Functionality or transcriptional noise? Evidence for selection within long noncoding RNAs

Long transcripts that do not encode protein have only rarely been the subject of experimental scrutiny. Presumably, this is owing to the current lack of evidence of their functionality, thereby leaving an impression that, instead, they represent “transcriptional noise.” Here, we describe an analysis...

Full description

Saved in:
Bibliographic Details
Published inGenome Research Vol. 17; no. 5; pp. 556 - 565
Main Authors Ponjavic, Jasmina, Ponting, Chris P., Lunter, Gerton
Format Journal Article
LanguageEnglish
Published United States Cold Spring Harbor Laboratory Press 01.05.2007
Subjects
Online AccessGet full text
ISSN1088-9051
1549-5469
1549-5477
DOI10.1101/gr.6036807

Cover

Loading…
Abstract Long transcripts that do not encode protein have only rarely been the subject of experimental scrutiny. Presumably, this is owing to the current lack of evidence of their functionality, thereby leaving an impression that, instead, they represent “transcriptional noise.” Here, we describe an analysis of 3122 long and full-length, noncoding RNAs (“macroRNAs”) from the mouse, and compare their sequences and their promoters with orthologous sequence from human and from rat. We considered three independent signatures of purifying selection related to substitutions, sequence insertions and deletions, and splicing. We find that the evolution of the set of noncoding RNAs is not consistent with neutralist explanations. Rather, our results indicate that purifying selection has acted on the macroRNAs’ promoters, primary sequence, and consensus splice site motifs. Promoters have experienced the greatest elimination of nucleotide substitutions, insertions, and deletions. The proportion of conserved sequence (4.1%–5.5%) in these macroRNAs is comparable to the density of exons within protein-coding transcripts (5.2%). These macroRNAs, taken together, thus possess the imprint of purifying selection, thereby indicating their functionality. Our findings should now provide an incentive for the experimental investigation of these macroRNAs’ functions.
AbstractList Long transcripts that do not encode protein have only rarely been the subject of experimental scrutiny. Presumably, this is owing to the current lack of evidence of their functionality, thereby leaving an impression that, instead, they represent "transcriptional noise." Here, we describe an analysis of 3122 long and full-length, noncoding RNAs ("macroRNAs") from the mouse, and compare their sequences and their promoters with orthologous sequence from human and from rat. We considered three independent signatures of purifying selection related to substitutions, sequence insertions and deletions, and splicing. We find that the evolution of the set of noncoding RNAs is not consistent with neutralist explanations. Rather, our results indicate that purifying selection has acted on the macroRNAs' promoters, primary sequence, and consensus splice site motifs. Promoters have experienced the greatest elimination of nucleotide substitutions, insertions, and deletions. The proportion of conserved sequence (4.1%-5.5%) in these macroRNAs is comparable to the density of exons within protein-coding transcripts (5.2%). These macroRNAs, taken together, thus possess the imprint of purifying selection, thereby indicating their functionality. Our findings should now provide an incentive for the experimental investigation of these macroRNAs' functions.
Long transcripts that do not encode protein have only rarely been the subject of experimental scrutiny. Presumably, this is owing to the current lack of evidence of their functionality, thereby leaving an impression that, instead, they represent "transcriptional noise." Here, we describe an analysis of 3122 long and full-length, noncoding RNAs ("macroRNAs") from the mouse, and compare their sequences and their promoters with orthologous sequence from human and from rat. We considered three independent signatures of purifying selection related to substitutions, sequence insertions and deletions, and splicing. We find that the evolution of the set of noncoding RNAs is not consistent with neutralist explanations. Rather, our results indicate that purifying selection has acted on the macroRNAs' promoters, primary sequence, and consensus splice site motifs. Promoters have experienced the greatest elimination of nucleotide substitutions, insertions, and deletions. The proportion of conserved sequence (4.1%-5.5%) in these macroRNAs is comparable to the density of exons within protein-coding transcripts (5.2%). These macroRNAs, taken together, thus possess the imprint of purifying selection, thereby indicating their functionality. Our findings should now provide an incentive for the experimental investigation of these macroRNAs' functions.Long transcripts that do not encode protein have only rarely been the subject of experimental scrutiny. Presumably, this is owing to the current lack of evidence of their functionality, thereby leaving an impression that, instead, they represent "transcriptional noise." Here, we describe an analysis of 3122 long and full-length, noncoding RNAs ("macroRNAs") from the mouse, and compare their sequences and their promoters with orthologous sequence from human and from rat. We considered three independent signatures of purifying selection related to substitutions, sequence insertions and deletions, and splicing. We find that the evolution of the set of noncoding RNAs is not consistent with neutralist explanations. Rather, our results indicate that purifying selection has acted on the macroRNAs' promoters, primary sequence, and consensus splice site motifs. Promoters have experienced the greatest elimination of nucleotide substitutions, insertions, and deletions. The proportion of conserved sequence (4.1%-5.5%) in these macroRNAs is comparable to the density of exons within protein-coding transcripts (5.2%). These macroRNAs, taken together, thus possess the imprint of purifying selection, thereby indicating their functionality. Our findings should now provide an incentive for the experimental investigation of these macroRNAs' functions.
Author Ponjavic, Jasmina
Lunter, Gerton
Ponting, Chris P.
AuthorAffiliation MRC Functional Genetics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, United Kingdom
AuthorAffiliation_xml – name: MRC Functional Genetics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, United Kingdom
Author_xml – sequence: 1
  givenname: Jasmina
  surname: Ponjavic
  fullname: Ponjavic, Jasmina
– sequence: 2
  givenname: Chris P.
  surname: Ponting
  fullname: Ponting, Chris P.
