad621
crossref_primary_10_3389_fpls_2022_841154
crossref_primary_10_3389_fpls_2022_978304
crossref_primary_10_1016_j_sajb_2022_11_029
crossref_primary_10_1007_s10653_025_02416_w
crossref_primary_10_1111_ppl_13486
crossref_primary_10_1111_tpj_16052
crossref_primary_10_1007_s12633_022_02001_1
crossref_primary_10_1007_s11240_023_02550_2
crossref_primary_10_1016_j_algal_2025_104016
crossref_primary_10_1002_ece3_8138
crossref_primary_10_1016_j_cjac_2022_100211
crossref_primary_10_3390_ijms24043388
crossref_primary_10_2478_s11756_020_00562_3
crossref_primary_10_3389_fpls_2023_1217193
crossref_primary_10_1016_j_ecoenv_2022_113938
crossref_primary_10_1093_jxb_erad086
crossref_primary_10_3390_ijms232416048
crossref_primary_10_1007_s12042_020_09265_0
crossref_primary_10_3390_agronomy11112299
crossref_primary_10_1016_j_plantsci_2020_110441
crossref_primary_10_1016_j_plantsci_2020_110444
crossref_primary_10_3390_plants12020324
crossref_primary_10_3389_fpls_2021_730228
crossref_primary_10_1007_s00299_021_02765_7
crossref_primary_10_3390_plants12213680
crossref_primary_10_1093_jxb_erz367
crossref_primary_10_1071_FP23089
crossref_primary_10_1111_jipb_12899
crossref_primary_10_3390_ijms25105437
crossref_primary_10_1016_j_jaridenv_2021_104650
crossref_primary_10_3390_plants13050744
crossref_primary_10_3390_ijms25010235
crossref_primary_10_1007_s11033_022_07255_x
crossref_primary_10_1111_pce_15277
crossref_primary_10_1186_s12870_024_05443_4
crossref_primary_10_1111_jipb_12895
crossref_primary_10_1186_s12870_019_1712_3
crossref_primary_10_3389_fpls_2022_1043204
crossref_primary_10_3390_ijms252312754
crossref_primary_10_7717_peerj_7817
crossref_primary_10_1126_sciadv_ads3653
crossref_primary_10_3390_ijms24076647
crossref_primary_10_3390_genes14081621
crossref_primary_10_1021_acs_jnatprod_8b00801
crossref_primary_10_1093_treephys_tpad001
crossref_primary_10_1007_s43630_024_00568_9
crossref_primary_10_1016_j_tplants_2021_07_017
crossref_primary_10_1016_j_jplph_2020_153237
crossref_primary_10_3390_agronomy14040773
crossref_primary_10_3389_fpls_2021_705883
crossref_primary_10_3390_horticulturae7060132
crossref_primary_10_3390_ijms24010002
crossref_primary_10_24180_ijaws_1033635
crossref_primary_10_1093_plphys_kiab498
crossref_primary_10_1016_j_envexpbot_2023_105445
crossref_primary_10_1016_j_plaphy_2021_07_027
crossref_primary_10_1016_j_plaphy_2024_108874
crossref_primary_10_1016_j_stress_2023_100319
crossref_primary_10_1371_journal_pone_0264847
crossref_primary_10_1111_nph_16538
crossref_primary_10_1111_nph_17628
crossref_primary_10_1016_j_ijbiomac_2024_139393
crossref_primary_10_3390_ijms23179680
crossref_primary_10_3389_fpls_2022_871387
crossref_primary_10_1071_FP23228
crossref_primary_10_1016_j_devcel_2022_09_012
crossref_primary_10_1093_hr_uhae320
crossref_primary_10_1016_j_plaphy_2024_108642
crossref_primary_10_3389_fpls_2023_1135240
crossref_primary_10_3390_ijms24054639
crossref_primary_10_1186_s13068_020_01786_w
crossref_primary_10_1016_j_devcel_2022_08_001
crossref_primary_10_1021_acs_jafc_3c06185
crossref_primary_10_1016_j_plaphy_2023_108133
crossref_primary_10_1093_plphys_kiad651
crossref_primary_10_1186_s12864_023_09459_2
crossref_primary_10_3390_agronomy13051249
crossref_primary_10_3389_fpls_2022_1053699
crossref_primary_10_3390_plants10020307
crossref_primary_10_1016_j_plaphy_2022_01_015
crossref_primary_10_1016_j_csbj_2022_11_046
crossref_primary_10_3389_fpls_2022_1072171
crossref_primary_10_1093_plphys_kiae504
crossref_primary_10_1016_j_plaphy_2024_108663
crossref_primary_10_1016_j_scienta_2023_111922
crossref_primary_10_1016_j_celrep_2021_109384
crossref_primary_10_1007_s00299_024_03292_x
crossref_primary_10_1016_j_plantsci_2020_110654
crossref_primary_10_3390_ijms24065762
crossref_primary_10_15252_embj_2022112401
crossref_primary_10_1007_s40626_023_00274_4
crossref_primary_10_1111_nph_15240
crossref_primary_10_1186_s13578_021_00633_1
crossref_primary_10_1080_17429145_2025_2453716
crossref_primary_10_1071_FP24101
crossref_primary_10_3390_plants11081055
crossref_primary_10_1016_j_jgg_2023_08_007
crossref_primary_10_1007_s12298_019_00654_8
crossref_primary_10_1093_jxb_eraa191
crossref_primary_10_1016_j_envexpbot_2024_105918
crossref_primary_10_1007_s11103_021_01120_4
crossref_primary_10_1093_treephys_tpaa174
crossref_primary_10_3389_fpls_2022_919177
crossref_primary_10_1016_S2095_3119_20_63262_2
crossref_primary_10_1007_s13762_022_03930_5
crossref_primary_10_1007_s11033_022_07495_x
crossref_primary_10_1016_j_pedsph_2024_09_002
crossref_primary_10_3390_ma15144784
crossref_primary_10_3389_fpls_2023_1226041
crossref_primary_10_3390_f14030464
crossref_primary_10_48130_grares_0025_0005
crossref_primary_10_1007_s10681_022_03129_2
crossref_primary_10_3389_fpls_2023_1278954
crossref_primary_10_1007_s00344_023_10980_7
crossref_primary_10_1071_FP23023
crossref_primary_10_3390_ijms25147650
crossref_primary_10_3390_plants13050565
crossref_primary_10_3390_plants13050566
crossref_primary_10_3390_agronomy11030545
crossref_primary_10_1111_pce_15212
crossref_primary_10_1016_j_stress_2024_100409
crossref_primary_10_1016_j_plaphy_2023_108306
crossref_primary_10_1093_plphys_kiae559
crossref_primary_10_1016_j_sajb_2023_09_013
crossref_primary_10_1080_15592324_2025_2479513
crossref_primary_10_1016_j_scienta_2022_110962
crossref_primary_10_1016_j_plaphy_2020_12_027
crossref_primary_10_3389_fgene_2023_1017388
crossref_primary_10_1016_j_stress_2023_100331
crossref_primary_10_3389_fpls_2022_970651
crossref_primary_10_1016_j_algal_2021_102185
crossref_primary_10_3390_ijms20102391
crossref_primary_10_1007_s42729_022_01023_3
crossref_primary_10_1080_15592324_2019_1675472
crossref_primary_10_1007_s11103_022_01272_x
crossref_primary_10_1093_aobpla_plab072
crossref_primary_10_1016_j_plantsci_2022_111296
crossref_primary_10_1007_s11738_022_03472_w
crossref_primary_10_1186_s12870_024_05145_x
crossref_primary_10_1016_j_envexpbot_2024_105926
crossref_primary_10_1016_j_plaphy_2021_08_038
crossref_primary_10_3390_ijms22169009
crossref_primary_10_3390_ijms24054426
crossref_primary_10_1080_17429145_2019_1641635
crossref_primary_10_3389_fpls_2022_982622
crossref_primary_10_3390_plants13050586
crossref_primary_10_1111_tpj_15109
crossref_primary_10_3390_plants13050588
crossref_primary_10_29130_dubited_1171221
crossref_primary_10_3389_fpls_2022_969896
crossref_primary_10_1007_s00344_021_10328_z
crossref_primary_10_1016_j_ecoenv_2021_113017
crossref_primary_10_1111_pce_14101
crossref_primary_10_3390_plants13081069
crossref_primary_10_3389_fpls_2022_843994
crossref_primary_10_1007_s10811_022_02692_4
crossref_primary_10_1007_s00344_022_10787_y
crossref_primary_10_3389_fpls_2022_1063436
crossref_primary_10_1111_nph_16493
crossref_primary_10_3390_ijms242216450
crossref_primary_10_1007_s10725_022_00866_1
crossref_primary_10_1093_treephys_tpaa018
crossref_primary_10_3390_plants12142665
crossref_primary_10_1073_pnas_2114347118
crossref_primary_10_3390_ijms21031065
crossref_primary_10_1038_s41467_024_46482_7
crossref_primary_10_1016_j_plaphy_2023_02_046
crossref_primary_10_3390_plants12061331
crossref_primary_10_1007_s11103_024_01459_4
crossref_primary_10_1016_j_indcrop_2023_116440
crossref_primary_10_1002_pei3_10122
crossref_primary_10_1007_s00253_022_11838_w
crossref_primary_10_3390_agronomy13082129
crossref_primary_10_3390_ijms22084014
crossref_primary_10_3389_fpls_2022_848891
crossref_primary_10_1016_j_envexpbot_2019_103808
crossref_primary_10_3390_agronomy13040959
crossref_primary_10_3390_antiox14010063
crossref_primary_10_3389_fpls_2019_01361
crossref_primary_10_1186_s12284_021_00535_3
crossref_primary_10_3390_ijms21010359
crossref_primary_10_1016_j_stress_2024_100562
crossref_primary_10_1093_treephys_tpaa022
crossref_primary_10_1007_s42729_023_01358_5
crossref_primary_10_1111_pce_14205
crossref_primary_10_1007_s00438_021_01838_2
crossref_primary_10_3389_fpls_2020_568411
crossref_primary_10_1016_j_envexpbot_2023_105299
crossref_primary_10_3389_fpls_2025_1553348
crossref_primary_10_1016_j_plaphy_2023_01_003
crossref_primary_10_1016_j_plaphy_2023_01_001
crossref_primary_10_17221_459_2024_PSE
crossref_primary_10_1093_plphys_kiac283
crossref_primary_10_1093_plphys_kiad370
crossref_primary_10_3390_ijms22168625
crossref_primary_10_3390_plants11111498
crossref_primary_10_1111_nph_17323
crossref_primary_10_1093_pcp_pcad036
crossref_primary_10_1016_j_plantsci_2023_111736
crossref_primary_10_3390_plants11111494
crossref_primary_10_1007_s10343_022_00684_5
crossref_primary_10_1186_s12870_020_02342_2
crossref_primary_10_3390_plants13101308
crossref_primary_10_1093_hr_uhae157
crossref_primary_10_1016_j_molp_2023_01_010
crossref_primary_10_15252_embj_2020105086
crossref_primary_10_1016_j_scienta_2021_109898
crossref_primary_10_3390_ijms21103429
crossref_primary_10_3390_ijpb15040076
crossref_primary_10_3390_ijms24129793
crossref_primary_10_1093_plcell_koad019
crossref_primary_10_3390_ijms21010138
crossref_primary_10_3390_ijms23147529
crossref_primary_10_1007_s00425_022_03916_0
crossref_primary_10_1080_03650340_2020_1769075
crossref_primary_10_1111_jac_12672
crossref_primary_10_1038_s41477_023_01551_5
crossref_primary_10_1093_hr_uhad051
crossref_primary_10_1111_ppl_13626
crossref_primary_10_3389_fpls_2023_1211162
crossref_primary_10_1016_j_envexpbot_2023_105276
crossref_primary_10_1093_plphys_kiab189
crossref_primary_10_1099_mgen_0_000928
crossref_primary_10_1016_j_jgg_2025_01_005
crossref_primary_10_1016_j_envexpbot_2020_104124
crossref_primary_10_1038_s41598_021_97872_6
crossref_primary_10_3389_fpls_2021_771746
crossref_primary_10_1007_s11738_020_03109_w
crossref_primary_10_3390_agronomy14051079
crossref_primary_10_3390_horticulturae9101140
crossref_primary_10_1080_17429145_2022_2115158
crossref_primary_10_1007_s00299_023_03052_3
crossref_primary_10_3390_plants13172527
crossref_primary_10_1007_s00344_022_10755_6
crossref_primary_10_3390_life13010061
crossref_primary_10_1016_j_jenvman_2023_119488
crossref_primary_10_1016_j_scienta_2023_112115
crossref_primary_10_1093_jxb_erab553
crossref_primary_10_1016_j_plaphy_2020_11_033
crossref_primary_10_1007_s44372_024_00024_z
crossref_primary_10_1016_j_envexpbot_2024_105988
crossref_primary_10_1093_plcell_koaf012
crossref_primary_10_1186_s12870_024_06033_0
crossref_primary_10_1016_j_plaphy_2020_04_011
crossref_primary_10_1016_j_xinn_2020_100017
crossref_primary_10_1016_j_micres_2024_127707
crossref_primary_10_1007_s11032_023_01403_2
crossref_primary_10_1016_j_envexpbot_2020_104147
crossref_primary_10_1186_s12870_020_02734_4
crossref_primary_10_1016_j_envexpbot_2021_104689
crossref_primary_10_3390_plants11243532
crossref_primary_10_3390_metabo15030171
crossref_primary_10_3390_ijms23042085
crossref_primary_10_1016_j_celrep_2023_112729
crossref_primary_10_1071_FP21336
crossref_primary_10_3390_ijms22179326
crossref_primary_10_1016_j_plaphy_2020_04_022
crossref_primary_10_1111_plb_12884
crossref_primary_10_1002_tpg2_20521
crossref_primary_10_3390_genes14091771
crossref_primary_10_1016_j_envexpbot_2023_105468
crossref_primary_10_1016_j_plaphy_2022_07_005
crossref_primary_10_1016_j_envexpbot_2021_104698
crossref_primary_10_3390_agronomy14051048
crossref_primary_10_3390_horticulturae9030290
crossref_primary_10_1016_j_stress_2024_100583
crossref_primary_10_1111_ppl_13817
crossref_primary_10_3389_fpls_2022_949541
crossref_primary_10_3390_ijms241311141
crossref_primary_10_1016_j_scienta_2024_113761
crossref_primary_10_1111_tpj_16949
crossref_primary_10_1111_jipb_13061
crossref_primary_10_1007_s11104_022_05560_9
crossref_primary_10_3389_fpls_2022_881039
crossref_primary_10_1071_BT23025
crossref_primary_10_1016_j_envexpbot_2020_104168
crossref_primary_10_3389_fpls_2022_1078083
crossref_primary_10_1111_nph_18278
crossref_primary_10_1007_s10343_025_01128_6
crossref_primary_10_1016_j_scienta_2024_113934
crossref_primary_10_3390_plants13020283
crossref_primary_10_3390_plants10010085
crossref_primary_10_3390_metabo14040181
crossref_primary_10_1016_j_compag_2025_110005
crossref_primary_10_3389_fpls_2023_1173191
crossref_primary_10_1002_ldr_4786
crossref_primary_10_3390_horticulturae10020139
crossref_primary_10_3390_plants12071532
crossref_primary_10_3389_fpls_2022_1008172
crossref_primary_10_1007_s00344_021_10331_4
crossref_primary_10_1016_j_envexpbot_2021_104452
crossref_primary_10_3390_ijms25094612
crossref_primary_10_1016_j_devcel_2019_02_010
crossref_primary_10_1016_j_envexpbot_2019_05_020
crossref_primary_10_3390_agriculture13112051
crossref_primary_10_1111_pce_14835
crossref_primary_10_3389_fpls_2022_891697
crossref_primary_10_3389_fpls_2018_00681
crossref_primary_10_1093_pcp_pcz190
crossref_primary_10_1007_s00709_021_01675_5
crossref_primary_10_1128_spectrum_03404_23
crossref_primary_10_1093_gigascience_giad053
crossref_primary_10_3390_agronomy14020356
crossref_primary_10_1021_acs_jafc_1c01096
crossref_primary_10_3390_biom9090393
crossref_primary_10_1016_j_pbi_2019_08_002
crossref_primary_10_1111_pce_14807
crossref_primary_10_1007_s00122_020_03690_1
crossref_primary_10_3389_fpls_2020_571864
crossref_primary_10_1016_j_plantsci_2024_112267
crossref_primary_10_1016_j_envexpbot_2019_05_016
crossref_primary_10_3390_agronomy8100231
crossref_primary_10_1016_j_plantsci_2024_112261
crossref_primary_10_1093_aob_mcae152
crossref_primary_10_3390_ijms21197105
crossref_primary_10_1016_j_envexpbot_2021_104431
crossref_primary_10_3390_cells10030683
crossref_primary_10_3390_ijms222111461
crossref_primary_10_1016_j_molp_2020_05_010
crossref_primary_10_3389_fpls_2022_952595
crossref_primary_10_3390_ijms252211891
crossref_primary_10_1002_bit_27528
crossref_primary_10_1007_s13562_024_00926_9
