Data preprocessing for heart disease classification: A systematic literature review

•A systematic review on the use of data preprocessing techniques for heart disease classification purpose was conducted.•A total of 49 studies published between January 2000 and June 2019 were selected and analyzed considering four review questions.•A significant number of selected studies were devo...

Full description

Saved in:
Bibliographic Details
Published inComputer methods and programs in biomedicine Vol. 195; p. 105635
Main Authors Benhar, H., Idri, A., Fernández-Alemán, J.L.
Format Journal Article
LanguageEnglish
Published Ireland Elsevier B.V 01.10.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •A systematic review on the use of data preprocessing techniques for heart disease classification purpose was conducted.•A total of 49 studies published between January 2000 and June 2019 were selected and analyzed considering four review questions.•A significant number of selected studies were devoted to data reduction task. Feature•selection was the most used data reduction sub-task. Moreover, Data cleaning was a common task in classification for cardiology and it dealt mainly with missing values and noise elimination in cardiac datasets.•In general, preprocessing either maintained or improved the performance of heart disease•Researchers concentrated more on improving the accuracy rate of the models developed while neglecting other aspects such as time complexity and comprehensibility. Early detection of heart disease is an important challenge since 17.3 million people yearly lose their lives due to heart diseases. Besides, any error in diagnosis of cardiac disease can be dangerous and risks an individual's life. Accurate diagnosis is therefore critical in cardiology. Data Mining (DM) classification techniques have been used to diagnosis heart diseases but still limited by some challenges of data quality such as inconsistencies, noise, missing data, outliers, high dimensionality and imbalanced data. Data preprocessing (DP) techniques were therefore used to prepare data with the goal of improving the performance of heart disease DM based prediction systems. The purpose of this study is to review and summarize the current evidence on the use of preprocessing techniques in heart disease classification as regards: (1) the DP tasks and techniques most frequently used, (2) the impact of DP tasks and techniques on the performance of classification in cardiology, (3) the overall performance of classifiers when using DP techniques, and (4) comparisons of different combinations classifier-preprocessing in terms of accuracy rate. A systematic literature review is carried out, by identifying and analyzing empirical studies on the application of data preprocessing in heart disease classification published in the period between January 2000 and June 2019. A total of 49 studies were therefore selected and analyzed according to the aforementioned criteria. The review results show that data reduction is the most used preprocessing task in cardiology, followed by data cleaning. In general, preprocessing either maintained or improved the performance of heart disease classifiers. Some combinations such as (ANN + PCA), (ANN + CHI) and (SVM + PCA) are promising terms of accuracy. However the deployment of these models in real-world diagnosis decision support systems is subject to several risks and limitations due to the lack of interpretation.
AbstractList Early detection of heart disease is an important challenge since 17.3 million people yearly lose their lives due to heart diseases. Besides, any error in diagnosis of cardiac disease can be dangerous and risks an individual's life. Accurate diagnosis is therefore critical in cardiology. Data Mining (DM) classification techniques have been used to diagnosis heart diseases but still limited by some challenges of data quality such as inconsistencies, noise, missing data, outliers, high dimensionality and imbalanced data. Data preprocessing (DP) techniques were therefore used to prepare data with the goal of improving the performance of heart disease DM based prediction systems.CONTEXTEarly detection of heart disease is an important challenge since 17.3 million people yearly lose their lives due to heart diseases. Besides, any error in diagnosis of cardiac disease can be dangerous and risks an individual's life. Accurate diagnosis is therefore critical in cardiology. Data Mining (DM) classification techniques have been used to diagnosis heart diseases but still limited by some challenges of data quality such as inconsistencies, noise, missing data, outliers, high dimensionality and imbalanced data. Data preprocessing (DP) techniques were therefore used to prepare data with the goal of improving the performance of heart disease DM based prediction systems.The purpose of this study is to review and summarize the current evidence on the use of preprocessing techniques in heart disease classification as regards: (1) the DP tasks and techniques most frequently used, (2) the impact of DP tasks and techniques on the performance of classification in cardiology, (3) the overall performance of classifiers when using DP techniques, and (4) comparisons of different combinations classifier-preprocessing in terms of accuracy rate.OBJECTIVEThe purpose of this study is to review and summarize the current evidence on the use of preprocessing techniques in heart disease classification as regards: (1) the DP tasks and techniques most frequently used, (2) the impact of DP tasks and techniques on the performance of classification in cardiology, (3) the overall performance of classifiers when using DP techniques, and (4) comparisons of different combinations classifier-preprocessing in terms of accuracy rate.A systematic literature review is carried out, by identifying and analyzing empirical studies on the application of data preprocessing in heart disease classification published in the period between January 2000 and June 2019. A total of 49 studies were therefore selected and analyzed according to the aforementioned criteria.METHODA systematic literature review is carried out, by identifying and analyzing empirical studies on the application of data preprocessing in heart disease classification published in the period between January 2000 and June 2019. A total of 49 studies were therefore selected and analyzed according to the aforementioned criteria.The review results show that data reduction is the most used preprocessing task in cardiology, followed by data cleaning. In general, preprocessing either maintained or improved the performance of heart disease classifiers. Some combinations such as (ANN + PCA), (ANN + CHI) and (SVM + PCA) are promising terms of accuracy. However the deployment of these models in real-world diagnosis decision support systems is subject to several risks and limitations due to the lack of interpretation.RESULTSThe review results show that data reduction is the most used preprocessing task in cardiology, followed by data cleaning. In general, preprocessing either maintained or improved the performance of heart disease classifiers. Some combinations such as (ANN + PCA), (ANN + CHI) and (SVM + PCA) are promising terms of accuracy. However the deployment of these models in real-world diagnosis decision support systems is subject to several risks and limitations due to the lack of interpretation.
•A systematic review on the use of data preprocessing techniques for heart disease classification purpose was conducted.•A total of 49 studies published between January 2000 and June 2019 were selected and analyzed considering four review questions.•A significant number of selected studies were devoted to data reduction task. Feature•selection was the most used data reduction sub-task. Moreover, Data cleaning was a common task in classification for cardiology and it dealt mainly with missing values and noise elimination in cardiac datasets.•In general, preprocessing either maintained or improved the performance of heart disease•Researchers concentrated more on improving the accuracy rate of the models developed while neglecting other aspects such as time complexity and comprehensibility. Early detection of heart disease is an important challenge since 17.3 million people yearly lose their lives due to heart diseases. Besides, any error in diagnosis of cardiac disease can be dangerous and risks an individual's life. Accurate diagnosis is therefore critical in cardiology. Data Mining (DM) classification techniques have been used to diagnosis heart diseases but still limited by some challenges of data quality such as inconsistencies, noise, missing data, outliers, high dimensionality and imbalanced data. Data preprocessing (DP) techniques were therefore used to prepare data with the goal of improving the performance of heart disease DM based prediction systems. The purpose of this study is to review and summarize the current evidence on the use of preprocessing techniques in heart disease classification as regards: (1) the DP tasks and techniques most frequently used, (2) the impact of DP tasks and techniques on the performance of classification in cardiology, (3) the overall performance of classifiers when using DP techniques, and (4) comparisons of different combinations classifier-preprocessing in terms of accuracy rate. A systematic literature review is carried out, by identifying and analyzing empirical studies on the application of data preprocessing in heart disease classification published in the period between January 2000 and June 2019. A total of 49 studies were therefore selected and analyzed according to the aforementioned criteria. The review results show that data reduction is the most used preprocessing task in cardiology, followed by data cleaning. In general, preprocessing either maintained or improved the performance of heart disease classifiers. Some combinations such as (ANN + PCA), (ANN + CHI) and (SVM + PCA) are promising terms of accuracy. However the deployment of these models in real-world diagnosis decision support systems is subject to several risks and limitations due to the lack of interpretation.
Early detection of heart disease is an important challenge since 17.3 million people yearly lose their lives due to heart diseases. Besides, any error in diagnosis of cardiac disease can be dangerous and risks an individual's life. Accurate diagnosis is therefore critical in cardiology. Data Mining (DM) classification techniques have been used to diagnosis heart diseases but still limited by some challenges of data quality such as inconsistencies, noise, missing data, outliers, high dimensionality and imbalanced data. Data preprocessing (DP) techniques were therefore used to prepare data with the goal of improving the performance of heart disease DM based prediction systems. The purpose of this study is to review and summarize the current evidence on the use of preprocessing techniques in heart disease classification as regards: (1) the DP tasks and techniques most frequently used, (2) the impact of DP tasks and techniques on the performance of classification in cardiology, (3) the overall performance of classifiers when using DP techniques, and (4) comparisons of different combinations classifier-preprocessing in terms of accuracy rate. A systematic literature review is carried out, by identifying and analyzing empirical studies on the application of data preprocessing in heart disease classification published in the period between January 2000 and June 2019. A total of 49 studies were therefore selected and analyzed according to the aforementioned criteria. The review results show that data reduction is the most used preprocessing task in cardiology, followed by data cleaning. In general, preprocessing either maintained or improved the performance of heart disease classifiers. Some combinations such as (ANN + PCA), (ANN + CHI) and (SVM + PCA) are promising terms of accuracy. However the deployment of these models in real-world diagnosis decision support systems is subject to several risks and limitations due to the lack of interpretation.
ArticleNumber 105635
Author Benhar, H.
Fernández-Alemán, J.L.
Idri, A.
Author_xml – sequence: 1
  givenname: H.
  surname: Benhar
  fullname: Benhar, H.
  email: benhar.houda@gmail.com
  organization: Software Project Management Research Team, ENSIAS, University Mohammed V in Rabat, Morocco
– sequence: 2
  givenname: A.
  surname: Idri
  fullname: Idri, A.
  email: ali.idri@um5.ac.ma, ali.idri@um5.ac.com
  organization: Software Project Management Research Team, ENSIAS, University Mohammed V in Rabat, Morocco
– sequence: 3
  givenname: J.L.
  surname: Fernández-Alemán
  fullname: Fernández-Alemán, J.L.
