Probing the phase transformation and dislocation evolution in dual-phase high-entropy alloys

Some high-entropy alloys, which contain two or more component phases with highly different properties, can achieve an outstanding combination of high strength and high ductility, and even break in the strength-ductility trade-off. However, a detailed atomic-scale mechanism of the dynamic continuous...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of plasticity Vol. 114; no. C; pp. 161 - 173
Main Authors Fang, Qihong, Chen, Yang, Li, Jia, Jiang, Chao, Liu, Bin, Liu, Yong, Liaw, Peter K.
Format Journal Article
LanguageEnglish
Published New York Elsevier Ltd 01.03.2019
Elsevier BV
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Some high-entropy alloys, which contain two or more component phases with highly different properties, can achieve an outstanding combination of high strength and high ductility, and even break in the strength-ductility trade-off. However, a detailed atomic-scale mechanism of the dynamic continuous microstructural evolution has not hitherto been performed, to limit the achievement of bulk dual-phase high-entropy alloys with the improved strength and toughness. Here we report the deformation and plasticity as well as strength in the dual-phase nanocrystalline high-entropy alloys with a variable volume fraction of face-centered-cube (FCC) and hexagonal closed-packed (HCP) phases using atomistic simulations during the tensile-straining tests. The results show that the amplitudes of additional interaction stresses and strains rely on such factors as the differences in the mechanical property and volume fraction of each phase. Due to the complexity of the phase and phase boundary, the mechanical properties of the dual-phase nanocrystalline high-entropy alloys, in general, cannot be accurately estimated on the basis of the simple mixed laws, which are dependent upon the volume fraction and yielding strength of individual phase. The aim of this study is to describe how the phase volume fractions affect the mechanical properties in the dual-phase high-entropy alloys. The flow stress and work hardening of the dual-phase high-entropy alloys can be explained on the basis of the mobile dislocation density and dislocation-induced phase transformation in the corresponding phases. The HCP-based high-entropy alloys show the good plasticity and high strength, and are unlike traditional alloys with the low ductility, owing to the occurrence of the HCP to FCC phase transformation. The strength of the dual-phase high-entropy alloy with the 16.7% FCC-phase volume fraction exceeds that of HCP-based or FCC-based matrix, due to the stronger interface hardening. We expect that these results would be helpful for designing and selecting dual-phase high-entropy alloys with great strength and good ductility in various engineering applications. [Display omitted] •Deformation and plasticity in dual-phase nanocrystalline HEAs are studied by atomistic simulations.•Additional interaction stresses depend on property difference and volume fraction of phases.•Strength of dual-phase HEAs with 16.7% FCC-phase fraction exceeds that of HCP-based or FCC-based matrix.•Transformation from FCC to HCP and reverse transformation from HCP to FCC are observed.
AbstractList Some high-entropy alloys, which contain two or more component phases with highly different properties, can achieve an outstanding combination of high strength and high ductility, and even break in the strength-ductility trade-off. However, a detailed atomic-scale mechanism of the dynamic continuous microstructural evolution has not hitherto been performed, to limit the achievement of bulk dual-phase high-entropy alloys with the improved strength and toughness. Here we report the deformation and plasticity as well as strength in the dual-phase nanocrystalline high-entropy alloys with a variable volume fraction of face-centered-cube (FCC) and hexagonal closed-packed (HCP) phases using atomistic simulations during the tensile-straining tests. The results show that the amplitudes of additional interaction stresses and strains rely on such factors as the differences in the mechanical property and volume fraction of each phase. Due to the complexity of the phase and phase boundary, the mechanical properties of the dual-phase nanocrystalline high-entropy alloys, in general, cannot be accurately estimated on the basis of the simple mixed laws, which are dependent upon the volume fraction and yielding strength of individual phase. The aim of this study is to describe how the phase volume fractions affect the mechanical properties in the dual-phase high-entropy alloys. The flow stress and work hardening of the dual-phase high-entropy alloys can be explained on the basis of the mobile dislocation density and dislocation-induced phase transformation in the corresponding phases. The HCP-based high-entropy alloys show the good plasticity and high strength, and are unlike traditional alloys with the low ductility, owing to the occurrence of the HCP to FCC phase transformation. The strength of the dual-phase high-entropy alloy with the 16.7% FCC-phase volume fraction exceeds that of HCP-based or FCC-based matrix, due to the stronger interface hardening. We expect that these results would be helpful for designing and selecting dual-phase high-entropy alloys with great strength and good ductility in various engineering applications.
Not provided.
Some high-entropy alloys, which contain two or more component phases with highly different properties, can achieve an outstanding combination of high strength and high ductility, and even break in the strength-ductility trade-off. However, a detailed atomic-scale mechanism of the dynamic continuous microstructural evolution has not hitherto been performed, to limit the achievement of bulk dual-phase high-entropy alloys with the improved strength and toughness. Here we report the deformation and plasticity as well as strength in the dual-phase nanocrystalline high-entropy alloys with a variable volume fraction of face-centered-cube (FCC) and hexagonal closed-packed (HCP) phases using atomistic simulations during the tensile-straining tests. The results show that the amplitudes of additional interaction stresses and strains rely on such factors as the differences in the mechanical property and volume fraction of each phase. Due to the complexity of the phase and phase boundary, the mechanical properties of the dual-phase nanocrystalline high-entropy alloys, in general, cannot be accurately estimated on the basis of the simple mixed laws, which are dependent upon the volume fraction and yielding strength of individual phase. The aim of this study is to describe how the phase volume fractions affect the mechanical properties in the dual-phase high-entropy alloys. The flow stress and work hardening of the dual-phase high-entropy alloys can be explained on the basis of the mobile dislocation density and dislocation-induced phase transformation in the corresponding phases. The HCP-based high-entropy alloys show the good plasticity and high strength, and are unlike traditional alloys with the low ductility, owing to the occurrence of the HCP to FCC phase transformation. The strength of the dual-phase high-entropy alloy with the 16.7% FCC-phase volume fraction exceeds that of HCP-based or FCC-based matrix, due to the stronger interface hardening. We expect that these results would be helpful for designing and selecting dual-phase high-entropy alloys with great strength and good ductility in various engineering applications. [Display omitted] •Deformation and plasticity in dual-phase nanocrystalline HEAs are studied by atomistic simulations.•Additional interaction stresses depend on property difference and volume fraction of phases.•Strength of dual-phase HEAs with 16.7% FCC-phase fraction exceeds that of HCP-based or FCC-based matrix.•Transformation from FCC to HCP and reverse transformation from HCP to FCC are observed.
Author Liu, Bin
Li, Jia
Liaw, Peter K.
Jiang, Chao
Chen, Yang
Liu, Yong
Fang, Qihong
Author_xml – sequence: 1
  givenname: Qihong
  surname: Fang
  fullname: Fang, Qihong
  organization: State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, 410082, PR China
– sequence: 2
  givenname: Yang
  surname: Chen
  fullname: Chen, Yang
  organization: State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, 410082, PR China
– sequence: 3
  givenname: Jia
  surname: Li
  fullname: Li, Jia
  email: lijia123@hnu.edu.cn
  organization: State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, 410082, PR China
