Probing the phase transformation and dislocation evolution in dual-phase high-entropy alloys
Some high-entropy alloys, which contain two or more component phases with highly different properties, can achieve an outstanding combination of high strength and high ductility, and even break in the strength-ductility trade-off. However, a detailed atomic-scale mechanism of the dynamic continuous...
Saved in:
Published in | International journal of plasticity Vol. 114; no. C; pp. 161 - 173 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Elsevier Ltd
01.03.2019
Elsevier BV Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Some high-entropy alloys, which contain two or more component phases with highly different properties, can achieve an outstanding combination of high strength and high ductility, and even break in the strength-ductility trade-off. However, a detailed atomic-scale mechanism of the dynamic continuous microstructural evolution has not hitherto been performed, to limit the achievement of bulk dual-phase high-entropy alloys with the improved strength and toughness. Here we report the deformation and plasticity as well as strength in the dual-phase nanocrystalline high-entropy alloys with a variable volume fraction of face-centered-cube (FCC) and hexagonal closed-packed (HCP) phases using atomistic simulations during the tensile-straining tests. The results show that the amplitudes of additional interaction stresses and strains rely on such factors as the differences in the mechanical property and volume fraction of each phase. Due to the complexity of the phase and phase boundary, the mechanical properties of the dual-phase nanocrystalline high-entropy alloys, in general, cannot be accurately estimated on the basis of the simple mixed laws, which are dependent upon the volume fraction and yielding strength of individual phase. The aim of this study is to describe how the phase volume fractions affect the mechanical properties in the dual-phase high-entropy alloys. The flow stress and work hardening of the dual-phase high-entropy alloys can be explained on the basis of the mobile dislocation density and dislocation-induced phase transformation in the corresponding phases. The HCP-based high-entropy alloys show the good plasticity and high strength, and are unlike traditional alloys with the low ductility, owing to the occurrence of the HCP to FCC phase transformation. The strength of the dual-phase high-entropy alloy with the 16.7% FCC-phase volume fraction exceeds that of HCP-based or FCC-based matrix, due to the stronger interface hardening. We expect that these results would be helpful for designing and selecting dual-phase high-entropy alloys with great strength and good ductility in various engineering applications.
[Display omitted]
•Deformation and plasticity in dual-phase nanocrystalline HEAs are studied by atomistic simulations.•Additional interaction stresses depend on property difference and volume fraction of phases.•Strength of dual-phase HEAs with 16.7% FCC-phase fraction exceeds that of HCP-based or FCC-based matrix.•Transformation from FCC to HCP and reverse transformation from HCP to FCC are observed. |
---|---|
AbstractList | Some high-entropy alloys, which contain two or more component phases with highly different properties, can achieve an outstanding combination of high strength and high ductility, and even break in the strength-ductility trade-off. However, a detailed atomic-scale mechanism of the dynamic continuous microstructural evolution has not hitherto been performed, to limit the achievement of bulk dual-phase high-entropy alloys with the improved strength and toughness. Here we report the deformation and plasticity as well as strength in the dual-phase nanocrystalline high-entropy alloys with a variable volume fraction of face-centered-cube (FCC) and hexagonal closed-packed (HCP) phases using atomistic simulations during the tensile-straining tests. The results show that the amplitudes of additional interaction stresses and strains rely on such factors as the differences in the mechanical property and volume fraction of each phase. Due to the complexity of the phase and phase boundary, the mechanical properties of the dual-phase nanocrystalline high-entropy alloys, in general, cannot be accurately estimated on the basis of the simple mixed laws, which are dependent upon the volume fraction and yielding strength of individual phase. The aim of this study is to describe how the phase volume fractions affect the mechanical properties in the dual-phase high-entropy alloys. The flow stress and work hardening of the dual-phase high-entropy alloys can be explained on the basis of the mobile dislocation density and dislocation-induced phase transformation in the corresponding phases. The HCP-based high-entropy alloys show the good plasticity and high strength, and are unlike traditional alloys with the low ductility, owing to the occurrence of the HCP to FCC phase transformation. The strength of the dual-phase high-entropy alloy with the 16.7% FCC-phase volume fraction exceeds that of HCP-based or FCC-based matrix, due to the stronger interface hardening. We expect that these results would be helpful for designing and selecting dual-phase high-entropy alloys with great strength and good ductility in various engineering applications. Not provided. Some high-entropy alloys, which contain two or more component phases with highly different properties, can achieve an outstanding combination of high strength and high ductility, and even break in the strength-ductility trade-off. However, a detailed atomic-scale mechanism of the dynamic continuous microstructural evolution has not hitherto been performed, to limit the achievement of bulk dual-phase high-entropy alloys with the improved strength and toughness. Here we report the deformation and plasticity as well as strength in the dual-phase nanocrystalline high-entropy alloys with a variable volume fraction of face-centered-cube (FCC) and hexagonal closed-packed (HCP) phases using atomistic simulations during the tensile-straining tests. The results show that the amplitudes of additional interaction stresses and strains rely on such factors as the differences in the mechanical property and volume fraction of each phase. Due to the complexity of the phase and phase boundary, the mechanical properties of the dual-phase nanocrystalline high-entropy alloys, in general, cannot be accurately estimated on the basis of the simple mixed laws, which are dependent upon the volume fraction and yielding strength of individual phase. The aim of this study is to describe how the phase volume fractions affect the mechanical properties in the dual-phase high-entropy alloys. The flow stress and work hardening of the dual-phase high-entropy alloys can be explained on the basis of the mobile dislocation density and dislocation-induced phase transformation in the corresponding phases. The HCP-based high-entropy alloys show the good plasticity and high strength, and are unlike traditional alloys with the low ductility, owing to the occurrence of the HCP to FCC phase transformation. The strength of the dual-phase high-entropy alloy with the 16.7% FCC-phase volume fraction exceeds that of HCP-based or FCC-based matrix, due to the stronger interface hardening. We expect that these results would be helpful for designing and selecting dual-phase high-entropy alloys with great strength and good ductility in various engineering applications. [Display omitted] •Deformation and plasticity in dual-phase nanocrystalline HEAs are studied by atomistic simulations.•Additional interaction stresses depend on property difference and volume fraction of phases.•Strength of dual-phase HEAs with 16.7% FCC-phase fraction exceeds that of HCP-based or FCC-based matrix.•Transformation from FCC to HCP and reverse transformation from HCP to FCC are observed. |
Author | Liu, Bin Li, Jia Liaw, Peter K. Jiang, Chao Chen, Yang Liu, Yong Fang, Qihong |
Author_xml | – sequence: 1 givenname: Qihong surname: Fang fullname: Fang, Qihong organization: State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, 410082, PR China – sequence: 2 givenname: Yang surname: Chen fullname: Chen, Yang organization: State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, 410082, PR China – sequence: 3 givenname: Jia surname: Li fullname: Li, Jia email: lijia123@hnu.edu.cn organization: State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, 410082, PR China – sequence: 4 givenname: Chao surname: Jiang fullname: Jiang, Chao email: jiangc@hnu.edu.cn organization: State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, 410082, PR China – sequence: 5 givenname: Bin surname: Liu fullname: Liu, Bin organization: State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, PR China – sequence: 6 givenname: Yong surname: Liu fullname: Liu, Yong organization: State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, PR China – sequence: 7 givenname: Peter K. surname: Liaw fullname: Liaw, Peter K. email: pliaw@utk.edu organization: Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN, 37996, USA |
BackLink | https://www.osti.gov/biblio/1614159$$D View this record in Osti.gov |
BookMark | eNqFkM1u3CAUhVGVSp2kfYMurHTtCdhgIItKVdT8SJHSRbOLhBh8ibEccICJNG9fHGeVRbMCrs45l_MdoyMfPCD0neAtwaQ7G7dunCedtg0mooy2mNBPaEMEl3VDGD1CG8yprDtK5Bd0nNKIMWaiJRv08CeGnfOPVR6gmgedoMpR-2RDfNLZBV9p31e9S1Mw6xtewrR_vTlf9Xs91attcI9DDT7HMB8qPU3hkL6iz1ZPCb69nSfo_vL334vr-vbu6ubi121tKG9zDaKhXAqwrRGsobKzHTTGsB2n3ArCpWG9pZrtOimBS2bBYsGEAI27llPcnqDTNTek7FQyLoMZTPAeTFakI5QwWUQ_VtEcw_MeUlZj2Edf_qUaIste3vCmqM5XlYkhpQhWlbTX4gWLmxTBakGuRrUiVwvyZVqQFzN9Z56je9Lx8JHt52qDwujFQVwqgDfQu7g06IP7f8A_47Sf1g |
CitedBy_id | crossref_primary_10_1016_j_jmst_2024_08_058 crossref_primary_10_3389_fmats_2021_813382 crossref_primary_10_1016_j_commatsci_2024_112837 crossref_primary_10_1016_j_jallcom_2022_168521 crossref_primary_10_1016_j_jmrt_2024_12_134 crossref_primary_10_1007_s11431_022_2146_9 crossref_primary_10_1007_s11661_020_06099_z crossref_primary_10_1016_j_ijplas_2024_104010 crossref_primary_10_1016_j_physb_2021_413078 crossref_primary_10_1016_j_jallcom_2019_06_301 crossref_primary_10_1016_j_msea_2024_147568 crossref_primary_10_1016_j_physb_2022_414447 crossref_primary_10_1016_j_ijplas_2024_103963 crossref_primary_10_1016_j_micron_2023_103461 crossref_primary_10_1515_ntrev_2021_0071 crossref_primary_10_1080_21663831_2024_2405228 crossref_primary_10_1016_j_carbon_2024_119532 crossref_primary_10_1016_j_jmrt_2024_09_090 crossref_primary_10_1016_j_jallcom_2023_169688 crossref_primary_10_3390_nano12071239 crossref_primary_10_1007_s00339_022_05382_7 crossref_primary_10_1088_1361_6528_ababcd crossref_primary_10_1016_j_ijplas_2023_103691 crossref_primary_10_1002_adem_202001044 crossref_primary_10_1016_j_commatsci_2021_110495 crossref_primary_10_1016_j_jnoncrysol_2024_123039 crossref_primary_10_1016_j_intermet_2022_107585 crossref_primary_10_1038_s41467_020_14641_1 crossref_primary_10_1016_j_msea_2021_141196 crossref_primary_10_1080_09500839_2020_1866220 crossref_primary_10_1088_1361_651X_ad084d crossref_primary_10_1016_j_ijrmhm_2022_105942 crossref_primary_10_1016_j_ijplas_2024_103980 crossref_primary_10_1016_j_jmrt_2023_12_193 crossref_primary_10_3390_ma14216523 crossref_primary_10_7498_aps_72_20221621 crossref_primary_10_1063_5_0198067 crossref_primary_10_1016_j_jallcom_2021_159516 crossref_primary_10_1016_j_mtcomm_2023_107264 crossref_primary_10_1016_j_ijplas_2021_103103 crossref_primary_10_1016_j_ijplas_2022_103389 crossref_primary_10_1021_acsanm_4c02867 crossref_primary_10_1007_s12598_024_02865_9 crossref_primary_10_1016_j_ijplas_2023_103663 crossref_primary_10_1016_j_msea_2025_147983 crossref_primary_10_1016_j_triboint_2022_107435 crossref_primary_10_1007_s12540_019_00468_z crossref_primary_10_1016_j_ijplas_2025_104315 crossref_primary_10_1007_s10483_022_2803_5 crossref_primary_10_1016_j_ijplas_2021_102944 crossref_primary_10_1016_j_jmst_2024_03_027 crossref_primary_10_1063_10_0021377 crossref_primary_10_1016_j_scriptamat_2020_03_056 crossref_primary_10_1063_5_0082199 crossref_primary_10_1063_5_0057591 crossref_primary_10_1088_1674_1056_ac891e crossref_primary_10_7498_aps_70_20210324 crossref_primary_10_1016_j_ijmecsci_2025_110151 crossref_primary_10_1016_j_matchemphys_2021_124912 crossref_primary_10_1016_j_mtla_2020_100738 crossref_primary_10_1016_j_ijmecsci_2022_107855 crossref_primary_10_1016_j_msea_2020_139936 crossref_primary_10_1016_j_ijmecsci_2022_108026 crossref_primary_10_1016_j_jallcom_2019_151646 crossref_primary_10_1016_j_matchar_2023_113302 crossref_primary_10_1021_acs_cgd_1c01499 crossref_primary_10_1016_j_rinp_2024_107566 crossref_primary_10_4150_KPMI_2019_26_6_515 crossref_primary_10_1016_j_ijplas_2020_102839 crossref_primary_10_1088_1361_6528_abf7eb crossref_primary_10_1021_acs_nanolett_0c04244 crossref_primary_10_1007_s40195_022_01397_4 crossref_primary_10_1016_j_vacuum_2021_110581 crossref_primary_10_1002_adem_202300968 crossref_primary_10_1021_acs_nanolett_3c04516 crossref_primary_10_1016_j_jallcom_2024_176511 crossref_primary_10_1016_j_jallcom_2021_159215 crossref_primary_10_1016_j_commatsci_2023_112241 crossref_primary_10_1016_j_intermet_2020_106741 crossref_primary_10_1016_j_ijplas_2020_102700 crossref_primary_10_1088_2053_1591_ad7920 crossref_primary_10_1016_j_engfracmech_2023_109384 crossref_primary_10_1016_j_msea_2020_139444 crossref_primary_10_1016_j_rinp_2019_01_090 crossref_primary_10_1021_acsomega_2c02027 crossref_primary_10_3390_modelling5010019 crossref_primary_10_1063_1_5114830 crossref_primary_10_1016_j_jallcom_2023_170149 crossref_primary_10_2139_ssrn_3988604 crossref_primary_10_1016_j_jnoncrysol_2022_121695 crossref_primary_10_1016_j_surfcoat_2020_126325 crossref_primary_10_1016_j_mtla_2020_100790 crossref_primary_10_1016_j_jmrt_2021_09_019 crossref_primary_10_1016_j_ijmecsci_2022_107828 crossref_primary_10_1002_adem_202200068 crossref_primary_10_1007_s00894_025_06349_0 crossref_primary_10_1016_j_physb_2025_416928 crossref_primary_10_1016_j_corsci_2022_110617 crossref_primary_10_1016_j_ijmecsci_2024_109585 crossref_primary_10_1016_j_triboint_2024_109569 crossref_primary_10_1039_D0RA07831J crossref_primary_10_1016_j_jmst_2020_03_064 crossref_primary_10_3389_fmats_2021_816309 crossref_primary_10_1016_j_matdes_2024_112711 crossref_primary_10_1088_2053_1591_acac62 crossref_primary_10_1007_s00419_021_02100_2 crossref_primary_10_1088_1361_6528_ac2980 crossref_primary_10_1016_j_mtcomm_2021_102525 crossref_primary_10_1063_5_0082835 crossref_primary_10_1016_j_jmst_2021_10_036 crossref_primary_10_1016_j_jmps_2022_105067 crossref_primary_10_1016_j_ijplas_2024_104188 crossref_primary_10_1007_s40195_021_01260_y crossref_primary_10_1016_j_commatsci_2022_111626 crossref_primary_10_1007_s40195_021_01282_6 crossref_primary_10_1016_j_jmst_2021_11_065 crossref_primary_10_1016_j_ijplas_2019_08_010 crossref_primary_10_1016_j_ijplas_2019_102649 crossref_primary_10_1016_j_ijmecsci_2022_107373 crossref_primary_10_1016_j_engfracmech_2021_108120 crossref_primary_10_1103_PhysRevMaterials_4_103612 crossref_primary_10_1016_j_triboint_2023_109034 crossref_primary_10_3390_met12122138 crossref_primary_10_7498_aps_71_20220733 crossref_primary_10_1016_j_jallcom_2022_164685 crossref_primary_10_1016_j_jmst_2020_06_042 crossref_primary_10_1016_j_jallcom_2023_169057 crossref_primary_10_1016_j_surfcoat_2024_130697 crossref_primary_10_1016_j_jmrt_2021_07_116 crossref_primary_10_1016_j_jmrt_2021_04_020 crossref_primary_10_1016_j_mechmat_2025_105263 crossref_primary_10_1016_j_ijplas_2022_103443 crossref_primary_10_1016_j_ijplas_2021_102997 crossref_primary_10_1016_j_matdes_2024_112662 crossref_primary_10_1016_j_msea_2023_145800 crossref_primary_10_1002_adem_202201347 crossref_primary_10_1088_1361_651X_acba37 crossref_primary_10_1016_j_jallcom_2021_162413 crossref_primary_10_1016_j_ijlmm_2024_07_002 crossref_primary_10_1063_5_0232551 crossref_primary_10_1016_j_eml_2022_101875 crossref_primary_10_1016_j_apt_2022_103603 crossref_primary_10_1016_j_ijplas_2025_104264 crossref_primary_10_1016_j_mattod_2024_10_009 crossref_primary_10_3390_met15030323 crossref_primary_10_1088_2053_1591_ab7a64 crossref_primary_10_1016_j_ijplas_2022_103432 crossref_primary_10_1016_j_jallcom_2019_06_277 crossref_primary_10_1016_j_intermet_2024_108397 crossref_primary_10_1016_j_ijplas_2023_103730 crossref_primary_10_1016_j_ijplas_2023_103853 crossref_primary_10_1016_j_matchar_2023_113025 crossref_primary_10_1103_PhysRevB_107_174103 crossref_primary_10_7498_aps_71_20221368 crossref_primary_10_1007_s11665_022_07227_z crossref_primary_10_1039_D0NR02483J crossref_primary_10_3390_met14010027 crossref_primary_10_1016_j_vacuum_2024_113643 crossref_primary_10_1016_j_physb_2022_414029 crossref_primary_10_1016_j_ijplas_2022_103304 crossref_primary_10_1016_j_ijmecsci_2019_105389 crossref_primary_10_1016_j_ijplas_2022_103417 crossref_primary_10_1016_j_actamat_2024_119822 crossref_primary_10_1016_j_jnucmat_2022_154046 crossref_primary_10_1016_j_ijplas_2021_103073 crossref_primary_10_1007_s40843_023_2623_x crossref_primary_10_1103_PhysRevMaterials_8_053602 crossref_primary_10_1016_j_commatsci_2022_111787 crossref_primary_10_1016_j_ijplas_2019_07_017 crossref_primary_10_1039_D3NR03465H crossref_primary_10_1016_j_actamat_2020_08_044 crossref_primary_10_1016_j_commatsci_2021_111085 crossref_primary_10_1016_j_mtphys_2022_100800 crossref_primary_10_1016_j_jmst_2022_06_003 crossref_primary_10_7498_aps_71_20221621 crossref_primary_10_1016_j_triboint_2024_109993 crossref_primary_10_1007_s40195_020_01040_0 crossref_primary_10_1016_j_mser_2024_100834 crossref_primary_10_1038_s41597_022_01368_5 crossref_primary_10_1016_j_mtcomm_2023_106759 crossref_primary_10_1016_j_msea_2020_139853 crossref_primary_10_1016_j_mser_2024_100833 crossref_primary_10_1016_j_jmst_2020_02_070 crossref_primary_10_1016_j_matchemphys_2024_129538 crossref_primary_10_1039_D0RA00518E crossref_primary_10_1080_21663831_2023_2280635 crossref_primary_10_1016_j_commatsci_2021_110723 crossref_primary_10_1016_j_ijmecsci_2022_107406 crossref_primary_10_1016_j_ceramint_2021_07_025 crossref_primary_10_1016_j_apsusc_2020_148291 crossref_primary_10_1016_j_ijplas_2020_102670 crossref_primary_10_1016_j_ijplas_2021_102951 crossref_primary_10_1016_j_jallcom_2022_164137 crossref_primary_10_1016_j_jmrt_2024_08_068 crossref_primary_10_1016_j_mtcomm_2024_109081 crossref_primary_10_1016_j_actamat_2022_118191 crossref_primary_10_1002_advs_202407283 crossref_primary_10_1016_j_jallcom_2021_159607 crossref_primary_10_1016_j_mtcomm_2023_105414 crossref_primary_10_1016_j_intermet_2021_107161 crossref_primary_10_1016_j_physb_2019_04_025 crossref_primary_10_1016_j_commatsci_2024_113341 crossref_primary_10_1016_j_ijmecsci_2024_109057 