Modelling the random effects covariance matrix in longitudinal data
A common class of models for longitudinal data are random effects (mixed) models. In these models, the random effects covariance matrix is typically assumed constant across subject. However, in many situations this matrix may differ by measured covariates. In this paper, we propose an approach to mo...
Saved in:
Published in | Statistics in medicine Vol. 22; no. 10; pp. 1631 - 1647 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Chichester, UK
John Wiley & Sons, Ltd
30.05.2003
Wiley |
Subjects | |
Online Access | Get full text |
ISSN | 0277-6715 1097-0258 |
DOI | 10.1002/sim.1470 |
Cover
Loading…
Abstract | A common class of models for longitudinal data are random effects (mixed) models. In these models, the random effects covariance matrix is typically assumed constant across subject. However, in many situations this matrix may differ by measured covariates. In this paper, we propose an approach to model the random effects covariance matrix by using a special Cholesky decomposition of the matrix. In particular, we will allow the parameters that result from this decomposition to depend on subject‐specific covariates and also explore ways to parsimoniously model these parameters. An advantage of this parameterization is that there is no concern about the positive definiteness of the resulting estimator of the covariance matrix. In addition, the parameters resulting from this decomposition have a sensible interpretation. We propose fully Bayesian modelling for which a simple Gibbs sampler can be implemented to sample from the posterior distribution of the parameters. We illustrate these models on data from depression studies and examine the impact of heterogeneity in the covariance matrix on estimation of both fixed and random effects. Copyright © 2003 John Wiley & Sons, Ltd. |
---|---|
AbstractList | A common class of models for longitudinal data are random effects (mixed) models. In these models, the random effects covariance matrix is typically assumed constant across subject. However, in many situations this matrix may differ by measured covariates. In this paper, we propose an approach to model the random effects covariance matrix by using a special Cholesky decomposition of the matrix. In particular, we will allow the parameters that result from this decomposition to depend on subject-specific covariates and also explore ways to parsimoniously model these parameters. An advantage of this parameterization is that there is no concern about the positive definiteness of the resulting estimator of the covariance matrix. In addition, the parameters resulting from this decomposition have a sensible interpretation. We propose fully Bayesian modelling for which a simple Gibbs sampler can be implemented to sample from the posterior distribution of the parameters. We illustrate these models on data from depression studies and examine the impact of heterogeneity in the covariance matrix on estimation of both fixed and random effects. A common class of models for longitudinal data are random effects (mixed) models. In these models, the random effects covariance matrix is typically assumed constant across subject. However, in many situations this matrix may differ by measured covariates. In this paper, we propose an approach to model the random effects covariance matrix by using a special Cholesky decomposition of the matrix. In particular, we will allow the parameters that result from this decomposition to depend on subject‐specific covariates and also explore ways to parsimoniously model these parameters. An advantage of this parameterization is that there is no concern about the positive definiteness of the resulting estimator of the covariance matrix. In addition, the