Modelling the random effects covariance matrix in longitudinal data

A common class of models for longitudinal data are random effects (mixed) models. In these models, the random effects covariance matrix is typically assumed constant across subject. However, in many situations this matrix may differ by measured covariates. In this paper, we propose an approach to mo...

Full description

Saved in:
Bibliographic Details
Published inStatistics in medicine Vol. 22; no. 10; pp. 1631 - 1647
Main Authors Daniels, Michael J., Zhao, Yan D.
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Ltd 30.05.2003
Wiley
Subjects
Online AccessGet full text
ISSN0277-6715
1097-0258
DOI10.1002/sim.1470

Cover

Loading…
Abstract A common class of models for longitudinal data are random effects (mixed) models. In these models, the random effects covariance matrix is typically assumed constant across subject. However, in many situations this matrix may differ by measured covariates. In this paper, we propose an approach to model the random effects covariance matrix by using a special Cholesky decomposition of the matrix. In particular, we will allow the parameters that result from this decomposition to depend on subject‐specific covariates and also explore ways to parsimoniously model these parameters. An advantage of this parameterization is that there is no concern about the positive definiteness of the resulting estimator of the covariance matrix. In addition, the parameters resulting from this decomposition have a sensible interpretation. We propose fully Bayesian modelling for which a simple Gibbs sampler can be implemented to sample from the posterior distribution of the parameters. We illustrate these models on data from depression studies and examine the impact of heterogeneity in the covariance matrix on estimation of both fixed and random effects. Copyright © 2003 John Wiley & Sons, Ltd.
AbstractList A common class of models for longitudinal data are random effects (mixed) models. In these models, the random effects covariance matrix is typically assumed constant across subject. However, in many situations this matrix may differ by measured covariates. In this paper, we propose an approach to model the random effects covariance matrix by using a special Cholesky decomposition of the matrix. In particular, we will allow the parameters that result from this decomposition to depend on subject-specific covariates and also explore ways to parsimoniously model these parameters. An advantage of this parameterization is that there is no concern about the positive definiteness of the resulting estimator of the covariance matrix. In addition, the parameters resulting from this decomposition have a sensible interpretation. We propose fully Bayesian modelling for which a simple Gibbs sampler can be implemented to sample from the posterior distribution of the parameters. We illustrate these models on data from depression studies and examine the impact of heterogeneity in the covariance matrix on estimation of both fixed and random effects.
A common class of models for longitudinal data are random effects (mixed) models. In these models, the random effects covariance matrix is typically assumed constant across subject. However, in many situations this matrix may differ by measured covariates. In this paper, we propose an approach to model the random effects covariance matrix by using a special Cholesky decomposition of the matrix. In particular, we will allow the parameters that result from this decomposition to depend on subject‐specific covariates and also explore ways to parsimoniously model these parameters. An advantage of this parameterization is that there is no concern about the positive definiteness of the resulting estimator of the covariance matrix. In addition, the parameters resulting from this decomposition have a sensible interpretation. We propose fully Bayesian modelling for which a simple Gibbs sampler can be implemented to sample from the posterior distribution of the parameters. We illustrate these models on data from depression studies and examine the impact of heterogeneity in the covariance matrix on estimation of both fixed and random effects. Copyright © 2003 John Wiley & Sons, Ltd.
A common class of models for longitudinal data are random effects (mixed) models. In these models, the random effects covariance matrix is typically assumed constant across subject. However, in many situations this matrix may differ by measured covariates. In this paper, we propose an approach to model the random effects covariance matrix by using a special Cholesky decomposition of the matrix. In particular, we will allow the parameters that result from this decomposition to depend on subject-specific covariates and also explore ways to parsimoniously model these parameters. An advantage of this parameterization is that there is no concern about the positive definiteness of the resulting estimator of the covariance matrix. In addition, the parameters resulting from this decomposition have a sensible interpretation. We propose fully Bayesian modelling for which a simple Gibbs sampler can be implemented to sample from the posterior distribution of the parameters. We illustrate these models on data from depression studies and examine the impact of heterogeneity in the covariance matrix on estimation of both fixed and random effects.A common class of models for longitudinal data are random effects (mixed) models. In these models, the random effects covariance matrix is typically assumed constant across subject. However, in many situations this matrix may differ by measured covariates. In this paper, we propose an approach to model the random effects covariance matrix by using a special Cholesky decomposition of the matrix. In particular, we will allow the parameters that result from this decomposition to depend on subject-specific covariates and also explore ways to parsimoniously model these parameters. An advantage of this parameterization is that there is no concern about the positive definiteness of the resulting estimator of the covariance matrix. In addition, the parameters resulting from this decomposition have a sensible interpretation. We propose fully Bayesian modelling for which a simple Gibbs sampler can be implemented to sample from the posterior distribution of the parameters. We illustrate these models on data from depression studies and examine the impact of heterogeneity in the covariance matrix on estimation of both fixed and random effects.
