Mycorrhiza-mediated recruitment of complete denitrifying Pseudomonas reduces N2O emissions from soil
BackgroundArbuscular mycorrhizal fungi (AMF) are key soil organisms and their extensive hyphae create a unique hyphosphere associated with microbes actively involved in N cycling. However, the underlying mechanisms how AMF and hyphae-associated microbes may cooperate to influence N2O emissions from...
Saved in:
Published in | Microbiome Vol. 11; no. 1; pp. 1 - 18 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
BioMed Central
09.03.2023
BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | BackgroundArbuscular mycorrhizal fungi (AMF) are key soil organisms and their extensive hyphae create a unique hyphosphere associated with microbes actively involved in N cycling. However, the underlying mechanisms how AMF and hyphae-associated microbes may cooperate to influence N2O emissions from “hot spot” residue patches remain unclear. Here we explored the key microbes in the hyphosphere involved in N2O production and consumption using amplicon and shotgun metagenomic sequencing. Chemotaxis, growth and N2O emissions of isolated N2O-reducing bacteria in response to hyphal exudates were tested using in vitro cultures and inoculation experiments.ResultsAMF hyphae reduced denitrification-derived N2O emission (max. 63%) in C- and N-rich residue patches. AMF consistently enhanced the abundance and expression of clade I nosZ gene, and inconsistently increased that of nirS and nirK genes. The reduction of N2O emissions in the hyphosphere was linked to N2O-reducing Pseudomonas specifically enriched by AMF, concurring with the increase in the relative abundance of the key genes involved in bacterial citrate cycle. Phenotypic characterization of the isolated complete denitrifying P. fluorescens strain JL1 (possessing clade I nosZ) indicated that the decline of net N2O emission was a result of upregulated nosZ expression in P. fluorescens following hyphal exudation (e.g. carboxylates). These findings were further validated by re-inoculating sterilized residue patches with P. fluorescens and by an 11-year-long field experiment showing significant positive correlation between hyphal length density with the abundance of clade I nosZ gene.ConclusionsThe cooperation between AMF and the N2O-reducing Pseudomonas residing on hyphae significantly reduce N2O emissions in the microsites. Carboxylates exuded by hyphae act as attractants in recruiting P. fluorescens and also as stimulants triggering nosZ gene expression. Our discovery indicates that reinforcing synergies between AMF and hyphosphere microbiome may provide unexplored opportunities to stimulate N2O consumption in nutrient-enriched microsites, and consequently reduce N2O emissions from soils. This knowledge opens novel avenues to exploit cross-kingdom microbial interactions for sustainable agriculture and for climate change mitigation.Video Abstract |
---|---|
AbstractList | Abstract Background Arbuscular mycorrhizal fungi (AMF) are key soil organisms and their extensive hyphae create a unique hyphosphere associated with microbes actively involved in N cycling. However, the underlying mechanisms how AMF and hyphae-associated microbes may cooperate to influence N2O emissions from “hot spot” residue patches remain unclear. Here we explored the key microbes in the hyphosphere involved in N2O production and consumption using amplicon and shotgun metagenomic sequencing. Chemotaxis, growth and N2O emissions of isolated N2O-reducing bacteria in response to hyphal exudates were tested using in vitro cultures and inoculation experiments. Results AMF hyphae reduced denitrification-derived N2O emission (max. 63%) in C- and N-rich residue patches. AMF consistently enhanced the abundance and expression of clade I nosZ gene, and inconsistently increased that of nirS and nirK genes. The reduction of N2O emissions in the hyphosphere was linked to N2O-reducing Pseudomonas specifically enriched by AMF, concurring with the increase in the relative abundance of the key genes involved in bacterial citrate cycle. Phenotypic characterization of the isolated complete denitrifying P. fluorescens strain JL1 (possessing clade I nosZ) indicated that the decline of net N2O emission was a result of upregulated nosZ expression in P. fluorescens following hyphal exudation (e.g. carboxylates). These findings were further validated by re-inoculating sterilized residue patches with P. fluorescens and by an 11-year-long field experiment showing significant positive correlation between hyphal length density with the abundance of clade I nosZ gene. Conclusions The cooperation between AMF and the N2O-reducing Pseudomonas residing on hyphae significantly reduce N2O emissions in the microsites. Carboxylates exuded by hyphae act as attractants in recruiting P. fluorescens and also as stimulants triggering nosZ gene expression. Our discovery indicates that reinforcing synergies between AMF and hyphosphere microbiome may provide unexplored opportunities to stimulate N2O consumption in nutrient-enriched microsites, and consequently reduce N2O emissions from soils. This knowledge opens novel avenues to exploit cross-kingdom microbial interactions for sustainable agriculture and for climate change mitigation. Video Abstract BackgroundArbuscular mycorrhizal fungi (AMF) are key soil organisms and their extensive hyphae create a unique hyphosphere associated with microbes actively involved in N cycling. However, the underlying mechanisms how AMF and hyphae-associated microbes may cooperate to influence N2O emissions from “hot spot” residue patches remain unclear. Here we explored the key microbes in the hyphosphere involved in N2O production and consumption using amplicon and shotgun metagenomic sequencing. Chemotaxis, growth and N2O emissions of isolated N2O-reducing bacteria in response to hyphal exudates were tested using in vitro cultures and inoculation experiments.ResultsAMF hyphae reduced denitrification-derived N2O emission (max. 63%) in C- and N-rich residue patches. AMF consistently enhanced the abundance and expression of clade I nosZ gene, and inconsistently increased that of nirS and nirK genes. The reduction of N2O emissions in the hyphosphere was linked to N2O-reducing Pseudomonas specifically enriched by AMF, concurring with the increase in the relative abundance of the key genes involved in bacterial citrate cycle. Phenotypic characterization of the isolated complete denitrifying P. fluorescens strain JL1 (possessing clade I nosZ) indicated that the decline of net N2O emission was a result of upregulated nosZ expression in P. fluorescens following hyphal exudation (e.g. carboxylates). These findings were further validated by re-inoculating sterilized residue patches with P. fluorescens and by an 11-year-long field experiment showing significant positive correlation between hyphal length density with the abundance of clade I nosZ gene.ConclusionsThe cooperation between AMF and the N2O-reducing Pseudomonas residing on hyphae significantly reduce N2O emissions in the microsites. Carboxylates exuded by hyphae act as attractants in recruiting P. fluorescens and also as stimulants triggering nosZ gene expression. Our discovery indicates that reinforcing synergies between AMF and hyphosphere microbiome may provide unexplored opportunities to stimulate N2O consumption in nutrient-enriched microsites, and consequently reduce N2O emissions from soils. This knowledge opens novel avenues to exploit cross-kingdom microbial interactions for sustainable agriculture and for climate change mitigation.Video Abstract Arbuscular mycorrhizal fungi (AMF) are key soil organisms and their extensive hyphae create a unique hyphosphere associated with microbes actively involved in N cycling. However, the underlying mechanisms how AMF and hyphae-associated microbes may cooperate to influence N2O emissions from "hot spot" residue patches remain unclear. Here we explored the key microbes in the hyphosphere involved in N2O production and consumption using amplicon and shotgun metagenomic sequencing. Chemotaxis, growth and N2O emissions of isolated N2O-reducing bacteria in response to hyphal exudates were tested using in vitro cultures and inoculation experiments.BACKGROUNDArbuscular mycorrhizal fungi (AMF) are key soil organisms and their extensive hyphae create a unique hyphosphere associated with microbes actively involved in N cycling. However, the underlying mechanisms how AMF and hyphae-associated microbes may cooperate to influence N2O emissions from "hot spot" residue patches remain unclear. Here we explored the key microbes in the hyphosphere involved in N2O production and consumption using amplicon and shotgun metagenomic sequencing. Chemotaxis, growth and N2O emissions of isolated N2O-reducing bacteria in response to hyphal exudates were tested using in vitro cultures and inoculation experiments.AMF hyphae reduced denitrification-derived N2O emission (max. 63%) in C- and N-rich residue patches. AMF consistently enhanced the abundance and expression of clade I nosZ gene, and inconsistently increased that of nirS and nirK genes. The reduction of N2O emissions in the hyphosphere was linked to N2O-reducing Pseudomonas specifically enriched by AMF, concurring with the increase in the relative abundance of the key genes involved in bacterial citrate cycle. Phenotypic characterization of the isolated complete denitrifying P. fluorescens strain JL1 (possessing clade I nosZ) indicated that the decline of net N2O emission was a result of upregulated nosZ expression in P. fluorescens following hyphal exudation (e.g. carboxylates). These findings were further validated by re-inoculating sterilized residue patches with P. fluorescens and by an 11-year-long field experiment showing significant positive correlation between hyphal length density with the abundance of clade I nosZ gene.RESULTSAMF hyphae reduced denitrification-derived N2O emission (max. 63%) in C- and N-rich residue patches. AMF consistently enhanced the abundance and expression of clade I nosZ gene, and inconsistently increased that of nirS and nirK genes. The reduction of N2O emissions in the hyphosphere was linked to N2O-reducing Pseudomonas specifically enriched by AMF, concurring with the increase in the relative abundance of the key genes involved in bacterial citrate cycle. Phenotypic characterization of the isolated complete denitrifying P. fluorescens strain JL1 (possessing clade I nosZ) indicated that the decline of net N2O emission was a result of upregulated nosZ expression in P. fluorescens following hyphal exudation (e.g. carboxylates). These findings were further validated by re-inoculating sterilized residue patches with P. fluorescens and by an 11-year-long field experiment showing significant positive correlation between hyphal length density with the abundance of clade I nosZ gene.The cooperation between AMF and the N2O-reducing Pseudomonas residing on hyphae significantly reduce N2O emissions in the microsites. Carboxylates exuded by hyphae act as attractants in recruiting P. fluorescens and also as stimulants triggering nosZ gene expression. Our discovery indicates that reinforcing synergies between AMF and hyphosphere microbiome may provide unexplored opportunities to stimulate N2O consumption in nutrient-enriched microsites, and consequently reduce N2O emissions from soils. This knowledge opens novel avenues to exploit cross-kingdom microbial interactions for sustainable agriculture and for climate change mitigation. Video Abstract.CONCLUSIONSThe cooperation between AMF and the N2O-reducing Pseudomonas residing on hyphae significantly reduce N2O emissions in the microsites. Carboxylates exuded by hyphae act as attractants in recruiting P. fluorescens and also as stimulants triggering nosZ gene expression. Our discovery indicates that reinforcing synergies between AMF and hyphosphere microbiome may provide unexplored opportunities to stimulate N2O consumption in nutrient-enriched microsites, and consequently reduce N2O emissions from soils. This knowledge opens novel avenues to exploit cross-kingdom microbial interactions for sustainable agriculture and for climate change mitigation. Video Abstract. |
ArticleNumber | 45 |
Author | Li, Long Veen, Ciska Zhang, Junling Zhao, Ruotong Wang, Guangzhou van der Heijden, Marcel G. A. Zhang, Fusuo Christie, Peter Bender, Franz S. Kuyper, Thomas W. van der Putten, Wim H. Butterbach-Bahl, Klaus Bei, Shuikuan An, Ran Li, Xia Li, Dandan Ju, Xiaotang |
Author_xml | – sequence: 1 givenname: Xia surname: Li fullname: Li, Xia – sequence: 2 givenname: Ruotong surname: Zhao fullname: Zhao, Ruotong – sequence: 3 givenname: Dandan surname: Li fullname: Li, Dandan – sequence: 4 givenname: Guangzhou surname: Wang fullname: Wang, Guangzhou – sequence: 5 givenname: Shuikuan surname: Bei fullname: Bei, Shuikuan – sequence: 6 givenname: Xiaotang surname: Ju fullname: Ju, Xiaotang – sequence: 7 givenname: Ran surname: An fullname: An, Ran – sequence: 8 givenname: Long surname: Li fullname: Li, Long – sequence: 9 givenname: Thomas W. surname: Kuyper fullname: Kuyper, Thomas W. – sequence: 10 givenname: Peter surname: Christie fullname: Christie, Peter – sequence: 11 givenname: Franz S. surname: Bender fullname: Bender, Franz S. – sequence: 12 givenname: Ciska surname: Veen fullname: Veen, Ciska – sequence: 13 givenname: Marcel G. A. surname: van der Heijden fullname: van der Heijden, Marcel G. A. – sequence: 14 givenname: Wim H. surname: van der Putten fullname: van der Putten, Wim H. – sequence: 15 givenname: Fusuo surname: Zhang fullname: Zhang, Fusuo – sequence: 16 givenname: Klaus surname: Butterbach-Bahl fullname: Butterbach-Bahl, Klaus – sequence: 17 givenname: Junling surname: Zhang fullname: Zhang, Junling |
BookMark | eNp9kk1vFSEYhYmpsbX2D7iaxI2bUb6GgY2JafxoUq0LXRMGXm65mYErMCbXXy-3tya2C9lA4JwHODnP0UlMERB6SfAbQqR4WzgmQvaYsh4TLkQ_PEFnFHPVU0HkyT_rU3RRyha3oQgfuXyGTpmQCgsszpD7srcp59vw2_QLuGAquC6DzWuoC8TaJd_ZtOxmqNA5iKHm4PchbrpvBVaXlhRNaQa3WijdV3rTwRJKCSmWzue0dCWF-QV66s1c4OJ-Pkc_Pn74fvm5v775dHX5_rq3fGS1d4Jx4Nb6iXs-UDIo5plUzphBEUKmwfqRGc4lHQHkNFLjqJ-88ZMgjjHBztHVkeuS2epdDovJe51M0HcbKW-0yTXYGbTA49SM1E3QgAOW4zQ4ptiALeFkco317sjarVMLxrYsspkfQB-exHCrN-mXVkoJKQ6PeX0PyOnnCqXqFoyFeTYR0lo0HeVAlOQMN-mrR9JtWnNsUR1U7XVYMNZU8qiyOZWSwWsbqqkt6nZ_mDXB-tAMfWyGbs3Qd83QQ7PSR9a___iP6Q99B732 |
CitedBy_id | crossref_primary_10_1111_nph_19541 crossref_primary_10_1016_j_envpol_2025_125846 crossref_primary_10_1016_j_cej_2024_155292 crossref_primary_10_1016_j_jhazmat_2024_135057 crossref_primary_10_1016_j_scitotenv_2024_169889 crossref_primary_10_1016_j_scitotenv_2024_173065 crossref_primary_10_1016_j_tplants_2023_09_007 crossref_primary_10_1093_jxb_erae274 crossref_primary_10_1016_j_soilbio_2024_109702 crossref_primary_10_1038_s41579_024_01073_7 crossref_primary_10_1002_advs_202413227 crossref_primary_10_1016_j_jenvman_2024_120393 crossref_primary_10_1016_j_pedsph_2023_12_015 crossref_primary_10_1093_ismejo_wraf023 crossref_primary_10_1007_s42729_024_02112_1 crossref_primary_10_1186_s40168_023_01726_4 crossref_primary_10_1016_j_agee_2025_109568 crossref_primary_10_1016_j_agee_2024_108951 crossref_primary_10_1007_s11104_023_06045_z crossref_primary_10_1016_j_jenvman_2024_120239 crossref_primary_10_1007_s00284_023_03310_3 crossref_primary_10_1016_j_cub_2024_09_019 crossref_primary_10_1016_j_pedsph_2024_02_002 crossref_primary_10_1016_j_apsoil_2024_105799 crossref_primary_10_1111_nph_19252 crossref_primary_10_1111_nph_70064 crossref_primary_10_3389_fevo_2023_1224849 crossref_primary_10_1016_j_cell_2025_01_035 crossref_primary_10_1016_j_jenvman_2023_118967 crossref_primary_10_3389_fpls_2025_1510196 |
Cites_doi | 10.1038/s41893-021-00767-7 10.1016/S0038-0717(00)00141-3 10.1126/sciadv.abg6995 10.1016/j.scitotenv.2021.150883 10.1128/mBio.03509-20 10.1016/j.watres.2013.02.054 10.1111/j.1574-6941.2007.00337.x 10.1093/molbev/msn146 10.1111/nph.14931 10.1038/ngeo2963 10.1016/j.soilbio.2016.06.006 10.1111/nph.17306 10.1111/gcb.16073 10.1016/S0167-8809(99)00031-6 10.1111/gcb.15833 10.1038/35095041 10.1016/j.biortech.2014.03.125 10.1111/j.1365-2486.2006.01280.x 10.1016/j.tplants.2021.10.008 10.1016/j.still.2015.08.006 10.1890/09-0188.1 10.1016/j.soilbio.2014.03.010 10.1128/AEM.64.10.3769-3775.1998 10.1111/nph.13838 10.1128/AEM.69.6.3152-3157.2003 10.1006/meth.2001.1262 10.1021/acs.est.8b03931 10.1007/s00572-011-0418-7 10.1016/j.soilbio.2019.02.009 10.1007/s00374-022-01683-4 10.1128/mSystems.00929-20 10.1111/j.1574-6968.2005.00003.x 10.1038/s41396-018-0171-4 10.1007/BF00335912 10.1016/j.scitotenv.2021.145133 10.1128/AEM.69.5.2816-2824.2003 10.1016/j.fcr.2014.03.022 10.1016/j.soilbio.2015.10.008 10.1111/1462-2920.15815 10.1038/nbt.3935 10.1073/pnas.1211238109 10.1007/s00253-016-7383-1 10.1016/j.soilbio.2019.03.025 10.1038/s41558-018-0087-z 10.1111/j.1462-2920.2009.01879.x 10.1038/ismej.2013.224 10.1111/1462-2920.12081 10.1016/j.soilbio.2016.11.028 10.1111/j.1469-8137.2010.03230.x 10.1007/s00572-020-01016-z 10.1371/journal.pone.0114118 10.1016/S0953-7562(96)80164-X 10.1128/AEM.67.5.2284-2291.2001 10.1098/rstb.2013.0122 10.1093/molbev/msr121 10.1021/acs.est.2c03816 10.1007/s42832-021-0107-1 10.1111/j.1752-4571.2010.00145.x 10.1128/AEM.00409-16 10.1126/science.1224304 10.1007/s10705-006-9009-y 10.1007/s00248-018-1281-2 10.1016/j.tim.2017.07.003 10.1111/gcb.12274 10.1111/gcb.14154 10.1016/j.jbiotec.2004.02.016 |
ContentType | Journal Article |
Copyright | 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023. The Author(s). The Author(s) 2023 |
Copyright_xml | – notice: 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023. The Author(s). – notice: The Author(s) 2023 |
DBID | AAYXX CITATION 3V. 7X7 7XB 88E 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.1186/s40168-023-01466-5 |
DatabaseName | CrossRef ProQuest Central (Corporate) ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Medical Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Agriculture |
EISSN | 2049-2618 |
EndPage | 18 |
ExternalDocumentID | oai_doaj_org_article_607bafb2dbe4485087b5d39350c141bd PMC9996866 10_1186_s40168_023_01466_5 |
GrantInformation_xml | – fundername: ; grantid: 201913043 – fundername: ; grantid: 42007032; 41830751; 31872182 |
GroupedDBID | 0R~ 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ AAFWJ AAHBH AAJSJ AASML AAYXX ABUWG ACGFS ADBBV ADRAZ ADUKV AENEX AFKRA AFPKN AHBYD AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AOIJS ASPBG BAWUL BBNVY BCNDV BENPR BFQNJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CITATION DIK EBLON EBS FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAG IAO IEP IHR INH INR ISR ITC KQ8 LK8 M1P M48 M7P M~E OK1 PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RBZ ROL RPM RSV SOJ UKHRP 3V. 7XB 8FK AZQEC DWQXO GNUQQ K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c473t-d634e4ccfb4f4521593f389daa59111b5cf73a44827ee8b72ad2fbfafb61d3363 |
IEDL.DBID | M48 |
ISSN | 2049-2618 |
IngestDate | Wed Aug 27 01:30:57 EDT 2025 Thu Aug 21 18:37:42 EDT 2025 Fri Jul 11 03:00:59 EDT 2025 Fri Jul 25 11:55:53 EDT 2025 Tue Jul 01 04:16:43 EDT 2025 Thu Apr 24 23:08:22 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c473t-d634e4ccfb4f4521593f389daa59111b5cf73a44827ee8b72ad2fbfafb61d3363 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Undefined-1 ObjectType-Feature-3 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s40168-023-01466-5 |
PMID | 36890606 |
PQID | 2788500633 |
PQPubID | 2040205 |
PageCount | 18 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_607bafb2dbe4485087b5d39350c141bd pubmedcentral_primary_oai_pubmedcentral_nih_gov_9996866 proquest_miscellaneous_2785198430 proquest_journals_2788500633 crossref_citationtrail_10_1186_s40168_023_01466_5 crossref_primary_10_1186_s40168_023_01466_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-03-09 |
PublicationDateYYYYMMDD | 2023-03-09 |
PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-09 day: 09 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Microbiome |
PublicationYear | 2023 |
Publisher | BioMed Central BMC |
Publisher_xml | – name: BioMed Central – name: BMC |
References | D Lu (1466_CR47) 2014; 163 RS Novoa (1466_CR3) 2006; 75 N Luthfiana (1466_CR60) 2021; 31 X Li (1466_CR29) 2016; 92 MM Yuan (1466_CR13) 2021; 12 JF Salles (1466_CR51) 2009; 90 A Hodge (1466_CR18) 2001; 413 L Philippot (1466_CR45) 2009; 11 L Chapuis-Lardy (1466_CR69) 2007; 13 G Lashermes (1466_CR4) 2022; 806 H Chen (1466_CR5) 2013; 19 MA Cavigelli (1466_CR52) 2001; 33 DRH Graf (1466_CR46) 2016; 100 L Zhang (1466_CR16) 2016; 210 KJ Livak (1466_CR35) 2001; 25 M Li (1466_CR63) 2016; 100 X Zhang (1466_CR44) 2022; 56 1466_CR1 M Faghihinia (1466_CR15) 2023; 59 H Gui (1466_CR21) 2021; 774 S Yoon (1466_CR54) 2016; 82 ME Giles (1466_CR61) 2017; 106 EE Nuccio (1466_CR53) 2013; 15 R Zhao (1466_CR20) 2021; 23 M Zheng (1466_CR62) 2014; 162 JF Toljander (1466_CR58) 2007; 61 D Liang (1466_CR7) 2021; 27 F Oehl (1466_CR65) 2003; 69 Y Zhang (1466_CR41) 2016; 155 AN Kravchenko (1466_CR2) 2017; 10 RA Wittwer (1466_CR68) 2021; 7 DP Bharadwaj (1466_CR59) 2012; 22 ST Okiobe (1466_CR25) 2019; 134 C Lazcano (1466_CR24) 2014; 74 J Zhou (1466_CR55) 2020; 5 DG Ha (1466_CR36) 2014 JF Toljander (1466_CR57) 2006; 254 X Song (1466_CR48) 2018; 52 E Verbruggen (1466_CR67) 2010; 186 E Smit (1466_CR37) 2001; 67 E Verbruggen (1466_CR28) 2010; 3 Y Pan (1466_CR50) 2013; 47 DR Graf (1466_CR10) 2014; 9 E Lugato (1466_CR40) 2018; 8 P Elefsiniotis (1466_CR64) 2004; 114 A Guzman (1466_CR66) 2021; 231 SF Bender (1466_CR23) 2014; 8 L Cheng (1466_CR42) 2012; 337 L Zhang (1466_CR17) 2018; 12 N Takaya (1466_CR31) 2003; 69 S Hallin (1466_CR11) 2018; 26 DD Douds Jr (1466_CR27) 1999; 74 K Tamura (1466_CR33) 2011; 28 M St-Arnaud (1466_CR34) 1996; 100 CM Jones (1466_CR9) 2008; 25 C Quince (1466_CR30) 2017; 35 M Li (1466_CR38) 2022; 4 G Braker (1466_CR8) 1998; 64 K Butterbach-Bahl (1466_CR6) 2013; 368 X Li (1466_CR39) 2021; 4 K Storer (1466_CR19) 2018; 220 M Senbayram (1466_CR49) 2019; 132 SD Veresoglou (1466_CR22) 2019; 78 A Hodge (1466_CR26) 1996; 23 N Saitou (1466_CR32) 1987; 4 L Zhang (1466_CR56) 2021; 27 Y Fang (1466_CR43) 2018; 24 RA Sanford (1466_CR12) 2012; 109 CR See (1466_CR14) 2022; 28 |
References_xml | – volume: 4 start-page: 943 year: 2021 ident: 1466_CR39 publication-title: Nat Sustain doi: 10.1038/s41893-021-00767-7 – volume: 33 start-page: 297 year: 2001 ident: 1466_CR52 publication-title: Soil Biol Biochem doi: 10.1016/S0038-0717(00)00141-3 – volume: 7 start-page: eabg6995 year: 2021 ident: 1466_CR68 publication-title: Sci Adv doi: 10.1126/sciadv.abg6995 – volume: 806 start-page: 150883 year: 2022 ident: 1466_CR4 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2021.150883 – volume: 12 start-page: e03509 year: 2021 ident: 1466_CR13 publication-title: MBio doi: 10.1128/mBio.03509-20 – volume: 47 start-page: 3273 year: 2013 ident: 1466_CR50 publication-title: Water Res doi: 10.1016/j.watres.2013.02.054 – volume: 61 start-page: 295 year: 2007 ident: 1466_CR58 publication-title: FEMS Microbiol Ecol doi: 10.1111/j.1574-6941.2007.00337.x – volume: 25 start-page: 1955 year: 2008 ident: 1466_CR9 publication-title: Mol Biol Evol doi: 10.1093/molbev/msn146 – volume: 220 start-page: 1285 year: 2018 ident: 1466_CR19 publication-title: New Phytol doi: 10.1111/nph.14931 – volume: 10 start-page: 496 year: 2017 ident: 1466_CR2 publication-title: Nat Geosci doi: 10.1038/ngeo2963 – volume: 100 start-page: 125 year: 2016 ident: 1466_CR46 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2016.06.006 – volume: 231 start-page: 447 year: 2021 ident: 1466_CR66 publication-title: New Phytol doi: 10.1111/nph.17306 – volume: 28 start-page: 2527 year: 2022 ident: 1466_CR14 publication-title: Glob Chang Biol doi: 10.1111/gcb.16073 – volume: 74 start-page: 77 year: 1999 ident: 1466_CR27 publication-title: Agric Ecosyst Environ doi: 10.1016/S0167-8809(99)00031-6 – volume: 27 start-page: 5599 year: 2021 ident: 1466_CR7 publication-title: Glob Chang Biol doi: 10.1111/gcb.15833 – volume: 413 start-page: 297 year: 2001 ident: 1466_CR18 publication-title: Nature doi: 10.1038/35095041 – volume: 162 start-page: 80 year: 2014 ident: 1466_CR62 publication-title: Bioresour Technol doi: 10.1016/j.biortech.2014.03.125 – volume: 13 start-page: 1 year: 2007 ident: 1466_CR69 publication-title: Global Change Biol doi: 10.1111/j.1365-2486.2006.01280.x – ident: 1466_CR1 – volume: 4 start-page: 406 year: 1987 ident: 1466_CR32 publication-title: Mol Biol Evol – volume: 27 start-page: 402 year: 2021 ident: 1466_CR56 publication-title: Trends Plant Sci doi: 10.1016/j.tplants.2021.10.008 – volume: 155 start-page: 85 year: 2016 ident: 1466_CR41 publication-title: Soil Tillage Res doi: 10.1016/j.still.2015.08.006 – volume: 90 start-page: 3324 year: 2009 ident: 1466_CR51 publication-title: Ecology doi: 10.1890/09-0188.1 – volume: 74 start-page: 184 year: 2014 ident: 1466_CR24 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2014.03.010 – volume: 64 start-page: 3769 year: 1998 ident: 1466_CR8 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.64.10.3769-3775.1998 – volume: 210 start-page: 1022 year: 2016 ident: 1466_CR16 publication-title: New Phytol doi: 10.1111/nph.13838 – volume: 69 start-page: 3152 year: 2003 ident: 1466_CR31 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.69.6.3152-3157.2003 – volume: 25 start-page: 402 year: 2001 ident: 1466_CR35 publication-title: Methods doi: 10.1006/meth.2001.1262 – volume: 52 start-page: 12504 year: 2018 ident: 1466_CR48 publication-title: Environ Sci Technol doi: 10.1021/acs.est.8b03931 – volume: 22 start-page: 437 year: 2012 ident: 1466_CR59 publication-title: Mycorrhiza doi: 10.1007/s00572-011-0418-7 – volume: 132 start-page: 165 year: 2019 ident: 1466_CR49 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2019.02.009 – volume: 59 start-page: 17 year: 2023 ident: 1466_CR15 publication-title: Biol Fertil Soils. doi: 10.1007/s00374-022-01683-4 – volume: 5 start-page: e00929 year: 2020 ident: 1466_CR55 publication-title: Msystems doi: 10.1128/mSystems.00929-20 – volume: 254 start-page: 34 year: 2006 ident: 1466_CR57 publication-title: FEMS Microbiol Lett doi: 10.1111/j.1574-6968.2005.00003.x – volume: 12 start-page: 2339 year: 2018 ident: 1466_CR17 publication-title: ISME J doi: 10.1038/s41396-018-0171-4 – volume: 23 start-page: 388 year: 1996 ident: 1466_CR26 publication-title: Biol Fertil Soils doi: 10.1007/BF00335912 – volume: 774 start-page: 145133 year: 2021 ident: 1466_CR21 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2021.145133 – volume: 69 start-page: 2816 year: 2003 ident: 1466_CR65 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.69.5.2816-2824.2003 – volume: 163 start-page: 81 year: 2014 ident: 1466_CR47 publication-title: Field Crops Res doi: 10.1016/j.fcr.2014.03.022 – volume: 92 start-page: 153 year: 2016 ident: 1466_CR29 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2015.10.008 – volume: 23 start-page: 6587 year: 2021 ident: 1466_CR20 publication-title: Environ Microbiol doi: 10.1111/1462-2920.15815 – volume: 35 start-page: 833 year: 2017 ident: 1466_CR30 publication-title: Nat Biotechnol doi: 10.1038/nbt.3935 – volume: 109 start-page: 19709 year: 2012 ident: 1466_CR12 publication-title: P Natl Acad Sci USA doi: 10.1073/pnas.1211238109 – start-page: 59 volume-title: Plate-based assay for swimming motility in Pseudomonas aeruginosa. Pseudomonas methods and protocols year: 2014 ident: 1466_CR36 – volume: 100 start-page: 5607 year: 2016 ident: 1466_CR63 publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-016-7383-1 – volume: 134 start-page: 142 year: 2019 ident: 1466_CR25 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2019.03.025 – volume: 8 start-page: 219 year: 2018 ident: 1466_CR40 publication-title: Nat Clim Change doi: 10.1038/s41558-018-0087-z – volume: 11 start-page: 1518 year: 2009 ident: 1466_CR45 publication-title: Environ Microbiol doi: 10.1111/j.1462-2920.2009.01879.x – volume: 8 start-page: 1336 year: 2014 ident: 1466_CR23 publication-title: ISME J doi: 10.1038/ismej.2013.224 – volume: 15 start-page: 1870 year: 2013 ident: 1466_CR53 publication-title: Environ Microbiol doi: 10.1111/1462-2920.12081 – volume: 106 start-page: 90 year: 2017 ident: 1466_CR61 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2016.11.028 – volume: 186 start-page: 968 year: 2010 ident: 1466_CR67 publication-title: New Phytol doi: 10.1111/j.1469-8137.2010.03230.x – volume: 31 start-page: 403 issue: 3 year: 2021 ident: 1466_CR60 publication-title: Mycorrhiza doi: 10.1007/s00572-020-01016-z – volume: 9 start-page: e114118 year: 2014 ident: 1466_CR10 publication-title: PLoS One doi: 10.1371/journal.pone.0114118 – volume: 100 start-page: 328 year: 1996 ident: 1466_CR34 publication-title: Mycol Res doi: 10.1016/S0953-7562(96)80164-X – volume: 67 start-page: 2284 year: 2001 ident: 1466_CR37 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.67.5.2284-2291.2001 – volume: 368 start-page: 20130122 year: 2013 ident: 1466_CR6 publication-title: Philos Trans R Soc, B doi: 10.1098/rstb.2013.0122 – volume: 28 start-page: 2731 year: 2011 ident: 1466_CR33 publication-title: Mol Biol Evol doi: 10.1093/molbev/msr121 – volume: 56 start-page: 13461 year: 2022 ident: 1466_CR44 publication-title: Environ Sci Technol doi: 10.1021/acs.est.2c03816 – volume: 4 start-page: 319 year: 2022 ident: 1466_CR38 publication-title: Soil Ecol Lett. doi: 10.1007/s42832-021-0107-1 – volume: 3 start-page: 547 year: 2010 ident: 1466_CR28 publication-title: Evol Appl doi: 10.1111/j.1752-4571.2010.00145.x – volume: 82 start-page: 3793 year: 2016 ident: 1466_CR54 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.00409-16 – volume: 337 start-page: 1084 year: 2012 ident: 1466_CR42 publication-title: Science doi: 10.1126/science.1224304 – volume: 75 start-page: 29 year: 2006 ident: 1466_CR3 publication-title: Nutr Cycling Agroecosyst doi: 10.1007/s10705-006-9009-y – volume: 78 start-page: 147 year: 2019 ident: 1466_CR22 publication-title: Microb Ecol doi: 10.1007/s00248-018-1281-2 – volume: 26 start-page: 43 year: 2018 ident: 1466_CR11 publication-title: Trends Microbiol doi: 10.1016/j.tim.2017.07.003 – volume: 19 start-page: 2956 year: 2013 ident: 1466_CR5 publication-title: Glob Chang Biol doi: 10.1111/gcb.12274 – volume: 24 start-page: 2775 year: 2018 ident: 1466_CR43 publication-title: Glob Chang Biol doi: 10.1111/gcb.14154 – volume: 114 start-page: 289 year: 2004 ident: 1466_CR64 publication-title: J Biotechnol doi: 10.1016/j.jbiotec.2004.02.016 |
SSID | ssj0000914748 |
Score | 2.484599 |
Snippet | BackgroundArbuscular mycorrhizal fungi (AMF) are key soil organisms and their extensive hyphae create a unique hyphosphere associated with microbes actively... Arbuscular mycorrhizal fungi (AMF) are key soil organisms and their extensive hyphae create a unique hyphosphere associated with microbes actively involved in... Abstract Background Arbuscular mycorrhizal fungi (AMF) are key soil organisms and their extensive hyphae create a unique hyphosphere associated with microbes... |
SourceID | doaj pubmedcentral proquest crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 1 |
SubjectTerms | Abundance Agriculture Arbuscular mycorrhizal fungi Arbuscular mycorrhizas Attractants Carboxylates Chemotaxis Climate change Crop residues Emissions Exudates Gene expression Genes Hyphae Inoculation Metagenomics Microbiomes Microorganisms N2O Nitrous oxide nosZ Plant growth Pseudomonas Respiration Soil microorganisms Stimulants Sustainable agriculture |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBUhUMgltGlC3aRBhd6CyNr6so5taQiBpj0kkJuQLIkYgh3Wu4f013dG9i7rS3sJ-GRLII9GM2_smTeEfEmKB7NwgRkjIxPRlKwOcB6VMFzp0iPlGWZb3Krre3HzIB92Wn1hTthIDzwK7lIttHfJV8FHiCQATmgvA9aTLppSlD6g9QWftxNMZRtsSqFFvamSqdXlAIGEqhm4KIZ8KYrJmSfKhP0zlDnPkdxxOldvyeGEFunXcZXvyF7sjsibsX_ky3sSfr5A8Lh8bP84lktAAD5SMGHLdZuTx2mfaM4ZB2RMwcC0q2Wb65ro7yGuQw8q6AaYEGB_B3pb_aLY_Q2_nw0U607o0LdPx-T-6sfd92s2tU1gjdB8xYLiIoqmSV4kAd5ZGp4AlgTnJFo2L5ukuRPI_xlj7XXlQpV8AiGrMnCu-AnZ7_oufiA0IByBCSFI8PSxcUZ67XhSqgnKi1iQciNC20yc4tja4snm2KJWdhS7BbHbLHYrC3KxnfM8Mmr8c_Q33JntSGTDzjdAR-ykI_Z_OlKQs82-2umIDraC4F8iQuMF-bx9DFLGPyaui_06jwGEWwu-KIie6cNsQfMnXfuYaboxlKyV-vgab3BKDqqsunCZM7K_Wq7jJ0BDK3-eFf8vH1kJKw priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Na9VAEF-0IuhBtCpGW1nBmyx9yX4lJ6nSUgqtHiy827KfbaAkNXnvUP96Z_blPc2lkFOySz5mduY3m5nfEPI5KR6ahQ2saWRkIjYlqwOsRyUarnTpkPIMsy0u1dmVOF_K5bThNk5plVubmA116D3ukR9VEKtJdKj8691vhl2j8O_q1ELjMXmC1GWo1Xqpd3ss4AuFFvW2VqZWRyOEE6pm4KgYsqYoJmf-KNP2z7DmPFPyP9dz-pK8mDAjPd4I-RV5FLt98vz4eph4M-I-ebrpKXn_moSLewgoh5v2j2W5LAQgJQWzNqzbnFBO-0RzHjmgZQpGp10Nba51oj_HuA49vKcdYUIAmY_0svpBsSMc7qmNFGtR6Ni3t2_I1enJr-9nbGqlwLzQfMWC4iIK75MTSYDHlg1PAFWCtRKtnZM-aW4FcoLGWDtd2VAll2xyqgycK_6W7HV9F98RGhCiwIQQJHj_6G0jnbY8KeWDciIWpNx-UOMnnnFsd3FrcrxRK7MRggEhmCwEIwvyZTfnbsOy8eDobyin3UhkyM4n-uHaTAvOqIV28PhVcBFeC2CodjJgHfLCl6J0oSAHWymbadmO5p-SFeTT7jJ8ZfyLYrvYr_MYQL214IuC6Jl2zB5ofqVrbzJ1N4aXtVLvH775B_KsyioKR3NA9lbDOh4C9lm5j1nB_wJ_XwVS priority: 102 providerName: ProQuest |
Title | Mycorrhiza-mediated recruitment of complete denitrifying Pseudomonas reduces N2O emissions from soil |
URI | https://www.proquest.com/docview/2788500633 https://www.proquest.com/docview/2785198430 https://pubmed.ncbi.nlm.nih.gov/PMC9996866 https://doaj.org/article/607bafb2dbe4485087b5d39350c141bd |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEB_uA8GXw0-sdy4RfJPotvlqH0Q8ufMQbj3EhX0rSZN4haXVdhdc_3on2e5i4fBJKH1oJpBMZjK_STMzAK-8ZLaYakuLQjjKXZHS3KI-Sl4wqVITUp6F2xYzeTXnnxdicQC7ckcDA_s7XbtQT2reLd_8-rl5jwr_Lip8Lt_26CPInKL1oSEViqTiEI7RMqlQ0eB6gPtxZy5Srni-i525s-vIPsU0_iPsOb45-ZcpunwAJwOGJB-2i_4QDlzzCO5tq0puHoO93qBL2d3WvzWNgSEIKglubN26jlfKSetJvEmOeJngtlOvujpGO5Gb3q1ti4Kpe-xgcdV7Msu-kFATLpyq9SREo5C-rZdPYH558e3jFR2KKdCKK7aiVjLueFV5wz1Hmy0K5hGsWK1F2O-MqLximoesoM7lRmXaZt547Y1MLWOSPYWjpm3cMyA2gBTsYK1ALrtKF8IozbyUlZWGuwTSHQvLasg0HgpeLMvoceSy3LK9RLaXke2lSOD1vs-PbZ6Nf1Kfh5XZU4Yc2fFD230vB5Ur5VQZHH5mjcNpIRBVRtgQiTytUp4am8DZbl3LndyVmcqRFHEbS-Dlvhm5HP6j6Ma160iDuDfnbJqAGsnDaEDjlqa-jcm7g4OZS_n8f8zgFO5nUXTxKc7gaNWt3QvESCszgUO1UBM4Pr-Y3XydxJMGfH9apJOoEn8A_2gVPw |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQcEBQqFgoYCU7I6iZ-JQeEyqPa0nbh0Eq9GTt22kjVpiS7QsuP4jcy9iYLufRWKafEThzPeOYbex4Ab0rJXD42jua58JT7PKGZw_Uoec6kSmxIeRa8LaZycsq_nomzDfjTx8IEt8peJkZB7eoi7JHvpmiriaBQ2YernzRUjQqnq30JjRVbHPrlLzTZ2vcHn5G-b9N0_8vJpwntqgrQgis2p04y7nlRlJaXHJWXyFmJWtsZI8LCt6IoFTM8pMf0PrMqNS4tbWlKKxPHmGT43ltwGxXvOBh76kyt93RQ93LFsz42J5O7LZovMqOoGGnI0iKpGOi_WCZggG2Hnpn_qbr9h_Cgw6hkb8VUj2DDz7bg_t550-Xp8FtwZ1XDcvkY3PESDdjmovptaAxDQQhLUIw2iyo6sJO6JNFvHdE5QSFXzZsqxlaR761fuBrn1bTYwSGPtWSafiOhAl3Yw2tJiH0hbV1dPoHTG5nkbdic1TP_FIgLkAg7OCcQbfjC5MIqw0opCyct9yNI-gnVRZfXPJTXuNTRvsmkXhFBIxF0JIIWI3i37nO1yupxbeuPgU7rliEjd7xRN-e6W-BajpXF4afOevwthL3KChfinsdFwhPrRrDTU1l3YqLV_5h6BK_Xj3GWw6mNmfl6Edsgys44G49ADbhjMKDhk1l1EVOFB3M2k_LZ9R9_BXcnJ8dH-uhgevgc7qWRXfHKd2Bz3iz8C8Rdc_syMjuBHze9uv4CHVBDFw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mycorrhiza-mediated+recruitment+of+complete+denitrifying+Pseudomonas+reduces+N2O+emissions+from+soil&rft.jtitle=Microbiome&rft.au=Xia+Li&rft.au=Ruotong+Zhao&rft.au=Dandan+Li&rft.au=Guangzhou+Wang&rft.date=2023-03-09&rft.pub=BMC&rft.eissn=2049-2618&rft.volume=11&rft.issue=1&rft.spage=1&rft.epage=18&rft_id=info:doi/10.1186%2Fs40168-023-01466-5&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_607bafb2dbe4485087b5d39350c141bd |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2049-2618&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2049-2618&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2049-2618&client=summon |