Interfacial characterization of poly (vinyl alcohol) fibers embedded in a calcium phosphate cement matrix: An experimental and numerical investigation

[Display omitted] Because of their chemical similarity to the mineral phase of bone and teeth, calcium phosphate cements (CPCs) are extensively investigated for applications in biomedicine. Nevertheless, their applicability in load-bearing anatomical sites is restricted by their brittleness. Reinfor...

Full description

Saved in:
Bibliographic Details
Published inActa biomaterialia Vol. 96; pp. 582 - 593
Main Authors Paknahad, Ali, Petre, Daniela G., Leeuwenburgh, Sander C.G., Sluys, Lambertus J.
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 15.09.2019
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] Because of their chemical similarity to the mineral phase of bone and teeth, calcium phosphate cements (CPCs) are extensively investigated for applications in biomedicine. Nevertheless, their applicability in load-bearing anatomical sites is restricted by their brittleness. Reinforcement of calcium phosphate cements with polymeric fibers can overcome this mechanical limitation provided that the affinity between these fibers and the surrounding matrix is optimal. To date, the effects of the fiber-matrix affinity on the mechanical properties of fiber-reinforced calcium phosphate cements are still poorly understood. The goal of this study is therefore to investigate the interfacial properties and bond-slip response between the CPC matrix and polymeric fibers. To this end, we selected poly (vinyl alcohol) (PVA) fibers as reinforcing agents because of their high strength and stiffness and their effective reinforcement of cementitious matrices. Micromechanical pull-out experiments were combined with numerical simulations based on an dedicated constitutive interfacial law to characterize the interfacial properties of PVA fibers embedded in a CPC matrix at the single fiber pull-out level. The computational model developed herein is able to predict all three main phases of pull-out response, i.e. the elastic, debonding and frictional pull-out phases. The resulting interfacial constitutive law is validated experimentally and predicts the pull-out response of fibers with different diameters and embedded lengths. To date, the effects of the fiber-matrix affinity on the mechanical properties of fiber-reinforced calcium phosphate cements are still poorly understood. In this study, we present a novel experimental protocol to investigate the affinity between poly (vinyl alcohol) PVA fibers and the calcium phosphate cement (CPC) matrix by means of single-fiber pull out tests. We determine the critical embedded length for PVA fibers with two different diameters; and we design a numerical FE model including a distinct representation of fiber, matrix and interface with a predictive interfacial constitutive law which is capable of capturing all three main phases of single-fiber pull-out, i.e. elastic, debonding and frictional stages. The resulting interfacial constitutive law is validated experimentally and predicts the pull-out response of fibers with different diameters and embedded lengths.
AbstractList Because of their chemical similarity to the mineral phase of bone and teeth, calcium phosphate cements (CPCs) are extensively investigated for applications in biomedicine. Nevertheless, their applicability in load-bearing anatomical sites is restricted by their brittleness. Reinforcement of calcium phosphate cements with polymeric fibers can overcome this mechanical limitation provided that the affinity between these fibers and the surrounding matrix is optimal. To date, the effects of the fiber-matrix affinity on the mechanical properties of fiber-reinforced calcium phosphate cements are still poorly understood. The goal of this study is therefore to investigate the interfacial properties and bond-slip response between the CPC matrix and polymeric fibers. To this end, we selected poly (vinyl alcohol) (PVA) fibers as reinforcing agents because of their high strength and stiffness and their effective reinforcement of cementitious matrices. Micromechanical pull-out experiments were combined with numerical simulations based on an dedicated constitutive interfacial law to characterize the interfacial properties of PVA fibers embedded in a CPC matrix at the single fiber pull-out level. The computational model developed herein is able to predict all three main phases of pull-out response, i.e. the elastic, debonding and frictional pull-out phases. The resulting interfacial constitutive law is validated experimentally and predicts the pull-out response of fibers with different diameters and embedded lengths. STATEMENTS OF SIGNIFICANCE: To date, the effects of the fiber-matrix affinity on the mechanical properties of fiber-reinforced calcium phosphate cements are still poorly understood. In this study, we present a novel experimental protocol to investigate the affinity between poly (vinyl alcohol) PVA fibers and the calcium phosphate cement (CPC) matrix by means of single-fiber pull out tests. We determine the critical embedded length for PVA fibers with two different diameters; and we design a numerical FE model including a distinct representation of fiber, matrix and interface with a predictive interfacial constitutive law which is capable of capturing all three main phases of single-fiber pull-out, i.e. elastic, debonding and frictional stages. The resulting interfacial constitutive law is validated experimentally and predicts the pull-out response of fibers with different diameters and embedded lengths.Because of their chemical similarity to the mineral phase of bone and teeth, calcium phosphate cements (CPCs) are extensively investigated for applications in biomedicine. Nevertheless, their applicability in load-bearing anatomical sites is restricted by their brittleness. Reinforcement of calcium phosphate cements with polymeric fibers can overcome this mechanical limitation provided that the affinity between these fibers and the surrounding matrix is optimal. To date, the effects of the fiber-matrix affinity on the mechanical properties of fiber-reinforced calcium phosphate cements are still poorly understood. The goal of this study is therefore to investigate the interfacial properties and bond-slip response between the CPC matrix and polymeric fibers. To this end, we selected poly (vinyl alcohol) (PVA) fibers as reinforcing agents because of their high strength and stiffness and their effective reinforcement of cementitious matrices. Micromechanical pull-out experiments were combined with numerical simulations based on an dedicated constitutive interfacial law to characterize the interfacial properties of PVA fibers embedded in a CPC matrix at the single fiber pull-out level. The computational model developed herein is able to predict all three main phases of pull-out response, i.e. the elastic, debonding and frictional pull-out phases. The resulting interfacial constitutive law is validated experimentally and predicts the pull-out response of fibers with different diameters and embedded lengths. STATEMENTS OF SIGNIFICANCE: To date, the effects of the fiber-matrix affinity on the mechanical properties of fiber-reinforced calcium phosphate cements are still poorly understood. In this study, we present a novel experimental protocol to investigate the affinity between poly (vinyl alcohol) PVA fibers and the calcium phosphate cement (CPC) matrix by means of single-fiber pull out tests. We determine the critical embedded length for PVA fibers with two different diameters; and we design a numerical FE model including a distinct representation of fiber, matrix and interface with a predictive interfacial constitutive law which is capable of capturing all three main phases of single-fiber pull-out, i.e. elastic, debonding and frictional stages. The resulting interfacial constitutive law is validated experimentally and predicts the pull-out response of fibers with different diameters and embedded lengths.