– sequence: 4
  givenname: Chao
  surname: Jiang
  fullname: Jiang, Chao
  email: jiangc@hnu.edu.cn
  organization: State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, 410082, PR China
– sequence: 5
  givenname: Bin
  surname: Liu
  fullname: Liu, Bin
  organization: State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, PR China
– sequence: 6
  givenname: Yong
  surname: Liu
  fullname: Liu, Yong
  organization: State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, PR China
– sequence: 7
  givenname: Peter K.
  surname: Liaw
  fullname: Liaw, Peter K.
  email: pliaw@utk.edu
  organization: Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN, 37996, USA
BackLink https://www.osti.gov/biblio/1614159$$D View this record in Osti.gov
BookMark eNqFkM1u3CAUhVGVSp2kfYMurHTtCdhgIItKVdT8SJHSRbOLhBh8ibEccICJNG9fHGeVRbMCrs45l_MdoyMfPCD0neAtwaQ7G7dunCedtg0mooy2mNBPaEMEl3VDGD1CG8yprDtK5Bd0nNKIMWaiJRv08CeGnfOPVR6gmgedoMpR-2RDfNLZBV9p31e9S1Mw6xtewrR_vTlf9Xs91attcI9DDT7HMB8qPU3hkL6iz1ZPCb69nSfo_vL334vr-vbu6ubi121tKG9zDaKhXAqwrRGsobKzHTTGsB2n3ArCpWG9pZrtOimBS2bBYsGEAI27llPcnqDTNTek7FQyLoMZTPAeTFakI5QwWUQ_VtEcw_MeUlZj2Edf_qUaIste3vCmqM5XlYkhpQhWlbTX4gWLmxTBakGuRrUiVwvyZVqQFzN9Z56je9Lx8JHt52qDwujFQVwqgDfQu7g06IP7f8A_47Sf1g
CitedBy_id crossref_primary_10_1016_j_jmst_2024_08_058
crossref_primary_10_3389_fmats_2021_813382
crossref_primary_10_1016_j_commatsci_2024_112837
crossref_primary_10_1016_j_jallcom_2022_168521
crossref_primary_10_1016_j_jmrt_2024_12_134
crossref_primary_10_1007_s11431_022_2146_9
crossref_primary_10_1007_s11661_020_06099_z
crossref_primary_10_1016_j_ijplas_2024_104010
crossref_primary_10_1016_j_physb_2021_413078
crossref_primary_10_1016_j_jallcom_2019_06_301
crossref_primary_10_1016_j_msea_2024_147568
crossref_primary_10_1016_j_physb_2022_414447
crossref_primary_10_1016_j_ijplas_2024_103963
crossref_primary_10_1016_j_micron_2023_103461
crossref_primary_10_1515_ntrev_2021_0071
crossref_primary_10_1080_21663831_2024_2405228
crossref_primary_10_1016_j_carbon_2024_119532
crossref_primary_10_1016_j_jmrt_2024_09_090
crossref_primary_10_1016_j_jallcom_2023_169688
crossref_primary_10_3390_nano12071239
crossref_primary_10_1007_s00339_022_05382_7
crossref_primary_10_1088_1361_6528_ababcd
crossref_primary_10_1016_j_ijplas_2023_103691
crossref_primary_10_1002_adem_202001044
crossref_primary_10_1016_j_commatsci_2021_110495
crossref_primary_10_1016_j_jnoncrysol_2024_123039
crossref_primary_10_1016_j_intermet_2022_107585
crossref_primary_10_1038_s41467_020_14641_1
crossref_primary_10_1016_j_msea_2021_141196
crossref_primary_10_1080_09500839_2020_1866220
crossref_primary_10_1088_1361_651X_ad084d
crossref_primary_10_1016_j_ijrmhm_2022_105942
crossref_primary_10_1016_j_ijplas_2024_103980
crossref_primary_10_1016_j_jmrt_2023_12_193
crossref_primary_10_3390_ma14216523
crossref_primary_10_7498_aps_72_20221621
crossref_primary_10_1063_5_0198067
crossref_primary_10_1016_j_jallcom_2021_159516
crossref_primary_10_1016_j_mtcomm_2023_107264
crossref_primary_10_1016_j_ijplas_2021_103103
crossref_primary_10_1016_j_ijplas_2022_103389
crossref_primary_10_1021_acsanm_4c02867
crossref_primary_10_1007_s12598_024_02865_9
crossref_primary_10_1016_j_ijplas_2023_103663
crossref_primary_10_1016_j_msea_2025_147983
crossref_primary_10_1016_j_triboint_2022_107435
crossref_primary_10_1007_s12540_019_00468_z
crossref_primary_10_1016_j_ijplas_2025_104315
crossref_primary_10_1007_s10483_022_2803_5
crossref_primary_10_1016_j_ijplas_2021_102944
crossref_primary_10_1016_j_jmst_2024_03_027
crossref_primary_10_1063_10_0021377
crossref_primary_10_1016_j_scriptamat_2020_03_056
crossref_primary_10_1063_5_0082199
crossref_primary_10_1063_5_0057591
crossref_primary_10_1088_1674_1056_ac891e
crossref_primary_10_7498_aps_70_20210324
crossref_primary_10_1016_j_ijmecsci_2025_110151
crossref_primary_10_1016_j_matchemphys_2021_124912
crossref_primary_10_1016_j_mtla_2020_100738
crossref_primary_10_1016_j_ijmecsci_2022_107855
crossref_primary_10_1016_j_msea_2020_139936
crossref_primary_10_1016_j_ijmecsci_2022_108026
crossref_primary_10_1016_j_jallcom_2019_151646
crossref_primary_10_1016_j_matchar_2023_113302
crossref_primary_10_1021_acs_cgd_1c01499
crossref_primary_10_1016_j_rinp_2024_107566
crossref_primary_10_4150_KPMI_2019_26_6_515
crossref_primary_10_1016_j_ijplas_2020_102839
crossref_primary_10_1088_1361_6528_abf7eb
crossref_primary_10_1021_acs_nanolett_0c04244
crossref_primary_10_1007_s40195_022_01397_4
crossref_primary_10_1016_j_vacuum_2021_110581
crossref_primary_10_1002_adem_202300968
crossref_primary_10_1021_acs_nanolett_3c04516
crossref_primary_10_1016_j_jallcom_2024_176511
crossref_primary_10_1016_j_jallcom_2021_159215
crossref_primary_10_1016_j_commatsci_2023_112241
crossref_primary_10_1016_j_intermet_2020_106741
crossref_primary_10_1016_j_ijplas_2020_102700
crossref_primary_10_1088_2053_1591_ad7920
crossref_primary_10_1016_j_engfracmech_2023_109384
crossref_primary_10_1016_j_msea_2020_139444
crossref_primary_10_1016_j_rinp_2019_01_090
crossref_primary_10_1021_acsomega_2c02027
crossref_primary_10_3390_modelling5010019
crossref_primary_10_1063_1_5114830
crossref_primary_10_1016_j_jallcom_2023_170149
crossref_primary_10_2139_ssrn_3988604
crossref_primary_10_1016_j_jnoncrysol_2022_121695
crossref_primary_10_1016_j_surfcoat_2020_126325
crossref_primary_10_1016_j_mtla_2020_100790
crossref_primary_10_1016_j_jmrt_2021_09_019
crossref_primary_10_1016_j_ijmecsci_2022_107828
crossref_primary_10_1002_adem_202200068
crossref_primary_10_1007_s00894_025_06349_0
crossref_primary_10_1016_j_physb_2025_416928
crossref_primary_10_1016_j_corsci_2022_110617
crossref_primary_10_1016_j_ijmecsci_2024_109585
crossref_primary_10_1016_j_triboint_2024_109569
crossref_primary_10_1039_D0RA07831J
crossref_primary_10_1016_j_jmst_2020_03_064
crossref_primary_10_3389_fmats_2021_816309
crossref_primary_10_1016_j_matdes_2024_112711
crossref_primary_10_1088_2053_1591_acac62
crossref_primary_10_1007_s00419_021_02100_2
crossref_primary_10_1088_1361_6528_ac2980
crossref_primary_10_1016_j_mtcomm_2021_102525
crossref_primary_10_1063_5_0082835
crossref_primary_10_1016_j_jmst_2021_10_036
crossref_primary_10_1016_j_jmps_2022_105067
crossref_primary_10_1016_j_ijplas_2024_104188
crossref_primary_10_1007_s40195_021_01260_y
crossref_primary_10_1016_j_commatsci_2022_111626
crossref_primary_10_1007_s40195_021_01282_6
crossref_primary_10_1016_j_jmst_2021_11_065
crossref_primary_10_1016_j_ijplas_2019_08_010
crossref_primary_10_1016_j_ijplas_2019_102649
crossref_primary_10_1016_j_ijmecsci_2022_107373
crossref_primary_10_1016_j_engfracmech_2021_108120
crossref_primary_10_1103_PhysRevMaterials_4_103612
crossref_primary_10_1016_j_triboint_2023_109034
crossref_primary_10_3390_met12122138
crossref_primary_10_7498_aps_71_20220733
crossref_primary_10_1016_j_jallcom_2022_164685
crossref_primary_10_1016_j_jmst_2020_06_042
crossref_primary_10_1016_j_jallcom_2023_169057
crossref_primary_10_1016_j_surfcoat_2024_130697
crossref_primary_10_1016_j_jmrt_2021_07_116
crossref_primary_10_1016_j_jmrt_2021_04_020
crossref_primary_10_1016_j_mechmat_2025_105263
crossref_primary_10_1016_j_ijplas_2022_103443
crossref_primary_10_1016_j_ijplas_2021_102997
crossref_primary_10_1016_j_matdes_2024_112662
crossref_primary_10_1016_j_msea_2023_145800
crossref_primary_10_1002_adem_202201347
crossref_primary_10_1088_1361_651X_acba37
crossref_primary_10_1016_j_jallcom_2021_162413
crossref_primary_10_1016_j_ijlmm_2024_07_002
crossref_primary_10_1063_5_0232551
crossref_primary_10_1016_j_eml_2022_101875
crossref_primary_10_1016_j_apt_2022_103603
crossref_primary_10_1016_j_ijplas_2025_104264
crossref_primary_10_1016_j_mattod_2024_10_009
crossref_primary_10_3390_met15030323
crossref_primary_10_1088_2053_1591_ab7a64
crossref_primary_10_1016_j_ijplas_2022_103432
crossref_primary_10_1016_j_jallcom_2019_06_277
crossref_primary_10_1016_j_intermet_2024_108397
crossref_primary_10_1016_j_ijplas_2023_103730
crossref_primary_10_1016_j_ijplas_2023_103853
crossref_primary_10_1016_j_matchar_2023_113025
crossref_primary_10_1103_PhysRevB_107_174103
crossref_primary_10_7498_aps_71_20221368
crossref_primary_10_1007_s11665_022_07227_z
crossref_primary_10_1039_D0NR02483J
crossref_primary_10_3390_met14010027
crossref_primary_10_1016_j_vacuum_2024_113643
crossref_primary_10_1016_j_physb_2022_414029
crossref_primary_10_1016_j_ijplas_2022_103304
crossref_primary_10_1016_j_ijmecsci_2019_105389
crossref_primary_10_1016_j_ijplas_2022_103417
crossref_primary_10_1016_j_actamat_2024_119822
crossref_primary_10_1016_j_jnucmat_2022_154046
crossref_primary_10_1016_j_ijplas_2021_103073
crossref_primary_10_1007_s40843_023_2623_x
