Computed Tomography–Derived 3D Modeling to Guide Sizing and Planning of Transcatheter Mitral Valve Interventions
A plethora of catheter-based strategies have been developed to treat mitral valve disease. Evolving 3-dimensional (3D) multidetector computed tomography (MDCT) technology can accurately reconstruct the mitral valve by means of 3-dimensional computational modeling (3DCM) to allow virtual implantation...
Saved in:
Published in | JACC. Cardiovascular imaging Vol. 14; no. 8; pp. 1644 - 1658 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.08.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A plethora of catheter-based strategies have been developed to treat mitral valve disease. Evolving 3-dimensional (3D) multidetector computed tomography (MDCT) technology can accurately reconstruct the mitral valve by means of 3-dimensional computational modeling (3DCM) to allow virtual implantation of catheter-based devices. 3D printing complements computational modeling and offers implanting physician teams the opportunity to evaluate devices in life-size replicas of patient-specific cardiac anatomy. MDCT-derived 3D computational and 3D-printed modeling provides unprecedented insights to facilitate hands-on procedural planning, device training, and retrospective procedural evaluation. This overview summarizes current concepts and provides insight into the application of MDCT-derived 3DCM and 3D printing for the planning of transcatheter mitral valve replacement and closure of paravalvular leaks. Additionally, future directions in the development of 3DCM will be discussed.
[Display omitted]
•Catheter-based interventions for complex defects of the mitral valve apparatus are evolving.•MDCT-derived 3D computational modeling and 3D printing enhance risk evaluation and planning of complex transcatheter procedures.•Incorporation of multiple cardiac phases, tissue/device properties, and hemodynamics should optimize 3D modeling. |
---|---|
AbstractList | A plethora of catheter-based strategies have been developed to treat mitral valve disease. Evolving 3-dimensional (3D) multidetector computed tomography (MDCT) technology can accurately reconstruct the mitral valve by means of 3-dimensional computational modeling (3DCM) to allow virtual implantation of catheter-based devices. 3D printing complements computational modeling and offers implanting physician teams the opportunity to evaluate devices in life-size replicas of patient-specific cardiac anatomy. MDCT-derived 3D computational and 3D-printed modeling provides unprecedented insights to facilitate hands-on procedural planning, device training, and retrospective procedural evaluation. This overview summarizes current concepts and provides insight into the application of MDCT-derived 3DCM and 3D printing for the planning of transcatheter mitral valve replacement and closure of paravalvular leaks. Additionally, future directions in the development of 3DCM will be discussed.
[Display omitted]
•Catheter-based interventions for complex defects of the mitral valve apparatus are evolving.•MDCT-derived 3D computational modeling and 3D printing enhance risk evaluation and planning of complex transcatheter procedures.•Incorporation of multiple cardiac phases, tissue/device properties, and hemodynamics should optimize 3D modeling. A plethora of catheter-based strategies have been developed to treat mitral valve disease. Evolving 3-dimensional (3D) multidetector computed tomography (MDCT) technology can accurately reconstruct the mitral valve by means of 3-dimensional computational modeling (3DCM) to allow virtual implantation of catheter-based devices. 3D printing complements computational modeling and offers implanting physician teams the opportunity to evaluate devices in life-size replicas of patient-specific cardiac anatomy. MDCT-derived 3D computational and 3D-printed modeling provides unprecedented insights to facilitate hands-on procedural planning, device training, and retrospective procedural evaluation. This overview summarizes current concepts and provides insight into the application of MDCT-derived 3DCM and 3D printing for the planning of transcatheter mitral valve replacement and closure of paravalvular leaks. Additionally, future directions in the development of 3DCM will be discussed. A plethora of catheter-based strategies have been developed to treat mitral valve disease. Evolving 3-dimensional (3D) multidetector computed tomography (MDCT) technology can accurately reconstruct the mitral valve by means of 3-dimensional computational modeling (3DCM) to allow virtual implantation of catheter-based devices. 3D printing complements computational modeling and offers implanting physician teams the opportunity to evaluate devices in life-size replicas of patient-specific cardiac anatomy. MDCT-derived 3D computational and 3D-printed modeling provides unprecedented insights to facilitate hands-on procedural planning, device training, and retrospective procedural evaluation. This overview summarizes current concepts and provides insight into the application of MDCT-derived 3DCM and 3D printing for the planning of transcatheter mitral valve replacement and closure of paravalvular leaks. Additionally, future directions in the development of 3DCM will be discussed.A plethora of catheter-based strategies have been developed to treat mitral valve disease. Evolving 3-dimensional (3D) multidetector computed tomography (MDCT) technology can accurately reconstruct the mitral valve by means of 3-dimensional computational modeling (3DCM) to allow virtual implantation of catheter-based devices. 3D printing complements computational modeling and offers implanting physician teams the opportunity to evaluate devices in life-size replicas of patient-specific cardiac anatomy. MDCT-derived 3D computational and 3D-printed modeling provides unprecedented insights to facilitate hands-on procedural planning, device training, and retrospective procedural evaluation. This overview summarizes current concepts and provides insight into the application of MDCT-derived 3DCM and 3D printing for the planning of transcatheter mitral valve replacement and closure of paravalvular leaks. Additionally, future directions in the development of 3DCM will be discussed. |
Author | Wang, Dee Dee Hirsch, Alexander Van Mieghem, Nicolas M. Pfeiffer, Michael Minet, Magali O’Neill, William Prendergast, Bernard Popma, Jeffrey J. Rajani, Ronak Chuang, Michael L. Ooms, Joris F. Little, Stephen H. Dahle, Gry Kanda, Brinder De Jaegere, Peter P. Redwood, Simon Budde, Ricardo P. |
Author_xml | – sequence: 1 givenname: Joris F. surname: Ooms fullname: Ooms, Joris F. organization: Department of Interventional Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, the Netherlands – sequence: 2 givenname: Dee Dee surname: Wang fullname: Wang, Dee Dee organization: Center for Structural Heart Disease, Division of Cardiology, Henry Ford Health System, Detroit, Michigan, USA – sequence: 3 givenname: Ronak surname: Rajani fullname: Rajani, Ronak organization: Department of Cardiology, Guy’s and St. Thomas’ NHS Foundation Trust, London, United Kingdom – sequence: 4 givenname: Simon surname: Redwood fullname: Redwood, Simon organization: Cardiovascular Division, King’s College London British Heart Foundation Centre of Excellence, The Rayne Institute, St. Thomas’ Hospital Campus, London, United Kingdom – sequence: 5 givenname: Stephen H. surname: Little fullname: Little, Stephen H. organization: Department of Cardiology, Houston Methodist Hospital, Houston, Texas, USA – sequence: 6 givenname: Michael L. surname: Chuang fullname: Chuang, Michael L. organization: Cardiovascular Division, Department of Internal Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA – sequence: 7 givenname: Jeffrey J. surname: Popma fullname: Popma, Jeffrey J. organization: Cardiovascular Division, Department of Internal Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA – sequence: 8 givenname: Gry surname: Dahle fullname: Dahle, Gry organization: Department of Cardiothoracic Surgery, Oslo University Hospital, Oslo, Norway – sequence: 9 givenname: Michael surname: Pfeiffer fullname: Pfeiffer, Michael organization: Division of Cardiology, Penn State Heart and Vascular Institute, Hershey, Pennsylvania, USA – sequence: 10 givenname: Brinder surname: Kanda fullname: Kanda, Brinder organization: Stroobants Cardiovascular Center, Lynchburg, Virginia, USA – sequence: 11 givenname: Magali surname: Minet fullname: Minet, Magali organization: Materialise NV, Leuven, Belgium – sequence: 12 givenname: Alexander surname: Hirsch fullname: Hirsch, Alexander organization: Department of Interventional Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, the Netherlands – sequence: 13 givenname: Ricardo P. surname: Budde fullname: Budde, Ricardo P. organization: Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands – sequence: 14 givenname: Peter P. surname: De Jaegere fullname: De Jaegere, Peter P. organization: Department of Interventional Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, the Netherlands – sequence: 15 givenname: Bernard surname: Prendergast fullname: Prendergast, Bernard organization: Department of Cardiology, Guy’s and St. Thomas’ NHS Foundation Trust, London, United Kingdom – sequence: 16 givenname: William surname: O’Neill fullname: O’Neill, William organization: Center for Structural Heart Disease, Division of Cardiology, Henry Ford Health System, Detroit, Michigan, USA – sequence: 17 givenname: Nicolas M. surname: Van Mieghem fullname: Van Mieghem, Nicolas M. email: n.vanmieghem@erasmusmc.nl organization: Department of Interventional Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, the Netherlands |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33744155$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1u1DAUhS1URH_gBVigLNlksGPHThAbNIVSqRVIDIid5dg3Uw-JPbU9Iw0r3qEv0GfhUXgSHE1h0UVZXd-j811Z5xyjA-cdIPSc4BnBhL9azVZ6XM4qXGWhmmHKHqEj0gheirolB_ndUl42ovl2iI5jXGHMMWfiCTqkVDBG6voIxbkf15sEplj40S-DWl_tfv-8OYVgt1mkp79uL72BwbplkXxxtrEGis_2x7QrZ4pPg3JuWnxfLIJyUat0BQlCcWlTUEPxVQ1bKM5dlrbgkvUuPkWPezVEeHY3T9CX9-8W8w_lxcez8_nbi1IzQVNpOuCs6TDucdfrGpteaEMarNuurgjTlFVQMSLamrdUCeACBG1UywkTTDeGnqCX-7vr4K83EJMcbdQw5C-D30RZ1ZhyjjFusvXFnXXTjWDkOthRhZ38G1Q2VHuDDj7GAP0_C8FyakOu5NSGnNqQpJK5jQw19yBtk5oyyNHY4WH0zR6FHNDWQpBRW3AajA2gkzTePoy_vofrXKHVavgOu__BfwAZf7r- |
CitedBy_id | crossref_primary_10_1007_s11897_023_00635_9 crossref_primary_10_1007_s12410_021_09553_7 crossref_primary_10_1007_s10439_022_02960_x crossref_primary_10_1016_j_jmps_2024_105572 crossref_primary_10_3389_fphar_2025_1431311 crossref_primary_10_1007_s11886_021_01556_6 crossref_primary_10_1016_j_bprint_2023_e00285 crossref_primary_10_1253_circj_CJ_22_0334 crossref_primary_10_1016_j_jcin_2024_03_011 crossref_primary_10_1016_j_jcmg_2024_01_014 crossref_primary_10_1007_s11886_022_01794_2 crossref_primary_10_1016_j_yasa_2022_05_002 crossref_primary_10_1016_j_jcin_2023_05_027 crossref_primary_10_1016_j_cjca_2021_11_005 crossref_primary_10_1016_j_jcin_2021_06_018 crossref_primary_10_1016_j_jaccas_2022_02_007 crossref_primary_10_1016_j_cjco_2025_03_014 crossref_primary_10_3390_app122412912 |
Cites_doi | 10.1111/echo.14194 10.1002/cnm.2858 10.1002/ccd.27447 10.1016/j.medengphy.2020.05.018 10.1186/s41747-018-0083-0 10.1093/eurheartj/ehv333 10.1007/s11936-018-0694-z 10.1016/j.jcct.2015.12.004 10.1016/j.jcmg.2014.07.028 10.1016/j.jcmg.2014.04.006 10.1016/j.crad.2015.10.013 10.1016/j.jcmg.2016.01.005 10.1007/s10439-016-1676-5 10.1016/j.jcin.2016.04.022 10.1016/j.jcmg.2016.01.017 10.1016/j.jcct.2015.02.007 10.1186/s41205-019-0043-1 10.1007/s11517-018-1929-6 10.1007/s11831-014-9133-9 10.1016/j.jacc.2010.04.030 10.1016/S0735-1097(00)00834-2 10.1007/s10237-012-0462-z 10.4244/EIJV11I12A273 10.21037/atm.2019.09.73 10.1161/CIRCULATIONAHA.119.041080 10.1093/eurheartj/ehy590 10.1002/ccd.27488 10.1126/science.aav9051 10.1016/j.amjcard.2015.03.048 10.1016/j.jcct.2017.04.002 10.1016/j.acvd.2018.05.001 10.1002/cnm.2788 10.1016/j.jcmg.2013.10.012 10.1007/s00392-018-1212-8 10.1093/ehjci/jew025 10.1016/j.jacc.2018.02.054 10.1016/j.jbiomech.2012.10.026 10.4244/EIJ-D-17-00154 10.1016/j.jcin.2018.12.001 10.1016/j.jacc.2015.01.066 10.1016/j.jacc.2009.04.075 10.1136/heartjnl-2018-313514 10.1016/j.jcct.2017.12.007 10.3389/fped.2019.00023 10.1016/j.jcin.2019.06.015 10.1016/j.jacc.2013.04.036 10.1016/j.jcin.2016.01.003 10.1177/000331970005100605 10.1016/j.jcin.2019.03.020 10.4244/EIJV12SYA4 10.1093/ehjci/jex341 10.1016/j.jacc.2018.05.064 10.1016/j.jacc.2015.08.872 10.1115/1.4043552 10.1016/j.jcmg.2016.12.001 10.1016/j.trsl.2019.04.004 10.1016/j.jacc.2017.02.045 10.1016/j.jtcvs.2016.08.007 10.1016/j.biotechadv.2015.07.006 10.1016/S0003-4975(10)60213-5 10.1016/S0894-7317(98)70076-8 10.1002/ccd.25928 |
ContentType | Journal Article |
Copyright | 2021 American College of Cardiology Foundation Copyright © 2021 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2021 American College of Cardiology Foundation – notice: Copyright © 2021 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 |
DOI | 10.1016/j.jcmg.2020.12.034 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1876-7591 |
EndPage | 1658 |
ExternalDocumentID | 33744155 10_1016_j_jcmg_2020_12_034 S1936878X21001467 |
Genre | Journal Article Review |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 18M 1B1 1P~ 1~. 4.4 457 4G. 53G 5GY 5VS 7-5 8P~ AAEDT AAEDW AAIKJ AALRI AAOAW AAQFI AAXUO AAYWO ABBQC ABFRF ABJNI ABMAC ABMZM ABWVN ABXDB ACGFO ACGFS ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADVLN AEFWE AEKER AEUPX AEVXI AEXQZ AFJKZ AFPUW AFRHN AFTJW AGCQF AGHFR AGYEJ AIGII AITUG AJRQY AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ APXCP BAWUL BLXMC CS3 DIK E3Z EBS EFKBS EJD F5P FDB FEDTE FNPLU GBLVA H13 HVGLF HZ~ IXB J1W M41 MO0 N9A O-L O9- OAUVE OA~ OK1 OL0 P-8 P-9 P2P PC. Q38 ROL RPZ SDF SEL SES SSZ W8F Z5R 6I. AACTN AAFTH AAIAV ABVKL AFCTW AJOXV AMFUW EFLBG LCYCR NCXOZ RIG T5K AAYXX AFETI CITATION NPM 7X8 |
ID | FETCH-LOGICAL-c473t-dbe648b00f0bfc50df7cd180c9b5214c342e241795693a7e67e738a961474c8d3 |
IEDL.DBID | IXB |
ISSN | 1936-878X 1876-7591 |
IngestDate | Tue Aug 05 10:08:05 EDT 2025 Mon Jul 21 05:21:26 EDT 2025 Tue Jul 01 00:39:22 EDT 2025 Thu Apr 24 22:57:02 EDT 2025 Fri Feb 23 02:38:19 EST 2024 Tue Aug 26 16:33:11 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | 3DCM THV PVL LV LVOT MDCT MAC mitral annular calcification paravalvular leakage closure transcatheter mitral valve replacement 3D TMVR LA multidetector computed tomography LVOTO computational modeling 3D printing 3Dp |
Language | English |
License | This article is made available under the Elsevier license. Copyright © 2021 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c473t-dbe648b00f0bfc50df7cd180c9b5214c342e241795693a7e67e738a961474c8d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1936878X21001467 |
PMID | 33744155 |
PQID | 2503660008 |
PQPubID | 23479 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_2503660008 pubmed_primary_33744155 crossref_primary_10_1016_j_jcmg_2020_12_034 crossref_citationtrail_10_1016_j_jcmg_2020_12_034 elsevier_sciencedirect_doi_10_1016_j_jcmg_2020_12_034 elsevier_clinicalkey_doi_10_1016_j_jcmg_2020_12_034 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-08-01 |
PublicationDateYYYYMMDD | 2021-08-01 |
PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | JACC. Cardiovascular imaging |
PublicationTitleAlternate | JACC Cardiovasc Imaging |
PublicationYear | 2021 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | De Paolis, De Luca (bib64) 2019; 57 Tuncay, van Ooijen (bib4) 2019; 3 Hammermeister, Sethi, Henderson, Grover, Oprian, Rahimtoola (bib44) 2000; 36 Votta, Le, Stevanella (bib53) 2013; 46 Guerrero, Dvir, Himbert (bib26) 2016; 9 Blanke, Park, Grayburn (bib43) 2017; 11 Rausch, Famaey, Shultz, Bothe, Miller, Kuhl (bib20) 2013; 12 Safi, Kwan, Afflu, Al Kamme, Salciccioli (bib45) 2000; 51 Moat, Duncan, Lindsay (bib28) 2015; 65 Bapat, Pirone, Kapetanakis, Rajani, Niederer (bib37) 2015; 86 El Sabbagh, Eleid, Matsumoto (bib3) 2018; 92 Newland, Tamuno, Pasupati (bib12) 2014; 7 Byrne, Velasco Forte, Tandon, Valverde, Hussain (bib8) 2016; 5 Koo, Lee, Kim (bib47) 2018; 19 de Jaegere, De Santis, Rodriguez-Olivares (bib52) 2016; 9 Pasta, Cannata, Gentile, Agnese, Pilato, Gandolfo (bib55) 2020; 82 de Jaegere, Rajani, Prendergast, Van Mieghem (bib56) 2018; 72 Jana, Lerman (bib61) 2015; 33 Gao, Qi, Feng (bib59) 2017; 33 Rausch, Zollner, Genet, Baillargeon, Bothe, Kuhl (bib54) 2017; 33 Kohli, Wei, Yoganathan, Oshinski, Leipsic, Blanke (bib5) 2018; 20 Yoon, Whisenant, Bleiziffer (bib24) 2019; 40 Ripley, Kelil, Cheezum (bib6) 2016; 10 Guerrero, Urena, Himbert (bib27) 2018; 71 Alonzo, AnilKumar, Roman, Tasnim, Joddar (bib60) 2019; 211 Sacks, Drach, Lee (bib58) 2019; 141 Duncan, Daqa, Yeh (bib42) 2017; 13 Lancellotti, Pibarot, Chambers (bib48) 2016; 17 Legget, Bashein, McDonald (bib14) 1998; 11 Blanke, Dvir, Cheung (bib31) 2015; 8 Odeh, Levin, Inziello (bib50) 2019; 5 Abramowitz, Jilaihawi, Chakravarty, Mack, Makkar (bib33) 2015; 66 Iung, Delgado, Rosenhek (bib21) 2019; 140 Blanke, Naoum, Dvir (bib35) 2017; 10 Hermsen, Burke, Seslar (bib13) 2017; 153 Kinno, Raissi, Olson, Rigolin (bib46) 2018; 35 Van Mieghem, Rodriguez-Olivares, Ren (bib39) 2016; 11 Faletra, Pedrazzini, Pasotti (bib2) 2014; 7 Karady, Ntalas, Prendergast (bib15) 2018; 12 Fan, Wong, Lee (bib19) 2019; 7 Come, Riley, Weintraub (bib34) 1987; 43 Stone, Adams, Abraham (bib36) 2015; 36 Meduri, Reardon, Lim (bib38) 2019; 12 Farooqi, Cooper, Chelliah (bib18) 2019; 7 Regueiro, Granada, Dagenais, Rodes-Cabau (bib25) 2017; 69 Wang, Eng, Greenbaum (bib10) 2016; 9 Sucha, Daans, Symersky (bib29) 2015; 116 Marom (bib57) 2015; 22 Binder, Webb, Willson (bib1) 2013; 62 Wang, Eng, Greenbaum (bib9) 2018; 92 Lee, Hudson, Shiwarski (bib62) 2019; 365 de Jaegere, Rocatello, Prendergast, de Backer, Van Mieghem, Rajani (bib7) 2019; 105 Schultz, Weustink, Piazza (bib51) 2009; 54 Vukicevic, Puperi, Jane Grande-Allen, Little (bib17) 2017; 45 Hell, Biburger, Marwan (bib41) 2017; 18 Rajani, Attia, Condemi (bib30) 2016; 71 Batteux, Haidar, Bonnet (bib16) 2019; 7 Leipsic, Blanke (bib32) 2016; 12 Vernikouskaya, Rottbauer, Seeger, Gonska, Rasche, Wohrle (bib65) 2018; 107 Vukicevic, Mosadegh, Min, Little (bib11) 2017; 10 Blanke, Dvir, Naoum (bib40) 2015; 9 Yoon, Bleiziffer, Latib (bib22) 2019; 12 Van Mieghem, Piazza, Anderson (bib23) 2010; 56 Hascoet, Smolka, Bagate (bib49) 2018; 111 Butera, Sturla, Pluchinotta, Caimi, Carminati (bib63) 2019; 12 Votta (10.1016/j.jcmg.2020.12.034_bib53) 2013; 46 Odeh (10.1016/j.jcmg.2020.12.034_bib50) 2019; 5 Jana (10.1016/j.jcmg.2020.12.034_bib61) 2015; 33 Abramowitz (10.1016/j.jcmg.2020.12.034_bib33) 2015; 66 Alonzo (10.1016/j.jcmg.2020.12.034_bib60) 2019; 211 de Jaegere (10.1016/j.jcmg.2020.12.034_bib56) 2018; 72 Rausch (10.1016/j.jcmg.2020.12.034_bib54) 2017; 33 Vukicevic (10.1016/j.jcmg.2020.12.034_bib11) 2017; 10 Rausch (10.1016/j.jcmg.2020.12.034_bib20) 2013; 12 Iung (10.1016/j.jcmg.2020.12.034_bib21) 2019; 140 Blanke (10.1016/j.jcmg.2020.12.034_bib31) 2015; 8 Guerrero (10.1016/j.jcmg.2020.12.034_bib26) 2016; 9 Legget (10.1016/j.jcmg.2020.12.034_bib14) 1998; 11 Blanke (10.1016/j.jcmg.2020.12.034_bib40) 2015; 9 Sacks (10.1016/j.jcmg.2020.12.034_bib58) 2019; 141 Byrne (10.1016/j.jcmg.2020.12.034_bib8) 2016; 5 Yoon (10.1016/j.jcmg.2020.12.034_bib24) 2019; 40 Vernikouskaya (10.1016/j.jcmg.2020.12.034_bib65) 2018; 107 Safi (10.1016/j.jcmg.2020.12.034_bib45) 2000; 51 Tuncay (10.1016/j.jcmg.2020.12.034_bib4) 2019; 3 Vukicevic (10.1016/j.jcmg.2020.12.034_bib17) 2017; 45 Wang (10.1016/j.jcmg.2020.12.034_bib10) 2016; 9 Van Mieghem (10.1016/j.jcmg.2020.12.034_bib23) 2010; 56 Koo (10.1016/j.jcmg.2020.12.034_bib47) 2018; 19 Schultz (10.1016/j.jcmg.2020.12.034_bib51) 2009; 54 Lancellotti (10.1016/j.jcmg.2020.12.034_bib48) 2016; 17 Pasta (10.1016/j.jcmg.2020.12.034_bib55) 2020; 82 Duncan (10.1016/j.jcmg.2020.12.034_bib42) 2017; 13 Come (10.1016/j.jcmg.2020.12.034_bib34) 1987; 43 Guerrero (10.1016/j.jcmg.2020.12.034_bib27) 2018; 71 Hammermeister (10.1016/j.jcmg.2020.12.034_bib44) 2000; 36 Faletra (10.1016/j.jcmg.2020.12.034_bib2) 2014; 7 Hascoet (10.1016/j.jcmg.2020.12.034_bib49) 2018; 111 El Sabbagh (10.1016/j.jcmg.2020.12.034_bib3) 2018; 92 Butera (10.1016/j.jcmg.2020.12.034_bib63) 2019; 12 Binder (10.1016/j.jcmg.2020.12.034_bib1) 2013; 62 De Paolis (10.1016/j.jcmg.2020.12.034_bib64) 2019; 57 Blanke (10.1016/j.jcmg.2020.12.034_bib35) 2017; 10 Wang (10.1016/j.jcmg.2020.12.034_bib9) 2018; 92 Lee (10.1016/j.jcmg.2020.12.034_bib62) 2019; 365 Fan (10.1016/j.jcmg.2020.12.034_bib19) 2019; 7 Gao (10.1016/j.jcmg.2020.12.034_bib59) 2017; 33 Leipsic (10.1016/j.jcmg.2020.12.034_bib32) 2016; 12 de Jaegere (10.1016/j.jcmg.2020.12.034_bib52) 2016; 9 Meduri (10.1016/j.jcmg.2020.12.034_bib38) 2019; 12 Yoon (10.1016/j.jcmg.2020.12.034_bib22) 2019; 12 Farooqi (10.1016/j.jcmg.2020.12.034_bib18) 2019; 7 Stone (10.1016/j.jcmg.2020.12.034_bib36) 2015; 36 Kohli (10.1016/j.jcmg.2020.12.034_bib5) 2018; 20 Bapat (10.1016/j.jcmg.2020.12.034_bib37) 2015; 86 Batteux (10.1016/j.jcmg.2020.12.034_bib16) 2019; 7 Rajani (10.1016/j.jcmg.2020.12.034_bib30) 2016; 71 Sucha (10.1016/j.jcmg.2020.12.034_bib29) 2015; 116 Kinno (10.1016/j.jcmg.2020.12.034_bib46) 2018; 35 Hell (10.1016/j.jcmg.2020.12.034_bib41) 2017; 18 Hermsen (10.1016/j.jcmg.2020.12.034_bib13) 2017; 153 Karady (10.1016/j.jcmg.2020.12.034_bib15) 2018; 12 Ripley (10.1016/j.jcmg.2020.12.034_bib6) 2016; 10 Van Mieghem (10.1016/j.jcmg.2020.12.034_bib39) 2016; 11 Regueiro (10.1016/j.jcmg.2020.12.034_bib25) 2017; 69 Blanke (10.1016/j.jcmg.2020.12.034_bib43) 2017; 11 de Jaegere (10.1016/j.jcmg.2020.12.034_bib7) 2019; 105 Moat (10.1016/j.jcmg.2020.12.034_bib28) 2015; 65 Marom (10.1016/j.jcmg.2020.12.034_bib57) 2015; 22 Newland (10.1016/j.jcmg.2020.12.034_bib12) 2014; 7 |
References_xml | – volume: 20 start-page: 99 year: 2018 ident: bib5 article-title: Transcatheter mitral valve planning and the neo-LVOT: utilization of virtual simulation models and 3D printing publication-title: Curr Treat Options Cardiovasc Med – volume: 36 start-page: 1152 year: 2000 end-page: 1158 ident: bib44 article-title: Outcomes 15 years after valve replacement with a mechanical versus a bioprosthetic valve: final report of the Veterans Affairs randomized trial publication-title: J Am Coll Cardiol – volume: 33 start-page: 1503 year: 2015 end-page: 1521 ident: bib61 article-title: Bioprinting a cardiac valve publication-title: Biotechnol Adv – volume: 10 start-page: 171 year: 2017 end-page: 184 ident: bib11 article-title: Cardiac 3D printing and its future directions publication-title: J Am Coll Cardiol Img – volume: 35 start-page: 2056 year: 2018 end-page: 2070 ident: bib46 article-title: Three-dimensional echocardiography in the evaluation and management of paravalvular regurgitation publication-title: Echocardiography – volume: 19 start-page: 1419 year: 2018 end-page: 1427 ident: bib47 article-title: Paravalvular leakage in patients with prosthetic heart valves: cardiac computed tomography findings and clinical features publication-title: Eur Heart J Cardiovasc Imaging – volume: 12 start-page: 1389 year: 2019 end-page: 1391 ident: bib63 article-title: Holographic augmented reality and 3D printing for advanced planning of sinus venosus ASD/partial anomalous pulmonary venous return percutaneous management publication-title: J Am Coll Cardiol Intv – volume: 141 start-page: 0708041 year: 2019 end-page: 07080422 ident: bib58 article-title: On the simulation of mitral valve function in health, disease, and treatment publication-title: J Biomech Eng – volume: 12 start-page: 1053 year: 2013 end-page: 1071 ident: bib20 article-title: Mechanics of the mitral valve: a critical review, an in vivo parameter identification, and the effect of prestrain publication-title: Biomech Model Mechanobiol – volume: 40 start-page: 441 year: 2019 end-page: 451 ident: bib24 article-title: Outcomes of transcatheter mitral valve replacement for degenerated bioprostheses, failed annuloplasty rings, and mitral annular calcification publication-title: Eur Heart J – volume: 7 start-page: 132 year: 2019 end-page: 142 ident: bib18 article-title: 3D printing and heart failure: the present and the future publication-title: J Am Coll Cardiol HF – volume: 7 start-page: 579 year: 2019 ident: bib19 article-title: Three-dimensional printing in structural heart disease and intervention publication-title: Ann Transl Med – volume: 12 start-page: 153 year: 2018 end-page: 157 ident: bib15 article-title: Transcatheter mitral valve replacement in mitral annulus calcification - “The art of computer simulation.” publication-title: J Cardiovasc Comput Tomogr – volume: 82 start-page: 40 year: 2020 end-page: 48 ident: bib55 article-title: Simulation of left ventricular outflow tract (LVOT) obstruction in transcatheter mitral valve-in-ring replacement publication-title: Med Eng Phys – volume: 107 start-page: 507 year: 2018 end-page: 516 ident: bib65 article-title: Patient-specific registration of 3D CT angiography (CTA) with x-ray fluoroscopy for image fusion during transcatheter aortic valve implantation (TAVI) increases performance of the procedure publication-title: Clin Res Cardiol – volume: 116 start-page: 112 year: 2015 end-page: 120 ident: bib29 article-title: Reliability, agreement, and presentation of a reference standard for assessing implanted heart valve sizes by multidetector-row computed tomography publication-title: Am J Cardiol – volume: 11 start-page: 188 year: 1998 end-page: 200 ident: bib14 article-title: Three-dimensional measurement of the mitral annulus by multiplane transesophageal echocardiography: in vitro validation and in vivo demonstration publication-title: J Am Soc Echocardiogr – volume: 9 start-page: 1361 year: 2016 end-page: 1371 ident: bib26 article-title: Transcatheter mitral valve replacement in native mitral valve disease with severe mitral annular calcification: results from the first multicenter global registry publication-title: J Am Coll Cardiol Intv – volume: 46 start-page: 217 year: 2013 end-page: 228 ident: bib53 article-title: Toward patient-specific simulations of cardiac valves: state-of-the-art and future directions publication-title: J Biomech – volume: 140 start-page: 1156 year: 2019 end-page: 1169 ident: bib21 article-title: Contemporary Presentation and management of valvular heart disease: the EURObservational Research Programme Valvular Heart Disease II Survey publication-title: Circulation – volume: 71 start-page: e41 year: 2016 end-page: e48 ident: bib30 article-title: Multidetector computed tomography sizing of bioprosthetic valves: guidelines for measurement and implications for valve-in-valve therapies publication-title: Clin Radiol – volume: 17 start-page: 589 year: 2016 end-page: 590 ident: bib48 article-title: Recommendations for the imaging assessment of prosthetic heart valves: a report from the European Association of Cardiovascular Imaging endorsed by the Chinese Society of Echocardiography, the Inter-American Society of Echocardiography, and the Brazilian Department of Cardiovascular Imaging publication-title: Eur Heart J Cardiovasc Imaging – volume: 66 start-page: 1934 year: 2015 end-page: 1941 ident: bib33 article-title: Mitral annulus calcification publication-title: J Am Coll Cardiol – volume: 111 start-page: 421 year: 2018 end-page: 431 ident: bib49 article-title: Multimodality imaging guidance for percutaneous paravalvular leak closure: Insights from the multi-centre FFPP register publication-title: Arch Cardiovasc Dis – volume: 153 start-page: 132 year: 2017 end-page: 140 ident: bib13 article-title: Scan, plan, print, practice, perform: Development and use of a patient-specific 3-dimensional printed model in adult cardiac surgery publication-title: J Thorac Cardiovasc Surg – volume: 8 start-page: 612 year: 2015 end-page: 615 ident: bib31 article-title: Mitral annular evaluation with CT in the context of transcatheter mitral valve replacement publication-title: J Am Coll Cardiol Img – volume: 10 start-page: 28 year: 2016 end-page: 36 ident: bib6 article-title: 3D printing based on cardiac CT assists anatomic visualization prior to transcatheter aortic valve replacement publication-title: J Cardiovasc Comput Tomogr – volume: 54 start-page: 911 year: 2009 end-page: 918 ident: bib51 article-title: Geometry and degree of apposition of the CoreValve ReValving system with multislice computed tomography after implantation in patients with aortic stenosis publication-title: J Am Coll Cardiol – volume: 9 start-page: 1349 year: 2016 end-page: 1352 ident: bib10 article-title: Predicting LVOT obstruction after TMVR publication-title: J Am Coll Cardiol Img – volume: 56 start-page: 617 year: 2010 end-page: 626 ident: bib23 article-title: Anatomy of the mitral valvular complex and its implications for transcatheter interventions for mitral regurgitation publication-title: J Am Coll Cardiol – volume: 12 start-page: Y16 year: 2016 end-page: Y20 ident: bib32 article-title: Calcification of the aortic valve and mitral apparatus: location, quantification and implications for device selection publication-title: EuroIntervention – volume: 18 start-page: 906 year: 2017 end-page: 914 ident: bib41 article-title: Prediction of fluoroscopic angulations for transcatheter aortic valve implantation by CT angiography: influence on procedural parameters publication-title: Eur Heart J Cardiovasc Imaging – volume: 33 year: 2017 ident: bib59 article-title: Modelling mitral valvular dynamics-current trend and future directions publication-title: Int J Numer Method Biomed Eng – volume: 92 start-page: E537 year: 2018 end-page: E549 ident: bib3 article-title: Three-dimensional prototyping for procedural simulation of transcatheter mitral valve replacement in patients with mitral annular calcification publication-title: Catheter Cardiovasc Interv – volume: 71 start-page: 1841 year: 2018 end-page: 1853 ident: bib27 article-title: 1-year outcomes of transcatheter mitral valve replacement in patients with severe mitral annular calcification publication-title: J Am Coll Cardiol – volume: 11 start-page: 1428 year: 2016 end-page: 1431 ident: bib39 article-title: Computed tomography optimised fluoroscopy guidance for transcatheter mitral therapies publication-title: EuroIntervention – volume: 65 start-page: 2352 year: 2015 end-page: 2353 ident: bib28 article-title: Transcatheter mitral valve replacement for the treatment of mitral regurgitation: in-hospital outcomes of an apically tethered device publication-title: J Am Coll Cardiol – volume: 62 start-page: 431 year: 2013 end-page: 438 ident: bib1 article-title: The impact of integration of a multidetector computed tomography annulus area sizing algorithm on outcomes of transcatheter aortic valve replacement: a prospective, multicenter, controlled trial publication-title: J Am Coll Cardiol – volume: 105 start-page: s21 year: 2019 end-page: s27 ident: bib7 article-title: Patient-specific computer simulation for transcatheter cardiac interventions: what a clinician needs to know publication-title: Heart – volume: 13 start-page: e1047 year: 2017 end-page: e1057 ident: bib42 article-title: Transcatheter mitral valve replacement: long-term outcomes of first-in-man experience with an apically tethered device- a case series from a single centre publication-title: EuroIntervention – volume: 33 year: 2017 ident: bib54 article-title: A virtual sizing tool for mitral valve annuloplasty publication-title: Int J Numer Method Biomed Eng – volume: 9 start-page: 508 year: 2016 end-page: 512 ident: bib52 article-title: Patient-specific computer modeling to predict aortic regurgitation after transcatheter aortic valve replacement publication-title: J Am Coll Cardiol Intv – volume: 11 start-page: 281 year: 2017 end-page: 287 ident: bib43 article-title: Left ventricular access point determination for a coaxial approach to the mitral annular landing zone in transcatheter mitral valve replacement publication-title: J Cardiovasc Comput Tomogr – volume: 92 start-page: 379 year: 2018 end-page: 387 ident: bib9 article-title: Validating a prediction modeling tool for left ventricular outflow tract (LVOT) obstruction after transcatheter mitral valve replacement (TMVR) publication-title: Catheter Cardiovasc Interv – volume: 22 start-page: 595 year: 2015 end-page: 620 ident: bib57 article-title: Numerical methods for fluid–structure interaction models of aortic valves publication-title: Archives of Computational Methods in Engineering – volume: 10 start-page: 482 year: 2017 end-page: 485 ident: bib35 article-title: Predicting LVOT obstruction in transcatheter mitral valve implantation: concept of the neo-LVOT publication-title: J Am Coll Cardiol Img – volume: 69 start-page: 2175 year: 2017 end-page: 2192 ident: bib25 article-title: Transcatheter mitral valve replacement: insights from early clinical experience and future challenges publication-title: J Am Coll Cardiol – volume: 12 start-page: 2402 year: 2019 end-page: 2412 ident: bib38 article-title: Novel multiphase assessment for predicting left ventricular outflow tract obstruction before transcatheter mitral valve replacement publication-title: J Am Coll Cardiol Intv – volume: 72 start-page: 956 year: 2018 end-page: 958 ident: bib56 article-title: Patient-specific computer modeling for the planning of transcatheter mitral valve replacement publication-title: J Am Coll Cardiol – volume: 211 start-page: 64 year: 2019 end-page: 83 ident: bib60 article-title: 3D Bioprinting of cardiac tissue and cardiac stem cell therapy publication-title: Transl Res – volume: 36 start-page: 1878 year: 2015 end-page: 1891 ident: bib36 article-title: Clinical trial design principles and endpoint definitions for transcatheter mitral valve repair and replacement: part 2: endpoint definitions: a consensus document from the Mitral Valve Academic Research Consortium publication-title: Eur Heart J – volume: 7 start-page: 627 year: 2014 end-page: 631 ident: bib12 article-title: Emerging role of MDCT in planning complex structural transcatheter intervention publication-title: J Am Coll Cardiol Img – volume: 7 start-page: 23 year: 2019 ident: bib16 article-title: 3D-printed models for surgical planning in complex congenital heart diseases: a systematic review publication-title: Front Pediatr – volume: 12 start-page: 182 year: 2019 end-page: 193 ident: bib22 article-title: Predictors of left ventricular outflow tract obstruction after transcatheter mitral valve replacement publication-title: J Am Coll Cardiol Intv – volume: 7 start-page: 292 year: 2014 end-page: 308 ident: bib2 article-title: 3D TEE during catheter-based interventions publication-title: J Am Coll Cardiol Img – volume: 45 start-page: 508 year: 2017 end-page: 519 ident: bib17 article-title: 3D printed modeling of the mitral valve for catheter-based structural interventions publication-title: Ann Biomed Eng – volume: 365 start-page: 482 year: 2019 end-page: 487 ident: bib62 article-title: 3D bioprinting of collagen to rebuild components of the human heart publication-title: Science – volume: 43 start-page: 561 year: 1987 end-page: 563 ident: bib34 article-title: Dynamic left ventricular outflow tract obstruction when the anterior leaflet is retained at prosthetic mitral valve replacement publication-title: Ann Thorac Surg – volume: 5 year: 2016 ident: bib8 article-title: A systematic review of image segmentation methodology, used in the additive manufacture of patient-specific 3D printed models of the cardiovascular system publication-title: JRSM Cardiovasc Dis – volume: 86 start-page: 747 year: 2015 end-page: 760 ident: bib37 article-title: Factors influencing left ventricular outflow tract obstruction following a mitral valve-in-valve or valve-in-ring procedure, part 1 publication-title: Catheter Cardiovasc Interv – volume: 5 start-page: 6 year: 2019 ident: bib50 article-title: Methods for verification of 3D printed anatomic model accuracy using cardiac models as an example publication-title: 3D Print Med – volume: 9 start-page: 183 year: 2015 end-page: 192 ident: bib40 article-title: Prediction of fluoroscopic angulation and coronary sinus location by CT in the context of transcatheter mitral valve implantation publication-title: J Cardiovasc Comput Tomogr – volume: 51 start-page: 479 year: 2000 end-page: 487 ident: bib45 article-title: Paravalvular regurgitation: a rare complication following valve replacement surgery publication-title: Angiology – volume: 3 start-page: 9 year: 2019 ident: bib4 article-title: 3D printing for heart valve disease: a systematic review publication-title: Eur Radiol Exp – volume: 57 start-page: 995 year: 2019 end-page: 1013 ident: bib64 article-title: Augmented visualization with depth perception cues to improve the surgeon's performance in minimally invasive surgery publication-title: Med Biol Eng Comput – volume: 35 start-page: 2056 year: 2018 ident: 10.1016/j.jcmg.2020.12.034_bib46 article-title: Three-dimensional echocardiography in the evaluation and management of paravalvular regurgitation publication-title: Echocardiography doi: 10.1111/echo.14194 – volume: 33 year: 2017 ident: 10.1016/j.jcmg.2020.12.034_bib59 article-title: Modelling mitral valvular dynamics-current trend and future directions publication-title: Int J Numer Method Biomed Eng doi: 10.1002/cnm.2858 – volume: 92 start-page: 379 year: 2018 ident: 10.1016/j.jcmg.2020.12.034_bib9 article-title: Validating a prediction modeling tool for left ventricular outflow tract (LVOT) obstruction after transcatheter mitral valve replacement (TMVR) publication-title: Catheter Cardiovasc Interv doi: 10.1002/ccd.27447 – volume: 82 start-page: 40 year: 2020 ident: 10.1016/j.jcmg.2020.12.034_bib55 article-title: Simulation of left ventricular outflow tract (LVOT) obstruction in transcatheter mitral valve-in-ring replacement publication-title: Med Eng Phys doi: 10.1016/j.medengphy.2020.05.018 – volume: 3 start-page: 9 year: 2019 ident: 10.1016/j.jcmg.2020.12.034_bib4 article-title: 3D printing for heart valve disease: a systematic review publication-title: Eur Radiol Exp doi: 10.1186/s41747-018-0083-0 – volume: 36 start-page: 1878 year: 2015 ident: 10.1016/j.jcmg.2020.12.034_bib36 article-title: Clinical trial design principles and endpoint definitions for transcatheter mitral valve repair and replacement: part 2: endpoint definitions: a consensus document from the Mitral Valve Academic Research Consortium publication-title: Eur Heart J doi: 10.1093/eurheartj/ehv333 – volume: 20 start-page: 99 year: 2018 ident: 10.1016/j.jcmg.2020.12.034_bib5 article-title: Transcatheter mitral valve planning and the neo-LVOT: utilization of virtual simulation models and 3D printing publication-title: Curr Treat Options Cardiovasc Med doi: 10.1007/s11936-018-0694-z – volume: 10 start-page: 28 year: 2016 ident: 10.1016/j.jcmg.2020.12.034_bib6 article-title: 3D printing based on cardiac CT assists anatomic visualization prior to transcatheter aortic valve replacement publication-title: J Cardiovasc Comput Tomogr doi: 10.1016/j.jcct.2015.12.004 – volume: 8 start-page: 612 year: 2015 ident: 10.1016/j.jcmg.2020.12.034_bib31 article-title: Mitral annular evaluation with CT in the context of transcatheter mitral valve replacement publication-title: J Am Coll Cardiol Img doi: 10.1016/j.jcmg.2014.07.028 – volume: 7 start-page: 627 year: 2014 ident: 10.1016/j.jcmg.2020.12.034_bib12 article-title: Emerging role of MDCT in planning complex structural transcatheter intervention publication-title: J Am Coll Cardiol Img doi: 10.1016/j.jcmg.2014.04.006 – volume: 71 start-page: e41 year: 2016 ident: 10.1016/j.jcmg.2020.12.034_bib30 article-title: Multidetector computed tomography sizing of bioprosthetic valves: guidelines for measurement and implications for valve-in-valve therapies publication-title: Clin Radiol doi: 10.1016/j.crad.2015.10.013 – volume: 10 start-page: 482 year: 2017 ident: 10.1016/j.jcmg.2020.12.034_bib35 article-title: Predicting LVOT obstruction in transcatheter mitral valve implantation: concept of the neo-LVOT publication-title: J Am Coll Cardiol Img doi: 10.1016/j.jcmg.2016.01.005 – volume: 45 start-page: 508 year: 2017 ident: 10.1016/j.jcmg.2020.12.034_bib17 article-title: 3D printed modeling of the mitral valve for catheter-based structural interventions publication-title: Ann Biomed Eng doi: 10.1007/s10439-016-1676-5 – volume: 9 start-page: 1361 year: 2016 ident: 10.1016/j.jcmg.2020.12.034_bib26 article-title: Transcatheter mitral valve replacement in native mitral valve disease with severe mitral annular calcification: results from the first multicenter global registry publication-title: J Am Coll Cardiol Intv doi: 10.1016/j.jcin.2016.04.022 – volume: 9 start-page: 1349 year: 2016 ident: 10.1016/j.jcmg.2020.12.034_bib10 article-title: Predicting LVOT obstruction after TMVR publication-title: J Am Coll Cardiol Img doi: 10.1016/j.jcmg.2016.01.017 – volume: 9 start-page: 183 year: 2015 ident: 10.1016/j.jcmg.2020.12.034_bib40 article-title: Prediction of fluoroscopic angulation and coronary sinus location by CT in the context of transcatheter mitral valve implantation publication-title: J Cardiovasc Comput Tomogr doi: 10.1016/j.jcct.2015.02.007 – volume: 5 start-page: 6 year: 2019 ident: 10.1016/j.jcmg.2020.12.034_bib50 article-title: Methods for verification of 3D printed anatomic model accuracy using cardiac models as an example publication-title: 3D Print Med doi: 10.1186/s41205-019-0043-1 – volume: 7 start-page: 132 year: 2019 ident: 10.1016/j.jcmg.2020.12.034_bib18 article-title: 3D printing and heart failure: the present and the future publication-title: J Am Coll Cardiol HF – volume: 57 start-page: 995 year: 2019 ident: 10.1016/j.jcmg.2020.12.034_bib64 article-title: Augmented visualization with depth perception cues to improve the surgeon's performance in minimally invasive surgery publication-title: Med Biol Eng Comput doi: 10.1007/s11517-018-1929-6 – volume: 22 start-page: 595 year: 2015 ident: 10.1016/j.jcmg.2020.12.034_bib57 article-title: Numerical methods for fluid–structure interaction models of aortic valves publication-title: Archives of Computational Methods in Engineering doi: 10.1007/s11831-014-9133-9 – volume: 56 start-page: 617 year: 2010 ident: 10.1016/j.jcmg.2020.12.034_bib23 article-title: Anatomy of the mitral valvular complex and its implications for transcatheter interventions for mitral regurgitation publication-title: J Am Coll Cardiol doi: 10.1016/j.jacc.2010.04.030 – volume: 36 start-page: 1152 year: 2000 ident: 10.1016/j.jcmg.2020.12.034_bib44 article-title: Outcomes 15 years after valve replacement with a mechanical versus a bioprosthetic valve: final report of the Veterans Affairs randomized trial publication-title: J Am Coll Cardiol doi: 10.1016/S0735-1097(00)00834-2 – volume: 12 start-page: 1053 year: 2013 ident: 10.1016/j.jcmg.2020.12.034_bib20 article-title: Mechanics of the mitral valve: a critical review, an in vivo parameter identification, and the effect of prestrain publication-title: Biomech Model Mechanobiol doi: 10.1007/s10237-012-0462-z – volume: 11 start-page: 1428 year: 2016 ident: 10.1016/j.jcmg.2020.12.034_bib39 article-title: Computed tomography optimised fluoroscopy guidance for transcatheter mitral therapies publication-title: EuroIntervention doi: 10.4244/EIJV11I12A273 – volume: 7 start-page: 579 year: 2019 ident: 10.1016/j.jcmg.2020.12.034_bib19 article-title: Three-dimensional printing in structural heart disease and intervention publication-title: Ann Transl Med doi: 10.21037/atm.2019.09.73 – volume: 140 start-page: 1156 year: 2019 ident: 10.1016/j.jcmg.2020.12.034_bib21 article-title: Contemporary Presentation and management of valvular heart disease: the EURObservational Research Programme Valvular Heart Disease II Survey publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.119.041080 – volume: 40 start-page: 441 year: 2019 ident: 10.1016/j.jcmg.2020.12.034_bib24 article-title: Outcomes of transcatheter mitral valve replacement for degenerated bioprostheses, failed annuloplasty rings, and mitral annular calcification publication-title: Eur Heart J doi: 10.1093/eurheartj/ehy590 – volume: 92 start-page: E537 year: 2018 ident: 10.1016/j.jcmg.2020.12.034_bib3 article-title: Three-dimensional prototyping for procedural simulation of transcatheter mitral valve replacement in patients with mitral annular calcification publication-title: Catheter Cardiovasc Interv doi: 10.1002/ccd.27488 – volume: 365 start-page: 482 year: 2019 ident: 10.1016/j.jcmg.2020.12.034_bib62 article-title: 3D bioprinting of collagen to rebuild components of the human heart publication-title: Science doi: 10.1126/science.aav9051 – volume: 116 start-page: 112 year: 2015 ident: 10.1016/j.jcmg.2020.12.034_bib29 article-title: Reliability, agreement, and presentation of a reference standard for assessing implanted heart valve sizes by multidetector-row computed tomography publication-title: Am J Cardiol doi: 10.1016/j.amjcard.2015.03.048 – volume: 11 start-page: 281 year: 2017 ident: 10.1016/j.jcmg.2020.12.034_bib43 article-title: Left ventricular access point determination for a coaxial approach to the mitral annular landing zone in transcatheter mitral valve replacement publication-title: J Cardiovasc Comput Tomogr doi: 10.1016/j.jcct.2017.04.002 – volume: 111 start-page: 421 year: 2018 ident: 10.1016/j.jcmg.2020.12.034_bib49 article-title: Multimodality imaging guidance for percutaneous paravalvular leak closure: Insights from the multi-centre FFPP register publication-title: Arch Cardiovasc Dis doi: 10.1016/j.acvd.2018.05.001 – volume: 33 year: 2017 ident: 10.1016/j.jcmg.2020.12.034_bib54 article-title: A virtual sizing tool for mitral valve annuloplasty publication-title: Int J Numer Method Biomed Eng doi: 10.1002/cnm.2788 – volume: 7 start-page: 292 year: 2014 ident: 10.1016/j.jcmg.2020.12.034_bib2 article-title: 3D TEE during catheter-based interventions publication-title: J Am Coll Cardiol Img doi: 10.1016/j.jcmg.2013.10.012 – volume: 18 start-page: 906 year: 2017 ident: 10.1016/j.jcmg.2020.12.034_bib41 article-title: Prediction of fluoroscopic angulations for transcatheter aortic valve implantation by CT angiography: influence on procedural parameters publication-title: Eur Heart J Cardiovasc Imaging – volume: 107 start-page: 507 year: 2018 ident: 10.1016/j.jcmg.2020.12.034_bib65 article-title: Patient-specific registration of 3D CT angiography (CTA) with x-ray fluoroscopy for image fusion during transcatheter aortic valve implantation (TAVI) increases performance of the procedure publication-title: Clin Res Cardiol doi: 10.1007/s00392-018-1212-8 – volume: 17 start-page: 589 year: 2016 ident: 10.1016/j.jcmg.2020.12.034_bib48 publication-title: Eur Heart J Cardiovasc Imaging doi: 10.1093/ehjci/jew025 – volume: 71 start-page: 1841 year: 2018 ident: 10.1016/j.jcmg.2020.12.034_bib27 article-title: 1-year outcomes of transcatheter mitral valve replacement in patients with severe mitral annular calcification publication-title: J Am Coll Cardiol doi: 10.1016/j.jacc.2018.02.054 – volume: 46 start-page: 217 year: 2013 ident: 10.1016/j.jcmg.2020.12.034_bib53 article-title: Toward patient-specific simulations of cardiac valves: state-of-the-art and future directions publication-title: J Biomech doi: 10.1016/j.jbiomech.2012.10.026 – volume: 13 start-page: e1047 year: 2017 ident: 10.1016/j.jcmg.2020.12.034_bib42 article-title: Transcatheter mitral valve replacement: long-term outcomes of first-in-man experience with an apically tethered device- a case series from a single centre publication-title: EuroIntervention doi: 10.4244/EIJ-D-17-00154 – volume: 12 start-page: 182 year: 2019 ident: 10.1016/j.jcmg.2020.12.034_bib22 article-title: Predictors of left ventricular outflow tract obstruction after transcatheter mitral valve replacement publication-title: J Am Coll Cardiol Intv doi: 10.1016/j.jcin.2018.12.001 – volume: 5 year: 2016 ident: 10.1016/j.jcmg.2020.12.034_bib8 article-title: A systematic review of image segmentation methodology, used in the additive manufacture of patient-specific 3D printed models of the cardiovascular system publication-title: JRSM Cardiovasc Dis – volume: 65 start-page: 2352 year: 2015 ident: 10.1016/j.jcmg.2020.12.034_bib28 article-title: Transcatheter mitral valve replacement for the treatment of mitral regurgitation: in-hospital outcomes of an apically tethered device publication-title: J Am Coll Cardiol doi: 10.1016/j.jacc.2015.01.066 – volume: 54 start-page: 911 year: 2009 ident: 10.1016/j.jcmg.2020.12.034_bib51 article-title: Geometry and degree of apposition of the CoreValve ReValving system with multislice computed tomography after implantation in patients with aortic stenosis publication-title: J Am Coll Cardiol doi: 10.1016/j.jacc.2009.04.075 – volume: 105 start-page: s21 year: 2019 ident: 10.1016/j.jcmg.2020.12.034_bib7 article-title: Patient-specific computer simulation for transcatheter cardiac interventions: what a clinician needs to know publication-title: Heart doi: 10.1136/heartjnl-2018-313514 – volume: 12 start-page: 153 year: 2018 ident: 10.1016/j.jcmg.2020.12.034_bib15 article-title: Transcatheter mitral valve replacement in mitral annulus calcification - “The art of computer simulation.” publication-title: J Cardiovasc Comput Tomogr doi: 10.1016/j.jcct.2017.12.007 – volume: 7 start-page: 23 year: 2019 ident: 10.1016/j.jcmg.2020.12.034_bib16 article-title: 3D-printed models for surgical planning in complex congenital heart diseases: a systematic review publication-title: Front Pediatr doi: 10.3389/fped.2019.00023 – volume: 12 start-page: 2402 year: 2019 ident: 10.1016/j.jcmg.2020.12.034_bib38 article-title: Novel multiphase assessment for predicting left ventricular outflow tract obstruction before transcatheter mitral valve replacement publication-title: J Am Coll Cardiol Intv doi: 10.1016/j.jcin.2019.06.015 – volume: 62 start-page: 431 year: 2013 ident: 10.1016/j.jcmg.2020.12.034_bib1 article-title: The impact of integration of a multidetector computed tomography annulus area sizing algorithm on outcomes of transcatheter aortic valve replacement: a prospective, multicenter, controlled trial publication-title: J Am Coll Cardiol doi: 10.1016/j.jacc.2013.04.036 – volume: 9 start-page: 508 year: 2016 ident: 10.1016/j.jcmg.2020.12.034_bib52 article-title: Patient-specific computer modeling to predict aortic regurgitation after transcatheter aortic valve replacement publication-title: J Am Coll Cardiol Intv doi: 10.1016/j.jcin.2016.01.003 – volume: 51 start-page: 479 year: 2000 ident: 10.1016/j.jcmg.2020.12.034_bib45 article-title: Paravalvular regurgitation: a rare complication following valve replacement surgery publication-title: Angiology doi: 10.1177/000331970005100605 – volume: 12 start-page: 1389 year: 2019 ident: 10.1016/j.jcmg.2020.12.034_bib63 article-title: Holographic augmented reality and 3D printing for advanced planning of sinus venosus ASD/partial anomalous pulmonary venous return percutaneous management publication-title: J Am Coll Cardiol Intv doi: 10.1016/j.jcin.2019.03.020 – volume: 12 start-page: Y16 year: 2016 ident: 10.1016/j.jcmg.2020.12.034_bib32 article-title: Calcification of the aortic valve and mitral apparatus: location, quantification and implications for device selection publication-title: EuroIntervention doi: 10.4244/EIJV12SYA4 – volume: 19 start-page: 1419 year: 2018 ident: 10.1016/j.jcmg.2020.12.034_bib47 article-title: Paravalvular leakage in patients with prosthetic heart valves: cardiac computed tomography findings and clinical features publication-title: Eur Heart J Cardiovasc Imaging doi: 10.1093/ehjci/jex341 – volume: 72 start-page: 956 year: 2018 ident: 10.1016/j.jcmg.2020.12.034_bib56 article-title: Patient-specific computer modeling for the planning of transcatheter mitral valve replacement publication-title: J Am Coll Cardiol doi: 10.1016/j.jacc.2018.05.064 – volume: 66 start-page: 1934 year: 2015 ident: 10.1016/j.jcmg.2020.12.034_bib33 article-title: Mitral annulus calcification publication-title: J Am Coll Cardiol doi: 10.1016/j.jacc.2015.08.872 – volume: 141 start-page: 0708041 issue: 7 year: 2019 ident: 10.1016/j.jcmg.2020.12.034_bib58 article-title: On the simulation of mitral valve function in health, disease, and treatment publication-title: J Biomech Eng doi: 10.1115/1.4043552 – volume: 10 start-page: 171 year: 2017 ident: 10.1016/j.jcmg.2020.12.034_bib11 article-title: Cardiac 3D printing and its future directions publication-title: J Am Coll Cardiol Img doi: 10.1016/j.jcmg.2016.12.001 – volume: 211 start-page: 64 year: 2019 ident: 10.1016/j.jcmg.2020.12.034_bib60 article-title: 3D Bioprinting of cardiac tissue and cardiac stem cell therapy publication-title: Transl Res doi: 10.1016/j.trsl.2019.04.004 – volume: 69 start-page: 2175 year: 2017 ident: 10.1016/j.jcmg.2020.12.034_bib25 article-title: Transcatheter mitral valve replacement: insights from early clinical experience and future challenges publication-title: J Am Coll Cardiol doi: 10.1016/j.jacc.2017.02.045 – volume: 153 start-page: 132 year: 2017 ident: 10.1016/j.jcmg.2020.12.034_bib13 article-title: Scan, plan, print, practice, perform: Development and use of a patient-specific 3-dimensional printed model in adult cardiac surgery publication-title: J Thorac Cardiovasc Surg doi: 10.1016/j.jtcvs.2016.08.007 – volume: 33 start-page: 1503 year: 2015 ident: 10.1016/j.jcmg.2020.12.034_bib61 article-title: Bioprinting a cardiac valve publication-title: Biotechnol Adv doi: 10.1016/j.biotechadv.2015.07.006 – volume: 43 start-page: 561 year: 1987 ident: 10.1016/j.jcmg.2020.12.034_bib34 article-title: Dynamic left ventricular outflow tract obstruction when the anterior leaflet is retained at prosthetic mitral valve replacement publication-title: Ann Thorac Surg doi: 10.1016/S0003-4975(10)60213-5 – volume: 11 start-page: 188 year: 1998 ident: 10.1016/j.jcmg.2020.12.034_bib14 article-title: Three-dimensional measurement of the mitral annulus by multiplane transesophageal echocardiography: in vitro validation and in vivo demonstration publication-title: J Am Soc Echocardiogr doi: 10.1016/S0894-7317(98)70076-8 – volume: 86 start-page: 747 year: 2015 ident: 10.1016/j.jcmg.2020.12.034_bib37 article-title: Factors influencing left ventricular outflow tract obstruction following a mitral valve-in-valve or valve-in-ring procedure, part 1 publication-title: Catheter Cardiovasc Interv doi: 10.1002/ccd.25928 |
SSID | ssj0060647 |
Score | 2.429895 |
SecondaryResourceType | review_article |
Snippet | A plethora of catheter-based strategies have been developed to treat mitral valve disease. Evolving 3-dimensional (3D) multidetector computed tomography (MDCT)... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1644 |
SubjectTerms | 3D printing computational modeling mitral annular calcification multidetector computed tomography paravalvular leakage closure transcatheter mitral valve replacement |
Title | Computed Tomography–Derived 3D Modeling to Guide Sizing and Planning of Transcatheter Mitral Valve Interventions |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1936878X21001467 https://dx.doi.org/10.1016/j.jcmg.2020.12.034 https://www.ncbi.nlm.nih.gov/pubmed/33744155 https://www.proquest.com/docview/2503660008 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELZKD4gLovwulMpI3FDYxHZs51haSkFaLm3R3qz4JyhVm1Tsbg8cEO_AC_RZeBSehBnHWcGhReIWWx7F8oxnPtvzQ8hLay2z6D2jbFVlIsBXLXyT1Y0sgrIMFCcGOM8-ysMT8WFezjfI3hgLg26VSfcPOj1q69QzTas5vWjb6RFAD6mVnjNMIwT7HfQwFzoG8c3fjNpYYjDl8LIsMxydAmcGH69Td_4Zzogsj1eCXFxnnK4Dn9EIHdwjdxN6pLvDBLfIRujuk9uz9D7-gCxSkQZPj_vzlIz61_cf-yBml9DJ939eYfEzDEGny56-W7U-0KP2K7brztOxhBHtGxqtWMzqCktPZy1eidBP9dlloO__cJRcPCQnB2-P9w6zVFYhc0LxZeZtkELDdmty27gy941yvtC5qyzYcuG4YIFhYbJSVrxWQaqguK4rMORKOO35I7LZ9V14QmjBmwoARs1cRDZWc6ulF7LOm-ClkBNSjOtpXMo5jqUvzszoXHZqkAcGeWAKZoAHE_JqTXMxZNy4cTQf2WTGWFLQfgYMwo1U5ZrqL2n7J92LURIMbEN8W6m70K8WBpAklxIR1YQ8HkRkPXvOFZ5ay6f_-ddn5A5DT5rodrhNNpdfVuE5QKGl3SG3Xn8rdqLE_wZlPgi4 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELZKkYAL4p8tf0bihsImtmMnR9RSttDtpVu0N8t_QanapOru9sAB8Q68AM_Co_AkzCTOCg4tErfE8iiR59f2NzOEvLLWMovoGWXLMhEBnozwVWIqmQVlGRhOTHCeHsjJkfgwz-cbZHvIhUFYZbT9vU3vrHUcGcfVHJ_V9fgQQg9ZqGLOsIwQ6Ps1cl2A-qJ2vvm6xnlIzKbsr5ZlgtNj5kwP8jp2p59hk8jS7kyQi8u802XRZ-eFdu-Q2zF8pG_7P7xLNkJzj9yYxgvy-2QRuzR4OmtPYzXqX9--74CcXcAg3_n5A7ufYQ46Xbb0_ar2gR7WX_DdNJ4OPYxoW9HOjXVlXWHt6bTGMxH6yZxcBLr3B1Jy8YAc7b6bbU-S2FchcULxZeJtkKIAfatSW7k89ZVyPitSV1pw5sJxwQLDzmS5LLlRQaqgeGFK8ORKuMLzh2SzaZvwmNCMVyVEGIa5LrSxBbeF9EKatApeCjki2bCe2sWi49j74kQP6LJjjTzQyAOdMQ08GJHXa5qzvuTGlbP5wCY9JJOC-dPgEa6kytdUf4nbP-leDpKgQQ_xcsU0oV0tNISSXEoMqUbkUS8i67_nXOG2Nd_6z6--IDcns-m-3t87-PiE3GIIq-kwiE_J5vJ8FZ5BXLS0zzu5_w1gXwrM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computed+Tomography-Derived+3D+Modeling+to+Guide+Sizing+and+Planning+of+Transcatheter+Mitral+Valve+Interventions&rft.jtitle=JACC.+Cardiovascular+imaging&rft.au=Ooms%2C+Joris+F&rft.au=Wang%2C+Dee+Dee&rft.au=Rajani%2C+Ronak&rft.au=Redwood%2C+Simon&rft.date=2021-08-01&rft.eissn=1876-7591&rft_id=info:doi/10.1016%2Fj.jcmg.2020.12.034&rft_id=info%3Apmid%2F33744155&rft.externalDocID=33744155 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-878X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-878X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-878X&client=summon |