– sequence: 3
  givenname: Gerton
  surname: Lunter
  fullname: Lunter, Gerton
BackLink https://www.ncbi.nlm.nih.gov/pubmed/17387145$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1PGzEQhi0UVELaCz-g2hOHSgue-PsCQhFfEgIJ0UNPltfrDa42dmpvUvHvMSRFLT1w8mj8zKt33tlHoxCDQ-gA8BEAhuN5OuKYcInFDhoDo6pmlKtRqbGUtcIM9tB-zj8xxoRK-QntgSBSAGVj9ONiFezgYzC9H56qmKohmZBt8stNtwrRZ3dana9964J1VVeY7Hr3OlX99sOjD1Ufw7yQwcbWl-r-9ix_Rrud6bP7sn0n6PvF-cPsqr65u7yend3Ulgoy1A6IagV0vDUEoG0EmVrWcMXBMF461ggJjWzMtOGNhJZI1zDegZpa2jpFyQSdbHSXq2bhWutC2aDXy-QXJj3paLz-9yf4Rz2Paw2SMRDTInC4FUjx18rlQS98tq7vTXBxlbXAVFAoCX8EguKcqLLVBH3929Kblz-xFwBvAJtizsl12vrBvARaHPpeA9Yvl9XzpLeXLSPf3o28qf4PPwNRvqV9
CitedBy_id crossref_primary_10_1111_pbi_12336
crossref_primary_10_1146_annurev_genom_112921_123710
crossref_primary_10_1146_annurev_genet_110711_155459
crossref_primary_10_3390_cancers14184486
crossref_primary_10_1038_srep37821
crossref_primary_10_2147_CMAR_S248964
crossref_primary_10_3389_fbioe_2015_00071
crossref_primary_10_1016_j_tig_2014_01_004
crossref_primary_10_3390_brainsci3010360
crossref_primary_10_1007_s13277_015_3449_4
crossref_primary_10_1186_s12943_020_1147_3
crossref_primary_10_1371_journal_pgen_1003470
crossref_primary_10_1021_acs_biochem_5b00259
crossref_primary_10_1038_nrg2521
crossref_primary_10_1186_s12915_019_0635_7
crossref_primary_10_1038_s41419_018_0869_2
crossref_primary_10_1155_2017_2941297
crossref_primary_10_1186_s12862_015_0437_7
crossref_primary_10_1101_gr_6406307
crossref_primary_10_1016_j_ajhg_2013_10_022
crossref_primary_10_1016_j_plantsci_2023_111948
crossref_primary_10_1007_s13277_014_2863_3
crossref_primary_10_1161_JAHA_118_009700
crossref_primary_10_1016_j_ymthe_2019_07_020
crossref_primary_10_1016_j_ygeno_2010_03_008
crossref_primary_10_3389_fpls_2020_00276
crossref_primary_10_3389_fgene_2019_00281
crossref_primary_10_1071_RD14167
crossref_primary_10_1016_j_autrev_2025_103753
crossref_primary_10_1186_s40246_021_00318_3
crossref_primary_10_1371_journal_pbio_1000384
crossref_primary_10_1111_tpj_14470
crossref_primary_10_3389_fimmu_2017_01663
crossref_primary_10_3390_ijms23010561
crossref_primary_10_3390_ijms252111453
crossref_primary_10_3389_fendo_2024_1415722
crossref_primary_10_1093_nar_gkab710
crossref_primary_10_3389_fgene_2021_668313
crossref_primary_10_1016_j_gde_2014_08_007
crossref_primary_10_1016_j_lfs_2019_05_008
crossref_primary_10_1016_j_virusres_2016_06_008
crossref_primary_10_1007_s00384_024_04692_x
crossref_primary_10_1007_s10126_016_9689_5
crossref_primary_10_1172_JCI84422
crossref_primary_10_1016_j_clcc_2013_06_003
crossref_primary_10_1186_1471_2164_15_906
crossref_primary_10_1016_j_tig_2022_11_001
crossref_primary_10_1038_s41598_021_95832_8
crossref_primary_10_1146_annurev_arplant_043015_111754
crossref_primary_10_1038_s41594_021_00572_y
crossref_primary_10_1167_iovs_17_21805
crossref_primary_10_1261_rna_038927_113
crossref_primary_10_1371_journal_pbio_1000112
crossref_primary_10_1016_j_ymeth_2013_09_017
crossref_primary_10_1155_2016_3146805
crossref_primary_10_1007_s00122_023_04293_2
crossref_primary_10_1371_journal_pgen_1003569
crossref_primary_10_1016_j_ygeno_2007_11_004
crossref_primary_10_2174_1381612826666191227154009
crossref_primary_10_3389_fbioe_2022_885767
crossref_primary_10_1101_gr_6339607
crossref_primary_10_1016_j_tig_2014_08_004
crossref_primary_10_1186_gb_2010_11_7_r72
crossref_primary_10_1016_j_jmb_2019_09_002
crossref_primary_10_1186_gb_2007_8_6_r127
crossref_primary_10_1016_j_biochi_2015_03_014
crossref_primary_10_1093_nar_gkv1252
crossref_primary_10_1111_1759_7714_12435
crossref_primary_10_1186_s12864_015_2024_0
crossref_primary_10_1007_s12017_009_8063_4
crossref_primary_10_1038_nrg_2015_10
crossref_primary_10_1126_scitranslmed_aar5987
crossref_primary_10_1016_j_gene_2010_07_009
crossref_primary_10_1016_j_jmb_2021_167384
crossref_primary_10_1186_s12864_021_07771_3
crossref_primary_10_1002_mrd_70017
crossref_primary_10_1093_g3journal_jkac304
crossref_primary_10_1016_j_cell_2013_06_020
crossref_primary_10_1038_s41598_022_23802_9
crossref_primary_10_1038_s41375_021_01307_0
crossref_primary_10_3390_ijms16011395
crossref_primary_10_1101_gr_242222_118
crossref_primary_10_3390_ijms131216708
crossref_primary_10_1016_j_canlet_2020_11_038
crossref_primary_10_1016_j_vph_2018_06_010
crossref_primary_10_1016_j_stemcr_2015_09_007
crossref_primary_10_1101_gr_6991408
crossref_primary_10_1016_j_tig_2019_09_006
crossref_primary_10_1073_pnas_0904715106
crossref_primary_10_12688_f1000research_8363_1
crossref_primary_10_1038_ncomms7779
crossref_primary_10_1089_scd_2013_0014
crossref_primary_10_1101_gr_165035_113
crossref_primary_10_1261_rna_1951310
crossref_primary_10_15252_embj_2021108903
crossref_primary_10_1002_wrna_1376
crossref_primary_10_3390_ijms16035467
crossref_primary_10_1093_molbev_msu402
crossref_primary_10_1261_rna_043075_113
crossref_primary_10_3390_biom11050664
crossref_primary_10_1007_s00223_019_00555_8
crossref_primary_10_1080_15476286_2020_1868165
crossref_primary_10_1146_annurev_biochem_090711_093103
crossref_primary_10_1002_gcc_22709
crossref_primary_10_1186_s13046_021_02122_2
crossref_primary_10_1002_jcp_27272
crossref_primary_10_3390_genes9040187
crossref_primary_10_1093_nar_gkt818
crossref_primary_10_1095_biolreprod_114_118166
crossref_primary_10_7554_eLife_45051
crossref_primary_10_3390_biom12020304
crossref_primary_10_1002_advs_202408426
crossref_primary_10_1016_j_jmoldx_2014_06_009
crossref_primary_10_1186_gb_2012_13_11_r107
crossref_primary_10_3390_biom12101357
crossref_primary_10_1155_2021_6617118
crossref_primary_10_1016_j_bbagrm_2010_10_001
crossref_primary_10_1016_j_biopha_2019_109192
crossref_primary_10_1042_BSR20201810
crossref_primary_10_17537_2021_16_256
crossref_primary_10_1016_j_bbagen_2013_10_035
crossref_primary_10_1038_onc_2011_354
crossref_primary_10_1016_j_biocel_2014_02_022
crossref_primary_10_3390_ijms21218401
crossref_primary_10_1016_j_canlet_2015_02_035
crossref_primary_10_3389_fpls_2022_906603
crossref_primary_10_1002_humu_21260
crossref_primary_10_1002_mrd_23179
crossref_primary_10_1016_j_tig_2008_04_004
crossref_primary_10_1016_j_immuni_2015_05_004
crossref_primary_10_1016_j_jacl_2017_03_009
crossref_primary_10_12677_ACM_2024_142521
crossref_primary_10_3390_ncrna6010012
crossref_primary_10_7554_eLife_58597
crossref_primary_10_1002_wsbm_135
crossref_primary_10_1038_s41419_017_0155_8
crossref_primary_10_1086_520679
crossref_primary_10_1101_gad_1800909
crossref_primary_10_3390_ijms22020632
crossref_primary_10_1038_s41598_017_17337_7
crossref_primary_10_18632_oncotarget_19933
crossref_primary_10_18632_oncotarget_4737
crossref_primary_10_3389_fgene_2014_00200
crossref_primary_10_1038_nrg2814
crossref_primary_10_3389_fpls_2020_00218
crossref_primary_10_1038_nrm_2017_104
crossref_primary_10_1093_hmg_ddu167
crossref_primary_10_4161_epi_26700
crossref_primary_10_1093_nar_gkaa368
crossref_primary_10_3892_ol_2019_10898
crossref_primary_10_3390_ijms21228508
crossref_primary_10_1038_emboj_2013_134
crossref_primary_10_1261_rna_044560_114
crossref_primary_10_1080_15476286_2017_1312228
crossref_primary_10_1371_journal_pone_0070835
crossref_primary_10_1093_bfgp_elu034
crossref_primary_10_1016_j_plaphy_2023_107940
crossref_primary_10_1016_j_biopha_2018_01_122
crossref_primary_10_3724_SP_J_1206_2010_00104
crossref_primary_10_1007_s13277_014_2013_y
crossref_primary_10_1038_cr_2010_114
crossref_primary_10_1042_EBC20200069
crossref_primary_10_4161_rna_8_6_17606
crossref_primary_10_1007_s10585_018_9901_2
crossref_primary_10_1038_s41598_020_62108_6
crossref_primary_10_1016_j_bbagrm_2015_07_017
crossref_primary_10_3389_fphys_2017_00814
crossref_primary_10_1002_bies_201500192
crossref_primary_10_1186_s12859_017_1594_z
crossref_primary_10_1016_j_gde_2014_03_009
crossref_primary_10_1007_s00436_021_07384_5
crossref_primary_10_1186_s13059_016_0873_8
crossref_primary_10_1038_nature07672
crossref_primary_10_3390_genes14091682
crossref_primary_10_1093_humupd_dmw035
crossref_primary_10_1093_carcin_bgv136
crossref_primary_10_1016_j_biopha_2020_109921
crossref_primary_10_1007_s00438_014_0882_9
crossref_primary_10_1093_jmcb_mjz047
crossref_primary_10_1016_j_cell_2010_06_040
crossref_primary_10_1038_cgt_2017_20
crossref_primary_10_1177_17588359221131229
crossref_primary_10_1371_journal_pone_0001486
crossref_primary_10_3390_biology13050349
crossref_primary_10_1002_wcms_1609
crossref_primary_10_3390_cancers13071604
crossref_primary_10_1007_s00359_014_0937_8
crossref_primary_10_1134_S0006297920070019
crossref_primary_10_1093_bfgp_elv022
crossref_primary_10_1111_tpj_14847
crossref_primary_10_3389_fgene_2020_00488
crossref_primary_10_1016_j_omtn_2019_05_013
crossref_primary_10_1261_rna_053918_115
crossref_primary_10_1016_j_tig_2014_06_001
crossref_primary_10_1016_j_prp_2018_07_033
crossref_primary_10_1007_s00018_020_03751_0
crossref_primary_10_3389_fmolb_2017_00090
crossref_primary_10_1042_BSR20194468
crossref_primary_10_1016_j_jmb_2019_11_011
crossref_primary_10_1016_j_jplph_2023_154055
crossref_primary_10_1371_journal_pgen_1000459
crossref_primary_10_1016_j_canlet_2018_01_032
crossref_primary_10_1007_s13577_024_01057_y
crossref_primary_10_1186_s12915_017_0411_5
crossref_primary_10_1007_s10577_013_9382_8
crossref_primary_10_1186_s12859_017_1922_3
crossref_primary_10_1097_MED_0000000000000141
crossref_primary_10_7554_eLife_03523
crossref_primary_10_3389_fgene_2019_00777
crossref_primary_10_1016_j_ijbiomac_2022_03_103
crossref_primary_10_1261_rna_047324_114
crossref_primary_10_1080_07388551_2017_1312270
crossref_primary_10_1016_j_heares_2022_108666
crossref_primary_10_18632_oncotarget_17439
crossref_primary_10_1186_gb_2013_14_11_r131
crossref_primary_10_1016_j_cels_2018_01_002
crossref_primary_10_1146_annurev_genet_120213_092323
crossref_primary_10_1186_s13045_018_0663_8
crossref_primary_10_1016_j_rsci_2020_03_003
crossref_primary_10_1101_gad_343541_120
crossref_primary_10_1186_s13059_015_0586_4
crossref_primary_10_3233_CBM_182253
crossref_primary_10_1007_s13277_014_2311_4
crossref_primary_10_1021_ja406606j
crossref_primary_10_1016_j_gene_2018_08_054
crossref_primary_10_1186_gb_2009_10_11_r124
crossref_primary_10_2139_ssrn_3155810
crossref_primary_10_3389_fphar_2023_1243934
crossref_primary_10_1016_j_cell_2013_02_012
crossref_primary_10_1016_j_cell_2024_10_021
crossref_primary_10_1093_bioinformatics_btx280
crossref_primary_10_1093_gbe_evae047
crossref_primary_10_1109_ACCESS_2024_3401005
crossref_primary_10_1186_1756_9966_32_104
crossref_primary_10_1101_gr_208652_116
crossref_primary_10_1038_nature10887
crossref_primary_10_1016_j_bbagrm_2015_06_003
crossref_primary_10_1101_gr_090050_108
crossref_primary_10_1261_rna_1705309
crossref_primary_10_1016_j_ijid_2020_01_006
crossref_primary_10_1146_annurev_biochem_062917_012708
crossref_primary_10_1261_rna_046342_114
crossref_primary_10_1093_nar_gks477
crossref_primary_10_1161_HYPERTENSIONAHA_120_14644
crossref_primary_10_1186_s12870_015_0530_5
crossref_primary_10_3389_fpls_2018_00244
crossref_primary_10_1080_21655979_2021_2019872
crossref_primary_10_1101_gr_132159_111
crossref_primary_10_3389_fgene_2020_589697
crossref_primary_10_1016_j_virusres_2015_08_008
crossref_primary_10_1371_journal_pone_0068306
crossref_primary_10_2147_OTT_S304494
crossref_primary_10_3390_genes13081349
crossref_primary_10_1016_j_cbi_2021_109396
crossref_primary_10_1089_zeb_2014_0994
crossref_primary_10_1126_science_1138341
crossref_primary_10_1073_pnas_0910272106
crossref_primary_10_1134_S2079086421060098
crossref_primary_10_1016_j_bbrc_2018_10_186
crossref_primary_10_1134_S2079086419060069
crossref_primary_10_1093_nar_gku988
crossref_primary_10_1186_1748_7188_8_14
crossref_primary_10_3390_biomedicines12020462
crossref_primary_10_7554_eLife_00348
crossref_primary_10_1111_pbi_12955
crossref_primary_10_1093_gbe_evv155
crossref_primary_10_3390_cells10102696
crossref_primary_10_1016_j_molcel_2011_12_012
crossref_primary_10_1134_S0026893320050106
crossref_primary_10_3390_ijms21155424
crossref_primary_10_1038_ng_848
crossref_primary_10_1093_ibd_izaa009
crossref_primary_10_1016_j_neuroscience_2013_01_022
crossref_primary_10_1002_bies_202000027
crossref_primary_10_1261_rna_1054608
crossref_primary_10_1007_s11912_024_01623_5
crossref_primary_10_1155_2017_6152582
crossref_primary_10_1038_srep33210
crossref_primary_10_1038_mt_2011_251
crossref_primary_10_3390_ijms19092475
crossref_primary_10_1093_gbe_evx207
crossref_primary_10_1093_gbe_evw116
crossref_primary_10_3389_fpls_2023_1242089
crossref_primary_10_3390_ijms161125962
crossref_primary_10_1016_j_gene_2017_05_049
crossref_primary_10_1080_15476286_2015_1038012
crossref_primary_10_3389_fgene_2014_00164
crossref_primary_10_3390_ncrna9060068
crossref_primary_10_3390_genes8080203
crossref_primary_10_1093_nar_gkr1010
crossref_primary_10_1186_s40781_018_0183_7
crossref_primary_10_1371_journal_pcbi_1002917
crossref_primary_10_1016_j_bbagrm_2015_09_011
crossref_primary_10_1002_cpbi_25
crossref_primary_10_1002_jez_b_22542
crossref_primary_10_1146_annurev_biochem_051410_092902
crossref_primary_10_1093_nar_gku325
crossref_primary_10_1007_s10330_018_0291_1
crossref_primary_10_1109_TCBB_2020_3034910
crossref_primary_10_1186_s12915_016_0338_2
crossref_primary_10_1093_gbe_evs020
crossref_primary_10_1038_s41576_018_0017_y
crossref_primary_10_1093_nar_gkr173
crossref_primary_10_1007_s11302_015_9488_x
crossref_primary_10_1007_s12017_019_08542_w
crossref_primary_10_18632_oncotarget_19566
crossref_primary_10_1016_j_mrrev_2014_04_002
crossref_primary_10_1155_2019_9702342
crossref_primary_10_1186_gb_2012_13_6_r45
crossref_primary_10_1007_s11626_019_00375_y
crossref_primary_10_1186_gb_2013_14_5_r49
crossref_primary_10_1534_g3_116_030338
crossref_primary_10_1146_annurev_genom_090314_024939
crossref_primary_10_3389_fmolb_2017_00045
crossref_primary_10_1111_imr_12055
crossref_primary_10_1261_rna_053561_115
crossref_primary_10_1093_molbev_msz212
crossref_primary_10_1007_s00299_008_0520_2
crossref_primary_10_1093_bib_bbw015
crossref_primary_10_1097_j_pain_0000000000001416
crossref_primary_10_1186_s12870_017_0984_8
crossref_primary_10_12688_f1000research_125628_1
crossref_primary_10_1093_nargab_lqz002
crossref_primary_10_12688_f1000research_125628_2
crossref_primary_10_1101_gr_214205_116
crossref_primary_10_1093_bioinformatics_btr314
crossref_primary_10_1186_1471_2148_11_102
crossref_primary_10_3390_genes15040479
crossref_primary_10_1038_embor_2012_145
crossref_primary_10_15835_nbha50212604
crossref_primary_10_1016_j_gendis_2022_10_024
crossref_primary_10_3389_fonc_2019_01173
crossref_primary_10_1186_s12915_016_0325_7
crossref_primary_10_1093_cercor_bhu196
crossref_primary_10_3390_ncrna7040065
crossref_primary_10_1101_gr_6525007
crossref_primary_10_1016_j_ceb_2008_03_008
crossref_primary_10_1016_j_brainresbull_2013_06_001
crossref_primary_10_3389_fgene_2018_00156
crossref_primary_10_1371_journal_pgen_1000617
crossref_primary_10_1002_jcb_22958
crossref_primary_10_1186_1471_2148_13_247
crossref_primary_10_18632_oncotarget_23744
crossref_primary_10_1152_ajpheart_00511_2019
crossref_primary_10_1517_17530059_1_3_325
crossref_primary_10_1002_elps_202200079
crossref_primary_10_1016_j_tibs_2013_10_002
crossref_primary_10_1093_treephys_tpad041
crossref_primary_10_1038_srep42775
crossref_primary_10_3390_plants12152822
crossref_primary_10_1002_jcp_27962
crossref_primary_10_1261_rna_037598_112
crossref_primary_10_1101_gr_133009_111
crossref_primary_10_1186_s12864_015_2108_x
crossref_primary_10_3390_genes7070034
crossref_primary_10_1038_ncomms11730
crossref_primary_10_1096_fj_201500058R
crossref_primary_10_1038_bjc_2013_548
crossref_primary_10_1186_s12864_020_6656_3
crossref_primary_10_1002_stem_3274
crossref_primary_10_7554_eLife_10518
crossref_primary_10_1101_gr_078378_108
crossref_primary_10_1073_pnas_0909641106
crossref_primary_10_3389_fimmu_2021_720635
crossref_primary_10_1111_j_1749_6632_2009_04991_x
crossref_primary_10_1016_j_bbagrm_2015_08_009
crossref_primary_10_1101_gad_17446611
crossref_primary_10_1093_gbe_evt028
crossref_primary_10_1016_j_ygeno_2012_02_003
crossref_primary_10_1038_nrg_2016_85
crossref_primary_10_1093_bfgp_elt016
crossref_primary_10_1016_j_gene_2013_03_114
crossref_primary_10_3390_ncrna7010016
crossref_primary_10_3389_fmolb_2023_1170026
crossref_primary_10_1186_s12859_018_2441_6
crossref_primary_10_18632_oncotarget_4057
crossref_primary_10_3390_genes10030205
crossref_primary_10_1177_1073858408319187
crossref_primary_10_1016_j_biopha_2015_01_023
crossref_primary_10_1371_journal_pgen_1002841
crossref_primary_10_1016_j_tox_2021_152683
crossref_primary_10_3390_ijms24043143
crossref_primary_10_1534_genetics_116_197988
crossref_primary_10_3390_ncrna7020024
crossref_primary_10_1016_j_psj_2021_101160
crossref_primary_10_1038_s41598_023_33602_4
crossref_primary_10_15252_embj_201592655
crossref_primary_10_1016_j_bj_2022_03_012
crossref_primary_10_1093_carcin_bgr187
crossref_primary_10_26508_lsa_202302002
crossref_primary_10_1007_s13237_023_00447_1
crossref_primary_10_1016_j_biocel_2014_06_014
crossref_primary_10_1080_15548627_2021_1883881
crossref_primary_10_1007_s13562_022_00770_9
crossref_primary_10_1093_bioinformatics_bts676
crossref_primary_10_1016_j_coph_2019_04_012
crossref_primary_10_1016_j_stemcr_2018_12_006
crossref_primary_10_3390_ncrna7020036
crossref_primary_10_1038_s41598_018_36750_0
crossref_primary_10_1007_s11427_015_4881_9
crossref_primary_10_1007_s00432_018_2767_5
crossref_primary_10_1093_nar_gkac067
crossref_primary_10_1007_s13277_015_3598_5
crossref_primary_10_1002_jcp_29672
crossref_primary_10_1007_s40610_016_0028_4
crossref_primary_10_1016_j_virusres_2015_10_002
crossref_primary_10_1093_hmg_ddq362
crossref_primary_10_1016_j_virusres_2015_10_001
crossref_primary_10_1038_srep26657
crossref_primary_10_3390_ncrna8010007
crossref_primary_10_1261_rna_2528811
crossref_primary_10_1016_j_cels_2023_04_002
crossref_primary_10_3389_fmed_2021_741803
crossref_primary_10_3390_life6030027
crossref_primary_10_1186_1471_2164_13_251
crossref_primary_10_2139_ssrn_4133887
crossref_primary_10_1146_annurev_genom_090413_025621
crossref_primary_10_1111_nan_12541
crossref_primary_10_1002_cbf_3392
crossref_primary_10_1186_1471_2164_13_259
crossref_primary_10_1002_glia_23820
crossref_primary_10_1093_bfgp_elp019
crossref_primary_10_1093_nar_gkaa1046
crossref_primary_10_1016_j_ymeth_2023_01_006
crossref_primary_10_3389_fdmed_2021_799716
crossref_primary_10_3390_horticulturae7120522
crossref_primary_10_1093_dnares_dsq007
crossref_primary_10_1038_cddis_2016_451
crossref_primary_10_1109_TEVC_2011_2150752
crossref_primary_10_1038_nature10398
crossref_primary_10_1016_j_tig_2017_08_002
crossref_primary_10_1038_s41598_024_79204_6
crossref_primary_10_1186_s12859_019_2711_y
crossref_primary_10_1371_journal_pone_0075750
crossref_primary_10_3389_fphys_2018_01201
crossref_primary_10_1371_journal_pone_0071152
crossref_primary_10_3390_ijms17010132
crossref_primary_10_3892_or_2015_4259
crossref_primary_10_1093_cvr_cvaa050
crossref_primary_10_1098_rstb_2013_0507
crossref_primary_10_3390_epigenomes3030014
crossref_primary_10_1016_j_mbplus_2021_100060
crossref_primary_10_1080_03008207_2023_2232463
crossref_primary_10_1002_bies_20669
crossref_primary_10_1186_1745_6150_7_11
crossref_primary_10_1093_biolre_ioy253
crossref_primary_10_3389_fimmu_2021_773171
crossref_primary_10_1016_j_pmpp_2024_102389
crossref_primary_10_1016_j_scienta_2022_110898
crossref_primary_10_1002_bdrc_20147
crossref_primary_10_1186_s12943_015_0318_0
crossref_primary_10_3892_ijo_2015_3109
crossref_primary_10_7314_APJCP_2014_15_21_9439
crossref_primary_10_3390_biomedicines11112883
crossref_primary_10_1016_j_cell_2009_02_006
crossref_primary_10_3390_cancers3033525
crossref_primary_10_18632_oncotarget_14726
crossref_primary_10_1007_s00335_008_9136_7
crossref_primary_10_1016_j_autrev_2015_05_004
crossref_primary_10_1016_j_neuroscience_2013_12_009
crossref_primary_10_1101_gr_161315_113
crossref_primary_10_3390_cancers13061239
crossref_primary_10_1038_s41580_022_00566_8
crossref_primary_10_1093_bfgp_elp038
crossref_primary_10_3389_fonc_2022_997532
crossref_primary_10_1093_bfgp_elp037
crossref_primary_10_1007_s12035_015_9632_1
crossref_primary_10_1261_rna_1127009
crossref_primary_10_1016_j_ymeth_2013_03_021
crossref_primary_10_1038_ncomms6395
crossref_primary_10_1042_bse0540113
crossref_primary_10_1071_AN18426
crossref_primary_10_1515_jib_2019_0027
crossref_primary_10_3390_ijms252413553
crossref_primary_10_1186_s40169_017_0150_9
crossref_primary_10_1016_j_cell_2011_11_055
crossref_primary_10_12688_f1000research_8349_1
crossref_primary_10_1002_ctm2_367
crossref_primary_10_1016_j_ymeth_2013_03_019
crossref_primary_10_1016_j_virusres_2021_198402
crossref_primary_10_3390_ijms140714346
crossref_primary_10_1016_j_bbagrm_2014_08_012
crossref_primary_10_1007_s11240_019_01726_z
crossref_primary_10_1016_j_cca_2016_10_035
crossref_primary_10_1093_bioinformatics_btt343
crossref_primary_10_1080_03008207_2016_1194406
crossref_primary_10_1016_j_jtbi_2021_110984
crossref_primary_10_1016_j_brainres_2010_03_110
crossref_primary_10_1007_s00251_008_0337_8
crossref_primary_10_1093_jb_mvt113
crossref_primary_10_1093_nar_gks1246
crossref_primary_10_1093_molbev_msu249
crossref_primary_10_1007_s11084_011_9262_1
crossref_primary_10_1186_s12958_020_00573_4
crossref_primary_10_1038_s41419_018_0484_2
crossref_primary_10_1002_med_21254
crossref_primary_10_2217_epi_16_6
crossref_primary_10_1016_j_febslet_2011_05_001
crossref_primary_10_1016_j_ygeno_2019_08_011
crossref_primary_10_1021_acssynbio_7b00386
crossref_primary_10_1016_j_mehy_2011_08_020
crossref_primary_10_1038_nsmb_3354
crossref_primary_10_1016_j_nbd_2011_12_006
crossref_primary_10_3390_f10111043
crossref_primary_10_1093_gbe_evr116
crossref_primary_10_1016_j_gene_2022_146459
crossref_primary_10_1111_age_12712
crossref_primary_10_1038_srep08957
crossref_primary_10_1371_journal_pone_0179670
crossref_primary_10_1016_j_bbrc_2017_05_005
crossref_primary_10_1007_s00438_014_0952_z
crossref_primary_10_1002_jcp_30830
crossref_primary_10_1038_nrg3074
crossref_primary_10_1016_j_jplph_2022_153663
crossref_primary_10_1073_pnas_0706729105
crossref_primary_10_1016_j_ncrna_2020_09_003
crossref_primary_10_1155_2013_219798
crossref_primary_10_1126_science_1155472
crossref_primary_10_1080_21541264_2019_1704128
Cites_doi 10.1016/j.tig.2005.10.003
10.1093/oxfordjournals.molbev.a026133
10.1038/nature01546
10.1038/nature03001
10.1126/science.1112014
10.1093/nar/gni117
10.1126/science.1068597
10.1038/429510a
10.1086/340787
10.1006/jmbi.1997.0951
10.1038/nature01266
10.1101/gr.844103
10.1016/S0959-437X(99)80024-0
10.1113/jphysiol.2006.113191
10.1016/j.tig.2005.03.007
10.1371/journal.pcbi.0020005
10.1101/gr.3715005
10.1101/gr.4222606
10.1126/science.1126316
10.1093/bioinformatics/18.8.1135
10.1038/ng1789
10.1038/sj.emboj.7601023
10.1126/science.1130164
10.1016/S0378-1119(99)00324-8
10.1016/S0959-437X(99)00031-3
10.1093/nar/gkl556
10.1016/S1097-2765(00)80432-3
10.1101/gr.1011603
10.1093/nar/gkj133
10.1038/nature01262
10.1038/431757a
10.1016/0092-8674(92)90519-I
10.1038/nrm703
10.1101/gr.4200206
10.1101/gr.1562804
10.1006/jmbi.1990.9999
10.1073/pnas.87.12.4692
10.1093/nar/gkj115
10.2307/1390807
10.1093/hmg/ddl182
10.1016/0022-2836(90)90223-9
10.1101/gr.3895005
10.1016/S0092-8674(04)00127-8
10.1073/pnas.0334222100
10.1126/science.1088305
10.1007/BF00178256
10.1186/gb-2006-7-8-r78
10.1126/science.1108625
10.1371/journal.pgen.0020037
10.1101/gr.809403
10.1371/journal.pgen.0020062
10.1093/nar/gkj144
10.1007/BF00278187
10.1126/science.1103388
10.1101/gr.1060303
10.1006/geno.2001.6522
10.1038/415810a
ContentType Journal Article
Copyright Copyright © 2007, Cold Spring Harbor Laboratory Press 2007
Copyright_xml – notice: Copyright © 2007, Cold Spring Harbor Laboratory Press 2007
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TM
8FD
FR3
P64
RC3
7X8
5PM
DOI 10.1101/gr.6036807
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Nucleic Acids Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Engineering Research Database
Technology Research Database
Nucleic Acids Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList Genetics Abstracts

MEDLINE - Academic
MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
Biology
DocumentTitleAlternate Evidence for selection within long noncoding RNAs
EISSN 1549-5469
1549-5477
EndPage 565
ExternalDocumentID PMC1855172
17387145
10_1101_gr_6036807
Genre Validation Study
Comparative Study
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Medical Research Council
  grantid: MC_U137761446
– fundername: Medical Research Council
  grantid: G0501331
GroupedDBID ---
.GJ
18M
29H
2WC
39C
4.4
53G
5GY
5RE
5VS
AAFWJ
AAYOK
AAYXX
AAZTW
ABDIX
ABDNZ
ACGFO
ACLKE
ACYGS
ADBBV
ADNWM
AEILP
AENEX
AHPUY
AI.
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BTFSW
C1A
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HYE
IH2
K-O
KQ8
MV1
R.V
RCX
RHI
RNS
RPM
RXW
SJN
TAE
TR2
VH1
W8F
WOQ
YKV
ZCG
ZGI
ZXP
CGR
CUY
CVF
ECM
EIF
NPM
7TM
8FD
FR3
P64
RC3
7X8
-DZ
-~X
.-4
.55
0VX
5PM
85S
ABCQX
ACNCT
ADIYS
ADXHL
AETEA
AFFNX
H~9
L7B
MVM
N9A
OK1
P2P
TN5
UHB
WH7
X7M
XJT
XSW
YBU
YHG
YSK
ZY4
ID FETCH-LOGICAL-c473t-e139d71f6da311db732c5b6961a56311ca781b8ba2b6b81d38eb56f192c4de943
ISSN 1088-9051
IngestDate Thu Aug 21 18:10:21 EDT 2025
Fri Jul 11 00:53:51 EDT 2025
Thu Jul 10 19:26:24 EDT 2025
Fri May 30 10:49:38 EDT 2025
Thu Apr 24 22:51:08 EDT 2025
Tue Jul 01 02:20:30 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c473t-e139d71f6da311db732c5b6961a56311ca781b8ba2b6b81d38eb56f192c4de943
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ObjectType-Undefined-3
OpenAccessLink https://genome.cshlp.org/content/17/5/556.full.pdf
PMID 17387145
PQID 19663947
PQPubID 23462
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_1855172
proquest_miscellaneous_70474160
proquest_miscellaneous_19663947
pubmed_primary_17387145
crossref_citationtrail_10_1101_gr_6036807
crossref_primary_10_1101_gr_6036807
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2007-05-01
PublicationDateYYYYMMDD 2007-05-01
PublicationDate_xml – month: 05
  year: 2007
  text: 2007-05-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Genome Research
PublicationTitleAlternate Genome Res
PublicationYear 2007
Publisher Cold Spring Harbor Laboratory Press
Publisher_xml – name: Cold Spring Harbor Laboratory Press
References 2021111811024828000_17.5.556.39
2021111811024828000_17.5.556.40
2021111811024828000_17.5.556.41
2021111811024828000_17.5.556.48
2021111811024828000_17.5.556.49
2021111811024828000_17.5.556.46
2021111811024828000_17.5.556.47
2021111811024828000_17.5.556.44
2021111811024828000_17.5.556.45
2021111811024828000_17.5.556.42
Ponting (2021111811024828000_17.5.556.43) 2006; 15 (Suppl 2)
2021111811024828000_17.5.556.28
2021111811024828000_17.5.556.29
2021111811024828000_17.5.556.3
2021111811024828000_17.5.556.2
2021111811024828000_17.5.556.30
2021111811024828000_17.5.556.5
2021111811024828000_17.5.556.4
2021111811024828000_17.5.556.7
2021111811024828000_17.5.556.6
2021111811024828000_17.5.556.9
2021111811024828000_17.5.556.8
2021111811024828000_17.5.556.37
2021111811024828000_17.5.556.38
2021111811024828000_17.5.556.35
2021111811024828000_17.5.556.36
2021111811024828000_17.5.556.33
2021111811024828000_17.5.556.34
2021111811024828000_17.5.556.1
2021111811024828000_17.5.556.31
2021111811024828000_17.5.556.32
2021111811024828000_17.5.556.19
2021111811024828000_17.5.556.17
2021111811024828000_17.5.556.18
2021111811024828000_17.5.556.26
2021111811024828000_17.5.556.27
2021111811024828000_17.5.556.24
2021111811024828000_17.5.556.25
2021111811024828000_17.5.556.22
2021111811024828000_17.5.556.23
2021111811024828000_17.5.556.20
2021111811024828000_17.5.556.21
2021111811024828000_17.5.556.51
2021111811024828000_17.5.556.52
2021111811024828000_17.5.556.50
2021111811024828000_17.5.556.15
2021111811024828000_17.5.556.16
2021111811024828000_17.5.556.13
2021111811024828000_17.5.556.57
2021111811024828000_17.5.556.14
2021111811024828000_17.5.556.58
2021111811024828000_17.5.556.11
2021111811024828000_17.5.556.55
2021111811024828000_17.5.556.12
2021111811024828000_17.5.556.56
2021111811024828000_17.5.556.53
2021111811024828000_17.5.556.10
2021111811024828000_17.5.556.54
References_xml – ident: 2021111811024828000_17.5.556.41
  doi: 10.1016/j.tig.2005.10.003
– ident: 2021111811024828000_17.5.556.3
  doi: 10.1093/oxfordjournals.molbev.a026133
– ident: 2021111811024828000_17.5.556.6
  doi: 10.1038/nature01546
– ident: 2021111811024828000_17.5.556.27
  doi: 10.1038/nature03001
– ident: 2021111811024828000_17.5.556.10
  doi: 10.1126/science.1112014
– ident: 2021111811024828000_17.5.556.40
  doi: 10.1093/nar/gni117
– ident: 2021111811024828000_17.5.556.28
  doi: 10.1126/science.1068597
– ident: 2021111811024828000_17.5.556.45
  doi: 10.1038/429510a
– ident: 2021111811024828000_17.5.556.17
  doi: 10.1086/340787
– ident: 2021111811024828000_17.5.556.9
  doi: 10.1006/jmbi.1997.0951
– ident: 2021111811024828000_17.5.556.38
  doi: 10.1038/nature01266
– ident: 2021111811024828000_17.5.556.22
  doi: 10.1101/gr.844103
– ident: 2021111811024828000_17.5.556.36
  doi: 10.1016/S0959-437X(99)80024-0
– ident: 2021111811024828000_17.5.556.33
  doi: 10.1113/jphysiol.2006.113191
– ident: 2021111811024828000_17.5.556.24
  doi: 10.1016/j.tig.2005.03.007
– ident: 2021111811024828000_17.5.556.31
  doi: 10.1371/journal.pcbi.0020005
– ident: 2021111811024828000_17.5.556.48
  doi: 10.1101/gr.3715005
– ident: 2021111811024828000_17.5.556.15
  doi: 10.1101/gr.4222606
– ident: 2021111811024828000_17.5.556.16
  doi: 10.1126/science.1126316
– ident: 2021111811024828000_17.5.556.30
  doi: 10.1093/bioinformatics/18.8.1135
– ident: 2021111811024828000_17.5.556.11
  doi: 10.1038/ng1789
– ident: 2021111811024828000_17.5.556.34
  doi: 10.1038/sj.emboj.7601023
– ident: 2021111811024828000_17.5.556.29
  doi: 10.1126/science.1130164
– ident: 2021111811024828000_17.5.556.35
  doi: 10.1016/S0378-1119(99)00324-8
– ident: 2021111811024828000_17.5.556.50
  doi: 10.1016/S0959-437X(99)00031-3
– ident: 2021111811024828000_17.5.556.47
  doi: 10.1093/nar/gkl556
– ident: 2021111811024828000_17.5.556.21
  doi: 10.1016/S1097-2765(00)80432-3
– ident: 2021111811024828000_17.5.556.37
  doi: 10.1101/gr.1011603
– ident: 2021111811024828000_17.5.556.5
  doi: 10.1093/nar/gkj133
– ident: 2021111811024828000_17.5.556.56
  doi: 10.1038/nature01262
– ident: 2021111811024828000_17.5.556.55
  doi: 10.1038/431757a
– ident: 2021111811024828000_17.5.556.7
  doi: 10.1016/0092-8674(92)90519-I
– ident: 2021111811024828000_17.5.556.53
  doi: 10.1038/nrm703
– ident: 2021111811024828000_17.5.556.44
  doi: 10.1101/gr.4200206
– ident: 2021111811024828000_17.5.556.1
  doi: 10.1101/gr.1562804
– ident: 2021111811024828000_17.5.556.2
  doi: 10.1006/jmbi.1990.9999
– ident: 2021111811024828000_17.5.556.52
  doi: 10.1073/pnas.87.12.4692
– ident: 2021111811024828000_17.5.556.54
  doi: 10.1093/nar/gkj115
– ident: 2021111811024828000_17.5.556.26
  doi: 10.2307/1390807
– volume: 15 (Suppl 2)
  start-page: R170
  year: 2006
  ident: 2021111811024828000_17.5.556.43
  article-title: Signatures of adaptive evolution within human non-coding sequence
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddl182
– ident: 2021111811024828000_17.5.556.8
  doi: 10.1016/0022-2836(90)90223-9
– ident: 2021111811024828000_17.5.556.20
  doi: 10.1101/gr.3895005
– ident: 2021111811024828000_17.5.556.12
  doi: 10.1016/S0092-8674(04)00127-8
– ident: 2021111811024828000_17.5.556.51
  doi: 10.1073/pnas.0334222100
– ident: 2021111811024828000_17.5.556.57
  doi: 10.1126/science.1088305
– ident: 2021111811024828000_17.5.556.25
  doi: 10.1038/431757a
– ident: 2021111811024828000_17.5.556.58
  doi: 10.1007/BF00178256
– ident: 2021111811024828000_17.5.556.42
  doi: 10.1186/gb-2006-7-8-r78
– ident: 2021111811024828000_17.5.556.13
  doi: 10.1126/science.1108625
– ident: 2021111811024828000_17.5.556.19
  doi: 10.1371/journal.pgen.0020037
– ident: 2021111811024828000_17.5.556.46
  doi: 10.1101/gr.809403
– ident: 2021111811024828000_17.5.556.32
  doi: 10.1371/journal.pgen.0020062
– ident: 2021111811024828000_17.5.556.23
  doi: 10.1093/nar/gkj144
– ident: 2021111811024828000_17.5.556.14
  doi: 10.1007/BF00278187
– ident: 2021111811024828000_17.5.556.4
  doi: 10.1126/science.1103388
– ident: 2021111811024828000_17.5.556.18
  doi: 10.1101/gr.1060303
– ident: 2021111811024828000_17.5.556.39
  doi: 10.1006/geno.2001.6522
– ident: 2021111811024828000_17.5.556.49
  doi: 10.1038/415810a
SSID ssj0003488
ssj0006066
Score 2.4556484
Snippet Long transcripts that do not encode protein have only rarely been the subject of experimental scrutiny. Presumably, this is owing to the current lack of...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 556
SubjectTerms Animals
Consensus Sequence
Conserved Sequence
Databases, Genetic
DNA, Intergenic - genetics
Humans
Mice
Point Mutation
Promoter Regions, Genetic
Rats
RNA Splice Sites
RNA, Untranslated - genetics
Selection, Genetic
Transcription, Genetic
Title Functionality or transcriptional noise? Evidence for selection within long noncoding RNAs
URI https://www.ncbi.nlm.nih.gov/pubmed/17387145
https://www.proquest.com/docview/19663947
https://www.proquest.com/docview/70474160
https://pubmed.ncbi.nlm.nih.gov/PMC1855172
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9NAEF5BEYIXBC1HOFcCIaHKJfZezhMKVdMKShAokcKTtbY3bapmjRznAX49s4ePtBXXi2XZq7W183mO9cx8CL2S_dw4pnmQz4kITIQQDCIVBiriKpxznvZzUzv8acyPpvTDjM1a_k5bXVKle9nPK-tK_keqcA3kaqpk_0GyzaRwAc5BvnAECcPxr2Q8AqPk9vJsYkVpCB90owdg8XWxMMXno92aPNRmFa4s942Ru9mFXejdc0M4pAudFbbE5et4uOo6rYdKF0tDr9LZ-TLatNBnEhSNS7ZdLT0Rt79VebIU272gw5G81p4K5FCVlcdEvesg2hw_ryhBOwWmt5ezI1550kHAqKNeabSr6KCIdVQlY7xjdZljjLis0C2RwEm5x8HUxo4gd7Nr9vhzMpoeHyeTg9nkOroRQbhgFPTHL23XeEJjVxLp39m3qYW537Yzbzoml6KNi0mzHS9kchfd8eEDHjos3EPXlN5GO0Mtq2L5A7_GNqHX_inZRjff12e39mtavx30bQM0uCjxBdBgC5p3uIYMBsjgBjLYQQYbyOAGMthA5j6ajg4m-0eB59cIMipIFSjw_nMBX2QuSRjmqSBRxlI-4KFkHK5kUkBQE6cySnkKcQ2JVcr4HGKCjOZqQMkDtAUPUo8QFlEeUkkiMieMqjiW8yyPwHRJymKZRryH3tSLm2S--bzhQDlPbBDaD5OTMvGC6KGXzdjvruXKlaNe1DJKYAXNby6pVbFeJWBTwO2mvxkh-tQEIv0eeuhk2j5HkFiElPWQ2JB2M8B0Y9-8oxentis7OL4MooHHf3yvJ-h2-0U9RVtVuVbPwLOt0ucWtr8AiCapMg
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Functionality+or+transcriptional+noise%3F+Evidence+for+selection+within+long+noncoding+RNAs&rft.jtitle=Genome+research&rft.au=Ponjavic%2C+Jasmina&rft.au=Ponting%2C+Chris+P&rft.au=Lunter%2C+Gerton&rft.date=2007-05-01&rft.issn=1088-9051&rft.eissn=1549-5469&rft.volume=17&rft.issue=5&rft.spage=556&rft.epage=565&rft_id=info:doi/10.1101%2Fgr.6036807&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1088-9051&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1088-9051&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1088-9051&client=summon