  email: aleman@um.es
  organization: Department of Informatics and Systems, Faculty of Computer Science, University of Murcia, Spain
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32652383$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtvWyEQRlGVqHEef6CLimU31-VhHjfqJnKbNJKlLJKuEYahwbkPF3Aq__vi2tlkkawQ8J2Z4XCKjoZxAIQ-UTKlhMqvq6nr18spI2x3ICQXH9CEasUaJaQ4QpMaahsmiTpBpzmvCCFMCPkRnXAmBeOaT9D9d1ssXidYp9FBznH4jcOY8CPYVLCPGWwG7Dpbr0J0tsRxuMRXOG9zgb5uHe5igWTLJgFO8Bzh7zk6DrbLcHFYz9Cv6x8P85_N4u7mdn61aNxM8dKEIGlrpWduVmfnaumDVIq1Xlql6FIHooVgmtBWM-Fly6l1SnIqlNct1YGfoS_7unX2PxvIxfQxO-g6O8C4yYbNGK9aapca_XyIbpY9eLNOsbdpa15E1IDeB1wac04QjIvl_2tLsrEzlJidc7MyO-dm59zsnVeUvUJfqr8JfdtDUAVVaclkF2Fw4GMCV4wf49v45SvcdXGo_9M9wfY9-B-TI6yo
CitedBy_id crossref_primary_10_1016_j_ijcard_2024_132757
crossref_primary_10_1049_sil2_12232
crossref_primary_10_3390_math11224681
crossref_primary_10_5334_dsj_2023_031
crossref_primary_10_1016_j_chemolab_2023_104933
crossref_primary_10_3390_bioengineering10121386
crossref_primary_10_3390_s22208073
crossref_primary_10_1016_j_datak_2024_102339
crossref_primary_10_1016_j_eswa_2023_120109
crossref_primary_10_1007_s11063_021_10667_8
crossref_primary_10_1155_2022_9580896
crossref_primary_10_1038_s41746_023_00757_3
crossref_primary_10_1080_21681163_2020_1811159
crossref_primary_10_1039_D4YA00570H
crossref_primary_10_1109_ACCESS_2024_3418629
crossref_primary_10_1007_s42979_023_01809_x
crossref_primary_10_4103_cmrp_cmrp_51_24
crossref_primary_10_1109_ACCESS_2024_3510035
crossref_primary_10_1088_1742_6596_1950_1_012081
crossref_primary_10_1007_s00500_023_08330_6
crossref_primary_10_3389_fdata_2024_1393758
crossref_primary_10_32604_jai_2024_050277
crossref_primary_10_1016_j_bbrc_2024_149468
crossref_primary_10_1007_s40098_024_01032_2
crossref_primary_10_3390_ijerph20146404
crossref_primary_10_3390_app11178240
crossref_primary_10_1007_s10115_022_01772_8
crossref_primary_10_1186_s40537_025_01116_7
crossref_primary_10_3390_biomed2040031
crossref_primary_10_1016_j_undsp_2021_12_003
crossref_primary_10_1016_j_eswa_2023_121608
crossref_primary_10_3390_ijerph192215167
crossref_primary_10_1007_s12046_023_02105_3
crossref_primary_10_1021_acsami_1c23604
crossref_primary_10_3390_info14040210
crossref_primary_10_3389_fmed_2025_1506363
crossref_primary_10_1109_ACCESS_2022_3208715
crossref_primary_10_1016_j_artmed_2022_102289
crossref_primary_10_1016_j_jcomm_2024_100438
crossref_primary_10_2459_JCM_0000000000001497
crossref_primary_10_3233_IDA_230140
crossref_primary_10_3390_s24227102
crossref_primary_10_1016_j_undsp_2023_01_001
crossref_primary_10_3233_JIFS_220061
crossref_primary_10_3390_math10244633
crossref_primary_10_3390_healthcare13010037
crossref_primary_10_1007_s00508_021_01970_4
crossref_primary_10_3390_a17020078
crossref_primary_10_3390_epigenomes6010001
crossref_primary_10_1080_01969722_2022_2080338
crossref_primary_10_18185_erzifbed_848004
crossref_primary_10_1007_s10845_024_02554_5
crossref_primary_10_1016_j_biosystemseng_2021_11_002
Cites_doi 10.1377/hlthaff.26.1.13
10.1038/nature14539
10.1016/j.asoc.2013.09.020
10.1109/TIT.1967.1053964
10.1088/1742-6596/1087/6/062032
10.1007/BF00116251
10.1016/j.dss.2016.10.005
10.1016/j.knosys.2019.104923
10.1016/j.compbiomed.2010.11.003
10.1093/eurheartj/ehz056
10.3844/jcssp.2006.735.739
10.1007/978-3-642-14834-7_40
10.1016/S1532-0464(03)00034-0
10.1016/S1352-2310(97)00447-0
10.1007/978-3-319-56991-8_31
10.1016/j.cmpb.2005.08.001
10.1016/j.tele.2018.11.007
10.1007/s11633-014-0778-5
10.1016/j.knosys.2015.05.014
10.1016/j.cmpb.2013.08.002
10.1016/j.ijmedinf.2016.09.005
10.1109/ICTAI.2004.93
10.1016/j.tcs.2011.05.043
10.1109/TBME.2006.873753
10.1016/j.infsof.2014.07.013
10.1016/j.media.2017.11.008
10.1016/j.ejor.2005.07.023
10.1016/j.jss.2016.05.016
10.1007/s00034-014-9864-8
10.4015/S1016237217500430
10.1007/s11704-016-5203-5
10.1016/j.eswa.2009.09.064
10.1007/978-81-322-1665-0_59
10.1016/j.infsof.2015.03.007
10.1109/TITB.2008.923147
10.1016/j.ins.2013.07.007
10.1016/j.neucom.2011.10.045
10.1016/j.artmed.2010.05.002
10.2478/v10136-012-0031-x
10.1016/j.compbiomed.2017.09.011
10.1016/j.eswa.2016.12.035
10.1016/j.jbi.2017.05.011
10.1016/j.artmed.2008.11.004
10.2307/2669967
10.1016/j.bspc.2017.12.004
10.1016/j.eswa.2017.09.022
10.1016/j.cmpb.2019.104992
10.17485/ijst/2016/v9i45/102290
10.1109/81.739259
10.1016/j.protcy.2012.02.068
10.1016/j.artmed.2008.04.007
10.24138/jcomss.v11i1.114
10.1016/j.eswa.2014.01.011
10.1016/j.jss.2016.04.058
10.1016/j.eswa.2010.06.065
10.3934/bioeng.2017.1.179
10.1016/j.eswa.2010.05.078
10.21037/mhealth.2017.09.01
10.1080/08839514.2015.1051887
10.1016/j.eswa.2009.01.041
10.1001/jamacardio.2018.0136
10.1080/08839514.2016.1193719
10.1148/radiol.2018180887
10.1016/j.cmpb.2018.05.007
10.1017/S0269888906000737
10.1016/j.jcmg.2018.01.020
10.1007/978-3-642-32909-8_35
10.1038/s41746-017-0013-1
10.1016/j.jbi.2017.01.001
10.1007/s10916-014-0048-7
10.1109/TITB.2010.2094197
10.1007/s10916-018-1134-z
10.1016/S0261-5177(99)00067-9
10.1016/j.jbi.2012.04.013
10.1016/j.compbiomed.2013.10.016
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright © 2020 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: Copyright © 2020 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.cmpb.2020.105635
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1872-7565
ExternalDocumentID 32652383
10_1016_j_cmpb_2020_105635
S0169260720314681
Genre Systematic Review
Journal Article
GroupedDBID ---
--K
--M
-~X
.1-
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
LG9
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SBC
SDF
SDG
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
T5K
UHS
WUQ
XPP
Z5R
ZGI
ZY4
~G-
AACTN
AAIAV
ABLVK
ABTAH
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
EFLBG
LCYCR
RIG
AAYXX
AFCTW
AGRNS
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c473t-ff619a6d2c456337bdf67729d6a771b8f085528019825d6931ac763157d8918f3
IEDL.DBID .~1
ISSN 0169-2607
1872-7565
IngestDate Fri Jul 11 02:13:15 EDT 2025
Mon Jul 21 05:57:37 EDT 2025
Tue Jul 01 02:41:03 EDT 2025
Thu Apr 24 23:01:28 EDT 2025
Fri Feb 23 02:47:09 EST 2024
Tue Aug 26 16:33:32 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Literature review
Datamining
Cardiology
Cardiac datasets
Data preprocessing
Language English
License Copyright © 2020 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c473t-ff619a6d2c456337bdf67729d6a771b8f085528019825d6931ac763157d8918f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ObjectType-Undefined-4
PMID 32652383
PQID 2423056619
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2423056619
pubmed_primary_32652383
crossref_citationtrail_10_1016_j_cmpb_2020_105635
crossref_primary_10_1016_j_cmpb_2020_105635
elsevier_sciencedirect_doi_10_1016_j_cmpb_2020_105635
elsevier_clinicalkey_doi_10_1016_j_cmpb_2020_105635
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2020
2020-10-00
2020-Oct
20201001
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: October 2020
PublicationDecade 2020
PublicationPlace Ireland
PublicationPlace_xml – name: Ireland
PublicationTitle Computer methods and programs in biomedicine
PublicationTitleAlternate Comput Methods Programs Biomed
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Karabulut, Özel, İbrikçi (bib0102) 2012; 1
García, Luengo, Herrera (bib0012) 2015
Jabbar, Deekshatulu, Chandra (bib0031) Mar. 2015
Lecun, Bengio, Hinton (bib0030) 2015
Jabbar, Deekshatulu, Chandra (bib0055) 2013; 13
Idri, Chlioui, El Ouassif (bib0008) 2018
Pizzi (bib0065) 2011; 412
Melgani, Bazi (bib0067) 2008; 12
Yu, Chen (bib0084) 2009; 46
Tison (bib0039) 2018
Cover, Hart (bib0125) Jan. 1967; 13
Liu (bib0044) Sep. 2018; 1087
Dag, Oztekin, Yucel, Bulur, Megahed (bib0016) 2017; 94
Benhar, Idri, Hosni (bib0024) 2020
Shao, Hou, Chiu (bib0003) 2014; 14
Idri, Hosni, Abran (bib0050) 2016; 118
(accessed Oct. 08, 2019).
J. Mohamad-Saleh and B. S. Hoyle, “Improved Neural Network Performance Using Principal Component Analysis on Matlab.” 2008.
Han, Kamber, Pei (bib0124) 2012
Gardner, Dorling (bib0119) Aug. 1998; 32
Pławiak (bib0068) 2018
Anbarasi, Anupriya, Iyengar (bib0069) 2010
.
Mustaqeem, Anwar, Majid, Khan (bib0005) 2017
Haixiang, Yijing, Shang, Mingyun, Yuanyue, Bing (bib0017) 2017; 73
Bolón-Canedo, Sánchez-Maroño, Alonso-Betanzos (bib0074) Sep. 2015; 86
Journal Citation Reports.
Fayyad, Piatetsky-Shapiro, Smyth (bib0014) 1996; 17
Li, Li, Zhu, Kambhamettu (bib0115) 2002
Jiang, Zhang, Zhao, Albayrak (bib0037) 2006
Al Shalabi, Shaaban, Kasasbeh (bib0080) 2006; 2
Kohli, Arora (bib0118) 2018
Jerez (bib0060) 2010; 50
Hejazi, Al-Haddad, Singh, Hashim, Aziz (bib0073) 2015; 29
Asl, Setarehdan, Mohebbi (bib0072) 2008; 44
“World Health Organization,” 2019.
(accessed Nov. 26, 2019).
Vivekanandan, Sriman (bib0114) 2017; 90
El Idrissi, Idri, Bakkoury (bib0007) 2018
Dreiseitl, Ohno-Machado (bib0098) Oct. 2002; 35
Wang, Chiang, Hsu, Yang (bib0035) Sep. 2013; 116
Kadi, Idri, Fernandez-Aleman (bib0006) Aug. 2017; 1
Song, Lee, Cho, Lee, Yoo (bib0032) 2005; 3
Kolukisa (bib0066) 2019
Gao, Yang, Xing, Xu (bib0107) Jul. 2012
Subasi, Gursoy (bib0104) 2010; 37
Krittanawong (bib0029) 2019
Law (bib0120) Aug. 2000; 21
Zhou, Tian, Lim (bib0082) 2015; 26
Betancur (bib0042) 2018
Al Khaldy, Kambhampati (bib0095) 2018
Zadeh (bib0094) 1999; 46
Guyon, Steve, Masoud, Lotfi (bib0018) 2006; 207
Loh, Then (bib0027) 2017
Abawajy, Kelarev, Chowdhury (bib0061) 2013; 112
Idri, Amazal, Abran (bib0052) 2015; 58
Xu (bib0105) 2006; 2
Janardhanan, L., Sabika (bib0103) . 2015; 11
Bachri, Kusnadi, Nurhayati (bib0100) 2017; 8
Almuhaideb, Menai (bib0057) 2016; 10
Pławiak, Acharya (bib0086) 2019
Vivencio, Hruschka, Do Carmo Nicoletti, Dos Santos, Galvão (bib0097) 2007
Poolsawad, Moore, Kambhampati, Cleland (bib0022) 2014; 11
Petersen, Vakkalanka, Kuzniarz (bib0047) 2015; 64
Aziz, Verma, Srivastava (bib0071) 2017
Kadi, Idri, Fernandez-Aleman (bib0010) 2017; 97
Patil, Joshi, Toshniwal (bib0023) 2010; 94
Zaki, Meira (bib0075) 2014
Banerjee, Bhattacharya, Alam (bib0064) 2018
Rajesh, Dhuli (bib0116) 2018
Fitkov-Norris, Vahid, Hand (bib0090) 2012
rankings (accessed Dec. 02, 2019).
Yilmaz, Inan, Uzer (bib0002) 2014; 38
Sardi, Idri, Fernández-Alemán (bib0051) Jul. 2017; 71
Amin, Chiam, Varathan (bib0117) 2019
Abraham, Simha, Iyengar (bib0076) Dec. 2007
Tuncer, Dogan, Pławiak, Rajendra Acharya (bib0085) 2019
MTW, Motoda (bib0025) 1999
Amato, López, Peña-Méndez, Vaňhara, Hampl, Havel (bib0099) 2013; 11
Vapnik (bib0122) 2000
García, Luengo, Herrera (bib0070) 2015; 72
Patil, Joshi, Toshniwal (bib0109) 2010; 37
Polat, Gunes (bib0113) 2009; 36
Statlog (Heart) Data Set.