parameters resulting from this decomposition have a sensible interpretation. We propose fully Bayesian modelling for which a simple Gibbs sampler can be implemented to sample from the posterior distribution of the parameters. We illustrate these models on data from depression studies and examine the impact of heterogeneity in the covariance matrix on estimation of both fixed and random effects. Copyright © 2003 John Wiley & Sons, Ltd. A common class of models for longitudinal data are random effects (mixed) models. In these models, the random effects covariance matrix is typically assumed constant across subject. However, in many situations this matrix may differ by measured covariates. In this paper, we propose an approach to model the random effects covariance matrix by using a special Cholesky decomposition of the matrix. In particular, we will allow the parameters that result from this decomposition to depend on subject-specific covariates and also explore ways to parsimoniously model these parameters. An advantage of this parameterization is that there is no concern about the positive definiteness of the resulting estimator of the covariance matrix. In addition, the parameters resulting from this decomposition have a sensible interpretation. We propose fully Bayesian modelling for which a simple Gibbs sampler can be implemented to sample from the posterior distribution of the parameters. We illustrate these models on data from depression studies and examine the impact of heterogeneity in the covariance matrix on estimation of both fixed and random effects.A common class of models for longitudinal data are random effects (mixed) models. In these models, the random effects covariance matrix is typically assumed constant across subject. However, in many situations this matrix may differ by measured covariates. In this paper, we propose an approach to model the random effects covariance matrix by using a special Cholesky decomposition of the matrix. In particular, we will allow the parameters that result from this decomposition to depend on subject-specific covariates and also explore ways to parsimoniously model these parameters. An advantage of this parameterization is that there is no concern about the positive definiteness of the resulting estimator of the covariance matrix. In addition, the parameters resulting from this decomposition have a sensible interpretation. We propose fully Bayesian modelling for which a simple Gibbs sampler can be implemented to sample from the posterior distribution of the parameters. We illustrate these models on data from depression studies and examine the impact of heterogeneity in the covariance matrix on estimation of both fixed and random effects. |
Author | Zhao, Yan D. Daniels, Michael J. |
AuthorAffiliation | 2 Eli Lilly & Company, Lilly Corporate Center, Faris II, Indianapolis, IN 46285, U.S.A 1 Department of Statistics, University of Florida, Gainesville, FL 32611, U.S.A |
AuthorAffiliation_xml | – name: 2 Eli Lilly & Company, Lilly Corporate Center, Faris II, Indianapolis, IN 46285, U.S.A – name: 1 Department of Statistics, University of Florida, Gainesville, FL 32611, U.S.A |
Author_xml | – sequence: 1 givenname: Michael J. surname: Daniels fullname: Daniels, Michael J. email: mdaniels@stat.ufl.edu organization: Department of Statistics, University of Florida, Gainesville, FL 32611, U.S.A – sequence: 2 givenname: Yan D. surname: Zhao fullname: Zhao, Yan D. organization: Eli Lilly & Company, Lilly Corporate Center, Faris II, Indianapolis, IN 46285, U.S.A |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14736742$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/12720301$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kUtv1DAUhS1URKcFiV-AsgF1k-HaTuxkg0RHtBS1IPFcWjeOMzUkdrE9pf33eDTDQEGs7uJ859zXAdlz3hlCHlOYUwD2PNppTisJ98iMQitLYHWzR2bApCyFpPU-OYjxKwClNZMPyD5lkgEHOiOLC9-bcbRuWaRLUwR0vZ8KMwxGp1hof43BotOmmDAFe1NYV4zeLW1a9dbhWPSY8CG5P-AYzaNtPSSfTl59XLwuz9-dni1enpe6khWUbSO1GOpGUhwG2eqOdSiMANNz7FvBuc6iANZ1wGndg2y6QQvdMq37BqHnh-TFJvdq1U2m18algKO6CnbCcKs8WnVXcfZSLf21YrKSoqpzwLNtQPDfVyYmNdmo8_rojF9FJTljFYMmg0_-7LRr8etuGXi6BTBqHId8N23jb66SXMiKZW6-4XTwMQYzKG0TJuvXA9pRUVDrB6r8wLUJsuHoL8Mu81-03KA_7Ghu_8upD2cXd3kbk7nZ8Ri-KSG5rNWXt6fZSpvj928-q2P-E4ZZuVs |