[Display omitted] Because of their chemical similarity to the mineral phase of bone and teeth, calcium phosphate cements (CPCs) are extensively investigated for applications in biomedicine. Nevertheless, their applicability in load-bearing anatomical sites is restricted by their brittleness. Reinforcement of calcium phosphate cements with polymeric fibers can overcome this mechanical limitation provided that the affinity between these fibers and the surrounding matrix is optimal. To date, the effects of the fiber-matrix affinity on the mechanical properties of fiber-reinforced calcium phosphate cements are still poorly understood. The goal of this study is therefore to investigate the interfacial properties and bond-slip response between the CPC matrix and polymeric fibers. To this end, we selected poly (vinyl alcohol) (PVA) fibers as reinforcing agents because of their high strength and stiffness and their effective reinforcement of cementitious matrices. Micromechanical pull-out experiments were combined with numerical simulations based on an dedicated constitutive interfacial law to characterize the interfacial properties of PVA fibers embedded in a CPC matrix at the single fiber pull-out level. The computational model developed herein is able to predict all three main phases of pull-out response, i.e. the elastic, debonding and frictional pull-out phases. The resulting interfacial constitutive law is validated experimentally and predicts the pull-out response of fibers with different diameters and embedded lengths. To date, the effects of the fiber-matrix affinity on the mechanical properties of fiber-reinforced calcium phosphate cements are still poorly understood. In this study, we present a novel experimental protocol to investigate the affinity between poly (vinyl alcohol) PVA fibers and the calcium phosphate cement (CPC) matrix by means of single-fiber pull out tests. We determine the critical embedded length for PVA fibers with two different diameters; and we design a numerical FE model including a distinct representation of fiber, matrix and interface with a predictive interfacial constitutive law which is capable of capturing all three main phases of single-fiber pull-out, i.e. elastic, debonding and frictional stages. The resulting interfacial constitutive law is validated experimentally and predicts the pull-out response of fibers with different diameters and embedded lengths.
Because of their chemical similarity to the mineral phase of bone and teeth, calcium phosphate cements (CPCs) are extensively investigated for applications in biomedicine. Nevertheless, their applicability in load-bearing anatomical sites is restricted by their brittleness. Reinforcement of calcium phosphate cements with polymeric fibers can overcome this mechanical limitation provided that the affinity between these fibers and the surrounding matrix is optimal. To date, the effects of the fiber-matrix affinity on the mechanical properties of fiber-reinforced calcium phosphate cements are still poorly understood. The goal of this study is therefore to investigate the interfacial properties and bond-slip response between the CPC matrix and polymeric fibers. To this end, we selected poly (vinyl alcohol) (PVA) fibers as reinforcing agents because of their high strength and stiffness and their effective reinforcement of cementitious matrices. Micromechanical pull-out experiments were combined with numerical simulations based on an dedicated constitutive interfacial law to characterize the interfacial properties of PVA fibers embedded in a CPC matrix at the single fiber pull-out level. The computational model developed herein is able to predict all three main phases of pull-out response, i.e. the elastic, debonding and frictional pull-out phases. The resulting interfacial constitutive law is validated experimentally and predicts the pull-out response of fibers with different diameters and embedded lengths.
Because of their chemical similarity to the mineral phase of bone and teeth, calcium phosphate cements (CPCs) are extensively investigated for applications in biomedicine. Nevertheless, their applicability in load-bearing anatomical sites is restricted by their brittleness. Reinforcement of calcium phosphate cements with polymeric fibers can overcome this mechanical limitation provided that the affinity between these fibers and the surrounding matrix is optimal. To date, the effects of the fiber-matrix affinity on the mechanical properties of fiber-reinforced calcium phosphate cements are still poorly understood. The goal of this study is therefore to investigate the interfacial properties and bond-slip response between the CPC matrix and polymeric fibers. To this end, we selected poly (vinyl alcohol) (PVA) fibers as reinforcing agents because of their high strength and stiffness and their effective reinforcement of cementitious matrices. Micromechanical pull-out experiments were combined with numerical simulations based on an dedicated constitutive interfacial law to characterize the interfacial properties of PVA fibers embedded in a CPC matrix at the single fiber pull-out level. The computational model developed herein is able to predict all three main phases of pull-out response, i.e. the elastic, debonding and frictional pull-out phases. The resulting interfacial constitutive law is validated experimentally and predicts the pull-out response of fibers with different diameters and embedded lengths. STATEMENTS OF SIGNIFICANCE: To date, the effects of the fiber-matrix affinity on the mechanical properties of fiber-reinforced calcium phosphate cements are still poorly understood. In this study, we present a novel experimental protocol to investigate the affinity between poly (vinyl alcohol) PVA fibers and the calcium phosphate cement (CPC) matrix by means of single-fiber pull out tests. We determine the critical embedded length for PVA fibers with two different diameters; and we design a numerical FE model including a distinct representation of fiber, matrix and interface with a predictive interfacial constitutive law which is capable of capturing all three main phases of single-fiber pull-out, i.e. elastic, debonding and frictional stages. The resulting interfacial constitutive law is validated experimentally and predicts the pull-out response of fibers with different diameters and embedded lengths.
Author Petre, Daniela G.
Leeuwenburgh, Sander C.G.
Sluys, Lambertus J.
Paknahad, Ali
Author_xml – sequence: 1
  givenname: Ali
  surname: Paknahad
  fullname: Paknahad, Ali
  email: a.paknahad@tudelft.nl, ali.paknahad@radboudumc.nl
  organization: Department of Regenerative Biomaterials, Radboud University Medical Center, Nijmegen, the Netherlands
– sequence: 2
  givenname: Daniela G.
  surname: Petre
  fullname: Petre, Daniela G.
  organization: Department of Regenerative Biomaterials, Radboud University Medical Center, Nijmegen, the Netherlands
– sequence: 3
  givenname: Sander C.G.
  surname: Leeuwenburgh
  fullname: Leeuwenburgh, Sander C.G.
  organization: Department of Regenerative Biomaterials, Radboud University Medical Center, Nijmegen, the Netherlands
– sequence: 4
  givenname: Lambertus J.
  surname: Sluys
  fullname: Sluys, Lambertus J.