crossref_primary_10_1016_j_jmst_2022_08_033 crossref_primary_10_1016_j_jallcom_2021_162567 crossref_primary_10_3390_met14060728 crossref_primary_10_1007_s11837_023_06163_0 crossref_primary_10_1016_j_ijrmhm_2020_105415 crossref_primary_10_1002_pssb_202100247 crossref_primary_10_1016_j_jallcom_2020_156923 crossref_primary_10_1088_1361_651X_aca4ed crossref_primary_10_1016_j_jmrt_2024_10_159 crossref_primary_10_1016_j_ijplas_2022_103463 crossref_primary_10_1016_j_mtcomm_2022_103861 crossref_primary_10_2320_matertrans_MT_MA2024003 crossref_primary_10_1007_s12274_021_3719_y crossref_primary_10_1016_j_actamat_2021_117112 crossref_primary_10_1016_j_ijplas_2023_103867 crossref_primary_10_1016_j_ijmecsci_2025_110009 crossref_primary_10_1016_j_intermet_2022_107693 crossref_primary_10_1063_5_0181330 crossref_primary_10_1007_s10853_022_07862_w crossref_primary_10_1007_s10853_024_10458_1 crossref_primary_10_3390_mi15010123 crossref_primary_10_3390_ma17184535 crossref_primary_10_1016_j_ijplas_2021_102989 crossref_primary_10_1016_j_jallcom_2021_161101 crossref_primary_10_1016_j_jmrt_2023_12_026 crossref_primary_10_1007_s10853_021_06605_7 crossref_primary_10_1016_j_mtcomm_2023_106523 crossref_primary_10_1007_s00339_020_03714_z crossref_primary_10_1021_acs_jpcb_2c06098 crossref_primary_10_1016_j_actamat_2023_119205 crossref_primary_10_1016_j_ijplas_2021_103157 crossref_primary_10_1016_j_ijplas_2022_103333 crossref_primary_10_1016_j_ijmecsci_2022_107098 crossref_primary_10_1016_j_intermet_2022_107685 |
Cites_doi | 10.1016/j.ijplas.2018.03.001 10.1038/am.2015.129 10.1038/nature08929 10.1016/j.pmatsci.2013.10.001 10.1016/j.intermet.2018.09.011 10.1016/j.jmps.2015.05.005 10.1016/j.jmps.2015.05.006 10.1016/j.ijplas.2012.04.001 10.1038/nmat4435 10.1038/s41467-017-00879-9 10.1016/j.ijplas.2018.02.016 10.1016/j.actamat.2017.05.001 10.1038/s41467-018-06600-8 10.1038/ncomms15634 10.1038/s41467-018-03846-0 10.1016/j.actamat.2015.07.004 10.1006/jcph.1995.1039 10.1126/sciadv.1600319 10.1038/nature08692 10.1016/j.ijplas.2010.08.009 10.1016/j.actamat.2013.10.001 10.1016/j.actamat.2018.01.002 10.1016/j.matchemphys.2017.04.050 10.1038/nmat4677 10.1063/1.4868676 10.1016/j.ijplas.2017.10.005 10.1016/j.ijplas.2018.01.011 10.1038/ncomms2651 10.1016/j.jmps.2015.05.009 10.1016/j.jallcom.2016.04.064 10.1038/s41598-018-28784-1 10.1088/0370-1298/65/5/307 10.1016/j.actamat.2018.05.013 10.1002/adma.201804727 10.1016/j.actamat.2010.05.049 10.1038/s41467-017-00814-y 10.1016/j.actamat.2014.08.034 10.1038/nature17981 10.1016/j.msea.2012.01.092 10.1016/S0749-6419(00)00015-2 10.1016/j.ijplas.2012.11.003 10.1016/j.ijplas.2013.04.007 10.1002/adem.200300567 10.1016/j.pmatsci.2005.10.003 10.1016/j.matdes.2016.11.055 10.1038/ncomms6964 10.1016/j.ijplas.2014.06.004 10.1080/14786430903019040 10.1038/s41524-017-0060-9 10.1016/j.jallcom.2013.10.237 10.1126/science.1125783 10.1016/j.actamat.2015.08.050 10.1016/j.msea.2018.02.044 10.1038/s41467-017-02393-4 10.1016/j.intermet.2014.08.008 10.1038/ncomms15687 10.1016/j.jmps.2018.09.010 10.1016/j.actamat.2017.07.023 10.1016/j.pmatsci.2011.05.001 10.1038/nmat4929 10.1016/j.ijplas.2018.02.005 10.1016/j.actamat.2017.03.069 10.1016/j.eml.2016.10.007 10.1103/PhysRevB.94.214104 10.1016/j.ijplas.2012.05.009 10.1016/j.actamat.2009.04.009 10.1016/j.jallcom.2018.02.029 10.1038/nmat1035 10.1016/j.scriptamat.2016.11.014 10.1016/j.actamat.2016.07.052 10.1021/acs.nanolett.7b04972 10.1016/j.ijplas.2008.11.010 10.1016/j.ijplas.2010.12.001 10.1038/nature14144 10.1126/science.aai8830 10.1016/j.actamat.2017.06.043 10.1038/nmat4228 10.1126/science.1159610 10.1038/s41467-018-04780-x 10.1016/j.ijplas.2017.04.013 10.1038/nature21691 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Ltd Copyright Elsevier BV Mar 2019 |
Copyright_xml | – notice: 2018 Elsevier Ltd – notice: Copyright Elsevier BV Mar 2019 |
CorporateAuthor | Univ. of Illinois at Urbana-Champaign, IL (United States) |
CorporateAuthor_xml | – name: Univ. of Illinois at Urbana-Champaign, IL (United States) |
DBID | AAYXX CITATION 7SR 7TB 8BQ 8FD FR3 JG9 KR7 OTOTI |
DOI | 10.1016/j.ijplas.2018.10.014 |
DatabaseName | CrossRef Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database Civil Engineering Abstracts OSTI.GOV |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Engineering Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering |
EISSN | 1879-2154 |
EndPage | 173 |
ExternalDocumentID | 1614159 10_1016_j_ijplas_2018_10_014 S0749641918304625 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SST SSZ T5K TN5 UNMZH VH1 WUQ XFK XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7SR 7TB 8BQ 8FD EFKBS FR3 JG9 KR7 AALMO ABPIF ABPTK ABQIS OTOTI |
ID | FETCH-LOGICAL-c473t-e824798ef3c852496f6e2cc5b747f8179c5df4a5b699e795fef08588ea0637403 |
IEDL.DBID | .~1 |
ISSN | 0749-6419 |
IngestDate | Fri May 19 01:08:14 EDT 2023 Sun Jul 13 04:53:07 EDT 2025 Tue Jul 01 01:37:11 EDT 2025 Thu Apr 24 22:56:47 EDT 2025 Fri Feb 23 02:27:37 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | C |
Keywords | High-entropy alloys Phase transformation Atomistic simulations Associated deformation Dual phase |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c473t-e824798ef3c852496f6e2cc5b747f8179c5df4a5b699e795fef08588ea0637403 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 USDOE Office of Fossil Energy (FE) FE0011194 |
OpenAccessLink | https://www.osti.gov/biblio/1636865 |
PQID | 2195247272 |
PQPubID | 2045460 |
PageCount | 13 |
ParticipantIDs | osti_scitechconnect_1614159 proquest_journals_2195247272 crossref_citationtrail_10_1016_j_ijplas_2018_10_014 crossref_primary_10_1016_j_ijplas_2018_10_014 elsevier_sciencedirect_doi_10_1016_j_ijplas_2018_10_014 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2019 2019-03-00 20190301 2019-03-01 |
PublicationDateYYYYMMDD | 2019-03-01 |
PublicationDate_xml | – month: 03 year: 2019 text: March 2019 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States |
PublicationTitle | International journal of plasticity |
PublicationYear | 2019 |
Publisher | Elsevier Ltd Elsevier BV Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV – name: Elsevier |
References | Li, Lu (bib39) 2017; 16 Maier-Kiener, Schuh, George, Clemens, Hohenwarter (bib53) 2017; 115 Gao, Niu, Jiang, Irving (bib18) 2016 Javanbakht, Levitas (bib29) 2015; 82 Wu, Bönisch, Alkan, Abuzaid, Sehitoglu (bib73) 2018; 105 Hill (bib24) 1952; 65 Lu, Liebscher, Dehm, Raabe, Li (bib49) 2018 Mahnken, Wolff, Schneidt, Böhm (bib51) 2012; 39 Zhang, Zuo, Tang, Gao, Dahmen, Liaw, Lu (bib84) 2014; 61 Cowper, Symonds (bib11) 1957 Pogrebnjak, Yakushchenko, Bondar, Beresnev, Oyoshi, Ivasishin, Amekura, Yoshihiko, Opielak, Kozak (bib58) 2016; 679 Li, Fang, Liu, Liu (bib45) 2018; 147 Javanbakht, Levitas (bib30) 2016; 94 Kadkhodapour, Butz, Ziaei-Rad, Schmauder (bib31) 2011; 27 Norfleet, Sarosi, Manchiraju, Wagner, Uchic, Anderson, Mills (bib55) 2009; 57 Yu, Kang, Kan (bib78) 2018; 105 Baxevanis, Parrinello, Lagoudas (bib5) 2013; 50 Guo, Xiao, Wu, Ni, Song (bib19) 2018; 103 Xu, Birbilis, Sha, Wang, Daniels, Xiao, Ferry (bib75) 2015; 14 Zhang, Zhuang, Hu, Kai, Liu (bib82) 2017; 130 Huang, Huang, Li, Kim, Lu, Li, Holmström, Kwon, Vitos (bib26) 2018; 9 Curtze, Kuokkala (bib10) 2010; 58 Niu, LaRosa, Miao, Mills, Ghazisaeidi (bib54) 2018; 9 Li, Pradeep, Deng, Raabe, Tasan (bib41) 2016; 534 Li, Körmann, Grabowski, Neugebauer, Raabe (bib42) 2017; 136 Ding, He, Wang, Yang (bib14) 2018; 106 Ghassemi-Armaki, Maaß, Bhat, Sriram, Greer, Kumar (bib20) 2014; 62 Ankem, Margolin, Greene, Neuberger, Oberson (bib3) 2006; 51 Bönisch, Wu, Sehitoglu (bib7) 2018; 8 Zheng, Waheed, Balint, Dunne (bib86) 2018; 104 Levitas, Javanbakht (bib38) 2015; 82 Feng, Zhang, Wang, Hou, Wu, Liu, Sun (bib16) 2017; 95 Ming, Bi, Wang (bib52) 2018; 100 Stukowski (bib61) 2012; 1 Khan, Pandey, Gnäupel-Herold, Mishra (bib32) 2011; 27 Lee, Kim, Han, Jeong (bib36) 2009; 25 Li, Tasan, Pradeep, Raabe (bib43) 2017; 131 Chen, Peng, Zheng, Qi, Wang, Yu, Liu (bib8) 2016; 15 Wang, Guan, Teng, Liu, Chen, Xie, Ma (bib68) 2017; 8 Fischlschweiger, Cailletaud, Antretter (bib17) 2012; 37 Liang, Wang, Wen, Cheng, Wu, Cao, Xiao, Xue, Sha, Wang, Ren, Li, Wang, Wang, Cai (bib47) 2018; 9 Barnard, Sharp, Tong, Midgley (bib4) 2006; 313 Tang, Yuan, Tsai, Yeh, Lundin, Liaw (bib66) 2015; 99 Han, Kang, Lee, Kawasaki, Lee, Ponge, Lee (bib23) 2017; 8 Jha, Szczepanski, John, Larsen (bib27) 2015; 82 Yeh, Chen, Lin, Gan, Chin, Shun, Chang (bib80) 2004; 6 Abuzaid, Sehitoglu (bib2) 2018; 720 Widom, Gao, Yeh, Liaw, Zhang (bib72) 2016 Fang, Li, Li, Wu, Huang, Liu, Liu, Liaw (bib15) 2019; 122 Tao, Cao, Park (bib65) 2018; 18 Crowhurst, Reed, Armstrong, Radousky, Carter, Swift, Zaug, Minich, Teslich, Kumar (bib9) 2014; 115 Huang, Lin, Lin, Liu (bib25) 2016; 118 Plimpton (bib57) 1993; 117 Wang, Zeng, Weinberger, Zhang, Zhu, Mao (bib69) 2015; 14 Santodonato, Zhang, Feygenson, Parish, Gao, Weber, Liaw (bib63) 2015; 6 Ghassemi-Armaki, Leff, Taheri, Dahal, Kamarajugadda, Kumar (bib21) 2017; 136 Zhu, Liao, Wu (bib85) 2012; 57 Liu, Wei (bib46) 2017; 11 Grässel, Krüger, Frommeyer, Meyer (bib22) 2000; 16 Lu, Lu, Suresh (bib48) 2009; 324 Ramazani, Mukherjee, Schwedt, Goravanchi, Prahl, Bleck (bib59) 2013; 43 Ji, Wang, Wang, Zhang, Wang, Zhang (bib28) 2015; 56 Olson, Cohen (bib56) 1976; 7 Zheng, Beyerlein, Carpenter, Kang, Wang, Han, Mara (bib87) 2013; 4 Yamakov, Wolf, Phillpot, Mukherjee, Gleiter (bib77) 2004; 3 Levitas, Javanbakht (bib37) 2015; 82 