Determining oxidative stability of battery electrolytes: validity of common electrochemical stability window (ESW) data and alternative strategies
Increasing the operation voltage of electrochemical energy storage devices is a viable measure to realize higher specific energies and energy densities. A sufficient oxidative stability of electrolytes is the predominant requirement for successful high voltage applicability. The common method to inv...
Saved in:
Published in | Physical chemistry chemical physics : PCCP Vol. 19; no. 24; pp. 1678 - 1686 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Increasing the operation voltage of electrochemical energy storage devices is a viable measure to realize higher specific energies and energy densities. A sufficient oxidative stability of electrolytes is the predominant requirement for successful high voltage applicability. The common method to investigate oxidative stability of LIB electrolytes is related to determination of the electrochemical stability window (ESW), on
e.g.
Pt or LiMn
2
O
4
electrodes. However, the transferability of the obtained results to practical systems is questionable for several reasons. In this work, we evaluated the validity of the potentiodynamic based ESW method by comparing the obtained data with the results of galvanostatic based techniques, applied on commercial positive electrodes. We demonstrated that the oxidative stabilities, determined by the two techniques, are in good accordance with each other. However, the investigation of electrolytes being incompatible to Li metal, renders conventional ESW measurements useless when metallic Li is used as counter - and reference electrode in the ESW setup. For this reason, we introduced an alternative setup based on Li
4
Ti
5
O
12
full cells. On the example of a butyronitrile-based electrolyte, we finally demonstrated that this electrolyte is not only reductively but also oxidatively less stable than common LiPF
6
/organic carbonate based electrolytes.
Galvanostatic and potentiodynamic measurements reveal an oxidative stability of common LiPF6 salt/carbonate solvent based electrolytes > 5 V
vs.
Li/Li
+
. |
---|---|
AbstractList | Increasing the operation voltage of electrochemical energy storage devices is a viable measure to realize higher specific energies and energy densities. A sufficient oxidative stability of electrolytes is the predominant requirement for successful high voltage applicability. The common method to investigate oxidative stability of LIB electrolytes is related to determination of the electrochemical stability window (ESW), on e.g. Pt or LiMn2O4 electrodes. However, the transferability of the obtained results to practical systems is questionable for several reasons. In this work, we evaluated the validity of the potentiodynamic based ESW method by comparing the obtained data with the results of galvanostatic based techniques, applied on commercial positive electrodes. We demonstrated that the oxidative stabilities, determined by the two techniques, are in good accordance with each other. However, the investigation of electrolytes being incompatible to Li metal, renders conventional ESW measurements useless when metallic Li is used as counter - and reference electrode in the ESW setup. For this reason, we introduced an alternative setup based on Li4Ti5O12 full cells. On the example of a butyronitrile-based electrolyte, we finally demonstrated that this electrolyte is not only reductively but also oxidatively less stable than common LiPF6/organic carbonate based electrolytes. Increasing the operation voltage of electrochemical energy storage devices is a viable measure to realize higher specific energies and energy densities. A sufficient oxidative stability of electrolytes is the predominant requirement for successful high voltage applicability. The common method to investigate oxidative stability of LIB electrolytes is related to determination of the electrochemical stability window (ESW), on e.g. Pt or LiMn 2 O 4 electrodes. However, the transferability of the obtained results to practical systems is questionable for several reasons. In this work, we evaluated the validity of the potentiodynamic based ESW method by comparing the obtained data with the results of galvanostatic based techniques, applied on commercial positive electrodes. We demonstrated that the oxidative stabilities, determined by the two techniques, are in good accordance with each other. However, the investigation of electrolytes being incompatible to Li metal, renders conventional ESW measurements useless when metallic Li is used as counter – and reference electrode in the ESW setup. For this reason, we introduced an alternative setup based on Li 4 Ti 5 O 12 full cells. On the example of a butyronitrile-based electrolyte, we finally demonstrated that this electrolyte is not only reductively but also oxidatively less stable than common LiPF 6 /organic carbonate based electrolytes. Increasing the operation voltage of electrochemical energy storage devices is a viable measure to realize higher specific energies and energy densities. A sufficient oxidative stability of electrolytes is the predominant requirement for successful high voltage applicability. The common method to investigate oxidative stability of LIB electrolytes is related to determination of the electrochemical stability window (ESW), on e.g. Pt or LiMn O electrodes. However, the transferability of the obtained results to practical systems is questionable for several reasons. In this work, we evaluated the validity of the potentiodynamic based ESW method by comparing the obtained data with the results of galvanostatic based techniques, applied on commercial positive electrodes. We demonstrated that the oxidative stabilities, determined by the two techniques, are in good accordance with each other. However, the investigation of electrolytes being incompatible to Li metal, renders conventional ESW measurements useless when metallic Li is used as counter - and reference electrode in the ESW setup. For this reason, we introduced an alternative setup based on Li Ti O full cells. On the example of a butyronitrile-based electrolyte, we finally demonstrated that this electrolyte is not only reductively but also oxidatively less stable than common LiPF /organic carbonate based electrolytes. Increasing the operation voltage of electrochemical energy storage devices is a viable measure to realize higher specific energies and energy densities. A sufficient oxidative stability of electrolytes is the predominant requirement for successful high voltage applicability. The common method to investigate oxidative stability of LIB electrolytes is related to determination of the electrochemical stability window (ESW), on e.g. Pt or LiMn 2 O 4 electrodes. However, the transferability of the obtained results to practical systems is questionable for several reasons. In this work, we evaluated the validity of the potentiodynamic based ESW method by comparing the obtained data with the results of galvanostatic based techniques, applied on commercial positive electrodes. We demonstrated that the oxidative stabilities, determined by the two techniques, are in good accordance with each other. However, the investigation of electrolytes being incompatible to Li metal, renders conventional ESW measurements useless when metallic Li is used as counter - and reference electrode in the ESW setup. For this reason, we introduced an alternative setup based on Li 4 Ti 5 O 12 full cells. On the example of a butyronitrile-based electrolyte, we finally demonstrated that this electrolyte is not only reductively but also oxidatively less stable than common LiPF 6 /organic carbonate based electrolytes. Galvanostatic and potentiodynamic measurements reveal an oxidative stability of common LiPF6 salt/carbonate solvent based electrolytes > 5 V vs. Li/Li + . |
Author | Kasnatscheew, J Cekic Laskovic, I Streipert, B Winter, M Röser, S Wagner, R |
AuthorAffiliation | Helmholtz-Institute Münster (HI MS) MEET Battery Research Center/Institute of Physical Chemistry, University of Münster IEK-12 Forschungszentrum Jülich GmbH |
AuthorAffiliation_xml | – name: MEET Battery Research Center/Institute of Physical Chemistry, University of Münster – name: Forschungszentrum Jülich GmbH – name: Helmholtz-Institute Münster (HI MS) – name: IEK-12 |
Author_xml | – sequence: 1 givenname: J surname: Kasnatscheew fullname: Kasnatscheew, J – sequence: 2 givenname: B surname: Streipert fullname: Streipert, B – sequence: 3 givenname: S surname: Röser fullname: Röser, S – sequence: 4 givenname: R surname: Wagner fullname: Wagner, R – sequence: 5 givenname: I surname: Cekic Laskovic fullname: Cekic Laskovic, I – sequence: 6 givenname: M surname: Winter fullname: Winter, M |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28597888$$D View this record in MEDLINE/PubMed |
BookMark | eNqN0UtLHTEUB_BQlPrqpvuWuNPCtXnM3EncyVVri2ChLS6HPM7YSCa5Jrnq_Rp-4o7eh12VrnIgP_4Hzn8HbYQYAKH3lBxRwuVn05gp4aRht2_QNq3GfCSJqDbWczPeQjs53xJCaE35W7TFRC0bIcQ2ejqFAql3wYUbHB-dVcXdA85FaeddmePYYa3KYOYYPJiSop8XyMf4Xnlnl8LEvo9hBcxv6J1R_q-UBxdsfMAHZz-uD_GwQ2EVLFZ-yA2rjUkVuHGQ99Bmp3yGd8t3F_06P_s5uRhdXn35Ojm5HJmq4WVkBR1zyoxpeAVAdEWF0lpLJimtOahOM6oIs9xYqikxhHW2qy0wVncEBOO76GCRO03xbga5tL3LBrxXAeIst1SyWjSSyPo_6HBwJiWvBvppQU2KOSfo2mlyvUrzlpL2ua520ky-v9T1bcAfl7kz3YNd01U_A9hfgJTN-ve173Zqu8F8-JfhfwCn26qo |
CitedBy_id | crossref_primary_10_1007_s00216_018_1441_8 crossref_primary_10_3390_ma14143840 crossref_primary_10_1149_2_1221914jes crossref_primary_10_1016_j_ensm_2023_103050 crossref_primary_10_1007_s41061_018_0196_1 crossref_primary_10_1016_j_joule_2019_09_022 crossref_primary_10_1039_D1SC04023E crossref_primary_10_1002_ange_201901381 crossref_primary_10_1002_aenm_202003738 crossref_primary_10_1002_batt_202100125 crossref_primary_10_1016_j_powera_2021_100071 crossref_primary_10_1016_j_ensm_2020_07_009 crossref_primary_10_1007_s10008_020_04756_2 crossref_primary_10_1016_j_jpowsour_2022_231425 crossref_primary_10_3390_batteries6020021 crossref_primary_10_1016_j_electacta_2019_05_076 crossref_primary_10_3390_ma14195676 crossref_primary_10_1002_batt_202300085 crossref_primary_10_1002_batt_201800123 crossref_primary_10_1016_j_xcrp_2021_100521 crossref_primary_10_1021_acsenergylett_1c02489 crossref_primary_10_1016_j_trechm_2022_04_010 crossref_primary_10_1016_j_electacta_2021_139769 crossref_primary_10_1149_2_1221814jes crossref_primary_10_1002_advs_202305282 crossref_primary_10_1016_j_jpowsour_2021_229760 crossref_primary_10_1039_D1MA00009H crossref_primary_10_1002_aenm_201900574 crossref_primary_10_1002_ange_202115884 crossref_primary_10_1021_acsami_2c02118 crossref_primary_10_1002_aesr_202000101 crossref_primary_10_1149_1945_7111_ac6830 crossref_primary_10_1016_j_matt_2023_02_012 crossref_primary_10_1038_s41560_018_0107_2 crossref_primary_10_1039_D1GC02451E crossref_primary_10_1149_2_0691913jes crossref_primary_10_1016_j_carbon_2021_12_072 crossref_primary_10_1002_ente_201900310 crossref_primary_10_1002_anie_202115884 crossref_primary_10_1149_2_1221802jes crossref_primary_10_1002_cssc_202001530 crossref_primary_10_1021_acs_chemmater_9b03173 crossref_primary_10_1016_j_jpowsour_2018_08_077 crossref_primary_10_1149_1945_7111_ab8f57 crossref_primary_10_5796_electrochemistry_23_00004 crossref_primary_10_1016_j_jechem_2021_05_004 crossref_primary_10_1021_acsaem_9b01440 crossref_primary_10_3390_batteries4010004 crossref_primary_10_1021_acs_jpcc_1c03614 crossref_primary_10_1002_admi_202000277 crossref_primary_10_33961_jecst_2021_00780 crossref_primary_10_1149_1945_7111_ac0068 crossref_primary_10_1039_C8TA08391F crossref_primary_10_1021_acsami_9b02889 crossref_primary_10_1016_j_jelechem_2022_116383 crossref_primary_10_1021_acsami_1c22812 crossref_primary_10_1002_aenm_202003404 crossref_primary_10_1021_acs_chemmater_8b00413 crossref_primary_10_1016_j_isci_2020_101225 crossref_primary_10_1016_j_mattod_2019_07_002 crossref_primary_10_1002_celc_202200469 crossref_primary_10_1021_acsenergylett_1c00265 crossref_primary_10_1002_adfm_202006289 crossref_primary_10_1021_acsami_8b07683 crossref_primary_10_1039_C9TA12359H crossref_primary_10_3390_en12152869 crossref_primary_10_1002_aenm_202101126 crossref_primary_10_1002_admi_202102078 crossref_primary_10_1002_aenm_202201264 crossref_primary_10_1016_j_jpowsour_2020_229267 crossref_primary_10_1002_cssc_202202189 crossref_primary_10_1021_acsami_2c13408 crossref_primary_10_1016_j_electacta_2023_141962 crossref_primary_10_1149_2_0961712jes crossref_primary_10_1021_acsapm_1c01171 crossref_primary_10_1038_s41598_020_61373_9 crossref_primary_10_1021_acsaem_3c01737 crossref_primary_10_1149_1945_7111_aca2e8 crossref_primary_10_1016_j_electacta_2017_12_099 crossref_primary_10_1021_acsami_3c05597 crossref_primary_10_1002_batt_202200075 crossref_primary_10_1149_1945_7111_ac2d8b crossref_primary_10_1002_smll_202002528 crossref_primary_10_3390_batteries8010005 crossref_primary_10_3390_nano10071409 crossref_primary_10_1021_acsenergylett_3c00159 crossref_primary_10_1039_C7CP08037A crossref_primary_10_1016_j_jpowsour_2022_231528 crossref_primary_10_1016_j_mtcomm_2022_104391 crossref_primary_10_1002_anie_201901381 crossref_primary_10_1016_j_mattod_2020_11_025 crossref_primary_10_1016_j_electacta_2023_142263 crossref_primary_10_1021_acsami_1c17408 crossref_primary_10_1149_1945_7111_acbf80 crossref_primary_10_1002_admi_202100704 crossref_primary_10_1021_acs_chemmater_2c02376 crossref_primary_10_1021_acsaem_0c00041 crossref_primary_10_1016_j_jpowsour_2018_06_043 crossref_primary_10_1016_j_matchemphys_2018_09_076 |
Cites_doi | 10.1016/j.elecom.2009.03.020 10.1149/2.0211514jes 10.1002/admi.201600096 10.1007/BF02374063 10.1149/1.2220987 10.1149/1.2746570 10.1002/anie.201409262 10.1149/1.1392609 10.1039/c2jm14305d 10.1039/c3ee43870h 10.1016/j.jpowsour.2012.08.005 10.1021/cr020731c 10.1149/2.009309jes 10.1016/0167-2738(94)90418-9 10.1021/acs.jpcc.6b11746 10.1149/1.2712138 10.1016/j.elecom.2014.01.004 10.1021/cr030203g 10.1149/1.3023084 10.1021/cm902696j 10.1007/s41061-017-0125-8 10.1016/j.jpowsour.2008.09.113 10.1039/C6CS00875E 10.1016/S0378-7753(01)00527-4 10.1021/acsami.6b09164 10.1149/2.0461614jes 10.1002/ente201700068 10.1016/j.progsolidstchem.2014.04.003 10.1021/ja3091438 10.1016/B978-0-12-800679-5.00006-3 10.1149/1.3424884 10.1016/j.electacta.2016.10.088 10.1016/S0378-7753(99)00116-0 10.1039/c0jm04309e 10.1149/1.1836540 10.1016/j.electacta.2011.06.095 10.1016/j.progsolidstchem.2014.04.013 10.1021/acs.chemmater.6b02895 10.1016/j.jpowsour.2011.10.085 10.1149/1.2961055 10.1039/C5CP07718D 10.1016/0378-7753(93)80183-P 10.1351/pac199870030603 10.1016/0013-4686(95)00166-C 10.1149/1.2059270 10.1016/j.electacta.2017.01.029 |
ContentType | Journal Article |
DBID | NPM AAYXX CITATION 7X8 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1039/c7cp03072j |
DatabaseName | PubMed CrossRef MEDLINE - Academic Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | PubMed CrossRef MEDLINE - Academic Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | MEDLINE - Academic CrossRef PubMed Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1463-9084 |
EndPage | 1686 |
ExternalDocumentID | 10_1039_C7CP03072J 28597888 c7cp03072j |
Genre | Journal Article |
GroupedDBID | -JG 0-7 1TJ 705 70J 70~ 7~J AAEMU ABGFH ACLDK ADSRN AEFDR AFVBQ AGSTE AUDPV BSQNT C6K EE0 EF- GNO H~N IDZ J3G J3I R7B R7C RCNCU RPMJG RRC RSCEA SKA SKF SLH VH6 --- -DZ -~X 0R~ 123 29O 2WC 4.4 53G 87K AAIWI AAJAE AAMEH AANOJ AAWGC AAXHV AAXPP ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFO ACGFS ACIWK ACNCT ADMRA AENEX AENGV AESAV AETIL AFLYV AFOGI AFRDS AGEGJ AGKEF AGRSR AHGCF ALMA_UNASSIGNED_HOLDINGS ANBJS ANUXI APEMP ASKNT AZFZN BLAPV CS3 D0L DU5 EBS ECGLT EJD F5P GGIMP H13 HZ~ M4U N9A NHB NPM O9- OK1 P2P RAOCF RIG RNS RRA TN5 TWZ UCJ UHB WH7 YNT 0UZ 6TJ 71~ 9M8 AAYXX ACHDF ACMRT AFFNX AHGXI ANLMG ASPBG AVWKF BBWZM CAG CITATION COF EEHRC FEDTE HVGLF H~9 IDY J3H KC5 L-8 MVM NDZJH R56 RCLXC ROL XJT XOL ZCG 7X8 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-c473t-d816312cc734ee0b418abbb9291153eafb21a02d3cd1b10c02fdf5de225f0e823 |
ISSN | 1463-9076 |
IngestDate | Fri Oct 25 22:54:56 EDT 2024 Fri Oct 25 10:29:41 EDT 2024 Fri Aug 23 01:24:29 EDT 2024 Sat Sep 28 08:46:16 EDT 2024 Mon Jan 28 17:20:57 EST 2019 Sat Jun 01 02:32:20 EDT 2019 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c473t-d816312cc734ee0b418abbb9291153eafb21a02d3cd1b10c02fdf5de225f0e823 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-8885-8591 |
PMID | 28597888 |
PQID | 1908429934 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1908429934 crossref_primary_10_1039_C7CP03072J rsc_primary_c7cp03072j pubmed_primary_28597888 proquest_miscellaneous_1925879095 |
ProviderPackageCode | J3I ACLDK RRC 7~J AEFDR 70~ VH6 GNO RCNCU SLH 70J EE0 RSCEA AFVBQ C6K H~N 0-7 IDZ RPMJG 1TJ SKA -JG AGSTE AUDPV EF- BSQNT SKF ADSRN ABGFH 705 R7B AAEMU J3G R7C |
PublicationCentury | 2000 |
PublicationDate | 2017-00-00 |
PublicationDateYYYYMMDD | 2017-01-01 |
PublicationDate_xml | – year: 2017 text: 2017-00-00 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Physical chemistry chemical physics : PCCP |
PublicationTitleAlternate | Phys Chem Chem Phys |
PublicationYear | 2017 |
References | Ishikawa (C7CP03072J-(cit32)/*[position()=1]) 1995; 40 Besenhard (C7CP03072J-(cit47)/*[position()=1]) 1993; 44 Cekic-Laskovic (C7CP03072J-(cit48)/*[position()=1]) 2017; 375 Besenhard (C7CP03072J-(cit8)/*[position()=1]) 1998; 70 Abouimrane (C7CP03072J-(cit49)/*[position()=1]) 2009; 11 Abu-Lebdeh (C7CP03072J-(cit41)/*[position()=1]) 2009; 189 Kasnatscheew (C7CP03072J-(cit34)/*[position()=1]) 2017 Wagner (C7CP03072J-(cit15)/*[position()=1]) 2016 Gabrisch (C7CP03072J-(cit27)/*[position()=1]) 2010; 13 Bottcher (C7CP03072J-(cit43)/*[position()=1]) 2014; 42 Olivier (C7CP03072J-(cit39)/*[position()=1]) 2001; 97-8 Winter (C7CP03072J-(cit38)/*[position()=1]) 1999; 82 Liu (C7CP03072J-(cit14)/*[position()=1]) 2015; 54 Wagner (C7CP03072J-(cit2)/*[position()=1]) 2013 Kasnatscheew (C7CP03072J-(cit17)/*[position()=1]) 2016; 18 He (C7CP03072J-(cit13)/*[position()=1]) 2012; 22 Wagner (C7CP03072J-(cit7)/*[position()=1]) 2014; 40 Xu (C7CP03072J-(cit24)/*[position()=1]) 2008; 155 Kasnatscheew (C7CP03072J-(cit21)/*[position()=1]) 2013; 160 Gallagher (C7CP03072J-(cit4)/*[position()=1]) 2014; 7 Abe (C7CP03072J-(cit35)/*[position()=1]) 2007; 154 Groger (C7CP03072J-(cit3)/*[position()=1]) 2015; 162 Besenhard (C7CP03072J-(cit6)/*[position()=1]) 2008 Isken (C7CP03072J-(cit45)/*[position()=1]) 2011; 56 Schmitz (C7CP03072J-(cit1)/*[position()=1]) 2014; 42 Placke (C7CP03072J-(cit10)/*[position()=1]) 2012; 200 Winter (C7CP03072J-(cit26)/*[position()=1]) 2009; 223 Meister (C7CP03072J-(cit50)/*[position()=1]) 2016; 28 Xu (C7CP03072J-(cit30)/*[position()=1]) 1999; 146 Wagner (C7CP03072J-(cit20)/*[position()=1]) 2017; 228 Ellis (C7CP03072J-(cit11)/*[position()=1]) 2010; 22 Xu (C7CP03072J-(cit37)/*[position()=1]) 2011; 21 Goodenough (C7CP03072J-(cit5)/*[position()=1]) 2013; 135 Guyomard (C7CP03072J-(cit22)/*[position()=1]) 1993; 140 Ue (C7CP03072J-(cit42)/*[position()=1]) 1994; 141 Xu (C7CP03072J-(cit29)/*[position()=1]) 2004; 104 Wuersig (C7CP03072J-(cit23)/*[position()=1]) 2007; 154 Amereller (C7CP03072J-(cit36)/*[position()=1]) 2014; 42 Kasnatscheew (C7CP03072J-(cit25)/*[position()=1]) 2016; 163 Koch (C7CP03072J-(cit33)/*[position()=1]) 1996; 143 Buqa (C7CP03072J-(cit9)/*[position()=1]) 2000; 6 Schutter (C7CP03072J-(cit46)/*[position()=1]) 2016; 220 Kasnatscheew (C7CP03072J-(cit18)/*[position()=1]) 2017; 121 Whittingham (C7CP03072J-(cit12)/*[position()=1]) 2004; 104 Mohanty (C7CP03072J-(cit28)/*[position()=1]) 2012; 220 Tarascon (C7CP03072J-(cit31)/*[position()=1]) 1994; 69 Abu-Lebdeh (C7CP03072J-(cit40)/*[position()=1]) 2009; 156 Wagner (C7CP03072J-(cit19)/*[position()=1]) 2016; 8 Li (C7CP03072J-(cit16)/*[position()=1]) 2017; 46 Böttcher (C7CP03072J-(cit44)/*[position()=1]) 2015 |
References_xml | – issn: 2008 publication-title: Handbook of battery materials doi: Besenhard – volume: 11 start-page: 1073 year: 2009 ident: C7CP03072J-(cit49)/*[position()=1] publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2009.03.020 contributor: fullname: Abouimrane – volume: 162 start-page: A2605 year: 2015 ident: C7CP03072J-(cit3)/*[position()=1] publication-title: J. Electrochem. Soc. doi: 10.1149/2.0211514jes contributor: fullname: Groger – year: 2016 ident: C7CP03072J-(cit15)/*[position()=1] publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.201600096 contributor: fullname: Wagner – volume: 6 start-page: 172 year: 2000 ident: C7CP03072J-(cit9)/*[position()=1] publication-title: Ionics doi: 10.1007/BF02374063 contributor: fullname: Buqa – volume: 42 start-page: 39 year: 2014 ident: C7CP03072J-(cit36)/*[position()=1] publication-title: Prog. Solid State Chem. contributor: fullname: Amereller – volume: 140 start-page: 3071 year: 1993 ident: C7CP03072J-(cit22)/*[position()=1] publication-title: J. Electrochem. Soc. doi: 10.1149/1.2220987 contributor: fullname: Guyomard – volume: 154 start-page: A810 year: 2007 ident: C7CP03072J-(cit35)/*[position()=1] publication-title: J. Electrochem. Soc. doi: 10.1149/1.2746570 contributor: fullname: Abe – volume: 54 start-page: 4440 year: 2015 ident: C7CP03072J-(cit14)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201409262 contributor: fullname: Liu – volume: 146 start-page: 4172 year: 1999 ident: C7CP03072J-(cit30)/*[position()=1] publication-title: J. Electrochem. Soc. doi: 10.1149/1.1392609 contributor: fullname: Xu – start-page: 1 year: 2013 ident: C7CP03072J-(cit2)/*[position()=1] publication-title: J. Appl. Electrochem. contributor: fullname: Wagner – volume: 22 start-page: 3680 year: 2012 ident: C7CP03072J-(cit13)/*[position()=1] publication-title: J. Mater. Chem. doi: 10.1039/c2jm14305d contributor: fullname: He – volume: 7 start-page: 1555 year: 2014 ident: C7CP03072J-(cit4)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/c3ee43870h contributor: fullname: Gallagher – volume: 220 start-page: 405 year: 2012 ident: C7CP03072J-(cit28)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2012.08.005 contributor: fullname: Mohanty – volume: 104 start-page: 4271 year: 2004 ident: C7CP03072J-(cit12)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr020731c contributor: fullname: Whittingham – volume: 160 start-page: A1369 year: 2013 ident: C7CP03072J-(cit21)/*[position()=1] publication-title: J. Electrochem. Soc. doi: 10.1149/2.009309jes contributor: fullname: Kasnatscheew – volume: 69 start-page: 293 year: 1994 ident: C7CP03072J-(cit31)/*[position()=1] publication-title: Solid State Ionics doi: 10.1016/0167-2738(94)90418-9 contributor: fullname: Tarascon – volume: 121 start-page: 1521 year: 2017 ident: C7CP03072J-(cit18)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.6b11746 contributor: fullname: Kasnatscheew – volume: 154 start-page: A449 year: 2007 ident: C7CP03072J-(cit23)/*[position()=1] publication-title: J. Electrochem. Soc. doi: 10.1149/1.2712138 contributor: fullname: Wuersig – volume: 40 start-page: 80 year: 2014 ident: C7CP03072J-(cit7)/*[position()=1] publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2014.01.004 contributor: fullname: Wagner – volume: 104 start-page: 4303 year: 2004 ident: C7CP03072J-(cit29)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr030203g contributor: fullname: Xu – volume: 156 start-page: A60 year: 2009 ident: C7CP03072J-(cit40)/*[position()=1] publication-title: J. Electrochem. Soc. doi: 10.1149/1.3023084 contributor: fullname: Abu-Lebdeh – volume: 22 start-page: 691 year: 2010 ident: C7CP03072J-(cit11)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/cm902696j contributor: fullname: Ellis – volume: 375 start-page: 37 year: 2017 ident: C7CP03072J-(cit48)/*[position()=1] publication-title: Top. Curr. Chem. doi: 10.1007/s41061-017-0125-8 contributor: fullname: Cekic-Laskovic – volume: 189 start-page: 576 year: 2009 ident: C7CP03072J-(cit41)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2008.09.113 contributor: fullname: Abu-Lebdeh – volume: 46 start-page: 3006 year: 2017 ident: C7CP03072J-(cit16)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00875E contributor: fullname: Li – volume: 97-8 start-page: 151 year: 2001 ident: C7CP03072J-(cit39)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/S0378-7753(01)00527-4 contributor: fullname: Olivier – volume: 8 start-page: 30871 year: 2016 ident: C7CP03072J-(cit19)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b09164 contributor: fullname: Wagner – volume: 163 start-page: A2943 year: 2016 ident: C7CP03072J-(cit25)/*[position()=1] publication-title: J. Electrochem. Soc. doi: 10.1149/2.0461614jes contributor: fullname: Kasnatscheew – volume-title: Handbook of battery materials year: 2008 ident: C7CP03072J-(cit6)/*[position()=1] contributor: fullname: Besenhard – year: 2017 ident: C7CP03072J-(cit34)/*[position()=1] publication-title: Energy Technol. doi: 10.1002/ente201700068 contributor: fullname: Kasnatscheew – volume: 42 start-page: 65 year: 2014 ident: C7CP03072J-(cit1)/*[position()=1] publication-title: Prog. Solid State Chem. doi: 10.1016/j.progsolidstchem.2014.04.003 contributor: fullname: Schmitz – volume: 135 start-page: 1167 year: 2013 ident: C7CP03072J-(cit5)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja3091438 contributor: fullname: Goodenough – start-page: 125 year: 2015 ident: C7CP03072J-(cit44)/*[position()=1] publication-title: Adv. Fluoride-Mater. Energy Convers. doi: 10.1016/B978-0-12-800679-5.00006-3 contributor: fullname: Böttcher – volume: 13 start-page: A88 year: 2010 ident: C7CP03072J-(cit27)/*[position()=1] publication-title: Electrochem. Solid-State Lett. doi: 10.1149/1.3424884 contributor: fullname: Gabrisch – volume: 220 start-page: 146 year: 2016 ident: C7CP03072J-(cit46)/*[position()=1] publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.10.088 contributor: fullname: Schutter – volume: 82 start-page: 818 year: 1999 ident: C7CP03072J-(cit38)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/S0378-7753(99)00116-0 contributor: fullname: Winter – volume: 21 start-page: 9849 year: 2011 ident: C7CP03072J-(cit37)/*[position()=1] publication-title: J. Mater. Chem. doi: 10.1039/c0jm04309e contributor: fullname: Xu – volume: 143 start-page: 798 year: 1996 ident: C7CP03072J-(cit33)/*[position()=1] publication-title: J. Electrochem. Soc. doi: 10.1149/1.1836540 contributor: fullname: Koch – volume: 56 start-page: 7530 year: 2011 ident: C7CP03072J-(cit45)/*[position()=1] publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2011.06.095 contributor: fullname: Isken – volume: 42 start-page: 202 year: 2014 ident: C7CP03072J-(cit43)/*[position()=1] publication-title: Prog. Solid State Chem. doi: 10.1016/j.progsolidstchem.2014.04.013 contributor: fullname: Bottcher – volume: 28 start-page: 7203 year: 2016 ident: C7CP03072J-(cit50)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b02895 contributor: fullname: Meister – volume: 200 start-page: 83 year: 2012 ident: C7CP03072J-(cit10)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2011.10.085 contributor: fullname: Placke – volume: 155 start-page: A733 year: 2008 ident: C7CP03072J-(cit24)/*[position()=1] publication-title: J. Electrochem. Soc. doi: 10.1149/1.2961055 contributor: fullname: Xu – volume: 18 start-page: 3956 year: 2016 ident: C7CP03072J-(cit17)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C5CP07718D contributor: fullname: Kasnatscheew – volume: 44 start-page: 413 year: 1993 ident: C7CP03072J-(cit47)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/0378-7753(93)80183-P contributor: fullname: Besenhard – volume: 70 start-page: 603 year: 1998 ident: C7CP03072J-(cit8)/*[position()=1] publication-title: Pure Appl. Chem. doi: 10.1351/pac199870030603 contributor: fullname: Besenhard – volume: 223 start-page: 1395 year: 2009 ident: C7CP03072J-(cit26)/*[position()=1] publication-title: Zeitschrift Fur Physikalische Chemie-International Journal of Research in Physical Chemistry & Chemical Physics contributor: fullname: Winter – volume: 40 start-page: 2217 year: 1995 ident: C7CP03072J-(cit32)/*[position()=1] publication-title: Electrochim. Acta doi: 10.1016/0013-4686(95)00166-C contributor: fullname: Ishikawa – volume: 141 start-page: 2989 year: 1994 ident: C7CP03072J-(cit42)/*[position()=1] publication-title: J. Electrochem. Soc. doi: 10.1149/1.2059270 contributor: fullname: Ue – volume: 228 start-page: 9 year: 2017 ident: C7CP03072J-(cit20)/*[position()=1] publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.01.029 contributor: fullname: Wagner |
SSID | ssj0001513 |
Score | 2.5636637 |
Snippet | Increasing the operation voltage of electrochemical energy storage devices is a viable measure to realize higher specific energies and energy densities. A... |
SourceID | proquest crossref pubmed rsc |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1678 |
SubjectTerms | Electric potential Electrodes Electrolytes Energy storage High voltages Stability Strategy Voltage |
Title | Determining oxidative stability of battery electrolytes: validity of common electrochemical stability window (ESW) data and alternative strategies |
URI | https://www.ncbi.nlm.nih.gov/pubmed/28597888 https://search.proquest.com/docview/1908429934 https://search.proquest.com/docview/1925879095 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbK9gAvaFwG2QAZwQMIlSW2Eye8jVI0JkAIOm1vkR07qGhqozZVGT-DX8zxJZddQMCLVdmOY-V8PT7H54bQ00SAFByVcshEFkOTqGFmzYWckAK6EmItph8-JgdH7PAkPhkMqp7X0qqWL4sfV8aV_A9VoQ_oaqJk_4Gy7aLQAb-BvtAChaH9Kxq_8b4s1nP5-1S5JN4g71mPV2s7lzZ_5tkLX-7m9Kx2TnCwjanyc2BrsOVmStGkEOjWWYPiPl8bYXT85djcIxi_Upfm9dRfKNr3NmknWi4uljAG-rPW6_MmqHqhp5UPF-qMPsZq_zpZXqgFdiy--qicz_07CheM6RkqA8KDAu7TXff7XGm4lgtnPbQR1uOpUeKK_PjzOUpc7uxLvD-kJnVqwYvKMC7yrTvhWr_DbvAa2iTAmoAnbu6PJ-_et6c3SEDURaS5fTcpbWm21z19Xoi5pJmAnLJo6sdYOWWyhW56BQPvO7TcQgM9u42uj5q6fnfQzx5qcIsa3FIbz0vsUYP7qHmFG8yYGQ4z-AJmeqs4zOBngJjn2OAFA15wDy-4w8tddPR2PBkdDH1ljmHBOK2HKgUxPiJFwSnTOpQsSoWUEkRtUDCoFqUkkQiJooWKZBQWISlVGSsNh0cZ6pTQbbQxm8_0fYRB32WJ4JQIIZlmqcgSobNUlZzouOQ8QE-aT51XLgFLbh0naJaP-OiTJchhgB43VMjhcxqjl5jp-WqZRwZoIHNR9qc5JE55BtpGgO45ErbvMgkezTVRgLaBpm13h4UA7Vw9kFeq3PndU7vohvmjuMu8B2ijXqz0QxBva_nII_IXD0erXw |
link.rule.ids | 315,783,787,4032,27936,27937,27938 |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Determining+oxidative+stability+of+battery+electrolytes%3A+validity+of+common+electrochemical+stability+window+%28ESW%29+data+and+alternative+strategies&rft.au=Kasnatscheew%2C+J&rft.au=Streipert%2C+B&rft.au=R%C3%B6ser%2C+S&rft.au=Wagner%2C+R&rft.date=2017&rft.issn=1463-9076&rft.eissn=1463-9084&rft.volume=19&rft.issue=24&rft.spage=1678&rft.epage=1686&rft_id=info:doi/10.1039%2Fc7cp03072j&rft.externalDocID=c7cp03072j |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9076&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9076&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9076&client=summon |