Author Zhao, Yan D.
Daniels, Michael J.
AuthorAffiliation 2 Eli Lilly & Company, Lilly Corporate Center, Faris II, Indianapolis, IN 46285, U.S.A
1 Department of Statistics, University of Florida, Gainesville, FL 32611, U.S.A
AuthorAffiliation_xml – name: 2 Eli Lilly & Company, Lilly Corporate Center, Faris II, Indianapolis, IN 46285, U.S.A
– name: 1 Department of Statistics, University of Florida, Gainesville, FL 32611, U.S.A
Author_xml – sequence: 1
  givenname: Michael J.
  surname: Daniels
  fullname: Daniels, Michael J.
  email: mdaniels@stat.ufl.edu
  organization: Department of Statistics, University of Florida, Gainesville, FL 32611, U.S.A
– sequence: 2
  givenname: Yan D.
  surname: Zhao
  fullname: Zhao, Yan D.
  organization: Eli Lilly & Company, Lilly Corporate Center, Faris II, Indianapolis, IN 46285, U.S.A
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14736742$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/12720301$$D View this record in MEDLINE/PubMed
BookMark eNp1kUtv1DAUhS1URKcFiV-AsgF1k-HaTuxkg0RHtBS1IPFcWjeOMzUkdrE9pf33eDTDQEGs7uJ859zXAdlz3hlCHlOYUwD2PNppTisJ98iMQitLYHWzR2bApCyFpPU-OYjxKwClNZMPyD5lkgEHOiOLC9-bcbRuWaRLUwR0vZ8KMwxGp1hof43BotOmmDAFe1NYV4zeLW1a9dbhWPSY8CG5P-AYzaNtPSSfTl59XLwuz9-dni1enpe6khWUbSO1GOpGUhwG2eqOdSiMANNz7FvBuc6iANZ1wGndg2y6QQvdMq37BqHnh-TFJvdq1U2m18algKO6CnbCcKs8WnVXcfZSLf21YrKSoqpzwLNtQPDfVyYmNdmo8_rojF9FJTljFYMmg0_-7LRr8etuGXi6BTBqHId8N23jb66SXMiKZW6-4XTwMQYzKG0TJuvXA9pRUVDrB6r8wLUJsuHoL8Mu81-03KA_7Ghu_8upD2cXd3kbk7nZ8Ri-KSG5rNWXt6fZSpvj928-q2P-E4ZZuVs
CitedBy_id crossref_primary_10_1177_0962280214526199
crossref_primary_10_1002_sim_5906
crossref_primary_10_1080_00273171_2020_1830019
crossref_primary_10_5351_CSAM_2017_24_1_081
crossref_primary_10_1002_sim_9903
crossref_primary_10_1016_j_csda_2014_06_016
crossref_primary_10_1016_j_spl_2012_12_028
crossref_primary_10_1007_s42952_019_00003_1
crossref_primary_10_1111_j_1541_0420_2005_00499_x
crossref_primary_10_1111_biom_12862
crossref_primary_10_5351_CSAM_2013_20_3_235
crossref_primary_10_1111_rssc_12210
crossref_primary_10_1177_1471082X0600700104
crossref_primary_10_1007_s10198_013_0460_9
crossref_primary_10_1016_j_csda_2020_107110
crossref_primary_10_1016_j_mbs_2004_02_001
crossref_primary_10_1002_sim_2672
crossref_primary_10_1007_s10463_012_0383_8
crossref_primary_10_1080_03610926_2015_1089290
crossref_primary_10_1177_0962280215592908
crossref_primary_10_1002_sim_8770
crossref_primary_10_21307_stattrans_2019_034
crossref_primary_10_4103_drj_drj_402_23
crossref_primary_10_1016_j_csda_2011_06_025
crossref_primary_10_1016_j_csda_2017_05_001
crossref_primary_10_1007_s00180_007_0100_x