  organization: Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, the Netherlands
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31260819$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1u1DAUhSNURH_gDRCyxKYsEmzHEyddVKqqApUqsYG15Z9rxqPEDrYz6vAgPG89ncKiC1jZuv7Oudf3nFZHPnioqrcENwST7uOmkTorFxqKydDgrsGMvahOSM_7mq-6_qjcOaM1xx05rk5T2mDc9oT2r6rjltAO92Q4qX7f-gzRSu3kiPRaxmIK0f2S2QWPgkVzGHfofOv8bkRy1GEdxg_IOgUxIZgUGAMGOY8k0uXZLROa1yHNa5kBaZjAZzTJHN39BbryCO7n4r6vlnbSG-SXqRSKtHhsIWX347Hz6-qllWOCN0_nWfX908236y_13dfPt9dXd7VmvM211abjciBMcsPUQCihCnPCFWulsqoF2bcSs65vubUdUxawkYPShPQMG4vbs-r84DvH8HMp_cXkkoZxlB7CkgSlK0II7ld79P0zdBOW6Mt0gra4o3hgdCjUuydqURMYMZffyrgTfzZeAHYAdAwpRbB_EYLFPlixEYdgxT5YgTtRgi2yi2cy7fLjqnKUbvyf-PIghrLKrYMoknbgNRgXQWdhgvu3wQPeBMNO
CitedBy_id crossref_primary_10_1080_00914037_2024_2414329
crossref_primary_10_3390_su151914351
crossref_primary_10_1016_j_jmatprotec_2023_118035
crossref_primary_10_1021_acsami_4c03994
crossref_primary_10_1021_acsnano_1c03905
crossref_primary_10_1016_j_ceramint_2022_08_117
crossref_primary_10_1016_j_jmbbm_2019_103565
crossref_primary_10_1016_j_actbio_2020_10_014
crossref_primary_10_1016_j_ijmecsci_2025_110030
crossref_primary_10_1038_s41598_020_72599_y
Cites_doi 10.1016/j.actbio.2013.11.001
10.1016/j.ijadhadh.2014.07.006
10.1002/suco.201300058
10.1016/j.jmbbm.2017.03.027
10.1016/0958-9465(92)90005-G
10.1016/S0022-5096(96)00095-6
10.1061/(ASCE)0733-9445(1991)117:9(2769)
10.1007/BF02473553
10.1016/j.biomaterials.2012.04.053
10.1016/j.jmbbm.2011.04.005
10.1016/j.actbio.2009.10.036
10.1021/acsbiomaterials.9b00226
10.1007/BF02498739
10.1016/j.conbuildmat.2010.06.059
10.1016/0010-4361(93)90258-A
10.1016/j.jmbbm.2012.07.013
10.1177/08959374880020011101
10.1061/(ASCE)0733-9399(1988)114:2(277)
10.1016/j.jmbbm.2018.11.003
10.1016/0958-9465(91)90030-L
10.1016/j.actbio.2008.04.023
10.1016/j.conbuildmat.2016.02.128
10.1039/B910885H
10.1590/1679-78252575
10.1097/BRS.0b013e31818f8bc1
10.3844/ajeassp.2010.454.463
10.1061/(ASCE)0733-9445(1991)117:9(2791)
10.1007/BF00723780
10.1111/j.1151-2916.1991.tb07144.x
10.1016/j.tust.2016.06.007
10.1163/156856100742663
10.1080/01694243.2012.705543
10.1016/j.actbio.2016.11.019
10.1002/jbm.b.30398
10.1016/j.jbiomech.2012.11.036
10.1016/j.actbio.2010.01.036
10.1016/0262-5075(88)90002-4
10.1016/0142-9612(80)90009-5
10.1046/j.1525-1594.2000.06541.x
10.1038/nmat832
10.1163/1568561054929937
ContentType Journal Article
Copyright 2019 Acta Materialia Inc.
Copyright © 2019 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Copyright Elsevier BV Sep 15, 2019
Copyright_xml – notice: 2019 Acta Materialia Inc.
– notice: Copyright © 2019 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
– notice: Copyright Elsevier BV Sep 15, 2019
DBID AAYXX
CITATION
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1016/j.actbio.2019.06.044
DatabaseName CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Materials Research Database
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1878-7568
EndPage 593
ExternalDocumentID 31260819
10_1016_j_actbio_2019_06_044
S1742706119304660
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABGSF
ABJNI
ABMAC
ABNUV
ABUDA
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACPRK
ACRLP
ADBBV
ADEWK
ADEZE
ADUVX
AEBSH
AEHWI
AEKER
AENEX
AEZYN
AFKWA
AFRAH
AFRZQ
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DOVZS
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSG
SSM
SSU
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SEW
SSH
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
8BQ
8FD
C1K
EFKBS
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c473t-fcd67a914a7d4b91212b0717b43abfb3ea83a046837ff64bfe0da9bc11840df03
IEDL.DBID .~1
ISSN 1742-7061
1878-7568
IngestDate Tue Aug 05 10:12:27 EDT 2025
Wed Aug 13 04:29:52 EDT 2025
Wed Feb 19 02:31:34 EST 2025
Thu Apr 24 22:50:48 EDT 2025
Tue Jul 01 01:17:24 EDT 2025
Fri Feb 23 02:39:52 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords PVA fiber
Calcium phosphate cements
Fiber-matrix bond strength
Pull-out test
Language English
License Copyright © 2019 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c473t-fcd67a914a7d4b91212b0717b43abfb3ea83a046837ff64bfe0da9bc11840df03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://ars.els-cdn.com/content/image/1-s2.0-S1742706119304660-ga1_lrg.jpg
PMID 31260819
PQID 2306209429
PQPubID 2045286
PageCount 12
ParticipantIDs proquest_miscellaneous_2251110850
proquest_journals_2306209429
pubmed_primary_31260819
crossref_primary_10_1016_j_actbio_2019_06_044
crossref_citationtrail_10_1016_j_actbio_2019_06_044
elsevier_sciencedirect_doi_10_1016_j_actbio_2019_06_044
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-09-15
PublicationDateYYYYMMDD 2019-09-15
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-15
  day: 15
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Kidlington
PublicationTitle Acta biomaterialia
PublicationTitleAlternate Acta Biomater
PublicationYear 2019
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Zhandarov, Pisanova, Schneider (b0200) 2000; 14
Lin, Li (b0225) 1997; 45
(2002).
Ultimaker technical data sheet pva. URL
H. Tanaka, M. Suzuki, F. Ueda, Ultra-high-tenacity polyvinyl alcohol fiber and process for producing same, uS Patent 4,603,083 (1986).
Kerans, Parthasarathy (b0165) 1991; 74
Tarsuslugil, O’Hara, Dunne, Buchanan, Orr, Barton, Wilcox (b0120) 2013; 46
Bentur, Mindess (b0135) 2006
Fu, Zhou, Chen, Xu, He, Lung (b0140) 1993; 24
Sanzana, Navarro, Macule, Suso, Planell, Ginebra (b0025) 2008; 4
Abu-Lebdeh, Hamoush, Heard, Zornig (b0220) 2011; 25
Zhang, Liu, Schnitzler, Tancret, Bouler (b0005) 2014; 10
Dos Santos, De Oliveira, da Silva Rigo, Carrodéguas, Boschi, Fonseca de Arruda (b0065) 2000; 24
Alwan, Naaman, Hansen (b0245) 1991; 13
Petre, Kucko, Abbadessa, Vermonden, Polini, Leeuwenburgh (b0070) 2019; 90
Breitenbücher, Meschke, Song, Zhan (b0180) 2014; 15
Banthia, Trottier (b0195) 1992; 14
E. Lingen, M. Stroeven, Jem/jive-a c++ numerical toolkit for solving partial differential equations. URL
Blattert, Jestaedt, Weckbach (b0110) 2009; 34
Sprio, Guicciardi, Dapporto, Melandri, Tampieri (b0105) 2013; 17
.