Ma, Grabowski, Körmann, Neugebauer, Raabe (bib50) 2015; 100 Xie, Ma, Geng (bib76) 2009; 89 Song, Wei, Yang, Wu (bib60) 2018; 744 Yu, Shan, Li, Huang, Xiao, Sun, Ma (bib79) 2010; 463 Choi, Jo, Sohn, Lee, Lee (bib12) 2018; 4 Alekseeva, da Silva Fanta, Iandolo, Antosiewicz, Nugroho, Wagner, Langhammer (bib1) 2017; 8 Wu, Chan, Zhu, Sun, Lu (bib74) 2017; 545 Tasan, Hoefnagels, Diehl, Yan, Roters, Raabe (bib64) 2014; 63 Zhao, Stocks, Zhang (bib81) 2017; 134 Bhattacharjee, Sathiaraj, Zaid, Gatti, Lee, Tsai, Yeh (bib6) 2014; 587 Wang, Qu, Scudino, Sun, Prashanth, Louzguine-Luzgin, Eckert (bib70) 2015; 7 Wang, Liu, Yan, Wang, Kabra, Chiu, Dye, Lee, Liu, Cai (bib71) 2018; 154 Kim, Kim, Barlat, Lee (bib33) 2012; 539 Tracy, Park, Rittman, Zinkle, Bei, Lang, Ewing, Mao (bib67) 2017; 8 Landau, Lifshitz (bib35) 1999 Kim, Kim, Kim (bib34) 2015; 518 Li, Wei, Lu, Lu, Gao (bib40) 2010; 464 Li, Raabe (bib44) 2017; 210 Cubuk, Ivancic, Schoenholz, Strickland, Basu, Davidson, Keim (bib13) 2017; 358 Svanidze, Besara, Ozaydin, Tiwary, Wang, Radhakrishnan, Siegrist (bib62) 2016; 2 Zhang, Wu, Lou, Zeng, Prakapenka, Greenberg, Ren, Yan, Okasinski, Liu, Liu, Zeng, Lu (bib83) 2017; 8 Levitas (10.1016/j.ijplas.2018.10.014_bib37) 2015; 82 Xu (10.1016/j.ijplas.2018.10.014_bib75) 2015; 14 Crowhurst (10.1016/j.ijplas.2018.10.014_bib9) 2014; 115 Hill (10.1016/j.ijplas.2018.10.014_bib24) 1952; 65 Liu (10.1016/j.ijplas.2018.10.014_bib46) 2017; 11 Han (10.1016/j.ijplas.2018.10.014_bib23) 2017; 8 Mahnken (10.1016/j.ijplas.2018.10.014_bib51) 2012; 39 Niu (10.1016/j.ijplas.2018.10.014_bib54) 2018; 9 Li (10.1016/j.ijplas.2018.10.014_bib43) 2017; 131 Chen (10.1016/j.ijplas.2018.10.014_bib8) 2016; 15 Ramazani (10.1016/j.ijplas.2018.10.014_bib59) 2013; 43 Fang (10.1016/j.ijplas.2018.10.014_bib15) 2019; 122 Ma (10.1016/j.ijplas.2018.10.014_bib50) 2015; 100 Song (10.1016/j.ijplas.2018.10.014_bib60) 2018; 744 Zhao (10.1016/j.ijplas.2018.10.014_bib81) 2017; 134 Yu (10.1016/j.ijplas.2018.10.014_bib78) 2018; 105 Zhang (10.1016/j.ijplas.2018.10.014_bib82) 2017; 130 Pogrebnjak (10.1016/j.ijplas.2018.10.014_bib58) 2016; 679 Svanidze (10.1016/j.ijplas.2018.10.014_bib62) 2016; 2 Zheng (10.1016/j.ijplas.2018.10.014_bib87) 2013; 4 Olson (10.1016/j.ijplas.2018.10.014_bib56) 1976; 7 Li (10.1016/j.ijplas.2018.10.014_bib39) 2017; 16 Li (10.1016/j.ijplas.2018.10.014_bib45) 2018; 147 Zhang (10.1016/j.ijplas.2018.10.014_bib83) 2017; 8 Ding (10.1016/j.ijplas.2018.10.014_bib14) 2018; 106 Landau (10.1016/j.ijplas.2018.10.014_bib35) 1999 Li (10.1016/j.ijplas.2018.10.014_bib40) 2010; 464 Yeh (10.1016/j.ijplas.2018.10.014_bib80) 2004; 6 Ghassemi-Armaki (10.1016/j.ijplas.2018.10.014_bib21) 2017; 136 Javanbakht (10.1016/j.ijplas.2018.10.014_bib30) 2016; 94 Zhu (10.1016/j.ijplas.2018.10.014_bib85) 2012; 57 Ghassemi-Armaki (10.1016/j.ijplas.2018.10.014_bib20) 2014; 62 Tao (10.1016/j.ijplas.2018.10.014_bib65) 2018; 18 Wu (10.1016/j.ijplas.2018.10.014_bib74) 2017; 545 Xie (10.1016/j.ijplas.2018.10.014_bib76) 2009; 89 Khan (10.1016/j.ijplas.2018.10.014_bib32) 2011; 27 Lu (10.1016/j.ijplas.2018.10.014_bib48) 2009; 324 Choi (10.1016/j.ijplas.2018.10.014_bib12) 2018; 4 Ming (10.1016/j.ijplas.2018.10.014_bib52) 2018; 100 Grässel (10.1016/j.ijplas.2018.10.014_bib22) 2000; 16 Feng (10.1016/j.ijplas.2018.10.014_bib16) 2017; 95 Guo (10.1016/j.ijplas.2018.10.014_bib19) 2018; 103 Yu (10.1016/j.ijplas.2018.10.014_bib79) 2010; 463 Bhattacharjee (10.1016/j.ijplas.2018.10.014_bib6) 2014; 587 Abuzaid (10.1016/j.ijplas.2018.10.014_bib2) 2018; 720 Yamakov (10.1016/j.ijplas.2018.10.014_bib77) 2004; 3 Cubuk (10.1016/j.ijplas.2018.10.014_bib13) 2017; 358 Ji (10.1016/j.ijplas.2018.10.014_bib28) 2015; 56 Wang (10.1016/j.ijplas.2018.10.014_bib71) 2018; 154 Liang (10.1016/j.ijplas.2018.10.014_bib47) 2018; 9 Lu (10.1016/j.ijplas.2018.10.014_bib49) 2018 Lee (10.1016/j.ijplas.2018.10.014_bib36) 2009; 25 Wang (10.1016/j.ijplas.2018.10.014_bib69) 2015; 14 Zhang (10.1016/j.ijplas.2018.10.014_bib84) 2014; 61 Fischlschweiger (10.1016/j.ijplas.2018.10.014_bib17) 2012; 37 Tang (10.1016/j.ijplas.2018.10.014_bib66) 2015; 99 Baxevanis (10.1016/j.ijplas.2018.10.014_bib5) 2013; 50 Javanbakht (10.1016/j.ijplas.2018.10.014_bib29) 2015; 82 Norfleet (10.1016/j.ijplas.2018.10.014_bib55) 2009; 57 Huang (10.1016/j.ijplas.2018.10.014_bib25) 2016; 118 Wang (10.1016/j.ijplas.2018.10.014_bib68) 2017; 8 Kim (10.1016/j.ijplas.2018.10.014_bib34) 2015; 518 Li (10.1016/j.ijplas.2018.10.014_bib44) 2017; 210 Santodonato (10.1016/j.ijplas.2018.10.014_bib63) 2015; 6 Widom (10.1016/j.ijplas.2018.10.014_bib72) 2016 Bönisch (10.1016/j.ijplas.2018.10.014_bib7) 2018; 8 Li (10.1016/j.ijplas.2018.10.014_bib41) 2016; 534 Levitas (10.1016/j.ijplas.2018.10.014_bib38) 2015; 82 Barnard (10.1016/j.ijplas.2018.10.014_bib4) 2006; 313 Tracy (10.1016/j.ijplas.2018.10.014_bib67) 2017; 8 Alekseeva (10.1016/j.ijplas.2018.10.014_bib1) 2017; 8 Kim (10.1016/j.ijplas.2018.10.014_bib33) 2012; 539 Stukowski (10.1016/j.ijplas.2018.10.014_bib61) 2012; 1 Tasan (10.1016/j.ijplas.2018.10.014_bib64) 2014; 63 Jha (10.1016/j.ijplas.2018.10.014_bib27) 2015; 82 Gao (10.1016/j.ijplas.2018.10.014_bib18) 2016 Ankem (10.1016/j.ijplas.2018.10.014_bib3) 2006; 51 Curtze (10.1016/j.ijplas.2018.10.014_bib10) 2010; 58 Zheng (10.1016/j.ijplas.2018.10.014_bib86) 2018; 104 Maier-Kiener (10.1016/j.ijplas.2018.10.014_bib53) 2017; 115 Kadkhodapour (10.1016/j.ijplas.2018.10.014_bib31) 2011; 27 Wang (10.1016/j.ijplas.2018.10.014_bib70) 2015; 7 Huang (10.1016/j.ijplas.2018.10.014_bib26) 2018; 9 Li (10.1016/j.ijplas.2018.10.014_bib42) 2017; 136 Cowper (10.1016/j.ijplas.2018.10.014_bib11) 1957 Wu (10.1016/j.ijplas.2018.10.014_bib73) 2018; 105 Plimpton (10.1016/j.ijplas.2018.10.014_bib57) 1993; 117 |
References_xml | – volume: 8 start-page: 15687 year: 2017 ident: bib83 article-title: Polymorphism in a high-entropy alloy publication-title: Nat. Commun. – volume: 464 start-page: 877 year: 2010 ident: bib40 article-title: Dislocation nucleation governed softening and maximum strength in nano-twinned metals publication-title: Nature – volume: 100 start-page: 90 year: 2015 end-page: 97 ident: bib50 article-title: Ab initio thermodynamics of the CoCrFeMnNi high entropy alloy: importance of entropy contributions beyond the configurational one publication-title: Acta Mater. – volume: 9 start-page: 4063 year: 2018 ident: bib47 article-title: High-content ductile coherent nanoprecipitates achieve ultrastrong high-entropy alloys publication-title: Nat. Commun. – volume: 43 start-page: 128 year: 2013 end-page: 152 ident: bib59 article-title: Quantification of the effect of transformation-induced geometrically necessary dislocations on the flow-curve modelling of dual-phase steels publication-title: Int. J. Plast. – volume: 115 start-page: 113506 year: 2014 ident: bib9 article-title: The α→ ε phase transition in iron at strain rates up to 10 publication-title: J. Appl. Phys. – volume: 545 start-page: 80 year: 2017 ident: bib74 article-title: Dual-phase nanostructuring as a route to high-strength magnesium alloys publication-title: Nature – volume: 136 start-page: 134 year: 2017 end-page: 147 ident: bib21 article-title: Cyclic compression response of micropillars extracted from textured nanocrystalline NiTi thin-walled tubes publication-title: Acta Mater. – year: 1999 ident: bib35 article-title: Theory of Elasticity – volume: 6 start-page: 299 year: 2004 end-page: 303 ident: bib80 article-title: Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes publication-title: Adv. Eng. Mater. – volume: 15 start-page: 876 year: 2016 ident: bib8 article-title: Polysynthetic twinned TiAl single crystals for high-temperature applications publication-title: Nat. Mater. – volume: 324 start-page: 349 year: 2009 end-page: 352 ident: bib48 article-title: Strengthening materials by engineering coherent internal boundaries at the nanoscale publication-title: Science – volume: 679 start-page: 155 year: 2016 end-page: 163 ident: bib58 article-title: Irradiation resistance, microstructure and mechanical properties of nanostructured (TiZrHfVNbTa) N coatings publication-title: J. Alloy. Comp. – volume: 94 start-page: 214104 year: 2016 ident: bib30 article-title: Phase field simulations of plastic strain-induced phase transformations under high pressure and large shear publication-title: Phys. Rev. B – volume: 16 start-page: 1391 year: 2000 end-page: 1409 ident: bib22 article-title: High strength Fe–Mn–(Al, Si) TRIP/TWIP steels development—properties—application publication-title: Int. J. Plast. – year: 2018 ident: bib49 article-title: Bidirectional transformation enables hierarchical nanolaminate dual‐phase high‐entropy alloys publication-title: Adv. Mater. – volume: 18 start-page: 1296 year: 2018 end-page: 1304 ident: bib65 article-title: Atomistic simulation of the rate-dependent ductile-to-brittle failure transition in bicrystalline metal nanowires publication-title: Nano Lett. – volume: 63 start-page: 198 year: 2014 end-page: 210 ident: bib64 article-title: Strain localization and damage in dual phase steels investigated by coupled in-situ deformation experiments and crystal plasticity simulations publication-title: Int. J. Plast. – volume: 65 start-page: 349 year: 1952 end-page: 354 ident: bib24 article-title: The elastic behaviour of a crystalline aggregate publication-title: Proc. Phys. Soc. Lond. – volume: 720 start-page: 238 year: 2018 end-page: 247 ident: bib2 