Ga@MXene-based flexible wearable biosensor for glucose monitoring in sweat
Most wearable biosensors struggle to balance flexibility and conductivity in their sensing interfaces. In this study, we propose a wearable sensor featuring a highly stretchable, three-dimensional conductive network structure based on liquid metal. The sensor interface utilizes a patterned Ga@MXene...
Saved in:
Published in | iScience Vol. 28; no. 2; p. 111737 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
21.02.2025
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Most wearable biosensors struggle to balance flexibility and conductivity in their sensing interfaces. In this study, we propose a wearable sensor featuring a highly stretchable, three-dimensional conductive network structure based on liquid metal. The sensor interface utilizes a patterned Ga@MXene hydrogel system, where gallium (Ga) grafted onto MXene provides enhanced electrical conductivity and malleability. MXene provides excellent conductivity and a three-dimensional layered structure. Additionally, the chitosan (CS) hydrogel, with its superior water absorption and stretchability, allows the electrode to retain sweat and closely stick to the skin. The sensor demonstrates a low limit of detection (0.77 μM), high sensitivity (1.122 μA⋅μM⁻1⋅cm⁻2), and a broad detection range (10–1,000 μM), meeting the requirements for a wide range of applications. Notably, the sensor can also induce perspiration in the wearer. The three-dimensional porous structure of the Ga@MXene/CS biosensor ensures excellent conductivity and flexibility, making it suitable for a variety of applications.
[Display omitted]
•The electrochemical glucose detection was performed on the Ga@MXene/CS-based wearable sensor•The sensor features a conductive, three-dimensional porous structure based on Ga@MXene•The sensor has a linear range of 10–1,000 μM, a limit of detection as low as 0.77 μM•In real sample testing, the recovery rate of the sensor ranged from 95.5% to 107.1%
Health sciences; Natural sciences; Applied sciences |
---|---|
AbstractList | Most wearable biosensors struggle to balance flexibility and conductivity in their sensing interfaces. In this study, we propose a wearable sensor featuring a highly stretchable, three-dimensional conductive network structure based on liquid metal. The sensor interface utilizes a patterned Ga@MXene hydrogel system, where gallium (Ga) grafted onto MXene provides enhanced electrical conductivity and malleability. MXene provides excellent conductivity and a three-dimensional layered structure. Additionally, the chitosan (CS) hydrogel, with its superior water absorption and stretchability, allows the electrode to retain sweat and closely stick to the skin. The sensor demonstrates a low limit of detection (0.77 μM), high sensitivity (1.122 μA⋅μM⁻
⋅cm⁻
), and a broad detection range (10-1,000 μM), meeting the requirements for a wide range of applications. Notably, the sensor can also induce perspiration in the wearer. The three-dimensional porous structure of the Ga@MXene/CS biosensor ensures excellent conductivity and flexibility, making it suitable for a variety of applications. Most wearable biosensors struggle to balance flexibility and conductivity in their sensing interfaces. In this study, we propose a wearable sensor featuring a highly stretchable, three-dimensional conductive network structure based on liquid metal. The sensor interface utilizes a patterned Ga@MXene hydrogel system, where gallium (Ga) grafted onto MXene provides enhanced electrical conductivity and malleability. MXene provides excellent conductivity and a three-dimensional layered structure. Additionally, the chitosan (CS) hydrogel, with its superior water absorption and stretchability, allows the electrode to retain sweat and closely stick to the skin. The sensor demonstrates a low limit of detection (0.77 μM), high sensitivity (1.122 μA⋅μM⁻1⋅cm⁻2), and a broad detection range (10-1,000 μM), meeting the requirements for a wide range of applications. Notably, the sensor can also induce perspiration in the wearer. The three-dimensional porous structure of the Ga@MXene/CS biosensor ensures excellent conductivity and flexibility, making it suitable for a variety of applications.Most wearable biosensors struggle to balance flexibility and conductivity in their sensing interfaces. In this study, we propose a wearable sensor featuring a highly stretchable, three-dimensional conductive network structure based on liquid metal. The sensor interface utilizes a patterned Ga@MXene hydrogel system, where gallium (Ga) grafted onto MXene provides enhanced electrical conductivity and malleability. MXene provides excellent conductivity and a three-dimensional layered structure. Additionally, the chitosan (CS) hydrogel, with its superior water absorption and stretchability, allows the electrode to retain sweat and closely stick to the skin. The sensor demonstrates a low limit of detection (0.77 μM), high sensitivity (1.122 μA⋅μM⁻1⋅cm⁻2), and a broad detection range (10-1,000 μM), meeting the requirements for a wide range of applications. Notably, the sensor can also induce perspiration in the wearer. The three-dimensional porous structure of the Ga@MXene/CS biosensor ensures excellent conductivity and flexibility, making it suitable for a variety of applications. Most wearable biosensors struggle to balance flexibility and conductivity in their sensing interfaces. In this study, we propose a wearable sensor featuring a highly stretchable, three-dimensional conductive network structure based on liquid metal. The sensor interface utilizes a patterned Ga@MXene hydrogel system, where gallium (Ga) grafted onto MXene provides enhanced electrical conductivity and malleability. MXene provides excellent conductivity and a three-dimensional layered structure. Additionally, the chitosan (CS) hydrogel, with its superior water absorption and stretchability, allows the electrode to retain sweat and closely stick to the skin. The sensor demonstrates a low limit of detection (0.77 μM), high sensitivity (1.122 μA⋅μM⁻1⋅cm⁻2), and a broad detection range (10–1,000 μM), meeting the requirements for a wide range of applications. Notably, the sensor can also induce perspiration in the wearer. The three-dimensional porous structure of the Ga@MXene/CS biosensor ensures excellent conductivity and flexibility, making it suitable for a variety of applications. Most wearable biosensors struggle to balance flexibility and conductivity in their sensing interfaces. In this study, we propose a wearable sensor featuring a highly stretchable, three-dimensional conductive network structure based on liquid metal. The sensor interface utilizes a patterned Ga@MXene hydrogel system, where gallium (Ga) grafted onto MXene provides enhanced electrical conductivity and malleability. MXene provides excellent conductivity and a three-dimensional layered structure. Additionally, the chitosan (CS) hydrogel, with its superior water absorption and stretchability, allows the electrode to retain sweat and closely stick to the skin. The sensor demonstrates a low limit of detection (0.77 μM), high sensitivity (1.122 μA⋅μM⁻ 1 ⋅cm⁻ 2 ), and a broad detection range (10–1,000 μM), meeting the requirements for a wide range of applications. Notably, the sensor can also induce perspiration in the wearer. The three-dimensional porous structure of the Ga@MXene/CS biosensor ensures excellent conductivity and flexibility, making it suitable for a variety of applications. • The electrochemical glucose detection was performed on the Ga@MXene/CS-based wearable sensor • The sensor features a conductive, three-dimensional porous structure based on Ga@MXene • The sensor has a linear range of 10–1,000 μM, a limit of detection as low as 0.77 μM • In real sample testing, the recovery rate of the sensor ranged from 95.5% to 107.1% Health sciences; Natural sciences; Applied sciences Most wearable biosensors struggle to balance flexibility and conductivity in their sensing interfaces. In this study, we propose a wearable sensor featuring a highly stretchable, three-dimensional conductive network structure based on liquid metal. The sensor interface utilizes a patterned Ga@MXene hydrogel system, where gallium (Ga) grafted onto MXene provides enhanced electrical conductivity and malleability. MXene provides excellent conductivity and a three-dimensional layered structure. Additionally, the chitosan (CS) hydrogel, with its superior water absorption and stretchability, allows the electrode to retain sweat and closely stick to the skin. The sensor demonstrates a low limit of detection (0.77 μM), high sensitivity (1.122 μA⋅μM⁻1⋅cm⁻2), and a broad detection range (10–1,000 μM), meeting the requirements for a wide range of applications. Notably, the sensor can also induce perspiration in the wearer. The three-dimensional porous structure of the Ga@MXene/CS biosensor ensures excellent conductivity and flexibility, making it suitable for a variety of applications. [Display omitted] •The electrochemical glucose detection was performed on the Ga@MXene/CS-based wearable sensor•The sensor features a conductive, three-dimensional porous structure based on Ga@MXene•The sensor has a linear range of 10–1,000 μM, a limit of detection as low as 0.77 μM•In real sample testing, the recovery rate of the sensor ranged from 95.5% to 107.1% Health sciences; Natural sciences; Applied sciences |
ArticleNumber | 111737 |
Author | Feng, Shilun Jiang, Shuyue Yu, Hongquan Zhang, Kaihuan Zhang, Wensi |
Author_xml | – sequence: 1 givenname: Wensi surname: Zhang fullname: Zhang, Wensi organization: State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China – sequence: 2 givenname: Shuyue surname: Jiang fullname: Jiang, Shuyue organization: State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China – sequence: 3 givenname: Hongquan surname: Yu fullname: Yu, Hongquan organization: State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China – sequence: 4 givenname: Shilun surname: Feng fullname: Feng, Shilun email: shilun.feng@mail.sim.ac.cn organization: State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China – sequence: 5 givenname: Kaihuan orcidid: 0000-0002-7353-4180 surname: Zhang fullname: Zhang, Kaihuan email: kzhang@mail.sim.ac.cn organization: State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39911346$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UU1vFSEUJaaNrc_-ARdmlm7mydcwkJho02ht08aNJu4IMJcnL_Ogwryq_17GqU27aQLhAuecC-e8QAcxRUDoFcFrgol4u12H4sKaYsrXhJCe9c_QMe2kajHm9OBBfYROStlijGkdXInn6IgpRQjj4hhdnpsP198hQmtNgaHxI_wOdoTmF5hs5sKGVCCWlBtf52bcu7pvdimGKeUQN02ITano6SU69GYscHK3rtC3Tx-_nn1ur76cX5ydXrWO92xqne-EJ1YKaeSgYPCsVxZ3itneGSAgZK86RRVjltGuF0ZSKb2zzNturtgKXSy6QzJbfZPDzuQ_Opmg_x2kvNEmT8GNoDF4Jiy3AzaWc7CqKgDpfX0I9LK2WKH3i9bN3u5gcBCnbMZHoo9vYvihN-lWV8dVR_Cs8OZOIaefeyiT3tVgYBxNhLQvmhHB6l85VhX6-mGz-y7_06gAugBcTqVk8PcQgvWcut7qOXU9p66X1Cvp3UKC6vltgKwrAqKDIWRwUzUlPEX_C98RtNo |
Cites_doi | 10.1016/j.tifs.2021.02.032 10.1021/acsami.4c01521 10.1016/j.jmat.2023.08.011 10.1002/adfm.201702134 10.1002/adma.201600405 10.1002/adma.202312761 10.1021/jacs.2c03698 10.1002/adhm.201701150 10.1007/s11467-022-1181-2 10.1039/C7CS00043J 10.1016/j.bios.2022.114450 10.1039/D0SC05310D 10.1038/s41928-018-0043-y 10.1016/j.talanta.2023.124375 10.1016/j.solmat.2019.110229 10.1016/j.esci.2023.100133 10.1016/j.mtchem.2023.101638 10.1038/s41563-020-00863-7 10.1016/j.cej.2024.151798 10.1016/j.mtbio.2023.100638 10.1016/j.apsusc.2015.11.089 10.1021/acssensors.2c01533 10.1021/acsami.4c01973 10.1016/S0169-4332(01)00583-9 10.1002/adfm.201902521 10.1016/j.bios.2020.112828 10.1007/s42765-022-00212-0 10.1002/adfm.202209413 10.1002/adfm.202301587 10.1016/j.nanoen.2020.104761 10.1089/dia.2011.0262 10.1021/acsaem.0c00863 10.1002/advs.202104426 10.1016/j.cej.2020.127177 10.1038/415599a 10.1016/j.bios.2024.116354 10.1016/j.cej.2024.152432 10.1016/j.cej.2024.150197 10.1039/D4NH00067F 10.1038/s41378-022-00443-6 10.1016/j.apsusc.2020.146062 10.1002/adfm.202311637 10.1039/D0CS00022A 10.1007/s00216-024-05135-w 10.1016/j.bios.2022.114908 |
ContentType | Journal Article |
Copyright | 2025 The Authors 2025 The Authors. 2025 The Authors 2025 |
Copyright_xml | – notice: 2025 The Authors – notice: 2025 The Authors. – notice: 2025 The Authors 2025 |
DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.1016/j.isci.2024.111737 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) Open Access资源_DOAJ |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 2589-0042 |
ExternalDocumentID | oai_doaj_org_article_0ef36b4bd0ab44eb9528e17f473e7893 PMC11795103 39911346 10_1016_j_isci_2024_111737 S258900422402964X |
Genre | Journal Article |
GroupedDBID | 0R~ 53G 6I. AAEDW AAFTH AALRI AAMRU AAXUO AAYWO ABMAC ACVFH ADBBV ADCNI ADVLN AEUPX AEXQZ AFPUW AFTJW AIGII AITUG AKBMS AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS APXCP BCNDV EBS FDB GROUPED_DOAJ HYE M41 OK1 ROL RPM SSZ AAYXX CITATION EJD AACTN NPM 7X8 5PM |
ID | FETCH-LOGICAL-c473t-cf56f1b868a8d9edf379b0593b7cae1e6879592933b32576a8288fcb3fb5288f3 |
IEDL.DBID | DOA |
ISSN | 2589-0042 |
IngestDate | Wed Aug 27 01:31:43 EDT 2025 Thu Aug 21 18:38:30 EDT 2025 Fri Jul 11 10:29:53 EDT 2025 Thu Apr 03 07:06:37 EDT 2025 Wed Aug 27 16:23:15 EDT 2025 Sat Aug 30 17:14:51 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Natural sciences Health sciences Applied sciences |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. 2025 The Authors. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c473t-cf56f1b868a8d9edf379b0593b7cae1e6879592933b32576a8288fcb3fb5288f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally Lead contact |
ORCID | 0000-0002-7353-4180 |
OpenAccessLink | https://doaj.org/article/0ef36b4bd0ab44eb9528e17f473e7893 |
PMID | 39911346 |
PQID | 3163868409 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_0ef36b4bd0ab44eb9528e17f473e7893 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11795103 proquest_miscellaneous_3163868409 pubmed_primary_39911346 crossref_primary_10_1016_j_isci_2024_111737 elsevier_sciencedirect_doi_10_1016_j_isci_2024_111737 |
PublicationCentury | 2000 |
PublicationDate | 2025-02-21 |
PublicationDateYYYYMMDD | 2025-02-21 |
PublicationDate_xml | – month: 02 year: 2025 text: 2025-02-21 day: 21 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | iScience |
PublicationTitleAlternate | iScience |
PublicationYear | 2025 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Sun, Qiu, Liang, Xue, Zhang, Yang, Cui, Tian (bib36) 2021; 406 Akhter, Maktedar (bib20) 2023; 9 Lin, Bariya, Nyein, Kivimäki, Uusitalo, Jansson, Ji, Yuan, Happonen, Liedert (bib42) 2019; 29 Ahmad, Lee (bib38) 2024; 492 Lin, Xie, He, Lu, Li, Fang, Yan, Zhang, Sheng, Chen (bib26) 2020; 206 Okatenko, Castilla-Amorós, Stoian, Vávra, Loiudice, Buonsanti (bib41) 2022; 144 Daeneke, Khoshmanesh, Mahmood, de Castro, Esrafilzadeh, Barrow, Dickey, Kalantar-Zadeh (bib19) 2018; 47 Hekmat, Ataei Kachouei, Taghaddosi Foshtomi, Shahrokhian, Zhu (bib12) 2023; 257 Zhang, Li, Wang, Qin, Zhang, Li (bib13) 2020; 515 Zhu, Duan, Zhang, Zhao, Yang, Shen, Chen, Fan, Liu (bib16) 2023; 33 Sim, Brothers, Slocik, Islam, Maruyama, Grigsby, Naik, Kim (bib2) 2022; 9 Wang, Jiang, Su, Yin, Zhang, Liu, Lin, Moura, Yuan, Roth (bib18) 2017; 27 Kim, Kim, Dickey, So, Koo (bib40) 2024; 9 Gao, Bando (bib17) 2002; 415 Wang, Jiao, Wang, Wang, Sun, Li, Fan, Hu (bib39) 2023; 221 Zhang, El-Demellawi, Jiang, Ge, Liang, Lee, Dong, Alshareef (bib23) 2020; 49 Li, Wang, Liu, Li, Zhang, Shi, Li, Hou, Wang (bib44) 2021; 174 Veerapandian, Jang, Seol, Wang, Kong, Thiyagarajan, Kwak, Park, Lee, Suh (bib35) 2021; 20 Qin, Nong, Wang, Liu, Zhou, Hu, Zhao, Shan (bib22) 2024; 36 Lin, Song, Shao, Xue, Hu, Jiang, Zou, Liu (bib32) 2024; 34 Halim, Cook, Naguib, Eklund, Gogotsi, Rosen, Barsoum (bib37) 2016; 362 Zhu, Shi, Zhu, Yang (bib34) 2020; 73 Ma, Wu, Luo, Liu, Wang, Yu (bib4) 2024; 16 Zhu, Wu, Yan, Liu (bib15) 2023; 5 Lee, Hong, Baik, Hyeon, Kim (bib9) 2018; 7 Liu, Meng, Fang, Jiang (bib7) 2023; 3 Moyer, Wilson, Finkelshtein, Wong, Potts (bib10) 2012; 14 Jiang, Zhang, Li, Chen, Yin, Liu (bib25) 2023; 32 Tang, Zhou, Wang, Li, Liu, Li, Chen, Lu, Chang (bib11) 2024; 416 Babamiri, Sadri, Farrokhnia, Hassani, Kaur, Roberts, Ashani, Sanati Nezhad (bib30) 2024; 16 Bariya, Nyein, Javey (bib1) 2018; 1 Wang, Liu, Ding, Lepró, Fang, Jiang, Yuan, Wang, Yin, Lv (bib14) 2016; 28 Surdu-Bob, Saied, Sullivan (bib33) 2001; 183 Zhang, Yang, Qiao, Liu, Wang, Zeng, Hou, Huo, Hou (bib5) 2024; 258 Zhang, Cao, Zhang, Insin, Liu, Qin (bib31) 2020; 3 Zhang, Zhao, Zeng, He, Wang, Zhu, Hu, Liu, Wang (bib8) 2023; 20 Wang, Wang, Li, Yan, Liu, Xu, Zhang (bib6) 2022; 7 Bark, Lee (bib28) 2021; 12 Zhao, Zhao, Qian, Yu, Ye (bib29) 2024; 486 Gao, Liu, Zhang, Liu, Wang, Song, Cai, Fang, Chen, Wang (bib3) 2023; 9 Li, Shan, Ma, Shek, Zhao, Ramakrishna (bib21) 2022; 17 Wang, Qin, Yang, Tian, Guo, Sun, Zhou, Fei, An, Sun (bib24) 2023; 33 Yang, Shen, Luo, Wu, Chen, Wang, Xie (bib27) 2021; 110 Zhang, Lin, Chen, Yang, Zhang, Yan, Li, Wang, Cheng, Chen (bib45) 2024; 490 Mirzajani, Abbasiasl, Mirlou, Istif, Bathaei, Dağ, Deyneli, Yazıcı, Beker (bib43) 2022; 213 Gao (10.1016/j.isci.2024.111737_bib3) 2023; 9 Gao (10.1016/j.isci.2024.111737_bib17) 2002; 415 Liu (10.1016/j.isci.2024.111737_bib7) 2023; 3 Lin (10.1016/j.isci.2024.111737_bib42) 2019; 29 Mirzajani (10.1016/j.isci.2024.111737_bib43) 2022; 213 Lin (10.1016/j.isci.2024.111737_bib26) 2020; 206 Yang (10.1016/j.isci.2024.111737_bib27) 2021; 110 Veerapandian (10.1016/j.isci.2024.111737_bib35) 2021; 20 Moyer (10.1016/j.isci.2024.111737_bib10) 2012; 14 Li (10.1016/j.isci.2024.111737_bib21) 2022; 17 Qin (10.1016/j.isci.2024.111737_bib22) 2024; 36 Wang (10.1016/j.isci.2024.111737_bib24) 2023; 33 Bark (10.1016/j.isci.2024.111737_bib28) 2021; 12 Zhang (10.1016/j.isci.2024.111737_bib31) 2020; 3 Okatenko (10.1016/j.isci.2024.111737_bib41) 2022; 144 Wang (10.1016/j.isci.2024.111737_bib14) 2016; 28 Zhang (10.1016/j.isci.2024.111737_bib5) 2024; 258 Sim (10.1016/j.isci.2024.111737_bib2) 2022; 9 Kim (10.1016/j.isci.2024.111737_bib40) 2024; 9 Li (10.1016/j.isci.2024.111737_bib44) 2021; 174 Zhu (10.1016/j.isci.2024.111737_bib15) 2023; 5 Surdu-Bob (10.1016/j.isci.2024.111737_bib33) 2001; 183 Akhter (10.1016/j.isci.2024.111737_bib20) 2023; 9 Jiang (10.1016/j.isci.2024.111737_bib25) 2023; 32 Tang (10.1016/j.isci.2024.111737_bib11) 2024; 416 Zhang (10.1016/j.isci.2024.111737_bib13) 2020; 515 Zhu (10.1016/j.isci.2024.111737_bib34) 2020; 73 Zhu (10.1016/j.isci.2024.111737_bib16) 2023; 33 Bariya (10.1016/j.isci.2024.111737_bib1) 2018; 1 Sun (10.1016/j.isci.2024.111737_bib36) 2021; 406 Wang (10.1016/j.isci.2024.111737_bib6) 2022; 7 Hekmat (10.1016/j.isci.2024.111737_bib12) 2023; 257 Zhao (10.1016/j.isci.2024.111737_bib29) 2024; 486 Halim (10.1016/j.isci.2024.111737_bib37) 2016; 362 Lee (10.1016/j.isci.2024.111737_bib9) 2018; 7 Wang (10.1016/j.isci.2024.111737_bib39) 2023; 221 Zhang (10.1016/j.isci.2024.111737_bib8) 2023; 20 Zhang (10.1016/j.isci.2024.111737_bib45) 2024; 490 Zhang (10.1016/j.isci.2024.111737_bib23) 2020; 49 Babamiri (10.1016/j.isci.2024.111737_bib30) 2024; 16 Lin (10.1016/j.isci.2024.111737_bib32) 2024; 34 Wang (10.1016/j.isci.2024.111737_bib18) 2017; 27 Ma (10.1016/j.isci.2024.111737_bib4) 2024; 16 Daeneke (10.1016/j.isci.2024.111737_bib19) 2018; 47 Ahmad (10.1016/j.isci.2024.111737_bib38) 2024; 492 |
References_xml | – volume: 415 start-page: 599 year: 2002 ident: bib17 article-title: Carbon nanothermometer containing gallium publication-title: Nature – volume: 36 start-page: 2312761 year: 2024 ident: bib22 article-title: Recent advances in flexible pressure sensors based on MXene materials publication-title: Adv. Mater. – volume: 29 start-page: 1902521 year: 2019 ident: bib42 article-title: Porous enzymatic membrane for nanotextured glucose sweat sensors with high stability toward reliable noninvasive health monitoring publication-title: Adv. Funct. Mater. – volume: 14 start-page: 398 year: 2012 end-page: 402 ident: bib10 article-title: Correlation between sweat glucose and blood glucose in subjects with diabetes publication-title: Diabetes Technol. Therapeut. – volume: 16 start-page: 27714 year: 2024 end-page: 27727 ident: bib30 article-title: Molecularly Imprinted Polymer Biosensor Based on Nitrogen-Doped Electrochemically Exfoliated Graphene/Ti3 CNT X MXene Nanocomposite for Metabolites Detection publication-title: ACS Appl. Mater. Interfaces – volume: 7 start-page: 1701150 year: 2018 ident: bib9 article-title: Enzyme-based glucose sensor: from invasive to wearable device publication-title: Adv. Healthcare Mater. – volume: 258 start-page: 116354 year: 2024 ident: bib5 article-title: Synergistic enhancement of wearable biosensor through Pt single-atom catalyst for sweat analysis publication-title: Biosens. Bioelectron. – volume: 20 start-page: 100638 year: 2023 ident: bib8 article-title: Wearable non-invasive glucose sensors based on metallic nanomaterials publication-title: Mater. Today. Bio – volume: 362 start-page: 406 year: 2016 end-page: 417 ident: bib37 article-title: X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes) publication-title: Appl. Surf. Sci. – volume: 206 start-page: 110229 year: 2020 ident: bib26 article-title: MXene aerogel-based phase change materials toward solar energy conversion publication-title: Sol. Energy Mater. Sol. Cell. – volume: 7 start-page: 3102 year: 2022 end-page: 3107 ident: bib6 article-title: Ultra-small wearable flexible biosensor for continuous sweat analysis publication-title: ACS Sens. – volume: 17 start-page: 63501 year: 2022 ident: bib21 article-title: Bioinspired mineral MXene hydrogels for tensile strain sensing and radionuclide adsorption applications publication-title: Front. Physiol. – volume: 490 start-page: 151798 year: 2024 ident: bib45 article-title: Intrinsically stretchable jellyfish-like gold nanowires film as multifunctional wearable chemical and physical sensors publication-title: Chem. Eng. J. – volume: 213 start-page: 114450 year: 2022 ident: bib43 article-title: An ultra-compact and wireless tag for battery-free sweat glucose monitoring publication-title: Biosens. Bioelectron. – volume: 73 start-page: 104761 year: 2020 ident: bib34 article-title: The roles of oxygen vacancies in electrocatalytic oxygen evolution reaction publication-title: Nano Energy – volume: 3 start-page: 100133 year: 2023 ident: bib7 article-title: Conductive MOFs for electrocatalysis and electrochemical sensor publication-title: eScience – volume: 33 start-page: 2301587 year: 2023 ident: bib24 article-title: High linearity, low hysteresis Ti3C2Tx MXene/AgNW/liquid metal self-healing strain sensor modulated by dynamic disulfide and hydrogen bonds publication-title: Adv. Funct. Mater. – volume: 27 start-page: 1702134 year: 2017 ident: bib18 article-title: A bi-sheath fiber sensor for giant tensile and torsional displacements publication-title: Adv. Funct. Mater. – volume: 515 start-page: 146062 year: 2020 ident: bib13 article-title: Porous CuxO/Ag2O (x= 1, 2) nanowires anodized on nanoporous Cu-Ag bimetal network as a self-supported flexible electrode for glucose sensing publication-title: Appl. Surf. Sci. – volume: 144 start-page: 10053 year: 2022 end-page: 10063 ident: bib41 article-title: The native oxide skin of liquid metal Ga nanoparticles prevents their rapid coalescence during electrocatalysis publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 1099 year: 2024 end-page: 1119 ident: bib40 article-title: Interface of gallium-based liquid metals: oxide skin, wetting, and applications publication-title: Nanoscale Horiz. – volume: 183 start-page: 126 year: 2001 end-page: 136 ident: bib33 article-title: An X-ray photoelectron spectroscopy study of the oxides of GaAs publication-title: Appl. Surf. Sci. – volume: 406 start-page: 127177 year: 2021 ident: bib36 article-title: The fabrication of 1D/2D CdS nanorod@ Ti3C2 MXene composites for good photocatalytic activity of hydrogen generation and ammonia synthesis publication-title: Chem. Eng. J. – volume: 9 start-page: 1 year: 2023 end-page: 21 ident: bib3 article-title: Wearable and flexible electrochemical sensors for sweat analysis: a review publication-title: Microsyst. Nanoeng. – volume: 28 start-page: 4998 year: 2016 end-page: 5007 ident: bib14 article-title: Downsized sheath–core conducting fibers for weavable superelastic wires, biosensors, supercapacitors, and strain sensors publication-title: Adv. Mater. – volume: 33 start-page: 2209413 year: 2023 ident: bib16 article-title: Liquid metal-enabled microspheres with high drug loading and multimodal imaging for artery embolization publication-title: Adv. Funct. Mater. – volume: 3 start-page: 5949 year: 2020 end-page: 5964 ident: bib31 article-title: NiMn layered double hydroxide nanosheets in-situ anchored on Ti3C2 MXene via chemical bonds for superior supercapacitors publication-title: ACS Appl. Energy Mater. – volume: 221 start-page: 114908 year: 2023 ident: bib39 article-title: A hydrogel-based biosensor for stable detection of glucose publication-title: Biosens. Bioelectron. – volume: 174 start-page: 112828 year: 2021 ident: bib44 article-title: A highly integrated sensing paper for wearable electrochemical sweat analysis publication-title: Biosens. Bioelectron. – volume: 34 start-page: 2311637 year: 2024 ident: bib32 article-title: A multifunctional biosensor via MXene assisted by conductive metal–organic framework for healthcare monitoring publication-title: Adv. Funct. Mater. – volume: 49 start-page: 7229 year: 2020 end-page: 7251 ident: bib23 article-title: MXene hydrogels: fundamentals and applications publication-title: Chem. Soc. Rev. – volume: 9 start-page: 2104426 year: 2022 ident: bib2 article-title: Biomarkers and detection platforms for human health and performance monitoring: a review publication-title: Adv. Sci. – volume: 1 start-page: 160 year: 2018 end-page: 171 ident: bib1 article-title: Wearable sweat sensors publication-title: Nat. Electron. – volume: 257 start-page: 124375 year: 2023 ident: bib12 article-title: Direct decoration of commercial cotton fabrics by binary nickel-cobalt metal-organic frameworks for flexible glucose sensing in next-generation wearable sensors publication-title: Talanta – volume: 416 start-page: 1407 year: 2024 end-page: 1415 ident: bib11 article-title: Wearable biosensors for human sweat glucose detection based on carbon black nanoparticles publication-title: Anal. Bioanal. Chem. – volume: 12 start-page: 2760 year: 2021 end-page: 2777 ident: bib28 article-title: Surface modification of liquid metal as an effective approach for deformable electronics and energy devices publication-title: Chem. Sci. – volume: 486 start-page: 150197 year: 2024 ident: bib29 article-title: Interfacial engineering of liquid metal nanoparticles for the fabrication of conductive hydrogels: A review publication-title: Chem. Eng. J. – volume: 32 start-page: 101638 year: 2023 ident: bib25 article-title: Sponge-inspired MXene@ CeO2 detector for ultra-sensitive detection of glucose publication-title: Mater. Today Chem. – volume: 492 start-page: 152432 year: 2024 ident: bib38 article-title: Facile fabrication of palm trunk–like ZnO hierarchical nanostructure–based biosensor for wide-range glucose detection publication-title: Chem. Eng. J. – volume: 110 start-page: 822 year: 2021 end-page: 832 ident: bib27 article-title: Advanced applications of chitosan-based hydrogels: From biosensors to intelligent food packaging system publication-title: Trends Food Sci. Technol. – volume: 47 start-page: 4073 year: 2018 end-page: 4111 ident: bib19 article-title: Liquid metals: fundamentals and applications in chemistry publication-title: Chem. Soc. Rev. – volume: 5 start-page: 12 year: 2023 end-page: 35 ident: bib15 article-title: Advanced fiber materials for wearable electronics publication-title: Adv. Fiber Mater. – volume: 16 start-page: 18202 year: 2024 end-page: 18212 ident: bib4 article-title: Large-Scale Wearable Textile-Based Sweat Sensor with High Sensitivity, Rapid Response, and Stable Electrochemical Performance publication-title: ACS Appl. Mater. Interfaces – volume: 20 start-page: 533 year: 2021 end-page: 540 ident: bib35 article-title: Hydrogen-doped viscoplastic liquid metal microparticles for stretchable printed metal lines publication-title: Nat. Mater. – volume: 9 start-page: 1196 year: 2023 end-page: 1241 ident: bib20 article-title: MXenes: Acomprehensive review of synthesis, properties, and progress in supercapacitor applications publication-title: Journal of Materiomics – volume: 110 start-page: 822 year: 2021 ident: 10.1016/j.isci.2024.111737_bib27 article-title: Advanced applications of chitosan-based hydrogels: From biosensors to intelligent food packaging system publication-title: Trends Food Sci. Technol. doi: 10.1016/j.tifs.2021.02.032 – volume: 16 start-page: 18202 year: 2024 ident: 10.1016/j.isci.2024.111737_bib4 article-title: Large-Scale Wearable Textile-Based Sweat Sensor with High Sensitivity, Rapid Response, and Stable Electrochemical Performance publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.4c01521 – volume: 9 start-page: 1196 year: 2023 ident: 10.1016/j.isci.2024.111737_bib20 article-title: MXenes: Acomprehensive review of synthesis, properties, and progress in supercapacitor applications publication-title: Journal of Materiomics doi: 10.1016/j.jmat.2023.08.011 – volume: 27 start-page: 1702134 year: 2017 ident: 10.1016/j.isci.2024.111737_bib18 article-title: A bi-sheath fiber sensor for giant tensile and torsional displacements publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201702134 – volume: 28 start-page: 4998 year: 2016 ident: 10.1016/j.isci.2024.111737_bib14 article-title: Downsized sheath–core conducting fibers for weavable superelastic wires, biosensors, supercapacitors, and strain sensors publication-title: Adv. Mater. doi: 10.1002/adma.201600405 – volume: 36 start-page: 2312761 year: 2024 ident: 10.1016/j.isci.2024.111737_bib22 article-title: Recent advances in flexible pressure sensors based on MXene materials publication-title: Adv. Mater. doi: 10.1002/adma.202312761 – volume: 144 start-page: 10053 year: 2022 ident: 10.1016/j.isci.2024.111737_bib41 article-title: The native oxide skin of liquid metal Ga nanoparticles prevents their rapid coalescence during electrocatalysis publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.2c03698 – volume: 7 start-page: 1701150 year: 2018 ident: 10.1016/j.isci.2024.111737_bib9 article-title: Enzyme-based glucose sensor: from invasive to wearable device publication-title: Adv. Healthcare Mater. doi: 10.1002/adhm.201701150 – volume: 17 start-page: 63501 year: 2022 ident: 10.1016/j.isci.2024.111737_bib21 article-title: Bioinspired mineral MXene hydrogels for tensile strain sensing and radionuclide adsorption applications publication-title: Front. Physiol. doi: 10.1007/s11467-022-1181-2 – volume: 47 start-page: 4073 year: 2018 ident: 10.1016/j.isci.2024.111737_bib19 article-title: Liquid metals: fundamentals and applications in chemistry publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00043J – volume: 213 start-page: 114450 year: 2022 ident: 10.1016/j.isci.2024.111737_bib43 article-title: An ultra-compact and wireless tag for battery-free sweat glucose monitoring publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2022.114450 – volume: 12 start-page: 2760 year: 2021 ident: 10.1016/j.isci.2024.111737_bib28 article-title: Surface modification of liquid metal as an effective approach for deformable electronics and energy devices publication-title: Chem. Sci. doi: 10.1039/D0SC05310D – volume: 1 start-page: 160 year: 2018 ident: 10.1016/j.isci.2024.111737_bib1 article-title: Wearable sweat sensors publication-title: Nat. Electron. doi: 10.1038/s41928-018-0043-y – volume: 257 start-page: 124375 year: 2023 ident: 10.1016/j.isci.2024.111737_bib12 article-title: Direct decoration of commercial cotton fabrics by binary nickel-cobalt metal-organic frameworks for flexible glucose sensing in next-generation wearable sensors publication-title: Talanta doi: 10.1016/j.talanta.2023.124375 – volume: 206 start-page: 110229 year: 2020 ident: 10.1016/j.isci.2024.111737_bib26 article-title: MXene aerogel-based phase change materials toward solar energy conversion publication-title: Sol. Energy Mater. Sol. Cell. doi: 10.1016/j.solmat.2019.110229 – volume: 3 start-page: 100133 year: 2023 ident: 10.1016/j.isci.2024.111737_bib7 article-title: Conductive MOFs for electrocatalysis and electrochemical sensor publication-title: eScience doi: 10.1016/j.esci.2023.100133 – volume: 32 start-page: 101638 year: 2023 ident: 10.1016/j.isci.2024.111737_bib25 article-title: Sponge-inspired MXene@ CeO2 detector for ultra-sensitive detection of glucose publication-title: Mater. Today Chem. doi: 10.1016/j.mtchem.2023.101638 – volume: 20 start-page: 533 year: 2021 ident: 10.1016/j.isci.2024.111737_bib35 article-title: Hydrogen-doped viscoplastic liquid metal microparticles for stretchable printed metal lines publication-title: Nat. Mater. doi: 10.1038/s41563-020-00863-7 – volume: 490 start-page: 151798 year: 2024 ident: 10.1016/j.isci.2024.111737_bib45 article-title: Intrinsically stretchable jellyfish-like gold nanowires film as multifunctional wearable chemical and physical sensors publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2024.151798 – volume: 20 start-page: 100638 year: 2023 ident: 10.1016/j.isci.2024.111737_bib8 article-title: Wearable non-invasive glucose sensors based on metallic nanomaterials publication-title: Mater. Today. Bio doi: 10.1016/j.mtbio.2023.100638 – volume: 362 start-page: 406 year: 2016 ident: 10.1016/j.isci.2024.111737_bib37 article-title: X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes) publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2015.11.089 – volume: 7 start-page: 3102 year: 2022 ident: 10.1016/j.isci.2024.111737_bib6 article-title: Ultra-small wearable flexible biosensor for continuous sweat analysis publication-title: ACS Sens. doi: 10.1021/acssensors.2c01533 – volume: 16 start-page: 27714 year: 2024 ident: 10.1016/j.isci.2024.111737_bib30 article-title: Molecularly Imprinted Polymer Biosensor Based on Nitrogen-Doped Electrochemically Exfoliated Graphene/Ti3 CNT X MXene Nanocomposite for Metabolites Detection publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.4c01973 – volume: 183 start-page: 126 year: 2001 ident: 10.1016/j.isci.2024.111737_bib33 article-title: An X-ray photoelectron spectroscopy study of the oxides of GaAs publication-title: Appl. Surf. Sci. doi: 10.1016/S0169-4332(01)00583-9 – volume: 29 start-page: 1902521 year: 2019 ident: 10.1016/j.isci.2024.111737_bib42 article-title: Porous enzymatic membrane for nanotextured glucose sweat sensors with high stability toward reliable noninvasive health monitoring publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201902521 – volume: 174 start-page: 112828 year: 2021 ident: 10.1016/j.isci.2024.111737_bib44 article-title: A highly integrated sensing paper for wearable electrochemical sweat analysis publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2020.112828 – volume: 5 start-page: 12 year: 2023 ident: 10.1016/j.isci.2024.111737_bib15 article-title: Advanced fiber materials for wearable electronics publication-title: Adv. Fiber Mater. doi: 10.1007/s42765-022-00212-0 – volume: 33 start-page: 2209413 year: 2023 ident: 10.1016/j.isci.2024.111737_bib16 article-title: Liquid metal-enabled microspheres with high drug loading and multimodal imaging for artery embolization publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202209413 – volume: 33 start-page: 2301587 year: 2023 ident: 10.1016/j.isci.2024.111737_bib24 article-title: High linearity, low hysteresis Ti3C2Tx MXene/AgNW/liquid metal self-healing strain sensor modulated by dynamic disulfide and hydrogen bonds publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202301587 – volume: 73 start-page: 104761 year: 2020 ident: 10.1016/j.isci.2024.111737_bib34 article-title: The roles of oxygen vacancies in electrocatalytic oxygen evolution reaction publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.104761 – volume: 14 start-page: 398 year: 2012 ident: 10.1016/j.isci.2024.111737_bib10 article-title: Correlation between sweat glucose and blood glucose in subjects with diabetes publication-title: Diabetes Technol. Therapeut. doi: 10.1089/dia.2011.0262 – volume: 3 start-page: 5949 year: 2020 ident: 10.1016/j.isci.2024.111737_bib31 article-title: NiMn layered double hydroxide nanosheets in-situ anchored on Ti3C2 MXene via chemical bonds for superior supercapacitors publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.0c00863 – volume: 9 start-page: 2104426 year: 2022 ident: 10.1016/j.isci.2024.111737_bib2 article-title: Biomarkers and detection platforms for human health and performance monitoring: a review publication-title: Adv. Sci. doi: 10.1002/advs.202104426 – volume: 406 start-page: 127177 year: 2021 ident: 10.1016/j.isci.2024.111737_bib36 article-title: The fabrication of 1D/2D CdS nanorod@ Ti3C2 MXene composites for good photocatalytic activity of hydrogen generation and ammonia synthesis publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.127177 – volume: 415 start-page: 599 year: 2002 ident: 10.1016/j.isci.2024.111737_bib17 article-title: Carbon nanothermometer containing gallium publication-title: Nature doi: 10.1038/415599a – volume: 258 start-page: 116354 year: 2024 ident: 10.1016/j.isci.2024.111737_bib5 article-title: Synergistic enhancement of wearable biosensor through Pt single-atom catalyst for sweat analysis publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2024.116354 – volume: 492 start-page: 152432 year: 2024 ident: 10.1016/j.isci.2024.111737_bib38 article-title: Facile fabrication of palm trunk–like ZnO hierarchical nanostructure–based biosensor for wide-range glucose detection publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2024.152432 – volume: 486 start-page: 150197 year: 2024 ident: 10.1016/j.isci.2024.111737_bib29 article-title: Interfacial engineering of liquid metal nanoparticles for the fabrication of conductive hydrogels: A review publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2024.150197 – volume: 9 start-page: 1099 year: 2024 ident: 10.1016/j.isci.2024.111737_bib40 article-title: Interface of gallium-based liquid metals: oxide skin, wetting, and applications publication-title: Nanoscale Horiz. doi: 10.1039/D4NH00067F – volume: 9 start-page: 1 year: 2023 ident: 10.1016/j.isci.2024.111737_bib3 article-title: Wearable and flexible electrochemical sensors for sweat analysis: a review publication-title: Microsyst. Nanoeng. doi: 10.1038/s41378-022-00443-6 – volume: 515 start-page: 146062 year: 2020 ident: 10.1016/j.isci.2024.111737_bib13 article-title: Porous CuxO/Ag2O (x= 1, 2) nanowires anodized on nanoporous Cu-Ag bimetal network as a self-supported flexible electrode for glucose sensing publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2020.146062 – volume: 34 start-page: 2311637 year: 2024 ident: 10.1016/j.isci.2024.111737_bib32 article-title: A multifunctional biosensor via MXene assisted by conductive metal–organic framework for healthcare monitoring publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202311637 – volume: 49 start-page: 7229 year: 2020 ident: 10.1016/j.isci.2024.111737_bib23 article-title: MXene hydrogels: fundamentals and applications publication-title: Chem. Soc. Rev. doi: 10.1039/D0CS00022A – volume: 416 start-page: 1407 year: 2024 ident: 10.1016/j.isci.2024.111737_bib11 article-title: Wearable biosensors for human sweat glucose detection based on carbon black nanoparticles publication-title: Anal. Bioanal. Chem. doi: 10.1007/s00216-024-05135-w – volume: 221 start-page: 114908 year: 2023 ident: 10.1016/j.isci.2024.111737_bib39 article-title: A hydrogel-based biosensor for stable detection of glucose publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2022.114908 |
SSID | ssj0002002496 |
Score | 2.3103776 |
Snippet | Most wearable biosensors struggle to balance flexibility and conductivity in their sensing interfaces. In this study, we propose a wearable sensor featuring a... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 111737 |
SubjectTerms | Applied sciences Health sciences Natural sciences |
Title | Ga@MXene-based flexible wearable biosensor for glucose monitoring in sweat |
URI | https://dx.doi.org/10.1016/j.isci.2024.111737 https://www.ncbi.nlm.nih.gov/pubmed/39911346 https://www.proquest.com/docview/3163868409 https://pubmed.ncbi.nlm.nih.gov/PMC11795103 https://doaj.org/article/0ef36b4bd0ab44eb9528e17f473e7893 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BTtwwELUqTlxKC4WmBWQkbigiie3EuRUQsFoJTkXam-WJx-oimq3YRfx-Z5Is2qVSuXCLEiuxZzyeN_H4jRDHZeazCmNN9o021TFiaouAacix9IxfoSv3dnNbju70eGImK6W-OCespwfuBXeaYVQlaAiZB60RalNYzKuoK4UVOVtefcnnrQRT9932GlPhlcMpmT6hi0-5UkBYaF4mKi58vuKJOsL-NYf0L-B8nTe54oiuPomPA4KUZ33PP4sP2G6LrQFNysFW5ztifO1_3ExoKUvZUwUZmfoSHlA-0-TmA1MSprM5RbGzR0nIVQ7J6_J3Z-X8u09OWzmn1osv4u7q8ufFKB0qJ6QNyWWRNtGUMQdbWm9DjSGqqgYu3gdV45HU0JUYJ0-vQHHE4SnusrEBFcHwldoVG-2sxa9CamO9Uk1oDJC9ewNGA2GWrAghz1FBIk6WUnR_eoIMt8wcu3csc8cyd73ME3HOgn5pyeTW3Q1SuRtU7t5SeSLMUk1uwAm9_6dXTf_78aOlTh0ZEe-M-BZnT3OnGJUy7U2diL1exy9dJASX50qXibBr2l8bw_qTdvqrI-pmuj1mLPz2HqP-LjYLrj3Mx-nzfbGxeHzCAwJECzjs5v5fGhQJoA |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ga%40MXene-based+flexible+wearable+biosensor+for+glucose+monitoring+in+sweat&rft.jtitle=iScience&rft.au=Zhang%2C+Wensi&rft.au=Jiang%2C+Shuyue&rft.au=Yu%2C+Hongquan&rft.au=Feng%2C+Shilun&rft.date=2025-02-21&rft.pub=Elsevier&rft.eissn=2589-0042&rft.volume=28&rft.issue=2&rft_id=info:doi/10.1016%2Fj.isci.2024.111737&rft.externalDocID=PMC11795103 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2589-0042&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2589-0042&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2589-0042&client=summon |