LeGeros (b0035) 1988; 2
Mark (b0080) 2014
Wang, Li, Backer (b0240) 1988; 10
Li, Kristjansson, Høien (b0205) 2016; 59
Lewis (b0115) 2006; 76
Wang, Li (b0130) 2006
Ginebra, Espanol, Montufar, Perez, Mestres (b0010) 2010; 6
Naaman, Namur, Alwan, Najm (b0160) 1991; 117
Castro, Polini, Azami, Leeuwenburgh, Jansen, Yang, van den Beucken (b0230) 2017; 71
Zhandarov, Mäder (b0250) 2014; 55
Zhandarov, Mäder (b0255) 2005; 19
O’Neill, McCarthy, Montufar, Ginebra, Wilson, Lennon, Dunne (b0030) 2017; 50
Wang, Backer, Li (b0150) 1988; 7
Alberti, Enfedaque, Gálvez, Ferreras (b0210) 2016; 112
Scheffler, Zhandarov, Jenschke, Mäder (b0170) 2013; 27
Nalla, Kinney, Ritchie (b0060) 2003; 2
Jiang, Liu, Feng (b0095) 2011; 4
Epple, Ganesan, Heumann, Klesing, Kovtun, Neumann, Sokolova (b0015) 2010; 20
Friedrich, Wang (b0145) 2016; 13
Morrison, Shah, Jenq (b0215) 1988; 114
Osborn, Newesely (b0040) 1980; 1
Zuo, Yang, Wolke, Li, Jansen (b0075) 2010; 6
Thamaraiselvi, Rajeswari (b0045) 2004; 24
Garcia, Naaman, Pera (b0090) 1997; 30
Kucko, de Lacerda Schickert, Sobral Marques, Herber, van den Beucken, Zuo, Leeuwenburgh (b0100) 2019; 5
Martin, Brown (b0050) 1995; 6
Abu-Lebdeh, Hamoush, Zornig (b0185) 2010; 3
Vos, Reinhardt (b0190) 1982; 15
Naaman, Namur, Alwan, Najm (b0155) 1991; 117
Krüger, Groll (b0125) 2012; 33
Hench, Wilson (b0020) 1993
Lin, Kanda, Li (b0175) 1999; 1
Morgan, Yetkinler, Constantz, Dauskardt (b0055) 1997; 8
Lewis (10.1016/j.actbio.2019.06.044_b0115) 2006; 76
LeGeros (10.1016/j.actbio.2019.06.044_b0035) 1988; 2
10.1016/j.actbio.2019.06.044_b0085
Wang (10.1016/j.actbio.2019.06.044_b0150) 1988; 7
Kucko (10.1016/j.actbio.2019.06.044_b0100) 2019; 5
O’Neill (10.1016/j.actbio.2019.06.044_b0030) 2017; 50
Alwan (10.1016/j.actbio.2019.06.044_b0245) 1991; 13
Mark (10.1016/j.actbio.2019.06.044_b0080) 2014
Li (10.1016/j.actbio.2019.06.044_b0205) 2016; 59
Castro (10.1016/j.actbio.2019.06.044_b0230) 2017; 71
Lin (10.1016/j.actbio.2019.06.044_b0175) 1999; 1
Osborn (10.1016/j.actbio.2019.06.044_b0040) 1980; 1
Zhandarov (10.1016/j.actbio.2019.06.044_b0200) 2000; 14
Ginebra (10.1016/j.actbio.2019.06.044_b0010) 2010; 6
Blattert (10.1016/j.actbio.2019.06.044_b0110) 2009; 34
Thamaraiselvi (10.1016/j.actbio.2019.06.044_b0045) 2004; 24
Kerans (10.1016/j.actbio.2019.06.044_b0165) 1991; 74
Zuo (10.1016/j.actbio.2019.06.044_b0075) 2010; 6
Vos (10.1016/j.actbio.2019.06.044_b0190) 1982; 15
Tarsuslugil (10.1016/j.actbio.2019.06.044_b0120) 2013; 46
Bentur (10.1016/j.actbio.2019.06.044_b0135) 2006
10.1016/j.actbio.2019.06.044_b0260
Morgan (10.1016/j.actbio.2019.06.044_b0055) 1997; 8
Sprio (10.1016/j.actbio.2019.06.044_b0105) 2013; 17
Wang (10.1016/j.actbio.2019.06.044_b0130) 2006
Zhandarov (10.1016/j.actbio.2019.06.044_b0255) 2005; 19
Epple (10.1016/j.actbio.2019.06.044_b0015) 2010; 20
Naaman (10.1016/j.actbio.2019.06.044_b0160) 1991; 117
Jiang (10.1016/j.actbio.2019.06.044_b0095) 2011; 4
Sanzana (10.1016/j.actbio.2019.06.044_b0025) 2008; 4
Fu (10.1016/j.actbio.2019.06.044_b0140) 1993; 24
Friedrich (10.1016/j.actbio.2019.06.044_b0145) 2016; 13
Nalla (10.1016/j.actbio.2019.06.044_b0060) 2003; 2
Alberti (10.1016/j.actbio.2019.06.044_b0210) 2016; 112
Zhang (10.1016/j.actbio.2019.06.044_b0005) 2014; 10
Garcia (10.1016/j.actbio.2019.06.044_b0090) 1997; 30
Breitenbücher (10.1016/j.actbio.2019.06.044_b0180) 2014; 15
Krüger (10.1016/j.actbio.2019.06.044_b0125) 2012; 33
Morrison (10.1016/j.actbio.2019.06.044_b0215) 1988; 114
Zhandarov (10.1016/j.actbio.2019.06.044_b0250) 2014; 55
Hench (10.1016/j.actbio.2019.06.044_b0020) 1993
10.1016/j.actbio.2019.06.044_b0235
Scheffler (10.1016/j.actbio.2019.06.044_b0170) 2013; 27
Abu-Lebdeh (10.1016/j.actbio.2019.06.044_b0185) 2010; 3
Petre (10.1016/j.actbio.2019.06.044_b0070) 2019; 90
Wang (10.1016/j.actbio.2019.06.044_b0240) 1988; 10
Martin (10.1016/j.actbio.2019.06.044_b0050) 1995; 6
Abu-Lebdeh (10.1016/j.actbio.2019.06.044_b0220) 2011; 25
Naaman (10.1016/j.actbio.2019.06.044_b0155) 1991; 117
Dos Santos (10.1016/j.actbio.2019.06.044_b0065) 2000; 24
Banthia (10.1016/j.actbio.2019.06.044_b0195) 1992; 14
Lin (10.1016/j.actbio.2019.06.044_b0225) 1997; 45
References_xml – year: 2006
  ident: b0130
  article-title: Polyvinyl alcohol fiber reinforced engineered cementitious composites: material design and performances
  publication-title: RILEM PRO
– volume: 1
  start-page: 108
  year: 1980
  end-page: 111
  ident: b0040
  article-title: The material science of calcium phosphate ceramics
  publication-title: Biomaterials
– volume: 24
  start-page: 5
  year: 1993
  end-page: 11
  ident: b0140
  article-title: Some further considerations of the theory of fibre debonding and pull-out from an elastic matrix. Part 1: constant interfacial frictional shear stress
  publication-title: Composites
– volume: 14
  start-page: 381
  year: 2000
  end-page: 398
  ident: b0200
  article-title: Fiber-stretching test: a new technique for characterizing the fiber–matrix interface using direct observation of crack initiation and propagation
  publication-title: J. Adhes. Sci. Technol.
– volume: 5
  start-page: 2491
  year: 2019
  end-page: 2505
  ident: b0100
  article-title: Tough and osteocompatible calcium phosphate cements reinforced with poly (vinyl alcohol) fibers
  publication-title: ACS Biomater. Sci. Eng.
– volume: 74
  start-page: 1585
  year: 1991
  end-page: 1596
  ident: b0165
  article-title: Theoretical analysis of the fiber pullout and pushout tests
  publication-title: J. Am. Ceram. Soc.
– volume: 20
  start-page: 18
  year: 2010
  end-page: 23
  ident: b0015
  article-title: Application of calcium phosphate nanoparticles in biomedicine
  publication-title: J. Mater. Chem.
– volume: 90
  start-page: 472
  year: 2019
  end-page: 483
  ident: b0070
  article-title: Surface functionalization of polylactic acid fibers with alendronate groups does not improve the mechanical properties of fiber-reinforced calcium phosphate cements
  publication-title: J. Mech. Behav. Biomed. Mater.
– volume: 15
  start-page: 3
  year: 1982
  end-page: 10
  ident: b0190
  article-title: Influence of loading rate on bond behaviour of reinforcing steel and prestressing strands
  publication-title: Matér. Constr.
– volume: 76
  start-page: 456
  year: 2006
  end-page: 468
  ident: b0115
  article-title: Injectable bone cements for use in vertebroplasty and kyphoplasty: state-of-the-art review
  publication-title: J. Biomed. Mater. Res. Part B
– volume: 4
  start-page: 1924
  year: 2008
  end-page: 1933
  ident: b0025
  article-title: Of the in vivo behavior of calcium phosphate cements and glasses as bone substitutes
  publication-title: Acta Biomater.
– year: 1993
  ident: b0020
  article-title: An Introduction to Bioceramics
– volume: 59
  start-page: 16
  year: 2016
  end-page: 23
  ident: b0205
  article-title: Critical embedment length and bond strength of fully encapsulated rebar rockbolts
  publication-title: Tunn. Undergr. Space Technol.
– volume: 30
  start-page: 43
  year: 1997
  end-page: 52
  ident: b0090
  article-title: Experimental investigation on the potential use of poly (vinyl alcohol) short fibers in fiber-reinforced cement-based composites
  publication-title: Mater. Struct.
– volume: 2
  start-page: 164
  year: 1988
  end-page: 180
  ident: b0035
  article-title: Calcium phosphate materials in restorative dentistry: a review
  publication-title: Adv. Dental Res.
– volume: 33
  start-page: 5887
  year: 2012
  end-page: 5900
  ident: b0125
  article-title: Fiber reinforced calcium phosphate cements–on the way to degradable load bearing bone substitutes?
  publication-title: Biomaterials
– volume: 14
  start-page: 119
  year: 1992
  end-page: 130
  ident: b0195
  article-title: Micromechanics of steel fiber pull-out: rate sensitivity at very low temperatures
  publication-title: Cem. Concr. Compos.
– volume: 8
  start-page: 559
  year: 1997
  end-page: 570
  ident: b0055
  article-title: Mechanical properties of carbonated apatite bone mineral substitute: strength, fracture and fatigue behaviour
  publication-title: J. Mater. Sci.
– volume: 24
  start-page: 172
  year: 2004
  ident: b0045
  article-title: Biological evaluation of bioceramic materials – a review
  publication-title: Carbon
– volume: 10
  start-page: 143
  year: 1988
  end-page: 149
  ident: b0240
  article-title: Modelling of fibre pull-out from a cement matrix
  publication-title: Int. J. Cem. Compos. Lightweight Concr.
– volume: 1
  start-page: 173
  year: 1999
  end-page: 184
  ident: b0175
  article-title: On interface property characterization and performance of fiber reinforced cementitious composites
  publication-title: Concr. Sci. Eng.
– volume: 7
  start-page: 842
  year: 1988
  end-page: 844
  ident: b0150
  article-title: A special technique for determining the critical length of fibre pull-out from a cement matrix
  publication-title: J. Mater. Sci. Lett.
– volume: 117
  start-page: 2791
  year: 1991
  end-page: 2800
  ident: b0160
  article-title: Fiber pullout and bond slip. II: experimental validation
  publication-title: J. Struct. Eng.
– volume: 46
  start-page: 711
  year: 2013
  end-page: 715
  ident: b0120
  article-title: Development of calcium phosphate cement for the augmentation of traumatically fractured porcine specimens using vertebroplasty
  publication-title: J. Biomech.
– volume: 17
  start-page: 1
  year: 2013
  end-page: 10
  ident: b0105
  article-title: Synthesis and mechanical behavior of
  publication-title: J. Mech. Behav. Biomed. Mater.
– year: 2006
  ident: b0135
  article-title: Fibre Reinforced Cementitious Composites
– volume: 6
  start-page: 138
  year: 1995
  end-page: 143
  ident: b0050
  article-title: Mechanical properties of hydroxyapatite formed at physiological temperature
  publication-title: J. Mater. Sci.
– volume: 27
  start-page: 385
  year: 2013
  end-page: 402
  ident: b0170
  article-title: Poly (vinyl alcohol) fiber reinforced concrete: investigation of strain rate dependent interphase behavior with single fiber pullout test under quasi-static and high rate loading
  publication-title: J. Adhes. Sci. Technol.
– volume: 13
  start-page: 247
  year: 1991
  end-page: 255
  ident: b0245
  article-title: Pull-out work of steel fibers from cementitious composites: analytical investigation
  publication-title: Cem. Concr. Compos.
– volume: 34
  start-page: 108
  year: 2009
  end-page: 114
  ident: b0110
  article-title: Suitability of a calcium phosphate cement in osteoporotic vertebral body fracture augmentation: a controlled, randomized, clinical trial of balloon kyphoplasty comparing calcium phosphate versus polymethylmethacrylate
  publication-title: Spine
– reference: H. Tanaka, M. Suzuki, F. Ueda, Ultra-high-tenacity polyvinyl alcohol fiber and process for producing same, uS Patent 4,603,083 (1986).
– volume: 50
  start-page: 1
  year: 2017
  end-page: 19
  ident: b0030
  article-title: Critical review: injectability of calcium phosphate pastes and cements
  publication-title: Acta Biomater.
– volume: 19
  start-page: 817
  year: 2005
  end-page: 855
  ident: b0255
  article-title: Peak force as function of the embedded length in pull-out and microbond tests: effect of specimen geometry
  publication-title: J. Adhes. Sci. Technol.
– volume: 6
  start-page: 1238
  year: 2010
  end-page: 1247
  ident: b0075
  article-title: Incorporation of biodegradable electrospun fibers into calcium phosphate cement for bone regeneration
  publication-title: Acta Biomater.
– reference: Ultimaker technical data sheet pva. URL:
– reference: (2002).
– volume: 3
  start-page: 454
  year: 2010
  end-page: 463
  ident: b0185
  article-title: Rate effect on pullout behavior of steel fibers embedded in very-high strength concrete
  publication-title: Am. J. Eng. Appl. Sci.
– volume: 2
  start-page: 164
  year: 2003
  ident: b0060
  article-title: Mechanistic fracture criteria for the failure of human cortical bone
  publication-title: Nat. Mater.
– volume: 4
  start-page: 1228
  year: 2011
  end-page: 1233
  ident: b0095
  article-title: PVA hydrogel properties for biomedical application
  publication-title: J. Mech. Behav. Biomed. Mater.
– volume: 13
  start-page: 1937
  year: 2016
  end-page: 1953
  ident: b0145
  article-title: Continuous modeling technique of fiber pullout from a cement matrix with different interface mechanical properties using finite element program
  publication-title: Latin Am. J. Solids Struct.
– volume: 45
  start-page: 763
  year: 1997
  end-page: 787
  ident: b0225
  article-title: Crack bridging in fiber reinforced cementitious composites with slip-hardening interfaces
  publication-title: J. Mech. Phys. Solids
– year: 2014
  ident: b0080
  publication-title: Encyclopedia of Polymer Science and Technology, 15 Volume Set
– reference: .