Babaoglu, Findik, Ülker (bib0111) 2010; 37
Tang, Khoshgoftaar (bib0108) 2004
Madani, Arnaout, Mofrad, Arnaout (bib0040) 2018
Jabbar, Deekshatulu, Chandra (bib0083) Dec. 2013
Crone, Lessmann, Stahlbock (bib0078) 2006
Zreik (bib0043) 2018
Kutlu, Kuntalp (bib0081) 2011; 41
Sasikala, Appavu, Geetha (bib0034) 2014; 243
Alickovic, Subasi (bib0036) 2014; 34
“No Title, ” Arrhythmia Data Set.
Bhargava, Sharma, Bhargava, Mathuria (bib0126) 2013; 3
Abdel-Aal (bib0110) 2005; 80
Miotto, Wang, Wang, Jiang, Dudley (bib0028) 2017
Esfandiari, Babavalian, Moghadam, Tabar (bib0009) 2014; 41
Exarchos, Papaloukas, Fotiadis, Michalis (bib0077) 2006; 53
Kurgan, Musilek (bib0015) 2006; 21
Ma, Guo (bib0123) 2014
Ling, Sheng (bib0093) 2008
A. Kofod-petersen, “How to do a Structured Literature Review in computer science.” pp. 1–7, 2014.
Qin, Guan, Wang (bib0020) Dec. 2017; 29
Seah, Tang, Kitchen, Gaillard, Dixon (bib0041) 2019
Yu, Liu (bib0021) 2004; 5
Jovic, Brkic, Bogunovic (bib0019) May 2015
Huang, Chan, Dong (bib0063) 2017; 66
Jaganathan, Kuppuchamy (bib0054) 2013; 43
Idri, Benhar, Fernández-Alemán, Kadi (bib0026) Aug. 2018; 162
López, Fernández, García, Palade, Herrera (bib0096) Nov. 2013; 250
Nguyen, Bouzerdoum, Phung (bib0092) 2009
Abdar, Książek, Acharya, Tan, Makarenkov, Pławiak (bib0091) 2019
Kitchenham, Charters (bib0045) 2007; 45
Benhar, Idri, Fernández-Alemán (bib0011) Jan. 2019; 43
“UCI Machine Learning Repository: Heart Disease Data Set,” 2019.
Maimon, Rokach (bib0121) 2010
Son, Kim, Kim, Park, Kim (bib0112) 2012; 45
Quinlan (bib0127) 1986; 1
Sáez, Krawczyk, Woźniak (bib0033) 2016; 30
Idri, Abnane, Abran (bib0053) 2015
Ragothaman, Sarojini (bib0013) Dec. 2016; 9
The CORE Conference Ranking Exercise – CORE Portal.
Sufi, Khalil (bib0079) 2011; 15
Zhu, Zhu, Chen (bib0106) 2005
Hannun (bib0038) 2019
Zhang, Kambhampati, Davis, Goode, Cleland (bib0062) 2012
Verma, Srivastava, Negi (bib0058) 2017
Gaziano (bib0001) 2007
Idri, Abnane, Abran (bib0059) 2016; 117
Peter, Somasundaram (bib0056) 2012; 2
Crone (10.1016/j.cmpb.2020.105635_bib0078) 2006
Subasi (10.1016/j.cmpb.2020.105635_bib0104) 2010; 37
Haixiang (10.1016/j.cmpb.2020.105635_bib0017) 2017; 73
Vivekanandan (10.1016/j.cmpb.2020.105635_bib0114) 2017; 90
Idri (10.1016/j.cmpb.2020.105635_bib0059) 2016; 117
Sardi (10.1016/j.cmpb.2020.105635_bib0051) 2017; 71
Ling (10.1016/j.cmpb.2020.105635_bib0093) 2008
Bhargava (10.1016/j.cmpb.2020.105635_bib0126) 2013; 3
Kadi (10.1016/j.cmpb.2020.105635_bib0006) 2017; 1
Idri (10.1016/j.cmpb.2020.105635_bib0050) 2016; 118
Tuncer (10.1016/j.cmpb.2020.105635_bib0085) 2019
Banerjee (10.1016/j.cmpb.2020.105635_bib0064) 2018
Asl (10.1016/j.cmpb.2020.105635_bib0072) 2008; 44
Gao (10.1016/j.cmpb.2020.105635_bib0107) 2012
Verma (10.1016/j.cmpb.2020.105635_bib0058) 2017
Aziz (10.1016/j.cmpb.2020.105635_bib0071) 2017
Shao (10.1016/j.cmpb.2020.105635_bib0003) 2014; 14
Ragothaman (10.1016/j.cmpb.2020.105635_bib0013) 2016; 9
Al Khaldy (10.1016/j.cmpb.2020.105635_bib0095) 2018
Al Shalabi (10.1016/j.cmpb.2020.105635_bib0080) 2006; 2
Poolsawad (10.1016/j.cmpb.2020.105635_bib0022) 2014; 11
Idri (10.1016/j.cmpb.2020.105635_bib0053) 2015
Idri (10.1016/j.cmpb.2020.105635_bib0052) 2015; 58
Peter (10.1016/j.cmpb.2020.105635_bib0056) 2012; 2
Fayyad (10.1016/j.cmpb.2020.105635_bib0014) 1996; 17
Abawajy (10.1016/j.cmpb.2020.105635_bib0061) 2013; 112
Kolukisa (10.1016/j.cmpb.2020.105635_bib0066) 2019
Zhang (10.1016/j.cmpb.2020.105635_bib0062) 2012
López (10.1016/j.cmpb.2020.105635_bib0096) 2013; 250
Mustaqeem (10.1016/j.cmpb.2020.105635_bib0005) 2017
Jaganathan (10.1016/j.cmpb.2020.105635_bib0054) 2013; 43
Idri (10.1016/j.cmpb.2020.105635_bib0008) 2018
Tang (10.1016/j.cmpb.2020.105635_bib0108) 2004
Zreik (10.1016/j.cmpb.2020.105635_bib0043) 2018
Xu (10.1016/j.cmpb.2020.105635_bib0105) 2006; 2
Quinlan (10.1016/j.cmpb.2020.105635_bib0127) 1986; 1
Zhou (10.1016/j.cmpb.2020.105635_bib0082) 2015; 26
10.1016/j.cmpb.2020.105635_bib0049
10.1016/j.cmpb.2020.105635_bib0048
10.1016/j.cmpb.2020.105635_bib0046
García (10.1016/j.cmpb.2020.105635_bib0012) 2015
Jabbar (10.1016/j.cmpb.2020.105635_bib0031) 2015
Hannun (10.1016/j.cmpb.2020.105635_bib0038) 2019
Benhar (10.1016/j.cmpb.2020.105635_bib0011) 2019; 43
Jerez (10.1016/j.cmpb.2020.105635_bib0060) 2010; 50
Zhu (10.1016/j.cmpb.2020.105635_bib0106) 2005
Karabulut (10.1016/j.cmpb.2020.105635_bib0102) 2012; 1
Wang (10.1016/j.cmpb.2020.105635_bib0035) 2013; 116
Son (10.1016/j.cmpb.2020.105635_bib0112) 2012; 45
Bachri (10.1016/j.cmpb.2020.105635_bib0100) 2017; 8
Jabbar (10.1016/j.cmpb.2020.105635_bib0083) 2013
Guyon (10.1016/j.cmpb.2020.105635_bib0018) 2006; 207
El Idrissi (10.1016/j.cmpb.2020.105635_bib0007) 2018
Yu (10.1016/j.cmpb.2020.105635_bib0084) 2009; 46
Sáez (10.1016/j.cmpb.2020.105635_bib0033) 2016; 30
Petersen (10.1016/j.cmpb.2020.105635_bib0047) 2015; 64
Zadeh (10.1016/j.cmpb.2020.105635_bib0094) 1999; 46
Vivencio (10.1016/j.cmpb.2020.105635_bib0097) 2007
Rajesh (10.1016/j.cmpb.2020.105635_bib0116) 2018
Abdel-Aal (10.1016/j.cmpb.2020.105635_bib0110) 2005; 80
MTW (10.1016/j.cmpb.2020.105635_bib0025) 1999
Sufi (10.1016/j.cmpb.2020.105635_bib0079) 2011; 15
Loh (10.1016/j.cmpb.2020.105635_bib0027) 2017
Qin (10.1016/j.cmpb.2020.105635_bib0020) 2017; 29
Jiang (10.1016/j.cmpb.2020.105635_bib0037) 2006
Idri (10.1016/j.cmpb.2020.105635_bib0026) 2018; 162
Huang (10.1016/j.cmpb.2020.105635_bib0063) 2017; 66
Sasikala (10.1016/j.cmpb.2020.105635_bib0034) 2014; 243
10.1016/j.cmpb.2020.105635_bib0101
Cover (10.1016/j.cmpb.2020.105635_bib0125) 1967; 13
Benhar (10.1016/j.cmpb.2020.105635_bib0024) 2020
Jabbar (10.1016/j.cmpb.2020.105635_bib0055) 2013; 13
Yu (10.1016/j.cmpb.2020.105635_bib0021) 2004; 5
Law (10.1016/j.cmpb.2020.105635_bib0120) 2000; 21
Ma (10.1016/j.cmpb.2020.105635_bib0123) 2014
Betancur (10.1016/j.cmpb.2020.105635_bib0042) 2018
Miotto (10.1016/j.cmpb.2020.105635_bib0028) 2017
Bolón-Canedo (10.1016/j.cmpb.2020.105635_bib0074) 2015; 86
Anbarasi (10.1016/j.cmpb.2020.105635_bib0069) 2010
Han (10.1016/j.cmpb.2020.105635_bib0124) 2012
Abdar (10.1016/j.cmpb.2020.105635_bib0091) 2019
Li (10.1016/j.cmpb.2020.105635_bib0115) 2002
Dreiseitl (10.1016/j.cmpb.2020.105635_bib0098) 2002; 35
Abraham (10.1016/j.cmpb.2020.105635_bib0076) 2007
Kohli (10.1016/j.cmpb.2020.105635_bib0118) 2018
Yilmaz (10.1016/j.cmpb.2020.105635_bib0002) 2014; 38
Melgani (10.1016/j.cmpb.2020.105635_bib0067) 2008; 12
Jovic (10.1016/j.cmpb.2020.105635_bib0019) 2015
Pławiak (10.1016/j.cmpb.2020.105635_bib0086) 2019
Pizzi (10.1016/j.cmpb.2020.105635_bib0065) 2011; 412
Madani (10.1016/j.cmpb.2020.105635_bib0040) 2018
Kutlu (10.1016/j.cmpb.2020.105635_bib0081) 2011; 41
Gaziano (10.1016/j.cmpb.2020.105635_bib0001) 2007
Esfandiari (10.1016/j.cmpb.2020.105635_bib0009) 2014; 41
Nguyen (10.1016/j.cmpb.2020.105635_bib0092) 2009
Song (10.1016/j.cmpb.2020.105635_bib0032) 2005; 3
Seah (10.1016/j.cmpb.2020.105635_bib0041) 2019
Zaki (10.1016/j.cmpb.2020.105635_bib0075) 2014
Polat (10.1016/j.cmpb.2020.105635_bib0113) 2009; 36
10.1016/j.cmpb.2020.105635_bib0004
Kitchenham (10.1016/j.cmpb.2020.105635_bib0045) 2007; 45
Gardner (10.1016/j.cmpb.2020.105635_bib0119) 1998; 32
García (10.1016/j.cmpb.2020.105635_bib0070) 2015; 72
Amato (10.1016/j.cmpb.2020.105635_bib0099) 2013; 11
Maimon (10.1016/j.cmpb.2020.105635_bib0121) 2010
Hejazi (10.1016/j.cmpb.2020.105635_bib0073) 2015; 29
Janardhanan (10.1016/j.cmpb.2020.105635_bib0103) 2015; 11
Fitkov-Norris (10.1016/j.cmpb.2020.105635_bib0090) 2012
Babaoglu (10.1016/j.cmpb.2020.105635_bib0111) 2010; 37
Vapnik (10.1016/j.cmpb.2020.105635_bib0122) 2000
Kurgan (10.1016/j.cmpb.2020.105635_bib0015) 2006; 21
Krittanawong (10.1016/j.cmpb.2020.105635_bib0029) 2019
Lecun (10.1016/j.cmpb.2020.105635_bib0030) 2015
10.1016/j.cmpb.2020.105635_bib0089
10.1016/j.cmpb.2020.105635_bib0088
10.1016/j.cmpb.2020.105635_bib0087
Patil (10.1016/j.cmpb.2020.105635_bib0023) 2010; 94
Alickovic (10.1016/j.cmpb.2020.105635_bib0036) 2014; 34
Liu (10.1016/j.cmpb.2020.105635_bib0044) 2018; 1087
Pławiak (10.1016/j.cmpb.2020.105635_bib0068) 2018
Kadi (10.1016/j.cmpb.2020.105635_bib0010) 2017; 97
Amin (10.1016/j.cmpb.2020.105635_bib0117) 2019
Dag (10.1016/j.cmpb.2020.105635_bib0016) 2017; 94
Exarchos (10.1016/j.cmpb.2020.105635_bib0077) 2006; 53
Tison (10.1016/j.cmpb.2020.105635_bib0039) 2018
Almuhaideb (10.1016/j.cmpb.2020.105635_bib0057) 2016; 10
Patil (10.1016/j.cmpb.2020.105635_bib0109) 2010; 37
References_xml – start-page: 373
  year: 2004
  end-page: 378
  ident: bib0108
  article-title: Noise identification with the k-means algorithm
  publication-title: 16th IEEE Int. Conf. Tools with Artif. Intell.