crossref_primary_10_1002_sim_10029
crossref_primary_10_1016_j_jmva_2022_105026
crossref_primary_10_1111_biom_13027
crossref_primary_10_5351_KJAS_2014_27_6_923
crossref_primary_10_1007_s42952_022_00200_5
crossref_primary_10_1016_j_csda_2011_09_011
crossref_primary_10_1093_biostatistics_kxp040
crossref_primary_10_5351_KJAS_2015_28_2_211
crossref_primary_10_1177_1471082X13520424
crossref_primary_10_1002_sim_7908
crossref_primary_10_1002_bimj_202000129
crossref_primary_10_1007_s13253_012_0084_z
crossref_primary_10_1348_000711005X79857
crossref_primary_10_1007_s13571_014_0079_6
crossref_primary_10_1152_physiolgenomics_00118_2009
crossref_primary_10_5351_CSAM_2016_23_6_575
crossref_primary_10_7465_jkdi_2016_27_3_815
crossref_primary_10_1016_j_jspi_2003_09_026
crossref_primary_10_1111_rssc_12110
crossref_primary_10_1007_s00180_019_00895_x
crossref_primary_10_1111_j_1524_4733_2006_00145_x
crossref_primary_10_1016_j_jad_2019_07_042
crossref_primary_10_1097_gme_0b013e3181fca9c4
crossref_primary_10_1007_s10742_014_0126_9
crossref_primary_10_29220_CSAM_2020_27_2_201
crossref_primary_10_1177_0962280215586010
crossref_primary_10_1002_bimj_202100246
crossref_primary_10_1007_s00362_016_0840_1
crossref_primary_10_1080_15598608_2008_10411856
crossref_primary_10_1249_01_MSS_0000147580_40591_75
crossref_primary_10_1007_s10260_018_00440_y
crossref_primary_10_1080_10618600_2012_681219
crossref_primary_10_1007_s00180_024_01499_w
crossref_primary_10_1177_0049124120986182
crossref_primary_10_1007_s10985_010_9169_6
crossref_primary_10_1002_sim_6101
crossref_primary_10_5351_CSAM_2014_21_2_169
crossref_primary_10_1177_0962280215588224
crossref_primary_10_2165_11586560_000000000_00000
crossref_primary_10_1002_sim_6465
crossref_primary_10_1002_sim_3597
crossref_primary_10_1016_j_csda_2021_107386
crossref_primary_10_1016_j_jmva_2012_11_010
Cites_doi 10.1001/archpsyc.1997.01830230043006
10.1111/j.0006-341X.2001.01173.x
10.2307/2533552
10.1080/01621459.1996.10476677
10.1093/biomet/86.3.677
10.1111/j.0006-341X.2002.00225.x
10.2307/2986151
10.1080/01621459.1999.10473878
10.1093/biomet/87.2.425
10.1111/1467-9868.00353
10.1214/ss/1177011136
10.1111/j.0006-341X.2001.00253.x
10.1214/aos/1176348885
10.1093/biomet/88.4.973
10.1093/biomet/89.3.553
10.2307/3315251
10.1016/0169-2607(96)01723-3
ContentType Journal Article
Copyright Copyright © 2003 John Wiley & Sons, Ltd.
2003 INIST-CNRS
Copyright 2003 John Wiley & Sons, Ltd.
Copyright © 2003 John Wiley & Sons, Ltd. 2003
Copyright_xml – notice: Copyright © 2003 John Wiley & Sons, Ltd.
– notice: 2003 INIST-CNRS
– notice: Copyright 2003 John Wiley & Sons, Ltd.