article-title: Plastic strain partitioning in dual phase Al13CoCrFeNi high entropy alloy publication-title: Mater. Sci. Eng. – volume: 744 start-page: 552 year: 2018 end-page: 560 ident: bib60 article-title: Phase formation and strengthening mechanisms in a dual-phase nanocrystalline CrMnFeVTi high-entropy alloy with ultrahigh hardness publication-title: J. Alloy. Comp. – volume: 51 start-page: 632 year: 2006 end-page: 709 ident: bib3 article-title: Mechanical properties of alloys consisting of two ductile phases publication-title: Prog. Mater. Sci. – volume: 463 start-page: 335 year: 2010 ident: bib79 article-title: Strong crystal size effect on deformation twinning publication-title: Nature – volume: 7 start-page: 1897 year: 1976 end-page: 1904 ident: bib56 article-title: Nucleation: Part I. General concepts and the FCC→ HCP transformation publication-title: Metall. Trans. – volume: 122 start-page: 177 year: 2019 end-page: 189 ident: bib15 article-title: A statistical theory of probability-dependent precipitation strengthening in metals and alloys publication-title: J. Mech. Phys. Solid. – volume: 50 start-page: 158 year: 2013 end-page: 169 ident: bib5 article-title: On the fracture toughness enhancement due to stress-induced phase transformation in shape memory alloys publication-title: Int. J. Plast. – volume: 136 start-page: 262 year: 2017 end-page: 270 ident: bib42 article-title: Ab initio, assisted design of quinary dual-phase high-entropy alloys with transformation-induced plasticity publication-title: Acta Mater. – volume: 89 start-page: 1505 year: 2009 end-page: 1516 ident: bib76 article-title: Partial recrystallization in the nugget zone of friction stir welded dual-phase Cu–Zn alloy publication-title: Phil. Mag. – volume: 57 start-page: 1 year: 2012 end-page: 62 ident: bib85 article-title: Deformation twinning in nanocrystalline materials publication-title: Prog. Mater. Sci. – volume: 518 start-page: 77 year: 2015 end-page: 79 ident: bib34 article-title: Brittle intermetallic compound makes ultrastrong low-density steel with large ductility publication-title: Nature – volume: 210 start-page: 29 year: 2017 end-page: 36 ident: bib44 article-title: Influence of compositional inhomogeneity on mechanical behavior of an interstitial dual-phase high-entropy alloy publication-title: Mater. Chem. Phys. – volume: 9 start-page: 1363 year: 2018 ident: bib54 article-title: Magnetically-driven phase transformation strengthening in high entropy alloys publication-title: Nat. Commun. – volume: 2 start-page: 1600319 year: 2016 ident: bib62 article-title: High hardness in the biocompatible intermetallic compound β-Ti3Au publication-title: Sci. Adv. – volume: 14 start-page: 594 year: 2015 ident: bib69 article-title: In situ atomic-scale observation of twinning-dominated deformation in nanoscale body-centred cubic tungsten publication-title: Nat. Mater. – start-page: P348 year: 2016 end-page: P351 ident: bib72 article-title: High-entropy Alloys: Fundamentals and Applications – volume: 8 start-page: 751 year: 2017 ident: bib23 article-title: Superplasticity in a lean Fe-Mn-Al steel publication-title: Nat. Commun. – volume: 56 start-page: 24 year: 2015 end-page: 27 ident: bib28 article-title: Alloying behavior and novel properties of cocrfenimn high-entropy alloy fabricated by mechanical alloying and spark plasma sintering publication-title: Intermetallics – volume: 539 start-page: 259 year: 2012 end-page: 270 ident: bib33 article-title: Crystal plasticity approach for predicting the Bauschinger effect in dual-phase steels publication-title: Mater. Sci. Eng. – volume: 8 start-page: 15634 year: 2017 ident: bib67 article-title: High pressure synthesis of a hexagonal close-packed phase of the high-entropy alloy CrMnFeCoNi publication-title: Nat. Commun. – volume: 105 start-page: 99 year: 2018 end-page: 127 ident: bib78 article-title: A micromechanical constitutive model for grain size dependent thermo-mechanically coupled inelastic deformation of super-elastic NiTi shape memory alloy publication-title: Int. J. Plast. – volume: 3 start-page: 43 year: 2004 ident: bib77 article-title: Deformation-mechanism map for nanocrystalline metals by molecular-dynamics simulation publication-title: Nat. Mater. – volume: 118 start-page: 306 year: 2016 end-page: 316 ident: bib25 article-title: Exploring the concurrence of phase transition and grain growth in nanostructured alloy publication-title: Acta Mater. – volume: 534 start-page: 227 year: 2016 ident: bib41 article-title: Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off publication-title: Nature – volume: 147 start-page: 35 year: 2018 end-page: 41 ident: bib45 article-title: Transformation induced softening and plasticity in high entropy alloys publication-title: Acta Mater. – volume: 104 start-page: 23 year: 2018 end-page: 38 ident: bib86 article-title: Slip transfer across phase boundaries in dual phase titanium alloys and the effect on strain rate sensitivity publication-title: Int. J. Plast. – volume: 58 start-page: 5129 year: 2010 end-page: 5141 ident: bib10 article-title: Dependence of tensile deformation behavior of TWIP steels on stacking fault energy, temperature and strain rate publication-title: Acta Mater. – year: 2016 ident: bib18 article-title: Applications of special quasi-random structures to high-entropy alloys publication-title: High-entropy Alloys – volume: 4 start-page: 1 year: 2018 ident: bib12 article-title: Understanding the physical metallurgy of the CoCrFeMnNi high-entropy alloy: an atomistic simulation study publication-title: npj Comp. Mater. – volume: 103 start-page: 1 year: 2018 end-page: 11 ident: bib19 article-title: Effect of Fe on microstructure, phase evolution and mechanical properties of (AlCoCrFeNi) publication-title: Intermetallics – volume: 14 start-page: 1229 year: 2015 ident: bib75 article-title: A high-specific-strength and corrosion-resistant magnesium alloy publication-title: Nat. Mater. – year: 1957 ident: bib11 article-title: Strain Hardening and Strain-rate Effects in the Impact Loading of Centilevered Beams – volume: 313 year: 2006 ident: bib4 article-title: High-resolution three-dimensional imaging of dislocations publication-title: Science – volume: 16 start-page: 700 year: 2017 ident: bib39 article-title: Playing with defects in metals publication-title: Nat. Mater. – volume: 11 start-page: 84 year: 2017 end-page: 88 ident: bib46 article-title: The Gaussian distribution of lattice size and atomic level heterogeneity in high entropy alloys publication-title: Ext. Mech. Lett. – volume: 9 start-page: 2381 year: 2018 ident: bib26 article-title: Twinning in metastable high-entropy alloys publication-title: Nat. Commun. – volume: 82 start-page: 378 year: 2015 end-page: 395 ident: bib27 article-title: Deformation heterogeneities and their role in life-limiting fatigue failures in a two-phase titanium alloy publication-title: Acta Mater. – volume: 4 start-page: 1696 year: 2013 ident: bib87 article-title: High-strength and thermally stable bulk nanolayered composites due to twin-induced interfaces publication-title: Nat. Commun. – volume: 1 start-page: 15012 year: 2012 ident: bib61 article-title: Visualization and analysis of atomistic simulation data with ovito-the open visualization tool publication-title: Model. Simul. Mater. Sci. – volume: 8 start-page: 2142 year: 2017 ident: bib68 article-title: New twinning route in face-centered cubic nanocrystalline metals publication-title: Nat. Commun. – volume: 6 start-page: 5964 year: 2015 ident: bib63 article-title: Deviation from high-entropy configurations in the atomic distributions of a multi-principal-element alloy publication-title: Nat. Commun. – volume: 105 start-page: 239 year: 2018 end-page: 260 ident: bib73 article-title: Experimental determination of latent hardening coefficients in FeMnNiCoCr publication-title: Int. J. Plast. – volume: 131 start-page: 323 year: 2017 end-page: 335 ident: bib43 article-title: A TRIP-assisted dual-phase high-entropy alloy: grain size and phase fraction effects on deformation behavior publication-title: Acta Mater. – volume: 25 start-page: 1726 year: 2009 end-page: 1758 ident: bib36 article-title: Implicit finite element formulations for multi-phase transformation in high carbon steel publication-title: Int. J. Plast. – volume: 27 start-page: 688 year: 2011 end-page: 706 ident: bib32 article-title: Mechanical response and texture evolution of AZ31 alloy at large strains for different strain rates and temperatures publication-title: Int. J. Plast. – volume: 99 start-page: 247 year: 2015 end-page: 258 ident: bib66 article-title: Fatigue behavior of a wrought Al0.5CoCrCuFeNi two-phase high-entropy alloy publication-title: Acta Mater. – volume: 358 start-page: 1033 year: 2017 end-page: 1037 ident: bib13 article-title: Structure-property relationships from universal signatures of plasticity in disordered solids publication-title: Science – volume: 95 start-page: 264 year: 2017 end-page: 277 ident: bib16 article-title: Size effects on the mechanical properties of nanocrystalline NbMoTaW refractory high entropy alloy thin films publication-title: Int. J. Plast. – volume: 82 start-page: 164 year: 2015 end-page: 185 ident: bib29 article-title: Interaction between phase transformations and dislocations at the nanoscale. Part 2: phase field simulation examples publication-title: J. Mech. Phys. Solid. – volume: 587 start-page: 544 year: 2014 end-page: 552 ident: bib6 article-title: Microstructure and texture evolution during annealing of equiatomic CoCrFeMnNi high-entropy alloy publication-title: J. Alloy. Comp. – volume: 106 start-page: 57 year: 2018 end-page: 72 ident: bib14 article-title: Superb strength and high plasticity in laves phase rich eutectic medium-entropy-alloy nanocomposites publication-title: Int. J. Plast. – volume: 130 start-page: 96 year: 2017 end-page: 99 ident: bib82 article-title: The origin of negative stacking fault energies and nano-twin formation in face-centered cubic high entropy alloys publication-title: Scripta Mater. – volume: 82 start-page: 345 year: 2015 end-page: 366 ident: bib37 article-title: Thermodynamically consistent phase field approach to dislocation evolution at small and large strains publication-title: J. Mech. Phys. Solid. – volume: 62 start-page: 197 year: 2014 end-page: 211 ident: bib20 article-title: Deformation response of ferrite and martensite in a dual-phase steel publication-title: Acta Mater. – volume: 154 start-page: 79 year: 2018 end-page: 89 ident: bib71 article-title: Probing deformation mechanisms of a FeCoCrNi high-entropy alloy at 293 and 77 K using in situ neutron diffraction publication-title: Acta Mater. – volume: 57 start-page: 3549 year: 2009 end-page: 3561 ident: bib55 article-title: Transformation-induced plasticity during pseudoelastic deformation in Ni–Ti microcrystals publication-title: Acta Mater. – volume: 115 start-page: 479 year: 2017 end-page: 485 ident: bib53 article-title: Nanoindentation testing as a powerful screening tool for assessing phase stability of nanocrystalline high-entropy alloys publication-title: Mater. Des. – volume: 7 start-page: 229 year: 2015 ident: bib70 article-title: A novel method to achieve grain refinement in aluminum publication-title: NPG Asia Mater. – volume: 27 start-page: 1103 year: 2011 end-page: 1125 ident: bib31 article-title: A micro mechanical study on failure initiation of dual phase steels under tension using single crystal plasticity model publication-title: Int. J. Plast. – volume: 117 start-page: 1 year: 1993 end-page: 19 ident: bib57 article-title: Fast parallel algorithms for short-range molecular dynamics publication-title: J. Comput. Phys. – volume: 37 start-page: 53 year: 2012 end-page: 71 ident: bib17 article-title: A mean-field model for transformation induced plasticity including backstress effects for non-proportional loadings publication-title: Int. J. Plast. – volume: 61 start-page: 1 year: 2014 end-page: 93 ident: bib84 article-title: Microstructures and properties of high-entropy alloys publication-title: Prog. Mater. Sci. – volume: 100 start-page: 177 year: 2018 end-page: 191 ident: bib52 article-title: Realizing strength-ductility combination of coarse-grained Al publication-title: Int. J. Plast. – volume: 8 start-page: 1084 year: 2017 ident: bib1 article-title: Grain boundary mediated hydriding phase transformations in individual polycrystalline metal nanoparticles publication-title: Nat. Commun. – volume: 82 start-page: 287 year: 2015 end-page: 319 ident: bib38 article-title: Interaction between phase transformations and dislocations at the nanoscale. Part 1. General phase field approach publication-title: J. Mech. Phys. Solid. – volume: 39 start-page: 1 year: 2012 end-page: 26 ident: bib51 article-title: Multi-phase transformations at large strains–Thermodynamic framework and simulation publication-title: Int. J. Plast. – volume: 134 start-page: 334 year: 2017 end-page: 345 ident: bib81 article-title: Stacking fault energies of face-centered cubic concentrated solid solution alloys publication-title: Acta Mater. – volume: 8 start-page: 10663 year: 2018 ident: bib7 article-title: Twinning-induced strain hardening in dual-phase FeCoCrNiAl0.5 at room and cryogenic temperature publication-title: Sci. Rep. – volume: 106 start-page: 57 year: 2018 ident: 10.1016/j.ijplas.2018.10.014_bib14 article-title: Superb strength and high plasticity in laves phase rich eutectic medium-entropy-alloy nanocomposites publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2018.03.001 – volume: 7 start-page: 229 year: 2015 ident: 10.1016/j.ijplas.2018.10.014_bib70 article-title: A novel method to achieve grain refinement in aluminum publication-title: NPG Asia Mater. doi: 10.1038/am.2015.129 – volume: 464 start-page: 877 year: 2010 ident: 10.1016/j.ijplas.2018.10.014_bib40 article-title: Dislocation nucleation governed softening and maximum strength in nano-twinned metals publication-title: Nature doi: 10.1038/nature08929 – volume: 61 start-page: 1 year: 2014 ident: 10.1016/j.ijplas.2018.10.014_bib84 article-title: Microstructures and properties of high-entropy alloys publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2013.10.001 – volume: 103 start-page: 1 year: 2018 ident: 10.1016/j.ijplas.2018.10.014_bib19 article-title: Effect of Fe on microstructure, phase evolution and mechanical properties of (AlCoCrFeNi)100-xFex high entropy alloys processed by spark plasma sintering publication-title: Intermetallics doi: 10.1016/j.intermet.2018.09.011 – volume: 82 start-page: 287 year: 2015 ident: 10.1016/j.ijplas.2018.10.014_bib38 article-title: Interaction between phase transformations and dislocations at the nanoscale. Part 1. General phase field approach publication-title: J. Mech. Phys. Solid. doi: 10.1016/j.jmps.2015.05.005 – volume: 1 start-page: 15012 year: 2012 ident: 10.1016/j.ijplas.2018.10.014_bib61 article-title: Visualization and analysis of atomistic simulation data with ovito-the open visualization tool publication-title: Model. Simul. Mater. Sci. – volume: 82 start-page: 164 year: 2015 ident: 10.1016/j.ijplas.2018.10.014_bib29 article-title: Interaction between phase transformations and dislocations at the nanoscale. Part 2: phase field simulation examples publication-title: J. Mech. Phys. Solid. doi: 10.1016/j.jmps.2015.05.006 – volume: 37 start-page: 53 year: 2012 ident: 10.1016/j.ijplas.2018.10.014_bib17 article-title: A mean-field model for transformation induced plasticity including backstress effects for non-proportional loadings publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2012.04.001 – volume: 14 start-page: 1229 year: 2015 ident: 10.1016/j.ijplas.2018.10.014_bib75 article-title: A high-specific-strength and corrosion-resistant magnesium alloy publication-title: Nat. Mater. doi: 10.1038/nmat4435 – volume: 8 start-page: 1084 year: 2017 ident: 10.1016/j.ijplas.2018.10.014_bib1 article-title: Grain boundary mediated hydriding phase transformations in individual polycrystalline metal nanoparticles publication-title: Nat. Commun. doi: 10.1038/s41467-017-00879-9 – volume: 105 start-page: 239 year: 2018 ident: 10.1016/j.ijplas.2018.10.014_bib73 article-title: Experimental determination of latent hardening coefficients in FeMnNiCoCr publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2018.02.016 – year: 1999 ident: 10.1016/j.ijplas.2018.10.014_bib35 – volume: 134 start-page: 334 year: 2017 ident: 10.1016/j.ijplas.2018.10.014_bib81 article-title: Stacking fault energies of face-centered cubic concentrated solid solution alloys publication-title: Acta Mater. doi: 10.1016/j.actamat.2017.05.001 – volume: 9 start-page: 4063 issue: 1 year: 2018 ident: 10.1016/j.ijplas.2018.10.014_bib47 article-title: High-content ductile coherent nanoprecipitates achieve ultrastrong high-entropy alloys publication-title: Nat. Commun. doi: 10.1038/s41467-018-06600-8 – volume: 8 start-page: 15634 year: 2017 ident: 10.1016/j.ijplas.2018.10.014_bib67 article-title: High pressure synthesis of a hexagonal close-packed phase of the high-entropy alloy CrMnFeCoNi publication-title: Nat. Commun. doi: 10.1038/ncomms15634 – volume: 9 start-page: 1363 year: 2018 ident: 10.1016/j.ijplas.2018.10.014_bib54 article-title: Magnetically-driven phase transformation strengthening in high entropy alloys publication-title: Nat. Commun. doi: 10.1038/s41467-018-03846-0 – volume: 99 start-page: 247 year: 2015 ident: 10.1016/j.ijplas.2018.10.014_bib66 article-title: Fatigue behavior of a wrought Al0.5CoCrCuFeNi two-phase high-entropy alloy publication-title: Acta Mater. doi: 10.1016/j.actamat.2015.07.004 – volume: 117 start-page: 1 year: 1993 ident: 10.1016/j.ijplas.2018.10.014_bib57 article-title: Fast parallel algorithms for short-range molecular dynamics publication-title: J. Comput. Phys. doi: 10.1006/jcph.1995.1039 – volume: 2 start-page: 1600319 year: 2016 ident: 10.1016/j.ijplas.2018.10.014_bib62 article-title: High hardness in the biocompatible intermetallic compound β-Ti3Au publication-title: Sci. Adv. doi: 10.1126/sciadv.1600319 – volume: 463 start-page: 335 year: 2010 ident: 10.1016/j.ijplas.2018.10.014_bib79 article-title: Strong crystal size effect on deformation twinning publication-title: Nature doi: 10.1038/nature08692 – volume: 27 start-page: 688 issue: 5 year: 2011 ident: 10.1016/j.ijplas.2018.10.014_bib32 article-title: Mechanical response and texture evolution of AZ31 alloy at large strains for different strain rates and temperatures publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2010.08.009 – volume: 62 start-page: 197 year: 2014 ident: 10.1016/j.ijplas.2018.10.014_bib20 article-title: Deformation response of ferrite and martensite in a dual-phase steel publication-title: Acta Mater. doi: 10.1016/j.actamat.2013.10.001 – volume: 147 start-page: 35 year: 2018 ident: 10.1016/j.ijplas.2018.10.014_bib45 article-title: Transformation induced softening and plasticity in high entropy alloys publication-title: Acta Mater. doi: 10.1016/j.actamat.2018.01.002 – volume: 210 start-page: 29 year: 2017 ident: 10.1016/j.ijplas.2018.10.014_bib44 article-title: Influence of compositional inhomogeneity on mechanical behavior of an interstitial dual-phase high-entropy alloy publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2017.04.050 – volume: 15 start-page: 876 year: 2016 ident: 10.1016/j.ijplas.2018.10.014_bib8 article-title: Polysynthetic twinned TiAl single crystals for high-temperature applications publication-title: Nat. Mater. doi: 10.1038/nmat4677 – volume: 115 start-page: 113506 year: 2014 ident: 10.1016/j.ijplas.2018.10.014_bib9 article-title: The α→ ε phase transition in iron at strain rates up to 109 s− 1 publication-title: J. Appl. Phys. doi: 10.1063/1.4868676 – volume: 100 start-page: 177 year: 2018 ident: 10.1016/j.ijplas.2018.10.014_bib52 article-title: Realizing strength-ductility combination of coarse-grained Al0.2Co1.5CrFeNi1.5Ti0.3 alloy via nano-sized, coherent precipitates publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2017.10.005 – volume: 104 start-page: 23 year: 2018 ident: 10.1016/j.ijplas.2018.10.014_bib86 article-title: Slip transfer across phase boundaries in dual phase titanium alloys and the effect on strain rate sensitivity publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2018.01.011 – volume: 4 start-page: 1696 year: 2013 ident: 10.1016/j.ijplas.2018.10.014_bib87 article-title: High-strength and thermally stable bulk nanolayered composites due to twin-induced interfaces publication-title: Nat. Commun. doi: 10.1038/ncomms2651 – volume: 82 start-page: 345 year: 2015 ident: 10.1016/j.ijplas.2018.10.014_bib37 article-title: Thermodynamically consistent phase field approach to dislocation evolution at small and large strains publication-title: J. Mech. Phys. Solid. doi: 10.1016/j.jmps.2015.05.009 – volume: 679 start-page: 155 year: 2016 ident: 10.1016/j.ijplas.2018.10.014_bib58 article-title: Irradiation resistance, microstructure and mechanical properties of nanostructured (TiZrHfVNbTa) N coatings publication-title: J. Alloy. Comp. doi: 10.1016/j.jallcom.2016.04.064 – volume: 8 start-page: 10663 year: 2018 ident: 10.1016/j.ijplas.2018.10.014_bib7 article-title: Twinning-induced strain hardening in dual-phase FeCoCrNiAl0.5 at room and cryogenic temperature publication-title: Sci. Rep. doi: 10.1038/s41598-018-28784-1 – volume: 65 start-page: 349 year: 1952 ident: 10.1016/j.ijplas.2018.10.014_bib24 article-title: The elastic behaviour of a crystalline aggregate publication-title: Proc. Phys. Soc. Lond. doi: 10.1088/0370-1298/65/5/307 – volume: 154 start-page: 79 year: 2018 ident: 10.1016/j.ijplas.2018.10.014_bib71 article-title: Probing deformation mechanisms of a FeCoCrNi high-entropy alloy at 293 and 77 K using in situ neutron diffraction publication-title: Acta Mater. doi: 10.1016/j.actamat.2018.05.013 – year: 2018 ident: 10.1016/j.ijplas.2018.10.014_bib49 article-title: Bidirectional transformation enables hierarchical nanolaminate dual‐phase high‐entropy alloys publication-title: Adv. Mater. doi: 10.1002/adma.201804727 – volume: 58 start-page: 5129 year: 2010 ident: 10.1016/j.ijplas.2018.10.014_bib10 article-title: Dependence of tensile deformation behavior of TWIP steels on stacking fault energy, temperature and strain rate publication-title: Acta Mater. doi: 10.1016/j.actamat.2010.05.049 – volume: 8 start-page: 751 year: 2017 ident: 10.1016/j.ijplas.2018.10.014_bib23 article-title: Superplasticity in a lean Fe-Mn-Al steel publication-title: Nat. Commun. doi: 10.1038/s41467-017-00814-y – volume: 82 start-page: 378 year: 2015 ident: 10.1016/j.ijplas.2018.10.014_bib27 article-title: Deformation heterogeneities and their role in life-limiting fatigue failures in a two-phase titanium alloy publication-title: Acta Mater. doi: 10.1016/j.actamat.2014.08.034 – volume: 534 start-page: 227 year: 2016 ident: 10.1016/j.ijplas.2018.10.014_bib41 article-title: Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off publication-title: Nature doi: 10.1038/nature17981 – volume: 539 start-page: 259 year: 2012 ident: 10.1016/j.ijplas.2018.10.014_bib33 article-title: Crystal plasticity approach for predicting the Bauschinger effect in dual-phase steels publication-title: Mater. Sci. Eng. doi: 10.1016/j.msea.2012.01.092 – volume: 16 start-page: 1391 year: 2000 ident: 10.1016/j.ijplas.2018.10.014_bib22 article-title: High strength Fe–Mn–(Al, Si) TRIP/TWIP steels development—properties—application publication-title: Int. J. Plast. doi: 10.1016/S0749-6419(00)00015-2 – volume: 43 start-page: 128 year: 2013 ident: 10.1016/j.ijplas.2018.10.014_bib59 article-title: Quantification of the effect of transformation-induced geometrically necessary dislocations on the flow-curve modelling of dual-phase steels publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2012.11.003 – volume: 50 start-page: 158 year: 2013 ident: 10.1016/j.ijplas.2018.10.014_bib5 article-title: On the fracture toughness enhancement due to stress-induced phase transformation in shape memory alloys publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2013.04.007 – volume: 6 start-page: 299 issue: 5 year: 2004 ident: 10.1016/j.ijplas.2018.10.014_bib80 article-title: Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes publication-title: Adv. Eng. Mater. doi: 10.1002/adem.200300567 – volume: 51 start-page: 632 year: 2006 ident: 10.1016/j.ijplas.2018.10.014_bib3 article-title: Mechanical properties of alloys consisting of two ductile phases publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2005.10.003 – volume: 115 start-page: 479 year: 2017 ident: 10.1016/j.ijplas.2018.10.014_bib53 article-title: Nanoindentation testing as a powerful screening tool for assessing phase stability of nanocrystalline high-entropy alloys publication-title: Mater. Des. doi: 10.1016/j.matdes.2016.11.055 – volume: 6 start-page: 5964 year: 2015 ident: 10.1016/j.ijplas.2018.10.014_bib63 article-title: Deviation from high-entropy configurations in the atomic distributions of a multi-principal-element alloy publication-title: Nat. Commun. doi: 10.1038/ncomms6964 – volume: 63 start-page: 198 year: 2014 ident: 10.1016/j.ijplas.2018.10.014_bib64 article-title: Strain localization and damage in dual phase steels investigated by coupled in-situ deformation experiments and crystal plasticity simulations publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2014.06.004 – volume: 89 start-page: 1505 year: 2009 ident: 10.1016/j.ijplas.2018.10.014_bib76 article-title: Partial recrystallization in the nugget zone of friction stir welded dual-phase Cu–Zn alloy publication-title: Phil. Mag. doi: 10.1080/14786430903019040 – volume: 4 start-page: 1 year: 2018 ident: 10.1016/j.ijplas.2018.10.014_bib12 article-title: Understanding the physical metallurgy of the CoCrFeMnNi high-entropy alloy: an atomistic simulation study publication-title: npj Comp. Mater. doi: 10.1038/s41524-017-0060-9 – volume: 587 start-page: 544 year: 2014 ident: 10.1016/j.ijplas.2018.10.014_bib6 article-title: Microstructure and texture evolution during annealing of equiatomic CoCrFeMnNi high-entropy alloy publication-title: J. Alloy. Comp. doi: 10.1016/j.jallcom.2013.10.237 – year: 2016 ident: 10.1016/j.ijplas.2018.10.014_bib18 article-title: Applications of special quasi-random structures to high-entropy alloys – volume: 313 year: 2006 ident: 10.1016/j.ijplas.2018.10.014_bib4 article-title: High-resolution three-dimensional imaging of dislocations publication-title: Science doi: 10.1126/science.1125783 – volume: 100 start-page: 90 year: 2015 ident: 10.1016/j.ijplas.2018.10.014_bib50 article-title: Ab initio thermodynamics of the CoCrFeMnNi high entropy alloy: importance of entropy contributions beyond the configurational one publication-title: Acta Mater. doi: 10.1016/j.actamat.2015.08.050 – volume: 720 start-page: 238 year: 2018 ident: 10.1016/j.ijplas.2018.10.014_bib2 article-title: Plastic strain partitioning in dual phase Al13CoCrFeNi high entropy alloy publication-title: Mater. Sci. Eng. doi: 10.1016/j.msea.2018.02.044 – volume: 8 start-page: 2142 year: 2017 ident: 10.1016/j.ijplas.2018.10.014_bib68 article-title: New twinning route in face-centered cubic nanocrystalline metals publication-title: Nat. Commun. doi: 10.1038/s41467-017-02393-4 – volume: 7 start-page: 1897 year: 1976 ident: 10.1016/j.ijplas.2018.10.014_bib56 article-title: Nucleation: Part I. General concepts and the FCC→ HCP transformation publication-title: Metall. Trans. – volume: 56 start-page: 24 year: 2015 ident: 10.1016/j.ijplas.2018.10.014_bib28 article-title: Alloying behavior and novel properties of cocrfenimn high-entropy alloy fabricated by mechanical alloying and spark plasma sintering publication-title: Intermetallics doi: 10.1016/j.intermet.2014.08.008 – volume: 8 start-page: 15687 year: 2017 ident: 10.1016/j.ijplas.2018.10.014_bib83 article-title: Polymorphism in a high-entropy alloy publication-title: Nat. Commun. doi: 10.1038/ncomms15687 – volume: 122 start-page: 177 year: 2019 ident: 10.1016/j.ijplas.2018.10.014_bib15 article-title: A statistical theory of probability-dependent precipitation strengthening in metals and alloys publication-title: J. Mech. Phys. Solid. doi: 10.1016/j.jmps.2018.09.010 – volume: 136 start-page: 262 year: 2017 ident: 10.1016/j.ijplas.2018.10.014_bib42 article-title: Ab initio, assisted design of quinary dual-phase high-entropy alloys with transformation-induced plasticity publication-title: Acta Mater. doi: 10.1016/j.actamat.2017.07.023 – volume: 57 start-page: 1 year: 2012 ident: 10.1016/j.ijplas.2018.10.014_bib85 article-title: Deformation twinning in nanocrystalline materials publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2011.05.001 – volume: 16 start-page: 700 year: 2017 ident: 10.1016/j.ijplas.2018.10.014_bib39 article-title: Playing with defects in metals publication-title: Nat. Mater. doi: 10.1038/nmat4929 – volume: 105 start-page: 99 year: 2018 ident: 10.1016/j.ijplas.2018.10.014_bib78 article-title: A micromechanical constitutive model for grain size dependent thermo-mechanically coupled inelastic deformation of super-elastic NiTi shape memory alloy publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2018.02.005 – volume: 131 start-page: 323 year: 2017 ident: 10.1016/j.ijplas.2018.10.014_bib43 article-title: A TRIP-assisted dual-phase high-entropy alloy: grain size and phase fraction effects on deformation behavior publication-title: Acta Mater. doi: 10.1016/j.actamat.2017.03.069 – volume: 11 start-page: 84 year: 2017 ident: 10.1016/j.ijplas.2018.10.014_bib46 article-title: The Gaussian distribution of lattice size and atomic level heterogeneity in high entropy alloys publication-title: Ext. Mech. Lett. doi: 10.1016/j.eml.2016.10.007 – start-page: P348 year: 2016 ident: 10.1016/j.ijplas.2018.10.014_bib72 – volume: 94 start-page: 214104 year: 2016 ident: 10.1016/j.ijplas.2018.10.014_bib30 article-title: Phase field simulations of plastic strain-induced phase transformations under high pressure and large shear publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.94.214104 – volume: 39 start-page: 1 year: 2012 ident: 10.1016/j.ijplas.2018.10.014_bib51 article-title: Multi-phase transformations at large strains–Thermodynamic framework and simulation publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2012.05.009 – volume: 57 start-page: 3549 year: 2009 ident: 10.1016/j.ijplas.2018.10.014_bib55 article-title: Transformation-induced plasticity during pseudoelastic deformation in Ni–Ti microcrystals publication-title: Acta Mater. doi: 10.1016/j.actamat.2009.04.009 – volume: 744 start-page: 552 year: 2018 ident: 10.1016/j.ijplas.2018.10.014_bib60 article-title: Phase formation and strengthening mechanisms in a dual-phase nanocrystalline CrMnFeVTi high-entropy alloy with ultrahigh hardness publication-title: J. Alloy. Comp. doi: 10.1016/j.jallcom.2018.02.029 – volume: 3 start-page: 43 year: 2004 ident: 10.1016/j.ijplas.2018.10.014_bib77 article-title: Deformation-mechanism map for nanocrystalline metals by molecular-dynamics simulation publication-title: Nat. Mater. doi: 10.1038/nmat1035 – volume: 130 start-page: 96 year: 2017 ident: 10.1016/j.ijplas.2018.10.014_bib82 article-title: The origin of negative stacking fault energies and nano-twin formation in face-centered cubic high entropy alloys publication-title: Scripta Mater. doi: 10.1016/j.scriptamat.2016.11.014 – volume: 118 start-page: 306 year: 2016 ident: 10.1016/j.ijplas.2018.10.014_bib25 article-title: Exploring the concurrence of phase transition and grain growth in nanostructured alloy publication-title: Acta Mater. doi: 10.1016/j.actamat.2016.07.052 – volume: 18 start-page: 1296 year: 2018 ident: 10.1016/j.ijplas.2018.10.014_bib65 article-title: Atomistic simulation of the rate-dependent ductile-to-brittle failure transition in bicrystalline metal nanowires publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b04972 – volume: 25 start-page: 1726 year: 2009 ident: 10.1016/j.ijplas.2018.10.014_bib36 article-title: Implicit finite element formulations for multi-phase transformation in high carbon steel publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2008.11.010 – volume: 27 start-page: 1103 year: 2011 ident: 10.1016/j.ijplas.2018.10.014_bib31 article-title: A micro mechanical study on failure initiation of dual phase steels under tension using single crystal plasticity model publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2010.12.001 – volume: 518 start-page: 77 year: 2015 ident: 10.1016/j.ijplas.2018.10.014_bib34 article-title: Brittle intermetallic compound makes ultrastrong low-density steel with large ductility publication-title: Nature doi: 10.1038/nature14144 – volume: 358 start-page: 1033 year: 2017 ident: 10.1016/j.ijplas.2018.10.014_bib13 article-title: Structure-property relationships from universal signatures of plasticity in disordered solids publication-title: Science doi: 10.1126/science.aai8830 – volume: 136 start-page: 134 year: 2017 ident: 10.1016/j.ijplas.2018.10.014_bib21 article-title: Cyclic compression response of micropillars extracted from textured nanocrystalline NiTi thin-walled tubes publication-title: Acta Mater. doi: 10.1016/j.actamat.2017.06.043 – volume: 14 start-page: 594 year: 2015 ident: 10.1016/j.ijplas.2018.10.014_bib69 article-title: In situ atomic-scale observation of twinning-dominated deformation in nanoscale body-centred cubic tungsten publication-title: Nat. Mater. doi: 10.1038/nmat4228 – volume: 324 start-page: 349 year: 2009 ident: 10.1016/j.ijplas.2018.10.014_bib48 article-title: Strengthening materials by engineering coherent internal boundaries at the nanoscale publication-title: Science doi: 10.1126/science.1159610 – volume: 9 start-page: 2381 year: 2018 ident: 10.1016/j.ijplas.2018.10.014_bib26 article-title: Twinning in metastable high-entropy alloys publication-title: Nat. Commun. doi: 10.1038/s41467-018-04780-x – volume: 95 start-page: 264 year: 2017 ident: 10.1016/j.ijplas.2018.10.014_bib16 article-title: Size effects on the mechanical properties of nanocrystalline NbMoTaW refractory high entropy alloy thin films publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2017.04.013 – year: 1957 ident: 10.1016/j.ijplas.2018.10.014_bib11 – volume: 545 start-page: 80 year: 2017 ident: 10.1016/j.ijplas.2018.10.014_bib74 article-title: Dual-phase nanostructuring as a route to high-strength magnesium alloys publication-title: Nature doi: 10.1038/nature21691 |
SSID | ssj0005831 |
Score | 2.6367881 |
Snippet | Some high-entropy alloys, which contain two or more component phases with highly different properties, can achieve an outstanding combination of high strength... Not provided. |
SourceID | osti proquest crossref elsevier |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 161 |
SubjectTerms | Associated deformation Atomistic simulations Deformation mechanisms Dislocation density Dislocation mobility Dual phase Ductility Engineering Entropy Evolution Face centered cubic lattice Heat treating High entropy alloys High strength Materials Science Mechanical properties Mechanics Nanocrystals Phase transformation Phase transitions Phase volume fraction Phases Plastic properties Work hardening Yield strength |
Title | Probing the phase transformation and dislocation evolution in dual-phase high-entropy alloys |
URI | https://dx.doi.org/10.1016/j.ijplas.2018.10.014 https://www.proquest.com/docview/2195247272 https://www.osti.gov/biblio/1614159 |
Volume | 114 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pa9swFH6E7LId1jbbWJo06LCrEjuWLekYQku6sjLYAjkMjC1Lm8NwzJIWetnfvvdseWSMEdjRQg8bvV-frO89AbwLwgxxOd3vYlVETbULnjnpuJNozAW1vBJUjfzhPlmtxftNvOnBsquFIVqlj_1tTG-itR-Z-dWc1WU5-4TJTycC9xuKTvfmVGguhCQrn_48onmo9k5CnMxpdlc-13C8ym2NGJUIXmpKHK9Q_Cs99XfocX_F6yYJ3ZzDS48e2aL9wAvo2WoAZx5JMu-n-wG8OGoz-Aq-fKRmS9VXhmCP1d8wb7HDEV7dVSyrClaUe0pszbN99BbJyopRtRZvxai5Maf_wbv6idGR_dP-Naxvrj8vV9zfqsCNkNGBWzUXUivrIqNi3HwlLrFzY-IcNxZOoX-auHAii_NEayt17KxDWKaUzRDNSBFEb6Bf7Sr7FhiGh9wkCICy0AgtgnxeWOeCxAmZqTAohhB1i5ka33Kcbr74nnbcsm3aqiAlFdAoqmAI_LdU3bbcODFfdnpK_zCdFLPCCckRqZWkqGOuIWoRiiEIRlijhzDutJ16x0bpUOOi0en15X-_dgTP8Um3TLYx9A8_HuwVQptDPmlsdwLPFrd3q_tfai74Xw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7B9lA40PKoWKDFh_ZoNg8nsQ89IFq0lIcqFSQOlULi2CUIZSN2Ae2lf4o_yEziVFtVFRISxziZxJqxZz7Hn2cAPnp-hric6rsYGVJS7YJnNrHcJjiYC0p5Jeg08vFJPDwT386j8zl46M7CEK3S-f7Wpzfe2rUMnDYHdVkOfmDwU7HA9Yak3b2gY1Yemuk9rtvGnw--oJE_BcH-19O9IXelBbgWSTjhRgYiUdLYUMsIVyCxjU2gdZQjurYSB6mOCiuyKI-VMomKrLGITaQ0GYb0RHghvnceXgl0F1Q2Yef3DK9EtkUQsXecuted12tIZeVVjaCYGGVyh0hlvvhfPOyNcIr_EyCaqLf_FpYcXGW7rUaWYc5UK_DGQVfmHMN4BRZn8hquws_vlN2p-sUQXbL6EgMlm8wA5FHFsqpgRTmmSNpcmzs3BVhZMToexlsxyqbM6Qf0qJ4y4ghMx2tw9iK6fge9alSZdWDoj3IdI-LKfC2U8PKgMNZ6sRVJJn2v6EPYKTPVLsc5ldq4Tjsy21XamiAlE1ArmqAP_I9U3eb4eOL5pLNT-tdYTTEMPSG5SWYlKUrRq4nLhGKIuhFHqT5sddZOnSdBaV-h0mi7fOPZn92G18PT46P06ODkcBMW8I5qaXRb0Jvc3Jr3iKsm-YdmHDO4eOmJ8wjBQDM8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Probing+the+phase+transformation+and+dislocation+evolution+in+dual-phase+high-entropy+alloys&rft.jtitle=International+journal+of+plasticity&rft.au=Fang%2C+Qihong&rft.au=Chen%2C+Yang&rft.au=Li%2C+Jia&rft.au=Jiang%2C+Chao&rft.date=2019-03-01&rft.pub=Elsevier+Ltd&rft.issn=0749-6419&rft.eissn=1879-2154&rft.volume=114&rft.spage=161&rft.epage=173&rft_id=info:doi/10.1016%2Fj.ijplas.2018.10.014&rft.externalDocID=S0749641918304625 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0749-6419&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0749-6419&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0749-6419&client=summon |