– volume: 1087
  year: Sep. 2018
  ident: bib0044
  article-title: Feature Extraction and Image Recognition with Convolutional Neural Networks
  publication-title: J. Phys. Conf. Ser.
– reference: “Statlog (Heart) Data Set.”
– year: 2008
  ident: bib0093
  article-title: Cost-Sensitive Learning and the Class Imbalance Problem
  publication-title: Encycl. Mach. Learn.
– year: 2018
  ident: bib0118
  article-title: Application of machine learning in disease prediction
  publication-title: 2018 4th International Conference on Computing Communication and Automation, ICCCA 2018
– volume: 73
  start-page: 220
  year: 2017
  end-page: 239
  ident: bib0017
  article-title: Learning from class-imbalanced data: Review of methods and applications
  publication-title: Expert Systems with Applications
– year: 2014
  ident: bib0123
  article-title: Support Vector Machines Applications
– start-page: 481
  year: 2007
  end-page: 485
  ident: bib0097
  article-title: Feature-weighted k-nearest neighbor classifier
  publication-title: Proceedings of the 2007 IEEE Symposium on Foundations of Computational Intelligence, FOCI 2007
– year: 2017
  ident: bib0028
  article-title: Deep learning for healthcare: Review, opportunities and challenges
  publication-title: Brief. Bioinform.
– year: 2018
  ident: bib0064
  article-title: Time series and morphological feature extraction for classifying coronary artery disease from photoplethysmogram
  publication-title: ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
– year: 2012
  ident: bib0090
  article-title: Evaluating the Impact of Categorical Data Encoding and Scaling on Neural Network Classification Performance: The Case of Repeat Consumption of Identical Cultural Goods
  publication-title: Communications in Computer and Information Science
– volume: 58
  start-page: 206
  year: 2015
  end-page: 230
  ident: bib0052
  article-title: Analogy-based software development effort estimation: A systematic mapping and review
  publication-title: Information and Software Technology
– volume: 26
  start-page: S1757
  year: 2015
  end-page: S1762
  ident: bib0082
  article-title: Fuzzy Naive Bayesian for constructing regulated network with weights
  publication-title: Biomed. Mater. Eng.
– start-page: 592
  year: 2005
  end-page: 596
  ident: bib0106
  article-title: Effect Analysis of Dimension Reduction on Support Vector Machines
  publication-title: 2005 International Conference on Natural Language Processing and Knowledge Engineering
– start-page: 1
  year: 2006
  end-page: 4
  ident: bib0037
  article-title: ECG Arrhythmias Recognition System Based on Independent Component Analysis Feature Extraction
  publication-title: TENCON 2006 - 2006 IEEE Region 10 Conference
– start-page: 44
  year: Dec. 2007
  end-page: 49
  ident: bib0076
  article-title: Medical Datamining with a New Algorithm for Feature Selection and Naive Bayesian Classifier
  publication-title: 10th International Conference on Information Technology (ICIT 2007)
– start-page: 391
  year: 2020
  end-page: 398
  ident: bib0024
  article-title: Impact of Threshold Values for Filter-based Univariate Feature Selection in Heart Disease Classification
  publication-title: Proceedings of the 13th International Joint Conference on Biomedical Engineering Systems and Technologies
– start-page: 1
  year: Mar. 2015
  end-page: 6
  ident: bib0031
  article-title: Computational intelligence technique for early diagnosis of heart disease
  publication-title: 2015 IEEE International Conference on Engineering and Technology (ICETECH)
– reference: . (accessed Nov. 26, 2019).
– volume: 38
  year: 2014
  ident: bib0002
  article-title: A New Data Preparation Method Based on Clustering Algorithms for Diagnosis Systems of Heart and Diabetes Diseases
  publication-title: J. Med. Syst.
– year: 2019
  ident: bib0086
  article-title: Novel deep genetic ensemble of classifiers for arrhythmia detection using ECG signals
  publication-title: Neural Comput. Appl.
– volume: 1
  start-page: 81
  year: 1986
  end-page: 106
  ident: bib0127
  article-title: Induction of Decision Trees
  publication-title: Mach. Learn.
– start-page: 657
  year: 2002
  end-page: 660
  ident: bib0115
  article-title: Improving medical/biological data classification performance by wavelet preprocessing
  publication-title: 2002 IEEE International Conference on Data Mining, 2002. Proceedings.
– reference: “No Title, ” Arrhythmia Data Set.
– volume: 250
  start-page: 113
  year: Nov. 2013
  end-page: 141
  ident: bib0096
  article-title: An insight into classification with imbalanced data: Empirical results and current trends on using data intrinsic characteristics
  publication-title: Inf. Sci. (Ny).
– year: 2018
  ident: bib0116
  article-title: Classification of imbalanced ECG beats using re-sampling techniques and AdaBoost ensemble classifier
  publication-title: Biomed. Signal Process. Control
– volume: 1
  year: Aug. 2017
  ident: bib0006
  article-title: Systematic mapping study of data mining–based empirical studies in cardiology
  publication-title: Health Informatics J
– volume: 112
  start-page: 720
  year: 2013
  end-page: 730
  ident: bib0061
  article-title: Multistage approach for clustering and classification of ECG data
  publication-title: Comput. Methods Programs Biomed.
– year: 2018
  ident: bib0095
  article-title: Performance Analysis of Various Missing Value Imputation Methods on Heart Failure Dataset
  publication-title: Lecture Notes in Networks and Systems
– year: 2019
  ident: bib0038
  article-title: Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network
  publication-title: Nature Medicine
– volume: 117
  start-page: 595
  year: 2016
  end-page: 611
  ident: bib0059
  article-title: Missing data techniques in analogy-based software development effort estimation
  publication-title: J. Syst. Softw.
– volume: 5
  start-page: 1205
  year: 2004
  end-page: 1224
  ident: bib0021
  article-title: Efficient Feature Selection via Analysis of Relevance and Redundancy
  publication-title: J. Mach. Learn. Res.
– volume: 94
  start-page: 423
  year: 2010
  end-page: 434
  ident: bib0023
  article-title: Impact of K-means on the performance of classifiers for labeled data
  publication-title: Communications in Computer and Information Science
– volume: 41
  start-page: 37
  year: 2011
  end-page: 45
  ident: bib0081
  article-title: A multi-stage automatic arrhythmia recognition and classification system
  publication-title: Comput. Biol. Med.
– reference: J. Mohamad-Saleh and B. S. Hoyle, “Improved Neural Network Performance Using Principal Component Analysis on Matlab.” 2008.
– volume: 30
  start-page: 590
  year: 2016
  end-page: 609
  ident: bib0033
  article-title: On the Influence of Class Noise in Medical Data Classification: Treatment Using Noise Filtering Methods
  publication-title: Appl. Artif. Intell.
– volume: 50
  start-page: 105
  year: 2010
  end-page: 115
  ident: bib0060
  article-title: Missing data imputation using statistical and machine learning methods in a real breast cancer problem
  publication-title: Artif. Intell. Med.
– year: 2019
  ident: bib0041
  article-title: Chest radiographs in congestive heart failure: Visualizing neural network learning
  publication-title: Radiology
– year: 2006
  ident: bib0078
  article-title: The impact of preprocessing on data mining: An evaluation of classifier sensitivity in direct marketing
  publication-title: Eur. J. Oper. Res.
– volume: 66
  start-page: 161
  year: 2017
  end-page: 170
  ident: bib0063
  article-title: MACE prediction of acute coronary syndrome via boosted resampling classification using electronic medical records
  publication-title: J. Biomed. Inform.
– volume: 118
  start-page: 151
  year: 2016
  end-page: 175
  ident: bib0050
  article-title: Systematic literature review of ensemble effort estimation
  publication-title: J. Syst. Softw.
– year: 2000
  ident: bib0122
  article-title: The Nature of Statistical Learning Theory
– volume: 37
  start-page: 8659
  year: 2010
  end-page: 8666
  ident: bib0104
  article-title: EEG signal classification using PCA, ICA, LDA and support vector machines
  publication-title: Expert Syst. Appl.
– volume: 94
  start-page: 42
  year: 2017
  end-page: 52
  ident: bib0016
  article-title: Predicting heart transplantation outcomes through data analytics
  publication-title: Decis. Support Syst.
– year: 1999
  ident: bib0025
  article-title: Feature Extraction Construction and Selection: A Data Mining Perspective
  publication-title: J. Am. Stat. Assoc.
– volume: 11
  start-page: 162
  year: 2014
  end-page: 179
  ident: bib0022
  article-title: Issues in the mining of heart failure datasets
  publication-title: Int. J. Autom. Comput.
– volume: 116
  start-page: 38
  year: Sep. 2013
  end-page: 45
  ident: bib0035
  article-title: ECG arrhythmia classification using a probabilistic neural network with a feature reduction method
  publication-title: Neurocomputing
– volume: 13
  start-page: 5
  year: 2013
  end-page: 14
  ident: bib0055
  article-title: Classification of Heart Disease using Artificial Neural Network and Feature Subset Selection
  publication-title: Glob. J. Comput. Sci. Technol.
– start-page: 1200
  year: May 2015
  end-page: 1205
  ident: bib0019
  article-title: A review of feature selection methods with applications
  publication-title: 2015 38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO)
– reference: “UCI Machine Learning Repository: Heart Disease Data Set,” 2019.
– year: 2018
  ident: bib0042
  article-title: Deep Learning for Prediction of Obstructive Disease From Fast Myocardial Perfusion SPECT: A Multicenter Study
  publication-title: JACC Cardiovasc. Imaging
– year: 2019
  ident: bib0091
  article-title: A new machine learning technique for an accurate diagnosis of coronary artery disease
  publication-title: Comput. Methods Programs Biomed.
– start-page: 1142
  year: 2018
  end-page: 1152
  ident: bib0007
  article-title: Data Mining Techniques in Diabetes Self-management: A Systematic Map
  publication-title: Trends and Advances in Information Systems and Technologies
– volume: 8
  start-page: 731
  year: 2017
  end-page: 739
  ident: bib0100
  article-title: Feature selection based on CHI square in artificial neural network to predict the accuracy of student study period
  publication-title: Int. J. Civ. Eng. Technol.