– volume: 10
  start-page: 1035
  year: 2014
  end-page: 1049
  ident: b0005
  article-title: Calcium phosphate cements for bone substitution: chemistry, handling and mechanical properties
  publication-title: Acta Biomater.
– volume: 15
  start-page: 126
  year: 2014
  end-page: 135
  ident: b0180
  article-title: Experimental, analytical and numerical analysis of the pullout behaviour of steel fibres considering different fibre types, inclinations and concrete strengths
  publication-title: Struct. Concr.
– volume: 55
  start-page: 37
  year: 2014
  end-page: 42
  ident: b0250
  article-title: An alternative method of determining the local interfacial shear strength from force–displacement curves in the pull-out and microbond tests
  publication-title: Int. J. Adhes. Adhes.
– volume: 25
  start-page: 39
  year: 2011
  end-page: 46
  ident: b0220
  article-title: Effect of matrix strength on pullout behavior of steel fiber reinforced very-high strength concrete composites
  publication-title: Constr. Build. Mater.
– volume: 71
  start-page: 286
  year: 2017
  end-page: 294
  ident: b0230
  article-title: Incorporation of plla micro-fillers for mechanical reinforcement of calcium-phosphate cement
  publication-title: J. Mech. Behav. Biomed. Mater.
– volume: 117
  start-page: 2769
  year: 1991
  end-page: 2790
  ident: b0155
  article-title: Fiber pullout and bond slip. I: analytical study
  publication-title: J. Struct. Eng.
– volume: 24
  start-page: 212
  year: 2000
  end-page: 216
  ident: b0065
  article-title: Fiber reinforced calcium phosphate cement
  publication-title: Artif. Organs
– volume: 112
  start-page: 607
  year: 2016
  end-page: 622
  ident: b0210
  article-title: Pull-out behaviour and interface critical parameters of polyolefin fibres embedded in mortar and self-compacting concrete matrixes
  publication-title: Constr. Build. Mater.
– reference: E. Lingen, M. Stroeven, Jem/jive-a c++ numerical toolkit for solving partial differential equations. URL:
– volume: 114
  start-page: 277
  year: 1988
  end-page: 294
  ident: b0215
  article-title: Analysis of fiber debonding and pullout in composites
  publication-title: J. Eng. Mech.
– volume: 6
  start-page: 2863
  year: 2010
  end-page: 2873
  ident: b0010
  article-title: New processing approaches in calcium phosphate cements and their applications in regenerative medicine
  publication-title: Acta Biomater.
– volume: 10
  start-page: 1035
  issue: 3
  year: 2014
  ident: 10.1016/j.actbio.2019.06.044_b0005
  article-title: Calcium phosphate cements for bone substitution: chemistry, handling and mechanical properties
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2013.11.001
– volume: 55
  start-page: 37
  year: 2014
  ident: 10.1016/j.actbio.2019.06.044_b0250
  article-title: An alternative method of determining the local interfacial shear strength from force–displacement curves in the pull-out and microbond tests
  publication-title: Int. J. Adhes. Adhes.
  doi: 10.1016/j.ijadhadh.2014.07.006
– volume: 15
  start-page: 126
  issue: 2
  year: 2014
  ident: 10.1016/j.actbio.2019.06.044_b0180
  article-title: Experimental, analytical and numerical analysis of the pullout behaviour of steel fibres considering different fibre types, inclinations and concrete strengths
  publication-title: Struct. Concr.
  doi: 10.1002/suco.201300058
– volume: 71
  start-page: 286
  year: 2017
  ident: 10.1016/j.actbio.2019.06.044_b0230
  article-title: Incorporation of plla micro-fillers for mechanical reinforcement of calcium-phosphate cement
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2017.03.027
– volume: 14
  start-page: 119
  issue: 2
  year: 1992
  ident: 10.1016/j.actbio.2019.06.044_b0195
  article-title: Micromechanics of steel fiber pull-out: rate sensitivity at very low temperatures
  publication-title: Cem. Concr. Compos.
  doi: 10.1016/0958-9465(92)90005-G
– volume: 45
  start-page: 763
  issue: 5
  year: 1997
  ident: 10.1016/j.actbio.2019.06.044_b0225
  article-title: Crack bridging in fiber reinforced cementitious composites with slip-hardening interfaces
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/S0022-5096(96)00095-6
– volume: 117
  start-page: 2769
  issue: 9
  year: 1991
  ident: 10.1016/j.actbio.2019.06.044_b0155
  article-title: Fiber pullout and bond slip. I: analytical study
  publication-title: J. Struct. Eng.
  doi: 10.1061/(ASCE)0733-9445(1991)117:9(2769)
– volume: 15
  start-page: 3
  issue: 1
  year: 1982
  ident: 10.1016/j.actbio.2019.06.044_b0190
  article-title: Influence of loading rate on bond behaviour of reinforcing steel and prestressing strands
  publication-title: Matér. Constr.
  doi: 10.1007/BF02473553
– volume: 1
  start-page: 173
  year: 1999
  ident: 10.1016/j.actbio.2019.06.044_b0175
  article-title: On interface property characterization and performance of fiber reinforced cementitious composites
  publication-title: Concr. Sci. Eng.
– volume: 33
  start-page: 5887
  issue: 25
  year: 2012
  ident: 10.1016/j.actbio.2019.06.044_b0125
  article-title: Fiber reinforced calcium phosphate cements–on the way to degradable load bearing bone substitutes?
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2012.04.053
– volume: 4
  start-page: 1228
  issue: 7
  year: 2011
  ident: 10.1016/j.actbio.2019.06.044_b0095
  article-title: PVA hydrogel properties for biomedical application
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2011.04.005
– ident: 10.1016/j.actbio.2019.06.044_b0085
– volume: 6
  start-page: 1238
  issue: 4
  year: 2010
  ident: 10.1016/j.actbio.2019.06.044_b0075
  article-title: Incorporation of biodegradable electrospun fibers into calcium phosphate cement for bone regeneration
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2009.10.036
– volume: 5
  start-page: 2491
  issue: 5
  year: 2019
  ident: 10.1016/j.actbio.2019.06.044_b0100
  article-title: Tough and osteocompatible calcium phosphate cements reinforced with poly (vinyl alcohol) fibers
  publication-title: ACS Biomater. Sci. Eng.
  doi: 10.1021/acsbiomaterials.9b00226
– volume: 30
  start-page: 43
  issue: 1
  year: 1997
  ident: 10.1016/j.actbio.2019.06.044_b0090
  article-title: Experimental investigation on the potential use of poly (vinyl alcohol) short fibers in fiber-reinforced cement-based composites
  publication-title: Mater. Struct.