crossref_primary_10_1103_PhysRevMaterials_8_053602
crossref_primary_10_1016_j_commatsci_2022_111787
crossref_primary_10_1016_j_ijplas_2019_07_017
crossref_primary_10_1039_D3NR03465H
crossref_primary_10_1016_j_actamat_2020_08_044
crossref_primary_10_1016_j_commatsci_2021_111085
crossref_primary_10_1016_j_mtphys_2022_100800
crossref_primary_10_1016_j_jmst_2022_06_003
crossref_primary_10_7498_aps_71_20221621
crossref_primary_10_1016_j_triboint_2024_109993
crossref_primary_10_1007_s40195_020_01040_0
crossref_primary_10_1016_j_mser_2024_100834
crossref_primary_10_1038_s41597_022_01368_5
crossref_primary_10_1016_j_mtcomm_2023_106759
crossref_primary_10_1016_j_msea_2020_139853
crossref_primary_10_1016_j_mser_2024_100833
crossref_primary_10_1016_j_jmst_2020_02_070
crossref_primary_10_1016_j_matchemphys_2024_129538
crossref_primary_10_1039_D0RA00518E
crossref_primary_10_1080_21663831_2023_2280635
crossref_primary_10_1016_j_commatsci_2021_110723
crossref_primary_10_1016_j_ijmecsci_2022_107406
crossref_primary_10_1016_j_ceramint_2021_07_025
crossref_primary_10_1016_j_apsusc_2020_148291
crossref_primary_10_1016_j_ijplas_2020_102670
crossref_primary_10_1016_j_ijplas_2021_102951
crossref_primary_10_1016_j_jallcom_2022_164137
crossref_primary_10_1016_j_jmrt_2024_08_068
crossref_primary_10_1016_j_mtcomm_2024_109081
crossref_primary_10_1016_j_actamat_2022_118191
crossref_primary_10_1002_advs_202407283
crossref_primary_10_1016_j_jallcom_2021_159607
crossref_primary_10_1016_j_mtcomm_2023_105414
crossref_primary_10_1016_j_intermet_2021_107161
crossref_primary_10_1016_j_physb_2019_04_025
crossref_primary_10_1016_j_commatsci_2024_113341
crossref_primary_10_1016_j_ijmecsci_2024_109057
crossref_primary_10_1016_j_jmst_2022_08_033
crossref_primary_10_1016_j_jallcom_2021_162567
crossref_primary_10_3390_met14060728
crossref_primary_10_1007_s11837_023_06163_0
crossref_primary_10_1016_j_ijrmhm_2020_105415
crossref_primary_10_1002_pssb_202100247
crossref_primary_10_1016_j_jallcom_2020_156923
crossref_primary_10_1088_1361_651X_aca4ed
crossref_primary_10_1016_j_jmrt_2024_10_159
crossref_primary_10_1016_j_ijplas_2022_103463
crossref_primary_10_1016_j_mtcomm_2022_103861
crossref_primary_10_2320_matertrans_MT_MA2024003
crossref_primary_10_1007_s12274_021_3719_y
crossref_primary_10_1016_j_actamat_2021_117112
crossref_primary_10_1016_j_ijplas_2023_103867
crossref_primary_10_1016_j_ijmecsci_2025_110009
crossref_primary_10_1016_j_intermet_2022_107693
crossref_primary_10_1063_5_0181330
crossref_primary_10_1007_s10853_022_07862_w
crossref_primary_10_1007_s10853_024_10458_1
crossref_primary_10_3390_mi15010123
crossref_primary_10_3390_ma17184535
crossref_primary_10_1016_j_ijplas_2021_102989
crossref_primary_10_1016_j_jallcom_2021_161101
crossref_primary_10_1016_j_jmrt_2023_12_026
crossref_primary_10_1007_s10853_021_06605_7
crossref_primary_10_1016_j_mtcomm_2023_106523
crossref_primary_10_1007_s00339_020_03714_z
crossref_primary_10_1021_acs_jpcb_2c06098
crossref_primary_10_1016_j_actamat_2023_119205
crossref_primary_10_1016_j_ijplas_2021_103157
crossref_primary_10_1016_j_ijplas_2022_103333
crossref_primary_10_1016_j_ijmecsci_2022_107098
crossref_primary_10_1016_j_intermet_2022_107685
Cites_doi 10.1016/j.ijplas.2018.03.001
10.1038/am.2015.129
10.1038/nature08929
10.1016/j.pmatsci.2013.10.001
10.1016/j.intermet.2018.09.011
10.1016/j.jmps.2015.05.005
10.1016/j.jmps.2015.05.006
10.1016/j.ijplas.2012.04.001
10.1038/nmat4435
10.1038/s41467-017-00879-9
10.1016/j.ijplas.2018.02.016
10.1016/j.actamat.2017.05.001
10.1038/s41467-018-06600-8
10.1038/ncomms15634
10.1038/s41467-018-03846-0
10.1016/j.actamat.2015.07.004
10.1006/jcph.1995.1039
10.1126/sciadv.1600319
10.1038/nature08692
10.1016/j.ijplas.2010.08.009
10.1016/j.actamat.2013.10.001
10.1016/j.actamat.2018.01.002
10.1016/j.matchemphys.2017.04.050
10.1038/nmat4677
10.1063/1.4868676
10.1016/j.ijplas.2017.10.005
10.1016/j.ijplas.2018.01.011
10.1038/ncomms2651
10.1016/j.jmps.2015.05.009
10.1016/j.jallcom.2016.04.064
10.1038/s41598-018-28784-1
10.1088/0370-1298/65/5/307
10.1016/j.actamat.2018.05.013
10.1002/adma.201804727
10.1016/j.actamat.2010.05.049
10.1038/s41467-017-00814-y
10.1016/j.actamat.2014.08.034
10.1038/nature17981
10.1016/j.msea.2012.01.092
10.1016/S0749-6419(00)00015-2
10.1016/j.ijplas.2012.11.003
10.1016/j.ijplas.2013.04.007
10.1002/adem.200300567
10.1016/j.pmatsci.2005.10.003
10.1016/j.matdes.2016.11.055
10.1038/ncomms6964
10.1016/j.ijplas.2014.06.004
10.1080/14786430903019040
10.1038/s41524-017-0060-9
10.1016/j.jallcom.2013.10.237
10.1126/science.1125783
10.1016/j.actamat.2015.08.050
10.1016/j.msea.2018.02.044
10.1038/s41467-017-02393-4
10.1016/j.intermet.2014.08.008
10.1038/ncomms15687
10.1016/j.jmps.2018.09.010
10.1016/j.actamat.2017.07.023
10.1016/j.pmatsci.2011.05.001
10.1038/nmat4929
10.1016/j.ijplas.2018.02.005
10.1016/j.actamat.2017.03.069
10.1016/j.eml.2016.10.007
10.1103/PhysRevB.94.214104
10.1016/j.ijplas.2012.05.009
10.1016/j.actamat.2009.04.009
10.1016/j.jallcom.2018.02.029
10.1038/nmat1035
10.1016/j.scriptamat.2016.11.014
10.1016/j.actamat.2016.07.052
10.1021/acs.nanolett.7b04972
10.1016/j.ijplas.2008.11.010
10.1016/j.ijplas.2010.12.001
10.1038/nature14144
10.1126/science.aai8830
10.1016/j.actamat.2017.06.043
10.1038/nmat4228
10.1126/science.1159610
10.1038/s41467-018-04780-x
10.1016/j.ijplas.2017.04.013
10.1038/nature21691
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright Elsevier BV Mar 2019
Copyright_xml – notice: 2018 Elsevier Ltd
– notice: Copyright Elsevier BV Mar 2019
CorporateAuthor Univ. of Illinois at Urbana-Champaign, IL (United States)
CorporateAuthor_xml – name: Univ. of Illinois at Urbana-Champaign, IL (United States)
DBID AAYXX
CITATION
7SR
7TB
8BQ
8FD
FR3
JG9
KR7
OTOTI
DOI 10.1016/j.ijplas.2018.10.014
DatabaseName CrossRef
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
OSTI.GOV
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
METADEX
DatabaseTitleList Materials Research Database


DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1879-2154
EndPage 173
ExternalDocumentID 1614159
10_1016_j_ijplas_2018_10_014
S0749641918304625
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSZ
T5K
TN5
UNMZH
VH1
WUQ
XFK
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7SR
7TB
8BQ
8FD
EFKBS
FR3
JG9
KR7
AALMO
ABPIF
ABPTK
ABQIS
OTOTI
ID FETCH-LOGICAL-c473t-e824798ef3c852496f6e2cc5b747f8179c5df4a5b699e795fef08588ea0637403
IEDL.DBID .~1
ISSN 0749-6419
IngestDate Fri May 19 01:08:14 EDT 2023
Sun Jul 13 04:53:07 EDT 2025
Tue Jul 01 01:37:11 EDT 2025
Thu Apr 24 22:56:47 EDT 2025
Fri Feb 23 02:27:37 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue C
Keywords High-entropy alloys
Phase transformation
Atomistic simulations
Associated deformation
Dual phase
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c473t-e824798ef3c852496f6e2cc5b747f8179c5df4a5b699e795fef08588ea0637403
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
USDOE Office of Fossil Energy (FE)
FE0011194
OpenAccessLink https://www.osti.gov/biblio/1636865
PQID 2195247272
PQPubID 2045460
PageCount 13
ParticipantIDs osti_scitechconnect_1614159
proquest_journals_2195247272
crossref_citationtrail_10_1016_j_ijplas_2018_10_014
crossref_primary_10_1016_j_ijplas_2018_10_014
elsevier_sciencedirect_doi_10_1016_j_ijplas_2018_10_014
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2019
2019-03-00
20190301
2019-03-01
PublicationDateYYYYMMDD 2019-03-01
PublicationDate_xml – month: 03
  year: 2019
  text: March 2019
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle International journal of plasticity
PublicationYear 2019
Publisher Elsevier Ltd
Elsevier BV
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
– name: Elsevier
References Li, Lu (bib39) 2017; 16
Maier-Kiener, Schuh, George, Clemens, Hohenwarter (bib53) 2017; 115
Gao, Niu, Jiang, Irving (bib18) 2016
Javanbakht, Levitas (bib29) 2015; 82
Wu, Bönisch, Alkan, Abuzaid, Sehitoglu (bib73) 2018; 105
Hill (bib24) 1952; 65
Lu, Liebscher, Dehm, Raabe, Li (bib49) 2018
Mahnken, Wolff, Schneidt, Böhm (bib51) 2012; 39
Zhang, Zuo, Tang, Gao, Dahmen, Liaw, Lu (bib84) 2014; 61
Cowper, Symonds (bib11) 1957
Pogrebnjak, Yakushchenko, Bondar, Beresnev, Oyoshi, Ivasishin, Amekura, Yoshihiko, Opielak, Kozak (bib58) 2016; 679
Li, Fang, Liu, Liu (bib45) 2018; 147
Javanbakht, Levitas (bib30) 2016; 94
Kadkhodapour, Butz, Ziaei-Rad, Schmauder (bib31) 2011; 27
Norfleet, Sarosi, Manchiraju, Wagner, Uchic, Anderson, Mills (bib55) 2009; 57
Yu, Kang, Kan (bib78) 2018; 105
Baxevanis, Parrinello, Lagoudas (bib5) 2013; 50
Guo, Xiao, Wu, Ni, Song (bib19) 2018; 103
Xu, Birbilis, Sha, Wang, Daniels, Xiao, Ferry (bib75) 2015; 14
Zhang, Zhuang, Hu, Kai, Liu (bib82) 2017; 130
