Effect of Converter Dust on Phosphorus Migration Behavior in Molten Iron

In order to make better use of converter dust to achieve effective pre-dephosphorization of molten iron, the influence of the addition ratio of dedusting ash and oxide scale on dephosphorization of molten iron was compared, so as to reveal the reasons for the decrease of dephosphorization rate cause...

Full description

Saved in:
Bibliographic Details
Published inISIJ International Vol. 63; no. 1; pp. 63 - 73
Main Authors Zhou, Chaogang, Chen, Qinggong, Ji, Yi, Wang, Shuhuan, Zhao, Dingguo, Ai, Liqun, Shi, Dongsheng, Shi, Xiangdong
Format Journal Article
LanguageEnglish
Published The Iron and Steel Institute of Japan 15.01.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In order to make better use of converter dust to achieve effective pre-dephosphorization of molten iron, the influence of the addition ratio of dedusting ash and oxide scale on dephosphorization of molten iron was compared, so as to reveal the reasons for the decrease of dephosphorization rate caused by dust. Through theoretical analysis, XRD, SEM-EDS, Raman and infrared spectroscopy, the influence of mineral phase structure, polymerization degree and phosphorus structure of pre-dephosphorization final slag on pre-dephosphorization was studied. The results show that when the proportion of dedusting ash in the oxidant increases from 0 to 25%, the dephosphorization rate decreases from 50.8% to 38.71%, and the dephosphorization rate increases to 50% after adding fluorite. The increase in the proportion of dedusting ash will lead to the decrease of phosphorus-rich phase and the increase of RO phase and iron-rich phase, which will affect the dephosphorization effect. When the dedusting ash ratio increased from 0% to 25%, the proportion of Q0(Si), Q0(P), Q1(P) and [FeO6]9− structures in the pre-dephosphorization final slag increased, which was beneficial to the diffusion in the slag, but unfavorable to the migration of phosphorus. In addition, by adding fluorite in the experiment with 25% dedusting ash, it was found that the molar fractions of Q1(Si), Q3(Si), Q0(P) and Q2(P) in the pre-dephosphorization final slag increased, and the phosphorus migrating into the silicon-oxygen network structure gradually increased. This study can provide reference for iron and steel enterprises to realize the secondary utilization of dedusting ash.
AbstractList In order to make better use of converter dust to achieve effective pre-dephosphorization of molten iron, the influence of the addition ratio of dedusting ash and oxide scale on dephosphorization of molten iron was compared, so as to reveal the reasons for the decrease of dephosphorization rate caused by dust. Through theoretical analysis, XRD, SEM-EDS, Raman and infrared spectroscopy, the influence of mineral phase structure, polymerization degree and phosphorus structure of pre-dephosphorization final slag on pre-dephosphorization was studied. The results show that when the proportion of dedusting ash in the oxidant increases from 0 to 25%, the dephosphorization rate decreases from 50.8% to 38.71%, and the dephosphorization rate increases to 50% after adding fluorite. The increase in the proportion of dedusting ash will lead to the decrease of phosphorus-rich phase and the increase of RO phase and iron-rich phase, which will affect the dephosphorization effect. When the dedusting ash ratio increased from 0% to 25%, the proportion of Q0(Si), Q0(P), Q1(P) and [FeO6]9− structures in the pre-dephosphorization final slag increased, which was beneficial to the diffusion in the slag, but unfavorable to the migration of phosphorus. In addition, by adding fluorite in the experiment with 25% dedusting ash, it was found that the molar fractions of Q1(Si), Q3(Si), Q0(P) and Q2(P) in the pre-dephosphorization final slag increased, and the phosphorus migrating into the silicon-oxygen network structure gradually increased. This study can provide reference for iron and steel enterprises to realize the secondary utilization of dedusting ash.
ArticleNumber ISIJINT-2022-249
Author Ji, Yi
Zhao, Dingguo
Zhou, Chaogang
Ai, Liqun
Chen, Qinggong
Wang, Shuhuan
Shi, Dongsheng
Shi, Xiangdong
Author_xml – sequence: 1
  orcidid: 0000-0001-7950-3089
  fullname: Zhou, Chaogang
  organization: College of Metallurgy and Energy, North China University of Science and Technology
– sequence: 2
  fullname: Chen, Qinggong
  organization: College of Metallurgy and Energy, North China University of Science and Technology
– sequence: 3
  fullname: Ji, Yi
  organization: College of Metallurgy and Energy, North China University of Science and Technology
– sequence: 4
  fullname: Wang, Shuhuan
  organization: College of Metallurgy and Energy, North China University of Science and Technology
– sequence: 5
  fullname: Zhao, Dingguo
  organization: College of Metallurgy and Energy, North China University of Science and Technology
– sequence: 6
  fullname: Ai, Liqun
  organization: College of Metallurgy and Energy, North China University of Science and Technology
– sequence: 7
  fullname: Shi, Dongsheng
  organization: Manufacturing Department, Tangshan Wenfeng Special Steel Co., Ltd
– sequence: 8
  fullname: Shi, Xiangdong
  organization: Technical Quality Department of Tianjin Iron Works Co., Ltd
BookMark eNpt0F1LwzAUgOEgE5xz_yHXQmc-u-bSzekqmwpO8C6kabpm1GQkdeC_t3NjF-pNDgTOc-C9BD3nnQHgGqMRoZzf2Gg31rUmONVa71Qzyl_zx_xplRBESEKYOAN9TNk44SxFPdBHAvMEcy4uwDBGWyBEWMYopn0wn1WV0S30FZx6tzOhY-HdZ-x-HHypfdzWPnxGuLTr8HMNTkytdtYHaB1c-qY1DubBuytwXqkmmuFxDsDb_Ww1nSeL54d8ertINBvTNtFCEEJwoZDgZUpImvJSUc1RoUipBacZK1DKOCqNMkgoQ6p0nLHUEIRVZTI6AJODq4OPMZhKboP9UOFLYiT3eeSfPPKYR-7zyC5Ph7wfkE1s1dqcCBVaqxvzD5FSiffPb-q0omsVpHH0G5hCgys
CitedBy_id crossref_primary_10_1007_s11663_024_03011_7
crossref_primary_10_1007_s42243_024_01175_9
crossref_primary_10_2355_isijinternational_ISIJINT_2023_183
Cites_doi 10.1016/j.jnoncrysol.2020.120579
10.4028/www.scientific.net/AMR.610-613.1422
10.1016/j.fuel.2017.05.101
10.1016/0009-2541(94)00127-T
10.2355/isijinternational.ISIJINT-2019-413
10.1007/s10856-011-4504-3
10.1016/j.applthermaleng.2016.10.087
10.1007/s12633-019-00111-x
10.1007/s11663-014-0270-1
10.1016/S0254-0584(02)00516-3
10.1016/j.jnoncrysol.2019.02.020
10.1007/BF00356615
10.2355/isijinternational.ISIJINT-2020-186
10.1016/j.jprocont.2018.03.005
10.3788/COL201210.071602
10.4028/www.scientific.net/AMM.291-294.2621
10.1021/cm00034a008
10.2355/isijinternational.ISIJINT-2018-453
10.1007/s11663-020-01957-y
10.1007/s42243-020-00550-6
10.1016/j.physb.2004.09.004
10.3390/met11020216
10.1021/cm00034a009
10.1016/j.jnoncrysol.2019.01.016
10.1080/03019233.2019.1673546
10.2355/isijinternational.ISIJINT-2020-624
10.1002/jrs.1569
10.2298/JMMB190504045K
10.1002/srin.199805546
10.1007/s11663-015-0303-4
10.1016/j.jeurceramsoc.2009.11.001
10.1002/srin.202000438
10.1515/gps-2020-0063
10.1111/jace.15216
10.1179/1743281211Y.0000000078
10.2138/rmg.2013.78.13
10.3390/met11030417
10.3390/met11081160
10.1515/gps-2016-0193
10.1016/0022-3093(94)90397-2
10.1016/j.jnoncrysol.2015.04.017
10.1007/s12666-021-02261-2
10.1007/s11663-019-01699-6
10.2355/isijinternational.ISIJINT-2021-128
ContentType Journal Article
Copyright 2023 The Iron and Steel Institute of Japan.
Copyright_xml – notice: 2023 The Iron and Steel Institute of Japan.
DBID AAYXX
CITATION
DOI 10.2355/isijinternational.ISIJINT-2022-249
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1347-5460
EndPage 73
ExternalDocumentID 10_2355_isijinternational_ISIJINT_2022_249
article_isijinternational_63_1_63_ISIJINT_2022_249_article_char_en
GroupedDBID 5GY
AAFWJ
ABEFU
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
CS3
DU5
EBS
EJD
GROUPED_DOAJ
HH5
JSF
JSH
KQ8
OK1
RJT
RZJ
SJN
XJN
~02
AAYXX
CITATION
ID FETCH-LOGICAL-c473t-c992221ba095d622665da3c50ba2dc95384b06450deae09ae2f67846e201afe83
ISSN 0915-1559
IngestDate Fri Aug 23 00:33:20 EDT 2024
Thu Aug 17 20:29:52 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c473t-c992221ba095d622665da3c50ba2dc95384b06450deae09ae2f67846e201afe83
ORCID 0000-0001-7950-3089
OpenAccessLink http://dx.doi.org/10.2355/isijinternational.ISIJINT-2022-249
PageCount 11
ParticipantIDs crossref_primary_10_2355_isijinternational_ISIJINT_2022_249
jstage_primary_article_isijinternational_63_1_63_ISIJINT_2022_249_article_char_en
PublicationCentury 2000
PublicationDate 2023/01/15
PublicationDateYYYYMMDD 2023-01-15
PublicationDate_xml – month: 01
  year: 2023
  text: 2023/01/15
  day: 15
PublicationDecade 2020
PublicationTitle ISIJ International
PublicationTitleAlternate ISIJ Int.
PublicationYear 2023
Publisher The Iron and Steel Institute of Japan
Publisher_xml – name: The Iron and Steel Institute of Japan
References 20) W. Yang, J. Yang, Y. Shi, Z. Yang, F. Gao, R. Zhang and H. Sun: Metals, 11 (2021), 417. https://doi.org/10.3390/met11030417
7) K. Brunelli, P. Cerchier, R. Bonora and M. Dabalà: Green Process. Synth., 6 (2017), 325. https://doi.org/10.1515/gps-2016-0193
33) Z. Wang, Y. Sun, S. Sridhar, M. Zhang, M. Guo and Z. Zhang: Metall. Mater. Trans. B, 46 (2015), 537. https://doi.org/10.1007/s11663-015-0303-4
32) Y. Sun, Z. Zhang, L. Liu and X. Wang: J. Non-Cryst. Solids, 420 (2015), 26. https://doi.org/10.1016/j.jnoncrysol.2015.04.017
13) B. Liu, Z. Zhang, L. Sun, Z. Yang and L. Feng: Green Process. Synth., 9 (2020), 664. https://doi.org/10.1515/gps-2020-0063
40) Y. M. Moustafa, K. El-Egili, H. Doweidar and I. Abbas: Physica B, 353 (2004), 82. https://doi.org/10.1016/j.physb.2004.09.004
49) C. Liu, R. Zhang, X. Zhao, J. Jia and Y. Min: J. Non-Cryst. Solids, 557 (2021), 120579. https://doi.org/10.1016/j.jnoncrysol.2020.120579
2) E. Keskinkilic: J. Min. Metall. B, 56 (2020), 1. https://doi.org/10.2298/JMMB190504045K
14) M. I. Martín, F. A. López and J. M. Torralba: Ironmaking Steelmaking, 39 (2012), 155. https://doi.org/10.1179/1743281211Y.0000000078
16) G. B. Sun, X. D. Xiang, A. J. Deng, C. H. Li and Z. R. Wang: Iron Steel, 54 (2019), 96 (in Chinese). https://doi.org/10.13228/j.boyuan.issn0449-749x.20180491
10) W. F. Li, R. Zhu, C. Feng, B. C. Han and G. S. Wei: J. Iron Steel Res. Int., 28 (2021), 1105. https://doi.org/10.1007/s42243-020-00550-6
12) G. Iwase and K. Okumura: ISIJ Int., 61 (2021), 2483. https://doi.org/10.2355/isijinternational.ISIJINT-2021-128
9) N. Kikuchi: ISIJ Int., 60 (2020), 2731. https://doi.org/10.2355/isijinternational.ISIJINT-2020-186
45) R. Zhang, J. X. Jia, C. J. Liu and Y. Min: J. Northeast. Univ. (Nat. Sci.), 42 (2021), 646 (in Chinese). https://doi.org/10.12068/j.issn.1005-3026.2021.05.006
24) D. R. Neuville, D. de Ligny and G. S. Henderson: Rev. Mineral. Geochem., 78 (2014), 509. https://doi.org/10.2138/rmg.2013.78.13
43) M. Sajid, C. Bai, M. Aamir, Z. You, Z. Yan and X. Lv: ISIJ Int., 59 (2019), 1153. https://doi.org/10.2355/isijinternational.ISIJINT-2018-453
5) F. He and L. Zhang: J. Process Control, 66 (2018), 51. https://doi.org/10.1016/j.jprocont.2018.03.005
17) J. J. Pak, E. J. Kim and W. G. Jung: Steel Res., 69 (1998), 255. https://doi.org/10.1002/srin.199805546
35) B. O. Fowler, M. Markovic and W. E. Brown: Chem. Mater., 5 (1993), 1417. https://doi.org/10.1021/cm00034a009
37) A. M. B. Silva, R. N. Correia, J. M. M. Oliveira and M. H. V. Fernandes: J. Eur. Ceram. Soc., 30 (2010), 1253. https://doi.org/10.1016/j.jeurceramsoc.2009.11.001
36) J. Ding, Y. Chen, W. Chen, L. Hu and G. Boulon: Chin. Opt. Lett., 10 (2012), 071602. https://doi.org/10.3788/COL201210.071602
38) B. O. Mysen, F. J. Ryerson and D. Virgo: Am. Mineral., 66 (1981), 106.
22) X. Han, C. G. Zhou, J. Li, C. B. Shi, J. P. Ge and K. S. Cai: J. Iron Steel Res., 28 (2016), 40 (in Chinese). https://doi.org/10.13228/j.boyuan.issn1001-0963.20150287
26) B. O. Mysen: Am. Mineral., 75 (1990), 120.
4) H. Xue, J. Li, Y. Xia, Y. Wan, L. Chen and C. Lv: Trans. Indian Inst. Met., 74 (2021), 1655. https://doi.org/10.1007/s12666-021-02261-2
25) M. Markovic, B. O. Fowler and W. E. Brown: Chem. Mater., 5 (1993), 1406. https://doi.org/10.1021/cm00034a008
18) W. Yang, J. Yang, Y. Shi, Z. Yang, F. Gao, R. Zhang and G. Ye: Steel Res. Int., 92 (2021), 2000438. https://doi.org/10.1002/srin.202000438
29) R. Zhang, Y. Min, Y. Wang, X. Zhao and C. Liu: ISIJ Int., 60 (2020), 212. https://doi.org/10.2355/isijinternational.ISIJINT-2019-413
47) J. S. Choi and D. J. Min: Metall. Mater. Trans. B, 50 (2019), 2758. https://doi.org/10.1007/s11663-019-01699-6
42) O. Jeznach, M. Gajc, K. Korzeb, A. Kłos, K. Orliński, R. Stępień, M. Krok-Borkowicz, Ł. Rumian, K. Pietryga, K. Reczyńska, E. Pamuła and D. A. Pawlak: J. Am. Ceram. Soc., 101 (2018), 602. https://doi.org/10.1111/jace.15216
30) R. Iordanova, V. Dimitrov, Y. Dimitriev and D. Klissurski: J. Non-Cryst. Solids, 180 (1994), 58. https://doi.org/10.1016/0022-3093(94)90397-2
48) P. Y. Shih: Mater. Chem. Phys., 80 (2003), 299. https://doi.org/10.1016/S0254-0584(02)00516-3
19) H. Xue, J. Li, Y. Xia, Y. Wan, L. Chen and C. Lv: Metals, 11 (2021), 216. https://doi.org/10.3390/met11020216
44) G. Qian, Z. Wang, X. Gong, J. Cao and W. Ma: Silicon, 12 (2020), 171. https://doi.org/10.1007/s12633-019-00111-x
21) Z. J. Wang, Q. F. Shu, S. Sridhar, M. Zhang, M. Guo and Z. T. Zhang: Metall. Mater. Trans. B, 46 (2015), 758. https://doi.org/10.1007/s11663-014-0270-1
6) W. Xiong and J. Wang: Appl. Mech. Mater., 291–294 (2013), 2621.
39) C. C. Lin, S. F. Chen, K. S. Leung and P. Shen: J. Mater. Sci.: Mater. Med., 23 (2012), 245. https://doi.org/10.1007/s10856-011-4504-3
46) Z. Luo, C. Qin, H. Liang, T. Liu and A. Lu: J. Non-Cryst. Solids, 512 (2019), 132. https://doi.org/10.1016/j.jnoncrysol.2019.02.020
15) H. Zhou, F. M. Zhang, D. G. Zhang and L. Y. Zhang: Adv. Mater. Res., 610–613 (2013), 1422. https://doi.org/10.4028/www.scientific.net/AMR.610-613.1422
3) M. Wang and W. Yang: Ironmaking Steelmaking, 47 (2020), 1127. https://doi.org/10.1080/03019233.2019.1673546
23) X. He, X. Liu, B. Nie and D. Song: Fuel, 206 (2017), 555. https://doi.org/10.1016/j.fuel.2017.05.101
28) C. Dayanand, G. Bhikshamaiah, V. J. Tyagaraju, M. Salagram and A. S. R. K. Murthy: J. Mater. Sci., 31 (1996), 1945. https://doi.org/10.1007/BF00356615
50) M. K. Oh, T. S. Kim and J. H. Park: Metall. Mater. Trans. B, 51 (2020), 3028. https://doi.org/10.1007/s11663-020-01957-y
31) G. Lucazeau, N. Sergent, T. Pagnier, A. Shaula, V. Kharton and F. M. B. Marques: J. Raman Spectrosc., 38 (2007), 21. https://doi.org/10.1002/jrs.1569
27) P. McMillan: Am. Mineral., 69 (1984), 622.
8) Z. Chen,W. Ma, K. Wei, J. Wu, S. Li, K. Xie and G. Lv: Appl. Therm. Eng., 112 (2017), 226. https://doi.org/10.1016/j.applthermaleng.2016.10.087
1) B. Zhu, M. Zhu, J. Luo, X. Qiu, Y. Wang, Q. Zhang, R. Li and B. Xie: Metals, 11 (2021), 1160. https://doi.org/10.3390/met11081160
41) J. Bai, J. Hsu, P. Sandineni, C. W. Kim and R. K. Brow: J. Non-Cryst. Solids, 510 (2019), 121. https://doi.org/10.1016/j.jnoncrysol.2019.01.016
34) J. D. Frantza and B. O. Mysen: Chem. Geol., 121 (1995), 155. https://doi.org/10.1016/0009-2541(94)00127-T
11) X. Li, P. Tang, J. Jiang, Q. Fu and G. Wen: ISIJ Int., 61 (2021), 763. https://doi.org/10.2355/isijinternational.ISIJINT-2020-624
44
45
46
47
48
49
50
10
11
12
13
14
15
16
17
18
19
1
2
3
4
5
6
7
8
9
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
References_xml – ident: 49
  doi: 10.1016/j.jnoncrysol.2020.120579
– ident: 15
  doi: 10.4028/www.scientific.net/AMR.610-613.1422
– ident: 23
  doi: 10.1016/j.fuel.2017.05.101
– ident: 34
  doi: 10.1016/0009-2541(94)00127-T
– ident: 29
  doi: 10.2355/isijinternational.ISIJINT-2019-413
– ident: 39
  doi: 10.1007/s10856-011-4504-3
– ident: 8
  doi: 10.1016/j.applthermaleng.2016.10.087
– ident: 44
  doi: 10.1007/s12633-019-00111-x
– ident: 16
– ident: 21
  doi: 10.1007/s11663-014-0270-1
– ident: 48
  doi: 10.1016/S0254-0584(02)00516-3
– ident: 45
– ident: 46
  doi: 10.1016/j.jnoncrysol.2019.02.020
– ident: 26
– ident: 28
  doi: 10.1007/BF00356615
– ident: 22
– ident: 9
  doi: 10.2355/isijinternational.ISIJINT-2020-186
– ident: 5
  doi: 10.1016/j.jprocont.2018.03.005
– ident: 38
– ident: 36
  doi: 10.3788/COL201210.071602
– ident: 6
  doi: 10.4028/www.scientific.net/AMM.291-294.2621
– ident: 25
  doi: 10.1021/cm00034a008
– ident: 43
  doi: 10.2355/isijinternational.ISIJINT-2018-453
– ident: 50
  doi: 10.1007/s11663-020-01957-y
– ident: 10
  doi: 10.1007/s42243-020-00550-6
– ident: 40
  doi: 10.1016/j.physb.2004.09.004
– ident: 27
– ident: 19
  doi: 10.3390/met11020216
– ident: 35
  doi: 10.1021/cm00034a009
– ident: 41
  doi: 10.1016/j.jnoncrysol.2019.01.016
– ident: 3
  doi: 10.1080/03019233.2019.1673546
– ident: 11
  doi: 10.2355/isijinternational.ISIJINT-2020-624
– ident: 31
  doi: 10.1002/jrs.1569
– ident: 2
  doi: 10.2298/JMMB190504045K
– ident: 17
  doi: 10.1002/srin.199805546
– ident: 33
  doi: 10.1007/s11663-015-0303-4
– ident: 37
  doi: 10.1016/j.jeurceramsoc.2009.11.001
– ident: 18
  doi: 10.1002/srin.202000438
– ident: 13
  doi: 10.1515/gps-2020-0063
– ident: 42
  doi: 10.1111/jace.15216
– ident: 14
  doi: 10.1179/1743281211Y.0000000078
– ident: 24
  doi: 10.2138/rmg.2013.78.13
– ident: 20
  doi: 10.3390/met11030417
– ident: 1
  doi: 10.3390/met11081160
– ident: 7
  doi: 10.1515/gps-2016-0193
– ident: 30
  doi: 10.1016/0022-3093(94)90397-2
– ident: 32
  doi: 10.1016/j.jnoncrysol.2015.04.017
– ident: 4
  doi: 10.1007/s12666-021-02261-2
– ident: 47
  doi: 10.1007/s11663-019-01699-6
– ident: 12
  doi: 10.2355/isijinternational.ISIJINT-2021-128
SSID ssib002484313
ssj0027274
Score 2.4303334
Snippet In order to make better use of converter dust to achieve effective pre-dephosphorization of molten iron, the influence of the addition ratio of dedusting ash...
SourceID crossref
jstage
SourceType Aggregation Database
Publisher
StartPage 63
SubjectTerms dedusting ash
dephosphorization
hot metal
oxide scale
Raman spectral
Title Effect of Converter Dust on Phosphorus Migration Behavior in Molten Iron
URI https://www.jstage.jst.go.jp/article/isijinternational/63/1/63_ISIJINT-2022-249/_article/-char/en
Volume 63
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX ISIJ International, 2023/01/15, Vol.63(1), pp.63-73
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Na9swFBdZN8Z2GO0-WNut6LBTg7pYlu2Inco-SDJaGppCdzKyLScuwy6JfenfsD9671mynWaFdttFBAU9ZL2f3peengj54MdDpRSXLJGux0QcpyyKHM20HyQABydI6yJJJ6f-6EJMLr3LXu_XWtZSVUZH8c2d90r-havQB3zFW7J_wdmWKHTAb-AvtMBhaB_EY1t6GDMqMHkcszP7X6pViScAZ4tidb0oltWqf5LNLZ9tNURMQYfd_BPs5f54aRljLdTx-XhSF5Fo44RdbLmo7Al9MVdW49WZAUZ0TUELzouuf1InCvzIupi9DU0vqkVlQWnjDRyzrZi5cdkEDh2P4WGm0SBGbLoiYJ4wLwM0ctUKrnX8GCFp_zDq1jxksinIOZhBsPrZKru69cVHuAjj0xnAAJxoLmSnxpqj-w3t1uYcgreDVMM_aIaWZog0Q6D5iDzmgFNMEPw-XXfOhmBtuZ07z02N72Y9npJDO_OP98_7lhn05Ao8gSaLsDZsZtvkhfVI6LGB1w7p6fwleb5Wp_IVGRmg0SKlLdAoAo0WOe2ARlug0QZoNMupARpFoL0mF9--zj6PmH2Cg8UicEsWY9li7kQKLPHEB1Pd9xLlxt4gUjyJJWhLEWHFw0GilR5IpXkK1o_wNdiVKtVD9w3ZyotcvyXUGaZSaFdxkAxCOmnkJYEvBzp1sBKGVLvkU7Mi4bWptBI-nGe7ZGoWsR1rd-UdY303dLDZpNEOwQuPIF_2_mtG--RZt33eka1yWen3YMCW0UEd-Dmo0fUbEVChLw
link.rule.ids 315,783,787,867,27938,27939
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+Converter+Dust+on+Phosphorus+Migration+Behavior+in+Molten+Iron&rft.jtitle=ISIJ+international&rft.au=Zhou%2C+Chaogang&rft.au=Chen%2C+Qinggong&rft.au=Ji%2C+Yi&rft.au=Wang%2C+Shuhuan&rft.date=2023-01-15&rft.issn=0915-1559&rft.eissn=1347-5460&rft.volume=63&rft.issue=1&rft.spage=63&rft.epage=73&rft_id=info:doi/10.2355%2Fisijinternational.ISIJINT-2022-249&rft.externalDBID=n%2Fa&rft.externalDocID=10_2355_isijinternational_ISIJINT_2022_249
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0915-1559&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0915-1559&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0915-1559&client=summon