Mycorrhiza-mediated recruitment of complete denitrifying Pseudomonas reduces N2O emissions from soil

BackgroundArbuscular mycorrhizal fungi (AMF) are key soil organisms and their extensive hyphae create a unique hyphosphere associated with microbes actively involved in N cycling. However, the underlying mechanisms how AMF and hyphae-associated microbes may cooperate to influence N2O emissions from...

Full description

Saved in:
Bibliographic Details
Published inMicrobiome Vol. 11; no. 1; pp. 1 - 18
Main Authors Li, Xia, Zhao, Ruotong, Li, Dandan, Wang, Guangzhou, Bei, Shuikuan, Ju, Xiaotang, An, Ran, Li, Long, Kuyper, Thomas W., Christie, Peter, Bender, Franz S., Veen, Ciska, van der Heijden, Marcel G. A., van der Putten, Wim H., Zhang, Fusuo, Butterbach-Bahl, Klaus, Zhang, Junling
Format Journal Article
LanguageEnglish
Published London BioMed Central 09.03.2023
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract BackgroundArbuscular mycorrhizal fungi (AMF) are key soil organisms and their extensive hyphae create a unique hyphosphere associated with microbes actively involved in N cycling. However, the underlying mechanisms how AMF and hyphae-associated microbes may cooperate to influence N2O emissions from “hot spot” residue patches remain unclear. Here we explored the key microbes in the hyphosphere involved in N2O production and consumption using amplicon and shotgun metagenomic sequencing. Chemotaxis, growth and N2O emissions of isolated N2O-reducing bacteria in response to hyphal exudates were tested using in vitro cultures and inoculation experiments.ResultsAMF hyphae reduced denitrification-derived N2O emission (max. 63%) in C- and N-rich residue patches. AMF consistently enhanced the abundance and expression of clade I nosZ gene, and inconsistently increased that of nirS and nirK genes. The reduction of N2O emissions in the hyphosphere was linked to N2O-reducing Pseudomonas specifically enriched by AMF, concurring with the increase in the relative abundance of the key genes involved in bacterial citrate cycle. Phenotypic characterization of the isolated complete denitrifying P. fluorescens strain JL1 (possessing clade I nosZ) indicated that the decline of net N2O emission was a result of upregulated nosZ expression in P. fluorescens following hyphal exudation (e.g. carboxylates). These findings were further validated by re-inoculating sterilized residue patches with P. fluorescens and by an 11-year-long field experiment showing significant positive correlation between hyphal length density with the abundance of clade I nosZ gene.ConclusionsThe cooperation between AMF and the N2O-reducing Pseudomonas residing on hyphae significantly reduce N2O emissions in the microsites. Carboxylates exuded by hyphae act as attractants in recruiting P. fluorescens and also as stimulants triggering nosZ gene expression. Our discovery indicates that reinforcing synergies between AMF and hyphosphere microbiome may provide unexplored opportunities to stimulate N2O consumption in nutrient-enriched microsites, and consequently reduce N2O emissions from soils. This knowledge opens novel avenues to exploit cross-kingdom microbial interactions for sustainable agriculture and for climate change mitigation.Video Abstract
AbstractList Abstract Background Arbuscular mycorrhizal fungi (AMF) are key soil organisms and their extensive hyphae create a unique hyphosphere associated with microbes actively involved in N cycling. However, the underlying mechanisms how AMF and hyphae-associated microbes may cooperate to influence N2O emissions from “hot spot” residue patches remain unclear. Here we explored the key microbes in the hyphosphere involved in N2O production and consumption using amplicon and shotgun metagenomic sequencing. Chemotaxis, growth and N2O emissions of isolated N2O-reducing bacteria in response to hyphal exudates were tested using in vitro cultures and inoculation experiments. Results AMF hyphae reduced denitrification-derived N2O emission (max. 63%) in C- and N-rich residue patches. AMF consistently enhanced the abundance and expression of clade I nosZ gene, and inconsistently increased that of nirS and nirK genes. The reduction of N2O emissions in the hyphosphere was linked to N2O-reducing Pseudomonas specifically enriched by AMF, concurring with the increase in the relative abundance of the key genes involved in bacterial citrate cycle. Phenotypic characterization of the isolated complete denitrifying P. fluorescens strain JL1 (possessing clade I nosZ) indicated that the decline of net N2O emission was a result of upregulated nosZ expression in P. fluorescens following hyphal exudation (e.g. carboxylates). These findings were further validated by re-inoculating sterilized residue patches with P. fluorescens and by an 11-year-long field experiment showing significant positive correlation between hyphal length density with the abundance of clade I nosZ gene. Conclusions The cooperation between AMF and the N2O-reducing Pseudomonas residing on hyphae significantly reduce N2O emissions in the microsites. Carboxylates exuded by hyphae act as attractants in recruiting P. fluorescens and also as stimulants triggering nosZ gene expression. Our discovery indicates that reinforcing synergies between AMF and hyphosphere microbiome may provide unexplored opportunities to stimulate N2O consumption in nutrient-enriched microsites, and consequently reduce N2O emissions from soils. This knowledge opens novel avenues to exploit cross-kingdom microbial interactions for sustainable agriculture and for climate change mitigation. Video Abstract
BackgroundArbuscular mycorrhizal fungi (AMF) are key soil organisms and their extensive hyphae create a unique hyphosphere associated with microbes actively involved in N cycling. However, the underlying mechanisms how AMF and hyphae-associated microbes may cooperate to influence N2O emissions from “hot spot” residue patches remain unclear. Here we explored the key microbes in the hyphosphere involved in N2O production and consumption using amplicon and shotgun metagenomic sequencing. Chemotaxis, growth and N2O emissions of isolated N2O-reducing bacteria in response to hyphal exudates were tested using in vitro cultures and inoculation experiments.ResultsAMF hyphae reduced denitrification-derived N2O emission (max. 63%) in C- and N-rich residue patches. AMF consistently enhanced the abundance and expression of clade I nosZ gene, and inconsistently increased that of nirS and nirK genes. The reduction of N2O emissions in the hyphosphere was linked to N2O-reducing Pseudomonas specifically enriched by AMF, concurring with the increase in the relative abundance of the key genes involved in bacterial citrate cycle. Phenotypic characterization of the isolated complete denitrifying P. fluorescens strain JL1 (possessing clade I nosZ) indicated that the decline of net N2O emission was a result of upregulated nosZ expression in P. fluorescens following hyphal exudation (e.g. carboxylates). These findings were further validated by re-inoculating sterilized residue patches with P. fluorescens and by an 11-year-long field experiment showing significant positive correlation between hyphal length density with the abundance of clade I nosZ gene.ConclusionsThe cooperation between AMF and the N2O-reducing Pseudomonas residing on hyphae significantly reduce N2O emissions in the microsites. Carboxylates exuded by hyphae act as attractants in recruiting P. fluorescens and also as stimulants triggering nosZ gene expression. Our discovery indicates that reinforcing synergies between AMF and hyphosphere microbiome may provide unexplored opportunities to stimulate N2O consumption in nutrient-enriched microsites, and consequently reduce N2O emissions from soils. This knowledge opens novel avenues to exploit cross-kingdom microbial interactions for sustainable agriculture and for climate change mitigation.Video Abstract
Arbuscular mycorrhizal fungi (AMF) are key soil organisms and their extensive hyphae create a unique hyphosphere associated with microbes actively involved in N cycling. However, the underlying mechanisms how AMF and hyphae-associated microbes may cooperate to influence N2O emissions from "hot spot" residue patches remain unclear. Here we explored the key microbes in the hyphosphere involved in N2O production and consumption using amplicon and shotgun metagenomic sequencing. Chemotaxis, growth and N2O emissions of isolated N2O-reducing bacteria in response to hyphal exudates were tested using in vitro cultures and inoculation experiments.BACKGROUNDArbuscular mycorrhizal fungi (AMF) are key soil organisms and their extensive hyphae create a unique hyphosphere associated with microbes actively involved in N cycling. However, the underlying mechanisms how AMF and hyphae-associated microbes may cooperate to influence N2O emissions from "hot spot" residue patches remain unclear. Here we explored the key microbes in the hyphosphere involved in N2O production and consumption using amplicon and shotgun metagenomic sequencing. Chemotaxis, growth and N2O emissions of isolated N2O-reducing bacteria in response to hyphal exudates were tested using in vitro cultures and inoculation experiments.AMF hyphae reduced denitrification-derived N2O emission (max. 63%) in C- and N-rich residue patches. AMF consistently enhanced the abundance and expression of clade I nosZ gene, and inconsistently increased that of nirS and nirK genes. The reduction of N2O emissions in the hyphosphere was linked to N2O-reducing Pseudomonas specifically enriched by AMF, concurring with the increase in the relative abundance of the key genes involved in bacterial citrate cycle. Phenotypic characterization of the isolated complete denitrifying P. fluorescens strain JL1 (possessing clade I nosZ) indicated that the decline of net N2O emission was a result of upregulated nosZ expression in P. fluorescens following hyphal exudation (e.g. carboxylates). These findings were further validated by re-inoculating sterilized residue patches with P. fluorescens and by an 11-year-long field experiment showing significant positive correlation between hyphal length density with the abundance of clade I nosZ gene.RESULTSAMF hyphae reduced denitrification-derived N2O emission (max. 63%) in C- and N-rich residue patches. AMF consistently enhanced the abundance and expression of clade I nosZ gene, and inconsistently increased that of nirS and nirK genes. The reduction of N2O emissions in the hyphosphere was linked to N2O-reducing Pseudomonas specifically enriched by AMF, concurring with the increase in the relative abundance of the key genes involved in bacterial citrate cycle. Phenotypic characterization of the isolated complete denitrifying P. fluorescens strain JL1 (possessing clade I nosZ) indicated that the decline of net N2O emission was a result of upregulated nosZ expression in P. fluorescens following hyphal exudation (e.g. carboxylates). These findings were further validated by re-inoculating sterilized residue patches with P. fluorescens and by an 11-year-long field experiment showing significant positive correlation between hyphal length density with the abundance of clade I nosZ gene.The cooperation between AMF and the N2O-reducing Pseudomonas residing on hyphae significantly reduce N2O emissions in the microsites. Carboxylates exuded by hyphae act as attractants in recruiting P. fluorescens and also as stimulants triggering nosZ gene expression. Our discovery indicates that reinforcing synergies between AMF and hyphosphere microbiome may provide unexplored opportunities to stimulate N2O consumption in nutrient-enriched microsites, and consequently reduce N2O emissions from soils. This knowledge opens novel avenues to exploit cross-kingdom microbial interactions for sustainable agriculture and for climate change mitigation. Video Abstract.CONCLUSIONSThe cooperation between AMF and the N2O-reducing Pseudomonas residing on hyphae significantly reduce N2O emissions in the microsites. Carboxylates exuded by hyphae act as attractants in recruiting P. fluorescens and also as stimulants triggering nosZ gene expression. Our discovery indicates that reinforcing synergies between AMF and hyphosphere microbiome may provide unexplored opportunities to stimulate N2O consumption in nutrient-enriched microsites, and consequently reduce N2O emissions from soils. This knowledge opens novel avenues to exploit cross-kingdom microbial interactions for sustainable agriculture and for climate change mitigation. Video Abstract.
ArticleNumber 45
Author Li, Long
Veen, Ciska
Zhang, Junling
Zhao, Ruotong
Wang, Guangzhou
van der Heijden, Marcel G. A.
Zhang, Fusuo
Christie, Peter
Bender, Franz S.
Kuyper, Thomas W.
van der Putten, Wim H.
Butterbach-Bahl, Klaus
Bei, Shuikuan
An, Ran
Li, Xia
Li, Dandan
Ju, Xiaotang
Author_xml – sequence: 1
  givenname: Xia
  surname: Li
  fullname: Li, Xia
– sequence: 2
  givenname: Ruotong
  surname: Zhao
  fullname: Zhao, Ruotong
– sequence: 3
  givenname: Dandan
  surname: Li
  fullname: Li, Dandan
– sequence: 4
  givenname: Guangzhou
  surname: Wang
  fullname: Wang, Guangzhou
– sequence: 5
  givenname: Shuikuan
  surname: Bei
  fullname: Bei, Shuikuan
– sequence: 6
  givenname: Xiaotang
  surname: Ju
  fullname: Ju, Xiaotang
– sequence: 7
  givenname: Ran
  surname: An
  fullname: An, Ran
– sequence: 8
  givenname: Long
  surname: Li
  fullname: Li, Long
– sequence: 9
  givenname: Thomas W.
  surname: Kuyper
  fullname: Kuyper, Thomas W.
– sequence: 10
  givenname: Peter
  surname: Christie
  fullname: Christie, Peter
– sequence: 11
  givenname: Franz S.
  surname: Bender
  fullname: Bender, Franz S.
– sequence: 12
  givenname: Ciska
  surname: Veen
  fullname: Veen, Ciska
– sequence: 13
  givenname: Marcel G. A.
  surname: van der Heijden
  fullname: van der Heijden, Marcel G. A.
– sequence: 14
  givenname: Wim H.
  surname: van der Putten
  fullname: van der Putten, Wim H.
– sequence: 15
  givenname: Fusuo
  surname: Zhang
  fullname: Zhang, Fusuo
– sequence: 16
  givenname: Klaus
  surname: Butterbach-Bahl
  fullname: Butterbach-Bahl, Klaus
– sequence: 17
  givenname: Junling
  surname: Zhang
  fullname: Zhang, Junling
BookMark eNp9kk1vFSEYhYmpsbX2D7iaxI2bUb6GgY2JafxoUq0LXRMGXm65mYErMCbXXy-3tya2C9lA4JwHODnP0UlMERB6SfAbQqR4WzgmQvaYsh4TLkQ_PEFnFHPVU0HkyT_rU3RRyha3oQgfuXyGTpmQCgsszpD7srcp59vw2_QLuGAquC6DzWuoC8TaJd_ZtOxmqNA5iKHm4PchbrpvBVaXlhRNaQa3WijdV3rTwRJKCSmWzue0dCWF-QV66s1c4OJ-Pkc_Pn74fvm5v775dHX5_rq3fGS1d4Jx4Nb6iXs-UDIo5plUzphBEUKmwfqRGc4lHQHkNFLjqJ-88ZMgjjHBztHVkeuS2epdDovJe51M0HcbKW-0yTXYGbTA49SM1E3QgAOW4zQ4ptiALeFkco317sjarVMLxrYsspkfQB-exHCrN-mXVkoJKQ6PeX0PyOnnCqXqFoyFeTYR0lo0HeVAlOQMN-mrR9JtWnNsUR1U7XVYMNZU8qiyOZWSwWsbqqkt6nZ_mDXB-tAMfWyGbs3Qd83QQ7PSR9a___iP6Q99B732
CitedBy_id crossref_primary_10_1111_nph_19541
crossref_primary_10_1016_j_envpol_2025_125846
crossref_primary_10_1016_j_cej_2024_155292
crossref_primary_10_1016_j_jhazmat_2024_135057
crossref_primary_10_1016_j_scitotenv_2024_169889
crossref_primary_10_1016_j_scitotenv_2024_173065
crossref_primary_10_1016_j_tplants_2023_09_007
crossref_primary_10_1093_jxb_erae274
crossref_primary_10_1016_j_soilbio_2024_109702
crossref_primary_10_1038_s41579_024_01073_7
crossref_primary_10_1002_advs_202413227
crossref_primary_10_1016_j_jenvman_2024_120393
crossref_primary_10_1016_j_pedsph_2023_12_015
crossref_primary_10_1093_ismejo_wraf023
crossref_primary_10_1007_s42729_024_02112_1
crossref_primary_10_1186_s40168_023_01726_4
crossref_primary_10_1016_j_agee_2025_109568
crossref_primary_10_1016_j_agee_2024_108951
crossref_primary_10_1007_s11104_023_06045_z
crossref_primary_10_1016_j_jenvman_2024_120239
crossref_primary_10_1007_s00284_023_03310_3
crossref_primary_10_1016_j_cub_2024_09_019
crossref_primary_10_1016_j_pedsph_2024_02_002
crossref_primary_10_1016_j_apsoil_2024_105799
crossref_primary_10_1111_nph_19252
crossref_primary_10_1111_nph_70064
crossref_primary_10_3389_fevo_2023_1224849
crossref_primary_10_1016_j_cell_2025_01_035
crossref_primary_10_1016_j_jenvman_2023_118967
crossref_primary_10_3389_fpls_2025_1510196
Cites_doi 10.1038/s41893-021-00767-7
10.1016/S0038-0717(00)00141-3
10.1126/sciadv.abg6995
10.1016/j.scitotenv.2021.150883
10.1128/mBio.03509-20
10.1016/j.watres.2013.02.054
10.1111/j.1574-6941.2007.00337.x
10.1093/molbev/msn146
10.1111/nph.14931
10.1038/ngeo2963
10.1016/j.soilbio.2016.06.006
10.1111/nph.17306
10.1111/gcb.16073
10.1016/S0167-8809(99)00031-6
10.1111/gcb.15833
10.1038/35095041
10.1016/j.biortech.2014.03.125
10.1111/j.1365-2486.2006.01280.x
10.1016/j.tplants.2021.10.008
10.1016/j.still.2015.08.006
10.1890/09-0188.1
10.1016/j.soilbio.2014.03.010
10.1128/AEM.64.10.3769-3775.1998
10.1111/nph.13838
10.1128/AEM.69.6.3152-3157.2003
10.1006/meth.2001.1262
10.1021/acs.est.8b03931
10.1007/s00572-011-0418-7
10.1016/j.soilbio.2019.02.009
10.1007/s00374-022-01683-4
10.1128/mSystems.00929-20
10.1111/j.1574-6968.2005.00003.x
10.1038/s41396-018-0171-4
10.1007/BF00335912
10.1016/j.scitotenv.2021.145133
10.1128/AEM.69.5.2816-2824.2003
10.1016/j.fcr.2014.03.022
10.1016/j.soilbio.2015.10.008
10.1111/1462-2920.15815
10.1038/nbt.3935
10.1073/pnas.1211238109
10.1007/s00253-016-7383-1
10.1016/j.soilbio.2019.03.025
10.1038/s41558-018-0087-z
10.1111/j.1462-2920.2009.01879.x
10.1038/ismej.2013.224
10.1111/1462-2920.12081
10.1016/j.soilbio.2016.11.028
10.1111/j.1469-8137.2010.03230.x
10.1007/s00572-020-01016-z
10.1371/journal.pone.0114118
10.1016/S0953-7562(96)80164-X
10.1128/AEM.67.5.2284-2291.2001
10.1098/rstb.2013.0122
10.1093/molbev/msr121
10.1021/acs.est.2c03816
10.1007/s42832-021-0107-1
10.1111/j.1752-4571.2010.00145.x
10.1128/AEM.00409-16
10.1126/science.1224304
10.1007/s10705-006-9009-y
10.1007/s00248-018-1281-2
10.1016/j.tim.2017.07.003
10.1111/gcb.12274
10.1111/gcb.14154
10.1016/j.jbiotec.2004.02.016
ContentType Journal Article
Copyright 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023. The Author(s).
The Author(s) 2023
Copyright_xml – notice: 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023. The Author(s).
– notice: The Author(s) 2023
DBID AAYXX
CITATION
3V.
7X7
7XB
88E
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1186/s40168-023-01466-5
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Agriculture
EISSN 2049-2618
EndPage 18
ExternalDocumentID oai_doaj_org_article_607bafb2dbe4485087b5d39350c141bd
PMC9996866
10_1186_s40168_023_01466_5
GrantInformation_xml – fundername: ;
  grantid: 201913043
– fundername: ;
  grantid: 42007032; 41830751; 31872182
GroupedDBID 0R~
53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAHBH
AAJSJ
AASML
AAYXX
ABUWG
ACGFS
ADBBV
ADRAZ
ADUKV
AENEX
AFKRA
AFPKN
AHBYD
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AOIJS
ASPBG
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
DIK
EBLON
EBS
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAG
IAO
IEP
IHR
INH
INR
ISR
ITC
KQ8
LK8
M1P
M48
M7P
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
ROL
RPM
RSV
SOJ
UKHRP
3V.
7XB
8FK
AZQEC
DWQXO
GNUQQ
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c473t-d634e4ccfb4f4521593f389daa59111b5cf73a44827ee8b72ad2fbfafb61d3363
IEDL.DBID M48
ISSN 2049-2618
IngestDate Wed Aug 27 01:30:57 EDT 2025
Thu Aug 21 18:37:42 EDT 2025
Fri Jul 11 03:00:59 EDT 2025
Fri Jul 25 11:55:53 EDT 2025
Tue Jul 01 04:16:43 EDT 2025
Thu Apr 24 23:08:22 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c473t-d634e4ccfb4f4521593f389daa59111b5cf73a44827ee8b72ad2fbfafb61d3363
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Undefined-1
ObjectType-Feature-3
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s40168-023-01466-5
PMID 36890606
PQID 2788500633
PQPubID 2040205
PageCount 18
ParticipantIDs doaj_primary_oai_doaj_org_article_607bafb2dbe4485087b5d39350c141bd
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9996866
proquest_miscellaneous_2785198430
proquest_journals_2788500633
crossref_citationtrail_10_1186_s40168_023_01466_5
crossref_primary_10_1186_s40168_023_01466_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-03-09
PublicationDateYYYYMMDD 2023-03-09
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-09
  day: 09
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Microbiome
PublicationYear 2023
Publisher BioMed Central
BMC
Publisher_xml – name: BioMed Central
– name: BMC
References D Lu (1466_CR47) 2014; 163
RS Novoa (1466_CR3) 2006; 75
N Luthfiana (1466_CR60) 2021; 31
X Li (1466_CR29) 2016; 92
MM Yuan (1466_CR13) 2021; 12
JF Salles (1466_CR51) 2009; 90
A Hodge (1466_CR18) 2001; 413
L Philippot (1466_CR45) 2009; 11
L Chapuis-Lardy (1466_CR69) 2007; 13
G Lashermes (1466_CR4) 2022; 806
H Chen (1466_CR5) 2013; 19
MA Cavigelli (1466_CR52) 2001; 33
DRH Graf (1466_CR46) 2016; 100
L Zhang (1466_CR16) 2016; 210
KJ Livak (1466_CR35) 2001; 25
M Li (1466_CR63) 2016; 100
X Zhang (1466_CR44) 2022; 56
1466_CR1
M Faghihinia (1466_CR15) 2023; 59
H Gui (1466_CR21) 2021; 774
S Yoon (1466_CR54) 2016; 82
ME Giles (1466_CR61) 2017; 106
EE Nuccio (1466_CR53) 2013; 15
R Zhao (1466_CR20) 2021; 23
M Zheng (1466_CR62) 2014; 162
JF Toljander (1466_CR58) 2007; 61
D Liang (1466_CR7) 2021; 27
F Oehl (1466_CR65) 2003; 69
Y Zhang (1466_CR41) 2016; 155
AN Kravchenko (1466_CR2) 2017; 10
RA Wittwer (1466_CR68) 2021; 7
DP Bharadwaj (1466_CR59) 2012; 22
ST Okiobe (1466_CR25) 2019; 134
C Lazcano (1466_CR24) 2014; 74
J Zhou (1466_CR55) 2020; 5
DG Ha (1466_CR36) 2014
JF Toljander (1466_CR57) 2006; 254
X Song (1466_CR48) 2018; 52
E Verbruggen (1466_CR67) 2010; 186
E Smit (1466_CR37) 2001; 67
E Verbruggen (1466_CR28) 2010; 3
Y Pan (1466_CR50) 2013; 47
DR Graf (1466_CR10) 2014; 9
E Lugato (1466_CR40) 2018; 8
P Elefsiniotis (1466_CR64) 2004; 114
A Guzman (1466_CR66) 2021; 231
SF Bender (1466_CR23) 2014; 8
L Cheng (1466_CR42) 2012; 337
L Zhang (1466_CR17) 2018; 12
N Takaya (1466_CR31) 2003; 69
S Hallin (1466_CR11) 2018; 26
DD Douds Jr (1466_CR27) 1999; 74
K Tamura (1466_CR33) 2011; 28
M St-Arnaud (1466_CR34) 1996; 100
CM Jones (1466_CR9) 2008; 25
C Quince (1466_CR30) 2017; 35
M Li (1466_CR38) 2022; 4
G Braker (1466_CR8) 1998; 64
K Butterbach-Bahl (1466_CR6) 2013; 368
X Li (1466_CR39) 2021; 4
K Storer (1466_CR19) 2018; 220
M Senbayram (1466_CR49) 2019; 132
SD Veresoglou (1466_CR22) 2019; 78
A Hodge (1466_CR26) 1996; 23
N Saitou (1466_CR32) 1987; 4
L Zhang (1466_CR56) 2021; 27
Y Fang (1466_CR43) 2018; 24
RA Sanford (1466_CR12) 2012; 109
CR See (1466_CR14) 2022; 28
References_xml – volume: 4
  start-page: 943
  year: 2021
  ident: 1466_CR39
  publication-title: Nat Sustain
  doi: 10.1038/s41893-021-00767-7
– volume: 33
  start-page: 297
  year: 2001
  ident: 1466_CR52
  publication-title: Soil Biol Biochem
  doi: 10.1016/S0038-0717(00)00141-3
– volume: 7
  start-page: eabg6995
  year: 2021
  ident: 1466_CR68
  publication-title: Sci Adv
  doi: 10.1126/sciadv.abg6995
– volume: 806
  start-page: 150883
  year: 2022
  ident: 1466_CR4
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2021.150883
– volume: 12
  start-page: e03509
  year: 2021
  ident: 1466_CR13
  publication-title: MBio
  doi: 10.1128/mBio.03509-20
– volume: 47
  start-page: 3273
  year: 2013
  ident: 1466_CR50
  publication-title: Water Res
  doi: 10.1016/j.watres.2013.02.054
– volume: 61
  start-page: 295
  year: 2007
  ident: 1466_CR58
  publication-title: FEMS Microbiol Ecol
  doi: 10.1111/j.1574-6941.2007.00337.x
– volume: 25
  start-page: 1955
  year: 2008
  ident: 1466_CR9
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msn146
– volume: 220
  start-page: 1285
  year: 2018
  ident: 1466_CR19
  publication-title: New Phytol
  doi: 10.1111/nph.14931
– volume: 10
  start-page: 496
  year: 2017
  ident: 1466_CR2
  publication-title: Nat Geosci
  doi: 10.1038/ngeo2963
– volume: 100
  start-page: 125
  year: 2016
  ident: 1466_CR46
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2016.06.006
– volume: 231
  start-page: 447
  year: 2021
  ident: 1466_CR66
  publication-title: New Phytol
  doi: 10.1111/nph.17306
– volume: 28
  start-page: 2527
  year: 2022
  ident: 1466_CR14
  publication-title: Glob Chang Biol
  doi: 10.1111/gcb.16073
– volume: 74
  start-page: 77
  year: 1999
  ident: 1466_CR27
  publication-title: Agric Ecosyst Environ
  doi: 10.1016/S0167-8809(99)00031-6
– volume: 27
  start-page: 5599
  year: 2021
  ident: 1466_CR7
  publication-title: Glob Chang Biol
  doi: 10.1111/gcb.15833
– volume: 413
  start-page: 297
  year: 2001
  ident: 1466_CR18
  publication-title: Nature
  doi: 10.1038/35095041
– volume: 162
  start-page: 80
  year: 2014
  ident: 1466_CR62
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2014.03.125
– volume: 13
  start-page: 1
  year: 2007
  ident: 1466_CR69
  publication-title: Global Change Biol
  doi: 10.1111/j.1365-2486.2006.01280.x
– ident: 1466_CR1
– volume: 4
  start-page: 406
  year: 1987
  ident: 1466_CR32
  publication-title: Mol Biol Evol
– volume: 27
  start-page: 402
  year: 2021
  ident: 1466_CR56
  publication-title: Trends Plant Sci
  doi: 10.1016/j.tplants.2021.10.008
– volume: 155
  start-page: 85
  year: 2016
  ident: 1466_CR41
  publication-title: Soil Tillage Res
  doi: 10.1016/j.still.2015.08.006
– volume: 90
  start-page: 3324
  year: 2009
  ident: 1466_CR51
  publication-title: Ecology
  doi: 10.1890/09-0188.1
– volume: 74
  start-page: 184
  year: 2014
  ident: 1466_CR24
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2014.03.010
– volume: 64
  start-page: 3769
  year: 1998
  ident: 1466_CR8
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.64.10.3769-3775.1998
– volume: 210
  start-page: 1022
  year: 2016
  ident: 1466_CR16
  publication-title: New Phytol
  doi: 10.1111/nph.13838
– volume: 69
  start-page: 3152
  year: 2003
  ident: 1466_CR31
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.69.6.3152-3157.2003
– volume: 25
  start-page: 402
  year: 2001
  ident: 1466_CR35
  publication-title: Methods
  doi: 10.1006/meth.2001.1262
– volume: 52
  start-page: 12504
  year: 2018
  ident: 1466_CR48
  publication-title: Environ Sci Technol
  doi: 10.1021/acs.est.8b03931
– volume: 22
  start-page: 437
  year: 2012
  ident: 1466_CR59
  publication-title: Mycorrhiza
  doi: 10.1007/s00572-011-0418-7
– volume: 132
  start-page: 165
  year: 2019
  ident: 1466_CR49
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2019.02.009
– volume: 59
  start-page: 17
  year: 2023
  ident: 1466_CR15
  publication-title: Biol Fertil Soils.
  doi: 10.1007/s00374-022-01683-4
– volume: 5
  start-page: e00929
  year: 2020
  ident: 1466_CR55
  publication-title: Msystems
  doi: 10.1128/mSystems.00929-20
– volume: 254
  start-page: 34
  year: 2006
  ident: 1466_CR57
  publication-title: FEMS Microbiol Lett
  doi: 10.1111/j.1574-6968.2005.00003.x
– volume: 12
  start-page: 2339
  year: 2018
  ident: 1466_CR17
  publication-title: ISME J
  doi: 10.1038/s41396-018-0171-4
– volume: 23
  start-page: 388
  year: 1996
  ident: 1466_CR26
  publication-title: Biol Fertil Soils
  doi: 10.1007/BF00335912
– volume: 774
  start-page: 145133
  year: 2021
  ident: 1466_CR21
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2021.145133
– volume: 69
  start-page: 2816
  year: 2003
  ident: 1466_CR65
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.69.5.2816-2824.2003
– volume: 163
  start-page: 81
  year: 2014
  ident: 1466_CR47
  publication-title: Field Crops Res
  doi: 10.1016/j.fcr.2014.03.022
– volume: 92
  start-page: 153
  year: 2016
  ident: 1466_CR29
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2015.10.008
– volume: 23
  start-page: 6587
  year: 2021
  ident: 1466_CR20
  publication-title: Environ Microbiol
  doi: 10.1111/1462-2920.15815
– volume: 35
  start-page: 833
  year: 2017
  ident: 1466_CR30
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.3935
– volume: 109
  start-page: 19709
  year: 2012
  ident: 1466_CR12
  publication-title: P Natl Acad Sci USA
  doi: 10.1073/pnas.1211238109
– start-page: 59
  volume-title: Plate-based assay for swimming motility in Pseudomonas aeruginosa. Pseudomonas methods and protocols
  year: 2014
  ident: 1466_CR36
– volume: 100
  start-page: 5607
  year: 2016
  ident: 1466_CR63
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s00253-016-7383-1
– volume: 134
  start-page: 142
  year: 2019
  ident: 1466_CR25
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2019.03.025
– volume: 8
  start-page: 219
  year: 2018
  ident: 1466_CR40
  publication-title: Nat Clim Change
  doi: 10.1038/s41558-018-0087-z
– volume: 11
  start-page: 1518
  year: 2009
  ident: 1466_CR45
  publication-title: Environ Microbiol
  doi: 10.1111/j.1462-2920.2009.01879.x
– volume: 8
  start-page: 1336
  year: 2014
  ident: 1466_CR23
  publication-title: ISME J
  doi: 10.1038/ismej.2013.224
– volume: 15
  start-page: 1870
  year: 2013
  ident: 1466_CR53
  publication-title: Environ Microbiol
  doi: 10.1111/1462-2920.12081
– volume: 106
  start-page: 90
  year: 2017
  ident: 1466_CR61
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2016.11.028
– volume: 186
  start-page: 968
  year: 2010
  ident: 1466_CR67
  publication-title: New Phytol
  doi: 10.1111/j.1469-8137.2010.03230.x
– volume: 31
  start-page: 403
  issue: 3
  year: 2021
  ident: 1466_CR60
  publication-title: Mycorrhiza
  doi: 10.1007/s00572-020-01016-z
– volume: 9
  start-page: e114118
  year: 2014
  ident: 1466_CR10
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0114118
– volume: 100
  start-page: 328
  year: 1996
  ident: 1466_CR34
  publication-title: Mycol Res
  doi: 10.1016/S0953-7562(96)80164-X
– volume: 67
  start-page: 2284
  year: 2001
  ident: 1466_CR37
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.67.5.2284-2291.2001
– volume: 368
  start-page: 20130122
  year: 2013
  ident: 1466_CR6
  publication-title: Philos Trans R Soc, B
  doi: 10.1098/rstb.2013.0122
– volume: 28
  start-page: 2731
  year: 2011
  ident: 1466_CR33
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msr121
– volume: 56
  start-page: 13461
  year: 2022
  ident: 1466_CR44
  publication-title: Environ Sci Technol
  doi: 10.1021/acs.est.2c03816
– volume: 4
  start-page: 319
  year: 2022
  ident: 1466_CR38
  publication-title: Soil Ecol Lett.
  doi: 10.1007/s42832-021-0107-1
– volume: 3
  start-page: 547
  year: 2010
  ident: 1466_CR28
  publication-title: Evol Appl
  doi: 10.1111/j.1752-4571.2010.00145.x
– volume: 82
  start-page: 3793
  year: 2016
  ident: 1466_CR54
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.00409-16
– volume: 337
  start-page: 1084
  year: 2012
  ident: 1466_CR42
  publication-title: Science
  doi: 10.1126/science.1224304
– volume: 75
  start-page: 29
  year: 2006
  ident: 1466_CR3
  publication-title: Nutr Cycling Agroecosyst
  doi: 10.1007/s10705-006-9009-y
– volume: 78
  start-page: 147
  year: 2019
  ident: 1466_CR22
  publication-title: Microb Ecol
  doi: 10.1007/s00248-018-1281-2
– volume: 26
  start-page: 43
  year: 2018
  ident: 1466_CR11
  publication-title: Trends Microbiol
  doi: 10.1016/j.tim.2017.07.003
– volume: 19
  start-page: 2956
  year: 2013
  ident: 1466_CR5
  publication-title: Glob Chang Biol
  doi: 10.1111/gcb.12274
– volume: 24
  start-page: 2775
  year: 2018
  ident: 1466_CR43
  publication-title: Glob Chang Biol
  doi: 10.1111/gcb.14154
– volume: 114
  start-page: 289
  year: 2004
  ident: 1466_CR64
  publication-title: J Biotechnol
  doi: 10.1016/j.jbiotec.2004.02.016
SSID ssj0000914748
Score 2.484599
Snippet BackgroundArbuscular mycorrhizal fungi (AMF) are key soil organisms and their extensive hyphae create a unique hyphosphere associated with microbes actively...
Arbuscular mycorrhizal fungi (AMF) are key soil organisms and their extensive hyphae create a unique hyphosphere associated with microbes actively involved in...
Abstract Background Arbuscular mycorrhizal fungi (AMF) are key soil organisms and their extensive hyphae create a unique hyphosphere associated with microbes...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 1
SubjectTerms Abundance
Agriculture
Arbuscular mycorrhizal fungi
Arbuscular mycorrhizas
Attractants
Carboxylates
Chemotaxis
Climate change
Crop residues
Emissions
Exudates
Gene expression
Genes
Hyphae
Inoculation
Metagenomics
Microbiomes
Microorganisms
N2O
Nitrous oxide
nosZ
Plant growth
Pseudomonas
Respiration
Soil microorganisms
Stimulants
Sustainable agriculture
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBUhUMgltGlC3aRBhd6CyNr6so5taQiBpj0kkJuQLIkYgh3Wu4f013dG9i7rS3sJ-GRLII9GM2_smTeEfEmKB7NwgRkjIxPRlKwOcB6VMFzp0iPlGWZb3Krre3HzIB92Wn1hTthIDzwK7lIttHfJV8FHiCQATmgvA9aTLppSlD6g9QWftxNMZRtsSqFFvamSqdXlAIGEqhm4KIZ8KYrJmSfKhP0zlDnPkdxxOldvyeGEFunXcZXvyF7sjsibsX_ky3sSfr5A8Lh8bP84lktAAD5SMGHLdZuTx2mfaM4ZB2RMwcC0q2Wb65ro7yGuQw8q6AaYEGB_B3pb_aLY_Q2_nw0U607o0LdPx-T-6sfd92s2tU1gjdB8xYLiIoqmSV4kAd5ZGp4AlgTnJFo2L5ukuRPI_xlj7XXlQpV8AiGrMnCu-AnZ7_oufiA0IByBCSFI8PSxcUZ67XhSqgnKi1iQciNC20yc4tja4snm2KJWdhS7BbHbLHYrC3KxnfM8Mmr8c_Q33JntSGTDzjdAR-ykI_Z_OlKQs82-2umIDraC4F8iQuMF-bx9DFLGPyaui_06jwGEWwu-KIie6cNsQfMnXfuYaboxlKyV-vgab3BKDqqsunCZM7K_Wq7jJ0BDK3-eFf8vH1kJKw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Na9VAEF-0IuhBtCpGW1nBmyx9yX4lJ6nSUgqtHiy827KfbaAkNXnvUP96Z_blPc2lkFOySz5mduY3m5nfEPI5KR6ahQ2saWRkIjYlqwOsRyUarnTpkPIMsy0u1dmVOF_K5bThNk5plVubmA116D3ukR9VEKtJdKj8691vhl2j8O_q1ELjMXmC1GWo1Xqpd3ss4AuFFvW2VqZWRyOEE6pm4KgYsqYoJmf-KNP2z7DmPFPyP9dz-pK8mDAjPd4I-RV5FLt98vz4eph4M-I-ebrpKXn_moSLewgoh5v2j2W5LAQgJQWzNqzbnFBO-0RzHjmgZQpGp10Nba51oj_HuA49vKcdYUIAmY_0svpBsSMc7qmNFGtR6Ni3t2_I1enJr-9nbGqlwLzQfMWC4iIK75MTSYDHlg1PAFWCtRKtnZM-aW4FcoLGWDtd2VAll2xyqgycK_6W7HV9F98RGhCiwIQQJHj_6G0jnbY8KeWDciIWpNx-UOMnnnFsd3FrcrxRK7MRggEhmCwEIwvyZTfnbsOy8eDobyin3UhkyM4n-uHaTAvOqIV28PhVcBFeC2CodjJgHfLCl6J0oSAHWymbadmO5p-SFeTT7jJ8ZfyLYrvYr_MYQL214IuC6Jl2zB5ofqVrbzJ1N4aXtVLvH775B_KsyioKR3NA9lbDOh4C9lm5j1nB_wJ_XwVS
  priority: 102
  providerName: ProQuest
Title Mycorrhiza-mediated recruitment of complete denitrifying Pseudomonas reduces N2O emissions from soil
URI https://www.proquest.com/docview/2788500633
https://www.proquest.com/docview/2785198430
https://pubmed.ncbi.nlm.nih.gov/PMC9996866
https://doaj.org/article/607bafb2dbe4485087b5d39350c141bd
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEB_uA8GXw0-sdy4RfJPotvlqH0Q8ufMQbj3EhX0rSZN4haXVdhdc_3on2e5i4fBJKH1oJpBMZjK_STMzAK-8ZLaYakuLQjjKXZHS3KI-Sl4wqVITUp6F2xYzeTXnnxdicQC7ckcDA_s7XbtQT2reLd_8-rl5jwr_Lip8Lt_26CPInKL1oSEViqTiEI7RMqlQ0eB6gPtxZy5Srni-i525s-vIPsU0_iPsOb45-ZcpunwAJwOGJB-2i_4QDlzzCO5tq0puHoO93qBL2d3WvzWNgSEIKglubN26jlfKSetJvEmOeJngtlOvujpGO5Gb3q1ti4Kpe-xgcdV7Msu-kFATLpyq9SREo5C-rZdPYH558e3jFR2KKdCKK7aiVjLueFV5wz1Hmy0K5hGsWK1F2O-MqLximoesoM7lRmXaZt547Y1MLWOSPYWjpm3cMyA2gBTsYK1ALrtKF8IozbyUlZWGuwTSHQvLasg0HgpeLMvoceSy3LK9RLaXke2lSOD1vs-PbZ6Nf1Kfh5XZU4Yc2fFD230vB5Ur5VQZHH5mjcNpIRBVRtgQiTytUp4am8DZbl3LndyVmcqRFHEbS-Dlvhm5HP6j6Ma160iDuDfnbJqAGsnDaEDjlqa-jcm7g4OZS_n8f8zgFO5nUXTxKc7gaNWt3QvESCszgUO1UBM4Pr-Y3XydxJMGfH9apJOoEn8A_2gVPw
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQcEBQqFgoYCU7I6iZ-JQeEyqPa0nbh0Eq9GTt22kjVpiS7QsuP4jcy9iYLufRWKafEThzPeOYbex4Ab0rJXD42jua58JT7PKGZw_Uoec6kSmxIeRa8LaZycsq_nomzDfjTx8IEt8peJkZB7eoi7JHvpmiriaBQ2YernzRUjQqnq30JjRVbHPrlLzTZ2vcHn5G-b9N0_8vJpwntqgrQgis2p04y7nlRlJaXHJWXyFmJWtsZI8LCt6IoFTM8pMf0PrMqNS4tbWlKKxPHmGT43ltwGxXvOBh76kyt93RQ93LFsz42J5O7LZovMqOoGGnI0iKpGOi_WCZggG2Hnpn_qbr9h_Cgw6hkb8VUj2DDz7bg_t550-Xp8FtwZ1XDcvkY3PESDdjmovptaAxDQQhLUIw2iyo6sJO6JNFvHdE5QSFXzZsqxlaR761fuBrn1bTYwSGPtWSafiOhAl3Yw2tJiH0hbV1dPoHTG5nkbdic1TP_FIgLkAg7OCcQbfjC5MIqw0opCyct9yNI-gnVRZfXPJTXuNTRvsmkXhFBIxF0JIIWI3i37nO1yupxbeuPgU7rliEjd7xRN-e6W-BajpXF4afOevwthL3KChfinsdFwhPrRrDTU1l3YqLV_5h6BK_Xj3GWw6mNmfl6Edsgys44G49ADbhjMKDhk1l1EVOFB3M2k_LZ9R9_BXcnJ8dH-uhgevgc7qWRXfHKd2Bz3iz8C8Rdc_syMjuBHze9uv4CHVBDFw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mycorrhiza-mediated+recruitment+of+complete+denitrifying+Pseudomonas+reduces+N2O+emissions+from+soil&rft.jtitle=Microbiome&rft.au=Xia+Li&rft.au=Ruotong+Zhao&rft.au=Dandan+Li&rft.au=Guangzhou+Wang&rft.date=2023-03-09&rft.pub=BMC&rft.eissn=2049-2618&rft.volume=11&rft.issue=1&rft.spage=1&rft.epage=18&rft_id=info:doi/10.1186%2Fs40168-023-01466-5&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_607bafb2dbe4485087b5d39350c141bd
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2049-2618&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2049-2618&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2049-2618&client=summon