crossref_primary_10_1093_plcell_koaf034
crossref_primary_10_1186_s12864_022_08438_3
crossref_primary_10_1111_pce_14820
crossref_primary_10_1016_j_scienta_2025_114031
crossref_primary_10_1134_S1021443722010095
crossref_primary_10_1186_s12870_024_04921_z
crossref_primary_10_1016_j_ecoenv_2020_110322
crossref_primary_10_3390_applmicrobiol4030068
crossref_primary_10_1016_j_envexpbot_2021_104427
crossref_primary_10_3389_fmars_2020_00415
crossref_primary_10_1111_jipb_13264
crossref_primary_10_3390_f13050754
crossref_primary_10_1016_j_cj_2024_02_007
crossref_primary_10_1093_jxb_ery201
crossref_primary_10_3389_fpls_2023_1162014
crossref_primary_10_3390_genes12050697
crossref_primary_10_1111_plb_13559
crossref_primary_10_1007_s11427_023_2464_2
crossref_primary_10_3390_ijms241512387
crossref_primary_10_1186_s42397_021_00085_5
crossref_primary_10_1186_s12870_023_04552_w
crossref_primary_10_1007_s44279_024_00105_3
crossref_primary_10_1186_s12870_021_03274_1
crossref_primary_10_3390_ijms24044062
crossref_primary_10_3389_fpls_2019_00470
crossref_primary_10_1007_s00425_020_03437_8
crossref_primary_10_1016_j_ijbiomac_2023_126978
crossref_primary_10_3390_ijms23116167
crossref_primary_10_1038_s41598_023_49629_6
crossref_primary_10_1016_j_gene_2022_146906
crossref_primary_10_3390_plants9081010
crossref_primary_10_1016_j_plaphy_2020_01_022
crossref_primary_10_3390_plants14020296
crossref_primary_10_1016_j_jgg_2022_01_007
crossref_primary_10_3389_fpls_2022_881456
crossref_primary_10_1111_ppl_13642
crossref_primary_10_3390_agronomy13010016
crossref_primary_10_1007_s00203_023_03768_6
crossref_primary_10_3390_plants13162307
crossref_primary_10_1007_s00344_022_10592_7
crossref_primary_10_1016_j_scienta_2023_112788
crossref_primary_10_3390_ijms222111897
crossref_primary_10_1038_s41598_025_86256_9
crossref_primary_10_1016_j_jia_2024_08_029
crossref_primary_10_1007_s12192_019_00996_y
crossref_primary_10_46653_jhst23062025
crossref_primary_10_1073_pnas_2217957120
crossref_primary_10_1111_ppl_13655
crossref_primary_10_3389_fpls_2021_711429
crossref_primary_10_3389_fpls_2022_1042084
crossref_primary_10_3390_life12071033
crossref_primary_10_1016_j_scienta_2024_113907
crossref_primary_10_1002_pld3_315
crossref_primary_10_1111_jipb_13228
crossref_primary_10_1186_s12870_024_05961_1
crossref_primary_10_3390_microorganisms9112203
crossref_primary_10_1111_nph_18282
crossref_primary_10_1093_gigascience_giad079
crossref_primary_10_1016_j_hpj_2024_01_005
crossref_primary_10_3389_fpls_2022_1042078
crossref_primary_10_3389_fpls_2022_973471
crossref_primary_10_1002_pld3_548
crossref_primary_10_1038_s41467_019_09181_2
crossref_primary_10_1016_j_plaphy_2024_109441
crossref_primary_10_1093_jxb_erz458
crossref_primary_10_1111_jipb_13417
crossref_primary_10_3390_ijms23095231
crossref_primary_10_3390_ijms25189818
crossref_primary_10_1007_s00344_022_10801_3
crossref_primary_10_1094_MPMI_11_21_0281_FI
crossref_primary_10_3389_fpls_2025_1527952
crossref_primary_10_1186_s13059_022_02718_7
crossref_primary_10_3389_fpls_2024_1497362
crossref_primary_10_1007_s11103_021_01232_x
crossref_primary_10_1007_s42976_023_00441_y
crossref_primary_10_3390_ijms22094609
crossref_primary_10_1007_s00344_022_10584_7
crossref_primary_10_1007_s10163_024_02105_3
crossref_primary_10_1186_s12870_024_05413_w
crossref_primary_10_1016_j_molp_2023_04_011
crossref_primary_10_1016_j_plaphy_2024_108360
crossref_primary_10_1080_14620316_2023_2218381
crossref_primary_10_1007_s00344_023_11195_6
crossref_primary_10_1007_s00344_020_10187_0
crossref_primary_10_3389_fpls_2022_1010654
crossref_primary_10_3390_ijms20010167
crossref_primary_10_1007_s00709_020_01533_w
crossref_primary_10_1007_s12374_022_09347_4
crossref_primary_10_1105_tpc_18_00706
crossref_primary_10_1111_jipb_13640
crossref_primary_10_1016_j_scienta_2022_111332
crossref_primary_10_1016_j_plaphy_2019_04_014
crossref_primary_10_1016_j_plaphy_2021_02_021
crossref_primary_10_1186_s12870_024_05531_5
crossref_primary_10_3390_ijms232214216
crossref_primary_10_1016_j_indcrop_2024_120322
crossref_primary_10_1007_s10265_023_01487_z
crossref_primary_10_3390_plants12091889
crossref_primary_10_1007_s11032_020_1100_6
crossref_primary_10_1080_15324982_2021_1959464
crossref_primary_10_3390_biom9070293
crossref_primary_10_1016_j_niox_2024_01_002
crossref_primary_10_48130_grares_0024_0015
crossref_primary_10_1111_ppl_14262
crossref_primary_10_1016_j_plaphy_2024_108379
crossref_primary_10_3390_agronomy13030693
crossref_primary_10_1007_s00299_025_03466_1
crossref_primary_10_1016_j_tplants_2021_02_007
crossref_primary_10_1094_MPMI_09_21_0231_FI
crossref_primary_10_3390_ijms231710048
crossref_primary_10_47836_pjtas_47_4_22
crossref_primary_10_1186_s12870_022_03887_0
crossref_primary_10_3389_fpls_2023_1264698
crossref_primary_10_1016_j_indcrop_2022_115865
crossref_primary_10_3390_ijms22063082
crossref_primary_10_1016_j_plaphy_2020_07_013
crossref_primary_10_3390_agronomy10030410
crossref_primary_10_1111_ppl_13184
crossref_primary_10_1016_j_plaphy_2021_03_058
crossref_primary_10_3390_ijms19113298
crossref_primary_10_1371_journal_pone_0288985
crossref_primary_10_3390_genes15050573
crossref_primary_10_3390_ijms22115957
crossref_primary_10_3390_ijms232416146
crossref_primary_10_1016_j_jplph_2022_153711
crossref_primary_10_1016_j_scienta_2025_114027
crossref_primary_10_1007_s12374_019_0141_z
crossref_primary_10_3389_fpls_2022_1032646
crossref_primary_10_1021_acsagscitech_0c00063
crossref_primary_10_3389_fpls_2021_672672
crossref_primary_10_3390_agronomy14123044
crossref_primary_10_3390_ijms242417591
crossref_primary_10_1186_s43170_024_00256_9
crossref_primary_10_3390_plants12203559
crossref_primary_10_1016_j_plaphy_2023_108036
crossref_primary_10_1093_plphys_kiad510
crossref_primary_10_1111_ppl_13112
crossref_primary_10_3389_fpls_2025_1497064
crossref_primary_10_1016_j_jenvman_2021_113703
crossref_primary_10_3390_agronomy12122962
crossref_primary_10_3390_plants11223117
crossref_primary_10_1016_j_plaphy_2023_108260
crossref_primary_10_3390_plants11223118
crossref_primary_10_3390_antiox12081618
crossref_primary_10_1016_j_ijbiomac_2024_134857
crossref_primary_10_1016_j_jbiotec_2021_02_001
crossref_primary_10_1007_s11104_022_05767_w
crossref_primary_10_1186_s12863_021_00989_w
crossref_primary_10_3390_plants10020259
crossref_primary_10_1016_j_cj_2022_12_004
crossref_primary_10_1111_jipb_13601
crossref_primary_10_1093_treephys_tpy028
crossref_primary_10_1007_s00425_024_04330_4
crossref_primary_10_1016_j_indcrop_2024_118441
crossref_primary_10_1016_j_bioelechem_2022_108206
crossref_primary_10_1007_s12298_024_01448_3
crossref_primary_10_1111_jac_70047
crossref_primary_10_32615_ps_2019_084
crossref_primary_10_1007_s11427_021_2024_0
crossref_primary_10_3390_agronomy13123016
crossref_primary_10_1038_s41598_021_83566_6
crossref_primary_10_15252_embj_2022113004
crossref_primary_10_3389_fpls_2024_1283912
crossref_primary_10_1016_j_scitotenv_2019_01_214
crossref_primary_10_3389_fpls_2022_934877
crossref_primary_10_32604_phyton_2022_019572
crossref_primary_10_3390_plants13121638
crossref_primary_10_1016_j_envexpbot_2020_103989
crossref_primary_10_3389_fpls_2020_571025
crossref_primary_10_1007_s12633_021_01466_w
crossref_primary_10_1007_s00299_021_02788_0
crossref_primary_10_1111_ppl_13374
crossref_primary_10_3390_ijms23095006
crossref_primary_10_1080_15592324_2020_1856546
crossref_primary_10_1111_nph_15989
crossref_primary_10_1016_j_plaphy_2024_108337
crossref_primary_10_1111_tpj_16395
crossref_primary_10_1007_s00709_022_01789_4
crossref_primary_10_1016_j_plaphy_2021_01_028
crossref_primary_10_1016_j_plaphy_2021_01_029
crossref_primary_10_3390_ijms20102421
crossref_primary_10_1371_journal_pone_0219799
crossref_primary_10_1038_s41438_019_0172_0
crossref_primary_10_1016_j_jplph_2022_153708
crossref_primary_10_1016_j_scienta_2020_109426
crossref_primary_10_1007_s00468_023_02400_w
crossref_primary_10_1111_jipb_13622
crossref_primary_10_1111_ppl_70129
crossref_primary_10_1016_j_plaphy_2021_01_027
crossref_primary_10_1016_j_plaphy_2025_109735
crossref_primary_10_1007_s00425_021_03671_8
crossref_primary_10_1007_s11104_024_06976_1
crossref_primary_10_1016_j_plaphy_2023_03_006
crossref_primary_10_1111_tpj_16369
crossref_primary_10_3390_ijms20081990
crossref_primary_10_3390_ijms21218385
crossref_primary_10_3390_plants11091184
crossref_primary_10_1021_acs_jafc_3c07139
crossref_primary_10_1016_j_indcrop_2023_116843
crossref_primary_10_3390_cells10050979
crossref_primary_10_1007_s11033_022_07681_x
crossref_primary_10_3390_ijms20133167
crossref_primary_10_1093_pcp_pcab117
crossref_primary_10_1111_pce_14031
crossref_primary_10_1007_s10725_020_00684_3
crossref_primary_10_1111_tpj_15270
crossref_primary_10_1111_pbi_14129
crossref_primary_10_1186_s12870_024_05586_4
crossref_primary_10_1071_FP21165
crossref_primary_10_3389_fpls_2021_724288
crossref_primary_10_1038_s41467_019_14027_y
crossref_primary_10_3389_fpls_2020_595055
crossref_primary_10_3389_fpls_2022_1030677
crossref_primary_10_3389_fpls_2022_842726
crossref_primary_10_1016_j_plaphy_2020_06_041
crossref_primary_10_1007_s11356_024_34158_0
crossref_primary_10_1016_j_xplc_2024_101137
crossref_primary_10_1093_plphys_kiae633
crossref_primary_10_1016_j_jgg_2024_09_008
crossref_primary_10_1016_j_plaphy_2020_05_003
crossref_primary_10_1016_j_plaphy_2022_09_029
crossref_primary_10_3390_ijms19020469
crossref_primary_10_1016_j_envexpbot_2023_105576
crossref_primary_10_1111_jipb_13839
crossref_primary_10_1111_tpj_15010
crossref_primary_10_1038_s41438_020_00358_1
crossref_primary_10_1007_s10709_020_00093_4
crossref_primary_10_1016_j_algal_2019_101526
crossref_primary_10_1016_j_indcrop_2024_119170
crossref_primary_10_1093_treephys_tpac053
crossref_primary_10_1186_s12864_025_11270_0
crossref_primary_10_3389_fpls_2020_00425
crossref_primary_10_1007_s43621_025_00855_0
crossref_primary_10_1111_tpj_16580
crossref_primary_10_1007_s10098_024_02761_x
crossref_primary_10_1007_s10924_021_02296_y
crossref_primary_10_3390_agronomy14040649
crossref_primary_10_3390_ijms25169124
crossref_primary_10_1186_s12870_023_04659_0
crossref_primary_10_1016_j_jare_2025_03_040
crossref_primary_10_1038_s41598_024_54623_7
crossref_primary_10_1007_s00344_023_11033_9
crossref_primary_10_3390_ijms24043623
crossref_primary_10_1016_j_envexpbot_2023_105555
crossref_primary_10_1007_s42106_021_00176_y
crossref_primary_10_1016_j_jgg_2022_05_007
crossref_primary_10_1038_s41598_024_77182_3
crossref_primary_10_1016_j_rhisph_2020_100229
crossref_primary_10_3389_fpls_2022_1042855
crossref_primary_10_1093_plcell_koad105
crossref_primary_10_1111_pbi_13464
crossref_primary_10_3389_fpls_2023_1293167
crossref_primary_10_1080_15548627_2024_2394302
crossref_primary_10_1016_j_scienta_2023_112083
crossref_primary_10_1038_s41477_019_0497_6
crossref_primary_10_3390_ijms23063279
crossref_primary_10_1093_treephys_tpaa050
crossref_primary_10_3390_ijms25115950
crossref_primary_10_1016_j_ecoenv_2022_113684
crossref_primary_10_1111_nph_15129
crossref_primary_10_1111_tpj_14144
crossref_primary_10_1186_s12284_022_00608_x
crossref_primary_10_1007_s11103_021_01230_z
crossref_primary_10_3390_ijms21062177
crossref_primary_10_3390_agriculture15060610
crossref_primary_10_1038_s41586_019_1449_z
crossref_primary_10_3390_life12060860
crossref_primary_10_1016_j_cj_2021_02_010
crossref_primary_10_3389_fpls_2022_874579
crossref_primary_10_1111_pbi_14565
crossref_primary_10_3390_plants14050678
crossref_primary_10_1093_plcell_koad117
crossref_primary_10_1134_S1021443724604737
crossref_primary_10_3390_ijms23158480
crossref_primary_10_3389_fpls_2021_741641
crossref_primary_10_1007_s11120_022_00913_y
crossref_primary_10_3390_plants12122356
crossref_primary_10_1002_tpg2_20337
crossref_primary_10_1093_hr_uhac067
crossref_primary_10_3390_ijms23063293
crossref_primary_10_3390_ijms25074111
crossref_primary_10_3389_fpls_2022_901782
crossref_primary_10_1186_s12864_021_07922_6
crossref_primary_10_1007_s11738_019_2905_y
crossref_primary_10_1093_jxb_erad368
crossref_primary_10_1111_nph_17760
crossref_primary_10_1007_s00343_019_9067_z
crossref_primary_10_1111_pbi_13247
crossref_primary_10_1016_j_jenvman_2024_122201
crossref_primary_10_3390_ijms22052399
crossref_primary_10_1007_s11032_023_01383_3
crossref_primary_10_1080_07388551_2022_2093695
crossref_primary_10_1007_s13205_023_03519_w
crossref_primary_10_1038_s41467_025_57806_6
crossref_primary_10_3390_agronomy11112338
crossref_primary_10_1111_pce_14450
crossref_primary_10_1186_s12870_020_02550_w
crossref_primary_10_1016_j_plaphy_2018_10_037
crossref_primary_10_1007_s10265_021_01284_6
crossref_primary_10_3389_fpls_2022_863233
crossref_primary_10_3390_agronomy12092098
crossref_primary_10_3390_ijms241813998
crossref_primary_10_1007_s12268_023_1965_0
crossref_primary_10_1093_plphys_kiae669
crossref_primary_10_3390_agronomy14071391
crossref_primary_10_1007_s12298_024_01455_4
crossref_primary_10_3390_agronomy14112524
crossref_primary_10_1016_j_ygeno_2021_02_022
crossref_primary_10_1016_j_plaphy_2023_108209
crossref_primary_10_3389_fpls_2022_1077710
crossref_primary_10_3390_biology9060116
crossref_primary_10_1007_s10142_024_01405_z
Cites_doi 10.1007/s00726-007-0501-8
10.1016/j.bse.2011.06.016
10.1111/j.1469-8137.2005.01335.x
10.1104/pp.93.1.33
10.1016/j.jplph.2014.02.006
10.1038/srep45490
10.1038/ng1643
10.1046/j.1365-313x.2000.00786.x
10.1093/aob/mcu219
10.1016/S0168-9452(98)00218-0
10.1093/jxb/eru392
10.1104/pp.104.900133
10.3389/fenvs.2014.00053
10.1093/jxb/erx019
10.1093/pcp/pcu059
10.1105/tpc.114.135095
10.1104/pp.122.4.1129
10.1093/jxb/50.Special_Issue.1023
10.1007/s00425-006-0242-z
10.1126/science.7112124
10.1016/j.apsoil.2014.11.008
10.1007/s00438-010-0581-0
10.1073/pnas.0604421103
10.1016/j.jplph.2011.10.004
10.1007/s11105-017-1026-2
10.1186/1471-2156-15-S1-S6
10.1105/tpc.111.095273
10.1073/pnas.94.3.1035
10.1093/mp/ssn058
10.1016/j.plaphy.2003.10.007
10.1073/pnas.1018921108
10.1093/molbev/msu152
10.1101/gr.177659.114
10.1104/pp.116.1.369
10.1104/pp.15.00353
10.1111/pce.12051
10.1104/pp.51.5.875
10.1023/A:1010687711334
10.1016/j.phytochem.2017.04.016
10.1111/j.1469-8137.1979.tb01661.x
10.1126/science.223.4637.701
10.1111/pce.12694
10.1111/j.1744-7909.2010.00892.x
10.1086/692097
10.1093/jxb/ert055
10.1073/pnas.120170197
10.1016/j.jplph.2014.12.009
10.1016/j.cell.2016.08.029
10.1126/science.aag1550
10.1186/1471-2229-13-210
10.1105/tpc.109.069609
10.1111/j.1365-313X.2007.03364.x
10.1093/jxb/erq328
10.1007/BF02703574
10.1016/j.plaphy.2015.12.019
10.1111/j.1365-3040.2007.01637.x
10.1111/pce.12419
10.1111/j.1469-8137.2005.01487.x
10.1186/1471-2229-12-183
10.1086/297301
10.1093/jxb/eru159
10.1104/pp.15.00729
10.1016/S0014-5793(02)03488-9
10.1111/nph.13507
10.1104/pp.106.089151
10.1046/j.1365-313X.2003.01871.x
10.1105/tpc.10.8.1391
10.1073/pnas.1407610111
10.1186/1471-2199-10-29
10.1105/tpc.108.063354
10.1111/j.1365-3040.2009.02055.x
10.1038/ncomms2846
10.1371/journal.pgen.1006832
10.1093/pcp/pcq182
10.1016/j.jplph.2009.04.009
10.1093/pcp/pcm123
10.1111/j.1365-3040.2008.01888.x
10.1016/S0304-4165(99)00155-5
10.1016/S1360-1385(99)01428-4
10.1071/FP03236
10.1104/pp.109.3.735
10.1007/s00709-013-0540-9
10.1105/tpc.113.117887
10.1016/j.ydbio.2005.10.036
10.1093/jxb/erx156
10.1105/tpc.106.042291
10.15835/nbha3927176
10.1111/tpj.12958
10.1016/j.plaphy.2007.05.009
10.1073/pnas.1319955111
10.1007/s12298-016-0371-1
10.1073/pnas.241501798
10.1105/tpc.104.022830
10.1016/j.yjmcc.2004.11.019
10.1104/pp.114.236620
10.1128/MCB.00430-07
10.1105/TPC.010021
10.3389/fpls.2015.00133
10.1073/pnas.1321568111
10.1128/MCB.00429-07
10.1111/plb.12084
10.1016/j.freeradbiomed.2017.02.042
10.1111/j.1365-3040.2009.02041.x
10.1104/pp.16.00533
10.1104/pp.111.173377
10.1104/pp.103.022178
10.1105/tpc.108.064568
10.1007/s00299-012-1348-3
10.1146/annurev.pp.44.060193.002041
10.1007/s00709-013-0496-9
10.1016/j.jssas.2011.03.002
10.1038/emboj.2012.273
10.1007/s11816-011-0210-3
10.1105/tpc.113.117069
10.1093/jxb/erq188
10.1093/jxb/ern153
10.17660/ActaHortic.2003.613.3
10.1093/pcp/pcj090
10.1046/j.1365-3040.2000.00602.x
10.1093/jxb/erv306
10.1016/S0958-1669(02)00298-7
10.2135/cropsci2000.402482x
10.1016/j.plaphy.2009.02.009
10.1111/tpj.12123
10.1104/pp.96.4.1228
10.1016/j.envexpbot.2007.10.009
10.1016/S1360-1385(01)01923-9
10.1046/j.0016-8025.2001.00808.x
10.1105/tpc.111.089581
10.1111/j.1529-8817.2011.00977.x
10.1007/s10725-005-7769-z
10.1093/mp/sst062
10.1007/s00709-015-0792-7
10.1105/tpc.013896
10.1105/tpc.112.107227
10.1016/S0176-1617(11)80758-3
10.1111/j.1399-3054.2009.01297.x
10.1146/annurev.arplant.53.091401.143329
10.1016/j.plaphy.2010.08.016
10.1111/pce.12905
10.1093/jxb/erv312
10.1104/pp.114.248963
10.1007/s00299-012-1242-z
10.1016/j.tplants.2006.06.001
10.1155/2012/859831
10.1105/tpc.110.081356
10.1016/0167-7799(96)80929-2
10.1089/dna.2016.3505
10.1073/pnas.2034853100
10.1111/pce.12274
10.1126/science.210.4470.650
10.1126/science.280.5371.1943
10.1021/pr1007834
10.1038/srep44637
10.1105/tpc.109.066217
10.3390/ijms14035899
10.1111/j.1365-313X.2005.02595.x
10.1080/15592324.2016.1253647
10.1093/emboj/17.9.2566
10.1111/jpi.12243
10.1371/journal.pgen.1003779
10.1105/tpc.112.104182
10.1111/nph.14088
10.1093/jxb/erv142
10.1104/pp.119.1.165
10.1034/j.1399-3054.2000.100410.x
10.1105/tpc.12.9.1667
10.1104/pp.102.017277
10.1016/S1146-609X(01)01120-1
10.1073/pnas.0709453104
10.1093/jxb/ers059
10.1016/j.plaphy.2011.01.023
10.1105/tpc.11.7.1195
10.3389/fpls.2016.00658
10.1016/j.cub.2013.08.042
10.1007/s11105-014-0722-4
10.1146/annurev.arplant.51.1.463
10.1093/pcp/pcu125
10.1186/s12870-014-0226-2
10.1079/PAVSNNR20094013
10.1093/mp/sst072
10.1016/j.jmb.2012.09.015
10.1104/pp.113.3.881
10.1242/jeb.01730
10.1021/pr4012624
10.1007/s11103-006-9103-1
10.1093/aob/mcu239
10.1371/journal.pone.0041274
10.1104/pp.113.4.1177
10.1104/pp.107.109413
10.1186/s12870-016-0714-7
10.1371/journal.pone.0106070
10.1016/j.tplants.2009.08.009
10.1093/jxb/erp333
10.3389/fpls.2017.00855
10.1073/pnas.1519555113
10.1371/journal.pone.0040203
10.1007/978-1-4614-8824-8_3
10.1371/journal.pone.0059423
10.1093/jxb/erq154
10.1186/1471-2229-12-132
10.1073/pnas.122224699
10.1186/s12870-015-0451-3
10.1105/tpc.105.035626
10.1074/jbc.M307982200
10.1093/pcp/pcp143
10.1016/S0065-2296(08)60311-0
10.1242/jcs.109116
10.1104/pp.115.1.159
10.1093/jxb/eri301
10.1105/tpc.113.112896
10.1128/MCB.01989-06
10.1093/jxb/err130
10.1111/pce.12033
10.1126/science.270.5244.1986
10.1105/tpc.112.106393
10.1111/nph.12997
10.1016/j.tplants.2008.03.008
10.1104/pp.16.00334
10.1093/pcp/pct049
10.1016/S0098-8472(02)00058-8
10.1038/srep27551
10.1104/pp.010634
10.5402/2012/927436
10.1126/science.aac6014
10.3389/fpls.2016.00081
10.1104/pp.104.042234
10.1016/j.bbrc.2015.08.089
10.1038/nature13593
10.1093/jxb/erg277
10.1104/pp.103.025379
10.1016/j.cell.2015.08.028
10.1104/pp.15.00030
10.1023/A:1026712426180
10.1016/j.jplph.2008.03.002
10.1111/j.1469-8137.2010.03422.x
10.1111/j.1365-313X.2007.03249.x
10.1111/jipb.12005
10.1073/pnas.97.7.3735
10.1093/jxb/eru173
10.1007/s11103-016-0520-5
10.1111/j.1469-8137.2010.03545.x
10.1073/pnas.91.1.306
10.1016/S0076-6879(07)28024-3
10.3389/fpls.2014.00151
10.1007/s10725-014-9943-7
10.1093/pcp/pcr121
10.1016/j.plaphy.2015.06.014
10.1021/jf2021623
10.1242/dev.135111
10.1242/dev.02753
10.1016/j.cell.2005.11.035
10.4161/psb.6.1.14202
10.1016/S0005-2736(00)00135-8
10.1007/s00709-014-0691-3
10.1016/j.envexpbot.2012.01.007
10.1093/jxb/erp290
ContentType Journal Article
Copyright 2017 New Phytologist Trust
2017 The Authors. New Phytologist © 2017 New Phytologist Trust
2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
Copyright © 2018 New Phytologist Trust
Copyright_xml – notice: 2017 New Phytologist Trust
– notice: 2017 The Authors. New Phytologist © 2017 New Phytologist Trust
– notice: 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
– notice: Copyright © 2018 New Phytologist Trust
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7S9
L.6
DOI 10.1111/nph.14920
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Ecology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
Aquatic Science & Fisheries Abstracts (ASFA) Professional

MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1469-8137
EndPage 539
ExternalDocumentID 29205383
10_1111_nph_14920
NPH14920
90016922
Genre reviewArticle
Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: National Genetically Modified Organisms Breeding Major Projects
  funderid: 2016ZX08009002
– fundername: National Natural Science Foundation of China
  funderid: 31430012; 31670260
– fundername: NSFC International Collaborative Research Project
  funderid: 31210103903
– fundername: Foundation for Innovative Research Group of the National Natural Science Foundation of China
  funderid: 31121002
– fundername: National Basic Research Program of China
  funderid: 2015CB910202
GroupedDBID ---
-~X
.3N
.GA
05W
0R~
10A
123
1OC
29N
2WC
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
79B
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHKG
AAHQN
AAISJ
AAKGQ
AAMMB
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABLJU
ABPLY
ABPVW
ABSQW
ABTLG
ABVKB
ABXSQ
ACAHQ
ACCZN
ACFBH
ACGFS
ACHIC
ACNCT
ACPOU
ACSCC
ACSTJ
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADULT
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUPB
AEUYR
AEYWJ
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGUYK
AGXDD
AGYGG
AHBTC
AHXOZ
AIDQK
AIDYY
AILXY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AQVQM
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CBGCD
CS3
CUYZI
D-E
D-F
DCZOG
DEVKO
DIK
DPXWK
DR2
DRFUL
DRSTM
E3Z
EBS
ECGQY
EJD
F00
F01
F04
F5P
G-S
G.N
GODZA
H.T
H.X
HGLYW
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
RIG
ROL
RX1
SA0
SUPJJ
TN5
TR2
UB1
W8V
W99
WBKPD
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
YNT
YQT
ZZTAW
~02
~IA
~KM
~WT
.Y3
24P
31~
AAHHS
AASVR
ABEFU
ABEML
ACCFJ
ACQPF
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
AS~
CAG
COF
DOOOF
ESX
FIJ
GTFYD
HF~
HGD
HQ2
HTVGU
IPNFZ
JSODD
LPU
MVM
NEJ
RCA
WHG
WRC
XOL
YXE
ZCG
AAYXX
ABGDZ
ADXHL
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
PKN
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7S9
L.6
ID FETCH-LOGICAL-c4740-a4de124c65112920029fd108e91e90fd7a4c6e7926e8e76d1602c830a4f4f90d3
IEDL.DBID DR2
ISSN 0028-646X
1469-8137
IngestDate Fri Jul 11 18:30:03 EDT 2025
Fri Jul 11 06:12:33 EDT 2025
Sun Jul 13 04:36:37 EDT 2025
Wed Feb 19 02:34:37 EST 2025
Thu Jul 03 08:28:53 EDT 2025
Thu Apr 24 23:06:47 EDT 2025
Wed Jan 22 16:47:00 EST 2025
Thu Jul 03 22:18:04 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords glycophytes
cytoskeletal dynamics
ion and osmotic homeostasis
salt-induced stress
developmental adjustment
antioxidant defense
cell activity responses
epigenetic regulation
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4740-a4de124c65112920029fd108e91e90fd7a4c6e7926e8e76d1602c830a4f4f90d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
PMID 29205383
PQID 1990465448
PQPubID 2026848
PageCount 17
ParticipantIDs proquest_miscellaneous_2020882488
proquest_miscellaneous_1973020783
proquest_journals_1990465448
pubmed_primary_29205383
crossref_citationtrail_10_1111_nph_14920
crossref_primary_10_1111_nph_14920
wiley_primary_10_1111_nph_14920_NPH14920
jstor_primary_90016922
PublicationCentury 2000
PublicationDate January 2018
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 01
  year: 2018
  text: January 2018
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Lancaster
PublicationTitle The New phytologist
PublicationTitleAlternate New Phytol
PublicationYear 2018
Publisher New Phytologist Trust
Wiley Subscription Services, Inc
Publisher_xml – name: New Phytologist Trust
– name: Wiley Subscription Services, Inc
References 1998; 280
2013; 126
2013; 64
2002; 99
2010; 188
2008; 34
2008; 31
2016; 39
2016; 38
2012; 12
2004; 31
1998; 17
2013; 54
2000; 12
2015; 252
2011a; 62
1999; 50
2008; 20
2012; 24
2014a; 9
1998; 10
2000; 1465
2010; 9
2007; 19
2004; 42
2003; 613
1999; 29
2002; 531
2017; 68
2008; 59
2010; 284
2008; 53
2001; 22
2016; 16
2011; 6
2011; 5
2012; 31
2016; 11
2015; 350
2016; 6
2016; 7
2015; 115
2013; 74
2016; 212
1999; 1472
2017; 140
2001; 33
2006; 103
1999; 119
2016; 22
2017; 40
2009b; 166
2013; 25
2014b; 26
2002; 53
2013; 23
2007; 144
2016; 100
2007; 30
2014; 171
1980; 210
2014; 65
2010; 61
2007; 134
2014; 5
2013; 14
1997; 94
2014; 2
2017; 36
2013; 13
2017; 35
2015; 176
2016; 113
2016; 354
1999; 11
2008; 63
2014; 165
2014; 166
2001; 13
2014; 55
2007; 27
2015; 162
2014; 514
2015; 6
2015; 168
2015; 169
2006; 11
2015; 96
1999; 140
1993; 141
2007; 52
2012; 424
2002; 25
2013; 36
2011; 108
2005; 166
2013; 32
2010; 138
2005; 167
2017; 13
1995; 109
2016; 253
2014
2009; 4
2009; 2
2007; 45
2017; 106
2007; 48
2007; 104
2013; 4
1991; 96
2015; 75
2002; 13
2011; 62
2011; 52
2014; 24
2016; 143
2011; 59
2013; 8
2014; 251
2013; 6
2003; 54
2013; 9
2010; 22
2009; 14
2009; 10
2015; 84
2015; 87
2000; 97
2014; 16
2014; 15
2014; 14
2014; 13
2003; 49
2000; 122
2007; 63
2010; 33
2015; 59
1984; 223
1993; 44
2006b; 224
2003; 36
2016; 167
2016; 92
1995; 156
1996; 14
2009; 217
1995; 270
2010; 48
2004; 279
2005; 123
2011b; 39
2015; 66
2006; 47
2000; 109
2002; 128
2014; 37
2009a; 47
2016; 171
1994; 91
1979; 82
2010; 52
2003; 100
2014; 31
2016; 172
1997; 113
1997; 115
2017; 7
2017; 8
1973; 51
2015; 38
2015; 465
2000; 43
2015; 33
2003; 13
2000; 51
2003; 15
2011; 10
1998; 116
2008; 146
2012; 169
2007; 428
2006a; 289
2011; 156
2012; 54
2015; 1153
2004; 134
2004; 136
2009; 50
1982; 217
2009; 166
2005; 30
2011; 23
2005; 37
2005; 38
2012; 63
1990; 93
2001; 98
2015; 15
2009; 21
2000; 23
2008; 13
2015; 208
1999; 4
2015; 205
2011; 39
2011c; 23
2014; 111
2012; 79
2017; 178
2003; 133
2005; 44
2005; 46
2003; 131
2012; 3
2015; 27
2001; 6
2004; 16
2000; 40
2005; 208
2005; 54
2013; 250
2011; 47
2012; 6
2012; 7
2011; 49
2011; 189
2005; 56
2012; 9
e_1_2_7_3_1
e_1_2_7_104_1
e_1_2_7_127_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_83_1
Hong Z (e_1_2_7_89_1) 2000; 122
e_1_2_7_191_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_142_1
e_1_2_7_165_1
e_1_2_7_188_1
e_1_2_7_202_1
e_1_2_7_248_1
e_1_2_7_225_1
e_1_2_7_263_1
e_1_2_7_240_1
e_1_2_7_116_1
e_1_2_7_94_1
e_1_2_7_71_1
e_1_2_7_180_1
e_1_2_7_23_1
e_1_2_7_33_1
Zhang H (e_1_2_7_249_1) 2016; 7
e_1_2_7_56_1
e_1_2_7_79_1
e_1_2_7_131_1
e_1_2_7_154_1
e_1_2_7_237_1
e_1_2_7_177_1
e_1_2_7_214_1
e_1_2_7_252_1
e_1_2_7_139_1
e_1_2_7_4_1
e_1_2_7_128_1
e_1_2_7_105_1
Pirzad A (e_1_2_7_166_1) 2011; 5
e_1_2_7_82_1
e_1_2_7_120_1
e_1_2_7_192_1
e_1_2_7_44_1
e_1_2_7_67_1
e_1_2_7_143_1
Abdallah SB (e_1_2_7_2_1) 2016; 38
e_1_2_7_29_1
e_1_2_7_203_1
e_1_2_7_226_1
e_1_2_7_241_1
e_1_2_7_264_1
Serrano R (e_1_2_7_189_1) 1999; 50
e_1_2_7_117_1
e_1_2_7_70_1
e_1_2_7_93_1
e_1_2_7_181_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_78_1
e_1_2_7_193_1
e_1_2_7_238_1
e_1_2_7_132_1
e_1_2_7_155_1
e_1_2_7_178_1
e_1_2_7_215_1
e_1_2_7_230_1
e_1_2_7_253_1
e_1_2_7_106_1
e_1_2_7_129_1
Arya A (e_1_2_7_12_1) 2012; 9
e_1_2_7_9_1
e_1_2_7_81_1
e_1_2_7_121_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_170_1
e_1_2_7_227_1
e_1_2_7_182_1
e_1_2_7_28_1
e_1_2_7_144_1
e_1_2_7_167_1
e_1_2_7_204_1
e_1_2_7_265_1
e_1_2_7_242_1
e_1_2_7_118_1
e_1_2_7_110_1
e_1_2_7_92_1
e_1_2_7_31_1
e_1_2_7_77_1
e_1_2_7_54_1
e_1_2_7_171_1
e_1_2_7_216_1
e_1_2_7_194_1
e_1_2_7_239_1
e_1_2_7_39_1
e_1_2_7_133_1
e_1_2_7_156_1
e_1_2_7_179_1
e_1_2_7_254_1
e_1_2_7_231_1
e_1_2_7_107_1
Fu HH (e_1_2_7_61_1) 1998; 10
e_1_2_7_80_1
e_1_2_7_122_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_88_1
e_1_2_7_65_1
e_1_2_7_205_1
e_1_2_7_228_1
e_1_2_7_160_1
e_1_2_7_183_1
e_1_2_7_27_1
e_1_2_7_145_1
e_1_2_7_220_1
e_1_2_7_243_1
e_1_2_7_266_1
e_1_2_7_168_1
e_1_2_7_119_1
e_1_2_7_91_1
e_1_2_7_111_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_99_1
e_1_2_7_172_1
e_1_2_7_195_1
e_1_2_7_217_1
e_1_2_7_38_1
e_1_2_7_134_1
e_1_2_7_232_1
e_1_2_7_255_1
e_1_2_7_157_1
e_1_2_7_7_1
e_1_2_7_100_1
e_1_2_7_123_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_87_1
e_1_2_7_161_1
e_1_2_7_184_1
e_1_2_7_206_1
e_1_2_7_26_1
e_1_2_7_229_1
e_1_2_7_49_1
e_1_2_7_146_1
e_1_2_7_169_1
e_1_2_7_244_1
e_1_2_7_221_1
e_1_2_7_90_1
e_1_2_7_112_1
e_1_2_7_52_1
e_1_2_7_98_1
e_1_2_7_75_1
e_1_2_7_150_1
e_1_2_7_196_1
Kishor PBK (e_1_2_7_115_1) 2005; 54
e_1_2_7_37_1
e_1_2_7_173_1
e_1_2_7_218_1
e_1_2_7_256_1
e_1_2_7_135_1
e_1_2_7_158_1
e_1_2_7_233_1
e_1_2_7_210_1
e_1_2_7_109_1
e_1_2_7_8_1
e_1_2_7_124_1
e_1_2_7_101_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_63_1
e_1_2_7_86_1
e_1_2_7_185_1
e_1_2_7_207_1
e_1_2_7_48_1
e_1_2_7_162_1
e_1_2_7_245_1
e_1_2_7_147_1
e_1_2_7_222_1
e_1_2_7_260_1
e_1_2_7_113_1
e_1_2_7_51_1
e_1_2_7_74_1
e_1_2_7_97_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_151_1
e_1_2_7_174_1
e_1_2_7_219_1
e_1_2_7_197_1
e_1_2_7_234_1
e_1_2_7_257_1
e_1_2_7_136_1
e_1_2_7_211_1
e_1_2_7_159_1
e_1_2_7_5_1
e_1_2_7_102_1
e_1_2_7_125_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_85_1
e_1_2_7_47_1
e_1_2_7_140_1
e_1_2_7_163_1
e_1_2_7_208_1
e_1_2_7_223_1
Blumwald E (e_1_2_7_25_1) 2003; 13
e_1_2_7_186_1
e_1_2_7_246_1
e_1_2_7_148_1
e_1_2_7_200_1
Kawa D (e_1_2_7_108_1) 2016; 172
e_1_2_7_261_1
e_1_2_7_114_1
e_1_2_7_73_1
e_1_2_7_50_1
e_1_2_7_96_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_58_1
e_1_2_7_152_1
e_1_2_7_175_1
e_1_2_7_212_1
e_1_2_7_258_1
e_1_2_7_198_1
e_1_2_7_235_1
e_1_2_7_137_1
e_1_2_7_250_1
e_1_2_7_6_1
e_1_2_7_126_1
e_1_2_7_103_1
e_1_2_7_18_1
e_1_2_7_84_1
e_1_2_7_209_1
e_1_2_7_190_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_69_1
e_1_2_7_141_1
e_1_2_7_201_1
e_1_2_7_224_1
e_1_2_7_247_1
e_1_2_7_164_1
e_1_2_7_187_1
e_1_2_7_149_1
e_1_2_7_262_1
e_1_2_7_72_1
e_1_2_7_95_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_130_1
e_1_2_7_153_1
e_1_2_7_176_1
e_1_2_7_199_1
e_1_2_7_213_1
e_1_2_7_236_1
e_1_2_7_259_1
e_1_2_7_138_1
e_1_2_7_251_1
References_xml – volume: 171
  start-page: 779
  year: 2014
  end-page: 788
  article-title: Enhanced salt‐induced antioxidative responses involve a contribution of polyamine biosynthesis in grapevine plants
  publication-title: Journal of Plant Physiology
– volume: 19
  start-page: 1415
  year: 2007
  end-page: 1431
  article-title: SCABP8/CBL10, a putative calcium sensor, interacts with the protein kinase SOS2 to protect Arabidopsis shoots from salt stress
  publication-title: Plant Cell
– volume: 2
  start-page: 53
  year: 2014
  article-title: Reactive oxygen species (ROS) and response of antioxidants as ROS‐scavengers during environmental stress in plants
  publication-title: Frontiers in Environmental Science
– volume: 131
  start-page: 1628
  year: 2003
  end-page: 1637
  article-title: Glucosylglycerol, a compatible solute, sustains cell division under salt stress
  publication-title: Plant Physiology
– volume: 109
  start-page: 735
  year: 1995
  end-page: 742
  article-title: Ion homeostasis in NaCl stress environment
  publication-title: Plant Physiology
– volume: 169
  start-page: 1072
  year: 2015
  end-page: 1089
  article-title: Differential role for trehalose metabolism in salt‐stressed maize
  publication-title: Plant Physiology
– volume: 188
  start-page: 762
  year: 2010
  end-page: 773
  article-title: Phosphatidic acid mediates salt stress response by regulation of MPK6 in
  publication-title: New Phytologist
– volume: 55
  start-page: 1354
  year: 2014
  end-page: 1365
  article-title: Induced and constitutive DNA methylation in a salinity‐tolerant wheat introgression line
  publication-title: Plant & Cell Physiology
– volume: 38
  start-page: 1
  year: 2016
  end-page: 13
  article-title: Salt stress (NaCl) affects plant growth and branch pathways of carotenoid and flavonoid biosyntheses in
  publication-title: Acta Physiologiae Plantarum
– volume: 52
  start-page: 1766
  year: 2011
  end-page: 1775
  article-title: Mannitol transport and mannitol dehydrogenase activities are coordinated in under salt and osmotic stresses
  publication-title: Plant & Cell Physiology
– volume: 140
  start-page: 52
  year: 2017
  article-title: Evaluation of proline functions in saline conditions
  publication-title: Phytochemistry
– volume: 30
  start-page: 101
  year: 2005
  end-page: 116
  article-title: Sugar signaling and gene expression in relation to carbohydrate metabolism under abiotic stresses in plants
  publication-title: Journal of Biosciences
– volume: 6
  start-page: 27551
  year: 2016
  article-title: Small RNA transcriptomes of mangroves evolve adaptively in extreme environments
  publication-title: Scientific Reports
– volume: 6
  start-page: 206
  year: 2001
  end-page: 211
  article-title: Vacuolar H pyrophosphatases: from the evolutionary backwaters into the main stream
  publication-title: Trends in Plant Science
– volume: 113
  start-page: E5242
  year: 2016
  end-page: E5249
  article-title: Rapid hyperosmotic‐induced Ca responses in exhibit sensory potentiation and involvement of plastidial KEA transporters
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 54
  start-page: 936
  year: 2012
  end-page: 952
  article-title: Regulation of leaf senescence and crop genetic improvement
  publication-title: Journal of Integrative Plant Biology
– volume: 24
  start-page: 1821
  year: 2014
  end-page: 1829
  article-title: Environmentally responsive genome‐wide accumulation of mutations and epimutations
  publication-title: Genome Research
– volume: 109
  start-page: 435
  year: 2000
  end-page: 442
  article-title: Differential response of antioxidant compounds to salinity stress in salt‐tolerant and salt‐sensitive seedlings of foxtail millet ( )
  publication-title: Physiologia Plantarum
– volume: 35
  start-page: 333
  year: 2017
  end-page: 342
  article-title: A thioredoxin‐dependent glutathione peroxidase (OsGPX5) is required for rice normal development and salt stress tolerance
  publication-title: Plant Molecular Biology Reporter
– volume: 43
  start-page: 471
  year: 2000
  end-page: 475
  article-title: Effect of glycine betaine on chloroplast ultrastructure, chlorophyll and protein content and RUBPCO activities in tomato grown under drought or salinity
  publication-title: Biologia Plantarum
– volume: 84
  start-page: 56
  year: 2015
  end-page: 69
  article-title: Transcription factor WRKY46 modulates the development of Arabidopsis lateral roots in osmotic/salt stress conditions via regulation of ABA signaling and auxin homeostasis
  publication-title: Plant Journal
– volume: 14
  start-page: 5899
  year: 2013
  end-page: 5919
  article-title: A rice immunophilin gene, , confers tolerance to environmental stress in Arabidopsis and rice
  publication-title: International Journal of Molecular Sciences
– volume: 16
  start-page: 21
  year: 2016
  article-title: A comparative gene analysis with rice identified orthologous group II HKT genes and their association with Na concentration in bread wheat
  publication-title: BMC Plant Biology
– volume: 253
  start-page: 101
  year: 2016
  end-page: 110
  article-title: Early osmotic, antioxidant, ionic, and redox responses to salinity in leaves and roots of Indian mustard ( L.)
  publication-title: Protoplasma
– volume: 45
  start-page: 705
  year: 2007
  end-page: 710
  article-title: Osmoregulation in , Part II: Photosynthesis and starch contribute carbon for glycerol synthesis during a salt stress in
  publication-title: Plant Physiology & Biochemistry
– volume: 33
  start-page: 453
  year: 2010
  end-page: 467
  article-title: Reactive oxygen species homeostasis and signaling during drought and salinity stresses
  publication-title: Plant, Cell & Environment
– volume: 61
  start-page: 3787
  year: 2010
  end-page: 3798
  article-title: A comparative study of salt tolerance parameters in 11 wild relatives of
  publication-title: Journal of Experimental Botany
– volume: 144
  start-page: 1029
  year: 2007
  end-page: 1038
  article-title: Differential regulation of sorbitol and sucrose loading into the phloem of in response to salt stress
  publication-title: Plant Physiology
– start-page: 49
  year: 2014
  end-page: 89
– volume: 37
  start-page: 2024
  year: 2014
  end-page: 2035
  article-title: A step towards understanding plant responses to multiple environmental stresses: a genome‐wide study
  publication-title: Plant, Cell & Environment
– volume: 13
  start-page: 210
  year: 2013
  article-title: MiR394 and LCR are involved in Arabidopsis salt and drought stress responses in an abscisic acid‐dependent manner
  publication-title: BMC Plant Biology
– volume: 52
  start-page: 473
  year: 2007
  end-page: 484
  article-title: The calcium sensor CBL10 mediates salt tolerance by regulating ion homeostasis in Arabidopsis
  publication-title: Plant Journal
– volume: 11
  start-page: 1195
  year: 1999
  end-page: 1206
  article-title: A recessive Arabidopsis mutant that grows photoautotrophically under salt stress shows enhanced active oxygen detoxification
  publication-title: Plant Cell
– volume: 171
  start-page: 369
  year: 2016
  end-page: 379
  article-title: Arabidopsis CALCINEURIN B‐LIKE10 functions independently of the SOS pathway during reproductive development in saline conditions
  publication-title: Plant Physiology
– volume: 23
  start-page: 2044
  year: 2013
  end-page: 2050
  article-title: Halotropism is a response of plant roots to avoid a saline environment
  publication-title: Current Biology
– volume: 33
  start-page: 56
  year: 2015
  end-page: 68
  article-title: Metabolomic analysis revealed differential adaptation to salinity and alkalinity stress in kentucky bluegrass ( )
  publication-title: Plant Molecular Biology Reporter
– volume: 62
  start-page: 4787
  year: 2011
  end-page: 4803
  article-title: Global gene expression analysis of transgenic, mannitol‐producing, and salt‐tolerant indicates widespread changes in abiotic and biotic stress‐related genes
  publication-title: Journal of Experimental Botany
– volume: 5
  start-page: 151
  year: 2014
  end-page: 160
  article-title: Tolerance to drought and salt stress in plants: unraveling the signaling networks
  publication-title: Frontiers in Plant Science
– volume: 31
  start-page: 203
  year: 2004
  end-page: 216
  article-title: Die and let live: leaf senescence contributes to plant survival under drought stress
  publication-title: Functional Plant Biology
– volume: 133
  start-page: 307
  year: 2003
  end-page: 318
  article-title: Sodium influx and accumulation in Arabidopsis
  publication-title: Plant Physiology
– volume: 62
  start-page: 975
  year: 2011a
  end-page: 988
  article-title: Characterization of a common wheat ( L.) gene involved in abiotic stress responses
  publication-title: Journal of Experimental Botany
– volume: 96
  start-page: 217
  year: 2015
  end-page: 221
  article-title: Suppressed expression of choline monooxygenase in sugar beet on the accumulation of glycine betaine
  publication-title: Plant Physiology & Biochemistry
– volume: 49
  start-page: 441
  year: 2011
  end-page: 448
  article-title: Expression of three galactinol synthase isoforms in l. and accumulation of raffinose and stachyose in response to abiotic stresses
  publication-title: Plant Physiology & Biochemistry
– volume: 39
  start-page: 9
  year: 2011
  end-page: 17
  article-title: Soluble carbohydrates as osmolytes in several halophytes from a mediterranean salt marsh
  publication-title: Notulae Botanicae Horti Agrobotanici Cluj‐Napoca
– volume: 97
  start-page: 3735
  year: 2000
  end-page: 3740
  article-title: The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium‐binding protein SOS3
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 6
  start-page: 89
  year: 2012
  end-page: 96
  article-title: Accumulation of trehalose increases soluble sugar contents in rice plants conferring tolerance to drought and salt stress
  publication-title: Plant Biotechnology Reports
– volume: 7
  start-page: 45490
  year: 2017
  article-title: Thiourea priming enhances salt tolerance through co‐ordinated regulation of microRNAs and hormones in
  publication-title: Scientific Reports
– volume: 143
  start-page: 3350
  year: 2016
  end-page: 3362
  article-title: Modeling halotropism: a key role for root tip architecture and reflux loop remodeling in redistributing auxin
  publication-title: Development
– volume: 33
  start-page: 543
  year: 2010
  end-page: 551
  article-title: Analysis of the salt‐stress response at cell‐type resolution
  publication-title: Plant, Cell & Environment
– volume: 22
  start-page: 291
  year: 2016
  end-page: 306
  article-title: Manganese‐induced salt stress tolerance in rice seedlings: regulation of ion homeostasis, antioxidant defense and glyoxalase systems
  publication-title: Physiology and Molecular Biology of Plants
– volume: 96
  start-page: 1228
  year: 1991
  end-page: 1236
  article-title: Effects of salt stress on amino acid, organic acid, and carbohydrate composition of roots, bacteroids, and cytosol of alfalfa ( L.)
  publication-title: Plant Physiology
– volume: 6
  start-page: 1781
  year: 2013
  end-page: 1794
  article-title: Inositol polyphosphate phosphatidylinositol 5‐phosphatase9 (At5ptase9) controls plant salt tolerance by regulating endocytosis
  publication-title: Molecular Plant
– volume: 138
  start-page: 60
  year: 2010
  end-page: 73
  article-title: Fine and coarse regulation of reactive oxygen species in the salt tolerant mutants of barnyard grass and their wild‐type parents under salt stress
  publication-title: Physiologia Plantarum
– volume: 51
  start-page: 875
  year: 1973
  end-page: 878
  article-title: The role of glycerol in the osmotic regulation of the halophilic alga
  publication-title: Plant Physiology
– volume: 44
  start-page: 357
  year: 1993
  end-page: 384
  article-title: Quaternary ammonium and tertiary sulfonium compounds in higher plants
  publication-title: Annual Review of Plant Biology
– volume: 280
  start-page: 1943
  year: 1998
  end-page: 1945
  article-title: A calcium sensor homolog required for plant salt tolerance
  publication-title: Science
– volume: 14
  start-page: 1
  year: 2014
  end-page: 13
  article-title: Identification and characterization of microRNAs related to salt stress in broccoli, using high‐throughput sequencing and bioinformatics analysis
  publication-title: BMC Plant Biology
– volume: 13
  start-page: e1006832
  year: 2017
  article-title: The Arabidopsis leucine‐rich repeat receptor kinase MIK2/LRR‐KISS connects cell wall integrity sensing, root growth and response to abiotic and biotic stresses
  publication-title: PLoS Genetics
– volume: 134
  start-page: 681
  year: 2007
  end-page: 690
  article-title: Auxin‐dependent regulation of lateral root positioning in the basal meristem of Arabidopsis
  publication-title: Development
– volume: 25
  start-page: 324
  year: 2013
  end-page: 341
  article-title: Endodermal ABA signaling promotes lateral root quiescence during salt stress in Arabidopsis seedlings
  publication-title: Plant Cell
– volume: 24
  start-page: 1127
  year: 2012
  end-page: 1142
  article-title: Ion exchangers NHX1 and NHX2 mediate active potassium uptake into vacuoles to regulate cell turgor and stomatal function in Arabidopsis
  publication-title: Plant Cell
– volume: 8
  start-page: e59423
  year: 2013
  article-title: High‐throughput sequencing of small RNA transcriptome reveals salt stress regulated microRNAs in sugarcane
  publication-title: PLoS ONE
– volume: 54
  start-page: 971
  year: 2013
  end-page: 981
  article-title: Cytokinin response factor 6 negatively regulates leaf senescence and is induced in response to cytokinin and numerous abiotic stresses
  publication-title: Plant & Cell Physiology
– volume: 111
  start-page: 10013
  year: 2014
  end-page: 10018
  article-title: OsNAP connects abscisic acid and leaf senescence by fine‐tuning abscisic acid biosynthesis and directly targeting senescence‐associated genes in rice
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 66
  start-page: 5997
  year: 2015
  end-page: 6008
  article-title: Salt‐induced transcription factor MYB74 is regulated by the RNA‐directed DNA methylation pathway in Arabidopsis
  publication-title: Journal of Experimental Botany
– volume: 100
  start-page: 37
  year: 2016
  end-page: 46
  article-title: Histone acetylation influences the transcriptional activation of pox in L. and L. under salt stress
  publication-title: Plant Physiology & Biochemistry
– volume: 9
  start-page: e106070
  year: 2014a
  article-title: Transcriptional regulation of cell cycle genes in response to abiotic stresses correlates with dynamic changes in histone modifications in maize
  publication-title: PLoS ONE
– volume: 212
  start-page: 345
  year: 2016
  end-page: 353
  article-title: The triple mutants reveal the essential functions of CBFs in cold acclimation and allow the definition of CBF regulons in Arabidopsis
  publication-title: New Phytologist
– volume: 169
  start-page: 285
  year: 2012
  end-page: 293
  article-title: Tipburn in salt‐affected lettuce ( L.) plants results from local oxidative stress
  publication-title: Journal of Plant Physiology
– volume: 16
  start-page: 558
  year: 2014
  end-page: 570
  article-title: The overexpression of a maize mitogen‐activated protein kinase gene (ZmMPK5) confers salt stress tolerance and induces defence responses in tobacco
  publication-title: Plant Biology
– volume: 210
  start-page: 650
  year: 1980
  end-page: 651
  article-title: Carbon‐13 nuclear magnetic resonance study of osmoregulation in a blue‐green alga
  publication-title: Science
– volume: 14
  start-page: 89
  year: 1996
  end-page: 97
  article-title: Strategies for engineering water‐stress tolerance in plants
  publication-title: Trends in Biotechnology
– volume: 25
  start-page: 239
  year: 2002
  end-page: 250
  article-title: Comparative physiology of salt and water stress
  publication-title: Plant, Cell & Environment
– volume: 27
  start-page: 7781
  year: 2007
  end-page: 7790
  article-title: SOS2 promotes salt tolerance in part by interacting with the vaculoar H ‐ATPase and upregulating its transport activity
  publication-title: Molecular and Cellular Biology
– volume: 111
  start-page: 6497
  year: 2014
  end-page: 6502
  article-title: Salt stress‐induced Ca waves are associated with rapid, long‐distance root‐to‐shoot signaling in plants
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 178
  start-page: 485
  year: 2017
  end-page: 493
  article-title: SALT OVERLY SENSITIVE 2 (SOS2) and interacting partners SOS3 and ABSCISIC ACID–INSENSITIVE 2 (ABI2) promote red‐light‐dependent germination and seedling deetiolation in Arabidopsis
  publication-title: International Journal of Plant Sciences
– volume: 44
  start-page: 928
  year: 2005
  end-page: 938
  article-title: Enhanced salt tolerance mediated by AtHKT1 transporter‐induced Na unloading from xylem parenchyma cells
  publication-title: Plant Journal
– volume: 48
  start-page: 1534
  year: 2007
  end-page: 1547
  article-title: Salt tolerance requires cortical microtubule reorganization in Arabidopsis
  publication-title: Plant & Cell Physiology
– volume: 23
  start-page: 396
  year: 2011c
  end-page: 411
  article-title: Arabidopsis floral initiator SKB1 confers high salt tolerance by regulating transcription
  publication-title: Plant Cell
– volume: 428
  start-page: 419
  year: 2007
  end-page: 438
  article-title: Mechanisms of high salinity tolerance in plants
  publication-title: Methods in Enzymology
– volume: 104
  start-page: 19631
  year: 2007
  end-page: 19636
  article-title: Delayed leaf senescence induces extreme drought tolerance in a flowering plant
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 13
  start-page: 1383
  year: 2001
  end-page: 1400
  article-title: Molecular characterization of functional domains in the protein kinase SOS2 that is required for plant salt tolerance
  publication-title: Plant Cell
– volume: 1472
  start-page: 519
  year: 1999
  end-page: 528
  article-title: Involvement of the compatible solutes trehalose and sucrose in the response to salt stress of a cyanobacterial Scytonema, species isolated from desert soils
  publication-title: Biochimica et Biophysica Acta
– volume: 156
  start-page: 2235
  year: 2011
  end-page: 2243
  article-title: Phosphorylation of SOS3‐like calcium‐binding proteins by their interacting SOS2‐like protein kinases is a common regulatory mechanism in Arabidopsis
  publication-title: Plant Physiology
– volume: 205
  start-page: 216
  year: 2015
  end-page: 239
  article-title: New insights into plant salt acclimation: the roles of vesicle trafficking and reactive oxygen species signalling in mitochondria and the endomembrane system
  publication-title: New Phytologist
– volume: 146
  start-page: 178
  year: 2008
  end-page: 188
  article-title: Salt modulates gravity signaling pathway to regulate growth direction of primary roots in Arabidopsis
  publication-title: Plant Physiology
– volume: 100
  start-page: 11771
  year: 2003
  end-page: 11776
  article-title: A novel domain in the protein kinase SOS2 mediates interaction with the protein phosphatase 2C ABI2
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 7
  start-page: 44637
  year: 2017
  end-page: 44647
  article-title: EIN3 and SOS2 synergistically modulate plant salt tolerance
  publication-title: Scientific Reports
– volume: 7
  start-page: 420
  year: 2016
  end-page: 428
  article-title: Differential activation of the wheat SnRK2 family by abiotic stresses
  publication-title: Frontiers in Plant Science
– volume: 7
  start-page: e40203
  year: 2012
  article-title: Salt stress induced variation in DNA methylation pattern and its influence on gene expression in contrasting rice genotypes
  publication-title: PLoS ONE
– volume: 165
  start-page: 119
  year: 2014
  end-page: 128
  article-title: Plastid osmotic stress activates cellular stress responses in Arabidopsis
  publication-title: Plant Physiology
– volume: 33
  start-page: 13
  year: 2001
  end-page: 17
  article-title: Partitioning of carbohydrates in salt‐sensitive and salt‐tolerant soybean callus cultures under salinity stress and its subsequent relief
  publication-title: Plant Growth Regulation
– volume: 26
  start-page: 1166
  year: 2014b
  end-page: 1182
  article-title: Inhibition of the Arabidopsis salt overly sensitive pathway by 14‐3‐3 proteins
  publication-title: Plant Cell
– volume: 36
  start-page: 229
  year: 2003
  end-page: 239
  article-title: Vacuolar cation/H exchange, ion homeostasis, and leaf development are altered in a T‐DNA insertional mutant of AtNHX1, the Arabidopsis vacuolar Na /H antiporter
  publication-title: Plant Journal
– volume: 48
  start-page: 909
  year: 2010
  end-page: 930
  article-title: Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants
  publication-title: Plant Physiology and Biochemistry
– volume: 270
  start-page: 1986
  year: 1995
  end-page: 1988
  article-title: Inhibition of leaf senescence by autoregulated production of cytokinin
  publication-title: Science
– volume: 59
  start-page: 91
  year: 2015
  end-page: 101
  article-title: Melatonin delays leaf senescence and enhances salt stress tolerance in rice
  publication-title: Journal of Pineal Research
– volume: 40
  start-page: 482
  year: 2000
  end-page: 487
  article-title: Osmotic and salt stress‐induced alteration in soluble carbohydrate content in wheat seedlings
  publication-title: Crop Science
– volume: 5
  start-page: 2483
  year: 2011
  end-page: 2488
  article-title: Effect of water stress on leaf relative water content, chlorophyll, proline and soluble carbohydrates in L
  publication-title: Journal of Medicinal Plants Research
– volume: 47
  start-page: 1158
  year: 2006
  end-page: 1168
  article-title: Salt stress affects cortical microtubule organization and helical growth in Arabidopsis
  publication-title: Plant & Cell Physiology
– volume: 13
  start-page: 146
  year: 2002
  end-page: 150
  article-title: Engineering salt tolerance
  publication-title: Current Opinion in Biotechnology
– volume: 97
  start-page: 6896
  year: 2000
  end-page: 6901
  article-title: The salt tolerance gene SOS1 encodes a putative Na /H antiporter
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 63
  start-page: 3297
  year: 2012
  end-page: 3306
  article-title: HD2C interacts with HDA6 and is involved in ABA and salt stress response in Arabidopsis
  publication-title: Journal of Experimental Botany
– volume: 75
  start-page: 187
  year: 2015
  end-page: 197
  article-title: The mitigating effect of cysteine on growth inhibition in salt‐stressed barley seeds is related to its own reducing capacity rather than its effects on antioxidant system
  publication-title: Plant Growth Regulation
– volume: 68
  start-page: 2951
  year: 2017
  end-page: 2962
  article-title: A bioassay‐guided fractionation system to identify endogenous small molecules that activate plasma membrane H ‐ATPase activity in Arabidopsis
  publication-title: Journal of Experimental Botany
– volume: 36
  start-page: 1009
  year: 2013
  end-page: 1018
  article-title: γ‐Aminobutyric acid transaminase deficiency impairs central carbon metabolism and leads to cell wall defects during salt stress in Arabidopsis roots
  publication-title: Plant, Cell & Environment
– volume: 13
  start-page: 368
  year: 2008
  end-page: 374
  article-title: Small RNA metabolism in Arabidopsis
  publication-title: Trends in Plant Science
– volume: 2
  start-page: 22
  year: 2009
  end-page: 31
  article-title: Overexpression of SOS (Salt Overly Sensitive) genes increases salt tolerance in transgenic Arabidopsis
  publication-title: Molecular Plant
– volume: 111
  start-page: 4532
  year: 2014
  end-page: 4541
  article-title: Structural basis of the regulatory mechanism of the plant CIPK family of protein kinases controlling ion homeostasis and abiotic stress
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 14
  start-page: 660
  year: 2009
  end-page: 668
  article-title: HKT transporter‐mediated salinity resistance mechanisms in Arabidopsis and monocot crop plants
  publication-title: Trends in Plant Science
– volume: 25
  start-page: 4544
  year: 2013
  end-page: 4559
  article-title: The actin‐related Protein2/3 complex regulates mitochondrial‐associated calcium signaling during salt stress in Arabidopsis
  publication-title: Plant Cell
– volume: 46
  start-page: 153
  year: 2005
  end-page: 160
  article-title: Carbohydrate depletion in roots and leaves of salt‐stressed potted L
  publication-title: Journal of Plant Growth Regulation
– volume: 31
  start-page: 4359
  year: 2012
  end-page: 4370
  article-title: ROS‐mediated vascular homeostatic control of root‐to‐shoot soil Na delivery in Arabidopsis
  publication-title: EMBO Journal
– volume: 52
  start-page: 360
  year: 2010
  end-page: 376
  article-title: Abiotic and biotic stresses and changes in the lignin content and composition in plants
  publication-title: Journal of Integrative Plant Biology
– volume: 9
  start-page: e1003779
  year: 2013
  article-title: A pre‐mRNA‐splicing factor is required for RNA‐directed DNA methylation in Arabidopsis
  publication-title: Plos Genetics
– volume: 223
  start-page: 701
  year: 1984
  end-page: 703
  article-title: Preservation of membranes in anhydrobiotic organisms: the role of trehalose
  publication-title: Science
– volume: 32
  start-page: 139
  year: 2013
  end-page: 148
  article-title: Arabidopsis SOS3 plays an important role in salt tolerance by mediating calcium‐dependent microfilament reorganization
  publication-title: Plant Cell Reports
– volume: 24
  start-page: 5106
  year: 2012
  end-page: 5122
  article-title: Ubiquitin‐specific protease16 modulates salt tolerance in Arabidopsis by regulating Na /H antiport activity and serine hydroxymethyltransferase stability
  publication-title: Plant Cell
– volume: 6
  start-page: 29
  year: 2011
  end-page: 31
  article-title: Cytoskeleton and plant salt stress tolerance
  publication-title: Plant Signaling & Behavior
– volume: 465
  start-page: 790
  year: 2015
  end-page: 796
  article-title: Comparative analysis of DNA methylation changes in two rice genotypes under salt stress and subsequent recovery
  publication-title: Biochemical & Biophysical Research Communications.
– volume: 63
  start-page: 19
  year: 2008
  end-page: 27
  article-title: Synthesis of organic osmolytes and salt tolerance mechanisms in
  publication-title: Environmental & Experimental Botany
– volume: 68
  start-page: 1283
  year: 2017
  end-page: 1298
  article-title: Redox and reactive oxygen species network in acclimation for salinity tolerance in sugar beet
  publication-title: Journal of Experimental Botany
– volume: 37
  start-page: 1141
  year: 2005
  end-page: 1146
  article-title: A rice quantitative trait locus for salt tolerance encodes a sodium transporter
  publication-title: Nature Genetics
– volume: 113
  start-page: 881
  year: 1997
  end-page: 893
  article-title: Growth, water relations, and accumulation of organic and inorganic solutes in roots of maize seedlings during salt stress
  publication-title: Plant Physiology
– volume: 141
  start-page: 188
  year: 1993
  end-page: 194
  article-title: Proline accumulation as drought tolerance selection criterion: its relationship to membrane integrity and chloroplast ultra structure in L
  publication-title: Journal of Plant Physiology
– volume: 9
  start-page: 6595
  year: 2010
  end-page: 6604
  article-title: Wheat mitochondrial proteomes provide new links between antioxidant defense and plant salinity tolerance
  publication-title: Journal of Proteome Research
– volume: 29
  start-page: 113
  year: 1999
  end-page: 189
  article-title: The NaCl induced inhibition of shoot growth: the case for distributed nutrition with special consideration of calcium
  publication-title: Advances in Botanical Research
– volume: 17
  start-page: 2566
  year: 1998
  end-page: 2573
  article-title: Glucose sensing and signaling by two glucose receptors in the yeast
  publication-title: EMBO Journal
– volume: 10
  start-page: 1
  year: 2009
  end-page: 10
  article-title: Members of miR‐169 family are induced by high salinity and transiently inhibit the NF‐YA transcription factor
  publication-title: BMC Molecular Biology
– volume: 98
  start-page: 14150
  year: 2001
  end-page: 14155
  article-title: AtHKT1 is a salt tolerance determinant that controls Na entry into plant roots
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 66
  start-page: 5983
  year: 2015
  end-page: 5996
  article-title: Differential molecular response of monodehydroascorbate reductase and glutathione reductase by nitration and s‐nitrosylation
  publication-title: Journal of Experimental Botany
– volume: 613
  start-page: 39
  year: 2003
  end-page: 46
  article-title: Effect of salt stress on water relations and antioxidant activity in tomato
  publication-title: Acta Horticulturae
– volume: 31
  start-page: 2094
  year: 2014
  end-page: 2107
  article-title: Distinct roles for SOS1 in the convergent evolution of salt tolerance in and
  publication-title: Molecular Biology and Evolution
– volume: 10
  start-page: 81
  year: 2011
  end-page: 87
  article-title: Is salinity tolerance related to osmolytes accumulation in L. seedlings?
  publication-title: Journal of the Saudi Society of Agricultural Sciences
– volume: 56
  start-page: 3041
  year: 2005
  end-page: 3049
  article-title: Increased sensitivity to salt stress in an ascorbate‐deficient Arabidopsis mutant
  publication-title: Journal of Experimental Botany
– volume: 79
  start-page: 37
  year: 2012
  end-page: 43
  article-title: Salinity‐induced changes in phenolic compounds in leaves and roots of four olive cultivars ( L) and their relationship to antioxidant activity
  publication-title: Environmental & Experimental Botany
– volume: 47
  start-page: 570
  year: 2009a
  end-page: 577
  article-title: Analysis of antioxidant enzyme activity during germination of alfalfa under salt and drought stresses
  publication-title: Plant Physiology & Biochemistry
– volume: 166
  start-page: 371
  year: 2005
  end-page: 382
  article-title: Sulfur and phytoplankton: acquisition, metabolism and impact on the environment
  publication-title: New Phytologist
– volume: 10
  start-page: 63
  year: 1998
  end-page: 74
  article-title: AtKUP1: a dual‐affinity K transporter from Arabidopsis
  publication-title: Plant Cell
– volume: 49
  start-page: 69
  year: 2003
  end-page: 76
  article-title: Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress
  publication-title: Environmental & Experimental Botany
– volume: 251
  start-page: 219
  year: 2014
  end-page: 231
  article-title: Co‐expression of the Arabidopsis SOS genes enhances salt tolerance in transgenic tall fescue ( Schreb.)