CitedBy_id | crossref_primary_10_1177_0962280214526199 crossref_primary_10_1002_sim_5906 crossref_primary_10_1080_00273171_2020_1830019 crossref_primary_10_5351_CSAM_2017_24_1_081 crossref_primary_10_1002_sim_9903 crossref_primary_10_1016_j_csda_2014_06_016 crossref_primary_10_1016_j_spl_2012_12_028 crossref_primary_10_1007_s42952_019_00003_1 crossref_primary_10_1111_j_1541_0420_2005_00499_x crossref_primary_10_1111_biom_12862 crossref_primary_10_5351_CSAM_2013_20_3_235 crossref_primary_10_1111_rssc_12210 crossref_primary_10_1177_1471082X0600700104 crossref_primary_10_1007_s10198_013_0460_9 crossref_primary_10_1016_j_csda_2020_107110 crossref_primary_10_1016_j_mbs_2004_02_001 crossref_primary_10_1002_sim_2672 crossref_primary_10_1007_s10463_012_0383_8 crossref_primary_10_1080_03610926_2015_1089290 crossref_primary_10_1177_0962280215592908 crossref_primary_10_1002_sim_8770 crossref_primary_10_21307_stattrans_2019_034 crossref_primary_10_4103_drj_drj_402_23 crossref_primary_10_1016_j_csda_2011_06_025 crossref_primary_10_1016_j_csda_2017_05_001 crossref_primary_10_1007_s00180_007_0100_x crossref_primary_10_1002_sim_10029 crossref_primary_10_1016_j_jmva_2022_105026 crossref_primary_10_1111_biom_13027 crossref_primary_10_5351_KJAS_2014_27_6_923 crossref_primary_10_1007_s42952_022_00200_5 crossref_primary_10_1016_j_csda_2011_09_011 crossref_primary_10_1093_biostatistics_kxp040 crossref_primary_10_5351_KJAS_2015_28_2_211 crossref_primary_10_1177_1471082X13520424 crossref_primary_10_1002_sim_7908 crossref_primary_10_1002_bimj_202000129 crossref_primary_10_1007_s13253_012_0084_z crossref_primary_10_1348_000711005X79857 crossref_primary_10_1007_s13571_014_0079_6 crossref_primary_10_1152_physiolgenomics_00118_2009 crossref_primary_10_5351_CSAM_2016_23_6_575 crossref_primary_10_7465_jkdi_2016_27_3_815 crossref_primary_10_1016_j_jspi_2003_09_026 crossref_primary_10_1111_rssc_12110 crossref_primary_10_1007_s00180_019_00895_x crossref_primary_10_1111_j_1524_4733_2006_00145_x crossref_primary_10_1016_j_jad_2019_07_042 crossref_primary_10_1097_gme_0b013e3181fca9c4 crossref_primary_10_1007_s10742_014_0126_9 crossref_primary_10_29220_CSAM_2020_27_2_201 crossref_primary_10_1177_0962280215586010 crossref_primary_10_1002_bimj_202100246 crossref_primary_10_1007_s00362_016_0840_1 crossref_primary_10_1080_15598608_2008_10411856 crossref_primary_10_1249_01_MSS_0000147580_40591_75 crossref_primary_10_1007_s10260_018_00440_y crossref_primary_10_1080_10618600_2012_681219 crossref_primary_10_1007_s00180_024_01499_w crossref_primary_10_1177_0049124120986182 crossref_primary_10_1007_s10985_010_9169_6 crossref_primary_10_1002_sim_6101 crossref_primary_10_5351_CSAM_2014_21_2_169 crossref_primary_10_1177_0962280215588224 crossref_primary_10_2165_11586560_000000000_00000 crossref_primary_10_1002_sim_6465 crossref_primary_10_1002_sim_3597 crossref_primary_10_1016_j_csda_2021_107386 crossref_primary_10_1016_j_jmva_2012_11_010 |
Cites_doi | 10.1001/archpsyc.1997.01830230043006 10.1111/j.0006-341X.2001.01173.x 10.2307/2533552 10.1080/01621459.1996.10476677 10.1093/biomet/86.3.677 10.1111/j.0006-341X.2002.00225.x 10.2307/2986151 10.1080/01621459.1999.10473878 10.1093/biomet/87.2.425 10.1111/1467-9868.00353 10.1214/ss/1177011136 10.1111/j.0006-341X.2001.00253.x 10.1214/aos/1176348885 10.1093/biomet/88.4.973 10.1093/biomet/89.3.553 10.2307/3315251 10.1016/0169-2607(96)01723-3 |