– notice: Copyright © 2003 John Wiley & Sons, Ltd. 2003
DBID BSCLL
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1002/sim.1470
DatabaseName Istex
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
CrossRef
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Statistics
Public Health
EISSN 1097-0258
EndPage 1647
ExternalDocumentID PMC2747645
12720301
14736742
10_1002_sim_1470
SIM1470
ark_67375_WNG_1018BRJV_B
Genre article
Research Support, U.S. Gov't, P.H.S
Journal Article
GrantInformation_xml – fundername: NIH
  funderid: CA85295‐01A1
– fundername: NCI NIH HHS
  grantid: R01 CA085295
– fundername: NCI NIH HHS
  grantid: CA85295-01A1
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5RE
5VS
66C
6PF
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABOCM
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
EX3
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WOW
WQJ
WRC
WUP
WWH
WXSBR
WYISQ
XBAML
XG1
XV2
YHZ
ZZTAW
~IA
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGQPQ
AGYGG
CITATION
AAMMB
ABEML
ACSCC
AEFGJ
AGHNM
AGXDD
AIDQK
AIDYY
AMVHM
DUUFO
EBD
EMOBN
HF~
IQODW
M67
RIWAO
RJQFR
RYL
SAMSI
SV3
ZGI
ZXP
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c4740-987c6f5871aff79cb2ba6e60ed3ad9633cf58602bb0315d078bfc6c92ccd8a0d3
IEDL.DBID DR2
ISSN 0277-6715
IngestDate Thu Aug 21 14:07:11 EDT 2025
Fri Jul 11 15:24:16 EDT 2025
Fri May 30 10:50:34 EDT 2025
Mon Jul 21 09:14:09 EDT 2025
Thu Apr 24 22:58:24 EDT 2025
Tue Jul 01 04:32:53 EDT 2025
Wed Jan 22 16:24:50 EST 2025
Wed Oct 30 09:52:53 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
Copyright 2003 John Wiley & Sons, Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4740-987c6f5871aff79cb2ba6e60ed3ad9633cf58602bb0315d078bfc6c92ccd8a0d3
Notes NIH - No. CA85295-01A1
ark:/67375/WNG-1018BRJV-B
ArticleID:SIM1470
istex:F84DE9EF587A29D016638797F4E3019026492F31
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://doi.org/10.1002/sim.1470
PMID 12720301
PQID 73224208
PQPubID 23479
PageCount 17
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2747645
proquest_miscellaneous_73224208
pubmed_primary_12720301
pascalfrancis_primary_14736742
crossref_citationtrail_10_1002_sim_1470
crossref_primary_10_1002_sim_1470
wiley_primary_10_1002_sim_1470_SIM1470
istex_primary_ark_67375_WNG_1018BRJV_B
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 30 May 2003
PublicationDateYYYYMMDD 2003-05-30
PublicationDate_xml – month: 05
  year: 2003
  text: 30 May 2003
  day: 30
PublicationDecade 2000
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: Elmont, NY
– name: Chichester
– name: England
PublicationTitle Statistics in medicine
PublicationTitleAlternate Statist. Med
PublicationYear 2003
Publisher John Wiley & Sons, Ltd
Wiley
Publisher_xml – name: John Wiley & Sons, Ltd
– name: Wiley
References Pourahmadi M. Maximum likelihood estimation of generalized linear models for multivariate normal covariance matrix. Biometrika 2000; 87:425-435.
Davidian M, Giltinan DM. Nonlinear Models for Repeated Measurement Data. Chapman and Hall: 1995.
Rice JA, Wu CO. Nonparametric mixed effects models for unequally sampled noisy curves. Biometrics 2001; 57:253-259.
Bock RD. Multivariate Statistical Methods in Behavioral Research. McGraw Hill: New York, 1975; 54.
Shi M, Weiss RE, Taylor JMG. An analysis of paediatric CD4 counts for acquired immune deficiency syndrome using flexible random curves. Applied Statistics 1996; 45:151-163.
Leonard T, Hsu JSJ. Bayesian inference for a covariance matrix. Annals of Statistics 1992; 20:1669-1696.
Daniels MJ, Kass RE. Shrinkage estimators for covariance matrices. Biometrics 2001; 57:1173-1184.
Pourahmadi M. Joint mean-covariance models with applications to longitudinal data: unconstrained parameterization. Biometrika 1999; 86:677-690.
Zhang F, Weiss RE. Diagnosing explainable heterogeneity of variance in random effects models. Canadian Journal of Statistics 2000; 28:3-18.
Hedeker D, Gibbons RD. MIXREG: a computer program for mixed-effects regression analysis with autocorrelated errors. Computer Methods and Programs in Biomedicine 1996; 49:229-252.
SAS Institute Inc. SAS/;STAT Software: Changes and Enhancements through Release. 6.12. SAS Institute Inc.: Carey, NC, 1997.
Barnard J, McCulloch R, Meng X. A natural strategy for modelling covariance matrices with application to shrinkage. Statistica Sinica 2000; 10:1281-311.
Chiu TYM, Leonard T, Tsui K-W. The matrix-logarithmic covariance model. Journal of the American Statistical Association 1996; 91:198-210.
Gelman A, Rubin DB. Inference from iterative simulation using multiple sequences (with Discussion). Statistical Science 1992; 7:457-511.
Thase ME, Greenhouse JB, Frank E, Reynolds CF 3rd, Pilkonis PA, Hurley K, Grochocinski V, Kupfer DJ. Treatment of major depression with psychotherapy or psychotherapy-pharmacotherapy combinations. Archives of General Psychiatry 1997; 54:1009-1015.
Pourahmadi M, Daniels MJ. Dynamic conditional linear mixed models for longitudinal data. Biometrics 2002; 58:225-231.