– year: 2019
  ident: bib0085
  article-title: Automated arrhythmia detection using novel hexadecimal local pattern and multilevel wavelet transform with ECG signals
  publication-title: Knowledge-Based Syst
– volume: 43
  start-page: 17
  year: Jan. 2019
  ident: bib0011
  article-title: A Systematic Mapping Study of Data Preparation in Heart Disease Knowledge Discovery
  publication-title: J. Med. Syst.
– year: 2010
  ident: bib0069
  article-title: Enhanced Prediction of Heart Disease with Feature Subset Selection using Genetic Algorithm
  publication-title: Int. J. Eng. Sci. Technol.
– reference: “World Health Organization,” 2019.
– volume: 29
  year: Dec. 2017
  ident: bib0020
  article-title: APPLICATION OF ENSEMBLE ALGORITHM INTEGRATING MULTIPLE CRITERIA FEATURE SELECTION IN CORONARY HEART DISEASE DETECTION
  publication-title: Biomed. Eng. Appl. Basis Commun.
– volume: 32
  start-page: 2627
  year: Aug. 1998
  end-page: 2636
  ident: bib0119
  article-title: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences
  publication-title: Atmos. Environ.
– year: 2014
  ident: bib0075
  article-title: Data Mining and Analysis: Fundamental Concepts and Algorithms
– year: 2017
  ident: bib0058
  article-title: An intelligent noninvasive model for coronary artery disease detection
  publication-title: Complex Intell. Syst.
– start-page: 1
  year: 2018
  end-page: 10
  ident: bib0008
  article-title: A systematic map of data analytics in breast cancer
  publication-title: Proceedings of the Australasian Computer Science Week Multiconference on - ACSW ’18
– volume: 10
  start-page: 1082
  year: 2016
  end-page: 1102
  ident: bib0057
  article-title: Impact of preprocessing on medical data classification
  publication-title: Front. Comput. Sci.
– start-page: 3656
  year: 2017
  end-page: 3659
  ident: bib0005
  article-title: Wrapper method for feature selection to classify cardiac arrhythmia
  publication-title: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society
– volume: 64
  start-page: 1
  year: 2015
  end-page: 18
  ident: bib0047
  article-title: Guidelines for conducting systematic mapping studies in software engineering: An update
  publication-title: Information and Software Technology
– volume: 43
  start-page: 2222
  year: 2013
  end-page: 2229
  ident: bib0054
  article-title: A threshold fuzzy entropy based feature selection for medical database classification
  publication-title: Comput. Biol. Med.
– volume: 412
  start-page: 5909
  year: 2011
  end-page: 5925
  ident: bib0065
  article-title: Fuzzy quartile encoding as a preprocessing method for biomedical pattern classification
  publication-title: Theor. Comput. Sci.
– volume: 162
  start-page: 69
  year: Aug. 2018
  end-page: 85
  ident: bib0026
  article-title: A systematic map of medical data preprocessing in knowledge discovery
  publication-title: Comput. Methods Programs Biomed.
– volume: 2
  start-page: 735
  year: 2006
  end-page: 739
  ident: bib0080
  article-title: Data Mining: A Preprocessing Engine
  publication-title: J. Comput. Sci.
– volume: 90
  start-page: 125
  year: 2017
  end-page: 136
  ident: bib0114
  article-title: Optimal feature selection using a modified differential evolution algorithm and its effectiveness for prediction of heart disease
  publication-title: Comput. Biol. Med.
– year: 2012
  ident: bib0124
  article-title: Data Mining: Concepts and Techniques
– volume: 243
  start-page: 599
  year: 2014
  end-page: 608
  ident: bib0034
  article-title: RF-SEA-Based Feature Selection for Data Classification in Medical Domain
  publication-title: Intell. Comput. Networking, Informatics
– volume: 86
  start-page: 33
  year: Sep. 2015
  end-page: 45
  ident: bib0074
  article-title: Recent advances and emerging challenges of feature selection in the context of big data
  publication-title: Knowledge-Based Syst
– volume: 14
  start-page: 47
  year: 2014
  end-page: 52
  ident: bib0003
  article-title: Hybrid intelligent modeling schemes for heart disease classification
  publication-title: Appl. Soft Comput. J.
– volume: 17
  start-page: 37
  year: 1996
  ident: bib0014
  article-title: From Data Mining to Knowledge Discovery in Databases
  publication-title: AI Mag
– year: 2018
  ident: bib0068
  article-title: Novel methodology of cardiac health recognition based on ECG signals and evolutionary-neural system
  publication-title: Expert Syst. Appl.
– volume: 37
  start-page: 3177
  year: 2010
  end-page: 3183
  ident: bib0111
  article-title: A comparison of feature selection models utilizing binary particle swarm optimization and genetic algorithm in determining coronary artery disease using support vector machine
  publication-title: Expert Syst. Appl.
– reference: “The CORE Conference Ranking Exercise – CORE Portal.”
– volume: 71
  start-page: 31
  year: Jul. 2017
  end-page: 48
  ident: bib0051
  article-title: A systematic review of gamification in e-Health
  publication-title: J. Biomed. Inform.
– volume: 37
  start-page: 8102
  year: 2010
  end-page: 8108
  ident: bib0109
  article-title: Hybrid prediction model for Type-2 diabetic patients
  publication-title: Expert Syst. Appl.
– volume: 45
  start-page: 999
  year: 2012
  end-page: 1008
  ident: bib0112
  article-title: Decision-making model for early diagnosis of congestive heart failure using rough set and decision tree approaches
  publication-title: J. Biomed. Inform.
– volume: 2
  year: 2006
  ident: bib0105
  article-title: Adaptive Intrusion Detection Based on Machine Learning: Feature Extraction, Classifier Construction and Sequential Pattern Prediction
  publication-title: Int. J. Web Serv. Pract.
– volume: 45
  start-page: 1051
  year: 2007
  ident: bib0045
  article-title: Guidelines for performing Systematic Literature reviews in Software Engineering Version 2.3
  publication-title: Engineering
– year: 2015
  ident: bib0012
  article-title: Tutorial on practical tips of the most influential data preprocessing algorithms in data mining
  publication-title: Knowledge-Based Systems
– start-page: 1
  year: 2015
  end-page: 8
  ident: bib0053
  article-title: Systematic Mapping Study of Missing Values Techniques in Software Engineering Data
  publication-title: International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD), 2015 16th IEEE/ACIS
– volume: 12
  start-page: 667
  year: 2008
  end-page: 677
  ident: bib0067
  article-title: Classification of electrocardiogram signals with support vector machines and particle swarm optimization
  publication-title: IEEE Trans. Inf. Technol. Biomed.
– volume: 1
  start-page: 323
  year: 2012
  end-page: 327
  ident: bib0102
  article-title: A comparative study on the effect of feature selection on classification accuracy
  publication-title: Procedia Technol
– volume: 80
  start-page: 141
  year: 2005
  end-page: 153
  ident: bib0110
  article-title: Improved classification of medical data using abductive network committees trained on different feature subsets
  publication-title: Comput. Methods Programs Biomed.
– volume: 72
  year: 2015
  ident: bib0070
  publication-title: Data Preprocessing in Data Mining
– volume: 36
  start-page: 10367
  year: 2009
  end-page: 10373
  ident: bib0113
  article-title: A new feature selection method on classification of medical datasets: Kernel F-score feature selection
  publication-title: Expert Syst. Appl.
– year: 2018
  ident: bib0043
  article-title: Deep learning analysis of the myocardium in coronary CT angiography for identification of patients with functionally significant coronary artery stenosis
  publication-title: Med. Image Anal.
– volume: 3
  start-page: 1114
  year: 2013
  end-page: 1119
  ident: bib0126
  article-title: Decision Tree Analysis on J48 Algorithm for Data Mining
  publication-title: Int. J. Adv. Res. Comput. Sci. Softw. Eng.
– year: 2007
  ident: bib0001
  article-title: Reducing the growing burden of cardiovascular disease in the developing world
  publication-title: Health Affairs
– reference: A. Kofod-petersen, “How to do a Structured Literature Review in computer science.” pp. 1–7, 2014.
– reference: rankings (accessed Dec. 02, 2019).
– year: 2017
  ident: bib0027
  article-title: Deep learning for cardiac computer-aided diagnosis: benefits, issues & solutions
  publication-title: mHealth
– volume: 13
  start-page: 21
  year: Jan. 1967
  end-page: 27
  ident: bib0125
  article-title: Nearest neighbor pattern classification
  publication-title: IEEE Trans. Inf. Theory
– year: 2019
  ident: bib0117
  article-title: Identification of significant features and data mining techniques in predicting heart disease
  publication-title: Telemat. Informatics
– volume: 46
  start-page: 165
  year: 2009
  end-page: 178
  ident: bib0084
  article-title: Noise-tolerant electrocardiogram beat classification based on higher order statistics of subband components
  publication-title: Artif. Intell. Med.
– volume: 11
  start-page: 47
  year: 2013
  end-page: 58
  ident: bib0099
  article-title: Artificial neural networks in medical diagnosis
  publication-title: Journal of Applied Biomedicine
– start-page: 1984
  year: Jul. 2012
  end-page: 1988
  ident: bib0107
  article-title: Fault detection and diagnosis for spacecraft using principal component analysis and support vector machines
  publication-title: 2012 7th IEEE Conference on Industrial Electronics and Applications (ICIEA)
– start-page: 47
  year: Dec. 2013
  end-page: 54
  ident: bib0083
  article-title: Heart disease classification using nearest neighbor classifier with feature subset selection
  publication-title: Ann. .COMPUTER Sci. Ser.
– year: 2019
  ident: bib0029
  article-title: Deep learning for cardiovascularmedicine: A practical primer
  publication-title: European Heart Journal
– volume: 29
  start-page: 660
  year: 2015
  end-page: 674
  ident: bib0073
  article-title: Multiclass Support Vector Machines for Classification of ECG Data with Missing Values
  publication-title: Appl. Artif. Intell.
– volume: 15
  start-page: 33
  year: 2011
  end-page: 39
  ident: bib0079
  article-title: Diagnosis of cardiovascular abnormalities from compressed ECG: A data mining-based approach
  publication-title: IEEE Trans. Inf. Technol. Biomed.
– start-page: 193
  year: 2009
  end-page: 208
  ident: bib0092
  article-title: Learning pattern classification tasks with imbalanced data sets
  publication-title: Pattern Recognit
– volume: 41
  start-page: 4434
  year: 2014
  end-page: 4463
  ident: bib0009
  article-title: Knowledge discovery in medicine: Current issue and future trend
  publication-title: Expert Systems with Applications
– volume: 46
  start-page: 105
  year: 1999
  end-page: 119
  ident: bib0094
  article-title: From computing with numbers to computing with words - From manipulation of measurements to manipulation of perceptions
  publication-title: IEEE Trans. Circuits Syst. I Fundam. Theory Appl.
– volume: 44
  start-page: 51
  year: 2008
  end-page: 64
  ident: bib0072
  article-title: Support vector machine-based arrhythmia classification using reduced features of heart rate variability signal
  publication-title: Artif. Intell. Med.
– volume: 21
  start-page: 331
  year: Aug. 2000
  end-page: 340
  ident: bib0120
  article-title: Back-propagation learning in improving the accuracy of neural network-based tourism demand forecasting
  publication-title: Tour. Manag.
– volume: 97
  start-page: 12
  year: 2017
  end-page: 32
  ident: bib0010
  article-title: Knowledge discovery in cardiology: A systematic literature review
  publication-title: Int. J. Med. Inform.
– year: 2015
  ident: bib0030
  article-title: Deep learning
  publication-title: Nature
– volume: 3
  start-page: 571
  year: 2005
  end-page: 579
  ident: bib0032
  article-title: Support vector machine-based arrhythmia classification using reduced features
  publication-title: Int. J. Control. Autom. Syst.
– volume: 9
  year: Dec. 2016
  ident: bib0013
  article-title: A Multi-objective Non-Dominated Sorted Artificial Bee Colony Feature Selection Algorithm for Medical Datasets
  publication-title: Indian J. Sci. Technol.
– volume: 21
  start-page: 1
  year: 2006
  ident: bib0015
  article-title: A survey of Knowledge Discovery and Data Mining process models
  publication-title: Knowl. Eng. Rev.
– year: 2018
  ident: bib0039
  article-title: Passive detection of atrial fibrillation using a commercially available smartwatch
  publication-title: JAMA Cardiol
– reference: “Journal Citation Reports.”
– volume: 35
  start-page: 352
  year: Oct. 2002
  end-page: 359
  ident: bib0098
  article-title: Logistic regression and artificial neural network classification models: a methodology review
  publication-title: J. Biomed. Inform.
– volume: 2
  start-page: 1
  year: 2012
  end-page: 7
  ident: bib0056
  article-title: Study and Development of Novel Feature Selection Framework for Heart Disease Prediction
  publication-title: Int. J. Sci. Res. Publ.
– volume: 11
  start-page: 25
  year: . 2015
  ident: bib0103
  article-title: Effectiveness of Support Vector Machines in Medical Data mining
  publication-title: J. Commun. Softw. Syst.
– year: 2010
  ident: bib0121
  article-title: Data Mining and Knowledge Discovery Handbook
– year: 2018
  ident: bib0040
  article-title: Fast and accurate view classification of echocardiograms using deep learning
  publication-title: npj Digit. Med.
– reference: .
– volume: 207
  year: 2006
  ident: bib0018
  publication-title: Feature Extraction: Foundations and Applications
– year: 2017
  ident: bib0071
  article-title: Dimension reduction methods for microarray data: a review
  publication-title: AIMS Bioeng
– start-page: 2840
  year: 2012
  end-page: 2844
  ident: bib0062
  article-title: A comparative study of missing value imputation with multiclass classification for clinical heart failure data
  publication-title: Proceedings - 2012 9th International Conference on Fuzzy Systems and Knowledge Discovery, FSKD 2012
– year: 2019
  ident: bib0066
  article-title: Evaluation of Classification Algorithms, Linear Discriminant Analysis and a New Hybrid Feature Selection Methodology for the Diagnosis of Coronary Artery Disease
  publication-title: Proceedings - 2018 IEEE International Conference on Big Data, Big Data 2018
– volume: 34
  start-page: 513
  year: 2014
  end-page: 533
  ident: bib0036
  article-title: Effect of Multiscale PCA De-noising in ECG Beat Classification for Diagnosis of Cardiovascular Diseases
  publication-title: Circuits, Syst. Signal Process.
– reference: (accessed Oct. 08, 2019).
– volume: 53
  start-page: 1531
  year: 2006
  end-page: 1540
  ident: bib0077
  article-title: An association rule mining-based methodology for automated detection of ischemic ECG beats
  publication-title: IEEE Trans. Biomed. Eng.
– year: 2007
  ident: 10.1016/j.cmpb.2020.105635_bib0001
  article-title: Reducing the growing burden of cardiovascular disease in the developing world
  publication-title: Health Affairs
  doi: 10.1377/hlthaff.26.1.13
– start-page: 47
  year: 2013
  ident: 10.1016/j.cmpb.2020.105635_bib0083
  article-title: Heart disease classification using nearest neighbor classifier with feature subset selection
  publication-title: Ann. .COMPUTER Sci. Ser.
– start-page: 1
  year: 2015
  ident: 10.1016/j.cmpb.2020.105635_bib0053
  article-title: Systematic Mapping Study of Missing Values Techniques in Software Engineering Data
– volume: 17
  start-page: 37
  issue: 3
  year: 1996
  ident: 10.1016/j.cmpb.2020.105635_bib0014
  article-title: From Data Mining to Knowledge Discovery in Databases
  publication-title: AI Mag
– ident: 10.1016/j.cmpb.2020.105635_bib0046
– year: 2015
  ident: 10.1016/j.cmpb.2020.105635_bib0030
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– start-page: 657
  year: 2002
  ident: 10.1016/j.cmpb.2020.105635_bib0115
  article-title: Improving medical/biological data classification performance by wavelet preprocessing
– volume: 14
  start-page: 47
  issue: PART A
  year: 2014
  ident: 10.1016/j.cmpb.2020.105635_bib0003
  article-title: Hybrid intelligent modeling schemes for heart disease classification
  publication-title: Appl. Soft Comput. J.
  doi: 10.1016/j.asoc.2013.09.020
– volume: 13
  start-page: 21
  issue: 1
  year: 1967
  ident: 10.1016/j.cmpb.2020.105635_bib0125
  article-title: Nearest neighbor pattern classification
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.1967.1053964
– volume: 1087
  year: 2018
  ident: 10.1016/j.cmpb.2020.105635_bib0044
  article-title: Feature Extraction and Image Recognition with Convolutional Neural Networks
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/1087/6/062032
– ident: 10.1016/j.cmpb.2020.105635_bib0089
– volume: 1
  start-page: 81
  issue: 1
  year: 1986
  ident: 10.1016/j.cmpb.2020.105635_bib0127
  article-title: Induction of Decision Trees
  publication-title: Mach. Learn.
  doi: 10.1007/BF00116251
– volume: 94
  start-page: 42
  year: 2017
  ident: 10.1016/j.cmpb.2020.105635_bib0016
  article-title: Predicting heart transplantation outcomes through data analytics
  publication-title: Decis. Support Syst.
  doi: 10.1016/j.dss.2016.10.005
– year: 2019
  ident: 10.1016/j.cmpb.2020.105635_bib0085
  article-title: Automated arrhythmia detection using novel hexadecimal local pattern and multilevel wavelet transform with ECG signals
  publication-title: Knowledge-Based Syst
  doi: 10.1016/j.knosys.2019.104923
– year: 2012
  ident: 10.1016/j.cmpb.2020.105635_bib0124
– volume: 41
  start-page: 37
  issue: 1
  year: 2011
  ident: 10.1016/j.cmpb.2020.105635_bib0081
  article-title: A multi-stage automatic arrhythmia recognition and classification system
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2010.11.003
– year: 2014
  ident: 10.1016/j.cmpb.2020.105635_bib0075
– year: 2019
  ident: 10.1016/j.cmpb.2020.105635_bib0029
  article-title: Deep learning for cardiovascularmedicine: A practical primer
  publication-title: European Heart Journal
  doi: 10.1093/eurheartj/ehz056
– volume: 26
  start-page: S1757
  issue: s1
  year: 2015
  ident: 10.1016/j.cmpb.2020.105635_bib0082
  article-title: Fuzzy Naive Bayesian for constructing regulated network with weights
  publication-title: Biomed. Mater. Eng.
– volume: 2
  start-page: 735
  issue: 9
  year: 2006
  ident: 10.1016/j.cmpb.2020.105635_bib0080
  article-title: Data Mining: A Preprocessing Engine
  publication-title: J. Comput. Sci.
  doi: 10.3844/jcssp.2006.735.739
– volume: 13
  start-page: 5
  issue: 3
  year: 2013
  ident: 10.1016/j.cmpb.2020.105635_bib0055
  article-title: Classification of Heart Disease using Artificial Neural Network and Feature Subset Selection
  publication-title: Glob. J. Comput. Sci. Technol.
– year: 2017
  ident: 10.1016/j.cmpb.2020.105635_bib0058
  article-title: An intelligent noninvasive model for coronary artery disease detection
  publication-title: Complex Intell. Syst.
– year: 2000
  ident: 10.1016/j.cmpb.2020.105635_bib0122
– volume: 94
  start-page: 423
  issue: PART 1
  year: 2010
  ident: 10.1016/j.cmpb.2020.105635_bib0023
  article-title: Impact of K-means on the performance of classifiers for labeled data
  publication-title: Communications in Computer and Information Science
  doi: 10.1007/978-3-642-14834-7_40
– volume: 35
  start-page: 352
  issue: 5–6
  year: 2002
  ident: 10.1016/j.cmpb.2020.105635_bib0098
  article-title: Logistic regression and artificial neural network classification models: a methodology review
  publication-title: J. Biomed. Inform.
  doi: 10.1016/S1532-0464(03)00034-0
– year: 2010
  ident: 10.1016/j.cmpb.2020.105635_bib0121
– start-page: 1
  year: 2018
  ident: 10.1016/j.cmpb.2020.105635_bib0008
  article-title: A systematic map of data analytics in breast cancer
– volume: 32
  start-page: 2627
  issue: 14–15
  year: 1998
  ident: 10.1016/j.cmpb.2020.105635_bib0119
  article-title: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences
  publication-title: Atmos. Environ.
  doi: 10.1016/S1352-2310(97)00447-0
– ident: 10.1016/j.cmpb.2020.105635_bib0049
– year: 2018
  ident: 10.1016/j.cmpb.2020.105635_bib0095
  article-title: Performance Analysis of Various Missing Value Imputation Methods on Heart Failure Dataset
  publication-title: Lecture Notes in Networks and Systems
  doi: 10.1007/978-3-319-56991-8_31
– year: 2019
  ident: 10.1016/j.cmpb.2020.105635_bib0066
  article-title: Evaluation of Classification Algorithms, Linear Discriminant Analysis and a New Hybrid Feature Selection Methodology for the Diagnosis of Coronary Artery Disease
– volume: 80
  start-page: 141
  issue: 2
  year: 2005
  ident: 10.1016/j.cmpb.2020.105635_bib0110
  article-title: Improved classification of medical data using abductive network committees trained on different feature subsets
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2005.08.001
– year: 2019
  ident: 10.1016/j.cmpb.2020.105635_bib0117
  article-title: Identification of significant features and data mining techniques in predicting heart disease
  publication-title: Telemat. Informatics
  doi: 10.1016/j.tele.2018.11.007
– volume: 11
  start-page: 162
  issue: 2
  year: 2014
  ident: 10.1016/j.cmpb.2020.105635_bib0022
  article-title: Issues in the mining of heart failure datasets
  publication-title: Int. J. Autom. Comput.
  doi: 10.1007/s11633-014-0778-5
– start-page: 481
  year: 2007
  ident: 10.1016/j.cmpb.2020.105635_bib0097
  article-title: Feature-weighted k-nearest neighbor classifier
– volume: 86
  start-page: 33
  year: 2015
  ident: 10.1016/j.cmpb.2020.105635_bib0074
  article-title: Recent advances and emerging challenges of feature selection in the context of big data
  publication-title: Knowledge-Based Syst
  doi: 10.1016/j.knosys.2015.05.014
– year: 2008
  ident: 10.1016/j.cmpb.2020.105635_bib0093
  article-title: Cost-Sensitive Learning and the Class Imbalance Problem
  publication-title: Encycl. Mach. Learn.
– volume: 112
  start-page: 720
  issue: 3
  year: 2013
  ident: 10.1016/j.cmpb.2020.105635_bib0061
  article-title: Multistage approach for clustering and classification of ECG data
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2013.08.002
– volume: 45
  start-page: 1051
  issue: 4ve
  year: 2007
  ident: 10.1016/j.cmpb.2020.105635_bib0045
  article-title: Guidelines for performing Systematic Literature reviews in Software Engineering Version 2.3
  publication-title: Engineering
– volume: 97
  start-page: 12
  year: 2017
  ident: 10.1016/j.cmpb.2020.105635_bib0010
  article-title: Knowledge discovery in cardiology: A systematic literature review
  publication-title: Int. J. Med. Inform.
  doi: 10.1016/j.ijmedinf.2016.09.005
– ident: 10.1016/j.cmpb.2020.105635_bib0048
– start-page: 373
  year: 2004
  ident: 10.1016/j.cmpb.2020.105635_bib0108
  article-title: Noise identification with the k-means algorithm
  publication-title: 16th IEEE Int. Conf. Tools with Artif. Intell.
  doi: 10.1109/ICTAI.2004.93
– start-page: 1142
  year: 2018
  ident: 10.1016/j.cmpb.2020.105635_bib0007
  article-title: Data Mining Techniques in Diabetes Self-management: A Systematic Map
– volume: 412
  start-page: 5909
  issue: 42
  year: 2011
  ident: 10.1016/j.cmpb.2020.105635_bib0065
  article-title: Fuzzy quartile encoding as a preprocessing method for biomedical pattern classification
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/j.tcs.2011.05.043
– volume: 53
  start-page: 1531
  issue: 8
  year: 2006
  ident: 10.1016/j.cmpb.2020.105635_bib0077
  article-title: An association rule mining-based methodology for automated detection of ischemic ECG beats
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2006.873753
– volume: 58
  start-page: 206
  year: 2015
  ident: 10.1016/j.cmpb.2020.105635_bib0052
  article-title: Analogy-based software development effort estimation: A systematic mapping and review
  publication-title: Information and Software Technology
  doi: 10.1016/j.infsof.2014.07.013
– year: 2018
  ident: 10.1016/j.cmpb.2020.105635_bib0043
  article-title: Deep learning analysis of the myocardium in coronary CT angiography for identification of patients with functionally significant coronary artery stenosis
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2017.11.008
– year: 2006
  ident: 10.1016/j.cmpb.2020.105635_bib0078
  article-title: The impact of preprocessing on data mining: An evaluation of classifier sensitivity in direct marketing
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2005.07.023
– year: 2019
  ident: 10.1016/j.cmpb.2020.105635_bib0038
  article-title: Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network
  publication-title: Nature Medicine
– start-page: 3656
  year: 2017
  ident: 10.1016/j.cmpb.2020.105635_bib0005
  article-title: Wrapper method for feature selection to classify cardiac arrhythmia
– volume: 118
  start-page: 151
  year: 2016
  ident: 10.1016/j.cmpb.2020.105635_bib0050
  article-title: Systematic literature review of ensemble effort estimation
  publication-title: J. Syst. Softw.
  doi: 10.1016/j.jss.2016.05.016
– year: 2014
  ident: 10.1016/j.cmpb.2020.105635_bib0123
– volume: 34
  start-page: 513
  issue: 2
  year: 2014
  ident: 10.1016/j.cmpb.2020.105635_bib0036
  article-title: Effect of Multiscale PCA De-noising in ECG Beat Classification for Diagnosis of Cardiovascular Diseases
  publication-title: Circuits, Syst. Signal Process.
  doi: 10.1007/s00034-014-9864-8
– year: 2019
  ident: 10.1016/j.cmpb.2020.105635_bib0086
  article-title: Novel deep genetic ensemble of classifiers for arrhythmia detection using ECG signals
  publication-title: Neural Comput. Appl.
– volume: 29
  issue: 06
  year: 2017
  ident: 10.1016/j.cmpb.2020.105635_bib0020
  article-title: APPLICATION OF ENSEMBLE ALGORITHM INTEGRATING MULTIPLE CRITERIA FEATURE SELECTION IN CORONARY HEART DISEASE DETECTION
  publication-title: Biomed. Eng. Appl. Basis Commun.
  doi: 10.4015/S1016237217500430
– volume: 72
  year: 2015
  ident: 10.1016/j.cmpb.2020.105635_bib0070
– volume: 10
  start-page: 1082
  issue: 6
  year: 2016
  ident: 10.1016/j.cmpb.2020.105635_bib0057
  article-title: Impact of preprocessing on medical data classification
  publication-title: Front. Comput. Sci.
  doi: 10.1007/s11704-016-5203-5
– ident: 10.1016/j.cmpb.2020.105635_bib0088
– volume: 37
  start-page: 3177
  issue: 4
  year: 2010
  ident: 10.1016/j.cmpb.2020.105635_bib0111
  article-title: A comparison of feature selection models utilizing binary particle swarm optimization and genetic algorithm in determining coronary artery disease using support vector machine
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2009.09.064
– year: 2018
  ident: 10.1016/j.cmpb.2020.105635_bib0064
  article-title: Time series and morphological feature extraction for classifying coronary artery disease from photoplethysmogram
– volume: 8
  start-page: 731
  year: 2017
  ident: 10.1016/j.cmpb.2020.105635_bib0100
  article-title: Feature selection based on CHI square in artificial neural network to predict the accuracy of student study period
  publication-title: Int. J. Civ. Eng. Technol.
– volume: 243
  start-page: 599
  year: 2014
  ident: 10.1016/j.cmpb.2020.105635_bib0034
  article-title: RF-SEA-Based Feature Selection for Data Classification in Medical Domain
  publication-title: Intell. Comput. Networking, Informatics
  doi: 10.1007/978-81-322-1665-0_59
– volume: 64
  start-page: 1
  year: 2015
  ident: 10.1016/j.cmpb.2020.105635_bib0047
  article-title: Guidelines for conducting systematic mapping studies in software engineering: An update
  publication-title: Information and Software Technology
  doi: 10.1016/j.infsof.2015.03.007
– start-page: 1
  year: 2015
  ident: 10.1016/j.cmpb.2020.105635_bib0031
  article-title: Computational intelligence technique for early diagnosis of heart disease
– volume: 12
  start-page: 667
  issue: 5
  year: 2008
  ident: 10.1016/j.cmpb.2020.105635_bib0067
  article-title: Classification of electrocardiogram signals with support vector machines and particle swarm optimization
  publication-title: IEEE Trans. Inf. Technol. Biomed.
  doi: 10.1109/TITB.2008.923147
– year: 2018
  ident: 10.1016/j.cmpb.2020.105635_bib0118
  article-title: Application of machine learning in disease prediction
– volume: 250
  start-page: 113
  year: 2013
  ident: 10.1016/j.cmpb.2020.105635_bib0096
  article-title: An insight into classification with imbalanced data: Empirical results and current trends on using data intrinsic characteristics
  publication-title: Inf. Sci. (Ny).
  doi: 10.1016/j.ins.2013.07.007
– volume: 116
  start-page: 38
  year: 2013
  ident: 10.1016/j.cmpb.2020.105635_bib0035
  article-title: ECG arrhythmia classification using a probabilistic neural network with a feature reduction method
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2011.10.045
– volume: 50
  start-page: 105
  issue: 2
  year: 2010
  ident: 10.1016/j.cmpb.2020.105635_bib0060
  article-title: Missing data imputation using statistical and machine learning methods in a real breast cancer problem
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2010.05.002
– volume: 11
  start-page: 47
  issue: 2
  year: 2013
  ident: 10.1016/j.cmpb.2020.105635_bib0099
  article-title: Artificial neural networks in medical diagnosis
  publication-title: Journal of Applied Biomedicine
  doi: 10.2478/v10136-012-0031-x
– volume: 90
  start-page: 125
  year: 2017
  ident: 10.1016/j.cmpb.2020.105635_bib0114
  article-title: Optimal feature selection using a modified differential evolution algorithm and its effectiveness for prediction of heart disease
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2017.09.011
– ident: 10.1016/j.cmpb.2020.105635_bib0004
– volume: 73
  start-page: 220
  year: 2017
  ident: 10.1016/j.cmpb.2020.105635_bib0017
  article-title: Learning from class-imbalanced data: Review of methods and applications
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2016.12.035
– volume: 71
  start-page: 31
  year: 2017
  ident: 10.1016/j.cmpb.2020.105635_bib0051
  article-title: A systematic review of gamification in e-Health
  publication-title: J. Biomed. Inform.
  doi: 10.1016/j.jbi.2017.05.011
– year: 2010
  ident: 10.1016/j.cmpb.2020.105635_bib0069
  article-title: Enhanced Prediction of Heart Disease with Feature Subset Selection using Genetic Algorithm
  publication-title: Int. J. Eng. Sci. Technol.
– start-page: 391
  year: 2020
  ident: 10.1016/j.cmpb.2020.105635_bib0024
  article-title: Impact of Threshold Values for Filter-based Univariate Feature Selection in Heart Disease Classification
– start-page: 1
  year: 2006
  ident: 10.1016/j.cmpb.2020.105635_bib0037
  article-title: ECG Arrhythmias Recognition System Based on Independent Component Analysis Feature Extraction
– volume: 46
  start-page: 165
  issue: 2
  year: 2009
  ident: 10.1016/j.cmpb.2020.105635_bib0084
  article-title: Noise-tolerant electrocardiogram beat classification based on higher order statistics of subband components
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2008.11.004
– year: 1999
  ident: 10.1016/j.cmpb.2020.105635_bib0025
  article-title: Feature Extraction Construction and Selection: A Data Mining Perspective
  publication-title: J. Am. Stat. Assoc.
  doi: 10.2307/2669967
– year: 2018
  ident: 10.1016/j.cmpb.2020.105635_bib0116
  article-title: Classification of imbalanced ECG beats using re-sampling techniques and AdaBoost ensemble classifier
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2017.12.004
– year: 2018
  ident: 10.1016/j.cmpb.2020.105635_bib0068
  article-title: Novel methodology of cardiac health recognition based on ECG signals and evolutionary-neural system
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.09.022
– start-page: 2840
  year: 2012
  ident: 10.1016/j.cmpb.2020.105635_bib0062
  article-title: A comparative study of missing value imputation with multiclass classification for clinical heart failure data
– volume: 5
  start-page: 1205
  year: 2004
  ident: 10.1016/j.cmpb.2020.105635_bib0021
  article-title: Efficient Feature Selection via Analysis of Relevance and Redundancy
  publication-title: J. Mach. Learn. Res.
– year: 2019
  ident: 10.1016/j.cmpb.2020.105635_bib0091
  article-title: A new machine learning technique for an accurate diagnosis of coronary artery disease
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2019.104992
– volume: 9
  issue: 45
  year: 2016
  ident: 10.1016/j.cmpb.2020.105635_bib0013
  article-title: A Multi-objective Non-Dominated Sorted Artificial Bee Colony Feature Selection Algorithm for Medical Datasets
  publication-title: Indian J. Sci. Technol.
  doi: 10.17485/ijst/2016/v9i45/102290
– volume: 46
  start-page: 105
  issue: 1
  year: 1999
  ident: 10.1016/j.cmpb.2020.105635_bib0094
  article-title: From computing with numbers to computing with words - From manipulation of measurements to manipulation of perceptions
  publication-title: IEEE Trans. Circuits Syst. I Fundam. Theory Appl.
  doi: 10.1109/81.739259
– volume: 3
  start-page: 571
  issue: 4
  year: 2005
  ident: 10.1016/j.cmpb.2020.105635_bib0032
  article-title: Support vector machine-based arrhythmia classification using reduced features
  publication-title: Int. J. Control. Autom. Syst.
– volume: 1
  start-page: 323
  year: 2012
  ident: 10.1016/j.cmpb.2020.105635_bib0102
  article-title: A comparative study on the effect of feature selection on classification accuracy
  publication-title: Procedia Technol
  doi: 10.1016/j.protcy.2012.02.068
– volume: 44
  start-page: 51
  issue: 1
  year: 2008
  ident: 10.1016/j.cmpb.2020.105635_bib0072
  article-title: Support vector machine-based arrhythmia classification using reduced features of heart rate variability signal
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2008.04.007
– volume: 11
  start-page: 25
  issue: 1
  year: 2015
  ident: 10.1016/j.cmpb.2020.105635_bib0103
  article-title: Effectiveness of Support Vector Machines in Medical Data mining
  publication-title: J. Commun. Softw. Syst.
  doi: 10.24138/jcomss.v11i1.114
– volume: 41
  start-page: 4434
  issue: 9
  year: 2014
  ident: 10.1016/j.cmpb.2020.105635_bib0009
  article-title: Knowledge discovery in medicine: Current issue and future trend
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2014.01.011
– volume: 117
  start-page: 595
  year: 2016
  ident: 10.1016/j.cmpb.2020.105635_bib0059
  article-title: Missing data techniques in analogy-based software development effort estimation
  publication-title: J. Syst. Softw.
  doi: 10.1016/j.jss.2016.04.058
– volume: 37
  start-page: 8659
  issue: 12
  year: 2010
  ident: 10.1016/j.cmpb.2020.105635_bib0104
  article-title: EEG signal classification using PCA, ICA, LDA and support vector machines
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2010.06.065
– year: 2017
  ident: 10.1016/j.cmpb.2020.105635_bib0071
  article-title: Dimension reduction methods for microarray data: a review
  publication-title: AIMS Bioeng
  doi: 10.3934/bioeng.2017.1.179
– volume: 37
  start-page: 8102
  issue: 12
  year: 2010
  ident: 10.1016/j.cmpb.2020.105635_bib0109
  article-title: Hybrid prediction model for Type-2 diabetic patients
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2010.05.078
– year: 2017
  ident: 10.1016/j.cmpb.2020.105635_bib0027
  article-title: Deep learning for cardiac computer-aided diagnosis: benefits, issues & solutions
  publication-title: mHealth
  doi: 10.21037/mhealth.2017.09.01
– ident: 10.1016/j.cmpb.2020.105635_bib0101
– volume: 29
  start-page: 660
  issue: 7
  year: 2015
  ident: 10.1016/j.cmpb.2020.105635_bib0073
  article-title: Multiclass Support Vector Machines for Classification of ECG Data with Missing Values
  publication-title: Appl. Artif. Intell.
  doi: 10.1080/08839514.2015.1051887
– volume: 2
  start-page: 1
  issue: 10
  year: 2012
  ident: 10.1016/j.cmpb.2020.105635_bib0056
  article-title: Study and Development of Novel Feature Selection Framework for Heart Disease Prediction
  publication-title: Int. J. Sci. Res. Publ.
– volume: 36
  start-page: 10367
  issue: 7
  year: 2009
  ident: 10.1016/j.cmpb.2020.105635_bib0113
  article-title: A new feature selection method on classification of medical datasets: Kernel F-score feature selection
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2009.01.041
– year: 2018
  ident: 10.1016/j.cmpb.2020.105635_bib0039
  article-title: Passive detection of atrial fibrillation using a commercially available smartwatch
  publication-title: JAMA Cardiol
  doi: 10.1001/jamacardio.2018.0136
– volume: 30
  start-page: 590
  issue: 6
  year: 2016
  ident: 10.1016/j.cmpb.2020.105635_bib0033
  article-title: On the Influence of Class Noise in Medical Data Classification: Treatment Using Noise Filtering Methods
  publication-title: Appl. Artif. Intell.
  doi: 10.1080/08839514.2016.1193719
– year: 2015
  ident: 10.1016/j.cmpb.2020.105635_bib0012
  article-title: Tutorial on practical tips of the most influential data preprocessing algorithms in data mining
  publication-title: Knowledge-Based Systems
– start-page: 1200
  year: 2015
  ident: 10.1016/j.cmpb.2020.105635_bib0019
  article-title: A review of feature selection methods with applications
– year: 2019
  ident: 10.1016/j.cmpb.2020.105635_bib0041
  article-title: Chest radiographs in congestive heart failure: Visualizing neural network learning
  publication-title: Radiology
  doi: 10.1148/radiol.2018180887
– volume: 3
  start-page: 1114
  issue: 6
  year: 2013
  ident: 10.1016/j.cmpb.2020.105635_bib0126
  article-title: Decision Tree Analysis on J48 Algorithm for Data Mining
  publication-title: Int. J. Adv. Res. Comput. Sci. Softw. Eng.
– volume: 162
  start-page: 69
  year: 2018
  ident: 10.1016/j.cmpb.2020.105635_bib0026
  article-title: A systematic map of medical data preprocessing in knowledge discovery
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2018.05.007
– volume: 21
  start-page: 1
  issue: 01
  year: 2006
  ident: 10.1016/j.cmpb.2020.105635_bib0015
  article-title: A survey of Knowledge Discovery and Data Mining process models
  publication-title: Knowl. Eng. Rev.
  doi: 10.1017/S0269888906000737
– ident: 10.1016/j.cmpb.2020.105635_bib0087
– volume: 1
  year: 2017
  ident: 10.1016/j.cmpb.2020.105635_bib0006
  article-title: Systematic mapping study of data mining–based empirical studies in cardiology
  publication-title: Health Informatics J
– year: 2018
  ident: 10.1016/j.cmpb.2020.105635_bib0042
  article-title: Deep Learning for Prediction of Obstructive Disease From Fast Myocardial Perfusion SPECT: A Multicenter Study
  publication-title: JACC Cardiovasc. Imaging
  doi: 10.1016/j.jcmg.2018.01.020
– start-page: 1984
  year: 2012
  ident: 10.1016/j.cmpb.2020.105635_bib0107
  article-title: Fault detection and diagnosis for spacecraft using principal component analysis and support vector machines
– start-page: 44
  year: 2007
  ident: 10.1016/j.cmpb.2020.105635_bib0076
  article-title: Medical Datamining with a New Algorithm for Feature Selection and Naive Bayesian Classifier
– year: 2012
  ident: 10.1016/j.cmpb.2020.105635_bib0090
  article-title: Evaluating the Impact of Categorical Data Encoding and Scaling on Neural Network Classification Performance: The Case of Repeat Consumption of Identical Cultural Goods
  publication-title: Communications in Computer and Information Science
  doi: 10.1007/978-3-642-32909-8_35
– volume: 2
  year: 2006
  ident: 10.1016/j.cmpb.2020.105635_bib0105
  article-title: Adaptive Intrusion Detection Based on Machine Learning: Feature Extraction, Classifier Construction and Sequential Pattern Prediction
  publication-title: Int. J. Web Serv. Pract.
– volume: 207
  year: 2006
  ident: 10.1016/j.cmpb.2020.105635_bib0018
– year: 2018
  ident: 10.1016/j.cmpb.2020.105635_bib0040
  article-title: Fast and accurate view classification of echocardiograms using deep learning
  publication-title: npj Digit. Med.
  doi: 10.1038/s41746-017-0013-1
– volume: 66
  start-page: 161
  year: 2017
  ident: 10.1016/j.cmpb.2020.105635_bib0063
  article-title: MACE prediction of acute coronary syndrome via boosted resampling classification using electronic medical records
  publication-title: J. Biomed. Inform.
  doi: 10.1016/j.jbi.2017.01.001
– volume: 38
  issue: 5
  year: 2014
  ident: 10.1016/j.cmpb.2020.105635_bib0002
  article-title: A New Data Preparation Method Based on Clustering Algorithms for Diagnosis Systems of Heart and Diabetes Diseases
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-014-0048-7
– volume: 15
  start-page: 33
  issue: 1
  year: 2011
  ident: 10.1016/j.cmpb.2020.105635_bib0079
  article-title: Diagnosis of cardiovascular abnormalities from compressed ECG: A data mining-based approach
  publication-title: IEEE Trans. Inf. Technol. Biomed.
  doi: 10.1109/TITB.2010.2094197
– start-page: 193
  year: 2009
  ident: 10.1016/j.cmpb.2020.105635_bib0092
  article-title: Learning pattern classification tasks with imbalanced data sets
  publication-title: Pattern Recognit
– start-page: 592
  year: 2005
  ident: 10.1016/j.cmpb.2020.105635_bib0106
  article-title: Effect Analysis of Dimension Reduction on Support Vector Machines
– volume: 43
  start-page: 17
  issue: 1
  year: 2019
  ident: 10.1016/j.cmpb.2020.105635_bib0011
  article-title: A Systematic Mapping Study of Data Preparation in Heart Disease Knowledge Discovery
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-018-1134-z
– year: 2017
  ident: 10.1016/j.cmpb.2020.105635_bib0028
  article-title: Deep learning for healthcare: Review, opportunities and challenges
  publication-title: Brief. Bioinform.
– volume: 21
  start-page: 331
  issue: 4
  year: 2000
  ident: 10.1016/j.cmpb.2020.105635_bib0120
  article-title: Back-propagation learning in improving the accuracy of neural network-based tourism demand forecasting
  publication-title: Tour. Manag.
  doi: 10.1016/S0261-5177(99)00067-9
– volume: 45
  start-page: 999
  issue: 5
  year: 2012
  ident: 10.1016/j.cmpb.2020.105635_bib0112
  article-title: Decision-making model for early diagnosis of congestive heart failure using rough set and decision tree approaches
  publication-title: J. Biomed. Inform.
  doi: 10.1016/j.jbi.2012.04.013
– volume: 43
  start-page: 2222
  issue: 12
  year: 2013
  ident: 10.1016/j.cmpb.2020.105635_bib0054
  article-title: A threshold fuzzy entropy based feature selection for medical database classification
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2013.10.016
SSID ssj0002556
Score 2.573666
SecondaryResourceType review_article
Snippet •A systematic review on the use of data preprocessing techniques for heart disease classification purpose was conducted.•A total of 49 studies published...
Early detection of heart disease is an important challenge since 17.3 million people yearly lose their lives due to heart diseases. Besides, any error in...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 105635
SubjectTerms Cardiac datasets
Cardiology
Data Mining
Data preprocessing
Datamining
Heart Diseases - diagnosis
Humans
Literature review
Title Data preprocessing for heart disease classification: A systematic literature review
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0169260720314681
https://dx.doi.org/10.1016/j.cmpb.2020.105635
https://www.ncbi.nlm.nih.gov/pubmed/32652383
https://www.proquest.com/docview/2423056619
Volume 195
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6KgngR39ZHWcGbxCbZPL2VaqmKvdRCb8tuNoFKTYOmV3-7M9lNiqAVPCbsJGF2MvMt880MIVcQRVKIu76lbBFYXprElnAxyRvbKpZeCIi7YluMguHEe5z60xbp17UwSKs0vl_79Mpbmztdo81uMZt1x9hHBNA45hGxfqiqYPdCtPKbzxXNA1ts6f7esYWrTeGM5nglb4WEM6KrB9BXI99-DE6_gc8qCA12yY5Bj7SnP3CPtNJ8n2w9m_z4ARnfiVLQAjtVVvx_iEsUUCnFsdUlNckYmiBiRopQtSu3tEdX_ZzpvOmzTHVZyyGZDO5f-kPLjE2wEi9kpZVlcCgSgXITAEeMhVJlAWJoFYgwdGSUITXNhcgUw-lQBTFzRAJexvFDFcVOlLEjspEv8vSEUBXJTLLUT4WtPD-Kpe1KgEzwQMdXiR20iVPriyempziOtpjzmjz2ylHHHHXMtY7b5LqRKXRHjbWrWb0NvK4VBe_GweGvlfIbqW_W9KfcZb3THH4zzJ2IPF0sPzjCTlgCmm2TY20CzdcDAobjfMRO__nWM7KNV5oieE42yvdlegFQp5SdypY7ZLP38DQcfQHMAPoV
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB6kgnoR39bnCt4kNO-Ht1Itrba91EJvy242gYrGovH_O5PdRAQf4DXZScLsZuYbZuYbgEv0Ihn63cBStggtP0sTS7iU5E1slUg_QsRdVVtMwsHMv5sH8xXo1b0wVFZpbL-26ZW1Nlc6Rpud5WLRmRKPCKJxyiNS_xCGQKvEThW0YLU7vB9MGoNMLFua4juxSMD0zugyr_R5KTFMdPUM-mrq27f-6Sf8Wfmh_hZsGgDJuvobt2ElK3ZgbWxS5LswvRGlYEsiq6xaANA1MQSmjCZXl8zkY1hKoJmqhKqNuWZd9knpzJ4aqmWmO1v2YNa_fegNLDM5wUr9yCutPMe4SITKTREfeV4kVR4SjFahiCJHxjlVp7nonBIMEFWYeI5I0dA4QaTixIlzbx9axUuRHQJTscyllwWZsJUfxIm0XYmoCR_oBCq1wzY4tb54amjFabrFE6_rxx456ZiTjrnWcRuuGpmlJtX4dbVXbwOv20XRwHG0-b9KBY3UlwP1p9xFvdMc_zRKn4gie3l_44Q8cQlqtg0H-gg0X48gGCP62Dv651vPYX3wMB7x0XByfwwbdEdXDJ5Aq3x9z04R-ZTyzJzsD2JY_MY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data+preprocessing+for+heart+disease+classification%3A+A+systematic+literature+review&rft.jtitle=Computer+methods+and+programs+in+biomedicine&rft.au=Benhar%2C+H&rft.au=Idri%2C+A&rft.au=Fern%C3%A1ndez-Alem%C3%A1n%2C+J+L&rft.date=2020-10-01&rft.eissn=1872-7565&rft.volume=195&rft.spage=105635&rft_id=info:doi/10.1016%2Fj.cmpb.2020.105635&rft_id=info%3Apmid%2F32652383&rft.externalDocID=32652383
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-2607&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-2607&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-2607&client=summon