Effect of Converter Dust on Phosphorus Migration Behavior in Molten Iron
In order to make better use of converter dust to achieve effective pre-dephosphorization of molten iron, the influence of the addition ratio of dedusting ash and oxide scale on dephosphorization of molten iron was compared, so as to reveal the reasons for the decrease of dephosphorization rate cause...
Saved in:
Published in | ISIJ International Vol. 63; no. 1; pp. 63 - 73 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
The Iron and Steel Institute of Japan
15.01.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In order to make better use of converter dust to achieve effective pre-dephosphorization of molten iron, the influence of the addition ratio of dedusting ash and oxide scale on dephosphorization of molten iron was compared, so as to reveal the reasons for the decrease of dephosphorization rate caused by dust. Through theoretical analysis, XRD, SEM-EDS, Raman and infrared spectroscopy, the influence of mineral phase structure, polymerization degree and phosphorus structure of pre-dephosphorization final slag on pre-dephosphorization was studied. The results show that when the proportion of dedusting ash in the oxidant increases from 0 to 25%, the dephosphorization rate decreases from 50.8% to 38.71%, and the dephosphorization rate increases to 50% after adding fluorite. The increase in the proportion of dedusting ash will lead to the decrease of phosphorus-rich phase and the increase of RO phase and iron-rich phase, which will affect the dephosphorization effect. When the dedusting ash ratio increased from 0% to 25%, the proportion of Q0(Si), Q0(P), Q1(P) and [FeO6]9− structures in the pre-dephosphorization final slag increased, which was beneficial to the diffusion in the slag, but unfavorable to the migration of phosphorus. In addition, by adding fluorite in the experiment with 25% dedusting ash, it was found that the molar fractions of Q1(Si), Q3(Si), Q0(P) and Q2(P) in the pre-dephosphorization final slag increased, and the phosphorus migrating into the silicon-oxygen network structure gradually increased. This study can provide reference for iron and steel enterprises to realize the secondary utilization of dedusting ash. |
---|---|
AbstractList | In order to make better use of converter dust to achieve effective pre-dephosphorization of molten iron, the influence of the addition ratio of dedusting ash and oxide scale on dephosphorization of molten iron was compared, so as to reveal the reasons for the decrease of dephosphorization rate caused by dust. Through theoretical analysis, XRD, SEM-EDS, Raman and infrared spectroscopy, the influence of mineral phase structure, polymerization degree and phosphorus structure of pre-dephosphorization final slag on pre-dephosphorization was studied. The results show that when the proportion of dedusting ash in the oxidant increases from 0 to 25%, the dephosphorization rate decreases from 50.8% to 38.71%, and the dephosphorization rate increases to 50% after adding fluorite. The increase in the proportion of dedusting ash will lead to the decrease of phosphorus-rich phase and the increase of RO phase and iron-rich phase, which will affect the dephosphorization effect. When the dedusting ash ratio increased from 0% to 25%, the proportion of Q0(Si), Q0(P), Q1(P) and [FeO6]9− structures in the pre-dephosphorization final slag increased, which was beneficial to the diffusion in the slag, but unfavorable to the migration of phosphorus. In addition, by adding fluorite in the experiment with 25% dedusting ash, it was found that the molar fractions of Q1(Si), Q3(Si), Q0(P) and Q2(P) in the pre-dephosphorization final slag increased, and the phosphorus migrating into the silicon-oxygen network structure gradually increased. This study can provide reference for iron and steel enterprises to realize the secondary utilization of dedusting ash. |
ArticleNumber | ISIJINT-2022-249 |
Author | Ji, Yi Zhao, Dingguo Zhou, Chaogang Ai, Liqun Chen, Qinggong Wang, Shuhuan Shi, Dongsheng Shi, Xiangdong |
Author_xml | – sequence: 1 orcidid: 0000-0001-7950-3089 fullname: Zhou, Chaogang organization: College of Metallurgy and Energy, North China University of Science and Technology – sequence: 2 fullname: Chen, Qinggong organization: College of Metallurgy and Energy, North China University of Science and Technology – sequence: 3 fullname: Ji, Yi organization: College of Metallurgy and Energy, North China University of Science and Technology – sequence: 4 fullname: Wang, Shuhuan organization: College of Metallurgy and Energy, North China University of Science and Technology – sequence: 5 fullname: Zhao, Dingguo organization: College of Metallurgy and Energy, North China University of Science and Technology – sequence: 6 fullname: Ai, Liqun organization: College of Metallurgy and Energy, North China University of Science and Technology – sequence: 7 fullname: Shi, Dongsheng organization: Manufacturing Department, Tangshan Wenfeng Special Steel Co., Ltd – sequence: 8 fullname: Shi, Xiangdong organization: Technical Quality Department of Tianjin Iron Works Co., Ltd |
BookMark | eNpt0F1LwzAUgOEgE5xz_yHXQmc-u-bSzekqmwpO8C6kabpm1GQkdeC_t3NjF-pNDgTOc-C9BD3nnQHgGqMRoZzf2Gg31rUmONVa71Qzyl_zx_xplRBESEKYOAN9TNk44SxFPdBHAvMEcy4uwDBGWyBEWMYopn0wn1WV0S30FZx6tzOhY-HdZ-x-HHypfdzWPnxGuLTr8HMNTkytdtYHaB1c-qY1DubBuytwXqkmmuFxDsDb_Ww1nSeL54d8ertINBvTNtFCEEJwoZDgZUpImvJSUc1RoUipBacZK1DKOCqNMkgoQ6p0nLHUEIRVZTI6AJODq4OPMZhKboP9UOFLYiT3eeSfPPKYR-7zyC5Ph7wfkE1s1dqcCBVaqxvzD5FSiffPb-q0omsVpHH0G5hCgys |
CitedBy_id | crossref_primary_10_1007_s11663_024_03011_7 crossref_primary_10_1007_s42243_024_01175_9 crossref_primary_10_2355_isijinternational_ISIJINT_2023_183 |
Cites_doi | 10.1016/j.jnoncrysol.2020.120579 10.4028/www.scientific.net/AMR.610-613.1422 10.1016/j.fuel.2017.05.101 10.1016/0009-2541(94)00127-T 10.2355/isijinternational.ISIJINT-2019-413 10.1007/s10856-011-4504-3 10.1016/j.applthermaleng.2016.10.087 10.1007/s12633-019-00111-x 10.1007/s11663-014-0270-1 10.1016/S0254-0584(02)00516-3 10.1016/j.jnoncrysol.2019.02.020 10.1007/BF00356615 10.2355/isijinternational.ISIJINT-2020-186 10.1016/j.jprocont.2018.03.005 10.3788/COL201210.071602 10.4028/www.scientific.net/AMM.291-294.2621 10.1021/cm00034a008 10.2355/isijinternational.ISIJINT-2018-453 10.1007/s11663-020-01957-y 10.1007/s42243-020-00550-6 10.1016/j.physb.2004.09.004 10.3390/met11020216 10.1021/cm00034a009 10.1016/j.jnoncrysol.2019.01.016 10.1080/03019233.2019.1673546 10.2355/isijinternational.ISIJINT-2020-624 10.1002/jrs.1569 10.2298/JMMB190504045K 10.1002/srin.199805546 10.1007/s11663-015-0303-4 10.1016/j.jeurceramsoc.2009.11.001 10.1002/srin.202000438 10.1515/gps-2020-0063 10.1111/jace.15216 10.1179/1743281211Y.0000000078 10.2138/rmg.2013.78.13 10.3390/met11030417 10.3390/met11081160 10.1515/gps-2016-0193 10.1016/0022-3093(94)90397-2 10.1016/j.jnoncrysol.2015.04.017 10.1007/s12666-021-02261-2 10.1007/s11663-019-01699-6 10.2355/isijinternational.ISIJINT-2021-128 |
ContentType | Journal Article |
Copyright | 2023 The Iron and Steel Institute of Japan. |
Copyright_xml | – notice: 2023 The Iron and Steel Institute of Japan. |
DBID | AAYXX CITATION |
DOI | 10.2355/isijinternational.ISIJINT-2022-249 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1347-5460 |
EndPage | 73 |
ExternalDocumentID | 10_2355_isijinternational_ISIJINT_2022_249 article_isijinternational_63_1_63_ISIJINT_2022_249_article_char_en |
GroupedDBID | 5GY AAFWJ ABEFU AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS CS3 DU5 EBS EJD GROUPED_DOAJ HH5 JSF JSH KQ8 OK1 RJT RZJ SJN XJN ~02 AAYXX CITATION |
ID | FETCH-LOGICAL-c473t-c992221ba095d622665da3c50ba2dc95384b06450deae09ae2f67846e201afe83 |
ISSN | 0915-1559 |
IngestDate | Fri Aug 23 00:33:20 EDT 2024 Thu Aug 17 20:29:52 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c473t-c992221ba095d622665da3c50ba2dc95384b06450deae09ae2f67846e201afe83 |
ORCID | 0000-0001-7950-3089 |
OpenAccessLink | http://dx.doi.org/10.2355/isijinternational.ISIJINT-2022-249 |
PageCount | 11 |
ParticipantIDs | crossref_primary_10_2355_isijinternational_ISIJINT_2022_249 jstage_primary_article_isijinternational_63_1_63_ISIJINT_2022_249_article_char_en |
PublicationCentury | 2000 |
PublicationDate | 2023/01/15 |
PublicationDateYYYYMMDD | 2023-01-15 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023/01/15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | ISIJ International |
PublicationTitleAlternate | ISIJ Int. |
PublicationYear | 2023 |
Publisher | The Iron and Steel Institute of Japan |
Publisher_xml | – name: The Iron and Steel Institute of Japan |
References | 20) W. Yang, J. Yang, Y. Shi, Z. Yang, F. Gao, R. Zhang and H. Sun: Metals, 11 (2021), 417. https://doi.org/10.3390/met11030417 7) K. Brunelli, P. Cerchier, R. Bonora and M. Dabalà: Green Process. Synth., 6 (2017), 325. https://doi.org/10.1515/gps-2016-0193 33) Z. Wang, Y. Sun, S. Sridhar, M. Zhang, M. Guo and Z. Zhang: Metall. Mater. Trans. B, 46 (2015), 537. https://doi.org/10.1007/s11663-015-0303-4 32) Y. Sun, Z. Zhang, L. Liu and X. Wang: J. Non-Cryst. Solids, 420 (2015), 26. https://doi.org/10.1016/j.jnoncrysol.2015.04.017 13) B. Liu, Z. Zhang, L. Sun, Z. Yang and L. Feng: Green Process. Synth., 9 (2020), 664. https://doi.org/10.1515/gps-2020-0063 40) Y. M. Moustafa, K. El-Egili, H. Doweidar and I. Abbas: Physica B, 353 (2004), 82. https://doi.org/10.1016/j.physb.2004.09.004 49) C. Liu, R. Zhang, X. Zhao, J. Jia and Y. Min: J. Non-Cryst. Solids, 557 (2021), 120579. https://doi.org/10.1016/j.jnoncrysol.2020.120579 2) E. Keskinkilic: J. Min. Metall. B, 56 (2020), 1. https://doi.org/10.2298/JMMB190504045K 14) M. I. Martín, F. A. López and J. M. Torralba: Ironmaking Steelmaking, 39 (2012), 155. https://doi.org/10.1179/1743281211Y.0000000078 16) G. B. Sun, X. D. Xiang, A. J. Deng, C. H. Li and Z. R. Wang: Iron Steel, 54 (2019), 96 (in Chinese). https://doi.org/10.13228/j.boyuan.issn0449-749x.20180491 10) W. F. Li, R. Zhu, C. Feng, B. C. Han and G. S. Wei: J. Iron Steel Res. Int., 28 (2021), 1105. https://doi.org/10.1007/s42243-020-00550-6 12) G. Iwase and K. Okumura: ISIJ Int., 61 (2021), 2483. https://doi.org/10.2355/isijinternational.ISIJINT-2021-128 9) N. Kikuchi: ISIJ Int., 60 (2020), 2731. https://doi.org/10.2355/isijinternational.ISIJINT-2020-186 45) R. Zhang, J. X. Jia, C. J. Liu and Y. Min: J. Northeast. Univ. (Nat. Sci.), 42 (2021), 646 (in Chinese). https://doi.org/10.12068/j.issn.1005-3026.2021.05.006 24) D. R. Neuville, D. de Ligny and G. S. Henderson: Rev. Mineral. Geochem., 78 (2014), 509. https://doi.org/10.2138/rmg.2013.78.13 43) M. Sajid, C. Bai, M. Aamir, Z. You, Z. Yan and X. Lv: ISIJ Int., 59 (2019), 1153. https://doi.org/10.2355/isijinternational.ISIJINT-2018-453 5) F. He and L. Zhang: J. Process Control, 66 (2018), 51. https://doi.org/10.1016/j.jprocont.2018.03.005 17) J. J. Pak, E. J. Kim and W. G. Jung: Steel Res., 69 (1998), 255. https://doi.org/10.1002/srin.199805546 35) B. O. Fowler, M. Markovic and W. E. Brown: Chem. Mater., 5 (1993), 1417. https://doi.org/10.1021/cm00034a009 37) A. M. B. Silva, R. N. Correia, J. M. M. Oliveira and M. H. V. Fernandes: J. Eur. Ceram. Soc., 30 (2010), 1253. https://doi.org/10.1016/j.jeurceramsoc.2009.11.001 36) J. Ding, Y. Chen, W. Chen, L. Hu and G. Boulon: Chin. Opt. Lett., 10 (2012), 071602. https://doi.org/10.3788/COL201210.071602 38) B. O. Mysen, F. J. Ryerson and D. Virgo: Am. Mineral., 66 (1981), 106. 22) X. Han, C. G. Zhou, J. Li, C. B. Shi, J. P. Ge and K. S. Cai: J. Iron Steel Res., 28 (2016), 40 (in Chinese). https://doi.org/10.13228/j.boyuan.issn1001-0963.20150287 26) B. O. Mysen: Am. Mineral., 75 (1990), 120. 4) H. Xue, J. Li, Y. Xia, Y. Wan, L. Chen and C. Lv: Trans. Indian Inst. Met., 74 (2021), 1655. https://doi.org/10.1007/s12666-021-02261-2 25) M. Markovic, B. O. Fowler and W. E. Brown: Chem. Mater., 5 (1993), 1406. https://doi.org/10.1021/cm00034a008 18) W. Yang, J. Yang, Y. Shi, Z. Yang, F. Gao, R. Zhang and G. Ye: Steel Res. Int., 92 (2021), 2000438. https://doi.org/10.1002/srin.202000438 29) R. Zhang, Y. Min, Y. Wang, X. Zhao and C. Liu: ISIJ Int., 60 (2020), 212. https://doi.org/10.2355/isijinternational.ISIJINT-2019-413 47) J. S. Choi and D. J. Min: Metall. Mater. Trans. B, 50 (2019), 2758. https://doi.org/10.1007/s11663-019-01699-6 42) O. Jeznach, M. Gajc, K. Korzeb, A. Kłos, K. Orliński, R. Stępień, M. Krok-Borkowicz, Ł. Rumian, K. Pietryga, K. Reczyńska, E. Pamuła and D. A. Pawlak: J. Am. Ceram. Soc., 101 (2018), 602. https://doi.org/10.1111/jace.15216 30) R. Iordanova, V. Dimitrov, Y. Dimitriev and D. Klissurski: J. Non-Cryst. Solids, 180 (1994), 58. https://doi.org/10.1016/0022-3093(94)90397-2 48) P. Y. Shih: Mater. Chem. Phys., 80 (2003), 299. https://doi.org/10.1016/S0254-0584(02)00516-3 19) H. Xue, J. Li, Y. Xia, Y. Wan, L. Chen and C. Lv: Metals, 11 (2021), 216. https://doi.org/10.3390/met11020216 44) G. Qian, Z. Wang, X. Gong, J. Cao and W. Ma: Silicon, 12 (2020), 171. https://doi.org/10.1007/s12633-019-00111-x 21) Z. J. Wang, Q. F. Shu, S. Sridhar, M. Zhang, M. Guo and Z. T. Zhang: Metall. Mater. Trans. B, 46 (2015), 758. https://doi.org/10.1007/s11663-014-0270-1 6) W. Xiong and J. Wang: Appl. Mech. Mater., 291–294 (2013), 2621. 39) C. C. Lin, S. F. Chen, K. S. Leung and P. Shen: J. Mater. Sci.: Mater. Med., 23 (2012), 245. https://doi.org/10.1007/s10856-011-4504-3 46) Z. Luo, C. Qin, H. Liang, T. Liu and A. Lu: J. Non-Cryst. Solids, 512 (2019), 132. https://doi.org/10.1016/j.jnoncrysol.2019.02.020 15) H. Zhou, F. M. Zhang, D. G. Zhang and L. Y. Zhang: Adv. Mater. Res., 610–613 (2013), 1422. https://doi.org/10.4028/www.scientific.net/AMR.610-613.1422 3) M. Wang and W. Yang: Ironmaking Steelmaking, 47 (2020), 1127. https://doi.org/10.1080/03019233.2019.1673546 23) X. He, X. Liu, B. Nie and D. Song: Fuel, 206 (2017), 555. https://doi.org/10.1016/j.fuel.2017.05.101 28) C. Dayanand, G. Bhikshamaiah, V. J. Tyagaraju, M. Salagram and A. S. R. K. Murthy: J. Mater. Sci., 31 (1996), 1945. https://doi.org/10.1007/BF00356615 50) M. K. Oh, T. S. Kim and J. H. Park: Metall. Mater. Trans. B, 51 (2020), 3028. https://doi.org/10.1007/s11663-020-01957-y 31) G. Lucazeau, N. Sergent, T. Pagnier, A. Shaula, V. Kharton and F. M. B. Marques: J. Raman Spectrosc., 38 (2007), 21. https://doi.org/10.1002/jrs.1569 27) P. McMillan: Am. Mineral., 69 (1984), 622. 8) Z. Chen,W. Ma, K. Wei, J. Wu, S. Li, K. Xie and G. Lv: Appl. Therm. Eng., 112 (2017), 226. https://doi.org/10.1016/j.applthermaleng.2016.10.087 1) B. Zhu, M. Zhu, J. Luo, X. Qiu, Y. Wang, Q. Zhang, R. Li and B. Xie: Metals, 11 (2021), 1160. https://doi.org/10.3390/met11081160 41) J. Bai, J. Hsu, P. Sandineni, C. W. Kim and R. K. Brow: J. Non-Cryst. Solids, 510 (2019), 121. https://doi.org/10.1016/j.jnoncrysol.2019.01.016 34) J. D. Frantza and B. O. Mysen: Chem. Geol., 121 (1995), 155. https://doi.org/10.1016/0009-2541(94)00127-T 11) X. Li, P. Tang, J. Jiang, Q. Fu and G. Wen: ISIJ Int., 61 (2021), 763. https://doi.org/10.2355/isijinternational.ISIJINT-2020-624 44 45 46 47 48 49 50 10 11 12 13 14 15 16 17 18 19 1 2 3 4 5 6 7 8 9 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
References_xml | – ident: 49 doi: 10.1016/j.jnoncrysol.2020.120579 – ident: 15 doi: 10.4028/www.scientific.net/AMR.610-613.1422 – ident: 23 doi: 10.1016/j.fuel.2017.05.101 – ident: 34 doi: 10.1016/0009-2541(94)00127-T – ident: 29 doi: 10.2355/isijinternational.ISIJINT-2019-413 – ident: 39 doi: 10.1007/s10856-011-4504-3 – ident: 8 doi: 10.1016/j.applthermaleng.2016.10.087 – ident: 44 doi: 10.1007/s12633-019-00111-x – ident: 16 – ident: 21 doi: 10.1007/s11663-014-0270-1 – ident: 48 doi: 10.1016/S0254-0584(02)00516-3 – ident: 45 – ident: 46 doi: 10.1016/j.jnoncrysol.2019.02.020 – ident: 26 – ident: 28 doi: 10.1007/BF00356615 – ident: 22 – ident: 9 doi: 10.2355/isijinternational.ISIJINT-2020-186 – ident: 5 doi: 10.1016/j.jprocont.2018.03.005 – ident: 38 – ident: 36 doi: 10.3788/COL201210.071602 – ident: 6 doi: 10.4028/www.scientific.net/AMM.291-294.2621 – ident: 25 doi: 10.1021/cm00034a008 – ident: 43 doi: 10.2355/isijinternational.ISIJINT-2018-453 – ident: 50 doi: 10.1007/s11663-020-01957-y – ident: 10 doi: 10.1007/s42243-020-00550-6 – ident: 40 doi: 10.1016/j.physb.2004.09.004 – ident: 27 – ident: 19 doi: 10.3390/met11020216 – ident: 35 doi: 10.1021/cm00034a009 – ident: 41 doi: 10.1016/j.jnoncrysol.2019.01.016 – ident: 3 doi: 10.1080/03019233.2019.1673546 – ident: 11 doi: 10.2355/isijinternational.ISIJINT-2020-624 – ident: 31 doi: 10.1002/jrs.1569 – ident: 2 doi: 10.2298/JMMB190504045K – ident: 17 doi: 10.1002/srin.199805546 – ident: 33 doi: 10.1007/s11663-015-0303-4 – ident: 37 doi: 10.1016/j.jeurceramsoc.2009.11.001 – ident: 18 doi: 10.1002/srin.202000438 – ident: 13 doi: 10.1515/gps-2020-0063 – ident: 42 doi: 10.1111/jace.15216 – ident: 14 doi: 10.1179/1743281211Y.0000000078 – ident: 24 doi: 10.2138/rmg.2013.78.13 – ident: 20 doi: 10.3390/met11030417 – ident: 1 doi: 10.3390/met11081160 – ident: 7 doi: 10.1515/gps-2016-0193 – ident: 30 doi: 10.1016/0022-3093(94)90397-2 – ident: 32 doi: 10.1016/j.jnoncrysol.2015.04.017 – ident: 4 doi: 10.1007/s12666-021-02261-2 – ident: 47 doi: 10.1007/s11663-019-01699-6 – ident: 12 doi: 10.2355/isijinternational.ISIJINT-2021-128 |
SSID | ssib002484313 ssj0027274 |
Score | 2.4303334 |
Snippet | In order to make better use of converter dust to achieve effective pre-dephosphorization of molten iron, the influence of the addition ratio of dedusting ash... |
SourceID | crossref jstage |
SourceType | Aggregation Database Publisher |
StartPage | 63 |
SubjectTerms | dedusting ash dephosphorization hot metal oxide scale Raman spectral |
Title | Effect of Converter Dust on Phosphorus Migration Behavior in Molten Iron |
URI | https://www.jstage.jst.go.jp/article/isijinternational/63/1/63_ISIJINT-2022-249/_article/-char/en |
Volume | 63 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | ISIJ International, 2023/01/15, Vol.63(1), pp.63-73 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Na9swFBdZN8Z2GO0-WNut6LBTg7pYlu2Inco-SDJaGppCdzKyLScuwy6JfenfsD9671mynWaFdttFBAU9ZL2f3peengj54MdDpRSXLJGux0QcpyyKHM20HyQABydI6yJJJ6f-6EJMLr3LXu_XWtZSVUZH8c2d90r-havQB3zFW7J_wdmWKHTAb-AvtMBhaB_EY1t6GDMqMHkcszP7X6pViScAZ4tidb0oltWqf5LNLZ9tNURMQYfd_BPs5f54aRljLdTx-XhSF5Fo44RdbLmo7Al9MVdW49WZAUZ0TUELzouuf1InCvzIupi9DU0vqkVlQWnjDRyzrZi5cdkEDh2P4WGm0SBGbLoiYJ4wLwM0ctUKrnX8GCFp_zDq1jxksinIOZhBsPrZKru69cVHuAjj0xnAAJxoLmSnxpqj-w3t1uYcgreDVMM_aIaWZog0Q6D5iDzmgFNMEPw-XXfOhmBtuZ07z02N72Y9npJDO_OP98_7lhn05Ao8gSaLsDZsZtvkhfVI6LGB1w7p6fwleb5Wp_IVGRmg0SKlLdAoAo0WOe2ARlug0QZoNMupARpFoL0mF9--zj6PmH2Cg8UicEsWY9li7kQKLPHEB1Pd9xLlxt4gUjyJJWhLEWHFw0GilR5IpXkK1o_wNdiVKtVD9w3ZyotcvyXUGaZSaFdxkAxCOmnkJYEvBzp1sBKGVLvkU7Mi4bWptBI-nGe7ZGoWsR1rd-UdY303dLDZpNEOwQuPIF_2_mtG--RZt33eka1yWen3YMCW0UEd-Dmo0fUbEVChLw |
link.rule.ids | 315,783,787,867,27938,27939 |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+Converter+Dust+on+Phosphorus+Migration+Behavior+in+Molten+Iron&rft.jtitle=ISIJ+international&rft.au=Zhou%2C+Chaogang&rft.au=Chen%2C+Qinggong&rft.au=Ji%2C+Yi&rft.au=Wang%2C+Shuhuan&rft.date=2023-01-15&rft.issn=0915-1559&rft.eissn=1347-5460&rft.volume=63&rft.issue=1&rft.spage=63&rft.epage=73&rft_id=info:doi/10.2355%2Fisijinternational.ISIJINT-2022-249&rft.externalDBID=n%2Fa&rft.externalDocID=10_2355_isijinternational_ISIJINT_2022_249 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0915-1559&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0915-1559&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0915-1559&client=summon |