Huang, Huang, Li, Kim, Lu, Li, Holmström, Kwon, Vitos (bib26) 2018; 9
Curtze, Kuokkala (bib10) 2010; 58
Niu, LaRosa, Miao, Mills, Ghazisaeidi (bib54) 2018; 9
Li, Pradeep, Deng, Raabe, Tasan (bib41) 2016; 534
Li, Körmann, Grabowski, Neugebauer, Raabe (bib42) 2017; 136
Ding, He, Wang, Yang (bib14) 2018; 106
Ghassemi-Armaki, Maaß, Bhat, Sriram, Greer, Kumar (bib20) 2014; 62
Ankem, Margolin, Greene, Neuberger, Oberson (bib3) 2006; 51
Bönisch, Wu, Sehitoglu (bib7) 2018; 8
Zheng, Waheed, Balint, Dunne (bib86) 2018; 104
Levitas, Javanbakht (bib38) 2015; 82
Feng, Zhang, Wang, Hou, Wu, Liu, Sun (bib16) 2017; 95
Ming, Bi, Wang (bib52) 2018; 100
Stukowski (bib61) 2012; 1
Khan, Pandey, Gnäupel-Herold, Mishra (bib32) 2011; 27
Lee, Kim, Han, Jeong (bib36) 2009; 25
Li, Tasan, Pradeep, Raabe (bib43) 2017; 131
Chen, Peng, Zheng, Qi, Wang, Yu, Liu (bib8) 2016; 15
Wang, Guan, Teng, Liu, Chen, Xie, Ma (bib68) 2017; 8
Fischlschweiger, Cailletaud, Antretter (bib17) 2012; 37
Liang, Wang, Wen, Cheng, Wu, Cao, Xiao, Xue, Sha, Wang, Ren, Li, Wang, Wang, Cai (bib47) 2018; 9
Barnard, Sharp, Tong, Midgley (bib4) 2006; 313
Tang, Yuan, Tsai, Yeh, Lundin, Liaw (bib66) 2015; 99
Han, Kang, Lee, Kawasaki, Lee, Ponge, Lee (bib23) 2017; 8
Jha, Szczepanski, John, Larsen (bib27) 2015; 82
Yeh, Chen, Lin, Gan, Chin, Shun, Chang (bib80) 2004; 6
Abuzaid, Sehitoglu (bib2) 2018; 720
Widom, Gao, Yeh, Liaw, Zhang (bib72) 2016
Fang, Li, Li, Wu, Huang, Liu, Liu, Liaw (bib15) 2019; 122
Tao, Cao, Park (bib65) 2018; 18
Crowhurst, Reed, Armstrong, Radousky, Carter, Swift, Zaug, Minich, Teslich, Kumar (bib9) 2014; 115
Huang, Lin, Lin, Liu (bib25) 2016; 118
Plimpton (bib57) 1993; 117
Wang, Zeng, Weinberger, Zhang, Zhu, Mao (bib69) 2015; 14
Santodonato, Zhang, Feygenson, Parish, Gao, Weber, Liaw (bib63) 2015; 6
Ghassemi-Armaki, Leff, Taheri, Dahal, Kamarajugadda, Kumar (bib21) 2017; 136
Zhu, Liao, Wu (bib85) 2012; 57
Liu, Wei (bib46) 2017; 11
Grässel, Krüger, Frommeyer, Meyer (bib22) 2000; 16
Lu, Lu, Suresh (bib48) 2009; 324
Ramazani, Mukherjee, Schwedt, Goravanchi, Prahl, Bleck (bib59) 2013; 43
Ji, Wang, Wang, Zhang, Wang, Zhang (bib28) 2015; 56
Olson, Cohen (bib56) 1976; 7
Zheng, Beyerlein, Carpenter, Kang, Wang, Han, Mara (bib87) 2013; 4
Yamakov, Wolf, Phillpot, Mukherjee, Gleiter (bib77) 2004; 3
Levitas, Javanbakht (bib37) 2015; 82
Ma, Grabowski, Körmann, Neugebauer, Raabe (bib50) 2015; 100
Xie, Ma, Geng (bib76) 2009; 89
Song, Wei, Yang, Wu (bib60) 2018; 744
Yu, Shan, Li, Huang, Xiao, Sun, Ma (bib79) 2010; 463
Choi, Jo, Sohn, Lee, Lee (bib12) 2018; 4
Alekseeva, da Silva Fanta, Iandolo, Antosiewicz, Nugroho, Wagner, Langhammer (bib1) 2017; 8
Wu, Chan, Zhu, Sun, Lu (bib74) 2017; 545
Tasan, Hoefnagels, Diehl, Yan, Roters, Raabe (bib64) 2014; 63
Zhao, Stocks, Zhang (bib81) 2017; 134
Bhattacharjee, Sathiaraj, Zaid, Gatti, Lee, Tsai, Yeh (bib6) 2014; 587
Wang, Qu, Scudino, Sun, Prashanth, Louzguine-Luzgin, Eckert (bib70) 2015; 7
Wang, Liu, Yan, Wang, Kabra, Chiu, Dye, Lee, Liu, Cai (bib71) 2018; 154
Kim, Kim, Barlat, Lee (bib33) 2012; 539
Tracy, Park, Rittman, Zinkle, Bei, Lang, Ewing, Mao (bib67) 2017; 8
Landau, Lifshitz (bib35) 1999
Kim, Kim, Kim (bib34) 2015; 518
Li, Wei, Lu, Lu, Gao (bib40) 2010; 464
Li, Raabe (bib44) 2017; 210
Cubuk, Ivancic, Schoenholz, Strickland, Basu, Davidson, Keim (bib13) 2017; 358
Svanidze, Besara, Ozaydin, Tiwary, Wang, Radhakrishnan, Siegrist (bib62) 2016; 2
Zhang, Wu, Lou, Zeng, Prakapenka, Greenberg, Ren, Yan, Okasinski, Liu, Liu, Zeng, Lu (bib83) 2017; 8
Levitas (10.1016/j.ijplas.2018.10.014_bib37) 2015; 82
Xu (10.1016/j.ijplas.2018.10.014_bib75) 2015; 14
Crowhurst (10.1016/j.ijplas.2018.10.014_bib9) 2014; 115
Hill (10.1016/j.ijplas.2018.10.014_bib24) 1952; 65
Liu (10.1016/j.ijplas.2018.10.014_bib46) 2017; 11
Han (10.1016/j.ijplas.2018.10.014_bib23) 2017; 8
Mahnken (10.1016/j.ijplas.2018.10.014_bib51) 2012; 39
Niu (10.1016/j.ijplas.2018.10.014_bib54) 2018; 9
Li (10.1016/j.ijplas.2018.10.014_bib43) 2017; 131
Chen (10.1016/j.ijplas.2018.10.014_bib8) 2016; 15
Ramazani (10.1016/j.ijplas.2018.10.014_bib59) 2013; 43
Fang (10.1016/j.ijplas.2018.10.014_bib15) 2019; 122
Ma (10.1016/j.ijplas.2018.10.014_bib50) 2015; 100
Song (10.1016/j.ijplas.2018.10.014_bib60) 2018; 744
Zhao (10.1016/j.ijplas.2018.10.014_bib81) 2017; 134
Yu (10.1016/j.ijplas.2018.10.014_bib78) 2018; 105
Zhang (10.1016/j.ijplas.2018.10.014_bib82) 2017; 130
Pogrebnjak (10.1016/j.ijplas.2018.10.014_bib58) 2016; 679
Svanidze (10.1016/j.ijplas.2018.10.014_bib62) 2016; 2
Zheng (10.1016/j.ijplas.2018.10.014_bib87) 2013; 4
Olson (10.1016/j.ijplas.2018.10.014_bib56) 1976; 7
Li (10.1016/j.ijplas.2018.10.014_bib39) 2017; 16
Li (10.1016/j.ijplas.2018.10.014_bib45) 2018; 147
Zhang (10.1016/j.ijplas.2018.10.014_bib83) 2017; 8
Ding (10.1016/j.ijplas.2018.10.014_bib14) 2018; 106
Landau (10.1016/j.ijplas.2018.10.014_bib35) 1999
Li (10.1016/j.ijplas.2018.10.014_bib40) 2010; 464
Yeh (10.1016/j.ijplas.2018.10.014_bib80) 2004; 6
Ghassemi-Armaki (10.1016/j.ijplas.2018.10.014_bib21) 2017; 136
Javanbakht (10.1016/j.ijplas.2018.10.014_bib30) 2016; 94
Zhu (10.1016/j.ijplas.2018.10.014_bib85) 2012; 57
Ghassemi-Armaki (10.1016/j.ijplas.2018.10.014_bib20) 2014; 62
Tao (10.1016/j.ijplas.2018.10.014_bib65) 2018; 18
Wu (10.1016/j.ijplas.2018.10.014_bib74) 2017; 545
Xie (10.1016/j.ijplas.2018.10.014_bib76) 2009; 89
Khan (10.1016/j.ijplas.2018.10.014_bib32) 2011; 27
Lu (10.1016/j.ijplas.2018.10.014_bib48) 2009; 324
Choi (10.1016/j.ijplas.2018.10.014_bib12) 2018; 4
Ming (10.1016/j.ijplas.2018.10.014_bib52) 2018; 100
Grässel (10.1016/j.ijplas.2018.10.014_bib22) 2000; 16
Feng (10.1016/j.ijplas.2018.10.014_bib16) 2017; 95
Guo (10.1016/j.ijplas.2018.10.014_bib19) 2018; 103
Yu (10.1016/j.ijplas.2018.10.014_bib79) 2010; 463
Bhattacharjee (10.1016/j.ijplas.2018.10.014_bib6) 2014; 587
Abuzaid (10.1016/j.ijplas.2018.10.014_bib2) 2018; 720
Yamakov (10.1016/j.ijplas.2018.10.014_bib77) 2004; 3
Cubuk (10.1016/j.ijplas.2018.10.014_bib13) 2017; 358
Ji (10.1016/j.ijplas.2018.10.014_bib28) 2015; 56
Wang (10.1016/j.ijplas.2018.10.014_bib71) 2018; 154
Liang (10.1016/j.ijplas.2018.10.014_bib47) 2018; 9
Lu (10.1016/j.ijplas.2018.10.014_bib49) 2018
Lee (10.1016/j.ijplas.2018.10.014_bib36) 2009; 25
Wang (10.1016/j.ijplas.2018.10.014_bib69) 2015; 14
Zhang (10.1016/j.ijplas.2018.10.014_bib84) 2014; 61
Fischlschweiger (10.1016/j.ijplas.2018.10.014_bib17) 2012; 37
Tang (10.1016/j.ijplas.2018.10.014_bib66) 2015; 99
Baxevanis (10.1016/j.ijplas.2018.10.014_bib5) 2013; 50
Javanbakht (10.1016/j.ijplas.2018.10.014_bib29) 2015; 82
Norfleet (10.1016/j.ijplas.2018.10.014_bib55) 2009; 57
Huang (10.1016/j.ijplas.2018.10.014_bib25) 2016; 118
Wang (10.1016/j.ijplas.2018.10.014_bib68) 2017; 8
Kim (10.1016/j.ijplas.2018.10.014_bib34) 2015; 518
Li (10.1016/j.ijplas.2018.10.014_bib44) 2017; 210
Santodonato (10.1016/j.ijplas.2018.10.014_bib63) 2015; 6
Widom (10.1016/j.ijplas.2018.10.014_bib72) 2016
Bönisch (10.1016/j.ijplas.2018.10.014_bib7) 2018; 8
Li (10.1016/j.ijplas.2018.10.014_bib41) 2016; 534
Levitas (10.1016/j.ijplas.2018.10.014_bib38) 2015; 82
Barnard (10.1016/j.ijplas.2018.10.014_bib4) 2006; 313
Tracy (10.1016/j.ijplas.2018.10.014_bib67) 2017; 8
Alekseeva (10.1016/j.ijplas.2018.10.014_bib1) 2017; 8
Kim (10.1016/j.ijplas.2018.10.014_bib33) 2012; 539
Stukowski (10.1016/j.ijplas.2018.10.014_bib61) 2012; 1
Tasan (10.1016/j.ijplas.2018.10.014_bib64) 2014; 63
Jha (10.1016/j.ijplas.2018.10.014_bib27) 2015; 82
Gao (10.1016/j.ijplas.2018.10.014_bib18) 2016
Ankem (10.1016/j.ijplas.2018.10.014_bib3) 2006; 51
Curtze (10.1016/j.ijplas.2018.10.014_bib10) 2010; 58
Zheng (10.1016/j.ijplas.2018.10.014_bib86) 2018; 104
Maier-Kiener (10.1016/j.ijplas.2018.10.014_bib53) 2017; 115
Kadkhodapour (10.1016/j.ijplas.2018.10.014_bib31) 2011; 27
Wang (10.1016/j.ijplas.2018.10.014_bib70) 2015; 7
Huang (10.1016/j.ijplas.2018.10.014_bib26) 2018; 9
Li (10.1016/j.ijplas.2018.10.014_bib42) 2017; 136
Cowper (10.1016/j.ijplas.2018.10.014_bib11) 1957
Wu (10.1016/j.ijplas.2018.10.014_bib73) 2018; 105
Plimpton (10.1016/j.ijplas.2018.10.014_bib57) 1993; 117
References_xml – volume: 8
  start-page: 15687
  year: 2017
  ident: bib83
  article-title: Polymorphism in a high-entropy alloy
  publication-title: Nat. Commun.
– volume: 464
  start-page: 877
  year: 2010
  ident: bib40
  article-title: Dislocation nucleation governed softening and maximum strength in nano-twinned metals
  publication-title: Nature
– volume: 100
  start-page: 90
  year: 2015
  end-page: 97
  ident: bib50
  article-title: Ab initio thermodynamics of the CoCrFeMnNi high entropy alloy: importance of entropy contributions beyond the configurational one
  publication-title: Acta Mater.
