Hyaluronic acid—Based wound dressings: A review
[Display omitted] •HA is a biocompatible and biodegradable ECM compound that encourage the wound healing.•HA-based wound dressings present excellent performance in treatment of wounds.•The synthesis of HA-derivatives augments its stability and mechanical properties.•The biomolecules loading into HA...
Saved in:
Published in | Carbohydrate polymers Vol. 241; p. 116364 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.08.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•HA is a biocompatible and biodegradable ECM compound that encourage the wound healing.•HA-based wound dressings present excellent performance in treatment of wounds.•The synthesis of HA-derivatives augments its stability and mechanical properties.•The biomolecules loading into HA wound dressings improves the biological activity.
Hyaluronic acid (HA), a non-sulfated glycosaminoglycan (GAG), is a major component of skin extracellular matrix (ECM) and it is involved in the inflammatory response, angiogenesis, and tissue regeneration process. Due to the intrinsic properties of HA (such as biocompatibility, biodegradability and hydrophilic character), it has been used to produce different wound dressings, namely sponges, films, hydrogels, and electrospun membranes. Herein, an overview of the different HA-based wound dressings that have been produced so far is provided as well as the future directions regarding the strategies aimed to improve the mechanical stability of HA-based wound dressings, along with the incorporation of biomolecules intended to ameliorate their biological performance during the healing process. |
---|---|
AbstractList | Hyaluronic acid (HA), a non-sulfated glycosaminoglycan (GAG), is a major component of skin extracellular matrix (ECM) and it is involved in the inflammatory response, angiogenesis, and tissue regeneration process. Due to the intrinsic properties of HA (such as biocompatibility, biodegradability and hydrophilic character), it has been used to produce different wound dressings, namely sponges, films, hydrogels, and electrospun membranes. Herein, an overview of the different HA-based wound dressings that have been produced so far is provided as well as the future directions regarding the strategies aimed to improve the mechanical stability of HA-based wound dressings, along with the incorporation of biomolecules intended to ameliorate their biological performance during the healing process.Hyaluronic acid (HA), a non-sulfated glycosaminoglycan (GAG), is a major component of skin extracellular matrix (ECM) and it is involved in the inflammatory response, angiogenesis, and tissue regeneration process. Due to the intrinsic properties of HA (such as biocompatibility, biodegradability and hydrophilic character), it has been used to produce different wound dressings, namely sponges, films, hydrogels, and electrospun membranes. Herein, an overview of the different HA-based wound dressings that have been produced so far is provided as well as the future directions regarding the strategies aimed to improve the mechanical stability of HA-based wound dressings, along with the incorporation of biomolecules intended to ameliorate their biological performance during the healing process. [Display omitted] •HA is a biocompatible and biodegradable ECM compound that encourage the wound healing.•HA-based wound dressings present excellent performance in treatment of wounds.•The synthesis of HA-derivatives augments its stability and mechanical properties.•The biomolecules loading into HA wound dressings improves the biological activity. Hyaluronic acid (HA), a non-sulfated glycosaminoglycan (GAG), is a major component of skin extracellular matrix (ECM) and it is involved in the inflammatory response, angiogenesis, and tissue regeneration process. Due to the intrinsic properties of HA (such as biocompatibility, biodegradability and hydrophilic character), it has been used to produce different wound dressings, namely sponges, films, hydrogels, and electrospun membranes. Herein, an overview of the different HA-based wound dressings that have been produced so far is provided as well as the future directions regarding the strategies aimed to improve the mechanical stability of HA-based wound dressings, along with the incorporation of biomolecules intended to ameliorate their biological performance during the healing process. Hyaluronic acid (HA), a non-sulfated glycosaminoglycan (GAG), is a major component of skin extracellular matrix (ECM) and it is involved in the inflammatory response, angiogenesis, and tissue regeneration process. Due to the intrinsic properties of HA (such as biocompatibility, biodegradability and hydrophilic character), it has been used to produce different wound dressings, namely sponges, films, hydrogels, and electrospun membranes. Herein, an overview of the different HA-based wound dressings that have been produced so far is provided as well as the future directions regarding the strategies aimed to improve the mechanical stability of HA-based wound dressings, along with the incorporation of biomolecules intended to ameliorate their biological performance during the healing process. |
ArticleNumber | 116364 |
Author | Graça, Mariana F.P. Miguel, Sónia P. Cabral, Cátia S.D. Correia, Ilídio J. |
Author_xml | – sequence: 1 givenname: Mariana F.P. surname: Graça fullname: Graça, Mariana F.P. organization: CICS-UBI – Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal – sequence: 2 givenname: Sónia P. surname: Miguel fullname: Miguel, Sónia P. organization: CICS-UBI – Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal – sequence: 3 givenname: Cátia S.D. surname: Cabral fullname: Cabral, Cátia S.D. organization: CICS-UBI – Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal – sequence: 4 givenname: Ilídio J. surname: Correia fullname: Correia, Ilídio J. email: icorreia@ubi.pt organization: CICS-UBI – Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32507198$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkLtOwzAYRi1UBOXyCKCMLCl27NgODAgqblIlFpgtx_6DXKVxsROqbjwET8iTkKqFgaV4-SXrnG84B2jQ-AYQOiF4RDDh59OR0aGc-3qU4az_I5xytoOGRIoiJZSxARpiwlgqORH76CDGKe4fJ3gP7dMsx4IUcojIw1LXXfCNM4k2zn59fN7oCDZZ-K6xiQ0Qo2te40VynQR4d7A4QruVriMcb-4herm7fR4_pJOn-8fx9SQ1TNA2tbnlAstccgyZtphVBnBRasEl5yQ3QlYSBC4Lm2sOFBirSsq5zPLSUpJReojO1rvz4N86iK2auWigrnUDvosqYwzzoqCC_wMlWFBMxWr1dIN25Qysmgc302Gpfor0QL4GTPAxBqh-EYLVqryaqk15tSqv1uV77_KPZ1yrW-ebNmhXb7Wv1jb0RfvKQUXjoDFgXQDTKuvdloVvCFCgSA |
CitedBy_id | crossref_primary_10_1016_j_ijbiomac_2024_130989 crossref_primary_10_1016_j_ijbiomac_2024_132805 crossref_primary_10_1039_D3BM01352A crossref_primary_10_1016_j_biomaterials_2023_122453 crossref_primary_10_3390_pharmaceutics13101666 crossref_primary_10_3389_fchem_2024_1402870 crossref_primary_10_1021_acs_bioconjchem_3c00483 crossref_primary_10_1016_j_ijpharm_2021_121231 crossref_primary_10_1016_j_actbio_2024_05_036 crossref_primary_10_3390_jcm13092488 crossref_primary_10_1016_j_biomaterials_2024_122964 crossref_primary_10_1016_j_ijbiomac_2023_128279 crossref_primary_10_1016_j_jddst_2021_102898 crossref_primary_10_3390_polym14040724 crossref_primary_10_1186_s10020_024_00908_6 crossref_primary_10_3390_polym14194098 crossref_primary_10_1016_j_jhazmat_2025_137662 crossref_primary_10_1016_j_colsurfb_2021_112041 crossref_primary_10_2147_IJN_S427055 crossref_primary_10_3389_fbioe_2021_780187 crossref_primary_10_1016_j_ijbiomac_2024_138337 crossref_primary_10_3390_coatings12020211 crossref_primary_10_1016_j_bcp_2021_114890 crossref_primary_10_1016_j_ijbiomac_2023_128284 crossref_primary_10_1186_s42825_025_00193_x crossref_primary_10_1016_j_bioactmat_2022_10_010 crossref_primary_10_1016_j_actbio_2022_09_041 crossref_primary_10_3389_fbioe_2020_593768 crossref_primary_10_1016_j_carbpol_2022_119953 crossref_primary_10_1016_j_mtbio_2022_100257 crossref_primary_10_3390_molecules27010094 crossref_primary_10_3390_molecules26092535 crossref_primary_10_1080_10717544_2023_2204206 crossref_primary_10_1016_j_carbpol_2023_121050 crossref_primary_10_1016_j_ijbiomac_2020_10_204 crossref_primary_10_1021_acsami_1c22629 crossref_primary_10_3389_fbioe_2022_954501 crossref_primary_10_1016_j_ijbiomac_2024_136395 crossref_primary_10_1002_adma_202313188 crossref_primary_10_4103_2773_2398_356521 crossref_primary_10_1016_j_giant_2024_100323 crossref_primary_10_1016_j_ijbiomac_2024_135187 crossref_primary_10_1021_acsptsci_4c00082 crossref_primary_10_3390_gels9020138 crossref_primary_10_3390_pharmaceutics14040740 crossref_primary_10_1002_adhm_202401490 crossref_primary_10_1002_adhm_202300742 crossref_primary_10_1016_j_bioactmat_2023_11_012 crossref_primary_10_1016_j_jddst_2023_105225 crossref_primary_10_3390_ijms23147668 crossref_primary_10_3390_gels10110703 crossref_primary_10_1007_s00784_021_04180_4 crossref_primary_10_1016_j_actbio_2022_09_077 crossref_primary_10_1016_j_jddst_2024_105990 crossref_primary_10_3390_ijms22137077 crossref_primary_10_1007_s10544_021_00581_0 crossref_primary_10_1021_acsbiomaterials_4c00108 crossref_primary_10_1021_acsami_0c18948 crossref_primary_10_1016_j_carbpol_2024_122331 crossref_primary_10_2147_IJN_S508036 crossref_primary_10_1002_adma_202410845 crossref_primary_10_2147_DDDT_S474628 crossref_primary_10_1016_j_ijbiomac_2024_138320 crossref_primary_10_1177_20417314231185848 crossref_primary_10_1016_j_ijbiomac_2024_137107 crossref_primary_10_3390_biomedicines12030510 crossref_primary_10_3390_polym15214301 crossref_primary_10_1208_s12249_024_02855_1 crossref_primary_10_1016_j_actbio_2022_09_064 crossref_primary_10_1016_j_foodchem_2024_141565 crossref_primary_10_1080_21655979_2022_2031415 crossref_primary_10_1002_marc_202400173 crossref_primary_10_1016_j_colsurfb_2022_112523 crossref_primary_10_3390_ijms24076844 crossref_primary_10_1007_s10853_024_09493_9 crossref_primary_10_3390_ma13122853 crossref_primary_10_3390_molecules28093946 crossref_primary_10_1186_s40824_023_00460_0 crossref_primary_10_3390_ijms23158778 crossref_primary_10_1016_j_eurpolymj_2023_111979 crossref_primary_10_1002_cbdv_202400897 crossref_primary_10_1007_s13340_024_00737_2 crossref_primary_10_1007_s10965_020_02168_4 crossref_primary_10_1007_s12257_021_0364_y crossref_primary_10_1016_j_carbpol_2020_117047 crossref_primary_10_1016_j_ijbiomac_2024_137458 crossref_primary_10_1021_acsami_4c01790 crossref_primary_10_3390_pr10050916 crossref_primary_10_1002_ardp_202400903 crossref_primary_10_1557_s43578_023_00983_1 crossref_primary_10_1007_s00784_024_05955_1 crossref_primary_10_1016_j_cej_2024_148576 crossref_primary_10_1016_j_mtbio_2022_100468 crossref_primary_10_3390_polym14132641 crossref_primary_10_53469_jcmp_2024_06_09__32 crossref_primary_10_1016_j_compositesb_2022_110313 crossref_primary_10_1038_s41598_024_64873_0 crossref_primary_10_3390_molecules28031110 crossref_primary_10_1016_j_polymer_2025_128064 crossref_primary_10_1080_25740881_2025_2460063 crossref_primary_10_1021_acs_biomac_3c01175 crossref_primary_10_2174_1567201819666221010122413 crossref_primary_10_53469_jcmp_2024_06_09__30 crossref_primary_10_1016_j_carbpol_2021_118006 crossref_primary_10_3389_fmats_2022_1018815 crossref_primary_10_1039_D0RA06025A crossref_primary_10_1021_acs_chemmater_3c00926 crossref_primary_10_3390_coatings13081345 crossref_primary_10_1016_j_progpolymsci_2021_101472 crossref_primary_10_1016_j_phymed_2023_154824 crossref_primary_10_1186_s40779_022_00439_3 crossref_primary_10_1016_j_ejps_2021_105888 crossref_primary_10_1089_ten_teb_2020_0236 crossref_primary_10_1002_mame_202300268 crossref_primary_10_3390_ma14020458 crossref_primary_10_1016_j_carbpol_2024_122025 crossref_primary_10_1016_j_carbpol_2024_122146 crossref_primary_10_1016_j_ijbiomac_2021_06_021 crossref_primary_10_1021_acs_chemmater_2c01457 crossref_primary_10_1038_s41598_024_63186_6 crossref_primary_10_1021_acs_molpharmaceut_4c00595 crossref_primary_10_1039_D2TB00077F crossref_primary_10_1007_s10570_021_04412_6 crossref_primary_10_1007_s00784_022_04848_5 crossref_primary_10_1039_D2BM02057B crossref_primary_10_3390_gels8100609 crossref_primary_10_1016_j_apmt_2024_102274 crossref_primary_10_1093_molbev_msae034 crossref_primary_10_3389_fmats_2021_798391 crossref_primary_10_3390_pharmaceutics14081574 crossref_primary_10_1002_btm2_10386 crossref_primary_10_1016_j_ijbiomac_2023_125949 crossref_primary_10_3389_fbioe_2024_1309541 crossref_primary_10_3390_polym12081800 crossref_primary_10_3390_vetsci9070323 crossref_primary_10_1016_j_bioactmat_2022_11_023 crossref_primary_10_3390_gels10110751 crossref_primary_10_1016_j_ijbiomac_2021_11_108 crossref_primary_10_1016_j_smaim_2022_07_003 crossref_primary_10_3390_polym15102318 crossref_primary_10_3390_ijms241713328 crossref_primary_10_1016_j_ijbiomac_2022_12_116 crossref_primary_10_2147_IJN_S363827 crossref_primary_10_1016_j_ijbiomac_2024_135357 crossref_primary_10_1007_s10570_021_04132_x crossref_primary_10_1021_acsami_2c19931 crossref_primary_10_3389_fphar_2022_927126 crossref_primary_10_1016_j_ijbiomac_2024_136688 crossref_primary_10_5933_JKAPD_2022_49_3_300 crossref_primary_10_1039_D0BM00781A crossref_primary_10_3390_ma14174982 crossref_primary_10_3389_fchem_2024_1469183 crossref_primary_10_3389_fbioe_2023_1208322 crossref_primary_10_1002_advs_202402477 crossref_primary_10_1016_j_colcom_2022_100666 crossref_primary_10_1039_D3CC01274C crossref_primary_10_1039_D2BM01416E crossref_primary_10_1007_s10570_022_04753_w crossref_primary_10_1016_j_eurpolymj_2024_113209 crossref_primary_10_3389_fbioe_2022_970041 crossref_primary_10_1039_D2TB01777F crossref_primary_10_1016_j_colsurfb_2024_113915 crossref_primary_10_36290_der_2022_010 crossref_primary_10_3390_polym14173442 crossref_primary_10_1007_s10570_021_04067_3 crossref_primary_10_1021_acs_biomac_4c01715 crossref_primary_10_1016_j_biotechadv_2024_108390 crossref_primary_10_1016_j_ijbiomac_2025_141060 crossref_primary_10_1016_j_ijbiomac_2025_142273 crossref_primary_10_3390_ijms25105249 crossref_primary_10_1016_j_ijbiomac_2022_12_016 crossref_primary_10_1101_cshperspect_a041242 crossref_primary_10_1016_j_ijbiomac_2023_125739 crossref_primary_10_1134_S2635167622060131 crossref_primary_10_3390_ijms251910563 crossref_primary_10_1002_cplu_202300662 crossref_primary_10_3390_ma14092344 crossref_primary_10_1016_j_carbpol_2021_118952 crossref_primary_10_1088_1758_5090_ad28f0 crossref_primary_10_3390_gels10030188 crossref_primary_10_3390_polym17030350 crossref_primary_10_3390_jpm13030430 crossref_primary_10_1016_j_engreg_2021_10_002 crossref_primary_10_3390_gels11030152 crossref_primary_10_1080_09205063_2022_2068946 crossref_primary_10_3390_polym12091999 crossref_primary_10_3390_pharmaceutics12100983 crossref_primary_10_1007_s12221_023_00215_7 crossref_primary_10_1021_acs_biomac_2c01518 crossref_primary_10_1039_D4MH01237B crossref_primary_10_1002_dmrr_3638 crossref_primary_10_1016_j_ijbiomac_2024_132178 crossref_primary_10_1002_adtp_202300024 crossref_primary_10_4014_jmb_2408_08050 crossref_primary_10_3390_ijms241210312 crossref_primary_10_3390_gels10030176 crossref_primary_10_2174_1389201022666210927103755 crossref_primary_10_1007_s10965_021_02870_x crossref_primary_10_1016_j_foodres_2024_114549 crossref_primary_10_1016_j_ijbiomac_2024_136536 crossref_primary_10_1016_j_bioadv_2022_212784 crossref_primary_10_1038_s41598_025_85238_1 crossref_primary_10_1002_adfm_202401030 crossref_primary_10_1002_app_53559 crossref_primary_10_1039_D2BM00338D crossref_primary_10_1080_15685551_2022_2099647 crossref_primary_10_1039_D2TB00548D crossref_primary_10_1007_s00106_023_01369_9 crossref_primary_10_1016_j_ijbiomac_2022_06_047 crossref_primary_10_7181_acfs_2024_00381 crossref_primary_10_1016_j_ijbiomac_2023_126848 crossref_primary_10_1080_10667857_2024_2428532 crossref_primary_10_1002_pol_20241166 crossref_primary_10_3390_cancers16152753 crossref_primary_10_1016_j_ijbiomac_2022_12_037 crossref_primary_10_1021_acsami_4c17855 crossref_primary_10_1016_j_cclet_2022_107744 crossref_primary_10_1016_j_ijbiomac_2024_134102 crossref_primary_10_1039_D4TB00261J crossref_primary_10_3390_gels9050376 crossref_primary_10_1016_j_colsurfb_2021_112071 crossref_primary_10_1016_j_carbpol_2021_118770 crossref_primary_10_1021_acs_langmuir_3c02961 crossref_primary_10_1021_acsami_4c12285 crossref_primary_10_1021_acsomega_4c00649 crossref_primary_10_1016_j_ijbiomac_2022_11_115 crossref_primary_10_1039_D3AY01963B crossref_primary_10_1016_j_ijbiomac_2021_10_013 crossref_primary_10_1016_j_cej_2023_142222 crossref_primary_10_3390_polym14081531 crossref_primary_10_1039_D3MA00682D crossref_primary_10_1016_j_compositesb_2022_109661 crossref_primary_10_1002_advs_202305918 crossref_primary_10_2147_IJN_S372211 crossref_primary_10_3390_gels10120811 crossref_primary_10_1016_j_ijbiomac_2024_132284 crossref_primary_10_1039_D4RA05396F crossref_primary_10_1016_j_ijbiomac_2024_136877 crossref_primary_10_1016_j_ijbiomac_2024_137603 crossref_primary_10_1016_j_ijbiomac_2023_124484 crossref_primary_10_1016_j_cej_2024_151209 crossref_primary_10_1021_acsbiomaterials_4c00019 crossref_primary_10_1016_j_ijbiomac_2023_123271 crossref_primary_10_1080_00914037_2021_1962876 crossref_primary_10_1016_j_ijbiomac_2022_04_216 crossref_primary_10_1016_j_jddst_2024_105383 crossref_primary_10_3390_ijms251910523 crossref_primary_10_1016_j_ijpharm_2023_122706 crossref_primary_10_1016_j_jcis_2024_10_011 crossref_primary_10_1002_adhm_202400912 crossref_primary_10_1021_acsbiomaterials_2c00392 crossref_primary_10_1016_j_ijbiomac_2024_136991 crossref_primary_10_1016_j_apsusc_2021_150544 crossref_primary_10_1016_j_carbpol_2021_118752 crossref_primary_10_1016_j_ijbiomac_2024_134570 crossref_primary_10_3390_biomimetics8020203 crossref_primary_10_3390_thermo5010004 crossref_primary_10_12677_ACM_2023_1361258 crossref_primary_10_3390_pharmaceutics13081194 crossref_primary_10_1039_D4TB02474E crossref_primary_10_3390_polysaccharides5030014 crossref_primary_10_3390_gels11030191 crossref_primary_10_1016_j_ijbiomac_2025_140061 crossref_primary_10_1186_s12951_023_01812_7 crossref_primary_10_33631_duzcesbed_833024 crossref_primary_10_1002_cplu_202300599 crossref_primary_10_3390_polym13193279 crossref_primary_10_3390_pharmaceutics15030970 crossref_primary_10_1016_j_mtsust_2024_100975 crossref_primary_10_3390_ijms242417285 crossref_primary_10_1021_acsapm_4c01524 crossref_primary_10_2147_IJN_S497041 crossref_primary_10_1016_j_bioadv_2022_212983 crossref_primary_10_1016_j_ijbiomac_2024_136856 crossref_primary_10_1016_j_actbio_2022_07_039 crossref_primary_10_26599_NR_2025_94907076 crossref_primary_10_1002_advs_202302875 crossref_primary_10_1021_acsmaterialsau_2c00079 crossref_primary_10_1016_j_surfin_2024_105133 crossref_primary_10_1016_j_ijbiomac_2023_123256 crossref_primary_10_1039_D1RA01491A crossref_primary_10_1016_j_jdsct_2024_100039 crossref_primary_10_1080_15384101_2024_2309019 crossref_primary_10_1016_j_jds_2023_03_019 crossref_primary_10_1039_D1TB00958C crossref_primary_10_1016_j_carbpol_2023_121635 crossref_primary_10_3390_biom12050658 crossref_primary_10_1016_j_cej_2024_153051 crossref_primary_10_1016_j_ijbiomac_2024_132122 crossref_primary_10_3390_ijms24087023 crossref_primary_10_3390_polym15092149 crossref_primary_10_1016_j_jot_2023_05_009 crossref_primary_10_1039_D2CS00991A crossref_primary_10_1007_s10570_023_05212_w crossref_primary_10_1002_adhm_202202658 crossref_primary_10_3389_fbioe_2023_1241660 crossref_primary_10_1016_j_medntd_2024_100320 crossref_primary_10_3390_cosmetics9060115 crossref_primary_10_1016_j_fbio_2022_101545 crossref_primary_10_1186_s12951_022_01468_9 crossref_primary_10_1557_s43578_023_01078_7 crossref_primary_10_1007_s13770_024_00644_2 crossref_primary_10_1002_adtp_202400165 crossref_primary_10_1016_j_bioactmat_2023_07_015 crossref_primary_10_1039_D2BM00026A crossref_primary_10_1111_1753_0407_13537 crossref_primary_10_1007_s42242_020_00108_1 crossref_primary_10_22141_2309_8147_10_3_2022_306 crossref_primary_10_1016_j_ijbiomac_2024_132119 crossref_primary_10_1044_2024_JSLHR_24_00474 crossref_primary_10_3390_ijms241310434 crossref_primary_10_3390_pharmaceutics15010271 crossref_primary_10_1016_j_ijbiomac_2021_08_002 crossref_primary_10_1016_j_ijbiomac_2024_130296 crossref_primary_10_3389_fbioe_2022_1006584 crossref_primary_10_1039_D3TB02932H crossref_primary_10_1016_j_colsurfb_2024_113759 crossref_primary_10_1021_acsbiomaterials_3c00695 crossref_primary_10_1039_D3TB00763D crossref_primary_10_1016_j_jallcom_2021_161275 crossref_primary_10_1016_j_wneu_2025_123818 crossref_primary_10_3389_fbioe_2022_817391 crossref_primary_10_3390_jfb14020115 crossref_primary_10_3390_molecules26154429 crossref_primary_10_3390_ijms24032447 crossref_primary_10_1039_D3BM02051G crossref_primary_10_3390_gels9050431 crossref_primary_10_3390_jfb14030160 crossref_primary_10_1021_acs_jafc_4c05903 crossref_primary_10_3390_polym13244368 crossref_primary_10_1088_1748_605X_abc0b3 crossref_primary_10_1002_bmm2_12089 crossref_primary_10_3390_gels9060476 crossref_primary_10_1007_s11259_024_10559_x crossref_primary_10_1016_j_ijbiomac_2023_126796 crossref_primary_10_3390_gels8030182 crossref_primary_10_1002_advs_202404836 crossref_primary_10_1016_j_ijbiomac_2023_126314 crossref_primary_10_1134_S2635167621010092 crossref_primary_10_1007_s00396_021_04917_3 crossref_primary_10_1016_j_bioadv_2024_214096 crossref_primary_10_1016_j_carbpol_2022_120472 crossref_primary_10_1016_j_ijbiomac_2024_132454 crossref_primary_10_1088_1758_5090_ad905e crossref_primary_10_1016_j_bioactmat_2021_04_026 crossref_primary_10_1016_j_cej_2024_153020 crossref_primary_10_3390_polym14122365 crossref_primary_10_1002_adhm_202304315 crossref_primary_10_2174_1381612827666211208150210 crossref_primary_10_1016_j_tice_2022_101782 crossref_primary_10_3389_fendo_2024_1430543 crossref_primary_10_3389_fbioe_2022_910290 crossref_primary_10_3389_fmed_2022_863786 crossref_primary_10_1088_1748_605X_ad1df9 crossref_primary_10_1016_j_matdes_2024_113203 crossref_primary_10_1016_j_ijbiomac_2023_123696 crossref_primary_10_1016_j_ijbiomac_2025_141463 crossref_primary_10_1134_S0965545X2460008X crossref_primary_10_1016_j_ijbiomac_2023_125358 crossref_primary_10_1016_j_ijbiomac_2024_133657 crossref_primary_10_3389_fmats_2023_1058050 crossref_primary_10_1002_SMMD_20230029 crossref_primary_10_3389_fchem_2023_1257915 crossref_primary_10_3390_medicina57040348 crossref_primary_10_1557_s43578_022_00706_y crossref_primary_10_1088_1748_605X_ad525e crossref_primary_10_3390_polym15163473 crossref_primary_10_3389_fbioe_2024_1488748 crossref_primary_10_1021_acsami_4c03050 crossref_primary_10_1088_1748_605X_ad46ba crossref_primary_10_1016_j_jddst_2023_104516 crossref_primary_10_1002_adhm_202201524 crossref_primary_10_1080_17425247_2022_2152791 crossref_primary_10_3390_cosmetics11020054 crossref_primary_10_1039_D1QM00561H crossref_primary_10_1016_j_clindermatol_2024_05_006 crossref_primary_10_1002_INMD_20240015 crossref_primary_10_1016_j_carbpol_2022_120178 crossref_primary_10_1016_j_ijpharm_2022_122139 crossref_primary_10_1080_00914037_2023_2301645 crossref_primary_10_3389_fchem_2020_615665 crossref_primary_10_1021_acsnano_1c05272 crossref_primary_10_3390_scipharm92020023 crossref_primary_10_1093_rb_rbaa059 crossref_primary_10_3390_cancers12102954 crossref_primary_10_3390_molecules29225336 crossref_primary_10_1016_j_carbpol_2022_120058 crossref_primary_10_3390_membranes12020215 crossref_primary_10_3390_pharmaceutics15010077 crossref_primary_10_1016_j_msec_2021_112519 crossref_primary_10_1016_j_jddst_2022_103319 crossref_primary_10_1021_acsabm_0c01364 crossref_primary_10_3390_ijms242316714 crossref_primary_10_1016_j_ijbiomac_2021_10_091 crossref_primary_10_3390_ijms23052765 crossref_primary_10_1002_jbm_b_35001 crossref_primary_10_1016_j_ijbiomac_2022_10_169 crossref_primary_10_3389_fcell_2021_639299 crossref_primary_10_3390_ijms241411466 crossref_primary_10_1021_acs_biomac_1c00502 crossref_primary_10_3389_fbioe_2023_1252574 crossref_primary_10_1016_j_ijbiomac_2024_138098 crossref_primary_10_1002_adhm_202303138 crossref_primary_10_3390_pharmaceutics15010068 crossref_primary_10_1016_j_colsurfb_2024_114433 crossref_primary_10_1016_j_carbpol_2023_121537 crossref_primary_10_1016_j_ijbiomac_2023_123308 crossref_primary_10_1016_j_ijbiomac_2025_141896 crossref_primary_10_1039_D1NR07708B crossref_primary_10_1002_jbm_b_35370 crossref_primary_10_1016_j_cej_2023_147740 crossref_primary_10_1063_5_0121241 crossref_primary_10_1016_j_ijbiomac_2022_02_117 crossref_primary_10_3389_fbioe_2023_1228250 crossref_primary_10_1016_j_cej_2023_143016 crossref_primary_10_1016_j_ijbiomac_2023_128537 crossref_primary_10_1016_j_ijbiomac_2022_02_114 crossref_primary_10_3390_bioengineering10070790 crossref_primary_10_1016_j_heliyon_2024_e38392 crossref_primary_10_1016_j_engreg_2021_11_003 crossref_primary_10_1002_adhm_202400406 crossref_primary_10_1016_j_cej_2024_152251 crossref_primary_10_12968_jowc_2022_31_5_406 crossref_primary_10_1016_j_ijbiomac_2024_129251 crossref_primary_10_1007_s11033_024_09750_9 crossref_primary_10_3390_polym15153305 crossref_primary_10_1002_pat_6434 crossref_primary_10_1016_j_ijbiomac_2024_129254 crossref_primary_10_1021_acsmaterialslett_4c00889 crossref_primary_10_3390_pharmaceutics13050621 crossref_primary_10_3390_pharmaceutics13111946 crossref_primary_10_47853_FAS_2022_e28 crossref_primary_10_3390_ma17174220 crossref_primary_10_58951_fstoday_2023_17 crossref_primary_10_3390_pr12071282 crossref_primary_10_1021_acs_biomac_3c01088 crossref_primary_10_1016_j_heliyon_2024_e35014 crossref_primary_10_1021_acsami_2c08593 crossref_primary_10_1016_j_bioactmat_2024_12_030 crossref_primary_10_1016_j_cirp_2022_06_001 crossref_primary_10_1002_asia_202200595 crossref_primary_10_3390_polym14245371 crossref_primary_10_1016_j_polymer_2024_127207 crossref_primary_10_1007_s00281_024_01024_7 crossref_primary_10_1016_j_ijbiomac_2020_08_139 crossref_primary_10_1016_j_ijbiomac_2024_133840 crossref_primary_10_1039_D2BM01036D crossref_primary_10_1021_acs_biomac_4c01041 crossref_primary_10_1080_25740881_2023_2181703 crossref_primary_10_1016_j_jiec_2022_11_063 crossref_primary_10_1016_j_apmt_2021_101148 crossref_primary_10_1016_j_mencom_2023_06_037 crossref_primary_10_1016_j_bprint_2022_e00230 crossref_primary_10_1007_s10853_023_08730_x crossref_primary_10_1016_j_ijbiomac_2025_140797 crossref_primary_10_1016_j_apmt_2023_101829 crossref_primary_10_1007_s40097_022_00505_1 crossref_primary_10_4103_aja202341 crossref_primary_10_1063_5_0259252 crossref_primary_10_1016_j_ijbiomac_2022_09_052 crossref_primary_10_3390_polym15193940 crossref_primary_10_1016_j_ijbiomac_2023_123873 crossref_primary_10_1016_j_engreg_2023_09_001 crossref_primary_10_1186_s12934_024_02624_6 crossref_primary_10_1016_j_biomaterials_2025_123123 crossref_primary_10_1039_D3BM01314F crossref_primary_10_1021_acsami_0c15729 crossref_primary_10_3389_fbioe_2022_841583 crossref_primary_10_3389_fbioe_2021_768490 crossref_primary_10_3390_pharmaceutics14102235 crossref_primary_10_1038_s41598_024_78044_8 crossref_primary_10_1016_j_carbpol_2023_120924 crossref_primary_10_1016_j_pmatsci_2024_101328 crossref_primary_10_1016_j_ijbiomac_2023_124715 crossref_primary_10_1039_D3TB01588B crossref_primary_10_3390_macromol1020012 crossref_primary_10_3390_ijms25115891 crossref_primary_10_1016_j_mtbio_2023_100739 crossref_primary_10_1016_j_mtbio_2021_100139 crossref_primary_10_1021_acsabm_3c01144 crossref_primary_10_1016_j_ijpharm_2021_120992 crossref_primary_10_1016_j_ijbiomac_2024_137078 crossref_primary_10_1039_D4TB01710B crossref_primary_10_12923_2083_4829_2024_0025 crossref_primary_10_3390_medicina59122066 crossref_primary_10_1002_mabi_202100189 crossref_primary_10_1016_j_ijbiomac_2025_140416 crossref_primary_10_1016_j_jcis_2022_07_168 crossref_primary_10_1016_j_ijbiomac_2025_141625 crossref_primary_10_3390_pharmaceutics15020579 crossref_primary_10_3390_polym13224002 crossref_primary_10_1016_j_ijpharm_2023_123140 crossref_primary_10_3390_pharmaceutics15020695 crossref_primary_10_1002_pen_26549 crossref_primary_10_1080_1061186X_2024_2382405 crossref_primary_10_29254_2077_4214_2024_4_175_170_178 crossref_primary_10_1016_j_mtbio_2021_100109 crossref_primary_10_1016_j_jpba_2024_116402 crossref_primary_10_1002_adhm_202401782 crossref_primary_10_1021_acsabm_4c01161 crossref_primary_10_1007_s00520_022_06828_7 crossref_primary_10_3390_polym15030780 crossref_primary_10_3390_jcs8100413 crossref_primary_10_1016_j_colsurfb_2024_114377 crossref_primary_10_4252_wjsc_v16_i4_334 crossref_primary_10_3390_molecules28217449 crossref_primary_10_1155_2022_1659338 crossref_primary_10_1590_acb399024 crossref_primary_10_1016_j_carbpol_2024_122078 crossref_primary_10_1007_s11706_022_0599_3 crossref_primary_10_1002_pol_20220734 crossref_primary_10_1089_wound_2024_0024 crossref_primary_10_3390_cimb46090621 crossref_primary_10_34172_apb_2022_069 crossref_primary_10_1007_s10103_023_03879_y crossref_primary_10_1093_rb_rbae024 crossref_primary_10_1002_adfm_202405255 crossref_primary_10_1002_adfm_202113269 crossref_primary_10_1016_j_ijbiomac_2023_128488 crossref_primary_10_3390_pharmaceutics16080979 crossref_primary_10_1021_acsami_4c09890 crossref_primary_10_1016_j_carbpol_2023_120962 crossref_primary_10_1111_jocd_15763 crossref_primary_10_1016_j_addr_2024_115217 crossref_primary_10_1016_j_reactfunctpolym_2021_105059 crossref_primary_10_1016_j_mtbio_2021_100201 crossref_primary_10_1016_j_lfs_2021_120096 crossref_primary_10_1016_j_optlastec_2021_107344 crossref_primary_10_1002_adhm_202400484 crossref_primary_10_3390_biom12010016 crossref_primary_10_18231_j_jooo_2023_042 crossref_primary_10_1016_j_cclet_2024_109766 crossref_primary_10_1016_j_ijbiomac_2021_08_022 crossref_primary_10_1039_D3TB01567J crossref_primary_10_1016_j_ijbiomac_2024_137268 crossref_primary_10_1016_j_ejpb_2024_114474 crossref_primary_10_52711_0974_360X_2023_00467 crossref_primary_10_1186_s40824_023_00379_6 crossref_primary_10_1016_j_mtbio_2024_101082 crossref_primary_10_1016_j_ijbiomac_2020_08_081 crossref_primary_10_1016_j_jddst_2022_103298 crossref_primary_10_3389_fmed_2022_947649 crossref_primary_10_1016_j_carbpol_2022_119334 crossref_primary_10_1016_j_ijbiomac_2023_129115 crossref_primary_10_1002_JPER_22_0409 |
Cites_doi | 10.1163/092050611X555687 10.1016/j.carbpol.2016.03.002 10.1021/acs.biomac.7b01268 10.4161/biom.25633 10.1016/j.ijbiomac.2017.08.173 10.1074/jbc.M111.275875 10.1016/j.eurpolymj.2019.05.007 10.1016/S0169-409X(01)00239-3 10.3389/fvets.2019.00192 10.1016/j.carbpol.2019.115033 10.1074/jbc.M112.349209 10.1007/s10965-017-1278-4 10.1016/j.colsurfb.2015.01.024 10.1016/j.ijbiomac.2018.10.041 10.1016/j.memsci.2014.06.035 10.1016/j.biopha.2016.12.006 10.1016/j.ijbiomac.2018.05.099 10.3389/fbioe.2018.00062 10.1016/j.msec.2018.12.011 10.1002/adhm.201700973 10.1016/j.ejcb.2006.05.009 10.1177/0885328217702526 10.1016/j.polymer.2008.01.027 10.1016/j.ijbiomac.2013.09.011 10.1002/jbm.a.30536 10.2353/ajpath.2009.080837 10.7603/s40681-015-0022-9 10.1016/j.eurpolymj.2018.09.003 10.1016/j.carbpol.2011.03.019 10.1039/C8BM00319J 10.1177/0885328215586907 10.1016/j.carbpol.2019.03.091 10.1002/jbm.b.34048 10.1016/j.carres.2005.07.016 10.1016/j.jare.2017.01.005 10.20517/2347-9264.2017.71 10.1039/C7TB02114C 10.1016/j.ijbiomac.2016.07.055 10.1016/j.biomaterials.2010.01.125 10.1074/jbc.M110.137562 10.1016/S0378-5173(03)00087-5 10.1080/00914037.2016.1252358 10.12968/jowc.2003.12.9.26530 10.1038/nrmicro.2017.157 10.1016/j.msec.2019.03.093 10.1002/(SICI)1097-4636(199911)47:2<152::AID-JBM5>3.0.CO;2-I 10.1016/j.ejpb.2018.02.022 10.1088/1758-5090/ab0b7c 10.1016/j.actbio.2014.05.001 10.1016/j.carbpol.2018.06.065 10.1002/adhm.201600316 10.1016/j.bjps.2007.03.005 10.1002/jbm.a.35178 10.1016/j.ijbiomac.2015.04.059 10.1002/adhm.201600658 10.1007/s12221-016-6259-4 10.3233/BIR-1994-31302 10.1016/j.carbpol.2017.05.098 10.1016/j.ejpb.2019.03.010 10.1021/bm049508a 10.1080/09205063.2018.1558933 10.1016/j.xphs.2017.09.026 10.1016/j.pharep.2016.07.001 10.1046/j.1524-475X.1999.00079.x 10.1016/j.carbpol.2018.01.102 10.1016/j.actbio.2013.07.025 10.1016/j.biomaterials.2016.02.034 10.3390/nano9070944 10.1016/j.carbpol.2016.01.023 10.1016/j.pmatsci.2018.04.003 10.1016/j.ijbiomac.2018.04.010 10.1111/febs.14777 10.1002/masy.200851418 10.1016/0142-9612(93)90160-4 10.1016/j.colsurfb.2018.05.011 10.1016/j.jddst.2018.04.017 10.1163/156856209X435844 10.1016/j.colsurfb.2017.05.001 10.1016/j.ijbiomac.2016.09.080 10.1016/j.biomaterials.2012.01.038 10.1080/15583724.2017.1315433 10.1016/j.carbpol.2018.11.085 10.1097/GOX.0000000000000747 10.1016/j.msec.2017.10.007 10.1097/SAP.0b013e31819b3d59 10.1080/1023666X.2018.1558567 10.1163/156856209X444394 10.4103/2321-3868.142398 10.1007/s13204-015-0439-1 10.1111/wrr.12214 10.1002/jbm.a.35797 10.3390/polym10070701 10.1016/j.msec.2014.12.068 10.1016/j.eurpolymj.2007.02.045 10.3390/polym9050183 10.1007/s10047-013-0737-x 10.1007/s10616-015-9895-4 10.25011/cim.v31i3.3467 10.1186/1475-2859-10-99 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd Copyright © 2020 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright © 2020 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.carbpol.2020.116364 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1879-1344 |
ExternalDocumentID | 32507198 10_1016_j_carbpol_2020_116364 S0144861720305385 |
Genre | Journal Article Review |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AATLK AAXUO ABFNM ABFRF ABGRD ABGSF ABJNI ABMAC ABUDA ABYKQ ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADECG ADEZE ADQTV ADUVX AEBSH AEFWE AEHWI AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AFZHZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CBWCG CS3 DOVZS DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM LW9 M24 M2Y M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SAB SDF SDG SDP SES SPC SPCBC SSA SSK SSU SSZ T5K Y6R ~G- ~KM 53G AAHBH AALCJ AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRDE AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HLV HMS HVGLF HZ~ R2- RIG SCB SEW SMS SOC SSH WUQ XPP CGR CUY CVF ECM EFKBS EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c473t-d5d67085860e2ad04fce09ba7686615c78f8e70b9d5a6e3e44fb366825bd31233 |
IEDL.DBID | .~1 |
ISSN | 0144-8617 1879-1344 |
IngestDate | Fri Jul 11 05:37:48 EDT 2025 Fri Jul 11 09:00:40 EDT 2025 Mon Jul 21 05:50:57 EDT 2025 Thu Apr 24 23:11:03 EDT 2025 Tue Jul 01 01:24:40 EDT 2025 Fri Feb 23 02:46:41 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | ADH EDC HRP DN vHMW MPO RHAMM α-SMA OHEC O-HA MRSA Wound dressing HA-Tyr S. epidermidis HPβCD IL Wound healing Pu EGCG AgNPs HA-EDA MW GAG bFGF GEL EEP L. monocytogenes MMP-2 ZN MMT HA-BP MMW AND Arg CMC-Na HA-ADH ROS PCL CNC SEM Hyaluronic acid HUVECs Ser HMEC hMSCs PLA NOCC PLC AFM HA-g-Pu BP SA usSN DEX-PDM PLL SD S. aureus SF NHS CSH TGF-β TLR E. coli HYAL P. aeruginosa COL STMP THY EGF VEGF GS TA ECM CS HMW PLGA TNF-α WCA ZIF-8 GTA COL-P PDGF LbL LMW HA AHA PVA PEO Vit.C ALG |
Language | English |
License | Copyright © 2020 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c473t-d5d67085860e2ad04fce09ba7686615c78f8e70b9d5a6e3e44fb366825bd31233 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://ars.els-cdn.com/content/image/1-s2.0-S0144861720305385-ga1_lrg.jpg |
PMID | 32507198 |
PQID | 2410730373 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2440699376 proquest_miscellaneous_2410730373 pubmed_primary_32507198 crossref_primary_10_1016_j_carbpol_2020_116364 crossref_citationtrail_10_1016_j_carbpol_2020_116364 elsevier_sciencedirect_doi_10_1016_j_carbpol_2020_116364 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-08-01 |
PublicationDateYYYYMMDD | 2020-08-01 |
PublicationDate_xml | – month: 08 year: 2020 text: 2020-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Carbohydrate polymers |
PublicationTitleAlternate | Carbohydr Polym |
PublicationYear | 2020 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Zhou, Zhang, Liu, Shi, Zhu, Wei (bib0545) 2016; 143 Wu, Deng, Hsia, Xu, He, Huang (bib0515) 2017; 31 Li, Qian, Jiang, Lv, Liu, Zhong (bib0285) 2012; 33 Seidlits, Khaing, Petersen, Nickels, Vanscoy, Shear (bib0430) 2010; 31 Lewandowska, Sionkowska, Grabska, Kaczmarek (bib0275) 2016; 92 Ebrahimi-Hosseinzadeh, Pedram, Hatamian-Zarmi, Salahshour-Kordestani, Rasti, Mokhtari-Hosseini (bib0105) 2016; 17 Orellana, Giacaman, Pavicic, Vidal, Moreno‐Villoslada, Concha (bib0390) 2016; 104 Miguel, Figueira, Simões, Ribeiro, Coutinho, Ferreira (bib0340) 2018; 169 Vasir, Tambwekar, Garg (bib0480) 2003; 255 Anisha, Biswas, Chennazhi, Jayakumar (bib0020) 2013; 62 Litwiniuk, Krejner, Speyrer, Gauto, Grzela (bib0290) 2016; 28 Schanté, Zuber, Herlin, Vandamme (bib0425) 2011; 85 Eskandarinia, Kefayat, Rafienia, Agheb, Navid, Ebrahimpour (bib0110) 2019; 216 Stodolak-Zych, Rozmus, Dzierzkowska, Zych, Kapacz-Kmita, Gargas (bib0465) 2018; 20 Fallacara, Baldini, Manfredini, Vertuani (bib0115) 2018; 10 Dreifke, Jayasuriya, Jayasuriya (bib0100) 2015; 48 Gravante, Sorge, Merone, Tamisani, Di Lonardo, Scalise (bib0155) 2010; 64 Matsumoto, Kuroyanagi (bib0330) 2010; 21 Knopf‐Marques, Pravda, Wolfova, Velebny, Schaaf, Vrana (bib0240) 2016; 5 Wolny, Banerji, Gounou, Brisson, Day, Jackson (bib0510) 2010; 285 Yang, Cao, Liu, He, Xu, Du (bib0520) 2012; 287 Hirano, Sakai, Ishikawa, Avci, Linhardt, Toida (bib0165) 2005; 340 Catanzano, D’Esposito, Pulcrano, Maiolino, Ambrosio, Esposito (bib0075) 2017; 66 Fiorica, Palumbo, Pitarresi, Allegra, Puleio, Giammona (bib0135) 2018; 46 Miguel, Sequeira, Moreira, Cabral, Mendonça, Ferreira (bib0350) 2019; 139 Aya, Stern (bib0035) 2014; 22 Khelfi (bib0225) 2018 Longinotti (bib0310) 2014; 2 Sousa, Neto, Correia, Miguel, Matsusaki, Correia (bib0455) 2018; 6 Lai, Kuan, Wu, Tsai, Chen, Hsieh (bib0260) 2014; 10 Galante, Pinto, Colaço, Serro (bib0140) 2018; 106 Jeong, Park, Lee (bib0200) 2017; 24 Shin, Shin, Lee, Lee, Kim, Song (bib0445) 2016; 5 Figueira, Miguel, de Sá, Correia (bib0130) 2016; 93 Séon-Lutz, Couffin, Vignoud, Schlatter, Hébraud (bib0435) 2019; 207 Chanda, Adhikari, Ghosh, Chowdhury, Thomas, Datta (bib0080) 2018; 116 Wang, Qian, Li, Pan, Njunge, Dong (bib0500) 2015; 30 Gallo, Nasser, Salvatore, Natali, Campa, Mahmoud (bib0145) 2019; 117 Laurent, Gelotte, Hellsing (bib0270) 1964; Vol. 18 Miguel, Ribeiro, Coutinho, Correia (bib0345) 2017; 9 Wang, Han, Guo, Huang (bib0495) 2016; 68 Morgado, Lisboa, Ribeiro, Miguel, Simões, Correia (bib0370) 2014; 469 Hoare, Kohane (bib0170) 2008; 49 Shi, Zhao, Xie, Fan, Hilborn, Dai (bib0440) 2018; 7 Huerta-Angeles, Nesporova, Ambrozova, Kubala, Velebny (bib0185) 2018; 6 Hoffman (bib0175) 2002; 54 Lam, Truong, Segura (bib0265) 2014; 10 Stern, Asari, Sugahara (bib0460) 2006; 85 Monteiro, Shukla, Marques, Reis, Hammond (bib0365) 2015; 103 Huin‐Amargier, Marchal, Payan, Netter, Dellacherie (bib0190) 2006; 76 Price, Berry, Navsaria (bib0410) 2007; 60 Osti (bib0395) 2008; 21 Kenar, Ozdogan, Dumlu, Doger, Kose, Hasirci (bib0220) 2019; 97 Augustine, Hasan, Nath, Thomas, Augustine, Kalarikkal (bib0025) 2018; 29 Liu, Li, Hu, Cheng, Ye, Shen (bib0295) 2018; 83 Abednejad, Ghaee, Nourmohammadi, Mehrizi (bib0005) 2019; 222 Jiang, Hou, Fang, Liu, Zhao, Huang (bib0205) 2019; 24 Li, Xue, Jia, Bai, Zuo, Wang (bib0280) 2018; 188 Khorasani, Joorabloo, Moghaddam, Shamsi, MansooriMoghadam (bib0230) 2018; 114 Nguyen, Nguyen, Tran, Nguyen, Nguyen, Tran (bib0375) 2019; 103 Miguel, Simões, Moreira, Sequeira, Correia (bib0355) 2019; 121 Yao, Ye, Sun, Jin, Xu, Yang (bib0525) 2017; 5 Luo, Liu, Xu, Fan, Nie (bib0315) 2018; 199 Villamizar-Sarmiento, Moreno-Villoslada, Martínez, Giacaman, Miranda, Vidal (bib0485) 2019; 9 Chen, Abatangelo (bib0085) 1999; 7 Fan, Yang, Yang, Peng, Hu (bib0120) 2016; 146 Niiyama, Kuroyanagi (bib0380) 2014; 17 Ahire, Robertson, van Reenen, Dicks (bib0015) 2017; 86 Ying, Zhou, Wang, Su, Ma, Lv (bib0535) 2019; 101 Maleki, Kjøniksen, Nyström (bib0325) 2008; 274 Byrd, Belkaid, Segre (bib0065) 2018; 16 Liu, Liu, Wang, Du, Chen (bib0300) 2007; 43 Simões, Miguel, Ribeiro, Coutinho, Mendonça, Correia (bib0450) 2018; 127 Kouvidi, Berdiaki, Nikitovic, Katonis, Afratis, Hascall (bib0255) 2011; 286 Piron, E., & Tholin, R., 2005. Polysaccharide crosslinking, hydrogel preparation, resulting polysaccharide (s) and hydrogel (s), uses thereof. Google Patents. Augustine, Kalarikkal, Thomas (bib0030) 2016; 6 Bružauskaitė, Bironaitė, Bagdonas, Bernotienė (bib0050) 2016; 68 Hussain, Thu, Katas, Bukhari (bib0195) 2017; 57 Kirk, Ritter, Finger, Sankar, Reddy, Talton (bib0235) 2013; 3 Liu, Liu, Li, Du, Chen (bib0305) 2011; 10 Kobayashi, Okamoto, Nishinari (bib0245) 1994; 31 Mohandas, Anisha, Chennazhi, Jayakumar (bib0360) 2015; 127 Tavianatou, Caon, Franchi, Piperigkou, Galesso, Karamanos (bib0470) 2019; 286 Bulpitt, Aeschlimann (bib0055) 1999; 47 Zhu, Wang, Yang, Luo (bib0550) 2017; 4 Burdick, Chung, Jia, Randolph, Langer (bib0060) 2005; 6 Kaczmarek, Sionkowska, Kozlowska, Osyczka (bib0210) 2018; 107 Hong, Shen, Fang, Wang, Bao, Bu (bib0180) 2018; 29 Colletta, Dioguardi, Di Lonardo, Maggio, Torasso (bib0090) 2003; 12 O’Connell, Onofrillo, Duchi, Li, Zhang, Tian (bib0385) 2019; 11 Abou-Okeil, Fahmy, El-Bisi, Ahmed-Farid (bib0010) 2018; 109 Sanad, Abdel-Bar (bib0420) 2017; 173 Wang, Liu, Sun, Jin, Ding, Li (bib0490) 2018; 19 Benedetti, Cortivo, Berti, Berti, Pea, Mazzo (bib0040) 1993; 14 Mahedia, Shah, Amirlak (bib0320) 2016; 4 Gao, Yang, Mo, Liu, He (bib0150) 2008 Dhivya, Padma, Santhini (bib0095) 2015; 5 Paghetti, Bellingeri, Pomponio, Sansoni, Paladino (bib0400) 2009; 62 Kondo, Kuroyanagi (bib0250) 2012; 23 Zamboni, Vieira, Reis, Oliveira, Collins (bib0540) 2018; 97 Bhowmick, Scharnweber, Koul (bib0045) 2016; 88 Webber, Jenkins, Meran, Phillips, Steadman (bib0505) 2009; 175 Tommeraas, K., & Eenschooten, C., 2009. Aryl/alkyl Succinic Anhydride-Hyaluronan Derivatives. Google Patents. Kamoun, Kenawy, Chen (bib0215) 2017; 8 Yin, Lin, Zhan (bib0530) 2019; 30 Gupta, Lall, Srivastava, Sinha (bib0160) 2019; 6 Felgueiras, Amorim (bib0125) 2017; 156 Catanzano, D’Esposito, Formisano, Boateng, Quaglia (bib0070) 2018; 107 Qian, Li, Jiang, Xu, Lv, Zhong (bib0415) 2015; 79 Matsumoto, Arai, Momose, Kuroyanagi (bib0335) 2009; 20 Burdick (10.1016/j.carbpol.2020.116364_bib0060) 2005; 6 Niiyama (10.1016/j.carbpol.2020.116364_bib0380) 2014; 17 10.1016/j.carbpol.2020.116364_bib0475 Eskandarinia (10.1016/j.carbpol.2020.116364_bib0110) 2019; 216 Kirk (10.1016/j.carbpol.2020.116364_bib0235) 2013; 3 Schanté (10.1016/j.carbpol.2020.116364_bib0425) 2011; 85 Liu (10.1016/j.carbpol.2020.116364_bib0300) 2007; 43 Matsumoto (10.1016/j.carbpol.2020.116364_bib0335) 2009; 20 Yao (10.1016/j.carbpol.2020.116364_bib0525) 2017; 5 Ying (10.1016/j.carbpol.2020.116364_bib0535) 2019; 101 Qian (10.1016/j.carbpol.2020.116364_bib0415) 2015; 79 Miguel (10.1016/j.carbpol.2020.116364_bib0350) 2019; 139 Fiorica (10.1016/j.carbpol.2020.116364_bib0135) 2018; 46 Price (10.1016/j.carbpol.2020.116364_bib0410) 2007; 60 Wu (10.1016/j.carbpol.2020.116364_bib0515) 2017; 31 Khelfi (10.1016/j.carbpol.2020.116364_bib0225) 2018 Sousa (10.1016/j.carbpol.2020.116364_bib0455) 2018; 6 Hoffman (10.1016/j.carbpol.2020.116364_bib0175) 2002; 54 Mahedia (10.1016/j.carbpol.2020.116364_bib0320) 2016; 4 Catanzano (10.1016/j.carbpol.2020.116364_bib0070) 2018; 107 Kenar (10.1016/j.carbpol.2020.116364_bib0220) 2019; 97 Orellana (10.1016/j.carbpol.2020.116364_bib0390) 2016; 104 Galante (10.1016/j.carbpol.2020.116364_bib0140) 2018; 106 Gao (10.1016/j.carbpol.2020.116364_bib0150) 2008 Aya (10.1016/j.carbpol.2020.116364_bib0035) 2014; 22 Ahire (10.1016/j.carbpol.2020.116364_bib0015) 2017; 86 Bulpitt (10.1016/j.carbpol.2020.116364_bib0055) 1999; 47 Catanzano (10.1016/j.carbpol.2020.116364_bib0075) 2017; 66 Laurent (10.1016/j.carbpol.2020.116364_bib0270) 1964; Vol. 18 Lam (10.1016/j.carbpol.2020.116364_bib0265) 2014; 10 Augustine (10.1016/j.carbpol.2020.116364_bib0025) 2018; 29 Chanda (10.1016/j.carbpol.2020.116364_bib0080) 2018; 116 Longinotti (10.1016/j.carbpol.2020.116364_bib0310) 2014; 2 Gupta (10.1016/j.carbpol.2020.116364_bib0160) 2019; 6 Fallacara (10.1016/j.carbpol.2020.116364_bib0115) 2018; 10 Kamoun (10.1016/j.carbpol.2020.116364_bib0215) 2017; 8 Kobayashi (10.1016/j.carbpol.2020.116364_bib0245) 1994; 31 Paghetti (10.1016/j.carbpol.2020.116364_bib0400) 2009; 62 Knopf‐Marques (10.1016/j.carbpol.2020.116364_bib0240) 2016; 5 Colletta (10.1016/j.carbpol.2020.116364_bib0090) 2003; 12 Gallo (10.1016/j.carbpol.2020.116364_bib0145) 2019; 117 10.1016/j.carbpol.2020.116364_bib0405 Hirano (10.1016/j.carbpol.2020.116364_bib0165) 2005; 340 Monteiro (10.1016/j.carbpol.2020.116364_bib0365) 2015; 103 Mohandas (10.1016/j.carbpol.2020.116364_bib0360) 2015; 127 Liu (10.1016/j.carbpol.2020.116364_bib0295) 2018; 83 Luo (10.1016/j.carbpol.2020.116364_bib0315) 2018; 199 Felgueiras (10.1016/j.carbpol.2020.116364_bib0125) 2017; 156 Miguel (10.1016/j.carbpol.2020.116364_bib0345) 2017; 9 Huin‐Amargier (10.1016/j.carbpol.2020.116364_bib0190) 2006; 76 Osti (10.1016/j.carbpol.2020.116364_bib0395) 2008; 21 Ebrahimi-Hosseinzadeh (10.1016/j.carbpol.2020.116364_bib0105) 2016; 17 Tavianatou (10.1016/j.carbpol.2020.116364_bib0470) 2019; 286 Villamizar-Sarmiento (10.1016/j.carbpol.2020.116364_bib0485) 2019; 9 Stodolak-Zych (10.1016/j.carbpol.2020.116364_bib0465) 2018; 20 Wolny (10.1016/j.carbpol.2020.116364_bib0510) 2010; 285 Webber (10.1016/j.carbpol.2020.116364_bib0505) 2009; 175 Jeong (10.1016/j.carbpol.2020.116364_bib0200) 2017; 24 Lewandowska (10.1016/j.carbpol.2020.116364_bib0275) 2016; 92 Simões (10.1016/j.carbpol.2020.116364_bib0450) 2018; 127 Stern (10.1016/j.carbpol.2020.116364_bib0460) 2006; 85 Wang (10.1016/j.carbpol.2020.116364_bib0500) 2015; 30 Jiang (10.1016/j.carbpol.2020.116364_bib0205) 2019; 24 Hussain (10.1016/j.carbpol.2020.116364_bib0195) 2017; 57 Miguel (10.1016/j.carbpol.2020.116364_bib0340) 2018; 169 Shin (10.1016/j.carbpol.2020.116364_bib0445) 2016; 5 Sanad (10.1016/j.carbpol.2020.116364_bib0420) 2017; 173 Vasir (10.1016/j.carbpol.2020.116364_bib0480) 2003; 255 Li (10.1016/j.carbpol.2020.116364_bib0280) 2018; 188 Matsumoto (10.1016/j.carbpol.2020.116364_bib0330) 2010; 21 Litwiniuk (10.1016/j.carbpol.2020.116364_bib0290) 2016; 28 Fan (10.1016/j.carbpol.2020.116364_bib0120) 2016; 146 Bružauskaitė (10.1016/j.carbpol.2020.116364_bib0050) 2016; 68 Kouvidi (10.1016/j.carbpol.2020.116364_bib0255) 2011; 286 Zhou (10.1016/j.carbpol.2020.116364_bib0545) 2016; 143 Wang (10.1016/j.carbpol.2020.116364_bib0490) 2018; 19 Hoare (10.1016/j.carbpol.2020.116364_bib0170) 2008; 49 Seidlits (10.1016/j.carbpol.2020.116364_bib0430) 2010; 31 Miguel (10.1016/j.carbpol.2020.116364_bib0355) 2019; 121 Nguyen (10.1016/j.carbpol.2020.116364_bib0375) 2019; 103 Chen (10.1016/j.carbpol.2020.116364_bib0085) 1999; 7 Hong (10.1016/j.carbpol.2020.116364_bib0180) 2018; 29 Yang (10.1016/j.carbpol.2020.116364_bib0520) 2012; 287 Maleki (10.1016/j.carbpol.2020.116364_bib0325) 2008; 274 Huerta-Angeles (10.1016/j.carbpol.2020.116364_bib0185) 2018; 6 Bhowmick (10.1016/j.carbpol.2020.116364_bib0045) 2016; 88 O’Connell (10.1016/j.carbpol.2020.116364_bib0385) 2019; 11 Byrd (10.1016/j.carbpol.2020.116364_bib0065) 2018; 16 Morgado (10.1016/j.carbpol.2020.116364_bib0370) 2014; 469 Wang (10.1016/j.carbpol.2020.116364_bib0495) 2016; 68 Dreifke (10.1016/j.carbpol.2020.116364_bib0100) 2015; 48 Li (10.1016/j.carbpol.2020.116364_bib0285) 2012; 33 Anisha (10.1016/j.carbpol.2020.116364_bib0020) 2013; 62 Benedetti (10.1016/j.carbpol.2020.116364_bib0040) 1993; 14 Khorasani (10.1016/j.carbpol.2020.116364_bib0230) 2018; 114 Abednejad (10.1016/j.carbpol.2020.116364_bib0005) 2019; 222 Augustine (10.1016/j.carbpol.2020.116364_bib0030) 2016; 6 Shi (10.1016/j.carbpol.2020.116364_bib0440) 2018; 7 Figueira (10.1016/j.carbpol.2020.116364_bib0130) 2016; 93 Séon-Lutz (10.1016/j.carbpol.2020.116364_bib0435) 2019; 207 Kaczmarek (10.1016/j.carbpol.2020.116364_bib0210) 2018; 107 Yin (10.1016/j.carbpol.2020.116364_bib0530) 2019; 30 Lai (10.1016/j.carbpol.2020.116364_bib0260) 2014; 10 Dhivya (10.1016/j.carbpol.2020.116364_bib0095) 2015; 5 Abou-Okeil (10.1016/j.carbpol.2020.116364_bib0010) 2018; 109 Liu (10.1016/j.carbpol.2020.116364_bib0305) 2011; 10 Kondo (10.1016/j.carbpol.2020.116364_bib0250) 2012; 23 Zamboni (10.1016/j.carbpol.2020.116364_bib0540) 2018; 97 Zhu (10.1016/j.carbpol.2020.116364_bib0550) 2017; 4 Gravante (10.1016/j.carbpol.2020.116364_bib0155) 2010; 64 |
References_xml | – volume: 20 start-page: 993 year: 2009 end-page: 1004 ident: bib0335 article-title: Development of a wound dressing composed of a hyaluronic acid sponge containing arginine publication-title: Journal of Biomaterials Science, Polymer Edition – volume: 7 year: 2018 ident: bib0440 article-title: Moldable hyaluronan hydrogel enabled by dynamic metal–bisphosphonate coordination chemistry for wound healing publication-title: Advanced Healthcare Materials – volume: 175 start-page: 148 year: 2009 end-page: 160 ident: bib0505 article-title: Modulation of TGFβ1-dependent myofibroblast differentiation by hyaluronan publication-title: The American Journal of Pathology – volume: 68 start-page: 355 year: 2016 end-page: 369 ident: bib0050 article-title: Scaffolds and cells for tissue regeneration: Different scaffold pore sizes—different cell effects publication-title: Cytotechnology – volume: 76 start-page: 416 year: 2006 end-page: 424 ident: bib0190 article-title: New physically and chemically crosslinked hyaluronate (HA)‐based hydrogels for cartilage repair publication-title: Journal of Biomedical Materials Research Part A – volume: 23 start-page: 629 year: 2012 end-page: 643 ident: bib0250 article-title: Development of a wound dressing composed of hyaluronic acid and collagen sponge with epidermal growth factor publication-title: Journal of Biomaterials Science, Polymer Edition – volume: 62 start-page: 67 year: 2009 end-page: 77 ident: bib0400 article-title: Topic efficacy of ialuronic acid associated with argentic sulphadiazine (Connettivina Plus) in the treatment of pressure sores: A prospective observational cohort study publication-title: Professioni Infermieristiche – volume: 97 start-page: 31 year: 2019 end-page: 44 ident: bib0220 article-title: Microfibrous scaffolds from poly(l-lactide-co-ε-caprolactone) blended with xeno-free collagen/hyaluronic acid for improvement of vascularization in tissue engineering applications publication-title: Materials Science and Engineering: C – volume: 107 start-page: 654 year: 2018 end-page: 661 ident: bib0070 article-title: Composite alginate-hyaluronan sponges for the delivery of tranexamic acid in postextractive alveolar wounds publication-title: Journal of Pharmaceutical Sciences – volume: 43 start-page: 2672 year: 2007 end-page: 2681 ident: bib0300 article-title: Preparation and characterization of sponge-like composites by cross-linking hyaluronic acid and carboxymethylcellulose sodium with adipic dihydrazide publication-title: European Polymer Journal – volume: 139 year: 2019 ident: bib0350 article-title: An overview of electrospun membranes loaded with bioactive molecules for improving the wound healing process publication-title: European Journal of Pharmaceutics and Biopharmaceutics – volume: 5 start-page: 2841 year: 2016 end-page: 2855 ident: bib0240 article-title: Hyaluronic acid and its derivatives in coating and delivery systems: Applications in tissue engineering, regenerative medicine and immunomodulation publication-title: Advanced Healthcare Materials – volume: 103 year: 2019 ident: bib0375 article-title: The effect of oxidation degree and volume ratio of components on properties and applications of in situ cross-linking hydrogels based on chitosan and hyaluronic acid publication-title: Materials Science and Engineering: C – volume: 22 start-page: 579 year: 2014 end-page: 593 ident: bib0035 article-title: Hyaluronan in wound healing: Rediscovering a major player publication-title: Wound Repair and Regeneration – volume: 46 start-page: 28 year: 2018 end-page: 33 ident: bib0135 article-title: Hyaluronic acid and α-elastin based hydrogel for three dimensional culture of vascular endothelial cells publication-title: Journal of Drug Delivery Science and Technology – volume: 127 start-page: 130 year: 2018 end-page: 141 ident: bib0450 article-title: Recent advances on antimicrobial wound dressing: A review publication-title: European Journal of Pharmaceutics and Biopharmaceutics – volume: 12 start-page: 357 year: 2003 end-page: 361 ident: bib0090 article-title: A trial to assess the efficacy and tolerability of Hyalofill-F in non-healing venous leg ulcers publication-title: Journal of Wound Care – volume: 5 year: 2015 ident: bib0095 article-title: Wound dressings–A review publication-title: BioMedicine – volume: 9 start-page: 944 year: 2019 ident: bib0485 article-title: Ionic nanocomplexes of hyaluronic acid and polyarginine to form solid materials: A green methodology to obtain sponges with biomedical potential publication-title: Nanomaterials – volume: 31 start-page: 1380 year: 2017 end-page: 1390 ident: bib0515 article-title: Evaluation of gelatin-hyaluronic acid composite hydrogels for accelerating wound healing publication-title: Journal of Biomaterials Applications – volume: 107 start-page: 247 year: 2018 end-page: 253 ident: bib0210 article-title: New composite materials prepared by calcium phosphate precipitation in chitosan/collagen/hyaluronic acid sponge cross-linked by EDC/NHS publication-title: International Journal of Biological Macromolecules – volume: 93 start-page: 1100 year: 2016 end-page: 1110 ident: bib0130 article-title: Production and characterization of polycaprolactone- hyaluronic acid/chitosan- zein electrospun bilayer nanofibrous membrane for tissue regeneration publication-title: International Journal of Biological Macromolecules – volume: 10 start-page: 4156 year: 2014 end-page: 4166 ident: bib0260 article-title: Tailored design of electrospun composite nanofibers with staged release of multiple angiogenic growth factors for chronic wound healing publication-title: Acta Biomaterialia – volume: 117 year: 2019 ident: bib0145 article-title: Hyaluronic acid for advanced therapies: Promises and challenges publication-title: European Polymer Journal – volume: 340 start-page: 2297 year: 2005 end-page: 2304 ident: bib0165 article-title: Preparation of the methyl ester of hyaluronan and its enzymatic degradation publication-title: Carbohydrate research – volume: 88 start-page: 83 year: 2016 end-page: 96 ident: bib0045 article-title: Co-cultivation of keratinocyte-human mesenchymal stem cell (hMSC) on sericin loaded electrospun nanofibrous composite scaffold (cationic gelatin/hyaluronan/chondroitin sulfate) stimulates epithelial differentiation in hMSCs: In vitro study publication-title: Biomaterials – volume: 62 start-page: 310 year: 2013 end-page: 320 ident: bib0020 article-title: Chitosan–hyaluronic acid/nano silver composite sponges for drug resistant bacteria infected diabetic wounds publication-title: International Journal of Biological Macromolecules – volume: 92 start-page: 371 year: 2016 end-page: 376 ident: bib0275 article-title: Surface and thermal properties of collagen/hyaluronic acid blends containing chitosan publication-title: International Journal of Biological Macromolecules – volume: 5 start-page: 3035 year: 2016 end-page: 3045 ident: bib0445 article-title: Hyaluronic acid/PLGA core/shell fiber matrices loaded with EGCG beneficial to diabetic wound healing publication-title: Advanced Healthcare Materials – volume: 28 start-page: 78 year: 2016 end-page: 88 ident: bib0290 article-title: Hyaluronic acid in inflammation and tissue regeneration publication-title: Wounds – volume: 54 start-page: 3 year: 2002 end-page: 12 ident: bib0175 article-title: Hydrogels for biomedical applications publication-title: Advanced Drug Delivery Reviews – volume: 60 start-page: 1110 year: 2007 end-page: 1119 ident: bib0410 article-title: Hyaluronic acid: The scientific and clinical evidence publication-title: Journal of Plastic, Reconstructive & Aesthetic Surgery – volume: 109 start-page: 101 year: 2018 end-page: 109 ident: bib0010 article-title: Hyaluronic acid/Na-alginate films as topical bioactive wound dressings publication-title: European Polymer Journal – volume: 17 start-page: 81 year: 2014 end-page: 87 ident: bib0380 article-title: Development of novel wound dressing composed of hyaluronic acid and collagen sponge containing epidermal growth factor and vitamin C derivative publication-title: Journal of Artificial Organs – volume: 29 start-page: 163 year: 2018 ident: bib0025 article-title: Electrospun polyvinyl alcohol membranes incorporated with green synthesized silver nanoparticles for wound dressing applications publication-title: Journal of Materials Science: Materials in Medicine – volume: 127 start-page: 105 year: 2015 end-page: 113 ident: bib0360 article-title: Chitosan–hyaluronic acid/VEGF loaded fibrin nanoparticles composite sponges for enhancing angiogenesis in wounds publication-title: Colloids and Surfaces B: Biointerfaces – volume: 285 start-page: 30170 year: 2010 end-page: 30180 ident: bib0510 article-title: Analysis of CD44-hyaluronan interactions in an artificial membrane system insights into the distinct binding properties of high and low molecular weight hyaluronan publication-title: Journal of Biological Chemistry – volume: 7 start-page: 79 year: 1999 end-page: 89 ident: bib0085 article-title: Functions of hyaluronan in wound repair publication-title: Wound Repair and Regeneration – volume: 10 start-page: 1571 year: 2014 end-page: 1580 ident: bib0265 article-title: Design of cell–matrix interactions in hyaluronic acid hydrogel scaffolds publication-title: Acta biomaterialia – volume: 9 start-page: 183 year: 2017 ident: bib0345 article-title: Electrospun polycaprolactone/aloe vera_chitosan nanofibrous asymmetric membranes aimed for wound healing applications publication-title: Polymers – volume: 169 start-page: 60 year: 2018 end-page: 71 ident: bib0340 article-title: Electrospun polymeric nanofibres as wound dressings: A review publication-title: Colloids and Surfaces B: Biointerfaces – volume: 8 start-page: 217 year: 2017 end-page: 233 ident: bib0215 article-title: A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings publication-title: Journal of Advanced Research – volume: 19 start-page: 85 year: 2018 end-page: 93 ident: bib0490 article-title: Construction of high drug loading and enzymatic degradable multilayer films for self-defense drug release and long-term biofilm inhibition publication-title: Biomacromolecules – volume: 66 start-page: 626 year: 2017 end-page: 634 ident: bib0075 article-title: Ultrasmall silver nanoparticles loaded in alginate–hyaluronic acid hybrid hydrogels for treating infected wounds publication-title: International Journal of Polymeric Materials and Polymeric Biomaterials – volume: 6 start-page: 1962 year: 2018 end-page: 1975 ident: bib0455 article-title: Bioinspired multilayer membranes as potential adhesive patches for skin wound healing publication-title: Biomaterials Science – volume: 49 start-page: 1993 year: 2008 end-page: 2007 ident: bib0170 article-title: Hydrogels in drug delivery: Progress and challenges publication-title: Polymer – volume: 4 year: 2016 ident: bib0320 article-title: Clinical evaluation of hyaluronic acid sponge with zinc versus placebo for scar reduction after breast surgery publication-title: Plastic and Reconstructive Surgery Global Open – volume: 24 start-page: 112 year: 2017 ident: bib0200 article-title: Polymer-based hydrogel scaffolds for skin tissue engineering applications: A mini-review publication-title: Journal of Polymer Research – volume: 286 start-page: 2883 year: 2019 end-page: 2908 ident: bib0470 article-title: Hyaluronan: Molecular size‐dependent signaling and biological functions in inflammation and cancer publication-title: The FEBS journal – volume: 199 start-page: 170 year: 2018 end-page: 177 ident: bib0315 article-title: Preparation and characterization of aminated hyaluronic acid/oxidized hydroxyethyl cellulose hydrogel publication-title: Carbohydrate Polymers – volume: 57 start-page: 594 year: 2017 end-page: 630 ident: bib0195 article-title: Hyaluronic acid-based biomaterials: A versatile and smart approach to tissue regeneration and treating traumatic, surgical, and chronic wounds publication-title: Polymer Reviews – volume: 47 start-page: 152 year: 1999 end-page: 169 ident: bib0055 article-title: New strategy for chemical modification of hyaluronic acid: Preparation of functionalized derivatives and their use in the formation of novel biocompatible hydrogels publication-title: Journal of Biomedical Materials Research – volume: 68 start-page: 1126 year: 2016 end-page: 1132 ident: bib0495 article-title: Hyaluronan oligosaccharides promote diabetic wound healing by increasing angiogenesis publication-title: Pharmacological Reports – volume: 6 start-page: 192 year: 2019 ident: bib0160 article-title: Hyaluronic acid: Molecular mechanisms and therapeutic trajectory publication-title: Frontiers in Veterinary Science – volume: 31 start-page: 3930 year: 2010 end-page: 3940 ident: bib0430 article-title: The effects of hyaluronic acid hydrogels with tunable mechanical properties on neural progenitor cell differentiation publication-title: Biomaterials – reference: Piron, E., & Tholin, R., 2005. Polysaccharide crosslinking, hydrogel preparation, resulting polysaccharide (s) and hydrogel (s), uses thereof. Google Patents. – volume: 469 start-page: 262 year: 2014 end-page: 271 ident: bib0370 article-title: Poly(vinyl alcohol)/chitosan asymmetrical membranes: Highly controlled morphology toward the ideal wound dressing publication-title: Journal of Membrane Science – start-page: 46 year: 2018 end-page: 70 ident: bib0225 article-title: Therapeutic enzymes used for the treatment of non-deficiency diseases publication-title: Research advancements in pharmaceutical, nutritional, and industrial enzymology – volume: 121 start-page: 524 year: 2019 end-page: 535 ident: bib0355 article-title: Production and characterization of electrospun silk fibroin based asymmetric membranes for wound dressing applications publication-title: International Journal of Biological Macromolecules – volume: 106 start-page: 2472 year: 2018 end-page: 2492 ident: bib0140 article-title: Sterilization of hydrogels for biomedical applications: A review publication-title: Journal of Biomedical Materials Research Part B: Applied Biomaterials – volume: 116 start-page: 774 year: 2018 end-page: 785 ident: bib0080 article-title: Electrospun chitosan/polycaprolactone-hyaluronic acid bilayered scaffold for potential wound healing applications publication-title: International Journal of Biological Macromolecules – volume: 4 start-page: 219 year: 2017 end-page: 227 ident: bib0550 article-title: Hyaluronic acid: A versatile biomaterial in tissue engineering publication-title: Plastic and Aesthetic Research – volume: 20 year: 2018 ident: bib0465 article-title: The membrane with polylactide and hyaluronic fibers for skin substitute publication-title: Acta of Bioengineering and Biomechanics – volume: 6 start-page: 62 year: 2018 ident: bib0185 article-title: An effective translation: The development of hyaluronan-based medical products from the physicochemical, and preclinical aspects publication-title: Frontiers in Bioengineering and Biotechnology – volume: 16 start-page: 143 year: 2018 ident: bib0065 article-title: The human skin microbiome publication-title: Nature Reviews Microbiology – volume: 30 start-page: 190 year: 2019 end-page: 201 ident: bib0530 article-title: Preparation and properties of cellulose nanocrystals, gelatin, hyaluronic acid composite hydrogel as wound dressing publication-title: Journal of Biomaterials Science, Polymer Edition – volume: 64 start-page: 69 year: 2010 end-page: 79 ident: bib0155 article-title: Hyalomatrix PA in burn care practice: Results from a national retrospective survey, 2005 to 2006 publication-title: Annals of Plastic Surgery – volume: 286 start-page: 38509 year: 2011 end-page: 38520 ident: bib0255 article-title: Role of receptor for hyaluronic acid-mediated motility (RHAMM) in low molecular weight hyaluronan (LMWHA)-mediated fibrosarcoma cell adhesion publication-title: Journal of Biological Chemistry – volume: 83 start-page: 160 year: 2018 end-page: 168 ident: bib0295 article-title: Hemostatic porous sponges of cross-linked hyaluronic acid/cationized dextran by one self-foaming process publication-title: Materials Science and Engineering: C – volume: 104 start-page: 2537 year: 2016 end-page: 2543 ident: bib0390 article-title: Relevance of charge balance and hyaluronic acid on alginate‐chitosan sponge microstructure and its influence on fibroblast growth publication-title: Journal of Biomedical Materials Research Part A – volume: 10 start-page: 99 year: 2011 ident: bib0305 article-title: Microbial production of hyaluronic acid: Current state, challenges, and perspectives publication-title: Microbial Cell Factories – start-page: E106 year: 2008 end-page: E116 ident: bib0150 article-title: Hyaluronan oligosaccharides are potential stimulators to angiogenesis via RHAMM mediated signal pathway in wound healing publication-title: Clinical and Investigative Medicine – volume: 24 start-page: 132 year: 2019 end-page: 141 ident: bib0205 article-title: Preparation and characterization of PVA/SA/HA composite hydrogels for wound dressing publication-title: International Journal of Polymer Analysis and Characterization – volume: 17 start-page: 820 year: 2016 end-page: 826 ident: bib0105 article-title: In vivo evaluation of gelatin/hyaluronic acid nanofiber as burn-wound healing and its comparison with ChitoHeal gel publication-title: Fibers and Polymers – volume: Vol. 18 year: 1964 ident: bib0270 publication-title: Cross-linked gels of hyaluronic acid – volume: 173 start-page: 441 year: 2017 end-page: 450 ident: bib0420 article-title: Chitosan–hyaluronic acid composite sponge scaffold enriched with andrographolide-loaded lipid nanoparticles for enhanced wound healing publication-title: Carbohydrate Polymers – volume: 114 start-page: 1203 year: 2018 end-page: 1215 ident: bib0230 article-title: Incorporation of ZnO nanoparticles into heparinised polyvinyl alcohol/chitosan hydrogels for wound dressing application publication-title: International Journal of Biological Macromolecules – volume: 5 start-page: 8532 year: 2017 end-page: 8541 ident: bib0525 article-title: Bacterial infection microenvironment-responsive enzymatically degradable multilayer films for multifunctional antibacterial properties publication-title: Journal of Materials Chemistry B – volume: 207 start-page: 276 year: 2019 end-page: 287 ident: bib0435 article-title: Electrospinning in water and in situ crosslinking of hyaluronic acid/cyclodextrin nanofibers: Towards wound dressing with controlled drug release publication-title: Carbohydrate Polymers – volume: 29 start-page: 150 year: 2018 ident: bib0180 article-title: Hyaluronic acid (HA)-based hydrogels for full-thickness wound repairing and skin regeneration publication-title: Journal of Materials Science: Materials in Medicine – volume: 3 year: 2013 ident: bib0235 article-title: Mechanical and biocompatible characterization of a cross-linked collagen-hyaluronic acid wound dressing publication-title: Biomatter – volume: 31 start-page: 235 year: 1994 end-page: 244 ident: bib0245 article-title: Viscoelasticity of hyaluronic acid with different molecular weights publication-title: Biorheology – volume: 14 start-page: 1154 year: 1993 end-page: 1160 ident: bib0040 article-title: Biocompatibility and biodegradation of different hyaluronan derivatives (Hyaff) implanted in rats publication-title: Biomaterials – volume: 156 start-page: 133 year: 2017 end-page: 148 ident: bib0125 article-title: Functionalization of electrospun polymeric wound dressings with antimicrobial peptides publication-title: Colloids and Surfaces B: Biointerfaces – volume: 97 start-page: 97 year: 2018 end-page: 122 ident: bib0540 article-title: The potential of hyaluronic acid in immunoprotection and immunomodulation: Chemistry, processing and function publication-title: Progress in Materials Science – volume: 216 start-page: 25 year: 2019 end-page: 35 ident: bib0110 article-title: Cornstarch-based wound dressing incorporated with hyaluronic acid and propolis: In vitro and in vivo studies publication-title: Carbohydrate Polymers – volume: 79 start-page: 133 year: 2015 end-page: 143 ident: bib0415 article-title: The effect of hyaluronan on the motility of skin dermal fibroblasts in nanofibrous scaffolds publication-title: International Journal of Biological Macromolecules – volume: 146 start-page: 427 year: 2016 end-page: 434 ident: bib0120 article-title: Preparation and characterization of chitosan/gelatin/PVA hydrogel for wound dressings publication-title: Carbohydrate Polymers – volume: 188 start-page: 92 year: 2018 end-page: 100 ident: bib0280 article-title: The preparation of hyaluronic acid grafted pullulan polymers and their use in the formation of novel biocompatible wound healing film publication-title: Carbohydrate Polymers – volume: 101 start-page: 487 year: 2019 end-page: 498 ident: bib0535 article-title: In situ formed collagen-hyaluronic acid hydrogel as biomimetic dressing for promoting spontaneous wound healing publication-title: Materials Science and Engineering: C – volume: 10 start-page: 701 year: 2018 ident: bib0115 article-title: Hyaluronic acid in the third millennium publication-title: Polymers – volume: 274 start-page: 131 year: 2008 end-page: 140 ident: bib0325 article-title: Effect of pH on the behavior of hyaluronic acid in dilute and semidilute aqueous solutions publication-title: Macromolecular Symposia – reference: Tommeraas, K., & Eenschooten, C., 2009. Aryl/alkyl Succinic Anhydride-Hyaluronan Derivatives. Google Patents. – volume: 6 start-page: 337 year: 2016 end-page: 344 ident: bib0030 article-title: Electrospun PCL membranes incorporated with biosynthesized silver nanoparticles as antibacterial wound dressings publication-title: Applied Nanoscience – volume: 48 start-page: 651 year: 2015 end-page: 662 ident: bib0100 article-title: Current wound healing procedures and potential care publication-title: Materials Science and Engineering: C – volume: 21 start-page: 73 year: 2008 ident: bib0395 article-title: Skin ph variations from the acute phase to re-epithelialization in burn patients treated with new materials (burnshield®, semipermeable adhesive film, dermasilk®, and hyalomatrix®). Non-invasive preliminary experimental clinical trial publication-title: Annals of Burns and Fire Disasters – volume: 2 start-page: 162 year: 2014 end-page: 168 ident: bib0310 article-title: The use of hyaluronic acid based dressings to treat burns: A review publication-title: Burns & Trauma – volume: 222 start-page: 115033 year: 2019 ident: bib0005 article-title: Hyaluronic acid/carboxylated zeolitic imidazolate framework film with improved mechanical and antibacterial properties publication-title: Carbohydrate Polymers – volume: 255 start-page: 13 year: 2003 end-page: 32 ident: bib0480 article-title: Bioadhesive microspheres as a controlled drug delivery system publication-title: International Journal of Pharmaceutics – volume: 287 start-page: 43094 year: 2012 end-page: 43107 ident: bib0520 article-title: The high and low molecular weight forms of hyaluronan have distinct effects on CD44 clustering publication-title: Journal of Biological Chemistry – volume: 103 start-page: 330 year: 2015 end-page: 340 ident: bib0365 article-title: Spray‐assisted layer‐by‐layer assembly on hyaluronic acid scaffolds for skin tissue engineering publication-title: Journal of Biomedical Materials Research Part A – volume: 85 start-page: 699 year: 2006 end-page: 715 ident: bib0460 article-title: Hyaluronan fragments: An information-rich system publication-title: European Journal of Cell Biology – volume: 30 start-page: 686 year: 2015 end-page: 698 ident: bib0500 article-title: Evaluation of emulsion electrospun polycaprolactone/hyaluronan/epidermal growth factor nanofibrous scaffolds for wound healing publication-title: Journal of Biomaterials Applications – volume: 143 start-page: 301 year: 2016 end-page: 309 ident: bib0545 article-title: Facile method to prepare silk fibroin/hyaluronic acid films for vascular endothelial growth factor release publication-title: Carbohydrate Polymers – volume: 6 start-page: 386 year: 2005 end-page: 391 ident: bib0060 article-title: Controlled degradation and mechanical behavior of photopolymerized hyaluronic acid networks publication-title: Biomacromolecules – volume: 21 start-page: 715 year: 2010 end-page: 726 ident: bib0330 article-title: Development of a wound dressing composed of hyaluronic acid sponge containing arginine and epidermal growth factor publication-title: Journal of Biomaterials Science, Polymer Edition – volume: 11 year: 2019 ident: bib0385 article-title: Evaluation of sterilisation methods for bio-ink components: Gelatin, gelatin methacryloyl, hyaluronic acid and hyaluronic acid methacryloyl publication-title: Biofabrication – volume: 85 start-page: 469 year: 2011 end-page: 489 ident: bib0425 article-title: Chemical modifications of hyaluronic acid for the synthesis of derivatives for a broad range of biomedical applications publication-title: Carbohydrate Polymers – volume: 33 start-page: 3428 year: 2012 end-page: 3445 ident: bib0285 article-title: The use of hyaluronan to regulate protein adsorption and cell infiltration in nanofibrous scaffolds publication-title: Biomaterials – volume: 86 start-page: 143 year: 2017 end-page: 148 ident: bib0015 article-title: Polyethylene oxide (PEO)-hyaluronic acid (HA) nanofibers with kanamycin inhibits the growth of Listeria monocytogenes publication-title: Biomedicine & Pharmacotherapy – volume: 23 start-page: 629 issue: 5 year: 2012 ident: 10.1016/j.carbpol.2020.116364_bib0250 article-title: Development of a wound dressing composed of hyaluronic acid and collagen sponge with epidermal growth factor publication-title: Journal of Biomaterials Science, Polymer Edition doi: 10.1163/092050611X555687 – volume: 146 start-page: 427 year: 2016 ident: 10.1016/j.carbpol.2020.116364_bib0120 article-title: Preparation and characterization of chitosan/gelatin/PVA hydrogel for wound dressings publication-title: Carbohydrate Polymers doi: 10.1016/j.carbpol.2016.03.002 – volume: 19 start-page: 85 issue: 1 year: 2018 ident: 10.1016/j.carbpol.2020.116364_bib0490 article-title: Construction of high drug loading and enzymatic degradable multilayer films for self-defense drug release and long-term biofilm inhibition publication-title: Biomacromolecules doi: 10.1021/acs.biomac.7b01268 – volume: 3 issue: 4 year: 2013 ident: 10.1016/j.carbpol.2020.116364_bib0235 article-title: Mechanical and biocompatible characterization of a cross-linked collagen-hyaluronic acid wound dressing publication-title: Biomatter doi: 10.4161/biom.25633 – volume: 107 start-page: 247 year: 2018 ident: 10.1016/j.carbpol.2020.116364_bib0210 article-title: New composite materials prepared by calcium phosphate precipitation in chitosan/collagen/hyaluronic acid sponge cross-linked by EDC/NHS publication-title: International Journal of Biological Macromolecules doi: 10.1016/j.ijbiomac.2017.08.173 – volume: 286 start-page: 38509 issue: 44 year: 2011 ident: 10.1016/j.carbpol.2020.116364_bib0255 article-title: Role of receptor for hyaluronic acid-mediated motility (RHAMM) in low molecular weight hyaluronan (LMWHA)-mediated fibrosarcoma cell adhesion publication-title: Journal of Biological Chemistry doi: 10.1074/jbc.M111.275875 – volume: 117 year: 2019 ident: 10.1016/j.carbpol.2020.116364_bib0145 article-title: Hyaluronic acid for advanced therapies: Promises and challenges publication-title: European Polymer Journal doi: 10.1016/j.eurpolymj.2019.05.007 – volume: 54 start-page: 3 issue: 1 year: 2002 ident: 10.1016/j.carbpol.2020.116364_bib0175 article-title: Hydrogels for biomedical applications publication-title: Advanced Drug Delivery Reviews doi: 10.1016/S0169-409X(01)00239-3 – volume: 6 start-page: 192 year: 2019 ident: 10.1016/j.carbpol.2020.116364_bib0160 article-title: Hyaluronic acid: Molecular mechanisms and therapeutic trajectory publication-title: Frontiers in Veterinary Science doi: 10.3389/fvets.2019.00192 – volume: 222 start-page: 115033 year: 2019 ident: 10.1016/j.carbpol.2020.116364_bib0005 article-title: Hyaluronic acid/carboxylated zeolitic imidazolate framework film with improved mechanical and antibacterial properties publication-title: Carbohydrate Polymers doi: 10.1016/j.carbpol.2019.115033 – volume: 287 start-page: 43094 issue: 51 year: 2012 ident: 10.1016/j.carbpol.2020.116364_bib0520 article-title: The high and low molecular weight forms of hyaluronan have distinct effects on CD44 clustering publication-title: Journal of Biological Chemistry doi: 10.1074/jbc.M112.349209 – volume: 24 start-page: 112 issue: 7 year: 2017 ident: 10.1016/j.carbpol.2020.116364_bib0200 article-title: Polymer-based hydrogel scaffolds for skin tissue engineering applications: A mini-review publication-title: Journal of Polymer Research doi: 10.1007/s10965-017-1278-4 – volume: 127 start-page: 105 year: 2015 ident: 10.1016/j.carbpol.2020.116364_bib0360 article-title: Chitosan–hyaluronic acid/VEGF loaded fibrin nanoparticles composite sponges for enhancing angiogenesis in wounds publication-title: Colloids and Surfaces B: Biointerfaces doi: 10.1016/j.colsurfb.2015.01.024 – volume: 121 start-page: 524 year: 2019 ident: 10.1016/j.carbpol.2020.116364_bib0355 article-title: Production and characterization of electrospun silk fibroin based asymmetric membranes for wound dressing applications publication-title: International Journal of Biological Macromolecules doi: 10.1016/j.ijbiomac.2018.10.041 – volume: 469 start-page: 262 year: 2014 ident: 10.1016/j.carbpol.2020.116364_bib0370 article-title: Poly(vinyl alcohol)/chitosan asymmetrical membranes: Highly controlled morphology toward the ideal wound dressing publication-title: Journal of Membrane Science doi: 10.1016/j.memsci.2014.06.035 – volume: 20 issue: 4 year: 2018 ident: 10.1016/j.carbpol.2020.116364_bib0465 article-title: The membrane with polylactide and hyaluronic fibers for skin substitute publication-title: Acta of Bioengineering and Biomechanics – volume: 86 start-page: 143 year: 2017 ident: 10.1016/j.carbpol.2020.116364_bib0015 article-title: Polyethylene oxide (PEO)-hyaluronic acid (HA) nanofibers with kanamycin inhibits the growth of Listeria monocytogenes publication-title: Biomedicine & Pharmacotherapy doi: 10.1016/j.biopha.2016.12.006 – volume: 116 start-page: 774 year: 2018 ident: 10.1016/j.carbpol.2020.116364_bib0080 article-title: Electrospun chitosan/polycaprolactone-hyaluronic acid bilayered scaffold for potential wound healing applications publication-title: International Journal of Biological Macromolecules doi: 10.1016/j.ijbiomac.2018.05.099 – volume: 6 start-page: 62 year: 2018 ident: 10.1016/j.carbpol.2020.116364_bib0185 article-title: An effective translation: The development of hyaluronan-based medical products from the physicochemical, and preclinical aspects publication-title: Frontiers in Bioengineering and Biotechnology doi: 10.3389/fbioe.2018.00062 – volume: 97 start-page: 31 year: 2019 ident: 10.1016/j.carbpol.2020.116364_bib0220 article-title: Microfibrous scaffolds from poly(l-lactide-co-ε-caprolactone) blended with xeno-free collagen/hyaluronic acid for improvement of vascularization in tissue engineering applications publication-title: Materials Science and Engineering: C doi: 10.1016/j.msec.2018.12.011 – volume: 7 issue: 5 year: 2018 ident: 10.1016/j.carbpol.2020.116364_bib0440 article-title: Moldable hyaluronan hydrogel enabled by dynamic metal–bisphosphonate coordination chemistry for wound healing publication-title: Advanced Healthcare Materials doi: 10.1002/adhm.201700973 – volume: 85 start-page: 699 issue: 8 year: 2006 ident: 10.1016/j.carbpol.2020.116364_bib0460 article-title: Hyaluronan fragments: An information-rich system publication-title: European Journal of Cell Biology doi: 10.1016/j.ejcb.2006.05.009 – volume: 31 start-page: 1380 issue: 10 year: 2017 ident: 10.1016/j.carbpol.2020.116364_bib0515 article-title: Evaluation of gelatin-hyaluronic acid composite hydrogels for accelerating wound healing publication-title: Journal of Biomaterials Applications doi: 10.1177/0885328217702526 – volume: 49 start-page: 1993 issue: 8 year: 2008 ident: 10.1016/j.carbpol.2020.116364_bib0170 article-title: Hydrogels in drug delivery: Progress and challenges publication-title: Polymer doi: 10.1016/j.polymer.2008.01.027 – volume: 62 start-page: 310 year: 2013 ident: 10.1016/j.carbpol.2020.116364_bib0020 article-title: Chitosan–hyaluronic acid/nano silver composite sponges for drug resistant bacteria infected diabetic wounds publication-title: International Journal of Biological Macromolecules doi: 10.1016/j.ijbiomac.2013.09.011 – volume: 76 start-page: 416 issue: 2 year: 2006 ident: 10.1016/j.carbpol.2020.116364_bib0190 article-title: New physically and chemically crosslinked hyaluronate (HA)‐based hydrogels for cartilage repair publication-title: Journal of Biomedical Materials Research Part A doi: 10.1002/jbm.a.30536 – volume: 175 start-page: 148 issue: 1 year: 2009 ident: 10.1016/j.carbpol.2020.116364_bib0505 article-title: Modulation of TGFβ1-dependent myofibroblast differentiation by hyaluronan publication-title: The American Journal of Pathology doi: 10.2353/ajpath.2009.080837 – volume: 5 issue: 4 year: 2015 ident: 10.1016/j.carbpol.2020.116364_bib0095 article-title: Wound dressings–A review publication-title: BioMedicine doi: 10.7603/s40681-015-0022-9 – volume: 109 start-page: 101 year: 2018 ident: 10.1016/j.carbpol.2020.116364_bib0010 article-title: Hyaluronic acid/Na-alginate films as topical bioactive wound dressings publication-title: European Polymer Journal doi: 10.1016/j.eurpolymj.2018.09.003 – volume: 85 start-page: 469 issue: 3 year: 2011 ident: 10.1016/j.carbpol.2020.116364_bib0425 article-title: Chemical modifications of hyaluronic acid for the synthesis of derivatives for a broad range of biomedical applications publication-title: Carbohydrate Polymers doi: 10.1016/j.carbpol.2011.03.019 – volume: 6 start-page: 1962 issue: 7 year: 2018 ident: 10.1016/j.carbpol.2020.116364_bib0455 article-title: Bioinspired multilayer membranes as potential adhesive patches for skin wound healing publication-title: Biomaterials Science doi: 10.1039/C8BM00319J – volume: 30 start-page: 686 issue: 6 year: 2015 ident: 10.1016/j.carbpol.2020.116364_bib0500 article-title: Evaluation of emulsion electrospun polycaprolactone/hyaluronan/epidermal growth factor nanofibrous scaffolds for wound healing publication-title: Journal of Biomaterials Applications doi: 10.1177/0885328215586907 – volume: 216 start-page: 25 year: 2019 ident: 10.1016/j.carbpol.2020.116364_bib0110 article-title: Cornstarch-based wound dressing incorporated with hyaluronic acid and propolis: In vitro and in vivo studies publication-title: Carbohydrate Polymers doi: 10.1016/j.carbpol.2019.03.091 – volume: 106 start-page: 2472 issue: 6 year: 2018 ident: 10.1016/j.carbpol.2020.116364_bib0140 article-title: Sterilization of hydrogels for biomedical applications: A review publication-title: Journal of Biomedical Materials Research Part B: Applied Biomaterials doi: 10.1002/jbm.b.34048 – volume: 340 start-page: 2297 issue: 14 year: 2005 ident: 10.1016/j.carbpol.2020.116364_bib0165 article-title: Preparation of the methyl ester of hyaluronan and its enzymatic degradation publication-title: Carbohydrate research doi: 10.1016/j.carres.2005.07.016 – volume: 8 start-page: 217 issue: 3 year: 2017 ident: 10.1016/j.carbpol.2020.116364_bib0215 article-title: A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings publication-title: Journal of Advanced Research doi: 10.1016/j.jare.2017.01.005 – volume: 4 start-page: 219 year: 2017 ident: 10.1016/j.carbpol.2020.116364_bib0550 article-title: Hyaluronic acid: A versatile biomaterial in tissue engineering publication-title: Plastic and Aesthetic Research doi: 10.20517/2347-9264.2017.71 – volume: 5 start-page: 8532 issue: 43 year: 2017 ident: 10.1016/j.carbpol.2020.116364_bib0525 article-title: Bacterial infection microenvironment-responsive enzymatically degradable multilayer films for multifunctional antibacterial properties publication-title: Journal of Materials Chemistry B doi: 10.1039/C7TB02114C – volume: 92 start-page: 371 year: 2016 ident: 10.1016/j.carbpol.2020.116364_bib0275 article-title: Surface and thermal properties of collagen/hyaluronic acid blends containing chitosan publication-title: International Journal of Biological Macromolecules doi: 10.1016/j.ijbiomac.2016.07.055 – volume: 31 start-page: 3930 issue: 14 year: 2010 ident: 10.1016/j.carbpol.2020.116364_bib0430 article-title: The effects of hyaluronic acid hydrogels with tunable mechanical properties on neural progenitor cell differentiation publication-title: Biomaterials doi: 10.1016/j.biomaterials.2010.01.125 – volume: 285 start-page: 30170 issue: 39 year: 2010 ident: 10.1016/j.carbpol.2020.116364_bib0510 article-title: Analysis of CD44-hyaluronan interactions in an artificial membrane system insights into the distinct binding properties of high and low molecular weight hyaluronan publication-title: Journal of Biological Chemistry doi: 10.1074/jbc.M110.137562 – volume: 255 start-page: 13 issue: 1–2 year: 2003 ident: 10.1016/j.carbpol.2020.116364_bib0480 article-title: Bioadhesive microspheres as a controlled drug delivery system publication-title: International Journal of Pharmaceutics doi: 10.1016/S0378-5173(03)00087-5 – volume: 66 start-page: 626 issue: 12 year: 2017 ident: 10.1016/j.carbpol.2020.116364_bib0075 article-title: Ultrasmall silver nanoparticles loaded in alginate–hyaluronic acid hybrid hydrogels for treating infected wounds publication-title: International Journal of Polymeric Materials and Polymeric Biomaterials doi: 10.1080/00914037.2016.1252358 – volume: 12 start-page: 357 issue: 9 year: 2003 ident: 10.1016/j.carbpol.2020.116364_bib0090 article-title: A trial to assess the efficacy and tolerability of Hyalofill-F in non-healing venous leg ulcers publication-title: Journal of Wound Care doi: 10.12968/jowc.2003.12.9.26530 – volume: 16 start-page: 143 issue: 3 year: 2018 ident: 10.1016/j.carbpol.2020.116364_bib0065 article-title: The human skin microbiome publication-title: Nature Reviews Microbiology doi: 10.1038/nrmicro.2017.157 – volume: 101 start-page: 487 year: 2019 ident: 10.1016/j.carbpol.2020.116364_bib0535 article-title: In situ formed collagen-hyaluronic acid hydrogel as biomimetic dressing for promoting spontaneous wound healing publication-title: Materials Science and Engineering: C doi: 10.1016/j.msec.2019.03.093 – volume: 47 start-page: 152 issue: 2 year: 1999 ident: 10.1016/j.carbpol.2020.116364_bib0055 article-title: New strategy for chemical modification of hyaluronic acid: Preparation of functionalized derivatives and their use in the formation of novel biocompatible hydrogels publication-title: Journal of Biomedical Materials Research doi: 10.1002/(SICI)1097-4636(199911)47:2<152::AID-JBM5>3.0.CO;2-I – volume: 127 start-page: 130 year: 2018 ident: 10.1016/j.carbpol.2020.116364_bib0450 article-title: Recent advances on antimicrobial wound dressing: A review publication-title: European Journal of Pharmaceutics and Biopharmaceutics doi: 10.1016/j.ejpb.2018.02.022 – volume: 11 issue: 3 year: 2019 ident: 10.1016/j.carbpol.2020.116364_bib0385 article-title: Evaluation of sterilisation methods for bio-ink components: Gelatin, gelatin methacryloyl, hyaluronic acid and hyaluronic acid methacryloyl publication-title: Biofabrication doi: 10.1088/1758-5090/ab0b7c – volume: 10 start-page: 4156 issue: 10 year: 2014 ident: 10.1016/j.carbpol.2020.116364_bib0260 article-title: Tailored design of electrospun composite nanofibers with staged release of multiple angiogenic growth factors for chronic wound healing publication-title: Acta Biomaterialia doi: 10.1016/j.actbio.2014.05.001 – volume: 199 start-page: 170 year: 2018 ident: 10.1016/j.carbpol.2020.116364_bib0315 article-title: Preparation and characterization of aminated hyaluronic acid/oxidized hydroxyethyl cellulose hydrogel publication-title: Carbohydrate Polymers doi: 10.1016/j.carbpol.2018.06.065 – volume: 5 start-page: 2841 issue: 22 year: 2016 ident: 10.1016/j.carbpol.2020.116364_bib0240 article-title: Hyaluronic acid and its derivatives in coating and delivery systems: Applications in tissue engineering, regenerative medicine and immunomodulation publication-title: Advanced Healthcare Materials doi: 10.1002/adhm.201600316 – volume: 60 start-page: 1110 issue: 10 year: 2007 ident: 10.1016/j.carbpol.2020.116364_bib0410 article-title: Hyaluronic acid: The scientific and clinical evidence publication-title: Journal of Plastic, Reconstructive & Aesthetic Surgery doi: 10.1016/j.bjps.2007.03.005 – volume: 103 start-page: 330 issue: 1 year: 2015 ident: 10.1016/j.carbpol.2020.116364_bib0365 article-title: Spray‐assisted layer‐by‐layer assembly on hyaluronic acid scaffolds for skin tissue engineering publication-title: Journal of Biomedical Materials Research Part A doi: 10.1002/jbm.a.35178 – volume: 79 start-page: 133 year: 2015 ident: 10.1016/j.carbpol.2020.116364_bib0415 article-title: The effect of hyaluronan on the motility of skin dermal fibroblasts in nanofibrous scaffolds publication-title: International Journal of Biological Macromolecules doi: 10.1016/j.ijbiomac.2015.04.059 – volume: 5 start-page: 3035 issue: 23 year: 2016 ident: 10.1016/j.carbpol.2020.116364_bib0445 article-title: Hyaluronic acid/PLGA core/shell fiber matrices loaded with EGCG beneficial to diabetic wound healing publication-title: Advanced Healthcare Materials doi: 10.1002/adhm.201600658 – start-page: 46 year: 2018 ident: 10.1016/j.carbpol.2020.116364_bib0225 article-title: Therapeutic enzymes used for the treatment of non-deficiency diseases – ident: 10.1016/j.carbpol.2020.116364_bib0475 – volume: 17 start-page: 820 issue: 6 year: 2016 ident: 10.1016/j.carbpol.2020.116364_bib0105 article-title: In vivo evaluation of gelatin/hyaluronic acid nanofiber as burn-wound healing and its comparison with ChitoHeal gel publication-title: Fibers and Polymers doi: 10.1007/s12221-016-6259-4 – volume: 31 start-page: 235 issue: 3 year: 1994 ident: 10.1016/j.carbpol.2020.116364_bib0245 article-title: Viscoelasticity of hyaluronic acid with different molecular weights publication-title: Biorheology doi: 10.3233/BIR-1994-31302 – volume: 173 start-page: 441 year: 2017 ident: 10.1016/j.carbpol.2020.116364_bib0420 article-title: Chitosan–hyaluronic acid composite sponge scaffold enriched with andrographolide-loaded lipid nanoparticles for enhanced wound healing publication-title: Carbohydrate Polymers doi: 10.1016/j.carbpol.2017.05.098 – volume: 139 year: 2019 ident: 10.1016/j.carbpol.2020.116364_bib0350 article-title: An overview of electrospun membranes loaded with bioactive molecules for improving the wound healing process publication-title: European Journal of Pharmaceutics and Biopharmaceutics doi: 10.1016/j.ejpb.2019.03.010 – volume: 6 start-page: 386 issue: 1 year: 2005 ident: 10.1016/j.carbpol.2020.116364_bib0060 article-title: Controlled degradation and mechanical behavior of photopolymerized hyaluronic acid networks publication-title: Biomacromolecules doi: 10.1021/bm049508a – volume: 30 start-page: 190 issue: 3 year: 2019 ident: 10.1016/j.carbpol.2020.116364_bib0530 article-title: Preparation and properties of cellulose nanocrystals, gelatin, hyaluronic acid composite hydrogel as wound dressing publication-title: Journal of Biomaterials Science, Polymer Edition doi: 10.1080/09205063.2018.1558933 – volume: 107 start-page: 654 issue: 2 year: 2018 ident: 10.1016/j.carbpol.2020.116364_bib0070 article-title: Composite alginate-hyaluronan sponges for the delivery of tranexamic acid in postextractive alveolar wounds publication-title: Journal of Pharmaceutical Sciences doi: 10.1016/j.xphs.2017.09.026 – volume: 68 start-page: 1126 issue: 6 year: 2016 ident: 10.1016/j.carbpol.2020.116364_bib0495 article-title: Hyaluronan oligosaccharides promote diabetic wound healing by increasing angiogenesis publication-title: Pharmacological Reports doi: 10.1016/j.pharep.2016.07.001 – volume: 7 start-page: 79 issue: 2 year: 1999 ident: 10.1016/j.carbpol.2020.116364_bib0085 article-title: Functions of hyaluronan in wound repair publication-title: Wound Repair and Regeneration doi: 10.1046/j.1524-475X.1999.00079.x – volume: 29 start-page: 163 issue: 11 year: 2018 ident: 10.1016/j.carbpol.2020.116364_bib0025 article-title: Electrospun polyvinyl alcohol membranes incorporated with green synthesized silver nanoparticles for wound dressing applications publication-title: Journal of Materials Science: Materials in Medicine – volume: 188 start-page: 92 year: 2018 ident: 10.1016/j.carbpol.2020.116364_bib0280 article-title: The preparation of hyaluronic acid grafted pullulan polymers and their use in the formation of novel biocompatible wound healing film publication-title: Carbohydrate Polymers doi: 10.1016/j.carbpol.2018.01.102 – volume: 10 start-page: 1571 issue: 4 year: 2014 ident: 10.1016/j.carbpol.2020.116364_bib0265 article-title: Design of cell–matrix interactions in hyaluronic acid hydrogel scaffolds publication-title: Acta biomaterialia doi: 10.1016/j.actbio.2013.07.025 – ident: 10.1016/j.carbpol.2020.116364_bib0405 – volume: 88 start-page: 83 year: 2016 ident: 10.1016/j.carbpol.2020.116364_bib0045 article-title: Co-cultivation of keratinocyte-human mesenchymal stem cell (hMSC) on sericin loaded electrospun nanofibrous composite scaffold (cationic gelatin/hyaluronan/chondroitin sulfate) stimulates epithelial differentiation in hMSCs: In vitro study publication-title: Biomaterials doi: 10.1016/j.biomaterials.2016.02.034 – volume: Vol. 18 year: 1964 ident: 10.1016/j.carbpol.2020.116364_bib0270 – volume: 62 start-page: 67 issue: 2 year: 2009 ident: 10.1016/j.carbpol.2020.116364_bib0400 article-title: Topic efficacy of ialuronic acid associated with argentic sulphadiazine (Connettivina Plus) in the treatment of pressure sores: A prospective observational cohort study publication-title: Professioni Infermieristiche – volume: 9 start-page: 944 issue: 7 year: 2019 ident: 10.1016/j.carbpol.2020.116364_bib0485 article-title: Ionic nanocomplexes of hyaluronic acid and polyarginine to form solid materials: A green methodology to obtain sponges with biomedical potential publication-title: Nanomaterials doi: 10.3390/nano9070944 – volume: 143 start-page: 301 year: 2016 ident: 10.1016/j.carbpol.2020.116364_bib0545 article-title: Facile method to prepare silk fibroin/hyaluronic acid films for vascular endothelial growth factor release publication-title: Carbohydrate Polymers doi: 10.1016/j.carbpol.2016.01.023 – volume: 97 start-page: 97 year: 2018 ident: 10.1016/j.carbpol.2020.116364_bib0540 article-title: The potential of hyaluronic acid in immunoprotection and immunomodulation: Chemistry, processing and function publication-title: Progress in Materials Science doi: 10.1016/j.pmatsci.2018.04.003 – volume: 114 start-page: 1203 year: 2018 ident: 10.1016/j.carbpol.2020.116364_bib0230 article-title: Incorporation of ZnO nanoparticles into heparinised polyvinyl alcohol/chitosan hydrogels for wound dressing application publication-title: International Journal of Biological Macromolecules doi: 10.1016/j.ijbiomac.2018.04.010 – volume: 286 start-page: 2883 issue: 15 year: 2019 ident: 10.1016/j.carbpol.2020.116364_bib0470 article-title: Hyaluronan: Molecular size‐dependent signaling and biological functions in inflammation and cancer publication-title: The FEBS journal doi: 10.1111/febs.14777 – volume: 274 start-page: 131 year: 2008 ident: 10.1016/j.carbpol.2020.116364_bib0325 article-title: Effect of pH on the behavior of hyaluronic acid in dilute and semidilute aqueous solutions publication-title: Macromolecular Symposia doi: 10.1002/masy.200851418 – volume: 28 start-page: 78 issue: 3 year: 2016 ident: 10.1016/j.carbpol.2020.116364_bib0290 article-title: Hyaluronic acid in inflammation and tissue regeneration publication-title: Wounds – volume: 14 start-page: 1154 issue: 15 year: 1993 ident: 10.1016/j.carbpol.2020.116364_bib0040 article-title: Biocompatibility and biodegradation of different hyaluronan derivatives (Hyaff) implanted in rats publication-title: Biomaterials doi: 10.1016/0142-9612(93)90160-4 – volume: 169 start-page: 60 year: 2018 ident: 10.1016/j.carbpol.2020.116364_bib0340 article-title: Electrospun polymeric nanofibres as wound dressings: A review publication-title: Colloids and Surfaces B: Biointerfaces doi: 10.1016/j.colsurfb.2018.05.011 – volume: 46 start-page: 28 year: 2018 ident: 10.1016/j.carbpol.2020.116364_bib0135 article-title: Hyaluronic acid and α-elastin based hydrogel for three dimensional culture of vascular endothelial cells publication-title: Journal of Drug Delivery Science and Technology doi: 10.1016/j.jddst.2018.04.017 – volume: 21 start-page: 715 issue: 6–7 year: 2010 ident: 10.1016/j.carbpol.2020.116364_bib0330 article-title: Development of a wound dressing composed of hyaluronic acid sponge containing arginine and epidermal growth factor publication-title: Journal of Biomaterials Science, Polymer Edition doi: 10.1163/156856209X435844 – volume: 156 start-page: 133 year: 2017 ident: 10.1016/j.carbpol.2020.116364_bib0125 article-title: Functionalization of electrospun polymeric wound dressings with antimicrobial peptides publication-title: Colloids and Surfaces B: Biointerfaces doi: 10.1016/j.colsurfb.2017.05.001 – volume: 93 start-page: 1100 year: 2016 ident: 10.1016/j.carbpol.2020.116364_bib0130 article-title: Production and characterization of polycaprolactone- hyaluronic acid/chitosan- zein electrospun bilayer nanofibrous membrane for tissue regeneration publication-title: International Journal of Biological Macromolecules doi: 10.1016/j.ijbiomac.2016.09.080 – volume: 33 start-page: 3428 issue: 12 year: 2012 ident: 10.1016/j.carbpol.2020.116364_bib0285 article-title: The use of hyaluronan to regulate protein adsorption and cell infiltration in nanofibrous scaffolds publication-title: Biomaterials doi: 10.1016/j.biomaterials.2012.01.038 – volume: 57 start-page: 594 issue: 4 year: 2017 ident: 10.1016/j.carbpol.2020.116364_bib0195 article-title: Hyaluronic acid-based biomaterials: A versatile and smart approach to tissue regeneration and treating traumatic, surgical, and chronic wounds publication-title: Polymer Reviews doi: 10.1080/15583724.2017.1315433 – volume: 103 year: 2019 ident: 10.1016/j.carbpol.2020.116364_bib0375 article-title: The effect of oxidation degree and volume ratio of components on properties and applications of in situ cross-linking hydrogels based on chitosan and hyaluronic acid publication-title: Materials Science and Engineering: C – volume: 207 start-page: 276 year: 2019 ident: 10.1016/j.carbpol.2020.116364_bib0435 article-title: Electrospinning in water and in situ crosslinking of hyaluronic acid/cyclodextrin nanofibers: Towards wound dressing with controlled drug release publication-title: Carbohydrate Polymers doi: 10.1016/j.carbpol.2018.11.085 – volume: 4 issue: 7 year: 2016 ident: 10.1016/j.carbpol.2020.116364_bib0320 article-title: Clinical evaluation of hyaluronic acid sponge with zinc versus placebo for scar reduction after breast surgery publication-title: Plastic and Reconstructive Surgery Global Open doi: 10.1097/GOX.0000000000000747 – volume: 83 start-page: 160 year: 2018 ident: 10.1016/j.carbpol.2020.116364_bib0295 article-title: Hemostatic porous sponges of cross-linked hyaluronic acid/cationized dextran by one self-foaming process publication-title: Materials Science and Engineering: C doi: 10.1016/j.msec.2017.10.007 – volume: 64 start-page: 69 issue: 1 year: 2010 ident: 10.1016/j.carbpol.2020.116364_bib0155 article-title: Hyalomatrix PA in burn care practice: Results from a national retrospective survey, 2005 to 2006 publication-title: Annals of Plastic Surgery doi: 10.1097/SAP.0b013e31819b3d59 – volume: 24 start-page: 132 issue: 2 year: 2019 ident: 10.1016/j.carbpol.2020.116364_bib0205 article-title: Preparation and characterization of PVA/SA/HA composite hydrogels for wound dressing publication-title: International Journal of Polymer Analysis and Characterization doi: 10.1080/1023666X.2018.1558567 – volume: 20 start-page: 993 issue: 7–8 year: 2009 ident: 10.1016/j.carbpol.2020.116364_bib0335 article-title: Development of a wound dressing composed of a hyaluronic acid sponge containing arginine publication-title: Journal of Biomaterials Science, Polymer Edition doi: 10.1163/156856209X444394 – volume: 2 start-page: 162 issue: 4 year: 2014 ident: 10.1016/j.carbpol.2020.116364_bib0310 article-title: The use of hyaluronic acid based dressings to treat burns: A review publication-title: Burns & Trauma doi: 10.4103/2321-3868.142398 – volume: 21 start-page: 73 issue: 2 year: 2008 ident: 10.1016/j.carbpol.2020.116364_bib0395 article-title: Skin ph variations from the acute phase to re-epithelialization in burn patients treated with new materials (burnshield®, semipermeable adhesive film, dermasilk®, and hyalomatrix®). Non-invasive preliminary experimental clinical trial publication-title: Annals of Burns and Fire Disasters – volume: 6 start-page: 337 issue: 3 year: 2016 ident: 10.1016/j.carbpol.2020.116364_bib0030 article-title: Electrospun PCL membranes incorporated with biosynthesized silver nanoparticles as antibacterial wound dressings publication-title: Applied Nanoscience doi: 10.1007/s13204-015-0439-1 – volume: 22 start-page: 579 issue: 5 year: 2014 ident: 10.1016/j.carbpol.2020.116364_bib0035 article-title: Hyaluronan in wound healing: Rediscovering a major player publication-title: Wound Repair and Regeneration doi: 10.1111/wrr.12214 – volume: 104 start-page: 2537 issue: 10 year: 2016 ident: 10.1016/j.carbpol.2020.116364_bib0390 article-title: Relevance of charge balance and hyaluronic acid on alginate‐chitosan sponge microstructure and its influence on fibroblast growth publication-title: Journal of Biomedical Materials Research Part A doi: 10.1002/jbm.a.35797 – volume: 10 start-page: 701 issue: 7 year: 2018 ident: 10.1016/j.carbpol.2020.116364_bib0115 article-title: Hyaluronic acid in the third millennium publication-title: Polymers doi: 10.3390/polym10070701 – volume: 29 start-page: 150 issue: 9 year: 2018 ident: 10.1016/j.carbpol.2020.116364_bib0180 article-title: Hyaluronic acid (HA)-based hydrogels for full-thickness wound repairing and skin regeneration publication-title: Journal of Materials Science: Materials in Medicine – volume: 48 start-page: 651 year: 2015 ident: 10.1016/j.carbpol.2020.116364_bib0100 article-title: Current wound healing procedures and potential care publication-title: Materials Science and Engineering: C doi: 10.1016/j.msec.2014.12.068 – volume: 43 start-page: 2672 issue: 6 year: 2007 ident: 10.1016/j.carbpol.2020.116364_bib0300 article-title: Preparation and characterization of sponge-like composites by cross-linking hyaluronic acid and carboxymethylcellulose sodium with adipic dihydrazide publication-title: European Polymer Journal doi: 10.1016/j.eurpolymj.2007.02.045 – volume: 9 start-page: 183 issue: 5 year: 2017 ident: 10.1016/j.carbpol.2020.116364_bib0345 article-title: Electrospun polycaprolactone/aloe vera_chitosan nanofibrous asymmetric membranes aimed for wound healing applications publication-title: Polymers doi: 10.3390/polym9050183 – volume: 17 start-page: 81 issue: 1 year: 2014 ident: 10.1016/j.carbpol.2020.116364_bib0380 article-title: Development of novel wound dressing composed of hyaluronic acid and collagen sponge containing epidermal growth factor and vitamin C derivative publication-title: Journal of Artificial Organs doi: 10.1007/s10047-013-0737-x – volume: 68 start-page: 355 issue: 3 year: 2016 ident: 10.1016/j.carbpol.2020.116364_bib0050 article-title: Scaffolds and cells for tissue regeneration: Different scaffold pore sizes—different cell effects publication-title: Cytotechnology doi: 10.1007/s10616-015-9895-4 – start-page: E106 year: 2008 ident: 10.1016/j.carbpol.2020.116364_bib0150 article-title: Hyaluronan oligosaccharides are potential stimulators to angiogenesis via RHAMM mediated signal pathway in wound healing publication-title: Clinical and Investigative Medicine doi: 10.25011/cim.v31i3.3467 – volume: 10 start-page: 99 issue: 1 year: 2011 ident: 10.1016/j.carbpol.2020.116364_bib0305 article-title: Microbial production of hyaluronic acid: Current state, challenges, and perspectives publication-title: Microbial Cell Factories doi: 10.1186/1475-2859-10-99 |
SSID | ssj0000610 |
Score | 2.7080781 |
SecondaryResourceType | review_article |
Snippet | [Display omitted]
•HA is a biocompatible and biodegradable ECM compound that encourage the wound healing.•HA-based wound dressings present excellent... Hyaluronic acid (HA), a non-sulfated glycosaminoglycan (GAG), is a major component of skin extracellular matrix (ECM) and it is involved in the inflammatory... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 116364 |
SubjectTerms | angiogenesis Animals Bandages biocompatibility biodegradability Cell Line extracellular matrix Humans Hyaluronic acid Hyaluronic Acid - analogs & derivatives Hyaluronic Acid - chemistry Hyaluronic Acid - pharmacology hydrogels Hydrogels - chemistry Hydrogels - pharmacology hydrophilicity inflammation Skin - drug effects Skin - pathology tissue repair Wound dressing Wound Healing |
Title | Hyaluronic acid—Based wound dressings: A review |
URI | https://dx.doi.org/10.1016/j.carbpol.2020.116364 https://www.ncbi.nlm.nih.gov/pubmed/32507198 https://www.proquest.com/docview/2410730373 https://www.proquest.com/docview/2440699376 |
Volume | 241 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8NAFB5KPehF3K1LieA1XTKTSeKtFqUq9mSht2G2SEtJSxfEi_gj_IX-Et_LUvVQC14CCTNh-Gb43je8jZBLbTWY8aZxJePWZSE8Io9TVyk_0L6mvk6LJD12eafH7vt-v0TaRS4MhlXm3J9xesrW-Zd6jmZ9MhjUMSwJ_t1EPyKcpBATzRkL8JTX3po_2DitSICDXRz9ncVTH8IVcKomY_RAeEgenHK2yj6t0p-pHbrdIdu5gHRa2Rp3Sckme2SzXfRt2yfNzqscLdKSt47UA_P5_nENpso4L9hByTFp4GvyPLtyWk6WuHJAerc3T-2OmzdGcDUL6Nw1vuEBaKWQN6wnTYPF2jYiJeHqAObW10EYhzZoqMj4kltqGYsV5Rwug8pQMFX0kJSTcWKPiUNBLmkJQsCqGJ3D0gusCk2MSi-ynq0QVsAhdF41HJtXjEQRHjYUOYoCURQZihVSW06bZGUz1k0IC6zFr_0XQO3rpl4UeyMAanR4yMSOFzMB6gQZjAb0rzGY-wsijVfIUbaxyxVTD9VyFJ78f3GnZAvfspDBM1KeTxf2HGTMXFXTc1olG627h073C07g7_Y |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTuNAEC0x4cBcRsAwTFiNxNWTxL3Y5hYikNlyAolbqzejIOREkAhx4yP4Qr6EKi_AHACJiw92l9WqLr16rdoAdq236MZ7LtRc-pAn-EgjyUJjRGyFZcKWTZLOhjK74MeX4nIOBk0tDKVV1thfYXqJ1vWbTq3NzmQ06lBaEv67R3FEtKRE_IB56k4lWjDfPzrJhu8AuWxKQOtDEngr5Olc4y3w1kzGFISICD8kk_wjF_URBS1d0eEi_Ko5ZNCvtrkEc75YhoVBM7rtN_SyB30zK7veBtqO3PPj0z56Kxfc0xClwJW5r8XV3V7QD6ralRW4ODw4H2RhPRshtDxm09AJJ2OkS4ns-ki7Ls-t76ZG4-0BPa6wcZInPu6a1AktPfOc54ZJifdB4xh6K_YHWsW48H8hYMiYrEYu4E1O8WEdxd4kLieyl_rIt4E36lC2bhxO8ytuVJMhdq1qLSrSoqq02IZ_r2KTqnPGVwJJo2v1nwkoRPevRHeas1Goaop56MKPZ3cKCQqBGIvZZ2uo_Bd5mmzDanWwrztmERHmNFn7_ua2YSE7PztVp0fDk3X4SV-qDMINaE1vZ34TWc3UbNVW-wKOmPKn |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hyaluronic+acid%E2%80%94Based+wound+dressings%3A+A+review&rft.jtitle=Carbohydrate+polymers&rft.au=Gra%C3%A7a%2C+Mariana+F.P.&rft.au=Miguel%2C+S%C3%B3nia+P&rft.au=Cabral%2C+C%C3%A1tia+S.D.&rft.au=Correia%2C+Il%C3%ADdio+J&rft.date=2020-08-01&rft.issn=0144-8617&rft.volume=241+p.116364-&rft_id=info:doi/10.1016%2Fj.carbpol.2020.116364&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0144-8617&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0144-8617&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0144-8617&client=summon |