ContentType | Journal Article |
Copyright | Copyright © 2003 John Wiley & Sons, Ltd. 2003 INIST-CNRS Copyright 2003 John Wiley & Sons, Ltd. Copyright © 2003 John Wiley & Sons, Ltd. 2003 |
Copyright_xml | – notice: Copyright © 2003 John Wiley & Sons, Ltd. – notice: 2003 INIST-CNRS – notice: Copyright 2003 John Wiley & Sons, Ltd. – notice: Copyright © 2003 John Wiley & Sons, Ltd. 2003 |
DBID | BSCLL AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1002/sim.1470 |
DatabaseName | Istex CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Statistics Public Health |
EISSN | 1097-0258 |
EndPage | 1647 |
ExternalDocumentID | PMC2747645 12720301 14736742 10_1002_sim_1470 SIM1470 ark_67375_WNG_1018BRJV_B |
Genre | article Research Support, U.S. Gov't, P.H.S Journal Article |
GrantInformation_xml | – fundername: NIH funderid: CA85295‐01A1 – fundername: NCI NIH HHS grantid: R01 CA085295 – fundername: NCI NIH HHS grantid: CA85295-01A1 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5RE 5VS 66C 6PF 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAWTL AAXRX AAZKR ABCQN ABCUV ABIJN ABJNI ABOCM ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD EX3 F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K ROL RWI RX1 SUPJJ TN5 UB1 V2E W8V W99 WBKPD WH7 WIB WIH WIK WJL WOHZO WOW WQJ WRC WUP WWH WXSBR WYISQ XBAML XG1 XV2 YHZ ZZTAW ~IA ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGQPQ AGYGG CITATION AAMMB ABEML ACSCC AEFGJ AGHNM AGXDD AIDQK AIDYY AMVHM DUUFO EBD EMOBN HF~ IQODW M67 RIWAO RJQFR RYL SAMSI SV3 ZGI ZXP CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c4740-987c6f5871aff79cb2ba6e60ed3ad9633cf58602bb0315d078bfc6c92ccd8a0d3 |
IEDL.DBID | DR2 |
ISSN | 0277-6715 |
IngestDate | Thu Aug 21 14:07:11 EDT 2025 Fri Jul 11 15:24:16 EDT 2025 Fri May 30 10:50:34 EDT 2025 Mon Jul 21 09:14:09 EDT 2025 Thu Apr 24 22:58:24 EDT 2025 Tue Jul 01 04:32:53 EDT 2025 Wed Jan 22 16:24:50 EST 2025 Wed Oct 30 09:52:53 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 Copyright 2003 John Wiley & Sons, Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4740-987c6f5871aff79cb2ba6e60ed3ad9633cf58602bb0315d078bfc6c92ccd8a0d3 |
Notes | NIH - No. CA85295-01A1 ark:/67375/WNG-1018BRJV-B ArticleID:SIM1470 istex:F84DE9EF587A29D016638797F4E3019026492F31 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://doi.org/10.1002/sim.1470 |
PMID | 12720301 |
PQID | 73224208 |
PQPubID | 23479 |
PageCount | 17 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2747645 proquest_miscellaneous_73224208 pubmed_primary_12720301 pascalfrancis_primary_14736742 crossref_citationtrail_10_1002_sim_1470 crossref_primary_10_1002_sim_1470 wiley_primary_10_1002_sim_1470_SIM1470 istex_primary_ark_67375_WNG_1018BRJV_B |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 30 May 2003 |
PublicationDateYYYYMMDD | 2003-05-30 |
PublicationDate_xml | – month: 05 year: 2003 text: 30 May 2003 day: 30 |
PublicationDecade | 2000 |
PublicationPlace | Chichester, UK |
PublicationPlace_xml | – name: Chichester, UK – name: Elmont, NY – name: Chichester – name: England |
PublicationTitle | Statistics in medicine |
PublicationTitleAlternate | Statist. Med |
PublicationYear | 2003 |
Publisher | John Wiley & Sons, Ltd Wiley |
Publisher_xml | – name: John Wiley & Sons, Ltd – name: Wiley |