  publication-title: Protoplasma
– volume: 166
  start-page: 1637
  year: 2009b
  end-page: 1645
  article-title: Auxin redistribution modulates plastic development of root system architecture under salt stress in
  publication-title: Journal of Plant Physiology
– volume: 11
  start-page: 372
  year: 2006
  end-page: 374
  article-title: Nomenclature for HKT transporters, key determinants of plant salinity tolerance
  publication-title: Trends in Plant Science
– volume: 176
  start-page: 101
  year: 2015
  end-page: 107
  article-title: Differential accumulation of glycinebetaine and choline monooxygenase in bladder hairs and lamina leaves of , under high salinity
  publication-title: Journal of Plant Physiology
– volume: 289
  start-page: 3
  year: 2006a
  end-page: 16
  article-title: Plant microRNA: a small regulatory molecule with big impact
  publication-title: Developmental Biology
– volume: 224
  start-page: 545
  year: 2006b
  end-page: 555
  article-title: Nitric oxide enhances salt tolerance in maize seedlings through increasing activities of proton‐pump and Na /H antiport in the tonoplast
  publication-title: Planta
– volume: 93
  start-page: 33
  year: 1990
  end-page: 39
  article-title: Correlation of xylem sap cytokinin levels with monocarpic senescence in soybean
  publication-title: Plant Physiology
– volume: 61
  start-page: 563
  year: 2010
  end-page: 574
  article-title: Salinity induces carbohydrate accumulation and sugar‐regulated starch biosynthetic genes in tomato ( L. cv. ‘Micro‐Tom’) fruits in an ABA‐ and osmotic stress‐independent manner
  publication-title: Journal of Experimental Botany
– volume: 21
  start-page: 1607
  year: 2009
  end-page: 1619
  article-title: Phosphorylation of SOS3LIKE CALCIUM BINDING PROTEIN8 by SOS2 protein kinase stabilizes their protein complex and regulates salt tolerance in Arabidopsis
  publication-title: Plant Cell
– volume: 34
  start-page: 35
  year: 2008
  end-page: 45
  article-title: Polyamines and abiotic stress: recent advances
  publication-title: Amino Acids
– volume: 74
  start-page: 258
  year: 2013
  end-page: 266
  article-title: Calcineurin B‐like protein CBL10 directly interacts with AKT1 and modulates K homeostasis in Arabidopsis
  publication-title: Plant Journal
– volume: 99
  start-page: 8436
  year: 2002
  end-page: 8441
  article-title: Regulation of SOS1, a plasma membrane Na /H exchanger in , by SOS2 and SOS3
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 27
  start-page: 7771
  year: 2007
  end-page: 7780
  article-title: Interaction of SOS2 with nucleoside diphosphate kinase 2 and catalases reveals a point of connection between salt stress and H O signaling in
  publication-title: Molecular Cell Biology
– volume: 63
  start-page: 491
  year: 2007
  end-page: 503
  article-title: Different phosphorylation mechanisms are involved in the activation of sucrose non‐fermenting 1 related protein kinases 2 by osmotic stresses and abscisic acid
  publication-title: Plant Molecular Biology
– volume: 39
  start-page: 471
  year: 2011b
  end-page: 476
  article-title: Effects of salt and drought stress on alkaloid production in endophyte‐infected drunken horse grass ( )
  publication-title: Biochemical Systematics & Ecology
– volume: 119
  start-page: 165
  year: 1999
  end-page: 172
  article-title: Myo‐inositol‐dependent sodium uptake in ice plant
  publication-title: Plant Physiology
– volume: 40
  start-page: 1127
  year: 2017
  end-page: 1142
  article-title: A ROP2‐RIC1 pathway fine tunes microtubule reorganisation for salt tolerance in Arabidopsis
  publication-title: Plant, Cell & Environment
– volume: 51
  start-page: 463
  year: 2000
  end-page: 499
  article-title: Plant cellular and molecular responses to high salt
  publication-title: Annual Review of Plant Physiology and Plant Molecular Biology
– volume: 10
  start-page: 1391
  year: 1998
  end-page: 1406
  article-title: Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought‐ and low‐temperature‐responsive gene expression, respectively, in Arabidopsis
  publication-title: Plant Cell
– volume: 128
  start-page: 236
  year: 2002
  end-page: 246
  article-title: Leaf senescence induced by mild water deficit follows the same sequence of macroscopic, biochemical, and molecular events as monocarpic senescence in pea
  publication-title: Plant Physiology
– volume: 39
  start-page: 1366
  year: 2016
  end-page: 1380
  article-title: A sucrose transporter‐interacting protein disulphide isomerase affects redox homeostasis and links sucrose partitioning with abiotic stress tolerance
  publication-title: Plant, Cell & Environment
– volume: 16
  start-page: 2001
  year: 2004
  end-page: 2019
  article-title: Novel and stress‐regulated microRNAs and other small RNAs from Arabidopsis
  publication-title: Plant Cell
– volume: 25
  start-page: 2132
  year: 2013
  end-page: 2154
  article-title: A spatio‐temporal understanding of growth regulation during the salt stress response in Arabidopsis
  publication-title: Plant Cell
– volume: 9
  start-page: 883
  year: 2012
  end-page: 892
  article-title: Antioxidant and hypoglycemic activities of leaf extracts of three Popular species
  publication-title: Journal of Chemistry
– volume: 531
  start-page: 157
  year: 2002
  end-page: 161
  article-title: Altered shoot/root Na distribution and bifurcating salt sensitivity in Arabidopsis by genetic disruption of the Na transporter AtHKT1
  publication-title: FEBS Letters
– volume: 36
  start-page: 283
  year: 2017
  end-page: 294
  article-title: Salt‐induced tissue‐specific cytosine methylation downregulates expression of HKT genes in contrasting wheat L.) genotypes
  publication-title: DNA & Cell Biology
– volume: 140
  start-page: 103
  year: 1999
  end-page: 125
  article-title: Polyamines and environmental challenges: recent development
  publication-title: Plant Science
– volume: 1153
  start-page: 433
  year: 2015
  end-page: 447
  article-title: Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress
  publication-title: Annals of Botany
– volume: 4
  start-page: 281
  year: 1999
  end-page: 287
  article-title: Molecular pieces to the puzzle of the interaction between potassium and sodium uptake in plants
  publication-title: Trends in Plant Science
– volume: 122
  start-page: 1129
  year: 2000
  end-page: 1136
  article-title: Removal of feedback inhibition of D1‐pyrroline‐5‐carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress
  publication-title: Plant Physiology
– volume: 91
  start-page: 306
  year: 1994
  end-page: 310
  article-title: Osmoprotective compounds in the Plumbaginaceae – a natural experiment in metabolic engineering of stress tolerance
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 354
  start-page: aag1550
  year: 2016
  article-title: A transcription factor hierarchy defines an environmental stress response network
  publication-title: Science
– volume: 94
  start-page: 1035
  year: 1997
  end-page: 1040
  article-title: Arabidopsis thaliana CBF1 encodes an AP2 domain‐containing transcriptional activator that binds to the C‐repeat/DRE, a cis‐acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 106
  start-page: 315
  year: 2017
  end-page: 328
  article-title: Melatonin and nitric oxide regulate sunflower seedling growth under salt stress accompanying differential expression of Cu/Zn sod and Mn SOD
  publication-title: Free Radical Biology & Medicine
– volume: 134
  start-page: 118
  year: 2004
  end-page: 128
  article-title: Induction of salt and osmotic stress tolerance by overexpression of an intracellular vesicle trafficking protein AtRAB7 (AtRABG3E)
  publication-title: Plant Physiology
– volume: 92
  start-page: 391
  year: 2016
  end-page: 400
  article-title: Stability and localization of 14‐3‐3 proteins are involved in salt tolerance in Arabidopsis
  publication-title: Plant Molecular Biology
– volume: 27
  start-page: 908
  year: 2015
  end-page: 925
  article-title: A chaperone function of NO CATALASE ACTIVITY1 is required to maintain catalase activity and for multiple stress responses in Arabidopsis
  publication-title: Plant Cell
– volume: 208
  start-page: 2819
  year: 2005
  end-page: 2830
  article-title: Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses
  publication-title: Journal of Experimental Biology
– volume: 61
  start-page: 3345
  year: 2010
  end-page: 3353
  article-title: Involvement of Arabidopsis histone deacetylase HDA6 in ABA and salt stress response
  publication-title: Journal of Experimental Botany
– volume: 136
  start-page: 3884
  year: 2004
  end-page: 3891
  article-title: New views on the plant cytoskeleton
  publication-title: Plant Physiology
– volume: 30
  start-page: 497
  year: 2007
  end-page: 507
  article-title: The Na transporter AtHKT1;1 controls retrieval of Na from the xylem in Arabidopsis
  publication-title: Plant, Cell & Environment
– volume: 7
  start-page: 81
  year: 2016
  end-page: 90
  article-title: Salt stress affects the redox status of Arabidopsis root meristems
  publication-title: Frontiers in Plant Science
– volume: 1465
  start-page: 140
  year: 2000
  end-page: 151
  article-title: Sodium transport in plant cells
  publication-title: Biochimica et Biophysica Acta
– volume: 171
  start-page: 2744
  year: 2016
  end-page: 2759
  article-title: Mutational evidence for the critical role of CBF transcription factors in cold acclimation in Arabidopsis
  publication-title: Plant Physiology
– volume: 12
  start-page: 1667
  year: 2000
  end-page: 1677
  article-title: SOS3 function in plant salt tolerance requires n‐myristoylation and calcium binding
  publication-title: Plant Cell
– volume: 65
  start-page: 2963
  year: 2014
  end-page: 2979
  article-title: Life and death under salt stress: same players, different timing?
  publication-title: Journal of Experimental Botany
– volume: 6
  start-page: 1344
  year: 2013
  end-page: 1354
  article-title: A bi‐functional xyloglucan galactosyltransferase is an indispensable salt stress tolerance determinant in Arabidopsis
  publication-title: Molecular Plant
– volume: 82
  start-page: 671
  year: 1979
  end-page: 678
  article-title: Sorbitol, a compatible osmotic solute in
  publication-title: New Phytologist
– volume: 66
  start-page: 3339
  year: 2015
  end-page: 3352
  article-title: Increased tolerance to salt stress in OPDA‐deficient rice mutants is linked to an increased ROS‐scavenging activity
  publication-title: Journal of Experimental Botany
– volume: 123
  start-page: 1279
  year: 2005
  end-page: 1291
  article-title: Endogenous siRNAs derived from a pair of natural cis‐antisense transcripts regulate salt tolerance in Arabidopsis
  publication-title: Cell
– volume: 172
  start-page: 690
  year: 2016
  end-page: 706
  article-title: Phosphate‐dependent root system architecture responses to salt stress
  publication-title: Plant Physiology
– volume: 208
  start-page: 803
  year: 2015
  end-page: 816
  article-title: Chloride‐inducible transient apoplastic alkalinizations induce stomata closure by controlling abscisic acid distribution between leaf apoplast and guard cells in salt‐stressed
  publication-title: New Phytologist
– volume: 59
  start-page: 651
  year: 2008
  end-page: 681
  article-title: Mechanisms of salinity tolerance
  publication-title: Annual Review of Plant Biology
– volume: 103
  start-page: 18008
  year: 2006
  end-page: 18013
  article-title: Suppression of Arabidopsis vesicle‐SNARE expression inhibited fusion of H O ‐containing vesicles with tonoplast and increased salt tolerance
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 169
  start-page: 148
  year: 2015
  end-page: 165
  article-title: and regulate ethylene response of roots and coleoptiles and negatively affect salt tolerance in rice
  publication-title: Plant Physiology
– volume: 6
  start-page: 133
  year: 2015
  article-title: Target or barrier? The cell wall of early‐ and later‐diverging plants vs cadmium toxicity: differences in the response mechanisms
  publication-title: Frontiers in Plant Science
– volume: 22
  start-page: 187
  year: 2001
  end-page: 200
  article-title: Genetic variation and plasticity of , under saline conditions
  publication-title: Acta Oecologica
– volume: 217
  start-page: 1214
  year: 1982
  end-page: 1222
  article-title: Living with water stress: evolution of osmolyte systems
  publication-title: Science
– volume: 252
  start-page: 461
  year: 2015
  end-page: 475
  article-title: Trehalose pretreatment induces salt tolerance in rice ( L.) seedlings: oxidative damage and co‐induction of antioxidant defense and glyoxalase systems
  publication-title: Protoplasma
– volume: 38
  start-page: 600
  year: 2015
  end-page: 613
  article-title: Virus‐induced gene silencing reveals control of reactive oxygen species accumulation and salt tolerance in tomato by γ‐aminobutyric acid metabolic pathway
  publication-title: Plant, Cell & Environment
– volume: 47
  start-page: 517
  year: 2011
  end-page: 523
  article-title: Regulation of biosynthesis of dimethylsulfoniopropionate and its uptake in sterile mutant of (chlorophyta)
  publication-title: Journal of Phycology
– volume: 108
  start-page: 2611
  year: 2011
  end-page: 2616
  article-title: Activation of the plasma membrane Na /H antiporter Salt‐Overly‐Sensitive 1 (SOS1) by phosphorylation of an auto‐inhibitory C‐terminal domain
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 4
  start-page: 273
  year: 2013
  end-page: 275
  article-title: Release of SOS2 kinase from sequestration with GIGANTEA determines salt tolerance in Arabidopsis
  publication-title: Nature Communications
– volume: 23
  start-page: 853
  year: 2000
  end-page: 862
  article-title: Tolerance of pea ( L.) to long‐term salt stress is associated with induction of antioxidant defences
  publication-title: Plant, Cell & Environment
– volume: 4
  start-page: 1
  year: 2009
  end-page: 7
  article-title: Dehydroascorbate reductase and salt stress
  publication-title: Cab Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources
– volume: 15
  start-page: 2058
  year: 2003
  end-page: 2075
  article-title: Involvement of the secretory pathway and the cytoskeleton in intracellular targeting and tubule assembly of grapevine fan leaf virus movement protein in tobacco BY‐2 cells
  publication-title: Plant Cell
– volume: 23
  start-page: 267
  year: 2000
  end-page: 278
  article-title: Cell‐type‐specific calcium responses to drought, salt and cold in the Arabidopsis root
  publication-title: Plant Journal
– volume: 279
  start-page: 207
  year: 2004
  end-page: 215
  article-title: Regulation of vacuolar Na /H exchange in by the salt‐overly‐sensitive (SOS) pathway
  publication-title: Journal of Biological Chemistry
– volume: 15
  start-page: 1
  year: 2014
  end-page: 11
  article-title: Genome‐wide analysis of salt‐responsive and novel microRNAs in by deep sequencing
  publication-title: BMC Genetics
– volume: 13
  start-page: 261
  year: 2003
  end-page: 275
  article-title: Engineering salt tolerance in plants
  publication-title: Current Opinion in Biotechnology
– volume: 53
  start-page: 247
  year: 2002
  end-page: 273
  article-title: Salt and drought stress signal transduction in plants
  publication-title: Annual Review of Plant Biology
– volume: 116
  start-page: 369
  year: 1998
  end-page: 378
  article-title: Identification and stereospecificity of the first three enzymes of 3‐dimethylsulfoniopropionate biosynthesis in a chlorophyte alga
  publication-title: Plant Physiology
– volume: 15
  start-page: 63
  year: 2015
  end-page: 79
  article-title: High‐throughput deep sequencing reveals that microRNAs play important roles in salt tolerance of euhalophyte
  publication-title: BMC Plant Biology
– volume: 167
  start-page: 645
  year: 2005
  end-page: 663
  article-title: Genes and salt tolerance: bringing them together
  publication-title: New Phytologist
– volume: 55
  start-page: 1859
  year: 2014
  end-page: 1863
  article-title: Epigenetic memory for stress response and Adaptation in plants
  publication-title: Plant Cell Physiology
– volume: 162
  start-page: 1353
  year: 2015
  end-page: 1364
  article-title: A mechanism for sustained cellulose synthesis during salt stress
  publication-title: Cell
– volume: 59
  start-page: 11676
  year: 2011
  end-page: 11682
  article-title: Effects of salinity stress on carotenoids, anthocyanins, and color of diverse tomato genotypes
  publication-title: Journal of Agricultural & Food Chemistry
– volume: 42
  start-page: 57
  year: 2004
  end-page: 63
  article-title: Transgenic tobacco plants accumulating osmolytes show reduced oxidative damage under freezing stress
  publication-title: Plant Physiology & Biochemistry
– volume: 31
  start-page: 1864
  year: 2008
  end-page: 1881
  article-title: Carbon monoxide enhances salt tolerance by nitric oxide‐mediated maintenance of ion homeostasis and up‐regulation of antioxidant defense in wheat seedling roots
  publication-title: Plant, Cell & Environment
– volume: 3
  start-page: 1
  year: 2012
  end-page: 13
  article-title: Ion transporters and abiotic stress tolerance in plants
  publication-title: ISRN Molecular Biology
– volume: 284
  start-page: 477
  year: 2010
  end-page: 488
  article-title: Global expression profiling of rice microRNAs by one‐tube stem‐loop reverse transcription quantitative PCR revealed important roles of microRNAs in abiotic stress responses
  publication-title: Molecular Genetics & Genomics
– volume: 61
  start-page: 211
  year: 2010
  end-page: 224
  article-title: Mild salinity stimulates a stress‐induced morphogenic response in roots
  publication-title: Journal of Experimental Botany
– volume: 64
  start-page: 1953
  year: 2013
  end-page: 1966
  article-title: Hydrogen sulfide induces systemic tolerance to salinity and non‐ionic osmotic stress in strawberry plants through modification of reactive species biosynthesis and transcriptional regulation of multiple defence pathways
  publication-title: Journal of Experimental Botany
– volume: 31
  start-page: 1219
  year: 2012
  end-page: 1226
  article-title: Disrupted actin dynamics trigger an increment in the reactive oxygen species levels in the Arabidopsis root under salt stress
  publication-title: Plant Cell Report
– volume: 424
  start-page: 283
  year: 2012
  end-page: 294
  article-title: Structural insights on the plant salt‐overly‐sensitive 1 (SOS1) Na /H antiporter
  publication-title: Journal of Molecular Biology
– volume: 136
  start-page: 2500
  year: 2004
  end-page: 2511
  article-title: AtHKT1 facilitates Na homeostasis and K nutrition
  publication-title: Plant Physiology
– volume: 11
  start-page: e1253647
  year: 2016
  article-title: Protein phosphatase type 2C PP2CA together with ABI1 inhibits SnRK2.4 activity and regulates plant responses to salinity
  publication-title: Plant Signaling & Behavior
– volume: 166
  start-page: 1387
  year: 2014
  end-page: 1402
  article-title: Capturing Arabidopsis root architecture dynamics with root‐fit reveals diversity in responses to salinity
  publication-title: Plant Physiology
– volume: 8
  start-page: 855
  year: 2017
  article-title: Short term effect of salt shock on ethylene and polyamines depends on plant salt sensitivity
  publication-title: Frontiers in Plant Science
– volume: 53
  start-page: 554
  year: 2008
  end-page: 565
  article-title: Reactive oxygen species mediate Na ‐induced SOS1 mRNA stability in Arabidopsis
  publication-title: Plant Journal
– volume: 50
  start-page: 1023
  year: 1999
  end-page: 1036
  article-title: A glimpse of the mechanisms of ion homeostasis during salt stress
  publication-title: Journal of Experimental Botany
– volume: 7
  start-page: e41274
  year: 2012
  article-title: The dynamic changes of DNA methylation and histone modifications of salt responsive transcription factor genes in soybean
  publication-title: PLoS ONE
– volume: 13
  start-page: 2495
  year: 2014
  end-page: 2510
  article-title: Quantitative proteomics analysis reveals that the nuclear cap‐binding complex proteins Arabidopsis CBP20 and CBP80 modulate the salt stress response
  publication-title: Journal of Proteome Research
– volume: 217
  start-page: 2163
  year: 2009
  end-page: 2178
  article-title: Shoot Na exclusion and increased salinity tolerance engineered by cell type‐specific alteration of Na transport in Arabidopsis
  publication-title: Plant Cell
– volume: 12
  start-page: 1
  year: 2012
  end-page: 11
  article-title: High throughput sequencing reveals novel and abiotic stress‐regulated microRNAs in the inflorescences of rice
  publication-title: BMC Plant Biology
– volume: 66
  start-page: 695
  year: 2015
  end-page: 707
  article-title: Melatonin enhances plant growth and abiotic stress tolerance in soybean plants
  publication-title: Journal of Experimental Botany
– volume: 52
  start-page: 149
  year: 2011
  end-page: 161
  article-title: Regulated gene expression by a distal enhancer element and DNA methylation in the promoter plays an important role in salt tolerance
  publication-title: Plant & Cell Physiology
– volume: 514
  start-page: 367
  year: 2014
  end-page: 371
  article-title: OSCA1 mediates osmotic‐stress‐evoked Ca increases vital for osmosensing in Arabidopsis
  publication-title: Nature
– volume: 36
  start-page: 1171
  year: 2013
  end-page: 1191
  article-title: Two closely linked tomato HKT coding genes are positional candidates for the major tomato QTL involved in Na /K homeostasis
  publication-title: Plant, Cell & Environment
– volume: 20
  start-page: 3065
  year: 2008
  end-page: 3079
  article-title: Two leucine‐rich repeat receptor kinases mediate signaling, linking cell wall biosynthesis and acc synthase in Arabidopsis
  publication-title: Plant Cell
– volume: 54
  start-page: 2553
  year: 2003
  end-page: 2562
  article-title: Proline induces the expression of salt‐stress‐responsive proteins and may improve the adaptation of L. to salt‐stress
  publication-title: Journal of Experimental Botany
– volume: 115
  start-page: 159
  year: 1997
  end-page: 169
  article-title: Effects of osmoprotectants upon NaCl stress in rice
  publication-title: Plant Physiology
– volume: 27
  start-page: 5214
  year: 2007
  end-page: 5224
  article-title: An enhancer mutant of Arabidopsis salt overly sensitive 3 mediates both ion homeostasis and the oxidative stress response
  publication-title: Molecular & Cellular Biology
– volume: 115
  start-page: 481
  year: 2015
  end-page: 494
  article-title: Rapid regulation of the plasma membrane H ‐ATPase activity is essential to salinity tolerance in two halophyte species, and
  publication-title: Annals of Botany
– volume: 12
  start-page: 1
  year: 2012
  end-page: 12
  article-title: MicroRNAs targeting dead‐box helicases are involved in salinity stress response in rice ( L.)
  publication-title: BMC Plant Biology
– volume: 167
  start-page: 313
  year: 2016
  end-page: 324
  article-title: Abiotic stress signaling and responses in plants
  publication-title: Cell
– volume: 50
  start-page: 2023
  year: 2009
  end-page: 2033
  article-title: Dynamic aspects of ion accumulation by vesicle traffic under salt stress in Arabidopsis
  publication-title: Plant & Cell Physiology
– volume: 113
  start-page: 1177
  year: 1997
  end-page: 1183
  article-title: Increased resistance to oxidative stress in transgenic plants by targeting mannitol biosynthesis to chloroplasts
  publication-title: Plant Physiology
– volume: 126
  start-page: 4823
  year: 2013
  end-page: 4833
  article-title: Plant leaf senescence and death‐regulation by multiple layers of control and implications for aging in general
  publication-title: Journal of Cell Science
– volume: 22
  start-page: 1313
  year: 2010
  end-page: 1332
  article-title: The Arabidopsis chaperone J3 regulates the plasma membrane H ‐ATPase through interaction with the PKS5 kinase
  publication-title: Plant Cell
– volume: 87
  start-page: 108
  year: 2015
  end-page: 117
  article-title: Improving salt stress responses of the symbiosis in alfalfa using salt‐tolerant cultivar and rhizobial strain
  publication-title: Applied Soil Ecology
– volume: 250
  start-page: 1157
  year: 2013
  end-page: 1167
  article-title: Regulation of some carbohydrate metabolism‐related genes, starch and soluble sugar contents, photosynthetic activities and yield attributes of two contrasting rice genotypes subjected to salt stress
  publication-title: Protoplasma
– volume: 54
  start-page: 271
  year: 2005
  end-page: 275
  article-title: Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance
  publication-title: Current Science
– volume: 38
  start-page: 917
  year: 2005
  end-page: 925
  article-title: Roles of KATP channels as metabolic sensors in acute metabolic changes
  publication-title: Journal of Molecular and Cellular Cardiology
– volume: 23
  start-page: 3482
  year: 2011
  end-page: 3497
  article-title: The Arabidopsis Na /H antiporters NHX1 and NHX2 control vacuolar pH and K homeostasis to regulate growth, flower development, and reproduction
  publication-title: Plant Cell
– volume: 59
  start-page: 3039
  year: 2008
  end-page: 3050
  article-title: Hormonal changes during salinity‐induced leaf senescence in tomato ( L.)
  publication-title: Journal of Experimental Botany
– volume: 156
  start-page: 774
  year: 1995
  end-page: 783
  article-title: Growth and microtubule orientation of roots subjected to osmotic stress
  publication-title: International Journal of Plant Sciences
– volume: 24
  start-page: 4555
  year: 2012
  end-page: 4576
  article-title: Phosphatidic acid regulates microtubule organization by interacting with MAP65‐1 in response to salt stress in Arabidopsis
  publication-title: Plant Cell
– volume: 166
  start-page: 146
  year: 2009
  end-page: 156
  article-title: Proline and glycinebetaine induce antioxidant defense gene expression and suppress cell death in cultured tobacco cells under salt stress
  publication-title: Journal of Plant Physiology
– volume: 7
  start-page: 658
  year: 2016
  article-title: Identification of rapeseed microRNAs involved in early stage seed germination under salt and drought stresses
  publication-title: Frontiers in Plant Science
– volume: 189
  start-page: 1122
  year: 2011
  end-page: 1134
  article-title: SOS3 mediates lateral root development under low salt stress through regulation of auxin redistribution and maxima in Arabidopsis
  publication-title: New Phytologist
– volume: 65
  start-page: 3993
  year: 2014
  end-page: 4008
  article-title: Salt stress and senescence: identification of cross‐talk regulatory components
  publication-title: Journal of Experimental Botany
– volume: 350
  start-page: 438
  year: 2015
  end-page: 441
  article-title: Mechanosensitive channel MSL8 regulates osmotic forces during pollen hydration and germination
  publication-title: Science
– volume: 168
  start-page: 343
  year: 2015
  end-page: 356
  article-title: Salt stress reduces root meristem size by nitric oxide‐mediated modulation of auxin accumulation and signaling in Arabidopsis
  publication-title: Plant Physiology
– volume: 19
  start-page: 1617
  year: 2007
  end-page: 1634
  article-title: Arabidopsis protein kinase PKS5 inhibits the plasma membrane H ‐ATPase by preventing interaction with 14‐3‐3 protein
  publication-title: Plant Cell
– ident: e_1_2_7_77_1
  doi: 10.1007/s00726-007-0501-8
– ident: e_1_2_7_252_1
  doi: 10.1016/j.bse.2011.06.016
– ident: e_1_2_7_73_1
  doi: 10.1111/j.1469-8137.2005.01335.x
– ident: e_1_2_7_155_1
  doi: 10.1104/pp.93.1.33
– ident: e_1_2_7_95_1
  doi: 10.1016/j.jplph.2014.02.006
– ident: e_1_2_7_202_1
  doi: 10.1038/srep45490
– ident: e_1_2_7_179_1
  doi: 10.1038/ng1643
– ident: e_1_2_7_111_1
  doi: 10.1046/j.1365-313x.2000.00786.x
– ident: e_1_2_7_32_1
  doi: 10.1093/aob/mcu219
– ident: e_1_2_7_33_1
  doi: 10.1016/S0168-9452(98)00218-0
– ident: e_1_2_7_227_1
  doi: 10.1093/jxb/eru392
– ident: e_1_2_7_226_1
  doi: 10.1104/pp.104.900133
– ident: e_1_2_7_46_1
  doi: 10.3389/fenvs.2014.00053
– ident: e_1_2_7_91_1
  doi: 10.1093/jxb/erx019
– ident: e_1_2_7_221_1
  doi: 10.1093/pcp/pcu059
– ident: e_1_2_7_124_1
  doi: 10.1105/tpc.114.135095
– volume: 10
  start-page: 63
  year: 1998
  ident: e_1_2_7_61_1
  article-title: AtKUP1: a dual‐affinity K+ transporter from Arabidopsis
  publication-title: Plant Cell
– volume: 122
  start-page: 1129
  year: 2000
  ident: e_1_2_7_89_1
  article-title: Removal of feedback inhibition of D1‐pyrroline‐5‐carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress
  publication-title: Plant Physiology
  doi: 10.1104/pp.122.4.1129
– volume: 50
  start-page: 1023
  year: 1999
  ident: e_1_2_7_189_1
  article-title: A glimpse of the mechanisms of ion homeostasis during salt stress
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jxb/50.Special_Issue.1023
– ident: e_1_2_7_253_1
  doi: 10.1007/s00425-006-0242-z
– ident: e_1_2_7_237_1
  doi: 10.1126/science.7112124
– ident: e_1_2_7_23_1
  doi: 10.1016/j.apsoil.2014.11.008
– ident: e_1_2_7_192_1
  doi: 10.1007/s00438-010-0581-0
– ident: e_1_2_7_122_1
  doi: 10.1073/pnas.0604421103
– ident: e_1_2_7_36_1
  doi: 10.1016/j.jplph.2011.10.004
– ident: e_1_2_7_224_1
  doi: 10.1007/s11105-017-1026-2
– ident: e_1_2_7_195_1
  doi: 10.1186/1471-2156-15-S1-S6
– ident: e_1_2_7_17_1
  doi: 10.1105/tpc.111.095273
– ident: e_1_2_7_204_1
  doi: 10.1073/pnas.94.3.1035
– ident: e_1_2_7_239_1
  doi: 10.1093/mp/ssn058
– ident: e_1_2_7_163_1
  doi: 10.1016/j.plaphy.2003.10.007
– ident: e_1_2_7_173_1
  doi: 10.1073/pnas.1018921108
– ident: e_1_2_7_100_1
  doi: 10.1093/molbev/msu152
– ident: e_1_2_7_104_1
  doi: 10.1101/gr.177659.114
– ident: e_1_2_7_205_1
  doi: 10.1104/pp.116.1.369
– ident: e_1_2_7_238_1
  doi: 10.1104/pp.15.00353
– ident: e_1_2_7_13_1
  doi: 10.1111/pce.12051
– ident: e_1_2_7_22_1
  doi: 10.1104/pp.51.5.875
– ident: e_1_2_7_132_1
  doi: 10.1023/A:1010687711334
– ident: e_1_2_7_138_1
  doi: 10.1016/j.phytochem.2017.04.016
– ident: e_1_2_7_4_1
  doi: 10.1111/j.1469-8137.1979.tb01661.x
– ident: e_1_2_7_45_1
  doi: 10.1126/science.223.4637.701
– ident: e_1_2_7_55_1
  doi: 10.1111/pce.12694
– ident: e_1_2_7_147_1
  doi: 10.1111/j.1744-7909.2010.00892.x
– ident: e_1_2_7_211_1
  doi: 10.1086/692097
– ident: e_1_2_7_42_1
  doi: 10.1093/jxb/ert055
– ident: e_1_2_7_193_1
  doi: 10.1073/pnas.120170197
– ident: e_1_2_7_213_1
  doi: 10.1016/j.jplph.2014.12.009
– ident: e_1_2_7_264_1
  doi: 10.1016/j.cell.2016.08.029
– ident: e_1_2_7_199_1
  doi: 10.1126/science.aag1550
– volume: 38
  start-page: 1
  year: 2016
  ident: e_1_2_7_2_1
  article-title: Salt stress (NaCl) affects plant growth and branch pathways of carotenoid and flavonoid biosyntheses in Solanum nigrum
  publication-title: Acta Physiologiae Plantarum
– ident: e_1_2_7_198_1
  doi: 10.1186/1471-2229-13-210
– ident: e_1_2_7_240_1
  doi: 10.1105/tpc.109.069609
– ident: e_1_2_7_43_1
  doi: 10.1111/j.1365-313X.2007.03364.x
– ident: e_1_2_7_250_1
  doi: 10.1093/jxb/erq328
– ident: e_1_2_7_79_1
  doi: 10.1007/BF02703574
– ident: e_1_2_7_243_1
  doi: 10.1016/j.plaphy.2015.12.019
– ident: e_1_2_7_47_1
  doi: 10.1111/j.1365-3040.2007.01637.x
– ident: e_1_2_7_16_1
  doi: 10.1111/pce.12419
– ident: e_1_2_7_150_1
  doi: 10.1111/j.1469-8137.2005.01487.x
– ident: e_1_2_7_136_1
  doi: 10.1186/1471-2229-12-183
– ident: e_1_2_7_24_1
  doi: 10.1086/297301
– ident: e_1_2_7_97_1
  doi: 10.1093/jxb/eru159
– ident: e_1_2_7_87_1
  doi: 10.1104/pp.15.00729
– ident: e_1_2_7_139_1
  doi: 10.1016/S0014-5793(02)03488-9
– ident: e_1_2_7_67_1
  doi: 10.1111/nph.13507
– ident: e_1_2_7_168_1
  doi: 10.1104/pp.106.089151
– ident: e_1_2_7_8_1
  doi: 10.1046/j.1365-313X.2003.01871.x
– ident: e_1_2_7_130_1
  doi: 10.1105/tpc.10.8.1391
– ident: e_1_2_7_39_1
  doi: 10.1073/pnas.1407610111
– ident: e_1_2_7_255_1
  doi: 10.1186/1471-2199-10-29
– ident: e_1_2_7_151_1
  doi: 10.1111/j.1469-8137.2005.01487.x
– ident: e_1_2_7_234_1
  doi: 10.1105/tpc.108.063354
– ident: e_1_2_7_51_1
  doi: 10.1111/j.1365-3040.2009.02055.x
– ident: e_1_2_7_112_1
  doi: 10.1038/ncomms2846
– ident: e_1_2_7_216_1
  doi: 10.1371/journal.pgen.1006832
– ident: e_1_2_7_14_1
  doi: 10.1093/pcp/pcq182
– ident: e_1_2_7_225_1
  doi: 10.1016/j.jplph.2009.04.009
– ident: e_1_2_7_219_1
  doi: 10.1093/pcp/pcm123
– ident: e_1_2_7_232_1
  doi: 10.1111/j.1365-3040.2008.01888.x
– ident: e_1_2_7_160_1
  doi: 10.1016/S0304-4165(99)00155-5
– ident: e_1_2_7_188_1
  doi: 10.1016/S1360-1385(99)01428-4
– ident: e_1_2_7_148_1
  doi: 10.1071/FP03236
– ident: e_1_2_7_154_1
  doi: 10.1104/pp.109.3.735
– ident: e_1_2_7_135_1
  doi: 10.1007/s00709-013-0540-9
– ident: e_1_2_7_257_1
  doi: 10.1105/tpc.113.117887
– ident: e_1_2_7_247_1
  doi: 10.1016/j.ydbio.2005.10.036
– ident: e_1_2_7_83_1
  doi: 10.1093/jxb/erx156
– ident: e_1_2_7_171_1
  doi: 10.1105/tpc.106.042291
– ident: e_1_2_7_71_1
  doi: 10.15835/nbha3927176
– ident: e_1_2_7_50_1
  doi: 10.1111/tpj.12958
– ident: e_1_2_7_76_1
  doi: 10.1016/j.plaphy.2007.05.009
– ident: e_1_2_7_41_1
  doi: 10.1073/pnas.1319955111
– ident: e_1_2_7_174_1
  doi: 10.1007/s12298-016-0371-1
– ident: e_1_2_7_185_1
  doi: 10.1073/pnas.241501798
– ident: e_1_2_7_208_1
  doi: 10.1105/tpc.104.022830
– ident: e_1_2_7_142_1
  doi: 10.1016/j.yjmcc.2004.11.019
– ident: e_1_2_7_229_1
  doi: 10.1104/pp.114.236620
– ident: e_1_2_7_20_1
  doi: 10.1128/MCB.00430-07
– ident: e_1_2_7_78_1
  doi: 10.1105/TPC.010021
– ident: e_1_2_7_162_1
  doi: 10.3389/fpls.2015.00133
– volume: 13
  start-page: 261
  year: 2003
  ident: e_1_2_7_25_1
  article-title: Engineering salt tolerance in plants
  publication-title: Current Opinion in Biotechnology
– ident: e_1_2_7_126_1
  doi: 10.1073/pnas.1321568111
– ident: e_1_2_7_218_1
  doi: 10.1128/MCB.00429-07
– ident: e_1_2_7_248_1
  doi: 10.1111/plb.12084
– ident: e_1_2_7_11_1
  doi: 10.1016/j.freeradbiomed.2017.02.042
– ident: e_1_2_7_143_1
  doi: 10.1111/j.1365-3040.2009.02041.x
– ident: e_1_2_7_256_1
  doi: 10.1104/pp.16.00533
– ident: e_1_2_7_53_1
  doi: 10.1104/pp.111.173377
– ident: e_1_2_7_57_1
  doi: 10.1104/pp.103.022178
– ident: e_1_2_7_144_1
  doi: 10.1105/tpc.108.064568
– ident: e_1_2_7_241_1
  doi: 10.1007/s00299-012-1348-3
– ident: e_1_2_7_181_1
  doi: 10.1146/annurev.pp.44.060193.002041
– ident: e_1_2_7_29_1
  doi: 10.1007/s00709-013-0496-9
– ident: e_1_2_7_152_1
  doi: 10.1016/j.jssas.2011.03.002
– ident: e_1_2_7_103_1
  doi: 10.1038/emboj.2012.273
– ident: e_1_2_7_177_1
  doi: 10.1007/s11816-011-0210-3
– ident: e_1_2_7_259_1
  doi: 10.1105/tpc.113.117069
– ident: e_1_2_7_158_1
  doi: 10.1093/jxb/erq188
– ident: e_1_2_7_70_1
  doi: 10.1093/jxb/ern153
– ident: e_1_2_7_48_1
  doi: 10.17660/ActaHortic.2003.613.3
– ident: e_1_2_7_194_1
  doi: 10.1093/pcp/pcj090
– ident: e_1_2_7_88_1
  doi: 10.1046/j.1365-3040.2000.00602.x
– ident: e_1_2_7_21_1
  doi: 10.1093/jxb/erv306
– ident: e_1_2_7_7_1
  doi: 10.1016/S0958-1669(02)00298-7
– ident: e_1_2_7_109_1
  doi: 10.2135/cropsci2000.402482x
– ident: e_1_2_7_223_1
  doi: 10.1016/j.plaphy.2009.02.009
– ident: e_1_2_7_178_1
  doi: 10.1111/tpj.12123
– ident: e_1_2_7_60_1
  doi: 10.1104/pp.96.4.1228
– ident: e_1_2_7_121_1
  doi: 10.1016/j.envexpbot.2007.10.009