Little RJA, Rubin DB. Statistical Analysis With Missing Data. Wiley: New York, 1987.
Lin X, Raz J, Harlow SD. Linear mixed models with heterogeneous within-cluster variances. Biometrics 1997; 53:910-923.
Daniels MJ, Pourahmadi M. Bayesian analysis of covariance matrices and dynamic models for longitudinal data. Biometrika 2002; 89:553-566.
Heagerty PJ, Kurland BF. Misspecified maximum likelihood estimate and generalised linear mixed models. Biometrika 2001; 88:973-986.
Daniels MJ, Kass RE. Nonconjugate Bayesian estimation of covariance matrices and its use in hierarchical models. Journal of the American Statistical Association 1999; 94:1254-1263.
Spiegelhalter DJ, Best NG, Carlin BP, van der Linde A. Bayesian measures of model complexity and fit (with discussion). Journal of the Royal Statistical Society, Series B 2002 64:583-639.
1992; 7
2002; 58
2000; 28
1997; 54
2002; 64
1997; 53
2000; 87
2002; 89
2000; 10
1987
1975
1997
1995
1999; 86
1996; 91
1999; 94
2001; 88
1992; 20
2001; 57
1996; 49
1996; 45
Bock RD (e_1_2_1_8_2) 1975
Barnard J (e_1_2_1_19_2) 2000; 10
Little RJA (e_1_2_1_22_2) 1987
e_1_2_1_6_2
e_1_2_1_7_2
e_1_2_1_5_2
e_1_2_1_2_2
e_1_2_1_11_2
e_1_2_1_3_2
e_1_2_1_12_2
e_1_2_1_23_2
e_1_2_1_20_2
e_1_2_1_10_2
Davidian M (e_1_2_1_4_2) 1995
e_1_2_1_15_2
e_1_2_1_16_2
e_1_2_1_13_2
e_1_2_1_14_2
e_1_2_1_17_2
SAS Institute Inc. (e_1_2_1_21_2) 1997
e_1_2_1_9_2
e_1_2_1_18_2
References_xml – reference: Chiu TYM, Leonard T, Tsui K-W. The matrix-logarithmic covariance model. Journal of the American Statistical Association 1996; 91:198-210.
– reference: Rice JA, Wu CO. Nonparametric mixed effects models for unequally sampled noisy curves. Biometrics 2001; 57:253-259.
– reference: Gelman A, Rubin DB. Inference from iterative simulation using multiple sequences (with Discussion). Statistical Science 1992; 7:457-511.
– reference: Daniels MJ, Kass RE. Nonconjugate Bayesian estimation of covariance matrices and its use in hierarchical models. Journal of the American Statistical Association 1999; 94:1254-1263.
– reference: Pourahmadi M. Joint mean-covariance models with applications to longitudinal data: unconstrained parameterization. Biometrika 1999; 86:677-690.
– reference: Daniels MJ, Pourahmadi M. Bayesian analysis of covariance matrices and dynamic models for longitudinal data. Biometrika 2002; 89:553-566.
– reference: Little RJA, Rubin DB. Statistical Analysis With Missing Data. Wiley: New York, 1987.
– reference: Pourahmadi M, Daniels MJ. Dynamic conditional linear mixed models for longitudinal data. Biometrics 2002; 58:225-231.
– reference: Bock RD. Multivariate Statistical Methods in Behavioral Research. McGraw Hill: New York, 1975; 54.
– reference: Heagerty PJ, Kurland BF. Misspecified maximum likelihood estimate and generalised linear mixed models. Biometrika 2001; 88:973-986.
– reference: Leonard T, Hsu JSJ. Bayesian inference for a covariance matrix. Annals of Statistics 1992; 20:1669-1696.
– reference: Davidian M, Giltinan DM. Nonlinear Models for Repeated Measurement Data. Chapman and Hall: 1995.
– reference: Lin X, Raz J, Harlow SD. Linear mixed models with heterogeneous within-cluster variances. Biometrics 1997; 53:910-923.
– reference: Spiegelhalter DJ, Best NG, Carlin BP, van der Linde A. Bayesian measures of model complexity and fit (with discussion). Journal of the Royal Statistical Society, Series B 2002 64:583-639.
– reference: Daniels MJ, Kass RE. Shrinkage estimators for covariance matrices. Biometrics 2001; 57:1173-1184.
– reference: Pourahmadi M. Maximum likelihood estimation of generalized linear models for multivariate normal covariance matrix. Biometrika 2000; 87:425-435.
– reference: Shi M, Weiss RE, Taylor JMG. An analysis of paediatric CD4 counts for acquired immune deficiency syndrome using flexible random curves. Applied Statistics 1996; 45:151-163.
– reference: SAS Institute Inc. SAS/;STAT Software: Changes and Enhancements through Release. 6.12. SAS Institute Inc.: Carey, NC, 1997.
– reference: Zhang F, Weiss RE. Diagnosing explainable heterogeneity of variance in random effects models. Canadian Journal of Statistics 2000; 28:3-18.
– reference: Thase ME, Greenhouse JB, Frank E, Reynolds CF 3rd, Pilkonis PA, Hurley K, Grochocinski V, Kupfer DJ. Treatment of major depression with psychotherapy or psychotherapy-pharmacotherapy combinations. Archives of General Psychiatry 1997; 54:1009-1015.
– reference: Hedeker D, Gibbons RD. MIXREG: a computer program for mixed-effects regression analysis with autocorrelated errors. Computer Methods and Programs in Biomedicine 1996; 49:229-252.
– reference: Barnard J, McCulloch R, Meng X. A natural strategy for modelling covariance matrices with application to shrinkage. Statistica Sinica 2000; 10:1281-311.
– volume: 28
  start-page: 3
  year: 2000
  end-page: 18
  article-title: Diagnosing explainable heterogeneity of variance in random effects models
  publication-title: Canadian Journal of Statistics
– volume: 64
  start-page: 583
  year: 2002
  end-page: 639
  article-title: Bayesian measures of model complexity and fit (with discussion)
  publication-title: Journal of the Royal Statistical Society, Series B
– volume: 89
  start-page: 553
  year: 2002
  end-page: 566
  article-title: Bayesian analysis of covariance matrices and dynamic models for longitudinal data
  publication-title: Biometrika
– volume: 58
  start-page: 225
  year: 2002
  end-page: 231
  article-title: Dynamic conditional linear mixed models for longitudinal data
  publication-title: Biometrics
– volume: 57
  start-page: 253
  year: 2001
  end-page: 259
  article-title: Nonparametric mixed effects models for unequally sampled noisy curves
  publication-title: Biometrics
– volume: 94
  start-page: 1254
  year: 1999
  end-page: 1263
  article-title: Nonconjugate Bayesian estimation of covariance matrices and its use in hierarchical models
  publication-title: Journal of the American Statistical Association
– volume: 91
  start-page: 198
  year: 1996
  end-page: 210
  article-title: The matrix‐logarithmic covariance model
  publication-title: Journal of the American Statistical Association
– volume: 87
  start-page: 425
  year: 2000
  end-page: 435
  article-title: Maximum likelihood estimation of generalized linear models for multivariate normal covariance matrix
  publication-title: Biometrika
– volume: 45
  start-page: 151
  year: 1996
  end-page: 163
  article-title: An analysis of paediatric CD4 counts for acquired immune deficiency syndrome using flexible random curves
  publication-title: Applied Statistics
– volume: 53
  start-page: 910
  year: 1997
  end-page: 923
  article-title: Linear mixed models with heterogeneous within‐cluster variances
  publication-title: Biometrics
– volume: 20
  start-page: 1669
  year: 1992
  end-page: 1696
  article-title: Bayesian inference for a covariance matrix
  publication-title: Annals of Statistics
– year: 1987
– volume: 54
  start-page: 1009
  year: 1997
  end-page: 1015
  article-title: Treatment of major depression with psychotherapy or psychotherapy‐pharmacotherapy combinations
  publication-title: Archives of General Psychiatry
– volume: 10
  start-page: 1281
  year: 2000
  end-page: 311
  article-title: A natural strategy for modelling covariance matrices with application to shrinkage
  publication-title: Statistica Sinica
– year: 1997
– start-page: 54
  year: 1975
– volume: 7
  start-page: 457
  year: 1992
  end-page: 511
  article-title: Inference from iterative simulation using multiple sequences (with Discussion)
  publication-title: Statistical Science
– volume: 88
  start-page: 973
  year: 2001
  end-page: 986
  article-title: Misspecified maximum likelihood estimate and generalised linear mixed models
  publication-title: Biometrika
– year: 1995
– volume: 86
  start-page: 677
  year: 1999
  end-page: 690
  article-title: Joint mean‐covariance models with applications to longitudinal data: unconstrained parameterization
  publication-title: Biometrika
– volume: 49
  start-page: 229
  year: 1996
  end-page: 252
  article-title: MIXREG: a computer program for mixed‐effects regression analysis with autocorrelated errors
  publication-title: Computer Methods and Programs in Biomedicine
– volume: 57
  start-page: 1173
  year: 2001
  end-page: 1184
  article-title: Shrinkage estimators for covariance matrices
  publication-title: Biometrics
– ident: e_1_2_1_12_2
  doi: 10.1001/archpsyc.1997.01830230043006
– ident: e_1_2_1_16_2
  doi: 10.1111/j.0006-341X.2001.01173.x
– start-page: 54
  volume-title: Multivariate Statistical Methods in Behavioral Research
  year: 1975
  ident: e_1_2_1_8_2
– ident: e_1_2_1_6_2
  doi: 10.2307/2533552
– ident: e_1_2_1_3_2
  doi: 10.1080/01621459.1996.10476677
– ident: e_1_2_1_9_2
  doi: 10.1093/biomet/86.3.677
– volume-title: Statistical Analysis With Missing Data
  year: 1987
  ident: e_1_2_1_22_2
– ident: e_1_2_1_5_2
  doi: 10.1111/j.0006-341X.2002.00225.x
– ident: e_1_2_1_13_2
  doi: 10.2307/2986151
– ident: e_1_2_1_18_2
  doi: 10.1080/01621459.1999.10473878
– volume: 10
  start-page: 1281
  year: 2000
  ident: e_1_2_1_19_2
  article-title: A natural strategy for modelling covariance matrices with application to shrinkage
  publication-title: Statistica Sinica
– ident: e_1_2_1_10_2
  doi: 10.1093/biomet/87.2.425
– ident: e_1_2_1_20_2
  doi: 10.1111/1467-9868.00353
– ident: e_1_2_1_23_2
  doi: 10.1214/ss/1177011136
– ident: e_1_2_1_14_2
  doi: 10.1111/j.0006-341X.2001.00253.x
– ident: e_1_2_1_17_2
  doi: 10.1214/aos/1176348885
– ident: e_1_2_1_2_2
  doi: 10.1093/biomet/88.4.973
– volume-title: SAS/;STAT Software: Changes and Enhancements through Release. 6.12
  year: 1997
  ident: e_1_2_1_21_2
– ident: e_1_2_1_11_2
  doi: 10.1093/biomet/89.3.553
– volume-title: Nonlinear Models for Repeated Measurement Data
  year: 1995
  ident: e_1_2_1_4_2
– ident: e_1_2_1_7_2
  doi: 10.2307/3315251
– ident: e_1_2_1_15_2
  doi: 10.1016/0169-2607(96)01723-3
SSID ssj0011527
Score 2.012757
Snippet A common class of models for longitudinal data are random effects (mixed) models. In these models, the random effects covariance matrix is typically assumed...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1631
SubjectTerms Antidepressive Agents - therapeutic use
Biological and medical sciences
Cholesky decomposition
Depression - therapy
heterogeneity
Humans
Longitudinal Studies
Medical sciences
mixed models
Models, Statistical
Psychotherapy
Title Modelling the random effects covariance matrix in longitudinal data
URI https://api.istex.fr/ark:/67375/WNG-1018BRJV-B/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.1470
https://www.ncbi.nlm.nih.gov/pubmed/12720301
https://www.proquest.com/docview/73224208
https://pubmed.ncbi.nlm.nih.gov/PMC2747645
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFL1CQ0KTEIzyFdiGkRA8ZXMdx24et4kxJnUPg8EkHiJ_RVRbE7S2aOLX42snKYUhIZ76kJuqdu9Nju1zzwF4xZTwkI3ZlFe5S7kSvuawOUcbOrJaFbrg2Ds8PhFHZ_z4PD9vWZXYCxP1IfoNN6yM8LzGAld6trsUDZ1Npr7MJS7XkaqFeOi0V44adm6teEIp5DDvdGcp2-1uXHkT3cZJvUZmpJr5yamiq8VNsPNP9uSvqDa8lg7vw5duQJGNcrGzmOsd8-M3rcf_G_EG3GvRKtmL6fUAbrl6AHfG7Xn8AO7GXT8Sm5kGsI7YNUo_P4QD9FkLkt_Eo0zix2qbKWkJJMQ03_0yHXOOTNEm4JpManLZoH3SwqJVF0Hy6iM4O3z78eAobT0bUsMlp2kxkkZUuV-GqaqShdFMK-EEdTZT1hd7ZvxFQZnWaC9hPUDRlRGmYMbYkaI2ewxrdVO7p0CGmlpGHcsKbIj1q11eaaV1oTR1hc5oAm-6_680raA5-mpcllGKmZV-wkqcsARe9pHfoojHDTGvQwr0AerqAklvMi8_n7xDJtxo__T4U7mfwPZKjiy_kctMSM4SeNElTelrFQ9gVO2axayU_umJdIYEnsQUWt4bjsPpMAG5klx9AKqAr16pJ1-DGjhuKwie-98fcuevAyw_vB_j57N_DXwO64G5iFQJuglr86uF2_IIbK63Q639BEV_Lho
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD6aNgkmIS7lFi6bkRA8ZXMdx27EExuMbqx9GBvbA5LlSyKqrSlaWzTx6_GJk5TCkBBPechJFDvn2Mf2d74P4CXTwqdszMW8SPOYa-FjDotzjKU9Z3RmMo61w4Oh6J_wg7P0bAXeNLUwgR-i3XDDyKjGawxw3JDeXrCGTkdjH-fSr9fXUNAbo_LdUcsd1W30WvGMUshu2jDPUrbdPLk0F61ht14hNlJPffcUQdfiusTzT_zkr3ltNTHt3YEvTZMCHuV8az4zW_bHb2yP_9nmu3C7TljJ2-Bh92AlLztwY1AfyXfgVtj4I6GeqQPrmL4G9uf7sItSaxXrN_GJJvGNdZMxqTEkxE6--5U6uh0Zo1LAFRmV5GKCCkpzh2pdBPGrD-Bk7_3xbj-uZRtiyyWncdaTVhSpX4npopCZNcxokQuau0Q7H--J9TcFZcagwoTzOYoprLAZs9b1NHXJQ1gtJ2X-GEjXUMdozpIMa2L9gpcXRhuTaUPzzCQ0gtfND1S25jRHaY0LFdiYmfIdprDDInjRWn4LPB7X2LyqfKA10JfniHuTqTodfkAwXG_n6OCz2olgY8lJFm_kMhGSswg2G69RPlzxDEaX-WQ-VdIPoIhoiOBR8KHFs9WJOO1GIJe8qzVAIvDlO-Xoa0UIjjsLgqf--yvn-WsD1af9AV6f_KvhJtzsHw8O1eH-8ONTWK-AjIicoM9gdXY5z5_7hGxmNqrA-wn0kDIz
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6hVqoqIR7LKwVaIyE4pfU6jpMcacvSFnaFCoVKHCw_EnXVblJ1d1HFr8cTJ1kWioQ45ZBJFDszyYz9zfcBvGRKuJSN2ZAXcR5yJVzMYXOONjS1WmU649g7PByJgxN-dBqfNqhK7IXx_BDdghtGRv29xgC_tMXOgjR0Op64ME9cub7KBU2x8No_7qij-q1cK25RiqQft8SzlO20Vy79ilZxVq8RGqmmbnYKL2txU975J3zy17S2_i8N7sK3dkQejnK-PZ_pbfPjN7LH_xvyPbjTpKvkjfev-3ArL3uwNmw25Htw2y_7Ed_N1IN1TF499_MD2EOhtZrzm7g0k7ix2mpCGgQJMdV3V6ej05EJ6gRck3FJLirUT5pb1OoiiF59CCeDt5_3DsJGtCE0POE0zNLEiCJ2dZgqiiQzmmklckFzGynroj0y7qSgTGvUl7AuQ9GFESZjxthUURs9gpWyKvMnQPqaWkZzFmXYEevKXV5opXWmNM0zHdEAXrfvT5qG0RyFNS6k52Jm0k2YxAkL4EVneelZPG6weVW7QGegrs4R9ZbE8uvoHULh0t3joy9yN4DNJR9Z3JEnkUg4C2CrdRrpghV3YFSZV_OpTNznE_EMATz2LrS4tt4Pp_0AkiXn6gyQBnz5TDk-q-nAcV1B8Ng9f-07fx2g_HQ4xOPGvxpuwdrH_YH8cDh6_xTWaxQjwiboM1iZXc3z5y4bm-nNOux-AmJPMOs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modelling+the+random+effects+covariance+matrix+in+longitudinal+data&rft.jtitle=Statistics+in+medicine&rft.au=Daniels%2C+Michael+J.&rft.au=Zhao%2C+Yan+D.&rft.date=2003-05-30&rft.issn=0277-6715&rft.eissn=1097-0258&rft.volume=22&rft.issue=10&rft.spage=1631&rft.epage=1647&rft_id=info:doi/10.1002%2Fsim.1470&rft_id=info%3Apmid%2F12720301&rft.externalDocID=PMC2747645
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon