Determining oxidative stability of battery electrolytes: validity of common electrochemical stability window (ESW) data and alternative strategies

Increasing the operation voltage of electrochemical energy storage devices is a viable measure to realize higher specific energies and energy densities. A sufficient oxidative stability of electrolytes is the predominant requirement for successful high voltage applicability. The common method to inv...

Full description

Saved in:
Bibliographic Details
Published inPhysical chemistry chemical physics : PCCP Vol. 19; no. 24; pp. 1678 - 1686
Main Authors Kasnatscheew, J, Streipert, B, Röser, S, Wagner, R, Cekic Laskovic, I, Winter, M
Format Journal Article
LanguageEnglish
Published England 2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Increasing the operation voltage of electrochemical energy storage devices is a viable measure to realize higher specific energies and energy densities. A sufficient oxidative stability of electrolytes is the predominant requirement for successful high voltage applicability. The common method to investigate oxidative stability of LIB electrolytes is related to determination of the electrochemical stability window (ESW), on e.g. Pt or LiMn 2 O 4 electrodes. However, the transferability of the obtained results to practical systems is questionable for several reasons. In this work, we evaluated the validity of the potentiodynamic based ESW method by comparing the obtained data with the results of galvanostatic based techniques, applied on commercial positive electrodes. We demonstrated that the oxidative stabilities, determined by the two techniques, are in good accordance with each other. However, the investigation of electrolytes being incompatible to Li metal, renders conventional ESW measurements useless when metallic Li is used as counter - and reference electrode in the ESW setup. For this reason, we introduced an alternative setup based on Li 4 Ti 5 O 12 full cells. On the example of a butyronitrile-based electrolyte, we finally demonstrated that this electrolyte is not only reductively but also oxidatively less stable than common LiPF 6 /organic carbonate based electrolytes. Galvanostatic and potentiodynamic measurements reveal an oxidative stability of common LiPF6 salt/carbonate solvent based electrolytes > 5 V vs. Li/Li + .
AbstractList Increasing the operation voltage of electrochemical energy storage devices is a viable measure to realize higher specific energies and energy densities. A sufficient oxidative stability of electrolytes is the predominant requirement for successful high voltage applicability. The common method to investigate oxidative stability of LIB electrolytes is related to determination of the electrochemical stability window (ESW), on e.g. Pt or LiMn2O4 electrodes. However, the transferability of the obtained results to practical systems is questionable for several reasons. In this work, we evaluated the validity of the potentiodynamic based ESW method by comparing the obtained data with the results of galvanostatic based techniques, applied on commercial positive electrodes. We demonstrated that the oxidative stabilities, determined by the two techniques, are in good accordance with each other. However, the investigation of electrolytes being incompatible to Li metal, renders conventional ESW measurements useless when metallic Li is used as counter - and reference electrode in the ESW setup. For this reason, we introduced an alternative setup based on Li4Ti5O12 full cells. On the example of a butyronitrile-based electrolyte, we finally demonstrated that this electrolyte is not only reductively but also oxidatively less stable than common LiPF6/organic carbonate based electrolytes.
Increasing the operation voltage of electrochemical energy storage devices is a viable measure to realize higher specific energies and energy densities. A sufficient oxidative stability of electrolytes is the predominant requirement for successful high voltage applicability. The common method to investigate oxidative stability of LIB electrolytes is related to determination of the electrochemical stability window (ESW), on e.g. Pt or LiMn 2 O 4 electrodes. However, the transferability of the obtained results to practical systems is questionable for several reasons. In this work, we evaluated the validity of the potentiodynamic based ESW method by comparing the obtained data with the results of galvanostatic based techniques, applied on commercial positive electrodes. We demonstrated that the oxidative stabilities, determined by the two techniques, are in good accordance with each other. However, the investigation of electrolytes being incompatible to Li metal, renders conventional ESW measurements useless when metallic Li is used as counter – and reference electrode in the ESW setup. For this reason, we introduced an alternative setup based on Li 4 Ti 5 O 12 full cells. On the example of a butyronitrile-based electrolyte, we finally demonstrated that this electrolyte is not only reductively but also oxidatively less stable than common LiPF 6 /organic carbonate based electrolytes.
Increasing the operation voltage of electrochemical energy storage devices is a viable measure to realize higher specific energies and energy densities. A sufficient oxidative stability of electrolytes is the predominant requirement for successful high voltage applicability. The common method to investigate oxidative stability of LIB electrolytes is related to determination of the electrochemical stability window (ESW), on e.g. Pt or LiMn O electrodes. However, the transferability of the obtained results to practical systems is questionable for several reasons. In this work, we evaluated the validity of the potentiodynamic based ESW method by comparing the obtained data with the results of galvanostatic based techniques, applied on commercial positive electrodes. We demonstrated that the oxidative stabilities, determined by the two techniques, are in good accordance with each other. However, the investigation of electrolytes being incompatible to Li metal, renders conventional ESW measurements useless when metallic Li is used as counter - and reference electrode in the ESW setup. For this reason, we introduced an alternative setup based on Li Ti O full cells. On the example of a butyronitrile-based electrolyte, we finally demonstrated that this electrolyte is not only reductively but also oxidatively less stable than common LiPF /organic carbonate based electrolytes.
Increasing the operation voltage of electrochemical energy storage devices is a viable measure to realize higher specific energies and energy densities. A sufficient oxidative stability of electrolytes is the predominant requirement for successful high voltage applicability. The common method to investigate oxidative stability of LIB electrolytes is related to determination of the electrochemical stability window (ESW), on e.g. Pt or LiMn 2 O 4 electrodes. However, the transferability of the obtained results to practical systems is questionable for several reasons. In this work, we evaluated the validity of the potentiodynamic based ESW method by comparing the obtained data with the results of galvanostatic based techniques, applied on commercial positive electrodes. We demonstrated that the oxidative stabilities, determined by the two techniques, are in good accordance with each other. However, the investigation of electrolytes being incompatible to Li metal, renders conventional ESW measurements useless when metallic Li is used as counter - and reference electrode in the ESW setup. For this reason, we introduced an alternative setup based on Li 4 Ti 5 O 12 full cells. On the example of a butyronitrile-based electrolyte, we finally demonstrated that this electrolyte is not only reductively but also oxidatively less stable than common LiPF 6 /organic carbonate based electrolytes. Galvanostatic and potentiodynamic measurements reveal an oxidative stability of common LiPF6 salt/carbonate solvent based electrolytes > 5 V vs. Li/Li + .
Author Kasnatscheew, J
Cekic Laskovic, I
Streipert, B
Winter, M
Röser, S
Wagner, R
AuthorAffiliation Helmholtz-Institute Münster (HI MS)
MEET Battery Research Center/Institute of Physical Chemistry, University of Münster
IEK-12
Forschungszentrum Jülich GmbH
AuthorAffiliation_xml – name: MEET Battery Research Center/Institute of Physical Chemistry, University of Münster
– name: Forschungszentrum Jülich GmbH
– name: Helmholtz-Institute Münster (HI MS)
– name: IEK-12
Author_xml – sequence: 1
  givenname: J
  surname: Kasnatscheew
  fullname: Kasnatscheew, J
– sequence: 2
  givenname: B
  surname: Streipert
  fullname: Streipert, B
– sequence: 3
  givenname: S
  surname: Röser
  fullname: Röser, S
– sequence: 4
  givenname: R
  surname: Wagner
  fullname: Wagner, R
– sequence: 5
  givenname: I
  surname: Cekic Laskovic
  fullname: Cekic Laskovic, I
– sequence: 6
  givenname: M
  surname: Winter
  fullname: Winter, M
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28597888$$D View this record in MEDLINE/PubMed
BookMark eNqN0UtLHTEUB_BQlPrqpvuWuNPCtXnM3EncyVVri2ChLS6HPM7YSCa5Jrnq_Rp-4o7eh12VrnIgP_4Hzn8HbYQYAKH3lBxRwuVn05gp4aRht2_QNq3GfCSJqDbWczPeQjs53xJCaE35W7TFRC0bIcQ2ejqFAql3wYUbHB-dVcXdA85FaeddmePYYa3KYOYYPJiSop8XyMf4Xnlnl8LEvo9hBcxv6J1R_q-UBxdsfMAHZz-uD_GwQ2EVLFZ-yA2rjUkVuHGQ99Bmp3yGd8t3F_06P_s5uRhdXn35Ojm5HJmq4WVkBR1zyoxpeAVAdEWF0lpLJimtOahOM6oIs9xYqikxhHW2qy0wVncEBOO76GCRO03xbga5tL3LBrxXAeIst1SyWjSSyPo_6HBwJiWvBvppQU2KOSfo2mlyvUrzlpL2ua520ky-v9T1bcAfl7kz3YNd01U_A9hfgJTN-ve173Zqu8F8-JfhfwCn26qo
CitedBy_id crossref_primary_10_1007_s00216_018_1441_8
crossref_primary_10_3390_ma14143840
crossref_primary_10_1149_2_1221914jes
crossref_primary_10_1016_j_ensm_2023_103050
crossref_primary_10_1007_s41061_018_0196_1
crossref_primary_10_1016_j_joule_2019_09_022
crossref_primary_10_1039_D1SC04023E
crossref_primary_10_1002_ange_201901381
crossref_primary_10_1002_aenm_202003738
crossref_primary_10_1002_batt_202100125
crossref_primary_10_1016_j_powera_2021_100071
crossref_primary_10_1016_j_ensm_2020_07_009
crossref_primary_10_1007_s10008_020_04756_2
crossref_primary_10_1016_j_jpowsour_2022_231425
crossref_primary_10_3390_batteries6020021
crossref_primary_10_1016_j_electacta_2019_05_076
crossref_primary_10_3390_ma14195676
crossref_primary_10_1002_batt_202300085
crossref_primary_10_1002_batt_201800123
crossref_primary_10_1016_j_xcrp_2021_100521
crossref_primary_10_1021_acsenergylett_1c02489
crossref_primary_10_1016_j_trechm_2022_04_010
crossref_primary_10_1016_j_electacta_2021_139769
crossref_primary_10_1149_2_1221814jes
crossref_primary_10_1002_advs_202305282
crossref_primary_10_1016_j_jpowsour_2021_229760
crossref_primary_10_1039_D1MA00009H
crossref_primary_10_1002_aenm_201900574
crossref_primary_10_1002_ange_202115884
crossref_primary_10_1021_acsami_2c02118
crossref_primary_10_1002_aesr_202000101
crossref_primary_10_1149_1945_7111_ac6830
crossref_primary_10_1016_j_matt_2023_02_012
crossref_primary_10_1038_s41560_018_0107_2
crossref_primary_10_1039_D1GC02451E
crossref_primary_10_1149_2_0691913jes
crossref_primary_10_1016_j_carbon_2021_12_072
crossref_primary_10_1002_ente_201900310
crossref_primary_10_1002_anie_202115884
crossref_primary_10_1149_2_1221802jes
crossref_primary_10_1002_cssc_202001530
crossref_primary_10_1021_acs_chemmater_9b03173
crossref_primary_10_1016_j_jpowsour_2018_08_077
crossref_primary_10_1149_1945_7111_ab8f57
crossref_primary_10_5796_electrochemistry_23_00004
crossref_primary_10_1016_j_jechem_2021_05_004
crossref_primary_10_1021_acsaem_9b01440
crossref_primary_10_3390_batteries4010004
crossref_primary_10_1021_acs_jpcc_1c03614
crossref_primary_10_1002_admi_202000277
crossref_primary_10_33961_jecst_2021_00780
crossref_primary_10_1149_1945_7111_ac0068
crossref_primary_10_1039_C8TA08391F
crossref_primary_10_1021_acsami_9b02889
crossref_primary_10_1016_j_jelechem_2022_116383
crossref_primary_10_1021_acsami_1c22812
crossref_primary_10_1002_aenm_202003404
crossref_primary_10_1021_acs_chemmater_8b00413
crossref_primary_10_1016_j_isci_2020_101225
crossref_primary_10_1016_j_mattod_2019_07_002
crossref_primary_10_1002_celc_202200469
crossref_primary_10_1021_acsenergylett_1c00265
crossref_primary_10_1002_adfm_202006289
crossref_primary_10_1021_acsami_8b07683
crossref_primary_10_1039_C9TA12359H
crossref_primary_10_3390_en12152869
crossref_primary_10_1002_aenm_202101126
crossref_primary_10_1002_admi_202102078
crossref_primary_10_1002_aenm_202201264
crossref_primary_10_1016_j_jpowsour_2020_229267
crossref_primary_10_1002_cssc_202202189
crossref_primary_10_1021_acsami_2c13408
crossref_primary_10_1016_j_electacta_2023_141962
crossref_primary_10_1149_2_0961712jes
crossref_primary_10_1021_acsapm_1c01171
crossref_primary_10_1038_s41598_020_61373_9
crossref_primary_10_1021_acsaem_3c01737
crossref_primary_10_1149_1945_7111_aca2e8
crossref_primary_10_1016_j_electacta_2017_12_099
crossref_primary_10_1021_acsami_3c05597
crossref_primary_10_1002_batt_202200075
crossref_primary_10_1149_1945_7111_ac2d8b
crossref_primary_10_1002_smll_202002528
crossref_primary_10_3390_batteries8010005
crossref_primary_10_3390_nano10071409
crossref_primary_10_1021_acsenergylett_3c00159
crossref_primary_10_1039_C7CP08037A
crossref_primary_10_1016_j_jpowsour_2022_231528
crossref_primary_10_1016_j_mtcomm_2022_104391
crossref_primary_10_1002_anie_201901381
crossref_primary_10_1016_j_mattod_2020_11_025
crossref_primary_10_1016_j_electacta_2023_142263
crossref_primary_10_1021_acsami_1c17408
crossref_primary_10_1149_1945_7111_acbf80
crossref_primary_10_1002_admi_202100704
crossref_primary_10_1021_acs_chemmater_2c02376
crossref_primary_10_1021_acsaem_0c00041
crossref_primary_10_1016_j_jpowsour_2018_06_043
crossref_primary_10_1016_j_matchemphys_2018_09_076
Cites_doi 10.1016/j.elecom.2009.03.020
10.1149/2.0211514jes
10.1002/admi.201600096
10.1007/BF02374063
10.1149/1.2220987
10.1149/1.2746570
10.1002/anie.201409262
10.1149/1.1392609
10.1039/c2jm14305d
10.1039/c3ee43870h
10.1016/j.jpowsour.2012.08.005
10.1021/cr020731c
10.1149/2.009309jes
10.1016/0167-2738(94)90418-9
10.1021/acs.jpcc.6b11746
10.1149/1.2712138
10.1016/j.elecom.2014.01.004
10.1021/cr030203g
10.1149/1.3023084
10.1021/cm902696j
10.1007/s41061-017-0125-8
10.1016/j.jpowsour.2008.09.113
10.1039/C6CS00875E
10.1016/S0378-7753(01)00527-4
10.1021/acsami.6b09164
10.1149/2.0461614jes
10.1002/ente201700068
10.1016/j.progsolidstchem.2014.04.003
10.1021/ja3091438
10.1016/B978-0-12-800679-5.00006-3
10.1149/1.3424884
10.1016/j.electacta.2016.10.088
10.1016/S0378-7753(99)00116-0
10.1039/c0jm04309e
10.1149/1.1836540
10.1016/j.electacta.2011.06.095
10.1016/j.progsolidstchem.2014.04.013
10.1021/acs.chemmater.6b02895
10.1016/j.jpowsour.2011.10.085
10.1149/1.2961055
10.1039/C5CP07718D
10.1016/0378-7753(93)80183-P
10.1351/pac199870030603
10.1016/0013-4686(95)00166-C
10.1149/1.2059270
10.1016/j.electacta.2017.01.029
ContentType Journal Article
DBID NPM
AAYXX
CITATION
7X8
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1039/c7cp03072j
DatabaseName PubMed
CrossRef
MEDLINE - Academic
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList MEDLINE - Academic
CrossRef
PubMed

Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1463-9084
EndPage 1686
ExternalDocumentID 10_1039_C7CP03072J
28597888
c7cp03072j
Genre Journal Article
GroupedDBID -JG
0-7
1TJ
705
70J
70~
7~J
AAEMU
ABGFH
ACLDK
ADSRN
AEFDR
AFVBQ
AGSTE
AUDPV
BSQNT
C6K
EE0
EF-
GNO
H~N
IDZ
J3G
J3I
R7B
R7C
RCNCU
RPMJG
RRC
RSCEA
SKA
SKF
SLH
VH6
---
-DZ
-~X
0R~
123
29O
2WC
4.4
53G
87K
AAIWI
AAJAE
AAMEH
AANOJ
AAWGC
AAXHV
AAXPP
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFO
ACGFS
ACIWK
ACNCT
ADMRA
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AGEGJ
AGKEF
AGRSR
AHGCF
ALMA_UNASSIGNED_HOLDINGS
ANBJS
ANUXI
APEMP
ASKNT
AZFZN
BLAPV
CS3
D0L
DU5
EBS
ECGLT
EJD
F5P
GGIMP
H13
HZ~
M4U
N9A
NHB
NPM
O9-
OK1
P2P
RAOCF
RIG
RNS
RRA
TN5
TWZ
UCJ
UHB
WH7
YNT
0UZ
6TJ
71~
9M8
AAYXX
ACHDF
ACMRT
AFFNX
AHGXI
ANLMG
ASPBG
AVWKF
BBWZM
CAG
CITATION
COF
EEHRC
FEDTE
HVGLF
H~9
IDY
J3H
KC5
L-8
MVM
NDZJH
R56
RCLXC
ROL
XJT
XOL
ZCG
7X8
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c473t-d816312cc734ee0b418abbb9291153eafb21a02d3cd1b10c02fdf5de225f0e823
ISSN 1463-9076
IngestDate Fri Oct 25 22:54:56 EDT 2024
Fri Oct 25 10:29:41 EDT 2024
Fri Aug 23 01:24:29 EDT 2024
Sat Sep 28 08:46:16 EDT 2024
Mon Jan 28 17:20:57 EST 2019
Sat Jun 01 02:32:20 EDT 2019
IsPeerReviewed true
IsScholarly true
Issue 24
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c473t-d816312cc734ee0b418abbb9291153eafb21a02d3cd1b10c02fdf5de225f0e823
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-8885-8591
PMID 28597888
PQID 1908429934
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_1908429934
crossref_primary_10_1039_C7CP03072J
rsc_primary_c7cp03072j
pubmed_primary_28597888
proquest_miscellaneous_1925879095
ProviderPackageCode J3I
ACLDK
RRC
7~J
AEFDR
70~
VH6
GNO
RCNCU
SLH
70J
EE0
RSCEA
AFVBQ
C6K
H~N
0-7
IDZ
RPMJG
1TJ
SKA
-JG
AGSTE
AUDPV
EF-
BSQNT
SKF
ADSRN
ABGFH
705
R7B
AAEMU
J3G
R7C
PublicationCentury 2000
PublicationDate 2017-00-00
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – year: 2017
  text: 2017-00-00
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Physical chemistry chemical physics : PCCP
PublicationTitleAlternate Phys Chem Chem Phys
PublicationYear 2017
References Ishikawa (C7CP03072J-(cit32)/*[position()=1]) 1995; 40
Besenhard (C7CP03072J-(cit47)/*[position()=1]) 1993; 44
Cekic-Laskovic (C7CP03072J-(cit48)/*[position()=1]) 2017; 375
Besenhard (C7CP03072J-(cit8)/*[position()=1]) 1998; 70
Abouimrane (C7CP03072J-(cit49)/*[position()=1]) 2009; 11
Abu-Lebdeh (C7CP03072J-(cit41)/*[position()=1]) 2009; 189
Kasnatscheew (C7CP03072J-(cit34)/*[position()=1]) 2017
Wagner (C7CP03072J-(cit15)/*[position()=1]) 2016
Gabrisch (C7CP03072J-(cit27)/*[position()=1]) 2010; 13
Bottcher (C7CP03072J-(cit43)/*[position()=1]) 2014; 42
Olivier (C7CP03072J-(cit39)/*[position()=1]) 2001; 97-8
Winter (C7CP03072J-(cit38)/*[position()=1]) 1999; 82
Liu (C7CP03072J-(cit14)/*[position()=1]) 2015; 54
Wagner (C7CP03072J-(cit2)/*[position()=1]) 2013
Kasnatscheew (C7CP03072J-(cit17)/*[position()=1]) 2016; 18
He (C7CP03072J-(cit13)/*[position()=1]) 2012; 22
Wagner (C7CP03072J-(cit7)/*[position()=1]) 2014; 40
Xu (C7CP03072J-(cit24)/*[position()=1]) 2008; 155
Kasnatscheew (C7CP03072J-(cit21)/*[position()=1]) 2013; 160
Gallagher (C7CP03072J-(cit4)/*[position()=1]) 2014; 7
Abe (C7CP03072J-(cit35)/*[position()=1]) 2007; 154
Groger (C7CP03072J-(cit3)/*[position()=1]) 2015; 162
Besenhard (C7CP03072J-(cit6)/*[position()=1]) 2008
Isken (C7CP03072J-(cit45)/*[position()=1]) 2011; 56
Schmitz (C7CP03072J-(cit1)/*[position()=1]) 2014; 42
Placke (C7CP03072J-(cit10)/*[position()=1]) 2012; 200
Winter (C7CP03072J-(cit26)/*[position()=1]) 2009; 223
Meister (C7CP03072J-(cit50)/*[position()=1]) 2016; 28
Xu (C7CP03072J-(cit30)/*[position()=1]) 1999; 146
Wagner (C7CP03072J-(cit20)/*[position()=1]) 2017; 228
Ellis (C7CP03072J-(cit11)/*[position()=1]) 2010; 22
Xu (C7CP03072J-(cit37)/*[position()=1]) 2011; 21
Goodenough (C7CP03072J-(cit5)/*[position()=1]) 2013; 135
Guyomard (C7CP03072J-(cit22)/*[position()=1]) 1993; 140
Ue (C7CP03072J-(cit42)/*[position()=1]) 1994; 141
Xu (C7CP03072J-(cit29)/*[position()=1]) 2004; 104
Wuersig (C7CP03072J-(cit23)/*[position()=1]) 2007; 154
Amereller (C7CP03072J-(cit36)/*[position()=1]) 2014; 42
Kasnatscheew (C7CP03072J-(cit25)/*[position()=1]) 2016; 163
Koch (C7CP03072J-(cit33)/*[position()=1]) 1996; 143
Buqa (C7CP03072J-(cit9)/*[position()=1]) 2000; 6
Schutter (C7CP03072J-(cit46)/*[position()=1]) 2016; 220
Kasnatscheew (C7CP03072J-(cit18)/*[position()=1]) 2017; 121
Whittingham (C7CP03072J-(cit12)/*[position()=1]) 2004; 104
Mohanty (C7CP03072J-(cit28)/*[position()=1]) 2012; 220
Tarascon (C7CP03072J-(cit31)/*[position()=1]) 1994; 69
Abu-Lebdeh (C7CP03072J-(cit40)/*[position()=1]) 2009; 156
Wagner (C7CP03072J-(cit19)/*[position()=1]) 2016; 8
Li (C7CP03072J-(cit16)/*[position()=1]) 2017; 46
Böttcher (C7CP03072J-(cit44)/*[position()=1]) 2015
References_xml – issn: 2008
  publication-title: Handbook of battery materials
  doi: Besenhard
– volume: 11
  start-page: 1073
  year: 2009
  ident: C7CP03072J-(cit49)/*[position()=1]
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2009.03.020
  contributor:
    fullname: Abouimrane
– volume: 162
  start-page: A2605
  year: 2015
  ident: C7CP03072J-(cit3)/*[position()=1]
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0211514jes
  contributor:
    fullname: Groger
– year: 2016
  ident: C7CP03072J-(cit15)/*[position()=1]
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.201600096
  contributor:
    fullname: Wagner
– volume: 6
  start-page: 172
  year: 2000
  ident: C7CP03072J-(cit9)/*[position()=1]
  publication-title: Ionics
  doi: 10.1007/BF02374063
  contributor:
    fullname: Buqa
– volume: 42
  start-page: 39
  year: 2014
  ident: C7CP03072J-(cit36)/*[position()=1]
  publication-title: Prog. Solid State Chem.
  contributor:
    fullname: Amereller
– volume: 140
  start-page: 3071
  year: 1993
  ident: C7CP03072J-(cit22)/*[position()=1]
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2220987
  contributor:
    fullname: Guyomard
– volume: 154
  start-page: A810
  year: 2007
  ident: C7CP03072J-(cit35)/*[position()=1]
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2746570
  contributor:
    fullname: Abe
– volume: 54
  start-page: 4440
  year: 2015
  ident: C7CP03072J-(cit14)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201409262
  contributor:
    fullname: Liu
– volume: 146
  start-page: 4172
  year: 1999
  ident: C7CP03072J-(cit30)/*[position()=1]
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1392609
  contributor:
    fullname: Xu
– start-page: 1
  year: 2013
  ident: C7CP03072J-(cit2)/*[position()=1]
  publication-title: J. Appl. Electrochem.
  contributor:
    fullname: Wagner
– volume: 22
  start-page: 3680
  year: 2012
  ident: C7CP03072J-(cit13)/*[position()=1]
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm14305d
  contributor:
    fullname: He
– volume: 7
  start-page: 1555
  year: 2014
  ident: C7CP03072J-(cit4)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee43870h
  contributor:
    fullname: Gallagher
– volume: 220
  start-page: 405
  year: 2012
  ident: C7CP03072J-(cit28)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2012.08.005
  contributor:
    fullname: Mohanty
– volume: 104
  start-page: 4271
  year: 2004
  ident: C7CP03072J-(cit12)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr020731c
  contributor:
    fullname: Whittingham
– volume: 160
  start-page: A1369
  year: 2013
  ident: C7CP03072J-(cit21)/*[position()=1]
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.009309jes
  contributor:
    fullname: Kasnatscheew
– volume: 69
  start-page: 293
  year: 1994
  ident: C7CP03072J-(cit31)/*[position()=1]
  publication-title: Solid State Ionics
  doi: 10.1016/0167-2738(94)90418-9
  contributor:
    fullname: Tarascon
– volume: 121
  start-page: 1521
  year: 2017
  ident: C7CP03072J-(cit18)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.6b11746
  contributor:
    fullname: Kasnatscheew
– volume: 154
  start-page: A449
  year: 2007
  ident: C7CP03072J-(cit23)/*[position()=1]
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2712138
  contributor:
    fullname: Wuersig
– volume: 40
  start-page: 80
  year: 2014
  ident: C7CP03072J-(cit7)/*[position()=1]
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2014.01.004
  contributor:
    fullname: Wagner
– volume: 104
  start-page: 4303
  year: 2004
  ident: C7CP03072J-(cit29)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr030203g
  contributor:
    fullname: Xu
– volume: 156
  start-page: A60
  year: 2009
  ident: C7CP03072J-(cit40)/*[position()=1]
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.3023084
  contributor:
    fullname: Abu-Lebdeh
– volume: 22
  start-page: 691
  year: 2010
  ident: C7CP03072J-(cit11)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/cm902696j
  contributor:
    fullname: Ellis
– volume: 375
  start-page: 37
  year: 2017
  ident: C7CP03072J-(cit48)/*[position()=1]
  publication-title: Top. Curr. Chem.
  doi: 10.1007/s41061-017-0125-8
  contributor:
    fullname: Cekic-Laskovic
– volume: 189
  start-page: 576
  year: 2009
  ident: C7CP03072J-(cit41)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2008.09.113
  contributor:
    fullname: Abu-Lebdeh
– volume: 46
  start-page: 3006
  year: 2017
  ident: C7CP03072J-(cit16)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00875E
  contributor:
    fullname: Li
– volume: 97-8
  start-page: 151
  year: 2001
  ident: C7CP03072J-(cit39)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/S0378-7753(01)00527-4
  contributor:
    fullname: Olivier
– volume: 8
  start-page: 30871
  year: 2016
  ident: C7CP03072J-(cit19)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b09164
  contributor:
    fullname: Wagner
– volume: 163
  start-page: A2943
  year: 2016
  ident: C7CP03072J-(cit25)/*[position()=1]
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0461614jes
  contributor:
    fullname: Kasnatscheew
– volume-title: Handbook of battery materials
  year: 2008
  ident: C7CP03072J-(cit6)/*[position()=1]
  contributor:
    fullname: Besenhard
– year: 2017
  ident: C7CP03072J-(cit34)/*[position()=1]
  publication-title: Energy Technol.
  doi: 10.1002/ente201700068
  contributor:
    fullname: Kasnatscheew
– volume: 42
  start-page: 65
  year: 2014
  ident: C7CP03072J-(cit1)/*[position()=1]
  publication-title: Prog. Solid State Chem.
  doi: 10.1016/j.progsolidstchem.2014.04.003
  contributor:
    fullname: Schmitz
– volume: 135
  start-page: 1167
  year: 2013
  ident: C7CP03072J-(cit5)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja3091438
  contributor:
    fullname: Goodenough
– start-page: 125
  year: 2015
  ident: C7CP03072J-(cit44)/*[position()=1]
  publication-title: Adv. Fluoride-Mater. Energy Convers.
  doi: 10.1016/B978-0-12-800679-5.00006-3
  contributor:
    fullname: Böttcher
– volume: 13
  start-page: A88
  year: 2010
  ident: C7CP03072J-(cit27)/*[position()=1]
  publication-title: Electrochem. Solid-State Lett.
  doi: 10.1149/1.3424884
  contributor:
    fullname: Gabrisch
– volume: 220
  start-page: 146
  year: 2016
  ident: C7CP03072J-(cit46)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.10.088
  contributor:
    fullname: Schutter
– volume: 82
  start-page: 818
  year: 1999
  ident: C7CP03072J-(cit38)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/S0378-7753(99)00116-0
  contributor:
    fullname: Winter
– volume: 21
  start-page: 9849
  year: 2011
  ident: C7CP03072J-(cit37)/*[position()=1]
  publication-title: J. Mater. Chem.
  doi: 10.1039/c0jm04309e
  contributor:
    fullname: Xu
– volume: 143
  start-page: 798
  year: 1996
  ident: C7CP03072J-(cit33)/*[position()=1]
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1836540
  contributor:
    fullname: Koch
– volume: 56
  start-page: 7530
  year: 2011
  ident: C7CP03072J-(cit45)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2011.06.095
  contributor:
    fullname: Isken
– volume: 42
  start-page: 202
  year: 2014
  ident: C7CP03072J-(cit43)/*[position()=1]
  publication-title: Prog. Solid State Chem.
  doi: 10.1016/j.progsolidstchem.2014.04.013
  contributor:
    fullname: Bottcher
– volume: 28
  start-page: 7203
  year: 2016
  ident: C7CP03072J-(cit50)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b02895
  contributor:
    fullname: Meister
– volume: 200
  start-page: 83
  year: 2012
  ident: C7CP03072J-(cit10)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2011.10.085
  contributor:
    fullname: Placke
– volume: 155
  start-page: A733
  year: 2008
  ident: C7CP03072J-(cit24)/*[position()=1]
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2961055
  contributor:
    fullname: Xu
– volume: 18
  start-page: 3956
  year: 2016
  ident: C7CP03072J-(cit17)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C5CP07718D
  contributor:
    fullname: Kasnatscheew
– volume: 44
  start-page: 413
  year: 1993
  ident: C7CP03072J-(cit47)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/0378-7753(93)80183-P
  contributor:
    fullname: Besenhard
– volume: 70
  start-page: 603
  year: 1998
  ident: C7CP03072J-(cit8)/*[position()=1]
  publication-title: Pure Appl. Chem.
  doi: 10.1351/pac199870030603
  contributor:
    fullname: Besenhard
– volume: 223
  start-page: 1395
  year: 2009
  ident: C7CP03072J-(cit26)/*[position()=1]
  publication-title: Zeitschrift Fur Physikalische Chemie-International Journal of Research in Physical Chemistry & Chemical Physics
  contributor:
    fullname: Winter
– volume: 40
  start-page: 2217
  year: 1995
  ident: C7CP03072J-(cit32)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/0013-4686(95)00166-C
  contributor:
    fullname: Ishikawa
– volume: 141
  start-page: 2989
  year: 1994
  ident: C7CP03072J-(cit42)/*[position()=1]
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2059270
  contributor:
    fullname: Ue
– volume: 228
  start-page: 9
  year: 2017
  ident: C7CP03072J-(cit20)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2017.01.029
  contributor:
    fullname: Wagner
SSID ssj0001513
Score 2.5636637
Snippet Increasing the operation voltage of electrochemical energy storage devices is a viable measure to realize higher specific energies and energy densities. A...
SourceID proquest
crossref
pubmed
rsc
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1678
SubjectTerms Electric potential
Electrodes
Electrolytes
Energy storage
High voltages
Stability
Strategy
Voltage
Title Determining oxidative stability of battery electrolytes: validity of common electrochemical stability window (ESW) data and alternative strategies
URI https://www.ncbi.nlm.nih.gov/pubmed/28597888
https://search.proquest.com/docview/1908429934
https://search.proquest.com/docview/1925879095
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbK9gAvaFwG2QAZwQMIlSW2Eye8jVI0JkAIOm1vkR07qGhqozZVGT-DX8zxJZddQMCLVdmOY-V8PT7H54bQ00SAFByVcshEFkOTqGFmzYWckAK6EmItph8-JgdH7PAkPhkMqp7X0qqWL4sfV8aV_A9VoQ_oaqJk_4Gy7aLQAb-BvtAChaH9Kxq_8b4s1nP5-1S5JN4g71mPV2s7lzZ_5tkLX-7m9Kx2TnCwjanyc2BrsOVmStGkEOjWWYPiPl8bYXT85djcIxi_Upfm9dRfKNr3NmknWi4uljAG-rPW6_MmqHqhp5UPF-qMPsZq_zpZXqgFdiy--qicz_07CheM6RkqA8KDAu7TXff7XGm4lgtnPbQR1uOpUeKK_PjzOUpc7uxLvD-kJnVqwYvKMC7yrTvhWr_DbvAa2iTAmoAnbu6PJ-_et6c3SEDURaS5fTcpbWm21z19Xoi5pJmAnLJo6sdYOWWyhW56BQPvO7TcQgM9u42uj5q6fnfQzx5qcIsa3FIbz0vsUYP7qHmFG8yYGQ4z-AJmeqs4zOBngJjn2OAFA15wDy-4w8tddPR2PBkdDH1ljmHBOK2HKgUxPiJFwSnTOpQsSoWUEkRtUDCoFqUkkQiJooWKZBQWISlVGSsNh0cZ6pTQbbQxm8_0fYRB32WJ4JQIIZlmqcgSobNUlZzouOQ8QE-aT51XLgFLbh0naJaP-OiTJchhgB43VMjhcxqjl5jp-WqZRwZoIHNR9qc5JE55BtpGgO45ErbvMgkezTVRgLaBpm13h4UA7Vw9kFeq3PndU7vohvmjuMu8B2ijXqz0QxBva_nII_IXD0erXw
link.rule.ids 315,783,787,4032,27936,27937,27938
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Determining+oxidative+stability+of+battery+electrolytes%3A+validity+of+common+electrochemical+stability+window+%28ESW%29+data+and+alternative+strategies&rft.au=Kasnatscheew%2C+J&rft.au=Streipert%2C+B&rft.au=R%C3%B6ser%2C+S&rft.au=Wagner%2C+R&rft.date=2017&rft.issn=1463-9076&rft.eissn=1463-9084&rft.volume=19&rft.issue=24&rft.spage=1678&rft.epage=1686&rft_id=info:doi/10.1039%2Fc7cp03072j&rft.externalDocID=c7cp03072j
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9076&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9076&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9076&client=summon