  doi: 10.1007/BF02498739
– volume: 25
  start-page: 39
  issue: 1
  year: 2011
  ident: 10.1016/j.actbio.2019.06.044_b0220
  article-title: Effect of matrix strength on pullout behavior of steel fiber reinforced very-high strength concrete composites
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2010.06.059
– volume: 24
  start-page: 172
  issue: 31
  year: 2004
  ident: 10.1016/j.actbio.2019.06.044_b0045
  article-title: Biological evaluation of bioceramic materials – a review
  publication-title: Carbon
– volume: 24
  start-page: 5
  issue: 1
  year: 1993
  ident: 10.1016/j.actbio.2019.06.044_b0140
  article-title: Some further considerations of the theory of fibre debonding and pull-out from an elastic matrix. Part 1: constant interfacial frictional shear stress
  publication-title: Composites
  doi: 10.1016/0010-4361(93)90258-A
– volume: 17
  start-page: 1
  year: 2013
  ident: 10.1016/j.actbio.2019.06.044_b0105
  article-title: Synthesis and mechanical behavior of β-tricalcium phosphate/titania composites addressed to regeneration of long bone segments
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2012.07.013
– volume: 2
  start-page: 164
  issue: 1
  year: 1988
  ident: 10.1016/j.actbio.2019.06.044_b0035
  article-title: Calcium phosphate materials in restorative dentistry: a review
  publication-title: Adv. Dental Res.
  doi: 10.1177/08959374880020011101
– volume: 114
  start-page: 277
  issue: 2
  year: 1988
  ident: 10.1016/j.actbio.2019.06.044_b0215
  article-title: Analysis of fiber debonding and pullout in composites
  publication-title: J. Eng. Mech.
  doi: 10.1061/(ASCE)0733-9399(1988)114:2(277)
– volume: 90
  start-page: 472
  year: 2019
  ident: 10.1016/j.actbio.2019.06.044_b0070
  article-title: Surface functionalization of polylactic acid fibers with alendronate groups does not improve the mechanical properties of fiber-reinforced calcium phosphate cements
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2018.11.003
– volume: 13
  start-page: 247
  issue: 4
  year: 1991
  ident: 10.1016/j.actbio.2019.06.044_b0245
  article-title: Pull-out work of steel fibers from cementitious composites: analytical investigation
  publication-title: Cem. Concr. Compos.
  doi: 10.1016/0958-9465(91)90030-L
– volume: 4
  start-page: 1924
  issue: 6
  year: 2008
  ident: 10.1016/j.actbio.2019.06.044_b0025
  article-title: Of the in vivo behavior of calcium phosphate cements and glasses as bone substitutes
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2008.04.023
– volume: 6
  start-page: 138
  issue: 3
  year: 1995
  ident: 10.1016/j.actbio.2019.06.044_b0050
  article-title: Mechanical properties of hydroxyapatite formed at physiological temperature
  publication-title: J. Mater. Sci.
– volume: 112
  start-page: 607
  year: 2016
  ident: 10.1016/j.actbio.2019.06.044_b0210
  article-title: Pull-out behaviour and interface critical parameters of polyolefin fibres embedded in mortar and self-compacting concrete matrixes
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2016.02.128
– ident: 10.1016/j.actbio.2019.06.044_b0260
– volume: 20
  start-page: 18
  issue: 1
  year: 2010
  ident: 10.1016/j.actbio.2019.06.044_b0015
  article-title: Application of calcium phosphate nanoparticles in biomedicine
  publication-title: J. Mater. Chem.
  doi: 10.1039/B910885H
– volume: 13
  start-page: 1937
  issue: 10
  year: 2016
  ident: 10.1016/j.actbio.2019.06.044_b0145
  article-title: Continuous modeling technique of fiber pullout from a cement matrix with different interface mechanical properties using finite element program
  publication-title: Latin Am. J. Solids Struct.
  doi: 10.1590/1679-78252575
– year: 1993
  ident: 10.1016/j.actbio.2019.06.044_b0020
– volume: 34
  start-page: 108
  issue: 2
  year: 2009
  ident: 10.1016/j.actbio.2019.06.044_b0110
  article-title: Suitability of a calcium phosphate cement in osteoporotic vertebral body fracture augmentation: a controlled, randomized, clinical trial of balloon kyphoplasty comparing calcium phosphate versus polymethylmethacrylate
  publication-title: Spine
  doi: 10.1097/BRS.0b013e31818f8bc1
– volume: 3
  start-page: 454
  issue: 2
  year: 2010
  ident: 10.1016/j.actbio.2019.06.044_b0185
  article-title: Rate effect on pullout behavior of steel fibers embedded in very-high strength concrete
  publication-title: Am. J. Eng. Appl. Sci.
  doi: 10.3844/ajeassp.2010.454.463
– year: 2006
  ident: 10.1016/j.actbio.2019.06.044_b0135
– volume: 117
  start-page: 2791
  issue: 9
  year: 1991
  ident: 10.1016/j.actbio.2019.06.044_b0160
  article-title: Fiber pullout and bond slip. II: experimental validation
  publication-title: J. Struct. Eng.
  doi: 10.1061/(ASCE)0733-9445(1991)117:9(2791)
– volume: 7
  start-page: 842
  issue: 8
  year: 1988
  ident: 10.1016/j.actbio.2019.06.044_b0150
  article-title: A special technique for determining the critical length of fibre pull-out from a cement matrix
  publication-title: J. Mater. Sci. Lett.
  doi: 10.1007/BF00723780
– volume: 74
  start-page: 1585
  issue: 7
  year: 1991
  ident: 10.1016/j.actbio.2019.06.044_b0165
  article-title: Theoretical analysis of the fiber pullout and pushout tests
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1151-2916.1991.tb07144.x
– volume: 59
  start-page: 16
  year: 2016
  ident: 10.1016/j.actbio.2019.06.044_b0205
  article-title: Critical embedment length and bond strength of fully encapsulated rebar rockbolts
  publication-title: Tunn. Undergr. Space Technol.
  doi: 10.1016/j.tust.2016.06.007
– volume: 14
  start-page: 381
  issue: 3
  year: 2000
  ident: 10.1016/j.actbio.2019.06.044_b0200
  article-title: Fiber-stretching test: a new technique for characterizing the fiber–matrix interface using direct observation of crack initiation and propagation
  publication-title: J. Adhes. Sci. Technol.
  doi: 10.1163/156856100742663
– volume: 27
  start-page: 385
  issue: 4
  year: 2013
  ident: 10.1016/j.actbio.2019.06.044_b0170
  article-title: Poly (vinyl alcohol) fiber reinforced concrete: investigation of strain rate dependent interphase behavior with single fiber pullout test under quasi-static and high rate loading
  publication-title: J. Adhes. Sci. Technol.
  doi: 10.1080/01694243.2012.705543
– volume: 50
  start-page: 1
  year: 2017
  ident: 10.1016/j.actbio.2019.06.044_b0030
  article-title: Critical review: injectability of calcium phosphate pastes and cements
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2016.11.019
– volume: 76
  start-page: 456
  issue: 2
  year: 2006
  ident: 10.1016/j.actbio.2019.06.044_b0115
  article-title: Injectable bone cements for use in vertebroplasty and kyphoplasty: state-of-the-art review
  publication-title: J. Biomed. Mater. Res. Part B
  doi: 10.1002/jbm.b.30398
– volume: 46
  start-page: 711
  issue: 4
  year: 2013
  ident: 10.1016/j.actbio.2019.06.044_b0120
  article-title: Development of calcium phosphate cement for the augmentation of traumatically fractured porcine specimens using vertebroplasty
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2012.11.036
– volume: 6
  start-page: 2863
  issue: 8
  year: 2010
  ident: 10.1016/j.actbio.2019.06.044_b0010
  article-title: New processing approaches in calcium phosphate cements and their applications in regenerative medicine
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2010.01.036
– volume: 10
  start-page: 143
  issue: 3
  year: 1988
  ident: 10.1016/j.actbio.2019.06.044_b0240
  article-title: Modelling of fibre pull-out from a cement matrix
  publication-title: Int. J. Cem. Compos. Lightweight Concr.
  doi: 10.1016/0262-5075(88)90002-4
– ident: 10.1016/j.actbio.2019.06.044_b0235
– volume: 8
  start-page: 559
  issue: 9
  year: 1997
  ident: 10.1016/j.actbio.2019.06.044_b0055
  article-title: Mechanical properties of carbonated apatite bone mineral substitute: strength, fracture and fatigue behaviour
  publication-title: J. Mater. Sci.
– year: 2014
  ident: 10.1016/j.actbio.2019.06.044_b0080
– volume: 1
  start-page: 108
  issue: 2
  year: 1980
  ident: 10.1016/j.actbio.2019.06.044_b0040
  article-title: The material science of calcium phosphate ceramics
  publication-title: Biomaterials
  doi: 10.1016/0142-9612(80)90009-5
– volume: 24
  start-page: 212
  issue: 3
  year: 2000
  ident: 10.1016/j.actbio.2019.06.044_b0065
  article-title: Fiber reinforced calcium phosphate cement
  publication-title: Artif. Organs
  doi: 10.1046/j.1525-1594.2000.06541.x
– volume: 2
  start-page: 164
  issue: 3
  year: 2003
  ident: 10.1016/j.actbio.2019.06.044_b0060
  article-title: Mechanistic fracture criteria for the failure of human cortical bone
  publication-title: Nat. Mater.
  doi: 10.1038/nmat832
– year: 2006
  ident: 10.1016/j.actbio.2019.06.044_b0130
  article-title: Polyvinyl alcohol fiber reinforced engineered cementitious composites: material design and performances
– volume: 19
  start-page: 817
  issue: 10
  year: 2005
  ident: 10.1016/j.actbio.2019.06.044_b0255
  article-title: Peak force as function of the embedded length in pull-out and microbond tests: effect of specimen geometry
  publication-title: J. Adhes. Sci. Technol.
  doi: 10.1163/1568561054929937
SSID ssj0038128
Score 2.356969
Snippet [Display omitted] Because of their chemical similarity to the mineral phase of bone and teeth, calcium phosphate cements (CPCs) are extensively investigated...
Because of their chemical similarity to the mineral phase of bone and teeth, calcium phosphate cements (CPCs) are extensively investigated for applications in...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 582
SubjectTerms Affinity
Alcohol
Calcium phosphate cements
Calcium phosphates
Cement reinforcements
Chemical fingerprinting
Computer applications
Computer simulation
Fiber pullout
Fiber reinforced materials
Fiber-matrix bond strength
Fibers
Interfacial properties
Investigations
Mathematical models
Mechanical properties
Organic chemistry
Pull-out test
PVA fiber
Stiffness
Teeth
Title Interfacial characterization of poly (vinyl alcohol) fibers embedded in a calcium phosphate cement matrix: An experimental and numerical investigation
URI https://dx.doi.org/10.1016/j.actbio.2019.06.044
https://www.ncbi.nlm.nih.gov/pubmed/31260819
https://www.proquest.com/docview/2306209429
https://www.proquest.com/docview/2251110850
Volume 96
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqcoED4s3SUg0SBziEXcfOJuG2qqgWEL1Apd4sP9VUu07E7qL2ws_g9zKTl8qhqsQxyTiyPLbn--x5MPbWFTwYEYibaJ1IaVxS-iIkQjqL6FiUug0X-3Y6X57JL-fZ-R47HmJhyK2y3_u7Pb3drfs30340p01VTb8jlk5zNEcIQZDkzYm3S5nTLP_we3TzQIPU1lcl4YSkh_C51sdL262pKASQl20WTylvM0-3wc_WDJ08Yg97_AiLrouP2Z6PT9iDG1kFn7I_7Slf0HQYDnZMyNzFW0IdoKlX1_DuVxWvV6C7ErnvIZDryAb82njcixxUETSgAm21W0NzUW-aC4SlYNvjRFhTZv-rj7CIcLNGAOjoIO66W6AV_mNM4lHHZ-zs5NOP42XSl19IrMzFNgnWzXNdcqlzJ03J0cgZYn9GCm1QwV4XQuPII8UNYS5N8DOnS2M5kUYXZuI524919C8ZpFbiL9LMW-5k5gpdZJKH0iC8QshShgkTw6gr2-cmpxIZKzU4oV2qTleKdKXIF0_KCUvGVk2Xm-MO-XxQqPpnjik0H3e0PBz0r_o1vlFE3lJkx2k5YW_Gz7g66cpFR1_vUIYYHAV4zCbsRTdvxq4KjlwSAdmr_-7WAbtPT-S-wrNDtr_9ufOvESNtzVG7CI7YvcXnr8vTv7UwE4o
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaq7QE4IN4sFBgkDnCIdp04m4TbqqLa0nYvtFJvlp9qql0nYncR_SP8XmbyUjlUlbgmtmV57Jnvs-fB2Cebc68TT9xEqUgIbaPC5T5KhDWIjpNCNeFiZ8vZ4kJ8v0wv99hhHwtDbpWd7m91eqOtuy-TbjUndVlOfiCWjjM0RwhBkOTNkLfvU3aqdMT258cni2WvkNEmNSVWqX1EHfoIusbNS5mtLikKkBdNIk8h7rJQdyHQxhIdPWGPOwgJ83aWT9meC8_Yo1uJBZ-zP81Fn1d0Hw5myMnchlxC5aGuVjfw-VcZblag2iq5X8CT98gG3Fo7VEcWygAKUIam3K2hvqo29RUiUzDNjSKsKbn_768wD3C7TACoYCHs2oegFY4x5PGowgt2cfTt_HARdRUYIiOyZBt5Y2eZKrhQmRW64GjnNBFALRKlUcZO5YnCxUeW6_1MaO-mVhXacOKN1k-Tl2wUquBeM4iNwCHi1BluRWpzlaeC-0IjwkLUUvgxS_pVl6ZLT05VMlay90O7lq2sJMlKkjueEGMWDb3qNj3HPe2zXqDyn20m0YLc0_Ogl7_sjvlGEn-LkSDHxZh9HH7jAaVXFxVctcM2ROIoxmM6Zq_afTNMNeFIJxGTvfnvaX1gDxbnZ6fy9Hh58pY9pD_kzcLTAzba_ty5dwiZtvp9dyT-AhGLFjs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interfacial+characterization+of+poly+%28vinyl+alcohol%29+fibers+embedded+in+a+calcium+phosphate+cement+matrix%3A+An+experimental+and+numerical+investigation&rft.jtitle=Acta+biomaterialia&rft.au=Paknahad%2C+Ali&rft.au=Petre%2C+Daniela+G&rft.au=Leeuwenburgh%2C+Sander+C+G&rft.au=Sluys%2C+Lambertus+J&rft.date=2019-09-15&rft.eissn=1878-7568&rft.volume=96&rft.spage=582&rft_id=info:doi/10.1016%2Fj.actbio.2019.06.044&rft_id=info%3Apmid%2F31260819&rft.externalDocID=31260819
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-7061&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-7061&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-7061&client=summon