– ident: e_1_2_7_52_1
  doi: 10.1016/S1360-1385(01)01923-9
– ident: e_1_2_7_149_1
  doi: 10.1046/j.0016-8025.2001.00808.x
– ident: e_1_2_7_19_1
  doi: 10.1105/tpc.111.089581
– ident: e_1_2_7_98_1
  doi: 10.1111/j.1529-8817.2011.00977.x
– ident: e_1_2_7_9_1
  doi: 10.1007/s10725-005-7769-z
– ident: e_1_2_7_125_1
  doi: 10.1093/mp/sst062
– ident: e_1_2_7_176_1
  doi: 10.1007/s00709-015-0792-7
– ident: e_1_2_7_119_1
  doi: 10.1105/tpc.013896
– ident: e_1_2_7_54_1
  doi: 10.1105/tpc.112.107227
– ident: e_1_2_7_217_1
  doi: 10.1016/S0176-1617(11)80758-3
– ident: e_1_2_7_3_1
  doi: 10.1111/j.1399-3054.2009.01297.x
– ident: e_1_2_7_263_1
  doi: 10.1146/annurev.arplant.53.091401.143329
– ident: e_1_2_7_72_1
  doi: 10.1016/j.plaphy.2010.08.016
– ident: e_1_2_7_123_1
  doi: 10.1111/pce.12905
– ident: e_1_2_7_233_1
  doi: 10.1093/jxb/erv312
– ident: e_1_2_7_106_1
  doi: 10.1104/pp.114.248963
– ident: e_1_2_7_131_1
  doi: 10.1007/s00299-012-1242-z
– ident: e_1_2_7_167_1
  doi: 10.1016/j.tplants.2006.06.001
– volume: 9
  start-page: 883
  year: 2012
  ident: e_1_2_7_12_1
  article-title: Antioxidant and hypoglycemic activities of leaf extracts of three Popular Terminalia species
  publication-title: Journal of Chemistry
  doi: 10.1155/2012/859831
– ident: e_1_2_7_254_1
  doi: 10.1105/tpc.110.081356
– ident: e_1_2_7_27_1
  doi: 10.1016/0167-7799(96)80929-2
– volume: 5
  start-page: 2483
  year: 2011
  ident: e_1_2_7_166_1
  article-title: Effect of water stress on leaf relative water content, chlorophyll, proline and soluble carbohydrates in Matricaria chamomilla L
  publication-title: Journal of Medicinal Plants Research
– ident: e_1_2_7_118_1
  doi: 10.1089/dna.2016.3505
– ident: e_1_2_7_157_1
  doi: 10.1073/pnas.2034853100
– ident: e_1_2_7_190_1
  doi: 10.1111/pce.12274
– ident: e_1_2_7_30_1
  doi: 10.1126/science.210.4470.650
– ident: e_1_2_7_129_1
  doi: 10.1126/science.280.5371.1943
– ident: e_1_2_7_99_1
  doi: 10.1021/pr1007834
– ident: e_1_2_7_172_1
  doi: 10.1038/srep44637
– ident: e_1_2_7_128_1
  doi: 10.1105/tpc.109.066217
– ident: e_1_2_7_161_1
  doi: 10.3390/ijms14035899
– ident: e_1_2_7_207_1
  doi: 10.1111/j.1365-313X.2005.02595.x
– ident: e_1_2_7_117_1
  doi: 10.1080/15592324.2016.1253647
– ident: e_1_2_7_159_1
  doi: 10.1093/emboj/17.9.2566
– ident: e_1_2_7_127_1
  doi: 10.1111/jpi.12243
– ident: e_1_2_7_94_1
  doi: 10.1371/journal.pgen.1003779
– ident: e_1_2_7_251_1
  doi: 10.1105/tpc.112.104182
– ident: e_1_2_7_101_1
  doi: 10.1111/nph.14088
– ident: e_1_2_7_86_1
  doi: 10.1093/jxb/erv142
– ident: e_1_2_7_153_1
  doi: 10.1104/pp.119.1.165
– ident: e_1_2_7_201_1
  doi: 10.1034/j.1399-3054.2000.100410.x
– ident: e_1_2_7_96_1
  doi: 10.1105/tpc.12.9.1667
– ident: e_1_2_7_59_1
  doi: 10.1104/pp.102.017277
– ident: e_1_2_7_197_1
  doi: 10.1016/S1146-609X(01)01120-1
– ident: e_1_2_7_182_1
  doi: 10.1073/pnas.0709453104
– ident: e_1_2_7_134_1
  doi: 10.1093/jxb/ers059
– ident: e_1_2_7_187_1
  doi: 10.1016/j.plaphy.2011.01.023
– ident: e_1_2_7_212_1
  doi: 10.1105/tpc.11.7.1195
– ident: e_1_2_7_102_1
  doi: 10.3389/fpls.2016.00658
– ident: e_1_2_7_63_1
  doi: 10.1016/j.cub.2013.08.042
– ident: e_1_2_7_92_1
  doi: 10.1007/s11105-014-0722-4
– ident: e_1_2_7_85_1
  doi: 10.1146/annurev.arplant.51.1.463
– ident: e_1_2_7_114_1
  doi: 10.1093/pcp/pcu125
– ident: e_1_2_7_210_1
  doi: 10.1186/s12870-014-0226-2
– ident: e_1_2_7_6_1
  doi: 10.1079/PAVSNNR20094013
– ident: e_1_2_7_74_1
  doi: 10.1093/mp/sst072
– ident: e_1_2_7_156_1
  doi: 10.1016/j.jmb.2012.09.015
– ident: e_1_2_7_183_1
  doi: 10.1104/pp.113.3.881
– ident: e_1_2_7_236_1
  doi: 10.1242/jeb.01730
– ident: e_1_2_7_116_1
  doi: 10.1021/pr4012624
– ident: e_1_2_7_34_1
  doi: 10.1007/s11103-006-9103-1
– ident: e_1_2_7_196_1
  doi: 10.1093/aob/mcu239
– ident: e_1_2_7_200_1
  doi: 10.1371/journal.pone.0041274
– ident: e_1_2_7_191_1
  doi: 10.1104/pp.113.4.1177
– volume: 54
  start-page: 271
  year: 2005
  ident: e_1_2_7_115_1
  article-title: Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance
  publication-title: Current Science
– ident: e_1_2_7_206_1
  doi: 10.1104/pp.107.109413
– volume: 7
  start-page: 420
  year: 2016
  ident: e_1_2_7_249_1
  article-title: Differential activation of the wheat SnRK2 family by abiotic stresses
  publication-title: Frontiers in Plant Science
– ident: e_1_2_7_10_1
  doi: 10.1186/s12870-016-0714-7
– ident: e_1_2_7_260_1
  doi: 10.1371/journal.pone.0106070
– ident: e_1_2_7_90_1
  doi: 10.1016/j.tplants.2009.08.009
– ident: e_1_2_7_242_1
  doi: 10.1093/jxb/erp333
– ident: e_1_2_7_246_1
  doi: 10.3389/fpls.2017.00855
– ident: e_1_2_7_203_1
  doi: 10.1073/pnas.1519555113
– ident: e_1_2_7_107_1
  doi: 10.1371/journal.pone.0040203
– ident: e_1_2_7_186_1
  doi: 10.1007/978-1-4614-8824-8_3
– ident: e_1_2_7_37_1
  doi: 10.1371/journal.pone.0059423
– ident: e_1_2_7_40_1
  doi: 10.1093/jxb/erq154
– ident: e_1_2_7_18_1
  doi: 10.1186/1471-2229-12-132
– ident: e_1_2_7_169_1
  doi: 10.1073/pnas.122224699
– ident: e_1_2_7_58_1
  doi: 10.1186/s12870-015-0451-3
– ident: e_1_2_7_62_1
  doi: 10.1105/tpc.105.035626
– ident: e_1_2_7_170_1
  doi: 10.1074/jbc.M307982200
– ident: e_1_2_7_81_1
  doi: 10.1093/pcp/pcp143
– ident: e_1_2_7_120_1
  doi: 10.1016/S0065-2296(08)60311-0
– ident: e_1_2_7_230_1
  doi: 10.1242/jcs.109116
– ident: e_1_2_7_65_1
  doi: 10.1104/pp.115.1.159
– ident: e_1_2_7_93_1
  doi: 10.1093/jxb/eri301
– ident: e_1_2_7_68_1
  doi: 10.1105/tpc.113.112896
– ident: e_1_2_7_262_1
  doi: 10.1128/MCB.01989-06
– ident: e_1_2_7_38_1
  doi: 10.1093/jxb/err130
– ident: e_1_2_7_180_1
  doi: 10.1111/pce.12033
– ident: e_1_2_7_64_1
  doi: 10.1126/science.270.5244.1986
– ident: e_1_2_7_261_1
  doi: 10.1105/tpc.112.106393
– ident: e_1_2_7_66_1
  doi: 10.1111/nph.12997
– ident: e_1_2_7_175_1
  doi: 10.1016/j.tplants.2008.03.008
– ident: e_1_2_7_145_1
  doi: 10.1104/pp.16.00334
– ident: e_1_2_7_266_1
  doi: 10.1093/pcp/pct049
– ident: e_1_2_7_141_1
  doi: 10.1016/S0098-8472(02)00058-8
– ident: e_1_2_7_228_1
  doi: 10.1038/srep27551
– ident: e_1_2_7_165_1
  doi: 10.1104/pp.010634
– ident: e_1_2_7_35_1
  doi: 10.5402/2012/927436
– ident: e_1_2_7_82_1
  doi: 10.1126/science.aac6014
– ident: e_1_2_7_105_1
  doi: 10.3389/fpls.2016.00081
– ident: e_1_2_7_184_1
  doi: 10.1104/pp.104.042234
– ident: e_1_2_7_222_1
  doi: 10.1016/j.bbrc.2015.08.089
– ident: e_1_2_7_245_1
  doi: 10.1038/nature13593
– ident: e_1_2_7_110_1
  doi: 10.1093/jxb/erg277
– ident: e_1_2_7_140_1
  doi: 10.1104/pp.103.025379
– ident: e_1_2_7_56_1
  doi: 10.1016/j.cell.2015.08.028
– ident: e_1_2_7_133_1
  doi: 10.1104/pp.15.00030
– ident: e_1_2_7_137_1
  doi: 10.1023/A:1026712426180
– ident: e_1_2_7_15_1
  doi: 10.1016/j.jplph.2008.03.002
– ident: e_1_2_7_244_1
  doi: 10.1111/j.1469-8137.2010.03422.x
– ident: e_1_2_7_113_1
  doi: 10.1111/j.1365-313X.2007.03249.x
– ident: e_1_2_7_231_1
  doi: 10.1111/jipb.12005
– ident: e_1_2_7_80_1
  doi: 10.1073/pnas.97.7.3735
– ident: e_1_2_7_5_1
  doi: 10.1093/jxb/eru173
– ident: e_1_2_7_209_1
  doi: 10.1007/s11103-016-0520-5
– ident: e_1_2_7_258_1
  doi: 10.1111/j.1469-8137.2010.03545.x
– ident: e_1_2_7_84_1
  doi: 10.1073/pnas.91.1.306
– ident: e_1_2_7_214_1
  doi: 10.1016/S0076-6879(07)28024-3
– ident: e_1_2_7_75_1
  doi: 10.3389/fpls.2014.00151
– ident: e_1_2_7_69_1
  doi: 10.1007/s10725-014-9943-7
– ident: e_1_2_7_44_1
  doi: 10.1093/pcp/pcr121
– ident: e_1_2_7_235_1
  doi: 10.1016/j.plaphy.2015.06.014
– ident: e_1_2_7_28_1
  doi: 10.1021/jf2021623
– volume: 172
  start-page: 690
  year: 2016
  ident: e_1_2_7_108_1
  article-title: Phosphate‐dependent root system architecture responses to salt stress
  publication-title: Plant Physiology
– ident: e_1_2_7_215_1
  doi: 10.1242/dev.135111
– ident: e_1_2_7_49_1
  doi: 10.1242/dev.02753
– ident: e_1_2_7_31_1
  doi: 10.1016/j.cell.2005.11.035
– ident: e_1_2_7_220_1
  doi: 10.4161/psb.6.1.14202
– ident: e_1_2_7_26_1
  doi: 10.1016/S0005-2736(00)00135-8
– ident: e_1_2_7_146_1
  doi: 10.1007/s00709-014-0691-3
– ident: e_1_2_7_164_1
  doi: 10.1016/j.envexpbot.2012.01.007
– ident: e_1_2_7_265_1
  doi: 10.1093/jxb/erp290
SSID ssj0009562
Score 2.696894
SecondaryResourceType review_article
Snippet Excess soluble salts in soil (saline soils) are harmful to most plants. Salt imposes osmotic, ionic, and secondary stresses on plants. Over the past two...
Contents Summary 523 I. Introduction 523 II. Sensing salt stress 524 III. Ion homeostasis regulation 524 IV. Metabolite and cell activity responses to salt...
Contents Summary 523 I. Introduction 523 II. Sensing salt stress 524 III. Ion homeostasis regulation 524 IV. Metabolite and cell activity responses to salt...
SourceID proquest
pubmed
crossref
wiley
jstor
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 523
SubjectTerms Abiotic stress
antioxidant defense
cell activity responses
cytoskeletal dynamics
Determinants
developmental adjustment
epigenetic regulation
epigenetics
Genetics
genomics
glycophytes
Homeostasis
Homeostasis - drug effects
ion and osmotic homeostasis
Ions
Metabolites
Metabolome - drug effects
Molecular modelling
Plants - drug effects
Plants - genetics
Regulatory mechanisms (biology)
Saline soils
Salt
salt stress
Salt tolerance
Salts
salt‐induced stress
Sodium Chloride - pharmacology
Soil
soil salts
Stress, Physiological - drug effects
Stress, Physiological - genetics
Stresses
Tansley review
Title Elucidating the molecular mechanisms mediating plant salt-stress responses
URI https://www.jstor.org/stable/90016922
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.14920
https://www.ncbi.nlm.nih.gov/pubmed/29205383
https://www.proquest.com/docview/1990465448
https://www.proquest.com/docview/1973020783
https://www.proquest.com/docview/2020882488
Volume 217
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS_QwEB5EPHh5_X6tX1Tx4KXSZrNpiycVZREVkVfYwwslbVJd3O0udvegJ3-Cv9Ff4kzSFhUF8VbIBNJMJvMkmXkGYJdloULgIL2M8dzjKpcegljfC2UepO2WSnNDpH1xKTo3_Kzb7k7BQZ0LY_khmgs3sgyzX5OBy7R8Z-TF6A7NPGZ0XqdYLQJE1-wd4a5gNQOz4KJbsQpRFE_T84MvsuGIXwHNj7jVOJ7TOfhfD9nGm9zvT8bpfvb0ic3xl_80D38qQOoe2hW0AFO6WISZoyGCxsclOD_pT7IepUAUty5iRXdQl9N1B5qShnvloHRN-okRGfVRU24p--PX5xebh-I-2DBcXS7DzenJv-OOVxVg8DIect-TXGn0_5kwqIzCOeJcBX6k40DHfq5CiW06jJnQkQ6FCoTPsqjlS57zPPZVawWmi2GhV8Ftt6gWoEpVKiVuG0KGkgrQSoVfnDHlwF6tiiSr2MmpSEY_qU8pODeJmRsHdhrRkaXk-EpoxeizkYgJ3MaMObBRKzipzLVMAvTJRCzHIwe2m2Y0NHo9kYUeTkgGN0NGr57fyzAqeRox3BQd-GsXTzMAmkD0Lth7zyyB78eeXF51zMfaz0XXYRahXGQvhzZgevww0ZsIl8bplrGLN9vsD7s
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1RT9swED5VDGm8sMEGywZbQHvgJShxXSeReNlYUYFSTRNIfZkiJ3ZYRZtWpH3YnvgJ_EZ-ye7sJIIJpIm3SD5Ljs93_mzffQfwmWWhQuAgvYzx3OMqlx6CWN8LZR6knbZKc0OkfTYQvQt-MuwMW3BQ58JYfojmwo0sw_hrMnC6kL5n5cXsF9p5zPDA_oIqehNz_rcf7B7lrmA1B7PgYljxClEcT9P1wW5kAxIfg5oPkavZeo5ewc960Dbi5Gp_MU_3sz__8Dk-969ew2qFSd0vdhGtQUsX67D8dYq48fcb6HfHi2xEWRDFpYtw0Z3UFXXdiaa84VE5KV2TgWJEZmNUllvK8fzu5tamorjXNhJXl2_h4qh7ftjzqhoMXsZD7nuSK40QIBMGmFFER5yrwI90HOjYz1UosU2HMRM60qFQgfBZFrV9yXOex75qb8BSMS30O3A7bSoHqFKVSomeQ8hQUg1aqfCLM6Yc2Kt1kWQVQTnVyRgn9UEF5yYxc-PAbiM6s6wcjwltGIU2EjHh25gxB7ZqDSeVxZZJgNsyccvxyIGdphltjR5QZKGnC5JBf8jo4fNpGUZVTyOGftGBTbt6mgHQBOIGg733zBp4euzJ4HvPfLz_f9FP8LJ3ftZP-seD0w-wgsgusndFW7A0v17obURP8_SjMZK_yzUT1w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB5VpUJcym8h0EJAHHpJlXi9TqyeoO1qgbKqEJX2gBQ5sQ1Vd7OrZvcApz5Cn7FPwoydRG3VSohbJI8lx-MZf7ZnvgF4z8pUI3BQUcm4jbi2KkIQG0epsknR7-nCOiLtryMxPOafx_3xCuy2uTCeH6K7cCPLcP6aDHyu7RUjr-a_0Mwlw_P6PS5iSXUb9r-xK4y7grUUzIKLcUMrRGE8Xddrm5GPR7wNaV4Hrm7nGTyEH-2YfcDJ6c5yUeyUf27QOf7nTz2C9QaRhh_8EnoMK6Z6AmsfZ4gafz-Fw4PJsjyhHIjqZ4hgMZy29XTDqaGs4ZN6Wocu_8SJzCeoqrBWk8Xl-YVPRAnPfByuqZ_B8eDg-94waiowRCVPeRwprg0CgFI4WEbxHNLqJM6MTIyMrU4VtplUMmEykwqdiJiVWS9W3HIrY93bgNVqVpkXEPZ7VAxQF7pQCv2GUKmiCrRK4xdnTAew3aoiLxt6cqqSMcnbYwrOTe7mJoB3nejcc3LcJrTh9NlJSEK3krEANlsF54291nmCmzIxy_EsgLddM1oaPZ-oysyWJIPekNGz590yjGqeZgy9YgDP_eLpBkATiNsL9t52S-Duseejo6H7ePnvom_g_tH-ID_8NPryCh4grMv8RdEmrC7OlmYLodOieO1M5C-CrhKG
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Elucidating+the+molecular+mechanisms+mediating+plant+salt-stress+responses&rft.jtitle=The+New+phytologist&rft.au=Yongqing+Yang&rft.au=Yan+Guo&rft.date=2018-01-01&rft.pub=New+Phytologist+Trust&rft.issn=0028-646X&rft.eissn=1469-8137&rft.volume=217&rft.issue=2&rft.spage=523&rft.epage=539&rft_id=info:doi/10.1111%2Fnph.14920&rft.externalDocID=90016922
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon