A new approach to modeling positive random variables with repeated measures
In many situations, it is common to have more than one observation per experimental unit, thus generating the experiments with repeated measures. In the modeling of such experiments, it is necessary to consider and model the intra-unit dependency structure. In the literature, there are several propo...
Saved in:
Published in | Journal of applied statistics Vol. 49; no. 15; pp. 3784 - 3803 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Abingdon
Taylor & Francis
18.11.2022
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In many situations, it is common to have more than one observation per experimental unit, thus generating the experiments with repeated measures. In the modeling of such experiments, it is necessary to consider and model the intra-unit dependency structure. In the literature, there are several proposals to model positive continuous data with repeated measures. In this paper, we propose one more with the generalization of the beta prime regression model. We consider the possibility of dependence between observations of the same unit. Residuals and diagnostic tools also are discussed. To evaluate the finite-sample performance of the estimators, using different correlation matrices and distributions, we conducted a Monte Carlo simulation study. The methodology proposed is illustrated with an analysis of a real data set. Finally, we create an
package for easy access to publicly available the methodology described in this paper. |
---|---|
AbstractList | In many situations, it is common to have more than one observation per experimental unit, thus generating the experiments with repeated measures. In the modeling of such experiments, it is necessary to consider and model the intra-unit dependency structure. In the literature, there are several proposals to model positive continuous data with repeated measures. In this paper, we propose one more with the generalization of the beta prime regression model. We consider the possibility of dependence between observations of the same unit. Residuals and diagnostic tools also are discussed. To evaluate the finite-sample performance of the estimators, using different correlation matrices and distributions, we conducted a Monte Carlo simulation study. The methodology proposed is illustrated with an analysis of a real data set. Finally, we create an R package for easy access to publicly available the methodology described in this paper.In many situations, it is common to have more than one observation per experimental unit, thus generating the experiments with repeated measures. In the modeling of such experiments, it is necessary to consider and model the intra-unit dependency structure. In the literature, there are several proposals to model positive continuous data with repeated measures. In this paper, we propose one more with the generalization of the beta prime regression model. We consider the possibility of dependence between observations of the same unit. Residuals and diagnostic tools also are discussed. To evaluate the finite-sample performance of the estimators, using different correlation matrices and distributions, we conducted a Monte Carlo simulation study. The methodology proposed is illustrated with an analysis of a real data set. Finally, we create an R package for easy access to publicly available the methodology described in this paper. In many situations, it is common to have more than one observation per experimental unit, thus generating the experiments with repeated measures. In the modeling of such experiments, it is necessary to consider and model the intra-unit dependency structure. In the literature, there are several proposals to model positive continuous data with repeated measures. In this paper, we propose one more with the generalization of the beta prime regression model. We consider the possibility of dependence between observations of the same unit. Residuals and diagnostic tools also are discussed. To evaluate the finite-sample performance of the estimators, using different correlation matrices and distributions, we conducted a Monte Carlo simulation study. The methodology proposed is illustrated with an analysis of a real data set. Finally, we create an R package for easy access to publicly available the methodology described in this paper. In many situations, it is common to have more than one observation per experimental unit, thus generating the experiments with repeated measures. In the modeling of such experiments, it is necessary to consider and model the intra-unit dependency structure. In the literature, there are several proposals to model positive continuous data with repeated measures. In this paper, we propose one more with the generalization of the beta prime regression model. We consider the possibility of dependence between observations of the same unit. Residuals and diagnostic tools also are discussed. To evaluate the finite-sample performance of the estimators, using different correlation matrices and distributions, we conducted a Monte Carlo simulation study. The methodology proposed is illustrated with an analysis of a real data set. Finally, we create an package for easy access to publicly available the methodology described in this paper. In many situations, it is common to have more than one observation per experimental unit, thus generating the experiments with repeated measures. In the modeling of such experiments, it is necessary to consider and model the intra-unit dependency structure. In the literature, there are several proposals to model positive continuous data with repeated measures. In this paper, we propose one more with the generalization of the beta prime regression model. We consider the possibility of dependence between observations of the same unit. Residuals and diagnostic tools also are discussed. To evaluate the finite-sample performance of the estimators, using different correlation matrices and distributions, we conducted a Monte Carlo simulation study. The methodology proposed is illustrated with an analysis of a real data set. Finally, we create an package for easy access to publicly available the methodology described in this paper. |
Author | Nobre, Juvêncio S. Bourguignon, Marcelo de Freitas, João Victor B. Santos-Neto, Manoel |
Author_xml | – sequence: 1 givenname: João Victor B. orcidid: 0000-0001-6025-8087 surname: de Freitas fullname: de Freitas, João Victor B. email: jvbfreitas@ime.unicamp.br organization: Instituto de Matemática, Estatística e Computação Científica, Universidade Estadual de Campinas – sequence: 2 givenname: Juvêncio S. orcidid: 0000-0002-7321-3221 surname: Nobre fullname: Nobre, Juvêncio S. organization: Universidade Federal do Ceará – sequence: 3 givenname: Marcelo orcidid: 0000-0002-1182-5193 surname: Bourguignon fullname: Bourguignon, Marcelo organization: Universidade Federal do Rio Grande do Norte – sequence: 4 givenname: Manoel orcidid: 0000-0002-9007-0680 surname: Santos-Neto fullname: Santos-Neto, Manoel organization: Universidade Federal de Campina Grande |
BookMark | eNqFkc1q3DAURkVJoZO0j1AQdNONp_qxZJtCaQhNWhLopl0LWbrOKMiSK8kz5O1rM5NFs2jQQgud7xP3nnN0FmIAhN5TsqWkJZ8Ik7JuJN8ywuiWdpLXjL1CG8olqYjg7AxtVqZaoTfoPOcHQkhLBd-g20sc4ID1NKWozQ6XiMdowbtwj6eYXXF7wEkHG0e818np3kPGB1d2OMEEuoDFI-g8J8hv0etB-wzvTvcF-n397dfV9-ru582Pq8u7ytQNLxVwC8w2RrRWdkT2tqe8t7VoYRgkrWXLeyEYbQWXfQfUSt4vhwozEG0GxvkF-nLsneZ-BGsglKS9mpIbdXpUUTv170twO3Uf96qTjLKWLgUfTwUp_pkhFzW6bMB7HSDOWbGG04YtG1rRD8_QhzinsIy3UKxreN2Jlfp8pEyKOScYlHFFFxfX_51XlKjVlHoypVZT6mRqSYtn6adRXsp9PeZcGGIa9SEmb1XRjz6mYXFmXFb8_xV_AYUprSw |
CitedBy_id | crossref_primary_10_1214_23_BJPS587 |
Cites_doi | 10.1007/978-1-4612-1694-0_15 10.1016/j.csda.2010.10.020 10.1214/16-EJS1187 10.1080/00031305.1999.10474437 10.2307/2533686 10.1093/biomet/83.3.551 10.2307/2529876 10.1093/biomet/74.2.221 10.1155/2014/303728 10.1002/(SICI)1097-0258(20000530)19:10<1277::AID-SIM494>3.0.CO;2-S 10.2307/3001853 10.1111/insr.12178 10.1093/oso/9780198524847.001.0001 10.1111/j.0006-341X.2000.00496.x 10.1111/j.1467-9469.2007.00575.x 10.1093/biomet/74.3.591 10.1002/bimj.201200002 10.1080/00401706.1991.10484773 10.1111/j.2517-6161.1978.tb01039.x 10.2307/2532087 10.1017/CBO9780511806957 10.1080/03610919708813396 10.1016/j.csda.2009.11.006 10.2307/2344614 10.1177/1536867X0700700205 10.1080/10629360600780488 10.1090/S0002-9947-1943-0012401-3 10.1111/1467-9876.00281 10.1191/1471082X04st083oa 10.1093/biomet/77.3.485 10.1007/s40300-021-00203-y 10.1093/biomet/73.1.13 10.1080/00401706.1990.10484593 10.1017/S0305004100023987 10.1080/03610910701539617 10.2307/3315747 10.1111/j.0006-341X.2001.00120.x 10.1201/b13880 10.1214/aos/1176345513 10.1007/0-387-22677-X_1 10.1080/01621459.1993.10594284 10.1016/j.csda.2008.07.022 10.1111/j.2517-6161.1988.tb01725.x 10.1080/00401706.1991.10484769 10.1111/j.2517-6161.1986.tb01398.x |
ContentType | Journal Article |
Copyright | 2021 Informa UK Limited, trading as Taylor & Francis Group 2021 2021 Informa UK Limited, trading as Taylor & Francis Group 2021 Informa UK Limited, trading as Taylor & Francis Group. 2021 Informa UK Limited, trading as Taylor & Francis Group 2021 Taylor & Francis |
Copyright_xml | – notice: 2021 Informa UK Limited, trading as Taylor & Francis Group 2021 – notice: 2021 Informa UK Limited, trading as Taylor & Francis Group – notice: 2021 Informa UK Limited, trading as Taylor & Francis Group. – notice: 2021 Informa UK Limited, trading as Taylor & Francis Group 2021 Taylor & Francis |
DBID | AAYXX CITATION 7SC 8FD H8D JQ2 L7M L~C L~D 7X8 5PM |
DOI | 10.1080/02664763.2021.1963422 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Mathematics |
DocumentTitleAlternate | JOURNAL OF APPLIED STATISTICS |
EISSN | 1360-0532 |
EndPage | 3803 |
ExternalDocumentID | PMC9621281 10_1080_02664763_2021_1963422 1963422 |
Genre | Research Article |
GroupedDBID | .7F .QJ 0BK 0R~ 29J 2DF 30N 4.4 5GY 5VS 7WY 8FL 8VB AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFO ACGFS ACIWK ACTIO ADCVX ADGTB ADXPE AEGXH AEISY AEMOZ AENEX AEOZL AEPSL AEYOC AFKVX AGDLA AGMYJ AHDZW AHQJS AIAGR AIJEM AJWEG AKBVH AKOOK AKVCP ALIPV ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EBE EBO EBR EBS EBU ECR EMK EPL E~A E~B F5P GROUPED_ABI_INFORM_COMPLETE GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P K1G K60 K6~ KYCEM LJTGL M4Z NA5 NY~ O9- P2P QWB RIG RNANH ROSJB RPM RTWRZ S-T SNACF TBQAZ TDBHL TEJ TFL TFT TFW TH9 TN5 TTHFI TUROJ TWF UT5 UU3 ZGOLN ZL0 ~S~ AAGDL AAHIA AAYXX ADYSH AFRVT AIYEW AMPGV AMVHM CITATION PQBIZ 7SC 8FD H8D JQ2 L7M L~C L~D TASJS 7X8 5PM |
ID | FETCH-LOGICAL-c473t-e3de2d7c58d6906bdb13bd458eff614683b55218536b9e1d63b3b315cf0acf233 |
ISSN | 0266-4763 |
IngestDate | Thu Aug 21 18:38:31 EDT 2025 Thu Jul 10 23:29:05 EDT 2025 Wed Aug 13 08:19:44 EDT 2025 Tue Jul 01 02:25:33 EDT 2025 Thu Apr 24 22:56:14 EDT 2025 Wed Dec 25 09:05:19 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c473t-e3de2d7c58d6906bdb13bd458eff614683b55218536b9e1d63b3b315cf0acf233 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7321-3221 0000-0001-6025-8087 0000-0002-1182-5193 0000-0002-9007-0680 |
OpenAccessLink | https://figshare.com/articles/journal_contribution/A_new_approach_to_modeling_positive_random_variables_with_repeated_measures/15147019 |
PQID | 2729734951 |
PQPubID | 32901 |
PageCount | 20 |
ParticipantIDs | proquest_miscellaneous_2731720811 crossref_citationtrail_10_1080_02664763_2021_1963422 crossref_primary_10_1080_02664763_2021_1963422 proquest_journals_2729734951 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9621281 informaworld_taylorfrancis_310_1080_02664763_2021_1963422 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-11-18 |
PublicationDateYYYYMMDD | 2022-11-18 |
PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-18 day: 18 |
PublicationDecade | 2020 |
PublicationPlace | Abingdon |
PublicationPlace_xml | – name: Abingdon |
PublicationTitle | Journal of applied statistics |
PublicationYear | 2022 |
Publisher | Taylor & Francis Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
References | CIT0030 CIT0032 CIT0031 CIT0034 CIT0033 CIT0036 CIT0035 CIT0038 CIT0037 Keeping E. (CIT0019) 1962 CIT0039 CIT0041 CIT0043 CIT0042 CIT0001 CIT0045 Firth D. (CIT0011) 1988; 50 Song P.X.K. (CIT0040) 2004; 46 Cook R. (CIT0006) 1986; 48 CIT0003 CIT0047 CIT0002 CIT0046 CIT0005 CIT0049 CIT0004 CIT0048 CIT0007 CIT0009 CIT0008 CIT0050 CIT0051 CIT0014 CIT0013 CIT0016 CIT0015 Diggle P.J. (CIT0010) 2002 CIT0018 CIT0017 CIT0021 CIT0020 CIT0023 CIT0022 Tsuyuguchi A.B. (CIT0044) 2019; 29 CIT0025 CIT0024 CIT0027 CIT0026 CIT0029 CIT0028 Folks J.L. (CIT0012) 1978; 40 |
References_xml | – ident: CIT0001 doi: 10.1007/978-1-4612-1694-0_15 – volume: 46 start-page: 540 year: 2004 ident: CIT0040 publication-title: Biom. J. J. Math. Methods Biosci. – ident: CIT0047 doi: 10.1016/j.csda.2010.10.020 – ident: CIT0034 doi: 10.1214/16-EJS1187 – ident: CIT0051 doi: 10.1080/00031305.1999.10474437 – ident: CIT0037 doi: 10.2307/2533686 – ident: CIT0029 doi: 10.1093/biomet/83.3.551 – ident: CIT0016 – ident: CIT0020 doi: 10.2307/2529876 – ident: CIT0023 doi: 10.1093/biomet/74.2.221 – ident: CIT0049 doi: 10.1155/2014/303728 – ident: CIT0005 doi: 10.1002/(SICI)1097-0258(20000530)19:10<1277::AID-SIM494>3.0.CO;2-S – ident: CIT0015 doi: 10.2307/3001853 – volume-title: Introduction to Statistical Inference year: 1962 ident: CIT0019 – ident: CIT0039 doi: 10.1111/insr.12178 – volume-title: Analysis of Longitudinal Data year: 2002 ident: CIT0010 doi: 10.1093/oso/9780198524847.001.0001 – ident: CIT0041 doi: 10.1111/j.0006-341X.2000.00496.x – ident: CIT0018 doi: 10.1111/j.1467-9469.2007.00575.x – ident: CIT0007 doi: 10.1093/biomet/74.3.591 – ident: CIT0028 doi: 10.1002/bimj.201200002 – ident: CIT0035 doi: 10.1080/00401706.1991.10484773 – volume: 40 start-page: 263 year: 1978 ident: CIT0012 publication-title: J. R. Stat. Soc. Ser. B. (Methodol.) doi: 10.1111/j.2517-6161.1978.tb01039.x – ident: CIT0022 doi: 10.2307/2532087 – ident: CIT0036 doi: 10.1017/CBO9780511806957 – ident: CIT0042 doi: 10.1080/03610919708813396 – ident: CIT0050 doi: 10.1016/j.csda.2009.11.006 – ident: CIT0024 doi: 10.2307/2344614 – ident: CIT0008 doi: 10.1177/1536867X0700700205 – ident: CIT0046 doi: 10.1080/10629360600780488 – ident: CIT0048 doi: 10.1090/S0002-9947-1943-0012401-3 – ident: CIT0004 doi: 10.1111/1467-9876.00281 – ident: CIT0038 doi: 10.1191/1471082X04st083oa – ident: CIT0033 doi: 10.1093/biomet/77.3.485 – ident: CIT0002 doi: 10.1007/s40300-021-00203-y – volume: 29 start-page: 1 year: 2019 ident: CIT0044 publication-title: TEST – ident: CIT0021 doi: 10.1093/biomet/73.1.13 – ident: CIT0043 doi: 10.1080/00401706.1990.10484593 – ident: CIT0031 doi: 10.1017/S0305004100023987 – ident: CIT0009 doi: 10.1080/03610910701539617 – ident: CIT0017 doi: 10.2307/3315747 – ident: CIT0026 doi: 10.1111/j.0006-341X.2001.00120.x – ident: CIT0045 – ident: CIT0013 doi: 10.1201/b13880 – ident: CIT0027 doi: 10.1214/aos/1176345513 – ident: CIT0030 – ident: CIT0014 doi: 10.1007/0-387-22677-X_1 – ident: CIT0003 doi: 10.1080/01621459.1993.10594284 – ident: CIT0025 doi: 10.1016/j.csda.2008.07.022 – volume: 50 start-page: 266 year: 1988 ident: CIT0011 publication-title: J. R. Stat. Soc. Ser. B. (Methodol.) doi: 10.1111/j.2517-6161.1988.tb01725.x – ident: CIT0032 doi: 10.1080/00401706.1991.10484769 – volume: 48 start-page: 133 year: 1986 ident: CIT0006 publication-title: J. R. Stat. Soc. Ser. B. (Methodol.) doi: 10.1111/j.2517-6161.1986.tb01398.x |
SSID | ssj0008153 |
Score | 2.3106475 |
Snippet | In many situations, it is common to have more than one observation per experimental unit, thus generating the experiments with repeated measures. In the... |
SourceID | pubmedcentral proquest crossref informaworld |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3784 |
SubjectTerms | Beta prime distribution correlated data Correlation analysis generalized estimating equations longitudinal data Modelling positive continuous data Random variables Regression models repeated measures Statistical methods Within-subjects design |
Title | A new approach to modeling positive random variables with repeated measures |
URI | https://www.tandfonline.com/doi/abs/10.1080/02664763.2021.1963422 https://www.proquest.com/docview/2729734951 https://www.proquest.com/docview/2731720811 https://pubmed.ncbi.nlm.nih.gov/PMC9621281 |
Volume | 49 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaW9lIOCAqIhYKMxC3KahM7r-OWh1ZF9NItVFyi2HHaSG1SdbN74N_0n3YmfrChReWhlaJVbK8tz7fjsT3zDSHvwKJQWVZIH9aD0If1NvBFJoRfMp6kbCqF0t4Wh_H8mB-cRCej0fWG19KqExP54864kn-RKrwDuWKU7F9I1v0ovIDvIF94goTh-UcynmFCcEcLjmZkn9imDzDvnbHWyoO1qGwvvDXsiTFKykSzXalLUMJgbF7oM8Llb4zUwhipGHekKZ2thEoFRq-qOxMQ1vY37qz1vtZ4DeDtT9wxcyv0OffBat1XmjWybr0jV2Efujtd1aeNceTH6Mvz1h39YJbjpX-o-nxP6K7TGi9_c1YB21z0l0sduha30oZsaDuwFHxutZ3S2pjFeFPPBupaM5xaWEYbypclOtucWchZ2rMn3F4kjFcldIj9TWCgwQQVEdcR0r_wb5uSB2Q7hJ0IqNLt2fzD929uuU8DTXVqx2_DxJDA_a4uBgbQgB53sMkZuuhu2DyLx-SRwQGdaeQ9ISPV7JKHXxzT73KX7Bw5ZDwln2cUAEktIGnXUgtIagFJNSCpAyRFQFILSGoB-Ywcf_q4eD_3TbYOX_KEdb5ipQrLREZpieTXohQBEyWPUlVVMQb4MRGBrQjmYSwyFZQxE_AJIllNC1mFjD0nWwA09YJQ2GQUPMQw6ACpbnmWViqWQVSkU17IpBoTbqcwl4bKHjOqnOeBZbw1M5_jzOdm5sdk4ppdai6X-xpkm_LJux6_lYZuzu5pu2eFmRuVsczDBFPFcdjVjMlbVwwKHW_pika1K6wDJn0IsII6yQAEbtBICT8saeqznho-i0O8Gn_5HwN_RXZ-_nX3yFZ3tVKvwfDuxBsD_Ruuz9IJ |
linkProvider | Library Specific Holdings |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NT9RAFH8heBAPiqhxEXRM9Nh1Zzr9OnggKllc2BMk3MbOR4MRuoR2IfJn8a_4D_lep22oieFgOJgeO5O8zrzvvvd7AO_Qo3BZlpsA7YEI0N7yQGdaBzaUSRpOjHa-2mIeT4_k1-PoeAVuul4YKqukGLrwQBGNribhpmR0VxL3AeOGWKJgYHgn-Jh4SArRFlbO3M8rDNuqj3uf8Y7fC7H75fDTNGgnCwRGJmEduNA6YRMTpZaAerXVPNRWRqkripiakUIdoV1DUxbrzHEbhxofHplikptCUBIU1f6DKIsTkq1wMu-1f8o98iWSGBCNXdfQ38ge2MMBWurA5x1WbN4ygbtP4Fd3eL7y5cd4Weuxuf4DV_L_Ot11eNx65GzHi9BTWHHlBjw66OFsqw1YI5fcI1o_g9kOw1CEdWDsrF6wZpwQ-gDMl8BdOoYegF2cscsc5VufuopRvptduHM0fc6yM5-ZrZ7D0b182gtYLRelewkMPelcCur15YTnKrO0cLHhUZ5OZG6SYgSyYwxlWrx2GhtyqngH69pelKKLUu1FjWDcbzv3gCV3bchuc52qm0xR4ce6qPCOvVsdi6pW91VKJDQPDQNvPoK3_WvUWvQrKi_dYklr0G8VKCy4Jhmwdk804Z4P35TfTxr88ywW9P938x8IfwMPp4cH-2p_bz57BWuCelqotjPdgtX6Yum20dOs9etGtBl8u29u_w0ja38A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VrYTKgUIBsbQFI8Exy9pxXgcOVcuqZWHFgUq9hfglEG121WRbwb_ir_CLmImTqEFCPaAeUI62pYk9T3vmG4CX6FHYLCt0gPZABGhveaAypQITyiQNJ1pZn20xj49O5LvT6HQNfna1MJRWSTG080ARja4m4V4a12XEvcawIZYoFxjdCT4mFpJCtHmVM_v9CqO26s3xIR7xKyGmbz8dHAVtY4FAyySsAxsaK0yio9QQTq8yiofKyCi1zsVUixSqCM0aWrJYZZabOFT48Ui7SaGdoDtQ1PobMRV2UtXIZN4r_5R74EskMSAau6Khv5E9MIcDsNSByztM2LxmAadb8KvbO5_48m28qtVY__gDVvK_2tz7cK_1x9m-F6AHsGbLbbj7oQezrbZhkxxyj2f9EGb7DAMR1kGxs3rBmmZC6AEwnwB3aRnaf7M4Z5cFSrc6sxWj2252YZdo-Kxh5_5etnoEJ7fya49hvVyU9gkw9KMLKajSlxOaq8xSZ2PNoyKdyEInbgSy44tct2jt1DTkLOcdqGt7UDkdVN4e1AjG_bKlhyu5aUF2nenyurkncr6pSx7esHa349C81XxVLhLqhoZhNx_Bi34YdRY9RBWlXaxoDnqtAmUF5yQDzu6JJtTz4Uj59UuDfp7Fgl5_n_4D4c_hzsfDaf7-eD7bgU1BBS2U2Jnuwnp9sbJ76GbW6lkj2Aw-3zaz_wbVY32k |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+approach+to+modeling+positive+random+variables+with+repeated+measures&rft.jtitle=Journal+of+applied+statistics&rft.au=de+Freitas%2C+Jo%C3%A3o+Victor+B.&rft.au=Nobre%2C+Juv%C3%AAncio+S.&rft.au=Bourguignon%2C+Marcelo&rft.au=Santos-Neto%2C+Manoel&rft.date=2022-11-18&rft.pub=Taylor+%26+Francis&rft.issn=0266-4763&rft.eissn=1360-0532&rft.volume=49&rft.issue=15&rft.spage=3784&rft.epage=3803&rft_id=info:doi/10.1080%2F02664763.2021.1963422&rft.externalDocID=1963422 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0266-4763&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0266-4763&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0266-4763&client=summon |