– volume: 9
  start-page: 4063
  year: 2018
  ident: bib47
  article-title: High-content ductile coherent nanoprecipitates achieve ultrastrong high-entropy alloys
  publication-title: Nat. Commun.
– volume: 43
  start-page: 128
  year: 2013
  end-page: 152
  ident: bib59
  article-title: Quantification of the effect of transformation-induced geometrically necessary dislocations on the flow-curve modelling of dual-phase steels
  publication-title: Int. J. Plast.
– volume: 115
  start-page: 113506
  year: 2014
  ident: bib9
  article-title: The α→ ε phase transition in iron at strain rates up to 10
  publication-title: J. Appl. Phys.
– volume: 545
  start-page: 80
  year: 2017
  ident: bib74
  article-title: Dual-phase nanostructuring as a route to high-strength magnesium alloys
  publication-title: Nature
– volume: 136
  start-page: 134
  year: 2017
  end-page: 147
  ident: bib21
  article-title: Cyclic compression response of micropillars extracted from textured nanocrystalline NiTi thin-walled tubes
  publication-title: Acta Mater.
– year: 1999
  ident: bib35
  article-title: Theory of Elasticity
– volume: 6
  start-page: 299
  year: 2004
  end-page: 303
  ident: bib80
  article-title: Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes
  publication-title: Adv. Eng. Mater.
– volume: 15
  start-page: 876
  year: 2016
  ident: bib8
  article-title: Polysynthetic twinned TiAl single crystals for high-temperature applications
  publication-title: Nat. Mater.
– volume: 324
  start-page: 349
  year: 2009
  end-page: 352
  ident: bib48
  article-title: Strengthening materials by engineering coherent internal boundaries at the nanoscale
  publication-title: Science
– volume: 679
  start-page: 155
  year: 2016
  end-page: 163
  ident: bib58
  article-title: Irradiation resistance, microstructure and mechanical properties of nanostructured (TiZrHfVNbTa) N coatings
  publication-title: J. Alloy. Comp.
– volume: 94
  start-page: 214104
  year: 2016
  ident: bib30
  article-title: Phase field simulations of plastic strain-induced phase transformations under high pressure and large shear
  publication-title: Phys. Rev. B
– volume: 16
  start-page: 1391
  year: 2000
  end-page: 1409
  ident: bib22
  article-title: High strength Fe–Mn–(Al, Si) TRIP/TWIP steels development—properties—application
  publication-title: Int. J. Plast.
– year: 2018
  ident: bib49
  article-title: Bidirectional transformation enables hierarchical nanolaminate dual‐phase high‐entropy alloys
  publication-title: Adv. Mater.
– volume: 18
  start-page: 1296
  year: 2018
  end-page: 1304
  ident: bib65
  article-title: Atomistic simulation of the rate-dependent ductile-to-brittle failure transition in bicrystalline metal nanowires
  publication-title: Nano Lett.
– volume: 63
  start-page: 198
  year: 2014
  end-page: 210
  ident: bib64
  article-title: Strain localization and damage in dual phase steels investigated by coupled in-situ deformation experiments and crystal plasticity simulations
  publication-title: Int. J. Plast.
– volume: 65
  start-page: 349
  year: 1952
  end-page: 354
  ident: bib24
  article-title: The elastic behaviour of a crystalline aggregate
  publication-title: Proc. Phys. Soc. Lond.
– volume: 720
  start-page: 238
  year: 2018
  end-page: 247
  ident: bib2
  article-title: Plastic strain partitioning in dual phase Al13CoCrFeNi high entropy alloy
  publication-title: Mater. Sci. Eng.
– volume: 744
  start-page: 552
  year: 2018
  end-page: 560
  ident: bib60
  article-title: Phase formation and strengthening mechanisms in a dual-phase nanocrystalline CrMnFeVTi high-entropy alloy with ultrahigh hardness
  publication-title: J. Alloy. Comp.
– volume: 51
  start-page: 632
  year: 2006
  end-page: 709
  ident: bib3
  article-title: Mechanical properties of alloys consisting of two ductile phases
  publication-title: Prog. Mater. Sci.
– volume: 463
  start-page: 335
  year: 2010
  ident: bib79
  article-title: Strong crystal size effect on deformation twinning
  publication-title: Nature
– volume: 7
  start-page: 1897
  year: 1976
  end-page: 1904
  ident: bib56
  article-title: Nucleation: Part I. General concepts and the FCC→ HCP transformation
  publication-title: Metall. Trans.
– volume: 122
  start-page: 177
  year: 2019
  end-page: 189
  ident: bib15
  article-title: A statistical theory of probability-dependent precipitation strengthening in metals and alloys
  publication-title: J. Mech. Phys. Solid.
– volume: 50
  start-page: 158
  year: 2013
  end-page: 169
  ident: bib5
  article-title: On the fracture toughness enhancement due to stress-induced phase transformation in shape memory alloys
  publication-title: Int. J. Plast.
– volume: 136
  start-page: 262
  year: 2017
  end-page: 270
  ident: bib42
  article-title: Ab initio, assisted design of quinary dual-phase high-entropy alloys with transformation-induced plasticity
  publication-title: Acta Mater.
– volume: 89
  start-page: 1505
  year: 2009
  end-page: 1516
  ident: bib76
  article-title: Partial recrystallization in the nugget zone of friction stir welded dual-phase Cu–Zn alloy
  publication-title: Phil. Mag.
– volume: 57
  start-page: 1
  year: 2012
  end-page: 62
  ident: bib85
  article-title: Deformation twinning in nanocrystalline materials
  publication-title: Prog. Mater. Sci.
– volume: 518
  start-page: 77
  year: 2015
  end-page: 79
  ident: bib34
  article-title: Brittle intermetallic compound makes ultrastrong low-density steel with large ductility
  publication-title: Nature
– volume: 210
  start-page: 29
  year: 2017
  end-page: 36
  ident: bib44
  article-title: Influence of compositional inhomogeneity on mechanical behavior of an interstitial dual-phase high-entropy alloy
  publication-title: Mater. Chem. Phys.
– volume: 9
  start-page: 1363
  year: 2018
  ident: bib54
  article-title: Magnetically-driven phase transformation strengthening in high entropy alloys
  publication-title: Nat. Commun.
– volume: 2
  start-page: 1600319
  year: 2016
  ident: bib62
  article-title: High hardness in the biocompatible intermetallic compound β-Ti3Au
  publication-title: Sci. Adv.
– volume: 14
  start-page: 594
  year: 2015
  ident: bib69
  article-title: In situ atomic-scale observation of twinning-dominated deformation in nanoscale body-centred cubic tungsten
  publication-title: Nat. Mater.
– start-page: P348
  year: 2016
  end-page: P351
  ident: bib72
  article-title: High-entropy Alloys: Fundamentals and Applications
– volume: 8
  start-page: 751
  year: 2017
  ident: bib23
  article-title: Superplasticity in a lean Fe-Mn-Al steel
  publication-title: Nat. Commun.
– volume: 56
  start-page: 24
  year: 2015
  end-page: 27
  ident: bib28
  article-title: Alloying behavior and novel properties of cocrfenimn high-entropy alloy fabricated by mechanical alloying and spark plasma sintering
  publication-title: Intermetallics
– volume: 539
  start-page: 259
  year: 2012
  end-page: 270
  ident: bib33
  article-title: Crystal plasticity approach for predicting the Bauschinger effect in dual-phase steels
  publication-title: Mater. Sci. Eng.
– volume: 8
  start-page: 15634
  year: 2017
  ident: bib67
  article-title: High pressure synthesis of a hexagonal close-packed phase of the high-entropy alloy CrMnFeCoNi
  publication-title: Nat. Commun.
– volume: 105
  start-page: 99
  year: 2018
  end-page: 127
  ident: bib78
  article-title: A micromechanical constitutive model for grain size dependent thermo-mechanically coupled inelastic deformation of super-elastic NiTi shape memory alloy
  publication-title: Int. J. Plast.
– volume: 3
  start-page: 43
  year: 2004
  ident: bib77
  article-title: Deformation-mechanism map for nanocrystalline metals by molecular-dynamics simulation
  publication-title: Nat. Mater.
– volume: 118
  start-page: 306
  year: 2016
  end-page: 316
  ident: bib25
  article-title: Exploring the concurrence of phase transition and grain growth in nanostructured alloy
  publication-title: Acta Mater.
– volume: 534
  start-page: 227
  year: 2016
  ident: bib41
  article-title: Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off
  publication-title: Nature
– volume: 147
  start-page: 35
  year: 2018
  end-page: 41
  ident: bib45
  article-title: Transformation induced softening and plasticity in high entropy alloys
  publication-title: Acta Mater.
– volume: 104
  start-page: 23
  year: 2018
  end-page: 38
  ident: bib86
  article-title: Slip transfer across phase boundaries in dual phase titanium alloys and the effect on strain rate sensitivity
  publication-title: Int. J. Plast.
– volume: 58
  start-page: 5129
  year: 2010
  end-page: 5141
  ident: bib10
  article-title: Dependence of tensile deformation behavior of TWIP steels on stacking fault energy, temperature and strain rate
  publication-title: Acta Mater.
– year: 2016
  ident: bib18
  article-title: Applications of special quasi-random structures to high-entropy alloys
  publication-title: High-entropy Alloys
– volume: 4
  start-page: 1
  year: 2018
  ident: bib12
  article-title: Understanding the physical metallurgy of the CoCrFeMnNi high-entropy alloy: an atomistic simulation study
  publication-title: npj Comp. Mater.
– volume: 103
  start-page: 1
  year: 2018
  end-page: 11
  ident: bib19
  article-title: Effect of Fe on microstructure, phase evolution and mechanical properties of (AlCoCrFeNi)
  publication-title: Intermetallics
– volume: 14
  start-page: 1229
  year: 2015
  ident: bib75
  article-title: A high-specific-strength and corrosion-resistant magnesium alloy
  publication-title: Nat. Mater.
– year: 1957
  ident: bib11
  article-title: Strain Hardening and Strain-rate Effects in the Impact Loading of Centilevered Beams
– volume: 313
  year: 2006
  ident: bib4
  article-title: High-resolution three-dimensional imaging of dislocations
  publication-title: Science
– volume: 16
  start-page: 700
  year: 2017
  ident: bib39
  article-title: Playing with defects in metals
  publication-title: Nat. Mater.
– volume: 11
  start-page: 84
  year: 2017
  end-page: 88
  ident: bib46
  article-title: The Gaussian distribution of lattice size and atomic level heterogeneity in high entropy alloys
  publication-title: Ext. Mech. Lett.
– volume: 9
  start-page: 2381
  year: 2018
  ident: bib26
  article-title: Twinning in metastable high-entropy alloys
  publication-title: Nat. Commun.
– volume: 82
  start-page: 378
  year: 2015
  end-page: 395
  ident: bib27
  article-title: Deformation heterogeneities and their role in life-limiting fatigue failures in a two-phase titanium alloy
  publication-title: Acta Mater.
– volume: 4
  start-page: 1696
  year: 2013
  ident: bib87
  article-title: High-strength and thermally stable bulk nanolayered composites due to twin-induced interfaces
  publication-title: Nat. Commun.
– volume: 1
  start-page: 15012
  year: 2012
  ident: bib61
  article-title: Visualization and analysis of atomistic simulation data with ovito-the open visualization tool
  publication-title: Model. Simul. Mater. Sci.
– volume: 8
  start-page: 2142
  year: 2017
  ident: bib68
  article-title: New twinning route in face-centered cubic nanocrystalline metals
  publication-title: Nat. Commun.
– volume: 6
  start-page: 5964
  year: 2015
  ident: bib63
  article-title: Deviation from high-entropy configurations in the atomic distributions of a multi-principal-element alloy
  publication-title: Nat. Commun.
– volume: 105
  start-page: 239
  year: 2018
  end-page: 260
  ident: bib73
  article-title: Experimental determination of latent hardening coefficients in FeMnNiCoCr
  publication-title: Int. J. Plast.
– volume: 131
  start-page: 323
  year: 2017
  end-page: 335
  ident: bib43
  article-title: A TRIP-assisted dual-phase high-entropy alloy: grain size and phase fraction effects on deformation behavior
  publication-title: Acta Mater.
– volume: 25
  start-page: 1726
  year: 2009
  end-page: 1758
  ident: bib36
  article-title: Implicit finite element formulations for multi-phase transformation in high carbon steel
  publication-title: Int. J. Plast.
– volume: 27
  start-page: 688
  year: 2011
  end-page: 706
  ident: bib32
  article-title: Mechanical response and texture evolution of AZ31 alloy at large strains for different strain rates and temperatures
  publication-title: Int. J. Plast.
– volume: 99
  start-page: 247
  year: 2015
  end-page: 258
  ident: bib66
  article-title: Fatigue behavior of a wrought Al0.5CoCrCuFeNi two-phase high-entropy alloy
  publication-title: Acta Mater.
– volume: 358
  start-page: 1033
  year: 2017
  end-page: 1037
  ident: bib13
  article-title: Structure-property relationships from universal signatures of plasticity in disordered solids
  publication-title: Science
– volume: 95
  start-page: 264
  year: 2017
  end-page: 277
  ident: bib16
  article-title: Size effects on the mechanical properties of nanocrystalline NbMoTaW refractory high entropy alloy thin films
  publication-title: Int. J. Plast.
– volume: 82
  start-page: 164
  year: 2015
  end-page: 185
  ident: bib29
  article-title: Interaction between phase transformations and dislocations at the nanoscale. Part 2: phase field simulation examples
  publication-title: J. Mech. Phys. Solid.
– volume: 587
  start-page: 544
  year: 2014
  end-page: 552
  ident: bib6
  article-title: Microstructure and texture evolution during annealing of equiatomic CoCrFeMnNi high-entropy alloy
  publication-title: J. Alloy. Comp.
– volume: 106
  start-page: 57
  year: 2018
  end-page: 72
  ident: bib14
  article-title: Superb strength and high plasticity in laves phase rich eutectic medium-entropy-alloy nanocomposites
  publication-title: Int. J. Plast.
– volume: 130
  start-page: 96
  year: 2017
  end-page: 99
  ident: bib82
  article-title: The origin of negative stacking fault energies and nano-twin formation in face-centered cubic high entropy alloys
  publication-title: Scripta Mater.
– volume: 82
  start-page: 345
  year: 2015
  end-page: 366
  ident: bib37
  article-title: Thermodynamically consistent phase field approach to dislocation evolution at small and large strains
  publication-title: J. Mech. Phys. Solid.
– volume: 62
  start-page: 197
  year: 2014
  end-page: 211
  ident: bib20
  article-title: Deformation response of ferrite and martensite in a dual-phase steel
  publication-title: Acta Mater.
– volume: 154
  start-page: 79
  year: 2018
  end-page: 89
  ident: bib71
  article-title: Probing deformation mechanisms of a FeCoCrNi high-entropy alloy at 293 and 77 K using in situ neutron diffraction
  publication-title: Acta Mater.
– volume: 57
  start-page: 3549
  year: 2009
  end-page: 3561
  ident: bib55
  article-title: Transformation-induced plasticity during pseudoelastic deformation in Ni–Ti microcrystals
  publication-title: Acta Mater.
– volume: 115
  start-page: 479
  year: 2017
  end-page: 485
  ident: bib53
  article-title: Nanoindentation testing as a powerful screening tool for assessing phase stability of nanocrystalline high-entropy alloys
  publication-title: Mater. Des.
– volume: 7
  start-page: 229
  year: 2015
  ident: bib70
  article-title: A novel method to achieve grain refinement in aluminum
  publication-title: NPG Asia Mater.
– volume: 27
  start-page: 1103
  year: 2011
  end-page: 1125
  ident: bib31
  article-title: A micro mechanical study on failure initiation of dual phase steels under tension using single crystal plasticity model
  publication-title: Int. J. Plast.
– volume: 117
  start-page: 1
  year: 1993
  end-page: 19
  ident: bib57
  article-title: Fast parallel algorithms for short-range molecular dynamics
  publication-title: J. Comput. Phys.
– volume: 37
  start-page: 53
  year: 2012
  end-page: 71
  ident: bib17
  article-title: A mean-field model for transformation induced plasticity including backstress effects for non-proportional loadings
  publication-title: Int. J. Plast.
– volume: 61
  start-page: 1
  year: 2014
  end-page: 93
  ident: bib84
  article-title: Microstructures and properties of high-entropy alloys
  publication-title: Prog. Mater. Sci.
– volume: 100
  start-page: 177
  year: 2018
  end-page: 191
  ident: bib52
  article-title: Realizing strength-ductility combination of coarse-grained Al
  publication-title: Int. J. Plast.
– volume: 8
  start-page: 1084
  year: 2017
  ident: bib1
  article-title: Grain boundary mediated hydriding phase transformations in individual polycrystalline metal nanoparticles
  publication-title: Nat. Commun.
– volume: 82
  start-page: 287
  year: 2015
  end-page: 319
  ident: bib38
  article-title: Interaction between phase transformations and dislocations at the nanoscale. Part 1. General phase field approach
  publication-title: J. Mech. Phys. Solid.
– volume: 39
  start-page: 1
  year: 2012
  end-page: 26
  ident: bib51
  article-title: Multi-phase transformations at large strains–Thermodynamic framework and simulation
  publication-title: Int. J. Plast.
– volume: 134
  start-page: 334
  year: 2017
  end-page: 345
  ident: bib81
  article-title: Stacking fault energies of face-centered cubic concentrated solid solution alloys
  publication-title: Acta Mater.
– volume: 8
  start-page: 10663
  year: 2018
  ident: bib7
  article-title: Twinning-induced strain hardening in dual-phase FeCoCrNiAl0.5 at room and cryogenic temperature
  publication-title: Sci. Rep.
– volume: 106
  start-page: 57
  year: 2018
  ident: 10.1016/j.ijplas.2018.10.014_bib14
  article-title: Superb strength and high plasticity in laves phase rich eutectic medium-entropy-alloy nanocomposites
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2018.03.001
– volume: 7
  start-page: 229
  year: 2015
  ident: 10.1016/j.ijplas.2018.10.014_bib70
  article-title: A novel method to achieve grain refinement in aluminum
  publication-title: NPG Asia Mater.
  doi: 10.1038/am.2015.129
– volume: 464
  start-page: 877
  year: 2010
  ident: 10.1016/j.ijplas.2018.10.014_bib40
  article-title: Dislocation nucleation governed softening and maximum strength in nano-twinned metals
  publication-title: Nature
  doi: 10.1038/nature08929
– volume: 61
  start-page: 1
  year: 2014
  ident: 10.1016/j.ijplas.2018.10.014_bib84
  article-title: Microstructures and properties of high-entropy alloys
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2013.10.001
– volume: 103
  start-page: 1
  year: 2018
  ident: 10.1016/j.ijplas.2018.10.014_bib19
  article-title: Effect of Fe on microstructure, phase evolution and mechanical properties of (AlCoCrFeNi)100-xFex high entropy alloys processed by spark plasma sintering
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2018.09.011
– volume: 82
  start-page: 287
  year: 2015
  ident: 10.1016/j.ijplas.2018.10.014_bib38
  article-title: Interaction between phase transformations and dislocations at the nanoscale. Part 1. General phase field approach
  publication-title: J. Mech. Phys. Solid.
  doi: 10.1016/j.jmps.2015.05.005
– volume: 1
  start-page: 15012
  year: 2012
  ident: 10.1016/j.ijplas.2018.10.014_bib61
  article-title: Visualization and analysis of atomistic simulation data with ovito-the open visualization tool
  publication-title: Model. Simul. Mater. Sci.
– volume: 82
  start-page: 164
  year: 2015
  ident: 10.1016/j.ijplas.2018.10.014_bib29
  article-title: Interaction between phase transformations and dislocations at the nanoscale. Part 2: phase field simulation examples
  publication-title: J. Mech. Phys. Solid.
  doi: 10.1016/j.jmps.2015.05.006
– volume: 37
  start-page: 53
  year: 2012
  ident: 10.1016/j.ijplas.2018.10.014_bib17
  article-title: A mean-field model for transformation induced plasticity including backstress effects for non-proportional loadings
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2012.04.001
– volume: 14
  start-page: 1229
  year: 2015
  ident: 10.1016/j.ijplas.2018.10.014_bib75
  article-title: A high-specific-strength and corrosion-resistant magnesium alloy
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4435
– volume: 8
  start-page: 1084
  year: 2017
  ident: 10.1016/j.ijplas.2018.10.014_bib1
  article-title: Grain boundary mediated hydriding phase transformations in individual polycrystalline metal nanoparticles
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-00879-9
– volume: 105
  start-page: 239
  year: 2018
  ident: 10.1016/j.ijplas.2018.10.014_bib73
  article-title: Experimental determination of latent hardening coefficients in FeMnNiCoCr
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2018.02.016
– year: 1999
  ident: 10.1016/j.ijplas.2018.10.014_bib35
– volume: 134
  start-page: 334
  year: 2017
  ident: 10.1016/j.ijplas.2018.10.014_bib81
  article-title: Stacking fault energies of face-centered cubic concentrated solid solution alloys
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2017.05.001
– volume: 9
  start-page: 4063
  issue: 1
  year: 2018
  ident: 10.1016/j.ijplas.2018.10.014_bib47
  article-title: High-content ductile coherent nanoprecipitates achieve ultrastrong high-entropy alloys
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-06600-8
– volume: 8
  start-page: 15634
  year: 2017
  ident: 10.1016/j.ijplas.2018.10.014_bib67
  article-title: High pressure synthesis of a hexagonal close-packed phase of the high-entropy alloy CrMnFeCoNi
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15634
– volume: 9
  start-page: 1363
  year: 2018
  ident: 10.1016/j.ijplas.2018.10.014_bib54
  article-title: Magnetically-driven phase transformation strengthening in high entropy alloys
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03846-0
– volume: 99
  start-page: 247
  year: 2015
  ident: 10.1016/j.ijplas.2018.10.014_bib66
  article-title: Fatigue behavior of a wrought Al0.5CoCrCuFeNi two-phase high-entropy alloy
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2015.07.004
– volume: 117
  start-page: 1
  year: 1993
  ident: 10.1016/j.ijplas.2018.10.014_bib57
  article-title: Fast parallel algorithms for short-range molecular dynamics
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1995.1039
– volume: 2
  start-page: 1600319
  year: 2016
  ident: 10.1016/j.ijplas.2018.10.014_bib62
  article-title: High hardness in the biocompatible intermetallic compound β-Ti3Au
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1600319
– volume: 463
  start-page: 335
  year: 2010
  ident: 10.1016/j.ijplas.2018.10.014_bib79
  article-title: Strong crystal size effect on deformation twinning
  publication-title: Nature
  doi: 10.1038/nature08692
– volume: 27
  start-page: 688
  issue: 5
  year: 2011
  ident: 10.1016/j.ijplas.2018.10.014_bib32
  article-title: Mechanical response and texture evolution of AZ31 alloy at large strains for different strain rates and temperatures
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2010.08.009
– volume: 62
  start-page: 197
  year: 2014
  ident: 10.1016/j.ijplas.2018.10.014_bib20
  article-title: Deformation response of ferrite and martensite in a dual-phase steel
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2013.10.001
– volume: 147
  start-page: 35
  year: 2018
  ident: 10.1016/j.ijplas.2018.10.014_bib45
  article-title: Transformation induced softening and plasticity in high entropy alloys
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2018.01.002
– volume: 210
  start-page: 29
  year: 2017
  ident: 10.1016/j.ijplas.2018.10.014_bib44
  article-title: Influence of compositional inhomogeneity on mechanical behavior of an interstitial dual-phase high-entropy alloy
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2017.04.050
– volume: 15
  start-page: 876
  year: 2016
  ident: 10.1016/j.ijplas.2018.10.014_bib8
  article-title: Polysynthetic twinned TiAl single crystals for high-temperature applications
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4677
– volume: 115
  start-page: 113506
  year: 2014
  ident: 10.1016/j.ijplas.2018.10.014_bib9
  article-title: The α→ ε phase transition in iron at strain rates up to 109 s− 1
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4868676
– volume: 100
  start-page: 177
  year: 2018
  ident: 10.1016/j.ijplas.2018.10.014_bib52
  article-title: Realizing strength-ductility combination of coarse-grained Al0.2Co1.5CrFeNi1.5Ti0.3 alloy via nano-sized, coherent precipitates
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2017.10.005
– volume: 104
  start-page: 23
  year: 2018
  ident: 10.1016/j.ijplas.2018.10.014_bib86
  article-title: Slip transfer across phase boundaries in dual phase titanium alloys and the effect on strain rate sensitivity
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2018.01.011
– volume: 4
  start-page: 1696
  year: 2013
  ident: 10.1016/j.ijplas.2018.10.014_bib87
  article-title: High-strength and thermally stable bulk nanolayered composites due to twin-induced interfaces
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2651
– volume: 82
  start-page: 345
  year: 2015
  ident: 10.1016/j.ijplas.2018.10.014_bib37
  article-title: Thermodynamically consistent phase field approach to dislocation evolution at small and large strains
  publication-title: J. Mech. Phys. Solid.
  doi: 10.1016/j.jmps.2015.05.009
– volume: 679
  start-page: 155
  year: 2016
  ident: 10.1016/j.ijplas.2018.10.014_bib58
  article-title: Irradiation resistance, microstructure and mechanical properties of nanostructured (TiZrHfVNbTa) N coatings
  publication-title: J. Alloy. Comp.
  doi: 10.1016/j.jallcom.2016.04.064
– volume: 8
  start-page: 10663
  year: 2018
  ident: 10.1016/j.ijplas.2018.10.014_bib7
  article-title: Twinning-induced strain hardening in dual-phase FeCoCrNiAl0.5 at room and cryogenic temperature
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-28784-1
– volume: 65
  start-page: 349
  year: 1952
  ident: 10.1016/j.ijplas.2018.10.014_bib24
  article-title: The elastic behaviour of a crystalline aggregate
  publication-title: Proc. Phys. Soc. Lond.
  doi: 10.1088/0370-1298/65/5/307
– volume: 154
  start-page: 79
  year: 2018
  ident: 10.1016/j.ijplas.2018.10.014_bib71
  article-title: Probing deformation mechanisms of a FeCoCrNi high-entropy alloy at 293 and 77 K using in situ neutron diffraction
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2018.05.013
– year: 2018
  ident: 10.1016/j.ijplas.2018.10.014_bib49
  article-title: Bidirectional transformation enables hierarchical nanolaminate dual‐phase high‐entropy alloys
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201804727
– volume: 58
  start-page: 5129
  year: 2010
  ident: 10.1016/j.ijplas.2018.10.014_bib10
  article-title: Dependence of tensile deformation behavior of TWIP steels on stacking fault energy, temperature and strain rate
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2010.05.049
– volume: 8
  start-page: 751
  year: 2017
  ident: 10.1016/j.ijplas.2018.10.014_bib23
  article-title: Superplasticity in a lean Fe-Mn-Al steel
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-00814-y
– volume: 82
  start-page: 378
  year: 2015
  ident: 10.1016/j.ijplas.2018.10.014_bib27
  article-title: Deformation heterogeneities and their role in life-limiting fatigue failures in a two-phase titanium alloy
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2014.08.034
– volume: 534
  start-page: 227
  year: 2016
  ident: 10.1016/j.ijplas.2018.10.014_bib41
  article-title: Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off
  publication-title: Nature
  doi: 10.1038/nature17981
– volume: 539
  start-page: 259
  year: 2012
  ident: 10.1016/j.ijplas.2018.10.014_bib33
  article-title: Crystal plasticity approach for predicting the Bauschinger effect in dual-phase steels
  publication-title: Mater. Sci. Eng.
  doi: 10.1016/j.msea.2012.01.092
– volume: 16
  start-page: 1391
  year: 2000
  ident: 10.1016/j.ijplas.2018.10.014_bib22
  article-title: High strength Fe–Mn–(Al, Si) TRIP/TWIP steels development—properties—application
  publication-title: Int. J. Plast.
  doi: 10.1016/S0749-6419(00)00015-2
– volume: 43
  start-page: 128
  year: 2013
  ident: 10.1016/j.ijplas.2018.10.014_bib59
  article-title: Quantification of the effect of transformation-induced geometrically necessary dislocations on the flow-curve modelling of dual-phase steels
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2012.11.003
– volume: 50
  start-page: 158
  year: 2013
  ident: 10.1016/j.ijplas.2018.10.014_bib5
  article-title: On the fracture toughness enhancement due to stress-induced phase transformation in shape memory alloys
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2013.04.007
– volume: 6
  start-page: 299
  issue: 5
  year: 2004
  ident: 10.1016/j.ijplas.2018.10.014_bib80
  article-title: Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes
  publication-title: Adv. Eng. Mater.
  doi: 10.1002/adem.200300567
– volume: 51
  start-page: 632
  year: 2006
  ident: 10.1016/j.ijplas.2018.10.014_bib3
  article-title: Mechanical properties of alloys consisting of two ductile phases
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2005.10.003
– volume: 115
  start-page: 479
  year: 2017
  ident: 10.1016/j.ijplas.2018.10.014_bib53
  article-title: Nanoindentation testing as a powerful screening tool for assessing phase stability of nanocrystalline high-entropy alloys
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2016.11.055
– volume: 6
  start-page: 5964
  year: 2015
  ident: 10.1016/j.ijplas.2018.10.014_bib63
  article-title: Deviation from high-entropy configurations in the atomic distributions of a multi-principal-element alloy
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6964
– volume: 63
  start-page: 198
  year: 2014
  ident: 10.1016/j.ijplas.2018.10.014_bib64
  article-title: Strain localization and damage in dual phase steels investigated by coupled in-situ deformation experiments and crystal plasticity simulations
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2014.06.004
– volume: 89
  start-page: 1505
  year: 2009
  ident: 10.1016/j.ijplas.2018.10.014_bib76
  article-title: Partial recrystallization in the nugget zone of friction stir welded dual-phase Cu–Zn alloy
  publication-title: Phil. Mag.
  doi: 10.1080/14786430903019040
– volume: 4
  start-page: 1
  year: 2018
  ident: 10.1016/j.ijplas.2018.10.014_bib12
  article-title: Understanding the physical metallurgy of the CoCrFeMnNi high-entropy alloy: an atomistic simulation study
  publication-title: npj Comp. Mater.
  doi: 10.1038/s41524-017-0060-9
– volume: 587
  start-page: 544
  year: 2014
  ident: 10.1016/j.ijplas.2018.10.014_bib6
  article-title: Microstructure and texture evolution during annealing of equiatomic CoCrFeMnNi high-entropy alloy
  publication-title: J. Alloy. Comp.
  doi: 10.1016/j.jallcom.2013.10.237
– year: 2016
  ident: 10.1016/j.ijplas.2018.10.014_bib18
  article-title: Applications of special quasi-random structures to high-entropy alloys
– volume: 313
  year: 2006
  ident: 10.1016/j.ijplas.2018.10.014_bib4
  article-title: High-resolution three-dimensional imaging of dislocations
  publication-title: Science
  doi: 10.1126/science.1125783
– volume: 100
  start-page: 90
  year: 2015
  ident: 10.1016/j.ijplas.2018.10.014_bib50
  article-title: Ab initio thermodynamics of the CoCrFeMnNi high entropy alloy: importance of entropy contributions beyond the configurational one
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2015.08.050
– volume: 720
  start-page: 238
  year: 2018
  ident: 10.1016/j.ijplas.2018.10.014_bib2
  article-title: Plastic strain partitioning in dual phase Al13CoCrFeNi high entropy alloy
  publication-title: Mater. Sci. Eng.
  doi: 10.1016/j.msea.2018.02.044
– volume: 8
  start-page: 2142
  year: 2017
  ident: 10.1016/j.ijplas.2018.10.014_bib68
  article-title: New twinning route in face-centered cubic nanocrystalline metals
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-02393-4
– volume: 7
  start-page: 1897
  year: 1976
  ident: 10.1016/j.ijplas.2018.10.014_bib56
  article-title: Nucleation: Part I. General concepts and the FCC→ HCP transformation
  publication-title: Metall. Trans.
– volume: 56
  start-page: 24
  year: 2015
  ident: 10.1016/j.ijplas.2018.10.014_bib28
  article-title: Alloying behavior and novel properties of cocrfenimn high-entropy alloy fabricated by mechanical alloying and spark plasma sintering
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2014.08.008
– volume: 8
  start-page: 15687
  year: 2017
  ident: 10.1016/j.ijplas.2018.10.014_bib83
  article-title: Polymorphism in a high-entropy alloy
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15687
– volume: 122
  start-page: 177
  year: 2019
  ident: 10.1016/j.ijplas.2018.10.014_bib15
  article-title: A statistical theory of probability-dependent precipitation strengthening in metals and alloys
  publication-title: J. Mech. Phys. Solid.
  doi: 10.1016/j.jmps.2018.09.010
– volume: 136
  start-page: 262
  year: 2017
  ident: 10.1016/j.ijplas.2018.10.014_bib42
  article-title: Ab initio, assisted design of quinary dual-phase high-entropy alloys with transformation-induced plasticity
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2017.07.023
– volume: 57
  start-page: 1
  year: 2012
  ident: 10.1016/j.ijplas.2018.10.014_bib85
  article-title: Deformation twinning in nanocrystalline materials
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2011.05.001
– volume: 16
  start-page: 700
  year: 2017
  ident: 10.1016/j.ijplas.2018.10.014_bib39
  article-title: Playing with defects in metals
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4929
– volume: 105
  start-page: 99
  year: 2018
  ident: 10.1016/j.ijplas.2018.10.014_bib78
  article-title: A micromechanical constitutive model for grain size dependent thermo-mechanically coupled inelastic deformation of super-elastic NiTi shape memory alloy
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2018.02.005
– volume: 131
  start-page: 323
  year: 2017
  ident: 10.1016/j.ijplas.2018.10.014_bib43
  article-title: A TRIP-assisted dual-phase high-entropy alloy: grain size and phase fraction effects on deformation behavior
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2017.03.069
– volume: 11
  start-page: 84
  year: 2017
  ident: 10.1016/j.ijplas.2018.10.014_bib46
  article-title: The Gaussian distribution of lattice size and atomic level heterogeneity in high entropy alloys
  publication-title: Ext. Mech. Lett.
  doi: 10.1016/j.eml.2016.10.007
– start-page: P348
  year: 2016
  ident: 10.1016/j.ijplas.2018.10.014_bib72
– volume: 94
  start-page: 214104
  year: 2016
  ident: 10.1016/j.ijplas.2018.10.014_bib30
  article-title: Phase field simulations of plastic strain-induced phase transformations under high pressure and large shear
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.94.214104
– volume: 39
  start-page: 1
  year: 2012
  ident: 10.1016/j.ijplas.2018.10.014_bib51
  article-title: Multi-phase transformations at large strains–Thermodynamic framework and simulation
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2012.05.009
– volume: 57
  start-page: 3549
  year: 2009
  ident: 10.1016/j.ijplas.2018.10.014_bib55
  article-title: Transformation-induced plasticity during pseudoelastic deformation in Ni–Ti microcrystals
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2009.04.009
– volume: 744
  start-page: 552
  year: 2018
  ident: 10.1016/j.ijplas.2018.10.014_bib60
  article-title: Phase formation and strengthening mechanisms in a dual-phase nanocrystalline CrMnFeVTi high-entropy alloy with ultrahigh hardness
  publication-title: J. Alloy. Comp.
  doi: 10.1016/j.jallcom.2018.02.029
– volume: 3
  start-page: 43
  year: 2004
  ident: 10.1016/j.ijplas.2018.10.014_bib77
  article-title: Deformation-mechanism map for nanocrystalline metals by molecular-dynamics simulation
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1035
– volume: 130
  start-page: 96
  year: 2017
  ident: 10.1016/j.ijplas.2018.10.014_bib82
  article-title: The origin of negative stacking fault energies and nano-twin formation in face-centered cubic high entropy alloys
  publication-title: Scripta Mater.
  doi: 10.1016/j.scriptamat.2016.11.014
– volume: 118
  start-page: 306
  year: 2016
  ident: 10.1016/j.ijplas.2018.10.014_bib25
  article-title: Exploring the concurrence of phase transition and grain growth in nanostructured alloy
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2016.07.052
– volume: 18
  start-page: 1296
  year: 2018
  ident: 10.1016/j.ijplas.2018.10.014_bib65
  article-title: Atomistic simulation of the rate-dependent ductile-to-brittle failure transition in bicrystalline metal nanowires
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b04972
– volume: 25
  start-page: 1726
  year: 2009
  ident: 10.1016/j.ijplas.2018.10.014_bib36
  article-title: Implicit finite element formulations for multi-phase transformation in high carbon steel
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2008.11.010
– volume: 27
  start-page: 1103
  year: 2011
  ident: 10.1016/j.ijplas.2018.10.014_bib31
  article-title: A micro mechanical study on failure initiation of dual phase steels under tension using single crystal plasticity model
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2010.12.001
– volume: 518
  start-page: 77
  year: 2015
  ident: 10.1016/j.ijplas.2018.10.014_bib34
  article-title: Brittle intermetallic compound makes ultrastrong low-density steel with large ductility
  publication-title: Nature
  doi: 10.1038/nature14144
– volume: 358
  start-page: 1033
  year: 2017
  ident: 10.1016/j.ijplas.2018.10.014_bib13
  article-title: Structure-property relationships from universal signatures of plasticity in disordered solids
  publication-title: Science
  doi: 10.1126/science.aai8830
– volume: 136
  start-page: 134
  year: 2017
  ident: 10.1016/j.ijplas.2018.10.014_bib21
  article-title: Cyclic compression response of micropillars extracted from textured nanocrystalline NiTi thin-walled tubes
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2017.06.043
– volume: 14
  start-page: 594
  year: 2015
  ident: 10.1016/j.ijplas.2018.10.014_bib69
  article-title: In situ atomic-scale observation of twinning-dominated deformation in nanoscale body-centred cubic tungsten
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4228
– volume: 324
  start-page: 349
  year: 2009
  ident: 10.1016/j.ijplas.2018.10.014_bib48
  article-title: Strengthening materials by engineering coherent internal boundaries at the nanoscale
  publication-title: Science
  doi: 10.1126/science.1159610
– volume: 9
  start-page: 2381
  year: 2018
  ident: 10.1016/j.ijplas.2018.10.014_bib26
  article-title: Twinning in metastable high-entropy alloys
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04780-x
– volume: 95
  start-page: 264
  year: 2017
  ident: 10.1016/j.ijplas.2018.10.014_bib16
  article-title: Size effects on the mechanical properties of nanocrystalline NbMoTaW refractory high entropy alloy thin films
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2017.04.013
– year: 1957
  ident: 10.1016/j.ijplas.2018.10.014_bib11
– volume: 545
  start-page: 80
  year: 2017
  ident: 10.1016/j.ijplas.2018.10.014_bib74
  article-title: Dual-phase nanostructuring as a route to high-strength magnesium alloys
  publication-title: Nature
  doi: 10.1038/nature21691
SSID ssj0005831
Score 2.6367881
Snippet Some high-entropy alloys, which contain two or more component phases with highly different properties, can achieve an outstanding combination of high strength...
Not provided.
SourceID osti
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 161
SubjectTerms Associated deformation
Atomistic simulations
Deformation mechanisms
Dislocation density
Dislocation mobility
Dual phase
Ductility
Engineering
Entropy
Evolution
Face centered cubic lattice
Heat treating
High entropy alloys
High strength
Materials Science
Mechanical properties
Mechanics
Nanocrystals
Phase transformation
Phase transitions
Phase volume fraction
Phases
Plastic properties
Work hardening
Yield strength
Title Probing the phase transformation and dislocation evolution in dual-phase high-entropy alloys
URI https://dx.doi.org/10.1016/j.ijplas.2018.10.014
https://www.proquest.com/docview/2195247272
https://www.osti.gov/biblio/1614159
Volume 114
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pa9swFH6E7LId1jbbWJo06LCrEjuWLekYQku6sjLYAjkMjC1Lm8NwzJIWetnfvvdseWSMEdjRQg8bvV-frO89AbwLwgxxOd3vYlVETbULnjnpuJNozAW1vBJUjfzhPlmtxftNvOnBsquFIVqlj_1tTG-itR-Z-dWc1WU5-4TJTycC9xuKTvfmVGguhCQrn_48onmo9k5CnMxpdlc-13C8ym2NGJUIXmpKHK9Q_Cs99XfocX_F6yYJ3ZzDS48e2aL9wAvo2WoAZx5JMu-n-wG8OGoz-Aq-fKRmS9VXhmCP1d8wb7HDEV7dVSyrClaUe0pszbN99BbJyopRtRZvxai5Maf_wbv6idGR_dP-Naxvrj8vV9zfqsCNkNGBWzUXUivrIqNi3HwlLrFzY-IcNxZOoX-auHAii_NEayt17KxDWKaUzRDNSBFEb6Bf7Sr7FhiGh9wkCICy0AgtgnxeWOeCxAmZqTAohhB1i5ka33Kcbr74nnbcsm3aqiAlFdAoqmAI_LdU3bbcODFfdnpK_zCdFLPCCckRqZWkqGOuIWoRiiEIRlijhzDutJ16x0bpUOOi0en15X-_dgTP8Um3TLYx9A8_HuwVQptDPmlsdwLPFrd3q_tfai74Xw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7B9lA40PKoWKDFh_ZoNg8nsQ89IFq0lIcqFSQOlULi2CUIZSN2Ae2lf4o_yEziVFtVFRISxziZxJqxZz7Hn2cAPnp-hric6rsYGVJS7YJnNrHcJjiYC0p5Jeg08vFJPDwT386j8zl46M7CEK3S-f7Wpzfe2rUMnDYHdVkOfmDwU7HA9Yak3b2gY1Yemuk9rtvGnw--oJE_BcH-19O9IXelBbgWSTjhRgYiUdLYUMsIVyCxjU2gdZQjurYSB6mOCiuyKI-VMomKrLGITaQ0GYb0RHghvnceXgl0F1Q2Yef3DK9EtkUQsXecuted12tIZeVVjaCYGGVyh0hlvvhfPOyNcIr_EyCaqLf_FpYcXGW7rUaWYc5UK_DGQVfmHMN4BRZn8hquws_vlN2p-sUQXbL6EgMlm8wA5FHFsqpgRTmmSNpcmzs3BVhZMToexlsxyqbM6Qf0qJ4y4ghMx2tw9iK6fge9alSZdWDoj3IdI-LKfC2U8PKgMNZ6sRVJJn2v6EPYKTPVLsc5ldq4Tjsy21XamiAlE1ArmqAP_I9U3eb4eOL5pLNT-tdYTTEMPSG5SWYlKUrRq4nLhGKIuhFHqT5sddZOnSdBaV-h0mi7fOPZn92G18PT46P06ODkcBMW8I5qaXRb0Jvc3Jr3iKsm-YdmHDO4eOmJ8wjBQDM8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Probing+the+phase+transformation+and+dislocation+evolution+in+dual-phase+high-entropy+alloys&rft.jtitle=International+journal+of+plasticity&rft.au=Fang%2C+Qihong&rft.au=Chen%2C+Yang&rft.au=Li%2C+Jia&rft.au=Jiang%2C+Chao&rft.date=2019-03-01&rft.pub=Elsevier+Ltd&rft.issn=0749-6419&rft.eissn=1879-2154&rft.volume=114&rft.spage=161&rft.epage=173&rft_id=info:doi/10.1016%2Fj.ijplas.2018.10.014&rft.externalDocID=S0749641918304625
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0749-6419&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0749-6419&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0749-6419&client=summon