References | Pourahmadi M. Maximum likelihood estimation of generalized linear models for multivariate normal covariance matrix. Biometrika 2000; 87:425-435. Davidian M, Giltinan DM. Nonlinear Models for Repeated Measurement Data. Chapman and Hall: 1995. Rice JA, Wu CO. Nonparametric mixed effects models for unequally sampled noisy curves. Biometrics 2001; 57:253-259. Bock RD. Multivariate Statistical Methods in Behavioral Research. McGraw Hill: New York, 1975; 54. Shi M, Weiss RE, Taylor JMG. An analysis of paediatric CD4 counts for acquired immune deficiency syndrome using flexible random curves. Applied Statistics 1996; 45:151-163. Leonard T, Hsu JSJ. Bayesian inference for a covariance matrix. Annals of Statistics 1992; 20:1669-1696. Daniels MJ, Kass RE. Shrinkage estimators for covariance matrices. Biometrics 2001; 57:1173-1184. Pourahmadi M. Joint mean-covariance models with applications to longitudinal data: unconstrained parameterization. Biometrika 1999; 86:677-690. Zhang F, Weiss RE. Diagnosing explainable heterogeneity of variance in random effects models. Canadian Journal of Statistics 2000; 28:3-18. Hedeker D, Gibbons RD. MIXREG: a computer program for mixed-effects regression analysis with autocorrelated errors. Computer Methods and Programs in Biomedicine 1996; 49:229-252. SAS Institute Inc. SAS/;STAT Software: Changes and Enhancements through Release. 6.12. SAS Institute Inc.: Carey, NC, 1997. Barnard J, McCulloch R, Meng X. A natural strategy for modelling covariance matrices with application to shrinkage. Statistica Sinica 2000; 10:1281-311. Chiu TYM, Leonard T, Tsui K-W. The matrix-logarithmic covariance model. Journal of the American Statistical Association 1996; 91:198-210. Gelman A, Rubin DB. Inference from iterative simulation using multiple sequences (with Discussion). Statistical Science 1992; 7:457-511. Thase ME, Greenhouse JB, Frank E, Reynolds CF 3rd, Pilkonis PA, Hurley K, Grochocinski V, Kupfer DJ. Treatment of major depression with psychotherapy or psychotherapy-pharmacotherapy combinations. Archives of General Psychiatry 1997; 54:1009-1015. Pourahmadi M, Daniels MJ. Dynamic conditional linear mixed models for longitudinal data. Biometrics 2002; 58:225-231. Little RJA, Rubin DB. Statistical Analysis With Missing Data. Wiley: New York, 1987. Lin X, Raz J, Harlow SD. Linear mixed models with heterogeneous within-cluster variances. Biometrics 1997; 53:910-923. Daniels MJ, Pourahmadi M. Bayesian analysis of covariance matrices and dynamic models for longitudinal data. Biometrika 2002; 89:553-566. Heagerty PJ, Kurland BF. Misspecified maximum likelihood estimate and generalised linear mixed models. Biometrika 2001; 88:973-986. Daniels MJ, Kass RE. Nonconjugate Bayesian estimation of covariance matrices and its use in hierarchical models. Journal of the American Statistical Association 1999; 94:1254-1263. Spiegelhalter DJ, Best NG, Carlin BP, van der Linde A. Bayesian measures of model complexity and fit (with discussion). Journal of the Royal Statistical Society, Series B 2002 64:583-639. 1992; 7 2002; 58 2000; 28 1997; 54 2002; 64 1997; 53 2000; 87 2002; 89 2000; 10 1987 1975 1997 1995 1999; 86 1996; 91 1999; 94 2001; 88 1992; 20 2001; 57 1996; 49 1996; 45 Bock RD (e_1_2_1_8_2) 1975 Barnard J (e_1_2_1_19_2) 2000; 10 Little RJA (e_1_2_1_22_2) 1987 e_1_2_1_6_2 e_1_2_1_7_2 e_1_2_1_5_2 e_1_2_1_2_2 e_1_2_1_11_2 e_1_2_1_3_2 e_1_2_1_12_2 e_1_2_1_23_2 e_1_2_1_20_2 e_1_2_1_10_2 Davidian M (e_1_2_1_4_2) 1995 e_1_2_1_15_2 e_1_2_1_16_2 e_1_2_1_13_2 e_1_2_1_14_2 e_1_2_1_17_2 SAS Institute Inc. (e_1_2_1_21_2) 1997 e_1_2_1_9_2 e_1_2_1_18_2 |
References_xml | – reference: Chiu TYM, Leonard T, Tsui K-W. The matrix-logarithmic covariance model. Journal of the American Statistical Association 1996; 91:198-210. – reference: Rice JA, Wu CO. Nonparametric mixed effects models for unequally sampled noisy curves. Biometrics 2001; 57:253-259. – reference: Gelman A, Rubin DB. Inference from iterative simulation using multiple sequences (with Discussion). Statistical Science 1992; 7:457-511. – reference: Daniels MJ, Kass RE. Nonconjugate Bayesian estimation of covariance matrices and its use in hierarchical models. Journal of the American Statistical Association 1999; 94:1254-1263. – reference: Pourahmadi M. Joint mean-covariance models with applications to longitudinal data: unconstrained parameterization. Biometrika 1999; 86:677-690. – reference: Daniels MJ, Pourahmadi M. Bayesian analysis of covariance matrices and dynamic models for longitudinal data. Biometrika 2002; 89:553-566. – reference: Little RJA, Rubin DB. Statistical Analysis With Missing Data. Wiley: New York, 1987. – reference: Pourahmadi M, Daniels MJ. Dynamic conditional linear mixed models for longitudinal data. Biometrics 2002; 58:225-231. – reference: Bock RD. Multivariate Statistical Methods in Behavioral Research. McGraw Hill: New York, 1975; 54. – reference: Heagerty PJ, Kurland BF. Misspecified maximum likelihood estimate and generalised linear mixed models. Biometrika 2001; 88:973-986. – reference: Leonard T, Hsu JSJ. Bayesian inference for a covariance matrix. Annals of Statistics 1992; 20:1669-1696. – reference: Davidian M, Giltinan DM. Nonlinear Models for Repeated Measurement Data. Chapman and Hall: 1995. – reference: Lin X, Raz J, Harlow SD. Linear mixed models with heterogeneous within-cluster variances. Biometrics 1997; 53:910-923. – reference: Spiegelhalter DJ, Best NG, Carlin BP, van der Linde A. Bayesian measures of model complexity and fit (with discussion). Journal of the Royal Statistical Society, Series B 2002 64:583-639. – reference: Daniels MJ, Kass RE. Shrinkage estimators for covariance matrices. Biometrics 2001; 57:1173-1184. – reference: Pourahmadi M. Maximum likelihood estimation of generalized linear models for multivariate normal covariance matrix. Biometrika 2000; 87:425-435. – reference: Shi M, Weiss RE, Taylor JMG. An analysis of paediatric CD4 counts for acquired immune deficiency syndrome using flexible random curves. Applied Statistics 1996; 45:151-163. – reference: SAS Institute Inc. SAS/;STAT Software: Changes and Enhancements through Release. 6.12. SAS Institute Inc.: Carey, NC, 1997. – reference: Zhang F, Weiss RE. Diagnosing explainable heterogeneity of variance in random effects models. Canadian Journal of Statistics 2000; 28:3-18. – reference: Thase ME, Greenhouse JB, Frank E, Reynolds CF 3rd, Pilkonis PA, Hurley K, Grochocinski V, Kupfer DJ. Treatment of major depression with psychotherapy or psychotherapy-pharmacotherapy combinations. Archives of General Psychiatry 1997; 54:1009-1015. – reference: Hedeker D, Gibbons RD. MIXREG: a computer program for mixed-effects regression analysis with autocorrelated errors. Computer Methods and Programs in Biomedicine 1996; 49:229-252. – reference: Barnard J, McCulloch R, Meng X. A natural strategy for modelling covariance matrices with application to shrinkage. Statistica Sinica 2000; 10:1281-311. – volume: 28 start-page: 3 year: 2000 end-page: 18 article-title: Diagnosing explainable heterogeneity of variance in random effects models publication-title: Canadian Journal of Statistics – volume: 64 start-page: 583 year: 2002 end-page: 639 article-title: Bayesian measures of model complexity and fit (with discussion) publication-title: Journal of the Royal Statistical Society, Series B – volume: 89 start-page: 553 year: 2002 end-page: 566 article-title: Bayesian analysis of covariance matrices and dynamic models for longitudinal data publication-title: Biometrika – volume: 58 start-page: 225 year: 2002 end-page: 231 article-title: Dynamic conditional linear mixed models for longitudinal data publication-title: Biometrics – volume: 57 start-page: 253 year: 2001 end-page: 259 article-title: Nonparametric mixed effects models for unequally sampled noisy curves publication-title: Biometrics – volume: 94 start-page: 1254 year: 1999 end-page: 1263 article-title: Nonconjugate Bayesian estimation of covariance matrices and its use in hierarchical models publication-title: Journal of the American Statistical Association – volume: 91 start-page: 198 year: 1996 end-page: 210 article-title: The matrix‐logarithmic covariance model publication-title: Journal of the American Statistical Association – volume: 87 start-page: 425 year: 2000 end-page: 435 article-title: Maximum likelihood estimation of generalized linear models for multivariate normal covariance matrix publication-title: Biometrika – volume: 45 start-page: 151 year: 1996 end-page: 163 article-title: An analysis of paediatric CD4 counts for acquired immune deficiency syndrome using flexible random curves publication-title: Applied Statistics – volume: 53 start-page: 910 year: 1997 end-page: 923 article-title: Linear mixed models with heterogeneous within‐cluster variances publication-title: Biometrics – volume: 20 start-page: 1669 year: 1992 end-page: 1696 article-title: Bayesian inference for a covariance matrix publication-title: Annals of Statistics – year: 1987 – volume: 54 start-page: 1009 year: 1997 end-page: 1015 article-title: Treatment of major depression with psychotherapy or psychotherapy‐pharmacotherapy combinations publication-title: Archives of General Psychiatry – volume: 10 start-page: 1281 year: 2000 end-page: 311 article-title: A natural strategy for modelling covariance matrices with application to shrinkage publication-title: Statistica Sinica – year: 1997 – start-page: 54 year: 1975 – volume: 7 start-page: 457 year: 1992 end-page: 511 article-title: Inference from iterative simulation using multiple sequences (with Discussion) publication-title: Statistical Science – volume: 88 start-page: 973 year: 2001 end-page: 986 article-title: Misspecified maximum likelihood estimate and generalised linear mixed models publication-title: Biometrika – year: 1995 – volume: 86 start-page: 677 year: 1999 end-page: 690 article-title: Joint mean‐covariance models with applications to longitudinal data: unconstrained parameterization publication-title: Biometrika – volume: 49 start-page: 229 year: 1996 end-page: 252 article-title: MIXREG: a computer program for mixed‐effects regression analysis with autocorrelated errors publication-title: Computer Methods and Programs in Biomedicine – volume: 57 start-page: 1173 year: 2001 end-page: 1184 article-title: Shrinkage estimators for covariance matrices publication-title: Biometrics – ident: e_1_2_1_12_2 doi: 10.1001/archpsyc.1997.01830230043006 – ident: e_1_2_1_16_2 doi: 10.1111/j.0006-341X.2001.01173.x – start-page: 54 volume-title: Multivariate Statistical Methods in Behavioral Research year: 1975 ident: e_1_2_1_8_2 – ident: e_1_2_1_6_2 doi: 10.2307/2533552 – ident: e_1_2_1_3_2 doi: 10.1080/01621459.1996.10476677 – ident: e_1_2_1_9_2 doi: 10.1093/biomet/86.3.677 – volume-title: Statistical Analysis With Missing Data year: 1987 ident: e_1_2_1_22_2 – ident: e_1_2_1_5_2 doi: 10.1111/j.0006-341X.2002.00225.x – ident: e_1_2_1_13_2 doi: 10.2307/2986151 – ident: e_1_2_1_18_2 doi: 10.1080/01621459.1999.10473878 – volume: 10 start-page: 1281 year: 2000 ident: e_1_2_1_19_2 article-title: A natural strategy for modelling covariance matrices with application to shrinkage publication-title: Statistica Sinica – ident: e_1_2_1_10_2 doi: 10.1093/biomet/87.2.425 – ident: e_1_2_1_20_2 doi: 10.1111/1467-9868.00353 – ident: e_1_2_1_23_2 doi: 10.1214/ss/1177011136 – ident: e_1_2_1_14_2 doi: 10.1111/j.0006-341X.2001.00253.x – ident: e_1_2_1_17_2 doi: 10.1214/aos/1176348885 – ident: e_1_2_1_2_2 doi: 10.1093/biomet/88.4.973 – volume-title: SAS/;STAT Software: Changes and Enhancements through Release. 6.12 year: 1997 ident: e_1_2_1_21_2 – ident: e_1_2_1_11_2 doi: 10.1093/biomet/89.3.553 – volume-title: Nonlinear Models for Repeated Measurement Data year: 1995 ident: e_1_2_1_4_2 – ident: e_1_2_1_7_2 doi: 10.2307/3315251 – ident: e_1_2_1_15_2 doi: 10.1016/0169-2607(96)01723-3 |
SSID | ssj0011527 |
Score | 2.012757 |
Snippet | A common class of models for longitudinal data are random effects (mixed) models. In these models, the random effects covariance matrix is typically assumed... |
SourceID | pubmedcentral proquest pubmed pascalfrancis crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1631 |
SubjectTerms | Antidepressive Agents - therapeutic use Biological and medical sciences Cholesky decomposition Depression - therapy heterogeneity Humans Longitudinal Studies Medical sciences mixed models Models, Statistical Psychotherapy |
Title | Modelling the random effects covariance matrix in longitudinal data |
URI | https://api.istex.fr/ark:/67375/WNG-1018BRJV-B/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.1470 https://www.ncbi.nlm.nih.gov/pubmed/12720301 https://www.proquest.com/docview/73224208 https://pubmed.ncbi.nlm.nih.gov/PMC2747645 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFL1CQ0KTEIzyFdiGkRA8ZXMdx24et4kxJnUPg8EkHiJ_RVRbE7S2aOLX42snKYUhIZ76kJuqdu9Nju1zzwF4xZTwkI3ZlFe5S7kSvuawOUcbOrJaFbrg2Ds8PhFHZ_z4PD9vWZXYCxP1IfoNN6yM8LzGAld6trsUDZ1Npr7MJS7XkaqFeOi0V44adm6teEIp5DDvdGcp2-1uXHkT3cZJvUZmpJr5yamiq8VNsPNP9uSvqDa8lg7vw5duQJGNcrGzmOsd8-M3rcf_G_EG3GvRKtmL6fUAbrl6AHfG7Xn8AO7GXT8Sm5kGsI7YNUo_P4QD9FkLkt_Eo0zix2qbKWkJJMQ03_0yHXOOTNEm4JpManLZoH3SwqJVF0Hy6iM4O3z78eAobT0bUsMlp2kxkkZUuV-GqaqShdFMK-EEdTZT1hd7ZvxFQZnWaC9hPUDRlRGmYMbYkaI2ewxrdVO7p0CGmlpGHcsKbIj1q11eaaV1oTR1hc5oAm-6_680raA5-mpcllGKmZV-wkqcsARe9pHfoojHDTGvQwr0AerqAklvMi8_n7xDJtxo__T4U7mfwPZKjiy_kctMSM4SeNElTelrFQ9gVO2axayU_umJdIYEnsQUWt4bjsPpMAG5klx9AKqAr16pJ1-DGjhuKwie-98fcuevAyw_vB_j57N_DXwO64G5iFQJuglr86uF2_IIbK63Q639BEV_Lho |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD6aNgkmIS7lFi6bkRA8ZXMdx27EExuMbqx9GBvbA5LlSyKqrSlaWzTx6_GJk5TCkBBPechJFDvn2Mf2d74P4CXTwqdszMW8SPOYa-FjDotzjKU9Z3RmMo61w4Oh6J_wg7P0bAXeNLUwgR-i3XDDyKjGawxw3JDeXrCGTkdjH-fSr9fXUNAbo_LdUcsd1W30WvGMUshu2jDPUrbdPLk0F61ht14hNlJPffcUQdfiusTzT_zkr3ltNTHt3YEvTZMCHuV8az4zW_bHb2yP_9nmu3C7TljJ2-Bh92AlLztwY1AfyXfgVtj4I6GeqQPrmL4G9uf7sItSaxXrN_GJJvGNdZMxqTEkxE6--5U6uh0Zo1LAFRmV5GKCCkpzh2pdBPGrD-Bk7_3xbj-uZRtiyyWncdaTVhSpX4npopCZNcxokQuau0Q7H--J9TcFZcagwoTzOYoprLAZs9b1NHXJQ1gtJ2X-GEjXUMdozpIMa2L9gpcXRhuTaUPzzCQ0gtfND1S25jRHaY0LFdiYmfIdprDDInjRWn4LPB7X2LyqfKA10JfniHuTqTodfkAwXG_n6OCz2olgY8lJFm_kMhGSswg2G69RPlzxDEaX-WQ-VdIPoIhoiOBR8KHFs9WJOO1GIJe8qzVAIvDlO-Xoa0UIjjsLgqf--yvn-WsD1af9AV6f_KvhJtzsHw8O1eH-8ONTWK-AjIicoM9gdXY5z5_7hGxmNqrA-wn0kDIz |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6hVqoqIR7LKwVaIyE4pfU6jpMcacvSFnaFCoVKHCw_EnXVblJ1d1HFr8cTJ1kWioQ45ZBJFDszyYz9zfcBvGRKuJSN2ZAXcR5yJVzMYXOONjS1WmU649g7PByJgxN-dBqfNqhK7IXx_BDdghtGRv29xgC_tMXOgjR0Op64ME9cub7KBU2x8No_7qij-q1cK25RiqQft8SzlO20Vy79ilZxVq8RGqmmbnYKL2txU975J3zy17S2_i8N7sK3dkQejnK-PZ_pbfPjN7LH_xvyPbjTpKvkjfev-3ArL3uwNmw25Htw2y_7Ed_N1IN1TF499_MD2EOhtZrzm7g0k7ix2mpCGgQJMdV3V6ej05EJ6gRck3FJLirUT5pb1OoiiF59CCeDt5_3DsJGtCE0POE0zNLEiCJ2dZgqiiQzmmklckFzGynroj0y7qSgTGvUl7AuQ9GFESZjxthUURs9gpWyKvMnQPqaWkZzFmXYEevKXV5opXWmNM0zHdEAXrfvT5qG0RyFNS6k52Jm0k2YxAkL4EVneelZPG6weVW7QGegrs4R9ZbE8uvoHULh0t3joy9yN4DNJR9Z3JEnkUg4C2CrdRrpghV3YFSZV_OpTNznE_EMATz2LrS4tt4Pp_0AkiXn6gyQBnz5TDk-q-nAcV1B8Ng9f-07fx2g_HQ4xOPGvxpuwdrH_YH8cDh6_xTWaxQjwiboM1iZXc3z5y4bm-nNOux-AmJPMOs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modelling+the+random+effects+covariance+matrix+in+longitudinal+data&rft.jtitle=Statistics+in+medicine&rft.au=Daniels%2C+Michael+J.&rft.au=Zhao%2C+Yan+D.&rft.date=2003-05-30&rft.issn=0277-6715&rft.eissn=1097-0258&rft.volume=22&rft.issue=10&rft.spage=1631&rft.epage=1647&rft_id=info:doi/10.1002%2Fsim.1470&rft_id=info%3Apmid%2F12720301&rft.externalDocID=PMC2747645 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon |