A new approach to modeling positive random variables with repeated measures

In many situations, it is common to have more than one observation per experimental unit, thus generating the experiments with repeated measures. In the modeling of such experiments, it is necessary to consider and model the intra-unit dependency structure. In the literature, there are several propo...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied statistics Vol. 49; no. 15; pp. 3784 - 3803
Main Authors de Freitas, João Victor B., Nobre, Juvêncio S., Bourguignon, Marcelo, Santos-Neto, Manoel
Format Journal Article
LanguageEnglish
Published Abingdon Taylor & Francis 18.11.2022
Taylor & Francis Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In many situations, it is common to have more than one observation per experimental unit, thus generating the experiments with repeated measures. In the modeling of such experiments, it is necessary to consider and model the intra-unit dependency structure. In the literature, there are several proposals to model positive continuous data with repeated measures. In this paper, we propose one more with the generalization of the beta prime regression model. We consider the possibility of dependence between observations of the same unit. Residuals and diagnostic tools also are discussed. To evaluate the finite-sample performance of the estimators, using different correlation matrices and distributions, we conducted a Monte Carlo simulation study. The methodology proposed is illustrated with an analysis of a real data set. Finally, we create an package for easy access to publicly available the methodology described in this paper.
AbstractList In many situations, it is common to have more than one observation per experimental unit, thus generating the experiments with repeated measures. In the modeling of such experiments, it is necessary to consider and model the intra-unit dependency structure. In the literature, there are several proposals to model positive continuous data with repeated measures. In this paper, we propose one more with the generalization of the beta prime regression model. We consider the possibility of dependence between observations of the same unit. Residuals and diagnostic tools also are discussed. To evaluate the finite-sample performance of the estimators, using different correlation matrices and distributions, we conducted a Monte Carlo simulation study. The methodology proposed is illustrated with an analysis of a real data set. Finally, we create an R package for easy access to publicly available the methodology described in this paper.In many situations, it is common to have more than one observation per experimental unit, thus generating the experiments with repeated measures. In the modeling of such experiments, it is necessary to consider and model the intra-unit dependency structure. In the literature, there are several proposals to model positive continuous data with repeated measures. In this paper, we propose one more with the generalization of the beta prime regression model. We consider the possibility of dependence between observations of the same unit. Residuals and diagnostic tools also are discussed. To evaluate the finite-sample performance of the estimators, using different correlation matrices and distributions, we conducted a Monte Carlo simulation study. The methodology proposed is illustrated with an analysis of a real data set. Finally, we create an R package for easy access to publicly available the methodology described in this paper.
In many situations, it is common to have more than one observation per experimental unit, thus generating the experiments with repeated measures. In the modeling of such experiments, it is necessary to consider and model the intra-unit dependency structure. In the literature, there are several proposals to model positive continuous data with repeated measures. In this paper, we propose one more with the generalization of the beta prime regression model. We consider the possibility of dependence between observations of the same unit. Residuals and diagnostic tools also are discussed. To evaluate the finite-sample performance of the estimators, using different correlation matrices and distributions, we conducted a Monte Carlo simulation study. The methodology proposed is illustrated with an analysis of a real data set. Finally, we create an R package for easy access to publicly available the methodology described in this paper.
In many situations, it is common to have more than one observation per experimental unit, thus generating the experiments with repeated measures. In the modeling of such experiments, it is necessary to consider and model the intra-unit dependency structure. In the literature, there are several proposals to model positive continuous data with repeated measures. In this paper, we propose one more with the generalization of the beta prime regression model. We consider the possibility of dependence between observations of the same unit. Residuals and diagnostic tools also are discussed. To evaluate the finite-sample performance of the estimators, using different correlation matrices and distributions, we conducted a Monte Carlo simulation study. The methodology proposed is illustrated with an analysis of a real data set. Finally, we create an package for easy access to publicly available the methodology described in this paper.
In many situations, it is common to have more than one observation per experimental unit, thus generating the experiments with repeated measures. In the modeling of such experiments, it is necessary to consider and model the intra-unit dependency structure. In the literature, there are several proposals to model positive continuous data with repeated measures. In this paper, we propose one more with the generalization of the beta prime regression model. We consider the possibility of dependence between observations of the same unit. Residuals and diagnostic tools also are discussed. To evaluate the finite-sample performance of the estimators, using different correlation matrices and distributions, we conducted a Monte Carlo simulation study. The methodology proposed is illustrated with an analysis of a real data set. Finally, we create an package for easy access to publicly available the methodology described in this paper.
Author Nobre, Juvêncio S.
Bourguignon, Marcelo
de Freitas, João Victor B.
Santos-Neto, Manoel
Author_xml – sequence: 1
  givenname: João Victor B.
  orcidid: 0000-0001-6025-8087
  surname: de Freitas
  fullname: de Freitas, João Victor B.
  email: jvbfreitas@ime.unicamp.br
  organization: Instituto de Matemática, Estatística e Computação Científica, Universidade Estadual de Campinas
– sequence: 2
  givenname: Juvêncio S.
  orcidid: 0000-0002-7321-3221
  surname: Nobre
  fullname: Nobre, Juvêncio S.
  organization: Universidade Federal do Ceará
– sequence: 3
  givenname: Marcelo
  orcidid: 0000-0002-1182-5193
  surname: Bourguignon
  fullname: Bourguignon, Marcelo
  organization: Universidade Federal do Rio Grande do Norte
– sequence: 4
  givenname: Manoel
  orcidid: 0000-0002-9007-0680
  surname: Santos-Neto
  fullname: Santos-Neto, Manoel
  organization: Universidade Federal de Campina Grande
BookMark eNqFkc1q3DAURkVJoZO0j1AQdNONp_qxZJtCaQhNWhLopl0LWbrOKMiSK8kz5O1rM5NFs2jQQgud7xP3nnN0FmIAhN5TsqWkJZ8Ik7JuJN8ywuiWdpLXjL1CG8olqYjg7AxtVqZaoTfoPOcHQkhLBd-g20sc4ID1NKWozQ6XiMdowbtwj6eYXXF7wEkHG0e818np3kPGB1d2OMEEuoDFI-g8J8hv0etB-wzvTvcF-n397dfV9-ru582Pq8u7ytQNLxVwC8w2RrRWdkT2tqe8t7VoYRgkrWXLeyEYbQWXfQfUSt4vhwozEG0GxvkF-nLsneZ-BGsglKS9mpIbdXpUUTv170twO3Uf96qTjLKWLgUfTwUp_pkhFzW6bMB7HSDOWbGG04YtG1rRD8_QhzinsIy3UKxreN2Jlfp8pEyKOScYlHFFFxfX_51XlKjVlHoypVZT6mRqSYtn6adRXsp9PeZcGGIa9SEmb1XRjz6mYXFmXFb8_xV_AYUprSw
CitedBy_id crossref_primary_10_1214_23_BJPS587
Cites_doi 10.1007/978-1-4612-1694-0_15
10.1016/j.csda.2010.10.020
10.1214/16-EJS1187
10.1080/00031305.1999.10474437
10.2307/2533686
10.1093/biomet/83.3.551
10.2307/2529876
10.1093/biomet/74.2.221
10.1155/2014/303728
10.1002/(SICI)1097-0258(20000530)19:10<1277::AID-SIM494>3.0.CO;2-S
10.2307/3001853
10.1111/insr.12178
10.1093/oso/9780198524847.001.0001
10.1111/j.0006-341X.2000.00496.x
10.1111/j.1467-9469.2007.00575.x
10.1093/biomet/74.3.591
10.1002/bimj.201200002
10.1080/00401706.1991.10484773
10.1111/j.2517-6161.1978.tb01039.x
10.2307/2532087
10.1017/CBO9780511806957
10.1080/03610919708813396
10.1016/j.csda.2009.11.006
10.2307/2344614
10.1177/1536867X0700700205
10.1080/10629360600780488
10.1090/S0002-9947-1943-0012401-3
10.1111/1467-9876.00281
10.1191/1471082X04st083oa
10.1093/biomet/77.3.485
10.1007/s40300-021-00203-y
10.1093/biomet/73.1.13
10.1080/00401706.1990.10484593
10.1017/S0305004100023987
10.1080/03610910701539617
10.2307/3315747
10.1111/j.0006-341X.2001.00120.x
10.1201/b13880
10.1214/aos/1176345513
10.1007/0-387-22677-X_1
10.1080/01621459.1993.10594284
10.1016/j.csda.2008.07.022
10.1111/j.2517-6161.1988.tb01725.x
10.1080/00401706.1991.10484769
10.1111/j.2517-6161.1986.tb01398.x
ContentType Journal Article
Copyright 2021 Informa UK Limited, trading as Taylor & Francis Group 2021
2021 Informa UK Limited, trading as Taylor & Francis Group
2021 Informa UK Limited, trading as Taylor & Francis Group.
2021 Informa UK Limited, trading as Taylor & Francis Group 2021 Taylor & Francis
Copyright_xml – notice: 2021 Informa UK Limited, trading as Taylor & Francis Group 2021
– notice: 2021 Informa UK Limited, trading as Taylor & Francis Group
– notice: 2021 Informa UK Limited, trading as Taylor & Francis Group.
– notice: 2021 Informa UK Limited, trading as Taylor & Francis Group 2021 Taylor & Francis
DBID AAYXX
CITATION
7SC
8FD
H8D
JQ2
L7M
L~C
L~D
7X8
5PM
DOI 10.1080/02664763.2021.1963422
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
DocumentTitleAlternate JOURNAL OF APPLIED STATISTICS
EISSN 1360-0532
EndPage 3803
ExternalDocumentID PMC9621281
10_1080_02664763_2021_1963422
1963422
Genre Research Article
GroupedDBID .7F
.QJ
0BK
0R~
29J
2DF
30N
4.4
5GY
5VS
7WY
8FL
8VB
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFO
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEGXH
AEISY
AEMOZ
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AGDLA
AGMYJ
AHDZW
AHQJS
AIAGR
AIJEM
AJWEG
AKBVH
AKOOK
AKVCP
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EBE
EBO
EBR
EBS
EBU
ECR
EMK
EPL
E~A
E~B
F5P
GROUPED_ABI_INFORM_COMPLETE
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
K1G
K60
K6~
KYCEM
LJTGL
M4Z
NA5
NY~
O9-
P2P
QWB
RIG
RNANH
ROSJB
RPM
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TH9
TN5
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
ZL0
~S~
AAGDL
AAHIA
AAYXX
ADYSH
AFRVT
AIYEW
AMPGV
AMVHM
CITATION
PQBIZ
7SC
8FD
H8D
JQ2
L7M
L~C
L~D
TASJS
7X8
5PM
ID FETCH-LOGICAL-c473t-e3de2d7c58d6906bdb13bd458eff614683b55218536b9e1d63b3b315cf0acf233
ISSN 0266-4763
IngestDate Thu Aug 21 18:38:31 EDT 2025
Thu Jul 10 23:29:05 EDT 2025
Wed Aug 13 08:19:44 EDT 2025
Tue Jul 01 02:25:33 EDT 2025
Thu Apr 24 22:56:14 EDT 2025
Wed Dec 25 09:05:19 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c473t-e3de2d7c58d6906bdb13bd458eff614683b55218536b9e1d63b3b315cf0acf233
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7321-3221
0000-0001-6025-8087
0000-0002-1182-5193
0000-0002-9007-0680
OpenAccessLink https://figshare.com/articles/journal_contribution/A_new_approach_to_modeling_positive_random_variables_with_repeated_measures/15147019
PQID 2729734951
PQPubID 32901
PageCount 20
ParticipantIDs proquest_miscellaneous_2731720811
crossref_citationtrail_10_1080_02664763_2021_1963422
crossref_primary_10_1080_02664763_2021_1963422
proquest_journals_2729734951
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9621281
informaworld_taylorfrancis_310_1080_02664763_2021_1963422
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-11-18
PublicationDateYYYYMMDD 2022-11-18
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-18
  day: 18
PublicationDecade 2020
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle Journal of applied statistics
PublicationYear 2022
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References CIT0030
CIT0032
CIT0031
CIT0034
CIT0033
CIT0036
CIT0035
CIT0038
CIT0037
Keeping E. (CIT0019) 1962
CIT0039
CIT0041
CIT0043
CIT0042
CIT0001
CIT0045
Firth D. (CIT0011) 1988; 50
Song P.X.K. (CIT0040) 2004; 46
Cook R. (CIT0006) 1986; 48
CIT0003
CIT0047
CIT0002
CIT0046
CIT0005
CIT0049
CIT0004
CIT0048
CIT0007
CIT0009
CIT0008
CIT0050
CIT0051
CIT0014
CIT0013
CIT0016
CIT0015
Diggle P.J. (CIT0010) 2002
CIT0018
CIT0017
CIT0021
CIT0020
CIT0023
CIT0022
Tsuyuguchi A.B. (CIT0044) 2019; 29
CIT0025
CIT0024
CIT0027
CIT0026
CIT0029
CIT0028
Folks J.L. (CIT0012) 1978; 40
References_xml – ident: CIT0001
  doi: 10.1007/978-1-4612-1694-0_15
– volume: 46
  start-page: 540
  year: 2004
  ident: CIT0040
  publication-title: Biom. J. J. Math. Methods Biosci.
– ident: CIT0047
  doi: 10.1016/j.csda.2010.10.020
– ident: CIT0034
  doi: 10.1214/16-EJS1187
– ident: CIT0051
  doi: 10.1080/00031305.1999.10474437
– ident: CIT0037
  doi: 10.2307/2533686
– ident: CIT0029
  doi: 10.1093/biomet/83.3.551
– ident: CIT0016
– ident: CIT0020
  doi: 10.2307/2529876
– ident: CIT0023
  doi: 10.1093/biomet/74.2.221
– ident: CIT0049
  doi: 10.1155/2014/303728
– ident: CIT0005
  doi: 10.1002/(SICI)1097-0258(20000530)19:10<1277::AID-SIM494>3.0.CO;2-S
– ident: CIT0015
  doi: 10.2307/3001853
– volume-title: Introduction to Statistical Inference
  year: 1962
  ident: CIT0019
– ident: CIT0039
  doi: 10.1111/insr.12178
– volume-title: Analysis of Longitudinal Data
  year: 2002
  ident: CIT0010
  doi: 10.1093/oso/9780198524847.001.0001
– ident: CIT0041
  doi: 10.1111/j.0006-341X.2000.00496.x
– ident: CIT0018
  doi: 10.1111/j.1467-9469.2007.00575.x
– ident: CIT0007
  doi: 10.1093/biomet/74.3.591
– ident: CIT0028
  doi: 10.1002/bimj.201200002
– ident: CIT0035
  doi: 10.1080/00401706.1991.10484773
– volume: 40
  start-page: 263
  year: 1978
  ident: CIT0012
  publication-title: J. R. Stat. Soc. Ser. B. (Methodol.)
  doi: 10.1111/j.2517-6161.1978.tb01039.x
– ident: CIT0022
  doi: 10.2307/2532087
– ident: CIT0036
  doi: 10.1017/CBO9780511806957
– ident: CIT0042
  doi: 10.1080/03610919708813396
– ident: CIT0050
  doi: 10.1016/j.csda.2009.11.006
– ident: CIT0024
  doi: 10.2307/2344614
– ident: CIT0008
  doi: 10.1177/1536867X0700700205
– ident: CIT0046
  doi: 10.1080/10629360600780488
– ident: CIT0048
  doi: 10.1090/S0002-9947-1943-0012401-3
– ident: CIT0004
  doi: 10.1111/1467-9876.00281
– ident: CIT0038
  doi: 10.1191/1471082X04st083oa
– ident: CIT0033
  doi: 10.1093/biomet/77.3.485
– ident: CIT0002
  doi: 10.1007/s40300-021-00203-y
– volume: 29
  start-page: 1
  year: 2019
  ident: CIT0044
  publication-title: TEST
– ident: CIT0021
  doi: 10.1093/biomet/73.1.13
– ident: CIT0043
  doi: 10.1080/00401706.1990.10484593
– ident: CIT0031
  doi: 10.1017/S0305004100023987
– ident: CIT0009
  doi: 10.1080/03610910701539617
– ident: CIT0017
  doi: 10.2307/3315747
– ident: CIT0026
  doi: 10.1111/j.0006-341X.2001.00120.x
– ident: CIT0045
– ident: CIT0013
  doi: 10.1201/b13880
– ident: CIT0027
  doi: 10.1214/aos/1176345513
– ident: CIT0030
– ident: CIT0014
  doi: 10.1007/0-387-22677-X_1
– ident: CIT0003
  doi: 10.1080/01621459.1993.10594284
– ident: CIT0025
  doi: 10.1016/j.csda.2008.07.022
– volume: 50
  start-page: 266
  year: 1988
  ident: CIT0011
  publication-title: J. R. Stat. Soc. Ser. B. (Methodol.)
  doi: 10.1111/j.2517-6161.1988.tb01725.x
– ident: CIT0032
  doi: 10.1080/00401706.1991.10484769
– volume: 48
  start-page: 133
  year: 1986
  ident: CIT0006
  publication-title: J. R. Stat. Soc. Ser. B. (Methodol.)
  doi: 10.1111/j.2517-6161.1986.tb01398.x
SSID ssj0008153
Score 2.3106475
Snippet In many situations, it is common to have more than one observation per experimental unit, thus generating the experiments with repeated measures. In the...
SourceID pubmedcentral
proquest
crossref
informaworld
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3784
SubjectTerms Beta prime distribution
correlated data
Correlation analysis
generalized estimating equations
longitudinal data
Modelling
positive continuous data
Random variables
Regression models
repeated measures
Statistical methods
Within-subjects design
Title A new approach to modeling positive random variables with repeated measures
URI https://www.tandfonline.com/doi/abs/10.1080/02664763.2021.1963422
https://www.proquest.com/docview/2729734951
https://www.proquest.com/docview/2731720811
https://pubmed.ncbi.nlm.nih.gov/PMC9621281
Volume 49
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaW9lIOCAqIhYKMxC3KahM7r-OWh1ZF9NItVFyi2HHaSG1SdbN74N_0n3YmfrChReWhlaJVbK8tz7fjsT3zDSHvwKJQWVZIH9aD0If1NvBFJoRfMp6kbCqF0t4Wh_H8mB-cRCej0fWG19KqExP54864kn-RKrwDuWKU7F9I1v0ovIDvIF94goTh-UcynmFCcEcLjmZkn9imDzDvnbHWyoO1qGwvvDXsiTFKykSzXalLUMJgbF7oM8Llb4zUwhipGHekKZ2thEoFRq-qOxMQ1vY37qz1vtZ4DeDtT9wxcyv0OffBat1XmjWybr0jV2Efujtd1aeNceTH6Mvz1h39YJbjpX-o-nxP6K7TGi9_c1YB21z0l0sduha30oZsaDuwFHxutZ3S2pjFeFPPBupaM5xaWEYbypclOtucWchZ2rMn3F4kjFcldIj9TWCgwQQVEdcR0r_wb5uSB2Q7hJ0IqNLt2fzD929uuU8DTXVqx2_DxJDA_a4uBgbQgB53sMkZuuhu2DyLx-SRwQGdaeQ9ISPV7JKHXxzT73KX7Bw5ZDwln2cUAEktIGnXUgtIagFJNSCpAyRFQFILSGoB-Ywcf_q4eD_3TbYOX_KEdb5ipQrLREZpieTXohQBEyWPUlVVMQb4MRGBrQjmYSwyFZQxE_AJIllNC1mFjD0nWwA09YJQ2GQUPMQw6ACpbnmWViqWQVSkU17IpBoTbqcwl4bKHjOqnOeBZbw1M5_jzOdm5sdk4ppdai6X-xpkm_LJux6_lYZuzu5pu2eFmRuVsczDBFPFcdjVjMlbVwwKHW_pika1K6wDJn0IsII6yQAEbtBICT8saeqznho-i0O8Gn_5HwN_RXZ-_nX3yFZ3tVKvwfDuxBsD_Ruuz9IJ
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NT9RAFH8heBAPiqhxEXRM9Nh1Zzr9OnggKllc2BMk3MbOR4MRuoR2IfJn8a_4D_lep22oieFgOJgeO5O8zrzvvvd7AO_Qo3BZlpsA7YEI0N7yQGdaBzaUSRpOjHa-2mIeT4_k1-PoeAVuul4YKqukGLrwQBGNribhpmR0VxL3AeOGWKJgYHgn-Jh4SArRFlbO3M8rDNuqj3uf8Y7fC7H75fDTNGgnCwRGJmEduNA6YRMTpZaAerXVPNRWRqkripiakUIdoV1DUxbrzHEbhxofHplikptCUBIU1f6DKIsTkq1wMu-1f8o98iWSGBCNXdfQ38ge2MMBWurA5x1WbN4ygbtP4Fd3eL7y5cd4Weuxuf4DV_L_Ot11eNx65GzHi9BTWHHlBjw66OFsqw1YI5fcI1o_g9kOw1CEdWDsrF6wZpwQ-gDMl8BdOoYegF2cscsc5VufuopRvptduHM0fc6yM5-ZrZ7D0b182gtYLRelewkMPelcCur15YTnKrO0cLHhUZ5OZG6SYgSyYwxlWrx2GhtyqngH69pelKKLUu1FjWDcbzv3gCV3bchuc52qm0xR4ce6qPCOvVsdi6pW91VKJDQPDQNvPoK3_WvUWvQrKi_dYklr0G8VKCy4Jhmwdk804Z4P35TfTxr88ywW9P938x8IfwMPp4cH-2p_bz57BWuCelqotjPdgtX6Yum20dOs9etGtBl8u29u_w0ja38A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VrYTKgUIBsbQFI8Exy9pxXgcOVcuqZWHFgUq9hfglEG121WRbwb_ir_CLmImTqEFCPaAeUI62pYk9T3vmG4CX6FHYLCt0gPZABGhveaAypQITyiQNJ1pZn20xj49O5LvT6HQNfna1MJRWSTG080ARja4m4V4a12XEvcawIZYoFxjdCT4mFpJCtHmVM_v9CqO26s3xIR7xKyGmbz8dHAVtY4FAyySsAxsaK0yio9QQTq8yiofKyCi1zsVUixSqCM0aWrJYZZabOFT48Ui7SaGdoDtQ1PobMRV2UtXIZN4r_5R74EskMSAau6Khv5E9MIcDsNSByztM2LxmAadb8KvbO5_48m28qtVY__gDVvK_2tz7cK_1x9m-F6AHsGbLbbj7oQezrbZhkxxyj2f9EGb7DAMR1kGxs3rBmmZC6AEwnwB3aRnaf7M4Z5cFSrc6sxWj2252YZdo-Kxh5_5etnoEJ7fya49hvVyU9gkw9KMLKajSlxOaq8xSZ2PNoyKdyEInbgSy44tct2jt1DTkLOcdqGt7UDkdVN4e1AjG_bKlhyu5aUF2nenyurkncr6pSx7esHa349C81XxVLhLqhoZhNx_Bi34YdRY9RBWlXaxoDnqtAmUF5yQDzu6JJtTz4Uj59UuDfp7Fgl5_n_4D4c_hzsfDaf7-eD7bgU1BBS2U2Jnuwnp9sbJ76GbW6lkj2Aw-3zaz_wbVY32k
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+approach+to+modeling+positive+random+variables+with+repeated+measures&rft.jtitle=Journal+of+applied+statistics&rft.au=de+Freitas%2C+Jo%C3%A3o+Victor+B.&rft.au=Nobre%2C+Juv%C3%AAncio+S.&rft.au=Bourguignon%2C+Marcelo&rft.au=Santos-Neto%2C+Manoel&rft.date=2022-11-18&rft.pub=Taylor+%26+Francis&rft.issn=0266-4763&rft.eissn=1360-0532&rft.volume=49&rft.issue=15&rft.spage=3784&rft.epage=3803&rft_id=info:doi/10.1080%2F02664763.2021.1963422&rft.externalDocID=1963422
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0266-4763&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0266-4763&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0266-4763&client=summon