Plasma membrane changes during programmed cell deaths
Ruptured and intact plasma membranes are classically considered as hallmarks of necrotic and apoptotic cell death, respectively. As such, apoptosis is usually considered a non-inflammatory process while necrosis triggers in- flammation. Recent studies on necroptosis and pyroptosis, two types of prog...
Saved in:
Published in | Cell research Vol. 28; no. 1; pp. 9 - 21 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.01.2018
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Ruptured and intact plasma membranes are classically considered as hallmarks of necrotic and apoptotic cell death, respectively. As such, apoptosis is usually considered a non-inflammatory process while necrosis triggers in- flammation. Recent studies on necroptosis and pyroptosis, two types of programmed necrosis, revealed that plasma membrane rupture is mediated by MLKL channels during necroptosis but depends on non-selective gasdermin D (GSDMD) pores during pyroptosis. Importantly, the morphology of dying cells executed by MLKL channels can be distinguished from that executed by GSDMD pores. Interestingly, it was found recently that secondary necrosis of apoptotic cells, a previously believed non-regulated form of cell lysis that occurs after apoptosis, can be programmed and executed by plasma membrane pore formation like that of pyroptosis. In addition, pyroptosis is associated with pyroptotic bodies, which have some similarities to apoptotic bodies. Therefore, different cell death programs induce distinctive reshuffling processes of the plasma membrane. Given the fact that the nature of released intracellular contents plays a crucial role in dying/dead cell-induced immunogenicity, not only membrane rupture or integrity but also the nature of plasma membrane breakdown would determine the fate of a cell as well as its ability to elicit an immune response. In this review, we will discuss recent advances in the field of apoptosis, necroptosis and pyroptosis, with an emphasis on the mechanisms underlying plasma membrane changes observed on dying cells and their implication in cell death-elicited immunogenicity. |
---|---|
AbstractList | Ruptured and intact plasma membranes are classically considered as hallmarks of necrotic and apoptotic cell death, respectively. As such, apoptosis is usually considered a non-inflammatory process while necrosis triggers inflammation. Recent studies on necroptosis and pyroptosis, two types of programmed necrosis, revealed that plasma membrane rupture is mediated by MLKL channels during necroptosis but depends on non-selective gasdermin D (GSDMD) pores during pyroptosis. Importantly, the morphology of dying cells executed by MLKL channels can be distinguished from that executed by GSDMD pores. Interestingly, it was found recently that secondary necrosis of apoptotic cells, a previously believed non-regulated form of cell lysis that occurs after apoptosis, can be programmed and executed by plasma membrane pore formation like that of pyroptosis. In addition, pyroptosis is associated with pyroptotic bodies, which have some similarities to apoptotic bodies. Therefore, different cell death programs induce distinctive reshuffling processes of the plasma membrane. Given the fact that the nature of released intracellular contents plays a crucial role in dying/dead cell-induced immunogenicity, not only membrane rupture or integrity but also the nature of plasma membrane breakdown would determine the fate of a cell as well as its ability to elicit an immune response. In this review, we will discuss recent advances in the field of apoptosis, necroptosis and pyroptosis, with an emphasis on the mechanisms underlying plasma membrane changes observed on dying cells and their implication in cell death-elicited immunogenicity. Ruptured and intact plasma membranes are classically considered as hallmarks of necrotic and apoptotic cell death, respectively. As such, apoptosis is usually considered a non-inflammatory process while necrosis triggers in- flammation. Recent studies on necroptosis and pyroptosis, two types of programmed necrosis, revealed that plasma membrane rupture is mediated by MLKL channels during necroptosis but depends on non-selective gasdermin D (GSDMD) pores during pyroptosis. Importantly, the morphology of dying cells executed by MLKL channels can be distinguished from that executed by GSDMD pores. Interestingly, it was found recently that secondary necrosis of apoptotic cells, a previously believed non-regulated form of cell lysis that occurs after apoptosis, can be programmed and executed by plasma membrane pore formation like that of pyroptosis. In addition, pyroptosis is associated with pyroptotic bodies, which have some similarities to apoptotic bodies. Therefore, different cell death programs induce distinctive reshuffling processes of the plasma membrane. Given the fact that the nature of released intracellular contents plays a crucial role in dying/dead cell-induced immunogenicity, not only membrane rupture or integrity but also the nature of plasma membrane breakdown would determine the fate of a cell as well as its ability to elicit an immune response. In this review, we will discuss recent advances in the field of apoptosis, necroptosis and pyroptosis, with an emphasis on the mechanisms underlying plasma membrane changes observed on dying cells and their implication in cell death-elicited immunogenicity. Ruptured and intact plasma membranes are classically considered as hallmarks of necrotic and apoptotic cell death, respectively. As such, apoptosis is usually considered a non-inflammatory process while necrosis triggers inflammation. Recent studies on necroptosis and pyroptosis, two types of programmed necrosis, revealed that plasma membrane rupture is mediated by MLKL channels during necroptosis but depends on non-selective gasdermin D (GSDMD) pores during pyroptosis. Importantly, the morphology of dying cells executed by MLKL channels can be distinguished from that executed by GSDMD pores. Interestingly, it was found recently that secondary necrosis of apoptotic cells, a previously believed non-regulated form of cell lysis that occurs after apoptosis, can be programmed and executed by plasma membrane pore formation like that of pyroptosis. In addition, pyroptosis is associated with pyroptotic bodies, which have some similarities to apoptotic bodies. Therefore, different cell death programs induce distinctive reshuffling processes of the plasma membrane. Given the fact that the nature of released intracellular contents plays a crucial role in dying/dead cell-induced immunogenicity, not only membrane rupture or integrity but also the nature of plasma membrane breakdown would determine the fate of a cell as well as its ability to elicit an immune response. In this review, we will discuss recent advances in the field of apoptosis, necroptosis and pyroptosis, with an emphasis on the mechanisms underlying plasma membrane changes observed on dying cells and their implication in cell death-elicited immunogenicity.Ruptured and intact plasma membranes are classically considered as hallmarks of necrotic and apoptotic cell death, respectively. As such, apoptosis is usually considered a non-inflammatory process while necrosis triggers inflammation. Recent studies on necroptosis and pyroptosis, two types of programmed necrosis, revealed that plasma membrane rupture is mediated by MLKL channels during necroptosis but depends on non-selective gasdermin D (GSDMD) pores during pyroptosis. Importantly, the morphology of dying cells executed by MLKL channels can be distinguished from that executed by GSDMD pores. Interestingly, it was found recently that secondary necrosis of apoptotic cells, a previously believed non-regulated form of cell lysis that occurs after apoptosis, can be programmed and executed by plasma membrane pore formation like that of pyroptosis. In addition, pyroptosis is associated with pyroptotic bodies, which have some similarities to apoptotic bodies. Therefore, different cell death programs induce distinctive reshuffling processes of the plasma membrane. Given the fact that the nature of released intracellular contents plays a crucial role in dying/dead cell-induced immunogenicity, not only membrane rupture or integrity but also the nature of plasma membrane breakdown would determine the fate of a cell as well as its ability to elicit an immune response. In this review, we will discuss recent advances in the field of apoptosis, necroptosis and pyroptosis, with an emphasis on the mechanisms underlying plasma membrane changes observed on dying cells and their implication in cell death-elicited immunogenicity. |
Author | Yingying Zhang;Xin Chen;Cyril Gueydan;Jiahuai Han |
AuthorAffiliation | State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China;Laboratoire de Biologic Moldculaire du Gone, Facultd des Sciences, Universitd Libre de Bruxelles, 1050 Brussels, Belgium |
Author_xml | – sequence: 1 givenname: Yingying surname: Zhang fullname: Zhang, Yingying organization: State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University – sequence: 2 givenname: Xin surname: Chen fullname: Chen, Xin organization: State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University – sequence: 3 givenname: Cyril surname: Gueydan fullname: Gueydan, Cyril organization: Laboratoire de Biologie Moléculaire du Gène, Faculté des Sciences, Université Libre de Bruxelles – sequence: 4 givenname: Jiahuai surname: Han fullname: Han, Jiahuai email: jhan@xmu.edu.cn organization: State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29076500$$D View this record in MEDLINE/PubMed |
BookMark | eNptkc1rFTEUxYNU7Ieu3MugG0HnefOd2QhStC0U6kLXIZNJ5k2ZSV6TGcH_3gzvtdTSVS7kdw_n3HOKjkIMDqG3GDYYqPpi04YAlhtM6Qt0giVTtVRUHZUZANcggByj05xvAQhnHL9Cx6QBKTjACeI_R5MnU01uapMJrrJbE3qXq25JQ-irXYp9MtPkusq6caw6Z-Ztfo1eejNm9-bwnqHfP77_Or-sr28urs6_XdeWSTrXRprOYakUIa31pKXC-YYbocB3nDkAj3lDZNt4S4wRRnpheYdbKaQlHit6hr7udXdLWyxYF-ZkRr1Lw2TSXx3NoP__CcNW9_GP5pKTcoMi8PEgkOLd4vKspyGvQUrUuGSNGy6ZkNA0Bf3wBL2NSwolXqEUJawRZKXePXb0YOX-ogXAe8CmmHNyXtthNvMQV4PDqDHotTVtk15b06W1svPpyc697PP05z2dd2tFLj0y-iz-_iC-jaG_KxsP6kIyBoxyQv8B5Rqxkw |
CitedBy_id | crossref_primary_10_1172_JCI138861 crossref_primary_10_1093_pcp_pcab077 crossref_primary_10_1016_j_isci_2020_101816 crossref_primary_10_1128_iai_00190_22 crossref_primary_10_1007_s10495_023_01906_5 crossref_primary_10_1016_j_fct_2022_113189 crossref_primary_10_4081_hls_2024_11803 crossref_primary_10_3389_fcell_2021_697832 crossref_primary_10_1126_sciadv_aba3009 crossref_primary_10_3892_br_2024_1831 crossref_primary_10_1049_nbt2_12062 crossref_primary_10_1371_journal_pone_0212699 crossref_primary_10_1080_19390211_2020_1731045 crossref_primary_10_3892_br_2024_1824 crossref_primary_10_3390_genes13050750 crossref_primary_10_3390_ijms231810224 crossref_primary_10_1016_j_tiv_2020_104906 crossref_primary_10_3390_cancers13081954 crossref_primary_10_1016_j_biopha_2021_112082 crossref_primary_10_1038_s41419_020_2476_2 crossref_primary_10_1371_journal_pone_0227950 crossref_primary_10_1016_j_jconrel_2020_12_030 crossref_primary_10_1371_journal_pone_0222267 crossref_primary_10_1590_1678_9199_jvatitd_2019_0009 crossref_primary_10_1021_acs_analchem_4c00946 crossref_primary_10_1177_0960327120926257 crossref_primary_10_3389_fonc_2021_635774 crossref_primary_10_1186_s12885_020_06964_5 crossref_primary_10_1002_tox_24266 crossref_primary_10_1155_2022_9030771 crossref_primary_10_3390_pharmaceutics12060497 crossref_primary_10_1021_acs_analchem_2c00874 crossref_primary_10_14233_ajchem_2023_26937 crossref_primary_10_1021_acs_jmedchem_9b01694 crossref_primary_10_3390_biom12101540 crossref_primary_10_1016_j_foodchem_2022_135101 crossref_primary_10_1016_j_bbamem_2018_06_010 crossref_primary_10_3389_fcell_2023_1173235 crossref_primary_10_1002_biot_202000655 crossref_primary_10_1021_acsami_4c09243 crossref_primary_10_56083_RCV3N12_045 crossref_primary_10_1016_j_biomaterials_2023_122333 crossref_primary_10_1016_j_jbiotec_2023_01_006 crossref_primary_10_1016_j_cpme_2020_100103 crossref_primary_10_3389_fcell_2021_789948 crossref_primary_10_2139_ssrn_4020776 crossref_primary_10_32604_biocell_2022_016607 crossref_primary_10_3389_fendo_2023_1322907 crossref_primary_10_1002_tox_23383 crossref_primary_10_3389_fmicb_2022_812711 crossref_primary_10_1016_j_sjbs_2021_08_015 crossref_primary_10_1097_BS9_0000000000000064 crossref_primary_10_1002_adhm_202402697 crossref_primary_10_1016_j_psj_2023_102533 crossref_primary_10_1038_s41419_020_2248_z crossref_primary_10_1002_advs_202204931 crossref_primary_10_1016_j_bioelechem_2020_107592 crossref_primary_10_1016_j_biopha_2022_113348 crossref_primary_10_1007_s10924_023_02838_6 crossref_primary_10_1038_s41419_021_03458_5 crossref_primary_10_3389_fphar_2021_717529 crossref_primary_10_1186_s12974_022_02557_0 crossref_primary_10_1016_j_bbrc_2019_11_110 crossref_primary_10_3389_fimmu_2023_1309635 crossref_primary_10_1016_j_cocis_2021_101453 crossref_primary_10_1016_j_brainres_2018_06_008 crossref_primary_10_1021_acs_jmedchem_4c02357 crossref_primary_10_1016_j_yexcr_2021_112521 crossref_primary_10_1038_s41598_021_88752_0 crossref_primary_10_1371_journal_ppat_1012855 crossref_primary_10_1016_j_toxlet_2024_04_007 crossref_primary_10_1021_acs_chemrestox_9b00220 crossref_primary_10_1007_s10753_023_01814_5 crossref_primary_10_1016_j_biopha_2024_117367 crossref_primary_10_1016_j_intimp_2024_112616 crossref_primary_10_12677_ACM_2024_142323 crossref_primary_10_1007_s10787_023_01275_0 crossref_primary_10_1016_j_brainresbull_2020_10_009 crossref_primary_10_1099_jmm_0_001835 crossref_primary_10_3103_S0096392519030052 crossref_primary_10_1016_j_bcp_2020_114023 crossref_primary_10_1016_j_ijbiomac_2018_06_074 crossref_primary_10_1016_j_mee_2022_111738 crossref_primary_10_1155_2022_2055773 crossref_primary_10_1371_journal_pbio_3001304 crossref_primary_10_1002_smo_20240059 crossref_primary_10_3390_coatings12020110 crossref_primary_10_1016_j_tox_2024_153827 crossref_primary_10_3389_fimmu_2022_847345 crossref_primary_10_1007_s11064_019_02935_w crossref_primary_10_1039_D4TB00008K crossref_primary_10_3389_fphar_2024_1389179 crossref_primary_10_1016_j_jpha_2020_04_002 crossref_primary_10_1016_j_molliq_2023_121908 crossref_primary_10_1016_j_cryobiol_2021_09_010 crossref_primary_10_1515_jcim_2023_0225 crossref_primary_10_3389_fendo_2019_00778 crossref_primary_10_3390_ijms23115921 crossref_primary_10_3390_ijms25179413 crossref_primary_10_1523_JNEUROSCI_0436_23_2023 crossref_primary_10_1021_acssensors_4c01963 crossref_primary_10_1186_s12974_020_01902_5 crossref_primary_10_1155_2021_8717565 crossref_primary_10_1039_D4CB00107A crossref_primary_10_3892_ijo_2022_5308 crossref_primary_10_3390_app122211545 crossref_primary_10_3390_molecules23123306 crossref_primary_10_1002_jcp_30228 crossref_primary_10_1016_j_jconrel_2022_09_045 crossref_primary_10_1016_j_celrep_2024_114084 crossref_primary_10_18632_aging_103608 crossref_primary_10_3389_fcell_2024_1462339 crossref_primary_10_1016_j_addr_2020_05_005 crossref_primary_10_1038_s42003_022_03704_2 crossref_primary_10_1111_febs_16051 crossref_primary_10_1111_jop_12944 crossref_primary_10_1016_j_cell_2021_05_003 crossref_primary_10_3390_cancers14092171 crossref_primary_10_1186_s10020_022_00445_0 crossref_primary_10_1021_acsnano_1c03517 crossref_primary_10_1186_s12915_021_00972_y crossref_primary_10_3390_ijms24021285 crossref_primary_10_3390_ijms21124204 crossref_primary_10_7570_jomes20120 crossref_primary_10_1038_s41420_022_01282_0 crossref_primary_10_1016_j_jmb_2021_167378 crossref_primary_10_1186_s12861_019_0201_0 crossref_primary_10_1016_j_isci_2024_109339 crossref_primary_10_18632_oncotarget_27535 crossref_primary_10_1038_s44318_024_00055_y crossref_primary_10_1186_s12645_023_00160_3 crossref_primary_10_2174_1874467215666220127112201 crossref_primary_10_1007_s00277_023_05103_x crossref_primary_10_1002_smll_202301748 crossref_primary_10_1146_annurev_immunol_111319_023800 crossref_primary_10_3390_ijms221810130 crossref_primary_10_1038_s41392_024_01896_z crossref_primary_10_1016_j_envpol_2022_120933 crossref_primary_10_1074_jbc_RA118_005865 crossref_primary_10_1080_2314808X_2024_2369820 crossref_primary_10_1016_j_jlr_2024_100579 crossref_primary_10_1016_j_cej_2023_148287 crossref_primary_10_1016_j_tox_2022_153373 crossref_primary_10_1002_adma_201904058 crossref_primary_10_1016_j_fct_2023_114411 crossref_primary_10_3390_v13091835 crossref_primary_10_1038_s41420_023_01421_1 crossref_primary_10_1186_s12917_022_03326_0 crossref_primary_10_1016_j_scp_2022_100675 crossref_primary_10_1128_iai_00407_23 crossref_primary_10_1128_msystems_01209_20 crossref_primary_10_1097_GCO_0000000000000625 crossref_primary_10_1016_j_carres_2023_108986 crossref_primary_10_1021_acs_jafc_4c04216 crossref_primary_10_1002_1873_3468_14310 crossref_primary_10_1016_j_jpap_2023_100185 crossref_primary_10_1186_s12935_020_01633_w crossref_primary_10_3389_fimmu_2022_932303 crossref_primary_10_3389_fimmu_2023_1150879 crossref_primary_10_1016_j_yexcr_2024_114029 crossref_primary_10_3390_biom13121740 crossref_primary_10_1083_jcb_202305026 crossref_primary_10_3389_fimmu_2022_841729 crossref_primary_10_1073_pnas_2210181120 crossref_primary_10_1016_j_jorganchem_2021_122032 crossref_primary_10_1007_s12035_024_04541_6 crossref_primary_10_1038_s41598_025_91425_x crossref_primary_10_1152_ajprenal_00284_2021 crossref_primary_10_1166_sam_2024_4598 crossref_primary_10_1371_journal_pone_0216721 crossref_primary_10_3390_biom13091371 crossref_primary_10_3390_ijms22179317 crossref_primary_10_1021_acs_jmedchem_9b01317 crossref_primary_10_1111_1346_8138_15929 crossref_primary_10_3390_ijms231810453 crossref_primary_10_1007_s10534_018_0140_4 crossref_primary_10_3390_ijms22179430 crossref_primary_10_1038_s41419_021_03883_6 crossref_primary_10_1038_s41420_024_02285_9 crossref_primary_10_1101_cshperspect_a036400 crossref_primary_10_1016_j_nantod_2022_101392 crossref_primary_10_1002_adma_201805919 crossref_primary_10_1002_cbf_3823 crossref_primary_10_1002_elps_202100031 crossref_primary_10_1021_acs_analchem_9b02462 crossref_primary_10_1186_s12906_023_03969_y crossref_primary_10_1080_1120009X_2023_2278014 crossref_primary_10_1016_j_bbadis_2025_167692 crossref_primary_10_1002_anie_202016399 crossref_primary_10_1016_j_ijbiomac_2023_125719 crossref_primary_10_3920_WMJ2021_2723 crossref_primary_10_4049_jimmunol_1901074 crossref_primary_10_1080_07391102_2024_2316764 crossref_primary_10_1016_j_tox_2021_152988 crossref_primary_10_3390_pathogens11050492 crossref_primary_10_1146_annurev_phyto_020620_095952 crossref_primary_10_1038_s41586_023_05991_z crossref_primary_10_3390_cells13060495 crossref_primary_10_1161_CIRCRESAHA_124_325290 crossref_primary_10_1002_smll_202301671 crossref_primary_10_1016_j_bbamem_2019_183032 crossref_primary_10_1021_acsabm_0c01559 crossref_primary_10_3390_biomedicines12102272 crossref_primary_10_3390_cells9010095 crossref_primary_10_1007_s10495_018_01511_x crossref_primary_10_3390_pathogens11111291 crossref_primary_10_1080_07388551_2020_1854672 crossref_primary_10_3389_fgene_2022_801419 crossref_primary_10_1007_s12975_018_0666_3 crossref_primary_10_1016_j_apsb_2024_11_011 crossref_primary_10_1016_j_cej_2020_124314 crossref_primary_10_3390_ijms22062842 crossref_primary_10_1007_s12035_025_04818_4 crossref_primary_10_1002_ange_202419759 crossref_primary_10_1016_j_canlet_2018_08_028 crossref_primary_10_1111_jcmm_15406 crossref_primary_10_1016_j_cej_2023_146748 crossref_primary_10_1016_j_toxlet_2020_10_003 crossref_primary_10_1186_s43141_023_00529_2 crossref_primary_10_1007_s40620_022_01269_1 crossref_primary_10_1016_j_dyepig_2019_107760 crossref_primary_10_3390_ijms25105133 crossref_primary_10_3390_ijms231810632 crossref_primary_10_3390_antiox10020215 crossref_primary_10_3390_cells9040963 crossref_primary_10_1002_smll_202104822 crossref_primary_10_1007_s12668_021_00913_7 crossref_primary_10_1186_s12866_024_03674_x crossref_primary_10_1016_j_repbio_2022_100678 crossref_primary_10_1038_s41392_022_01110_y crossref_primary_10_2174_1389200220666191105113754 crossref_primary_10_1007_s11356_022_24149_4 crossref_primary_10_1038_s41419_019_1323_9 crossref_primary_10_1016_j_ecoenv_2024_116777 crossref_primary_10_1016_j_gendis_2023_03_015 crossref_primary_10_1016_j_jep_2023_116941 crossref_primary_10_1016_j_molimm_2024_11_004 crossref_primary_10_32718_ujvas5_2_04 crossref_primary_10_1002_tox_23306 crossref_primary_10_3892_br_2025_1938 crossref_primary_10_3892_ol_2025_14948 crossref_primary_10_3390_antiox10060940 crossref_primary_10_1002_adfm_202417979 crossref_primary_10_1007_s00210_021_02174_3 crossref_primary_10_3390_cancers11121920 crossref_primary_10_26693_jmbs04_04_032 crossref_primary_10_3390_ijms23094753 crossref_primary_10_3390_ijms21113742 crossref_primary_10_1152_physiolgenomics_00053_2023 crossref_primary_10_3389_fonc_2021_622727 crossref_primary_10_1016_j_bpc_2019_106263 crossref_primary_10_1021_acsnano_5c00715 crossref_primary_10_1016_j_ijbiomac_2020_03_096 crossref_primary_10_1016_j_ecoenv_2023_115154 crossref_primary_10_3389_fonc_2022_932786 crossref_primary_10_1016_j_heliyon_2024_e41485 crossref_primary_10_1080_15287394_2024_2308801 crossref_primary_10_1007_s40199_018_0224_2 crossref_primary_10_1021_acsami_9b18666 crossref_primary_10_3389_fbioe_2022_939774 crossref_primary_10_1016_j_critrevonc_2023_104249 crossref_primary_10_3390_ijms24044168 crossref_primary_10_1038_s41467_024_52607_9 crossref_primary_10_3390_cells13040325 crossref_primary_10_3390_tropicalmed7080163 crossref_primary_10_1016_j_jep_2024_118197 crossref_primary_10_1080_07391102_2023_2274520 crossref_primary_10_1016_j_biopha_2022_113999 crossref_primary_10_1186_s10020_023_00732_4 crossref_primary_10_3389_fphar_2023_1094020 crossref_primary_10_1021_jacs_4c17268 crossref_primary_10_1007_s11356_022_23788_x crossref_primary_10_1016_j_neuroscience_2022_11_005 crossref_primary_10_1038_s42003_023_04558_y crossref_primary_10_1016_j_clinre_2021_101783 crossref_primary_10_1021_acsami_0c17648 crossref_primary_10_1002_advs_202407713 crossref_primary_10_1002_ange_202117401 crossref_primary_10_1002_anie_202415735 crossref_primary_10_1007_s00204_023_03516_1 crossref_primary_10_1021_acsomega_0c01416 crossref_primary_10_1186_s12920_023_01573_0 crossref_primary_10_3390_ijms22189986 crossref_primary_10_1016_j_jphotobiol_2022_112500 crossref_primary_10_1155_2021_2169017 crossref_primary_10_7566_JPSJ_92_064001 crossref_primary_10_3390_biomedicines9030246 crossref_primary_10_1038_s41401_020_0420_8 crossref_primary_10_1002_smtd_202301143 crossref_primary_10_1002_eji_201970107 crossref_primary_10_1016_j_tox_2020_152668 crossref_primary_10_1016_j_hazl_2023_100095 crossref_primary_10_1021_acs_analchem_4c00342 crossref_primary_10_1016_j_jnutbio_2022_109255 crossref_primary_10_1021_acssensors_3c00819 crossref_primary_10_1097_BS9_0000000000000051 crossref_primary_10_2174_1871520622666220201103431 crossref_primary_10_1016_j_jnutbio_2022_109018 crossref_primary_10_1016_j_cub_2020_12_005 crossref_primary_10_1039_C9CC03942B crossref_primary_10_3390_jox15020045 crossref_primary_10_37349_ent_2022_00017 crossref_primary_10_1007_s00204_019_02572_w crossref_primary_10_1016_j_bmc_2024_117849 crossref_primary_10_3390_molecules30040972 crossref_primary_10_1039_D3MA00016H crossref_primary_10_3390_ijms19103082 crossref_primary_10_1016_j_cej_2024_151599 crossref_primary_10_3390_v16020280 crossref_primary_10_1038_s41422_024_01051_x crossref_primary_10_1007_s00232_022_00227_z crossref_primary_10_3748_wjg_v29_i22_3440 crossref_primary_10_1088_2043_6254_ab5103 crossref_primary_10_1002_ctm2_812 crossref_primary_10_1021_acsami_1c02019 crossref_primary_10_1080_10286020_2024_2368841 crossref_primary_10_5483_BMBRep_2023_0024 crossref_primary_10_1016_j_ejps_2024_106896 crossref_primary_10_1111_bcpt_13694 crossref_primary_10_1038_s41420_021_00451_x crossref_primary_10_1016_j_biopha_2024_116340 crossref_primary_10_1016_j_bios_2022_114362 crossref_primary_10_3390_ani10060956 crossref_primary_10_1016_j_rechem_2025_102155 crossref_primary_10_1002_mrm_30362 crossref_primary_10_1016_j_jinsphys_2021_104236 crossref_primary_10_1039_C9SC01218D crossref_primary_10_1021_acs_analchem_9b03136 crossref_primary_10_1002_cyto_a_24851 crossref_primary_10_1007_s12094_023_03147_z crossref_primary_10_1016_j_jphotobiol_2022_112600 crossref_primary_10_1016_j_heliyon_2025_e42201 crossref_primary_10_1007_s00018_021_03914_7 crossref_primary_10_1016_j_theriogenology_2022_03_024 crossref_primary_10_3390_nano9030451 crossref_primary_10_1242_dmm_039719 crossref_primary_10_3390_medicina59081461 crossref_primary_10_1039_D2CB00172A crossref_primary_10_3390_app12052417 crossref_primary_10_1002_advs_202300589 crossref_primary_10_1016_j_tiv_2019_05_010 crossref_primary_10_1007_s10495_021_01703_y crossref_primary_10_3389_fgene_2022_922055 crossref_primary_10_1016_j_poly_2022_115783 crossref_primary_10_1017_S1431927619014934 crossref_primary_10_1007_s10495_019_01551_x crossref_primary_10_3389_fcell_2024_1510390 crossref_primary_10_1002_SMMD_20240005 crossref_primary_10_3390_membranes10110364 crossref_primary_10_1186_s41181_022_00156_1 crossref_primary_10_3389_fphar_2020_558894 crossref_primary_10_1007_s00204_019_02638_9 crossref_primary_10_1360_SSC_2023_0054 crossref_primary_10_1002_advs_202309021 crossref_primary_10_3892_ol_2023_13962 crossref_primary_10_1016_j_snb_2024_135371 crossref_primary_10_3390_ijms242316890 crossref_primary_10_1016_j_hbpd_2024_09_010 crossref_primary_10_1186_s13148_019_0698_x crossref_primary_10_1021_acsomega_0c00360 crossref_primary_10_1007_s00204_021_03017_z crossref_primary_10_1016_j_toxicon_2023_107067 crossref_primary_10_1016_j_phymed_2021_153548 crossref_primary_10_1186_s13578_019_0292_0 crossref_primary_10_1073_pnas_1717190115 crossref_primary_10_1134_S0006297922120100 crossref_primary_10_1038_s41598_018_36716_2 crossref_primary_10_1111_odi_14693 crossref_primary_10_3390_polym13223876 crossref_primary_10_1186_s12958_020_00588_x crossref_primary_10_1016_j_jconrel_2024_08_047 crossref_primary_10_3390_pharmaceutics15010282 crossref_primary_10_1016_j_phymed_2022_154164 crossref_primary_10_3390_pathogens10070842 crossref_primary_10_1038_s41419_024_07134_2 crossref_primary_10_1128_mbio_03573_24 crossref_primary_10_1038_s41598_018_32576_y crossref_primary_10_1093_procel_pwad050 crossref_primary_10_1017_S1431927620001324 crossref_primary_10_1007_s00253_023_12802_y crossref_primary_10_1007_s12032_024_02338_0 crossref_primary_10_1038_s41575_020_0326_4 crossref_primary_10_1002_ange_202419376 crossref_primary_10_1007_s00204_020_02789_0 crossref_primary_10_1109_TPS_2022_3182717 crossref_primary_10_1007_s12192_020_01189_8 crossref_primary_10_3390_molecules26133937 crossref_primary_10_1007_s10143_020_01387_z crossref_primary_10_4049_immunohorizons_2300095 crossref_primary_10_1016_j_freeradbiomed_2021_10_015 crossref_primary_10_1002_biof_1472 crossref_primary_10_1080_15376516_2021_1992553 crossref_primary_10_1007_s11010_020_03885_6 crossref_primary_10_1186_s12882_024_03570_6 crossref_primary_10_1590_1414_431x202010197 crossref_primary_10_1186_s12906_020_02944_1 crossref_primary_10_2147_JIR_S422189 crossref_primary_10_1021_acsami_3c11457 crossref_primary_10_1039_D2SC01260J crossref_primary_10_1016_j_kint_2019_04_035 crossref_primary_10_3390_ijms24021518 crossref_primary_10_3389_fonc_2022_963928 crossref_primary_10_3389_fphys_2023_1165868 crossref_primary_10_1016_j_intimp_2022_109012 crossref_primary_10_1038_s41598_022_15348_7 crossref_primary_10_1016_j_biopha_2023_115572 crossref_primary_10_3892_mmr_2021_12477 crossref_primary_10_1155_2022_1854473 crossref_primary_10_1038_s41598_020_77954_7 crossref_primary_10_3390_ijms23116277 crossref_primary_10_1002_adma_202300548 crossref_primary_10_1038_s41418_018_0269_2 crossref_primary_10_1038_s41598_019_49198_7 crossref_primary_10_1002_adhm_202304304 crossref_primary_10_1038_s41467_023_40794_w crossref_primary_10_3390_cells11152314 crossref_primary_10_1016_j_forsciint_2024_112085 crossref_primary_10_1128_mbio_01288_24 crossref_primary_10_1128_mSphere_00745_21 crossref_primary_10_1002_adhm_202201585 crossref_primary_10_2147_IJN_S436350 crossref_primary_10_1007_s11160_020_09614_y crossref_primary_10_1007_s11481_020_09978_9 crossref_primary_10_3390_cells13050405 crossref_primary_10_1002_smtd_202300923 crossref_primary_10_1097_MD_0000000000028321 crossref_primary_10_1007_s12672_022_00474_5 crossref_primary_10_3389_fonc_2021_685377 crossref_primary_10_1161_ATVBAHA_120_315525 crossref_primary_10_1017_S0031182021000718 crossref_primary_10_1016_j_intimp_2024_113146 crossref_primary_10_1021_jacs_1c08630 crossref_primary_10_1016_j_phmed_2022_100056 crossref_primary_10_3390_cells9030627 crossref_primary_10_1089_scd_2021_0087 crossref_primary_10_3389_fendo_2023_1207142 crossref_primary_10_3389_fimmu_2018_02842 crossref_primary_10_1093_toxres_tfac017 crossref_primary_10_12997_jla_2020_9_3_380 crossref_primary_10_1080_01913123_2024_2428703 crossref_primary_10_3390_biom14010020 crossref_primary_10_1016_j_joen_2024_08_015 crossref_primary_10_17827_aktd_673798 crossref_primary_10_1002_dc_24316 crossref_primary_10_3389_fcell_2021_721795 crossref_primary_10_1039_C9SC04710G crossref_primary_10_1016_j_biopha_2023_116001 crossref_primary_10_3389_fimmu_2019_01360 crossref_primary_10_1038_s41420_022_01101_6 crossref_primary_10_1021_acsnano_4c03879 crossref_primary_10_1016_j_biochi_2021_03_007 crossref_primary_10_1016_j_jhazmat_2023_133011 crossref_primary_10_1038_s41419_020_2459_3 crossref_primary_10_3390_nano10091675 crossref_primary_10_3390_cancers16142544 crossref_primary_10_1007_s12017_019_08586_y crossref_primary_10_1007_s11010_020_03985_3 crossref_primary_10_3390_ijms241411694 crossref_primary_10_1042_BSR20221053 crossref_primary_10_3390_antiox12081617 crossref_primary_10_1039_D3TB02601A crossref_primary_10_1080_03639045_2024_2439930 crossref_primary_10_1021_acsami_0c15176 crossref_primary_10_1002_ange_202016399 crossref_primary_10_1016_j_canlet_2020_01_034 crossref_primary_10_1016_j_ymthe_2023_12_008 crossref_primary_10_1007_s10495_022_01792_3 crossref_primary_10_1016_j_ijbiomac_2025_140116 crossref_primary_10_1155_2022_1842363 crossref_primary_10_1016_j_bcp_2022_115367 crossref_primary_10_1016_j_bioadv_2024_213938 crossref_primary_10_1016_j_molstruc_2023_135157 crossref_primary_10_1002_cmdc_201800707 crossref_primary_10_1002_mco2_255 crossref_primary_10_15407_cryo32_01_014 crossref_primary_10_1016_j_ejmech_2022_114843 crossref_primary_10_1016_j_prp_2023_154685 crossref_primary_10_1016_j_lfs_2022_120564 crossref_primary_10_1186_s12885_021_08404_4 crossref_primary_10_7717_peerj_12304 crossref_primary_10_1016_j_bios_2022_114403 crossref_primary_10_1161_CIRCRESAHA_124_323579 crossref_primary_10_1016_j_snb_2021_130409 crossref_primary_10_1002_nbm_5202 crossref_primary_10_1002_adhm_202401723 crossref_primary_10_1016_j_chembiol_2021_03_012 crossref_primary_10_1371_journal_pone_0228385 crossref_primary_10_1002_tox_23627 crossref_primary_10_1111_jop_13498 crossref_primary_10_3390_ijms22042075 crossref_primary_10_1002_ptr_6780 crossref_primary_10_1039_D0RA07309A crossref_primary_10_1111_all_14907 crossref_primary_10_1002_adma_202210986 crossref_primary_10_2147_IJN_S435104 crossref_primary_10_1146_annurev_anchem_091619_101212 crossref_primary_10_1371_journal_pone_0286456 crossref_primary_10_1016_j_molimm_2019_07_009 crossref_primary_10_1038_s41413_023_00247_y crossref_primary_10_1038_d41586_021_00297_4 crossref_primary_10_1002_2211_5463_13069 crossref_primary_10_1038_s41419_023_05634_1 crossref_primary_10_3389_fcell_2021_726513 crossref_primary_10_1039_C9NR08958F crossref_primary_10_1002_jbt_23008 crossref_primary_10_1016_j_scitotenv_2024_171230 crossref_primary_10_1016_j_bbagen_2020_129708 crossref_primary_10_1093_micmic_ozad032 crossref_primary_10_1016_j_snb_2024_136629 crossref_primary_10_1111_php_13582 crossref_primary_10_1038_s41418_018_0214_4 crossref_primary_10_1021_acs_jnatprod_8b00733 crossref_primary_10_1080_08923973_2019_1666405 crossref_primary_10_32604_biocell_2025_059787 crossref_primary_10_2139_ssrn_3527420 crossref_primary_10_1016_j_molimm_2020_04_016 crossref_primary_10_3390_ijms23137023 crossref_primary_10_1021_acsanm_4c01194 crossref_primary_10_1021_acs_jmedchem_4c00949 crossref_primary_10_1111_jocd_13970 crossref_primary_10_1016_j_biomaterials_2021_121024 crossref_primary_10_1042_BST20211114 crossref_primary_10_1128_AAC_01002_20 crossref_primary_10_1016_j_fbio_2023_102723 crossref_primary_10_1021_acsami_1c03640 crossref_primary_10_1016_j_phrs_2023_107016 crossref_primary_10_2174_1567202619666220214105208 crossref_primary_10_1016_j_biomaterials_2019_119497 crossref_primary_10_3389_fphar_2022_860898 crossref_primary_10_1002_anie_202419376 crossref_primary_10_3390_v15030768 crossref_primary_10_1021_acs_inorgchem_4c01614 crossref_primary_10_1073_pnas_2417724121 crossref_primary_10_3390_ijms221910506 crossref_primary_10_1038_s41392_021_00507_5 crossref_primary_10_1080_16583655_2021_2010910 crossref_primary_10_1002_advs_202410405 crossref_primary_10_1016_j_pharmthera_2021_107919 crossref_primary_10_1007_s12029_021_00674_2 crossref_primary_10_1016_j_jsbmb_2023_106425 crossref_primary_10_1177_10738584241282632 crossref_primary_10_3390_ijms25052523 crossref_primary_10_1016_j_jep_2023_117373 crossref_primary_10_12998_wjcc_v8_i10_1848 crossref_primary_10_1080_01913123_2021_1987605 crossref_primary_10_3389_fgene_2021_755384 crossref_primary_10_2174_1389557523666230907093441 crossref_primary_10_1016_j_intimp_2019_01_002 crossref_primary_10_1523_JNEUROSCI_1867_19_2019 crossref_primary_10_1016_j_bioorg_2022_105706 crossref_primary_10_1016_j_isci_2022_104481 crossref_primary_10_1016_j_mtbio_2025_101476 crossref_primary_10_1016_j_cellsig_2021_110119 crossref_primary_10_1016_j_chemosphere_2019_07_063 crossref_primary_10_3389_fphar_2018_01298 crossref_primary_10_1021_acs_bioconjchem_0c00362 crossref_primary_10_1016_j_talanta_2023_124575 crossref_primary_10_1016_j_jmb_2021_167297 crossref_primary_10_1186_s13008_023_00087_6 crossref_primary_10_1080_09506608_2021_1988194 crossref_primary_10_1002_anie_202117401 crossref_primary_10_1002_smll_202102610 crossref_primary_10_1186_s12951_023_02026_7 crossref_primary_10_1667_RR15001_1 crossref_primary_10_1016_j_mtbio_2024_101191 crossref_primary_10_1080_24750263_2024_2310041 crossref_primary_10_3389_fonc_2024_1336734 crossref_primary_10_1002_advs_202205835 crossref_primary_10_1016_j_anireprosci_2022_107158 crossref_primary_10_1021_acs_est_3c01843 crossref_primary_10_3390_cancers13143579 crossref_primary_10_1016_j_bcp_2022_115042 crossref_primary_10_15407_dopovidi2019_04_094 crossref_primary_10_1016_j_cclet_2022_07_042 crossref_primary_10_3390_ijms25158252 crossref_primary_10_1155_2020_9242305 crossref_primary_10_1002_adfm_202002444 crossref_primary_10_1161_ATVBAHA_120_315037 crossref_primary_10_1016_j_mcn_2021_103679 crossref_primary_10_3390_ph15040467 crossref_primary_10_3389_fimmu_2022_917155 crossref_primary_10_1038_s42003_021_02181_3 crossref_primary_10_3390_biology11010141 crossref_primary_10_1016_j_mito_2020_12_004 crossref_primary_10_1007_s00018_022_04332_z crossref_primary_10_1016_j_jmrt_2020_10_021 crossref_primary_10_1515_ntrev_2022_0052 crossref_primary_10_1016_j_ejphar_2023_175537 crossref_primary_10_1016_j_jgg_2024_02_005 crossref_primary_10_1016_j_snb_2021_129864 crossref_primary_10_3390_ijms20081887 crossref_primary_10_1016_j_yexcr_2019_06_008 crossref_primary_10_1007_s10529_023_03346_2 crossref_primary_10_3390_biophysica1010005 crossref_primary_10_1002_kjm2_12752 crossref_primary_10_3390_molecules27113486 crossref_primary_10_1016_j_phymed_2023_154869 crossref_primary_10_1016_j_pestbp_2023_105456 crossref_primary_10_1016_j_bmc_2019_115044 crossref_primary_10_1007_s11064_023_04010_x crossref_primary_10_3390_ijms252111601 crossref_primary_10_1021_acschembio_7b01082 crossref_primary_10_1681_ASN_2019020204 crossref_primary_10_1016_j_ijpddr_2023_05_004 crossref_primary_10_3390_molecules28083376 crossref_primary_10_1021_acsomega_3c09902 crossref_primary_10_1182_bloodadvances_2023011325 crossref_primary_10_1007_s10495_023_01915_4 crossref_primary_10_1007_s11010_023_04873_2 crossref_primary_10_1038_s41467_020_14906_9 crossref_primary_10_1016_j_bbamem_2018_12_017 crossref_primary_10_1242_jcs_242636 crossref_primary_10_3390_pathogens12060839 crossref_primary_10_1038_s41598_020_76086_2 crossref_primary_10_1038_s41416_018_0242_3 crossref_primary_10_2174_1871520621666211213092121 crossref_primary_10_1155_2020_8567182 crossref_primary_10_2147_IJGM_S337735 crossref_primary_10_1016_j_ccr_2023_215588 crossref_primary_10_1080_20013078_2019_1608786 crossref_primary_10_1007_s11033_023_09199_2 crossref_primary_10_1039_D1SC05319A crossref_primary_10_1002_agt2_657 crossref_primary_10_1126_scisignal_abc6178 crossref_primary_10_1182_blood_2023023179 crossref_primary_10_1155_2019_9062098 crossref_primary_10_1186_s41181_023_00204_4 crossref_primary_10_31083_j_fbl2907254 crossref_primary_10_1111_exd_14289 crossref_primary_10_1002_adfm_202008061 crossref_primary_10_1016_j_matt_2022_08_026 crossref_primary_10_3390_ijms25010524 crossref_primary_10_1016_j_ekir_2018_11_005 crossref_primary_10_1111_cpr_13300 crossref_primary_10_1016_j_cej_2024_148610 crossref_primary_10_1080_10715762_2020_1763332 crossref_primary_10_1021_acsami_9b14746 crossref_primary_10_3389_fneur_2019_01241 crossref_primary_10_1007_s11033_020_06087_x crossref_primary_10_3390_ijms24054528 crossref_primary_10_1002_asia_202400305 crossref_primary_10_1152_physiol_00029_2023 crossref_primary_10_1007_s10753_023_01839_w crossref_primary_10_1038_s41467_021_25549_9 crossref_primary_10_1080_07391102_2023_2227712 crossref_primary_10_1097_MD_0000000000030564 crossref_primary_10_2337_db22_0153 crossref_primary_10_3390_molecules26195967 crossref_primary_10_1016_j_bioelechem_2024_108796 crossref_primary_10_1016_j_pestbp_2024_105956 crossref_primary_10_3390_ijms24087231 crossref_primary_10_1371_journal_pgen_1010515 crossref_primary_10_1016_j_biomaterials_2020_120061 crossref_primary_10_1038_s41418_018_0075_x crossref_primary_10_1080_01635581_2020_1820054 crossref_primary_10_1016_j_cej_2022_140869 crossref_primary_10_1038_s41420_020_00349_0 crossref_primary_10_3389_fnmol_2024_1422646 crossref_primary_10_1016_j_pestbp_2020_01_011 crossref_primary_10_3389_fendo_2022_1032614 crossref_primary_10_1134_S0006297920020017 crossref_primary_10_1002_anie_202419759 crossref_primary_10_1016_j_jconrel_2024_05_014 crossref_primary_10_3390_v12090932 crossref_primary_10_1002_med_22101 crossref_primary_10_3390_ijms252212278 crossref_primary_10_1002_ctm2_269 crossref_primary_10_1016_j_bcp_2024_116642 crossref_primary_10_3389_fonc_2021_698811 crossref_primary_10_3390_jfb13040278 crossref_primary_10_1039_D4TB01620C crossref_primary_10_1186_s12915_021_01018_z crossref_primary_10_3892_ijmm_2019_4244 crossref_primary_10_1002_ange_202415735 crossref_primary_10_1007_s11626_024_01010_1 crossref_primary_10_1128_jvi_01588_24 crossref_primary_10_2174_0115734137294302240625045852 crossref_primary_10_3390_ijerph17030679 crossref_primary_10_1186_s12885_021_09046_2 crossref_primary_10_1007_s00204_021_02990_9 crossref_primary_10_1111_nph_19709 crossref_primary_10_1016_j_prp_2018_09_002 crossref_primary_10_1039_D2SC05727A crossref_primary_10_3390_cells13161379 crossref_primary_10_1038_s41420_019_0230_2 crossref_primary_10_1155_2022_2680110 crossref_primary_10_1155_2023_4586398 crossref_primary_10_1021_acs_nanolett_9b03245 crossref_primary_10_3389_fimmu_2020_00814 crossref_primary_10_1021_acs_bioconjchem_0c00267 crossref_primary_10_1159_000517732 crossref_primary_10_3390_ijms24032897 crossref_primary_10_3390_ijms25179481 crossref_primary_10_1016_j_bcp_2019_113684 crossref_primary_10_1126_sciimmunol_ado5951 crossref_primary_10_3390_genes13020223 crossref_primary_10_1016_j_jare_2023_09_018 crossref_primary_10_1016_j_taap_2019_114626 crossref_primary_10_1038_s41556_020_0565_1 crossref_primary_10_1007_s10495_022_01807_z crossref_primary_10_3390_ijms23031345 |
Cites_doi | 10.1073/pnas.1200012109 10.1084/jem.20050915 10.1038/cr.2016.64 10.1016/j.immuni.2013.06.018 10.1091/mbc.e03-09-0668 10.1095/biolreprod.107.065045 10.1016/j.molcel.2016.01.011 10.1038/35070019 10.1038/nature09413 10.1038/nature18629 10.1016/j.cell.2016.02.034 10.1038/nature13147 10.1126/science.1172308 10.1111/j.1356-9597.2004.00745.x 10.1073/pnas.0600824103 10.4049/jimmunol.172.2.880 10.1038/nri.2016.147 10.1038/nm.2385 10.1038/cr.2013.171 10.1016/j.cub.2014.12.059 10.1038/sj.cdd.4402201 10.1038/nature11714 10.1016/j.immuni.2017.06.001 10.1073/pnas.1607769113 10.1016/j.it.2011.01.005 10.1038/nature18590 10.1073/pnas.94.25.13642 10.1038/cr.2016.87 10.1073/pnas.1305538110 10.1146/annurev-immunol-032414-112248 10.1016/j.cell.2014.04.007 10.1172/JCI1112 10.1038/nature15514 10.1016/j.str.2014.07.014 10.1038/cr.2016.26 10.1038/ncomms8439 10.1038/cdd.2014.76 10.1038/nri2215 10.1002/jlb.52.3.269 10.1146/annurev-physiol-021113-170259 10.1038/nri.2016.107 10.1038/cmi.2017.31 10.1038/nchembio.83 10.1038/bjc.1972.33 10.1038/cdd.2009.184 10.1038/cr.2016.100 10.1038/ni.2159 10.1016/j.celrep.2017.03.024 10.1038/ncomms14128 10.1016/j.cell.2009.05.037 10.1016/j.celrep.2016.03.037 10.1038/37022 10.1016/j.cell.2009.08.021 10.1074/jbc.273.25.15540 10.1080/01926230701320337 10.1242/jcs.02529 10.1007/s00018-010-0283-0 10.1038/cddis.2013.156 10.1038/cdd.2014.77 10.1002/path.2792 10.1073/pnas.95.23.13618 10.1007/s10495-006-9527-8 10.1126/science.aaf2154 10.1007/s00018-010-0285-y 10.1016/S0966-842X(00)01936-3 10.1111/imr.12287 10.1074/jbc.M700202200 10.1084/jem.20151613 10.1038/onc.2008.297 10.1038/nature15541 10.1126/science.aad0395 10.1126/science.278.5336.294 10.1038/nri.2016.153 10.1186/1748-717X-9-185 10.1038/cr.2015.139 10.1074/jbc.M112.435545 10.1007/978-3-319-39406-0_6 10.1038/cdd.2015.70 10.1038/nature22393 10.1016/j.celrep.2012.12.012 10.15252/embj.201694696 10.1083/jcb.200802081 10.1016/j.cell.2009.05.021 10.1126/science.276.5318.1571 10.1038/ncb2883 10.1016/j.cell.2011.11.031 10.1016/j.cell.2017.03.020 10.1016/S0960-9822(00)00598-4 10.1038/35070009 10.1073/pnas.1408987111 10.1146/annurev.biochem.73.011303.073706 10.1038/nri3607 10.1038/nrm2393 10.1016/j.molcel.2014.03.003 10.1007/s00262-011-1184-2 10.1016/j.celrep.2014.04.026 10.1242/dev.127.24.5245 10.1016/S0021-9258(18)42768-8 10.1242/jcs.111.19.2911 10.4049/jimmunol.141.8.2629 |
ContentType | Journal Article |
Copyright | The Author(s) 2017 Copyright Nature Publishing Group Jan 2018 Copyright © 2017 The Author(s) 2017 The Author(s) |
Copyright_xml | – notice: The Author(s) 2017 – notice: Copyright Nature Publishing Group Jan 2018 – notice: Copyright © 2017 The Author(s) 2017 The Author(s) |
DBID | 2RA 92L CQIGP W94 WU4 ~WA C6C AAYXX CITATION NPM 3V. 7QO 7QP 7QR 7T5 7TK 7TM 7TO 7U9 7X7 7XB 88E 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7N M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 7X8 5PM |
DOI | 10.1038/cr.2017.133 |
DatabaseName | 维普_期刊 中文科技期刊数据库-CALIS站点 中文科技期刊数据库-7.0平台 中文科技期刊数据库-自然科学 中文科技期刊数据库-自然科学-生物科学 中文科技期刊数据库- 镜像站点 Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Proquest Health and Medical Complete ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts ProQuest SciTech Collection ProQuest Medical Library Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | ProQuest Central Student MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Plasma membrane changes during programmed cell deaths |
EISSN | 1748-7838 |
EndPage | 21 |
ExternalDocumentID | PMC5752838 29076500 10_1038_cr_2017_133 674404352 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GroupedDBID | --- -01 -0A -Q- -SA -S~ 0R~ 29B 2B. 2C. 2RA 2WC 36B 39C 3V. 4.4 406 53G 5GY 5VR 5XA 5XB 5XL 6J9 70F 7X7 88E 8FE 8FH 8FI 8FJ 92E 92I 92L 92M 92Q 93N 9D9 9DA AADWK AANZL AATNV AAWBL AAYFA AAYJO AAZLF ABAWZ ABGIJ ABJNI ABUWG ACAOD ACBMV ACBRV ACBYP ACGFO ACGFS ACIGE ACIWK ACKTT ACPRK ACRQY ACTTH ACVWB ACZOJ ADBBV ADFRT ADHDB ADMDM ADQMX ADYYL AEDAW AEFTE AEJRE AENEX AESKC AEVLU AEXYK AFKRA AFNRJ AFRAH AFSHS AFUIB AGEZK AGGBP AGHAI AHMBA AHSBF AILAN AJCLW AJDOV AJRNO ALFFA ALMA_UNASSIGNED_HOLDINGS AMRJV AMYLF AOIJS AXYYD BAWUL BBNVY BENPR BHPHI BKKNO BPHCQ BVXVI C1A CAG CAJEA CAJUS CCEZO CCPQU CCVFK CHBEP COF CQIGP CS3 CW9 DIK DNIVK DPUIP DU5 E3Z EBLON EBS EE. EIOEI EJD EMB EMOBN F5P FA0 FDQFY FERAY FIZPM FSGXE FYUFA GX1 HCIFZ HMCUK HYE HZ~ IWAJR JSO JUIAU JZLTJ KQ8 LK8 M1P M7P NAO NQJWS NXXTH NYICJ O9- OK1 P2P PQQKQ PROAC PSQYO Q-- Q-0 R-A RNS RNT RNTTT RPM RT1 S.. SNX SNYQT SOHCF SRMVM SV3 SWTZT T8Q TAOOD TBHMF TCJ TDRGL TGP TR2 U1F U1G U5A U5K UKHRP W94 WFFXF WU4 XSB ~88 ~WA AACDK AAHBH AASML AAXDM AAYZH ABAKF ABZZP ACMJI AEFQL AEMSY AEUYN AFBBN AGQEE AIGIU ALIPV C6C FIGPU LGEZI LOTEE NADUK ROL SOJ AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC AEZWR AFDZB AFHIU AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT NPM 7QO 7QP 7QR 7T5 7TK 7TM 7TO 7U9 7XB 8FD 8FK ABRTQ AZQEC DWQXO FR3 GNUQQ H94 K9. M7N P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 7X8 5PM |
ID | FETCH-LOGICAL-c473t-a7ade178822bcf2b36ef95a680fd54e00f15927b9fc2aa6a7f6c5d1b767c2f183 |
IEDL.DBID | C6C |
ISSN | 1001-0602 1748-7838 |
IngestDate | Thu Aug 21 14:09:25 EDT 2025 Fri Jul 11 10:24:18 EDT 2025 Fri Jul 25 09:02:02 EDT 2025 Thu Apr 03 07:00:26 EDT 2025 Tue Jul 01 03:41:35 EDT 2025 Thu Apr 24 23:03:19 EDT 2025 Fri Feb 21 02:38:08 EST 2025 Wed Feb 14 09:55:49 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | morphology programmed cell death mechanism plasma membrane immunology |
Language | English |
License | This work is licensed under a Creative Commons Attribution 4.0 Unported License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c473t-a7ade178822bcf2b36ef95a680fd54e00f15927b9fc2aa6a7f6c5d1b767c2f183 |
Notes | Ruptured and intact plasma membranes are classically considered as hallmarks of necrotic and apoptotic cell death, respectively. As such, apoptosis is usually considered a non-inflammatory process while necrosis triggers in- flammation. Recent studies on necroptosis and pyroptosis, two types of programmed necrosis, revealed that plasma membrane rupture is mediated by MLKL channels during necroptosis but depends on non-selective gasdermin D (GSDMD) pores during pyroptosis. Importantly, the morphology of dying cells executed by MLKL channels can be distinguished from that executed by GSDMD pores. Interestingly, it was found recently that secondary necrosis of apoptotic cells, a previously believed non-regulated form of cell lysis that occurs after apoptosis, can be programmed and executed by plasma membrane pore formation like that of pyroptosis. In addition, pyroptosis is associated with pyroptotic bodies, which have some similarities to apoptotic bodies. Therefore, different cell death programs induce distinctive reshuffling processes of the plasma membrane. Given the fact that the nature of released intracellular contents plays a crucial role in dying/dead cell-induced immunogenicity, not only membrane rupture or integrity but also the nature of plasma membrane breakdown would determine the fate of a cell as well as its ability to elicit an immune response. In this review, we will discuss recent advances in the field of apoptosis, necroptosis and pyroptosis, with an emphasis on the mechanisms underlying plasma membrane changes observed on dying cells and their implication in cell death-elicited immunogenicity. programmed cell death; plasma membrane; mechanism; morphology; immunology 31-1568 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://www.nature.com/articles/cr.2017.133 |
PMID | 29076500 |
PQID | 1983249629 |
PQPubID | 536307 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5752838 proquest_miscellaneous_1957467099 proquest_journals_1983249629 pubmed_primary_29076500 crossref_citationtrail_10_1038_cr_2017_133 crossref_primary_10_1038_cr_2017_133 springer_journals_10_1038_cr_2017_133 chongqing_primary_674404352 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-01-01 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – month: 01 year: 2018 text: 2018-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Cell research |
PublicationTitleAbbrev | Cell Res |
PublicationTitleAlternate | Cell Research |
PublicationYear | 2018 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Lane, Allan, Woodman (CR41) 2005; 118 Shi, Zhao, Wang (CR79) 2015; 526 Casares, Pequignot, Tesniere (CR92) 2005; 202 Scheithauer, Belka, Lauber (CR94) 2014; 9 Lin, Li, Yang (CR102) 2013; 3 Ding, Wang, Liu (CR18) 2016; 535 Cvetanovic, Ucker (CR85) 2004; 172 Tomiyoshi, Horita, Nishita (CR36) 2004; 9 Pradelli, Beneteau, Ricci (CR25) 2010; 67 Van Herreweghe, Festjens, Declercq (CR58) 2010; 67 Wallach, Kang, Dillon (CR5) 2016; 352 Krysko, Agostinis, Krysko (CR96) 2011; 32 Poon, Chiu, Armstrong (CR48) 2014; 507 Hildebrand, Tanzer, Lucet (CR14) 2014; 111 Monks, Smith-Steinhart, Kruk (CR44) 2008; 78 Yoon, Kovalenko, Bogdanov (CR74) 2017; 47 Kayagaki, Stowe, Lee (CR80) 2015; 526 Coleman, Sahai, Yeo (CR31) 2001; 3 Wood, Turmaine, Weber (CR42) 2000; 127 Xia, Fang, Chen (CR15) 2016; 26 Huang, Zheng, Wang (CR17) 2017; 37 Cho, Challa, Moquin (CR68) 2009; 137 Nagata, Tanaka (CR2) 2017; 17 Ros, Pena-Blanco, Hanggi (CR72) 2017; 19 Jorgensen, Rayamajhi, Miao (CR76) 2017; 17 Cai, Jitkaew, Zhao (CR9) 2014; 16 Aglietti, Estevez, Gupta (CR21) 2016; 113 Wu, Yang, Wang (CR60) 2014; 21 Stern, Savill, Haslett (CR83) 1996; 149 Voll, Herrmann, Roth (CR88) 1997; 390 Chen, Zhou, Li (CR62) 2013; 288 He, Wang, Miao (CR67) 2009; 137 Wang, Sun, Su (CR10) 2014; 54 Kurokawa, Kornbluth (CR8) 2009; 138 Brouckaert, Kalai, Krysko (CR84) 2004; 15 Yatim, Jusforgues-Saklani, Orozco (CR98) 2015; 350 Sborgi, Ruhl, Mulvihill (CR20) 2016; 35 Vanden Berghe, Vanlangenakker, Parthoens (CR50) 2010; 17 Lee, MacDonald, Reinhard (CR33) 1997; 94 Jorgensen, Miao (CR75) 2015; 265 Jiang, Wang (CR26) 2004; 73 Laster, Wood, Gooding (CR56) 1988; 141 Rudel, Bokoch (CR34) 1997; 276 Kothakota, Azuma, Reinhard (CR46) 1997; 278 Quarato, Guy, Grace (CR71) 2016; 61 Meagher, Savill, Baker (CR82) 1992; 52 Chan, Luz, Moriwaki (CR55) 2015; 33 Sebbagh, Renvoize, Hamelin (CR32) 2001; 3 Vilas, Corvi, Plummer (CR35) 2006; 103 Parnaik, Raff, Scholes (CR43) 2000; 10 Gong, Guy, Olauson (CR73) 2017; 169 Zhang, Han (CR16) 2016; 26 Kerr, Wyllie, Currie (CR23) 1972; 26 Jorgensen, Zhang, Krantz (CR103) 2016; 213 Janicke, Ng, Sprengart (CR30) 1998; 273 Walker, Harmon, Gobe (CR1) 1988; 13 Christofferson, Li, Yuan (CR66) 2014; 76 Berg, Levitte, O'Sullivan (CR52) 2016; 165 Schulzeosthoff, Bakker, Vanhaesebroeck (CR57) 1992; 267 Dondelinger, Declercq, Montessuit (CR12) 2014; 7 Su, Quade, Wang (CR13) 2014; 22 Huang, Li, Liu (CR89) 2011; 17 Elmore (CR24) 2007; 35 Degterev, Yuan (CR28) 2008; 9 Krysko, Love Aaes, Bachert (CR97) 2013; 4 Zhao, Jitkaew, Cai (CR64) 2012; 109 Obeid, Panaretakis, Joza (CR93) 2007; 14 Rodriguez, Weinlich, Brown (CR70) 2016; 23 Juncadella, Kadl, Sharma (CR45) 2013; 493 Vandenabeele, Vandecasteele, Bachert (CR7) 2016; 930 Krysko, D'Herde, Vandenabeele (CR87) 2006; 11 Wang, Gao, Shi (CR53) 2017; 547 He, Wan, Hu (CR81) 2015; 25 Cai, Zhang, Choksi (CR100) 2016; 26 Chekeni, Elliott, Sandilos (CR47) 2010; 467 Aaes, Kaczmarek, Delvaeye (CR99) 2016; 15 Zhang, Shao, Lin (CR59) 2009; 325 Degterev, Hitomi, Germscheid (CR65) 2008; 4 Poon, Lucas, Rossi (CR37) 2014; 14 Torgerson, McNiven (CR39) 1998; 111 Liu, Zhang, Ruan (CR19) 2016; 535 Fadok, Bratton, Konowal (CR86) 1998; 101 Ren, Jia, Zhao (CR6) 2017; 14 Galluzzi, Buque, Kepp (CR51) 2017; 17 Cookson, Brennan (CR78) 2001; 9 Sun, Wang, Wang (CR63) 2012; 148 Li, Yuan (CR27) 2008; 27 Gregory, Pound (CR91) 2011; 223 Kono, Rock (CR4) 2008; 8 Orozco, Yatim, Werner (CR61) 2014; 21 Ford, Petrova, Pound (CR90) 2015; 25 Fackler, Grosse (CR40) 2008; 181 Zheng, Schlosser, Dao (CR29) 1998; 95 Garg, Krysko, Vandenabeele (CR95) 2012; 61 Balasubramanian, Mirnikjoo, Schroit (CR38) 2007; 282 Han, Zhong, Zhang (CR54) 2011; 12 Linkermann, Brasen, Darding (CR101) 2013; 110 Rogers, Fernandes-Alnemri, Mayes (CR3) 2017; 8 Atkin-Smith, Tixeira, Paone (CR49) 2015; 6 Murphy, Czabotar, Hildebrand (CR69) 2013; 39 Lamkanfi, Dixit (CR77) 2014; 157 Chen, Li, Ren (CR11) 2014; 24 Chen, He, Hu (CR22) 2016; 26 S Yoon (BFcr2017133_CR74) 2017; 47 Q Huang (BFcr2017133_CR89) 2011; 17 RD Berg (BFcr2017133_CR52) 2016; 165 G Brouckaert (BFcr2017133_CR84) 2004; 15 J Han (BFcr2017133_CR54) 2011; 12 X Liu (BFcr2017133_CR19) 2016; 535 J Li (BFcr2017133_CR27) 2008; 27 N Casares (BFcr2017133_CR92) 2005; 202 A Linkermann (BFcr2017133_CR101) 2013; 110 SM Laster (BFcr2017133_CR56) 1988; 141 H Kono (BFcr2017133_CR4) 2008; 8 S Elmore (BFcr2017133_CR24) 2007; 35 N Lee (BFcr2017133_CR33) 1997; 94 X Jiang (BFcr2017133_CR26) 2004; 73 ZY Cai (BFcr2017133_CR9) 2014; 16 VA Fadok (BFcr2017133_CR86) 1998; 101 C Rogers (BFcr2017133_CR3) 2017; 8 X Chen (BFcr2017133_CR11) 2014; 24 JJ Shi (BFcr2017133_CR79) 2015; 526 IKH Poon (BFcr2017133_CR37) 2014; 14 J Zhao (BFcr2017133_CR64) 2012; 109 CD Gregory (BFcr2017133_CR91) 2011; 223 W Wood (BFcr2017133_CR42) 2000; 127 J Lin (BFcr2017133_CR102) 2013; 3 R Parnaik (BFcr2017133_CR43) 2000; 10 DA Rodriguez (BFcr2017133_CR70) 2016; 23 S Nagata (BFcr2017133_CR2) 2017; 17 K Schulzeosthoff (BFcr2017133_CR57) 1992; 267 I Jorgensen (BFcr2017133_CR103) 2016; 213 YS Cho (BFcr2017133_CR68) 2009; 137 DV Krysko (BFcr2017133_CR87) 2006; 11 LA Pradelli (BFcr2017133_CR25) 2010; 67 L Sborgi (BFcr2017133_CR20) 2016; 35 Z Cai (BFcr2017133_CR100) 2016; 26 TS Zheng (BFcr2017133_CR29) 1998; 95 U Ros (BFcr2017133_CR72) 2017; 19 J Ren (BFcr2017133_CR6) 2017; 14 J Ding (BFcr2017133_CR18) 2016; 535 WT He (BFcr2017133_CR81) 2015; 25 L Galluzzi (BFcr2017133_CR51) 2017; 17 O Krysko (BFcr2017133_CR97) 2013; 4 M Cvetanovic (BFcr2017133_CR85) 2004; 172 RU Janicke (BFcr2017133_CR30) 1998; 273 DL Huang (BFcr2017133_CR17) 2017; 37 GK Atkin-Smith (BFcr2017133_CR49) 2015; 6 S He (BFcr2017133_CR67) 2009; 137 LM Sun (BFcr2017133_CR63) 2012; 148 WZ Chen (BFcr2017133_CR62) 2013; 288 I Jorgensen (BFcr2017133_CR75) 2015; 265 T Rudel (BFcr2017133_CR34) 1997; 276 HY Wang (BFcr2017133_CR10) 2014; 54 YY Zhang (BFcr2017133_CR16) 2016; 26 M Sebbagh (BFcr2017133_CR32) 2001; 3 S Kothakota (BFcr2017133_CR46) 1997; 278 DV Krysko (BFcr2017133_CR96) 2011; 32 Y Wang (BFcr2017133_CR53) 2017; 547 RR Torgerson (BFcr2017133_CR39) 1998; 111 LC Meagher (BFcr2017133_CR82) 1992; 52 I Jorgensen (BFcr2017133_CR76) 2017; 17 RE Voll (BFcr2017133_CR88) 1997; 390 D Wallach (BFcr2017133_CR5) 2016; 352 CA Ford (BFcr2017133_CR90) 2015; 25 M Lamkanfi (BFcr2017133_CR77) 2014; 157 AD Garg (BFcr2017133_CR95) 2012; 61 JM Hildebrand (BFcr2017133_CR14) 2014; 111 IJ Juncadella (BFcr2017133_CR45) 2013; 493 G Tomiyoshi (BFcr2017133_CR36) 2004; 9 BT Cookson (BFcr2017133_CR78) 2001; 9 DW Zhang (BFcr2017133_CR59) 2009; 325 M Kurokawa (BFcr2017133_CR8) 2009; 138 TL Aaes (BFcr2017133_CR99) 2016; 15 XN Wu (BFcr2017133_CR60) 2014; 21 K Balasubramanian (BFcr2017133_CR38) 2007; 282 JM Murphy (BFcr2017133_CR69) 2013; 39 JF Kerr (BFcr2017133_CR23) 1972; 26 FKM Chan (BFcr2017133_CR55) 2015; 33 OT Fackler (BFcr2017133_CR40) 2008; 181 J Monks (BFcr2017133_CR44) 2008; 78 A Degterev (BFcr2017133_CR28) 2008; 9 T Vanden Berghe (BFcr2017133_CR50) 2010; 17 Y Dondelinger (BFcr2017133_CR12) 2014; 7 P Vandenabeele (BFcr2017133_CR7) 2016; 930 L Su (BFcr2017133_CR13) 2014; 22 F Van Herreweghe (BFcr2017133_CR58) 2010; 67 B Xia (BFcr2017133_CR15) 2016; 26 ML Coleman (BFcr2017133_CR31) 2001; 3 NI Walker (BFcr2017133_CR1) 1988; 13 RA Aglietti (BFcr2017133_CR21) 2016; 113 A Degterev (BFcr2017133_CR65) 2008; 4 YN Gong (BFcr2017133_CR73) 2017; 169 GL Vilas (BFcr2017133_CR35) 2006; 103 DE Christofferson (BFcr2017133_CR66) 2014; 76 X Chen (BFcr2017133_CR22) 2016; 26 FB Chekeni (BFcr2017133_CR47) 2010; 467 S Orozco (BFcr2017133_CR61) 2014; 21 N Kayagaki (BFcr2017133_CR80) 2015; 526 H Scheithauer (BFcr2017133_CR94) 2014; 9 IKH Poon (BFcr2017133_CR48) 2014; 507 M Obeid (BFcr2017133_CR93) 2007; 14 G Quarato (BFcr2017133_CR71) 2016; 61 M Stern (BFcr2017133_CR83) 1996; 149 JD Lane (BFcr2017133_CR41) 2005; 118 N Yatim (BFcr2017133_CR98) 2015; 350 |
References_xml | – volume: 109 start-page: 5322 year: 2012 end-page: 5327 ident: CR64 article-title: Mixed lineage kinase domain-like is a key receptor interacting protein 3 downstream component of TNF-induced necrosis publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1200012109 – volume: 202 start-page: 1691 year: 2005 end-page: 1701 ident: CR92 article-title: Caspase-dependent immunogenicity of doxorubicin-induced tumor cell death publication-title: J Exp Med doi: 10.1084/jem.20050915 – volume: 26 start-page: 643 year: 2016 end-page: 644 ident: CR16 article-title: Electrophysiologist shows a cation channel function of MLKL publication-title: Cell Res doi: 10.1038/cr.2016.64 – volume: 39 start-page: 443 year: 2013 end-page: 453 ident: CR69 article-title: The pseudokinase MLKL mediates necroptosis via a molecular switch mechanism publication-title: Immunity doi: 10.1016/j.immuni.2013.06.018 – volume: 15 start-page: 1089 year: 2004 end-page: 1100 ident: CR84 article-title: Phagocytosis of necrotic cells by macrophages is phosphatidylserine dependent and does not induce inflammatory cytokine production publication-title: Mol Biol Cell doi: 10.1091/mbc.e03-09-0668 – volume: 78 start-page: 586 year: 2008 end-page: 594 ident: CR44 article-title: Epithelial cells remove apoptotic epithelial cells during post-lactation involution of the mouse mammary gland publication-title: Biol Reprod doi: 10.1095/biolreprod.107.065045 – volume: 61 start-page: 589 year: 2016 end-page: 601 ident: CR71 article-title: Sequential engagement of distinct MLKL phosphatidylinositol-binding sites executes necroptosis publication-title: Mol Cell doi: 10.1016/j.molcel.2016.01.011 – volume: 3 start-page: 346 year: 2001 end-page: 352 ident: CR32 article-title: Caspase-3-mediated cleavage of ROCK I induces MLC phosphorylation and apoptotic membrane blebbing publication-title: Nat Cell Biol doi: 10.1038/35070019 – volume: 13 start-page: 18 year: 1988 end-page: 54 ident: CR1 article-title: Patterns of cell death publication-title: Methods Achiev Exp Pathol – volume: 37 start-page: pii year: 2017 ident: CR17 article-title: The MLKL channel in necroptosis is an octamer formed by tetramers in a dyadic process publication-title: Mol Cell Biol – volume: 467 start-page: 863 year: 2010 end-page: U136 ident: CR47 article-title: Pannexin 1 channels mediate 'find-me' signal release and membrane permeability during apoptosis publication-title: Nature doi: 10.1038/nature09413 – volume: 535 start-page: 153 year: 2016 end-page: 158 ident: CR19 article-title: Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores publication-title: Nature doi: 10.1038/nature18629 – volume: 165 start-page: 139 year: 2016 end-page: 152 ident: CR52 article-title: Lysosomal disorders drive susceptibility to tuberculosis by compromising macrophage migration publication-title: Cell doi: 10.1016/j.cell.2016.02.034 – volume: 507 start-page: 329 year: 2014 end-page: 334 ident: CR48 article-title: Unexpected link between an antibiotic, pannexin channels and apoptosis publication-title: Nature doi: 10.1038/nature13147 – volume: 325 start-page: 332 year: 2009 end-page: 336 ident: CR59 article-title: RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis publication-title: Science doi: 10.1126/science.1172308 – volume: 9 start-page: 591 year: 2004 end-page: 600 ident: CR36 article-title: Caspase-mediated cleavage and activation of LIM-kinase 1 and its role in apoptotic membrane blebbing publication-title: Genes Cells doi: 10.1111/j.1356-9597.2004.00745.x – volume: 103 start-page: 6542 year: 2006 end-page: 6547 ident: CR35 article-title: Posttranslational myristoylation of caspase-activated p21-activated protein kinase 2 (PAK2) potentiates late apoptotic events publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0600824103 – volume: 172 start-page: 880 year: 2004 end-page: 889 ident: CR85 article-title: Innate immune discrimination of apoptotic cells: repression of proinflammatory macrophage transcription is coupled directly to specific recognition publication-title: J Immunol doi: 10.4049/jimmunol.172.2.880 – volume: 17 start-page: 151 year: 2017 end-page: 164 ident: CR76 article-title: Programmed cell death as a defence against infection publication-title: Nat Rev Immunol doi: 10.1038/nri.2016.147 – volume: 17 start-page: 860 year: 2011 end-page: 866 ident: CR89 article-title: Caspase 3-mediated stimulation of tumor cell repopulation during cancer radiotherapy publication-title: Nat Med doi: 10.1038/nm.2385 – volume: 24 start-page: 105 year: 2014 end-page: 121 ident: CR11 article-title: Translocation of mixed lineage kinase domain-like protein to plasma membrane leads to necrotic cell death publication-title: Cell Res doi: 10.1038/cr.2013.171 – volume: 25 start-page: 577 year: 2015 end-page: 588 ident: CR90 article-title: Oncogenic properties of apoptotic tumor cells in aggressive B cell lymphoma publication-title: Curr Biol doi: 10.1016/j.cub.2014.12.059 – volume: 14 start-page: 1848 year: 2007 end-page: 1850 ident: CR93 article-title: Calreticulin exposure is required for the immunogenicity of gamma-irradiation and UVC light-induced apoptosis publication-title: Cell Death Differ doi: 10.1038/sj.cdd.4402201 – volume: 493 start-page: 547 year: 2013 end-page: 551 ident: CR45 article-title: Apoptotic cell clearance by bronchial epithelial cells critically influences airway inflammation publication-title: Nature doi: 10.1038/nature11714 – volume: 47 start-page: 51 year: 2017 end-page: 65 ident: CR74 article-title: MLKL, the protein that mediates necroptosis, also regulates endosomal trafficking and extracellular vesicle generation publication-title: Immunity doi: 10.1016/j.immuni.2017.06.001 – volume: 141 start-page: 2629 year: 1988 end-page: 2634 ident: CR56 article-title: Tumor necrosis factor can induce both apoptic and necrotic forms of cell-lysis publication-title: J Immunol – volume: 113 start-page: 7858 year: 2016 end-page: 7863 ident: CR21 article-title: GsdmD p30 elicited by caspase-11 during pyroptosis forms pores in membranes publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1607769113 – volume: 32 start-page: 157 year: 2011 end-page: 164 ident: CR96 article-title: Emerging role of damage-associated molecular patterns derived from mitochondria in inflammation publication-title: Trends Immunol doi: 10.1016/j.it.2011.01.005 – volume: 535 start-page: 111 year: 2016 end-page: 116 ident: CR18 article-title: Pore-forming activity and structural autoinhibition of the gasdermin family publication-title: Nature doi: 10.1038/nature18590 – volume: 94 start-page: 13642 year: 1997 end-page: 13647 ident: CR33 article-title: Activation of hPAK65 by caspase cleavage induces some of the morphological and biochemical changes of apoptosis publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.94.25.13642 – volume: 26 start-page: 886 year: 2016 end-page: 900 ident: CR100 article-title: Activation of cell-surface proteases promotes necroptosis, inflammation and cell migration publication-title: Cell Res doi: 10.1038/cr.2016.87 – volume: 110 start-page: 12024 year: 2013 end-page: 12029 ident: CR101 article-title: Two independent pathways of regulated necrosis mediate ischemia-reperfusion injury publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1305538110 – volume: 33 start-page: 79 year: 2015 end-page: 106 ident: CR55 article-title: Programmed necrosis in the cross talk of cell death and inflammation publication-title: Annu Rev Immunol doi: 10.1146/annurev-immunol-032414-112248 – volume: 157 start-page: 1013 year: 2014 end-page: 1022 ident: CR77 article-title: Mechanisms and functions of inflammasomes publication-title: Cell doi: 10.1016/j.cell.2014.04.007 – volume: 101 start-page: 890 year: 1998 end-page: 898 ident: CR86 article-title: Macrophages that have ingested apoptotic cells inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF publication-title: J Clin Invest doi: 10.1172/JCI1112 – volume: 526 start-page: 660 year: 2015 end-page: 665 ident: CR79 article-title: Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death publication-title: Nature doi: 10.1038/nature15514 – volume: 22 start-page: 1489 year: 2014 end-page: 1500 ident: CR13 article-title: A plug release mechanism for membrane permeation by MLKL publication-title: Structure doi: 10.1016/j.str.2014.07.014 – volume: 26 start-page: 517 year: 2016 end-page: 528 ident: CR15 article-title: MLKL forms cation channels publication-title: Cell Res doi: 10.1038/cr.2016.26 – volume: 6 start-page: 7439 year: 2015 ident: CR49 article-title: A novel mechanism of generating extracellular vesicles during apoptosis via a beads-on-a-string membrane structure publication-title: Nat Commun doi: 10.1038/ncomms8439 – volume: 21 start-page: 1511 year: 2014 end-page: 1521 ident: CR61 article-title: RIPK1 both positively and negatively regulates RIPK3 oligomerization and necroptosis publication-title: Cell Death Differ doi: 10.1038/cdd.2014.76 – volume: 127 start-page: 5245 year: 2000 end-page: 5252 ident: CR42 article-title: Mesenchymal cells engulf and clear apoptotic footplate cells in macrophageless PU.1 null mouse embryos publication-title: Development – volume: 8 start-page: 279 year: 2008 end-page: 289 ident: CR4 article-title: How dying cells alert the immune system to danger publication-title: Nat Rev Immunol doi: 10.1038/nri2215 – volume: 52 start-page: 269 year: 1992 end-page: 273 ident: CR82 article-title: Phagocytosis of apoptotic neutrophils does not induce macrophage release of thromboxane B2 publication-title: J Leukoc Biol doi: 10.1002/jlb.52.3.269 – volume: 76 start-page: 129 year: 2014 end-page: 150 ident: CR66 article-title: Control of life-or-death decisions by RIP1 kinase publication-title: Annu Rev Physiol doi: 10.1146/annurev-physiol-021113-170259 – volume: 17 start-page: 97 year: 2017 end-page: 111 ident: CR51 article-title: Immunogenic cell death in cancer and infectious disease publication-title: Nat Rev Immunol doi: 10.1038/nri.2016.107 – volume: 14 start-page: 639 year: 2017 end-page: 642 ident: CR6 article-title: The RIP3-RIP1-NF-kappaB signaling axis is dispensable for necroptotic cells to elicit cross-priming of CD8+ T cells publication-title: Cell Mol Immunol doi: 10.1038/cmi.2017.31 – volume: 111 start-page: 2911 year: 1998 end-page: 2922 ident: CR39 article-title: The actin-myosin cytoskeleton mediates reversible agonist-induced membrane blebbing publication-title: J Cell Sci – volume: 4 start-page: 313 year: 2008 end-page: 321 ident: CR65 article-title: Identification of RIP1 kinase as a specific cellular target of necrostatins publication-title: Nat Chem Biol doi: 10.1038/nchembio.83 – volume: 26 start-page: 239 year: 1972 end-page: 257 ident: CR23 article-title: Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics publication-title: Br J Cancer doi: 10.1038/bjc.1972.33 – volume: 149 start-page: 911 year: 1996 end-page: 921 ident: CR83 article-title: Human monocyte-derived macrophage phagocytosis of senescent eosinophils undergoing apoptosis. Mediation by alpha v beta 3/CD36/thrombospondin recognition mechanism and lack of phlogistic response publication-title: Am J Pathol – volume: 17 start-page: 922 year: 2010 end-page: 930 ident: CR50 article-title: Necroptosis, necrosis and secondary necrosis converge on similar cellular disintegration features publication-title: Cell Death Differ doi: 10.1038/cdd.2009.184 – volume: 26 start-page: 1007 year: 2016 end-page: 1020 ident: CR22 article-title: Pyroptosis is driven by non-selective gasdermin-D pore and its morphology is different from MLKL channel-mediated necroptosis publication-title: Cell Res doi: 10.1038/cr.2016.100 – volume: 12 start-page: 1143 year: 2011 end-page: 1149 ident: CR54 article-title: Programmed necrosis: backup to and competitor with apoptosis in the immune system publication-title: Nat Immunol doi: 10.1038/ni.2159 – volume: 19 start-page: 175 year: 2017 end-page: 187 ident: CR72 article-title: Necroptosis execution is mediated by plasma membrane nanopores independent of calcium publication-title: Cell Rep doi: 10.1016/j.celrep.2017.03.024 – volume: 8 start-page: 14128 year: 2017 ident: CR3 article-title: Cleavage of DFNA5 by caspase-3 during apoptosis mediates progression to secondary necrotic/pyroptotic cell death publication-title: Nat Commun doi: 10.1038/ncomms14128 – volume: 137 start-page: 1112 year: 2009 end-page: 1123 ident: CR68 article-title: Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation publication-title: Cell doi: 10.1016/j.cell.2009.05.037 – volume: 15 start-page: 274 year: 2016 end-page: 287 ident: CR99 article-title: Vaccination with necroptotic cancer cells induces efficient anti-tumor immunity publication-title: Cell Rep doi: 10.1016/j.celrep.2016.03.037 – volume: 390 start-page: 350 year: 1997 end-page: 351 ident: CR88 article-title: Immunosuppressive effects of apoptotic cells publication-title: Nature doi: 10.1038/37022 – volume: 138 start-page: 838 year: 2009 end-page: 854 ident: CR8 article-title: Caspases and kinases in a death grip publication-title: Cell doi: 10.1016/j.cell.2009.08.021 – volume: 273 start-page: 15540 year: 1998 end-page: 15545 ident: CR30 article-title: Caspase-3 is required for alpha-fodrin cleavage but dispensable for cleavage of other death substrates in apoptosis publication-title: J Biol Chem doi: 10.1074/jbc.273.25.15540 – volume: 35 start-page: 495 year: 2007 end-page: 516 ident: CR24 article-title: Apoptosis: a review of programmed cell death publication-title: Toxicol Pathol doi: 10.1080/01926230701320337 – volume: 118 start-page: 4059 year: 2005 end-page: 4071 ident: CR41 article-title: Active relocation of chromatin and endoplasmic reticulum into blebs in late apoptotic cells publication-title: J Cell Sci doi: 10.1242/jcs.02529 – volume: 67 start-page: 1567 year: 2010 end-page: 1579 ident: CR58 article-title: Tumor necrosis factor-mediated cell death: to break or to burst, that's the question publication-title: Cell Mol Life Sci doi: 10.1007/s00018-010-0283-0 – volume: 4 start-page: e631 year: 2013 ident: CR97 article-title: Many faces of DAMPs in cancer therapy publication-title: Cell Death Dis doi: 10.1038/cddis.2013.156 – volume: 21 start-page: 1709 year: 2014 end-page: 1720 ident: CR60 article-title: Distinct roles of RIP1-RIP3 hetero- and RIP3-RIP3 homo-interaction in mediating necroptosis publication-title: Cell Death Differ doi: 10.1038/cdd.2014.77 – volume: 223 start-page: 177 year: 2011 end-page: 194 ident: CR91 article-title: Cell death in the neighbourhood: direct microenvironmental effects of apoptosis in normal and neoplastic tissues publication-title: J Pathol doi: 10.1002/path.2792 – volume: 95 start-page: 13618 year: 1998 end-page: 13623 ident: CR29 article-title: Caspase-3 controls both cytoplasmic and nuclear events associated with Fas-mediated apoptosis publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.95.23.13618 – volume: 11 start-page: 1709 year: 2006 end-page: 1726 ident: CR87 article-title: Clearance of apoptotic and necrotic cells and its immunological consequences publication-title: Apoptosis doi: 10.1007/s10495-006-9527-8 – volume: 352 start-page: aaf2154 year: 2016 ident: CR5 article-title: Programmed necrosis in inflammation: toward identification of the effector molecules publication-title: Science doi: 10.1126/science.aaf2154 – volume: 267 start-page: 5317 year: 1992 end-page: 5323 ident: CR57 article-title: Cytotoxic activity of tumor-necrosis-factor is mediated by early damage of mitochondrial functions - evidence for the involvement of mitochondrial radical generation publication-title: J Biol Chem – volume: 67 start-page: 1589 year: 2010 end-page: 1597 ident: CR25 article-title: Mitochondrial control of caspase-dependent and -independent cell death publication-title: Cell Mol Life Sci doi: 10.1007/s00018-010-0285-y – volume: 9 start-page: 113 year: 2001 end-page: 114 ident: CR78 article-title: Pro-inflammatory programmed cell death publication-title: Trends Microbiol doi: 10.1016/S0966-842X(00)01936-3 – volume: 265 start-page: 130 year: 2015 end-page: 142 ident: CR75 article-title: Pyroptotic cell death defends against intracellular pathogens publication-title: Immunol Rev doi: 10.1111/imr.12287 – volume: 282 start-page: 18357 year: 2007 end-page: 18364 ident: CR38 article-title: Regulated externalization of phosphatidylserine at the cell surface - implications for apoptosis publication-title: J Biol Chem doi: 10.1074/jbc.M700202200 – volume: 213 start-page: 2113 year: 2016 end-page: 2128 ident: CR103 article-title: Pyroptosis triggers pore-induced intracellular traps (PITs) that capture bacteria and lead to their clearance by efferocytosis publication-title: J Exp Med doi: 10.1084/jem.20151613 – volume: 27 start-page: 6194 year: 2008 end-page: 6206 ident: CR27 article-title: Caspases in apoptosis and beyond publication-title: Oncogene doi: 10.1038/onc.2008.297 – volume: 526 start-page: 666 year: 2015 end-page: 671 ident: CR80 article-title: Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling publication-title: Nature doi: 10.1038/nature15541 – volume: 350 start-page: 328 year: 2015 end-page: 334 ident: CR98 article-title: RIPK1 and NF-kappaB signaling in dying cells determines cross-priming of CD8(+) T cells publication-title: Science doi: 10.1126/science.aad0395 – volume: 278 start-page: 294 year: 1997 end-page: 298 ident: CR46 article-title: Caspase-3-generated fragment of gelsolin: effector of morphological change in apoptosis publication-title: Science doi: 10.1126/science.278.5336.294 – volume: 17 start-page: 333 year: 2017 end-page: 340 ident: CR2 article-title: Programmed cell death and the immune system publication-title: Nat Rev Immunol doi: 10.1038/nri.2016.153 – volume: 9 start-page: 185 year: 2014 ident: CR94 article-title: Immunological aspects of radiotherapy publication-title: Radiat Oncol doi: 10.1186/1748-717X-9-185 – volume: 25 start-page: 1285 year: 2015 end-page: 1298 ident: CR81 article-title: Gasdermin D is an executor of pyroptosis and required for interleukin-1 beta secretion publication-title: Cell Res doi: 10.1038/cr.2015.139 – volume: 288 start-page: 16247 year: 2013 end-page: 16261 ident: CR62 article-title: Diverse sequence determinants control human and mouse receptor interacting protein 3 (RIP3) and mixed lineage kinase domain-like (MLKL) interaction in necroptotic signaling publication-title: J Biol Chem doi: 10.1074/jbc.M112.435545 – volume: 930 start-page: 133 year: 2016 end-page: 149 ident: CR7 article-title: Immunogenic apoptotic cell death and anticancer immunity publication-title: Adv Exp Med Biol doi: 10.1007/978-3-319-39406-0_6 – volume: 23 start-page: 76 year: 2016 end-page: 88 ident: CR70 article-title: Characterization of RIPK3-mediated phosphorylation of the activation loop of MLKL during necroptosis publication-title: Cell Death Differ doi: 10.1038/cdd.2015.70 – volume: 547 start-page: 99 year: 2017 end-page: 103 ident: CR53 article-title: Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin publication-title: Nature doi: 10.1038/nature22393 – volume: 3 start-page: 200 year: 2013 end-page: 210 ident: CR102 article-title: A role of RIP3-mediated macrophage necrosis in atherosclerosis development publication-title: Cell Rep doi: 10.1016/j.celrep.2012.12.012 – volume: 35 start-page: 1766 year: 2016 end-page: 1778 ident: CR20 article-title: GSDMD membrane pore formation constitutes the mechanism of pyroptotic cell death publication-title: EMBO J doi: 10.15252/embj.201694696 – volume: 181 start-page: 879 year: 2008 end-page: 884 ident: CR40 article-title: Cell motility through plasma membrane blebbing publication-title: J Cell Biol doi: 10.1083/jcb.200802081 – volume: 137 start-page: 1100 year: 2009 end-page: 1111 ident: CR67 article-title: Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha publication-title: Cell doi: 10.1016/j.cell.2009.05.021 – volume: 276 start-page: 1571 year: 1997 end-page: 1574 ident: CR34 article-title: Membrane and morphological changes in apoptotic cells regulated by caspase-mediated activation of PAK2 publication-title: Science doi: 10.1126/science.276.5318.1571 – volume: 16 start-page: 55 year: 2014 end-page: 65 ident: CR9 article-title: Plasma membrane translocation of trimerized MLKL protein is required for TNF-induced necroptosis publication-title: Nat Cell Biol doi: 10.1038/ncb2883 – volume: 148 start-page: 213 year: 2012 end-page: 227 ident: CR63 article-title: Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase publication-title: Cell doi: 10.1016/j.cell.2011.11.031 – volume: 169 start-page: 286 year: 2017 end-page: 300 ident: CR73 article-title: ESCRT-III acts downstream of MLKL to regulate necroptotic cell death and its consequences publication-title: Cell doi: 10.1016/j.cell.2017.03.020 – volume: 10 start-page: 857 year: 2000 end-page: 860 ident: CR43 article-title: Differences between the clearance of apoptotic cells by professional and non-professional phagocytes publication-title: Curr Biol doi: 10.1016/S0960-9822(00)00598-4 – volume: 3 start-page: 339 year: 2001 end-page: 345 ident: CR31 article-title: Membrane blebbing during apoptosis results from caspase-mediated activation of ROCK I publication-title: Nat Cell Biol doi: 10.1038/35070009 – volume: 111 start-page: 15072 year: 2014 end-page: 15077 ident: CR14 article-title: Activation of the pseudokinase MLKL unleashes the four-helix bundle domain to induce membrane localization and necroptotic cell death publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1408987111 – volume: 73 start-page: 87 year: 2004 end-page: 106 ident: CR26 article-title: Cytochrome C-mediated apoptosis publication-title: Annu Rev Biochem doi: 10.1146/annurev.biochem.73.011303.073706 – volume: 14 start-page: 166 year: 2014 end-page: 180 ident: CR37 article-title: Apoptotic cell clearance: basic biology and therapeutic potential publication-title: Nat Rev Immunol doi: 10.1038/nri3607 – volume: 9 start-page: 378 year: 2008 end-page: 390 ident: CR28 article-title: Expansion and evolution of cell death programmes publication-title: Nat Rev Mol Cell Biol doi: 10.1038/nrm2393 – volume: 54 start-page: 133 year: 2014 end-page: 146 ident: CR10 article-title: Mixed lineage kinase domain-like protein MLKL causes necrotic membrane disruption upon phosphorylation by RIP3 publication-title: Mol Cell doi: 10.1016/j.molcel.2014.03.003 – volume: 61 start-page: 215 year: 2012 end-page: 221 ident: CR95 article-title: Hypericin-based photodynamic therapy induces surface exposure of damage-associated molecular patterns like HSP70 and calreticulin publication-title: Cancer Immunol Immunother doi: 10.1007/s00262-011-1184-2 – volume: 7 start-page: 971 year: 2014 end-page: 981 ident: CR12 article-title: MLKL compromises plasma membrane integrity by binding to phosphatidylinositol phosphates publication-title: Cell Rep doi: 10.1016/j.celrep.2014.04.026 – volume: 149 start-page: 911 year: 1996 ident: BFcr2017133_CR83 publication-title: Am J Pathol – volume: 26 start-page: 517 year: 2016 ident: BFcr2017133_CR15 publication-title: Cell Res doi: 10.1038/cr.2016.26 – volume: 61 start-page: 589 year: 2016 ident: BFcr2017133_CR71 publication-title: Mol Cell doi: 10.1016/j.molcel.2016.01.011 – volume: 13 start-page: 18 year: 1988 ident: BFcr2017133_CR1 publication-title: Methods Achiev Exp Pathol – volume: 25 start-page: 577 year: 2015 ident: BFcr2017133_CR90 publication-title: Curr Biol doi: 10.1016/j.cub.2014.12.059 – volume: 350 start-page: 328 year: 2015 ident: BFcr2017133_CR98 publication-title: Science doi: 10.1126/science.aad0395 – volume: 278 start-page: 294 year: 1997 ident: BFcr2017133_CR46 publication-title: Science doi: 10.1126/science.278.5336.294 – volume: 35 start-page: 495 year: 2007 ident: BFcr2017133_CR24 publication-title: Toxicol Pathol doi: 10.1080/01926230701320337 – volume: 10 start-page: 857 year: 2000 ident: BFcr2017133_CR43 publication-title: Curr Biol doi: 10.1016/S0960-9822(00)00598-4 – volume: 172 start-page: 880 year: 2004 ident: BFcr2017133_CR85 publication-title: J Immunol doi: 10.4049/jimmunol.172.2.880 – volume: 137 start-page: 1100 year: 2009 ident: BFcr2017133_CR67 publication-title: Cell doi: 10.1016/j.cell.2009.05.021 – volume: 47 start-page: 51 year: 2017 ident: BFcr2017133_CR74 publication-title: Immunity doi: 10.1016/j.immuni.2017.06.001 – volume: 526 start-page: 666 year: 2015 ident: BFcr2017133_CR80 publication-title: Nature doi: 10.1038/nature15541 – volume: 181 start-page: 879 year: 2008 ident: BFcr2017133_CR40 publication-title: J Cell Biol doi: 10.1083/jcb.200802081 – volume: 103 start-page: 6542 year: 2006 ident: BFcr2017133_CR35 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0600824103 – volume: 23 start-page: 76 year: 2016 ident: BFcr2017133_CR70 publication-title: Cell Death Differ doi: 10.1038/cdd.2015.70 – volume: 535 start-page: 153 year: 2016 ident: BFcr2017133_CR19 publication-title: Nature doi: 10.1038/nature18629 – volume: 507 start-page: 329 year: 2014 ident: BFcr2017133_CR48 publication-title: Nature doi: 10.1038/nature13147 – volume: 35 start-page: 1766 year: 2016 ident: BFcr2017133_CR20 publication-title: EMBO J doi: 10.15252/embj.201694696 – volume: 110 start-page: 12024 year: 2013 ident: BFcr2017133_CR101 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1305538110 – volume: 94 start-page: 13642 year: 1997 ident: BFcr2017133_CR33 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.94.25.13642 – volume: 76 start-page: 129 year: 2014 ident: BFcr2017133_CR66 publication-title: Annu Rev Physiol doi: 10.1146/annurev-physiol-021113-170259 – volume: 273 start-page: 15540 year: 1998 ident: BFcr2017133_CR30 publication-title: J Biol Chem doi: 10.1074/jbc.273.25.15540 – volume: 78 start-page: 586 year: 2008 ident: BFcr2017133_CR44 publication-title: Biol Reprod doi: 10.1095/biolreprod.107.065045 – volume: 265 start-page: 130 year: 2015 ident: BFcr2017133_CR75 publication-title: Immunol Rev doi: 10.1111/imr.12287 – volume: 493 start-page: 547 year: 2013 ident: BFcr2017133_CR45 publication-title: Nature doi: 10.1038/nature11714 – volume: 213 start-page: 2113 year: 2016 ident: BFcr2017133_CR103 publication-title: J Exp Med doi: 10.1084/jem.20151613 – volume: 26 start-page: 1007 year: 2016 ident: BFcr2017133_CR22 publication-title: Cell Res doi: 10.1038/cr.2016.100 – volume: 14 start-page: 639 year: 2017 ident: BFcr2017133_CR6 publication-title: Cell Mol Immunol doi: 10.1038/cmi.2017.31 – volume: 21 start-page: 1709 year: 2014 ident: BFcr2017133_CR60 publication-title: Cell Death Differ doi: 10.1038/cdd.2014.77 – volume: 17 start-page: 151 year: 2017 ident: BFcr2017133_CR76 publication-title: Nat Rev Immunol doi: 10.1038/nri.2016.147 – volume: 19 start-page: 175 year: 2017 ident: BFcr2017133_CR72 publication-title: Cell Rep doi: 10.1016/j.celrep.2017.03.024 – volume: 26 start-page: 239 year: 1972 ident: BFcr2017133_CR23 publication-title: Br J Cancer doi: 10.1038/bjc.1972.33 – volume: 17 start-page: 860 year: 2011 ident: BFcr2017133_CR89 publication-title: Nat Med doi: 10.1038/nm.2385 – volume: 9 start-page: 185 year: 2014 ident: BFcr2017133_CR94 publication-title: Radiat Oncol doi: 10.1186/1748-717X-9-185 – volume: 325 start-page: 332 year: 2009 ident: BFcr2017133_CR59 publication-title: Science doi: 10.1126/science.1172308 – volume: 127 start-page: 5245 year: 2000 ident: BFcr2017133_CR42 publication-title: Development doi: 10.1242/dev.127.24.5245 – volume: 95 start-page: 13618 year: 1998 ident: BFcr2017133_CR29 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.95.23.13618 – volume: 14 start-page: 166 year: 2014 ident: BFcr2017133_CR37 publication-title: Nat Rev Immunol doi: 10.1038/nri3607 – volume: 17 start-page: 97 year: 2017 ident: BFcr2017133_CR51 publication-title: Nat Rev Immunol doi: 10.1038/nri.2016.107 – volume: 16 start-page: 55 year: 2014 ident: BFcr2017133_CR9 publication-title: Nat Cell Biol doi: 10.1038/ncb2883 – volume: 27 start-page: 6194 year: 2008 ident: BFcr2017133_CR27 publication-title: Oncogene doi: 10.1038/onc.2008.297 – volume: 33 start-page: 79 year: 2015 ident: BFcr2017133_CR55 publication-title: Annu Rev Immunol doi: 10.1146/annurev-immunol-032414-112248 – volume: 276 start-page: 1571 year: 1997 ident: BFcr2017133_CR34 publication-title: Science doi: 10.1126/science.276.5318.1571 – volume: 288 start-page: 16247 year: 2013 ident: BFcr2017133_CR62 publication-title: J Biol Chem doi: 10.1074/jbc.M112.435545 – volume: 8 start-page: 14128 year: 2017 ident: BFcr2017133_CR3 publication-title: Nat Commun doi: 10.1038/ncomms14128 – volume: 21 start-page: 1511 year: 2014 ident: BFcr2017133_CR61 publication-title: Cell Death Differ doi: 10.1038/cdd.2014.76 – volume: 17 start-page: 922 year: 2010 ident: BFcr2017133_CR50 publication-title: Cell Death Differ doi: 10.1038/cdd.2009.184 – volume: 282 start-page: 18357 year: 2007 ident: BFcr2017133_CR38 publication-title: J Biol Chem doi: 10.1074/jbc.M700202200 – volume: 526 start-page: 660 year: 2015 ident: BFcr2017133_CR79 publication-title: Nature doi: 10.1038/nature15514 – volume: 11 start-page: 1709 year: 2006 ident: BFcr2017133_CR87 publication-title: Apoptosis doi: 10.1007/s10495-006-9527-8 – volume: 138 start-page: 838 year: 2009 ident: BFcr2017133_CR8 publication-title: Cell doi: 10.1016/j.cell.2009.08.021 – volume: 9 start-page: 378 year: 2008 ident: BFcr2017133_CR28 publication-title: Nat Rev Mol Cell Biol doi: 10.1038/nrm2393 – volume: 3 start-page: 346 year: 2001 ident: BFcr2017133_CR32 publication-title: Nat Cell Biol doi: 10.1038/35070019 – volume: 352 start-page: aaf2154 year: 2016 ident: BFcr2017133_CR5 publication-title: Science doi: 10.1126/science.aaf2154 – volume: 547 start-page: 99 year: 2017 ident: BFcr2017133_CR53 publication-title: Nature doi: 10.1038/nature22393 – volume: 101 start-page: 890 year: 1998 ident: BFcr2017133_CR86 publication-title: J Clin Invest doi: 10.1172/JCI1112 – volume: 4 start-page: 313 year: 2008 ident: BFcr2017133_CR65 publication-title: Nat Chem Biol doi: 10.1038/nchembio.83 – volume: 109 start-page: 5322 year: 2012 ident: BFcr2017133_CR64 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1200012109 – volume: 73 start-page: 87 year: 2004 ident: BFcr2017133_CR26 publication-title: Annu Rev Biochem doi: 10.1146/annurev.biochem.73.011303.073706 – volume: 6 start-page: 7439 year: 2015 ident: BFcr2017133_CR49 publication-title: Nat Commun doi: 10.1038/ncomms8439 – volume: 32 start-page: 157 year: 2011 ident: BFcr2017133_CR96 publication-title: Trends Immunol doi: 10.1016/j.it.2011.01.005 – volume: 7 start-page: 971 year: 2014 ident: BFcr2017133_CR12 publication-title: Cell Rep doi: 10.1016/j.celrep.2014.04.026 – volume: 118 start-page: 4059 year: 2005 ident: BFcr2017133_CR41 publication-title: J Cell Sci doi: 10.1242/jcs.02529 – volume: 39 start-page: 443 year: 2013 ident: BFcr2017133_CR69 publication-title: Immunity doi: 10.1016/j.immuni.2013.06.018 – volume: 24 start-page: 105 year: 2014 ident: BFcr2017133_CR11 publication-title: Cell Res doi: 10.1038/cr.2013.171 – volume: 17 start-page: 333 year: 2017 ident: BFcr2017133_CR2 publication-title: Nat Rev Immunol doi: 10.1038/nri.2016.153 – volume: 14 start-page: 1848 year: 2007 ident: BFcr2017133_CR93 publication-title: Cell Death Differ doi: 10.1038/sj.cdd.4402201 – volume: 165 start-page: 139 year: 2016 ident: BFcr2017133_CR52 publication-title: Cell doi: 10.1016/j.cell.2016.02.034 – volume: 267 start-page: 5317 year: 1992 ident: BFcr2017133_CR57 publication-title: J Biol Chem doi: 10.1016/S0021-9258(18)42768-8 – volume: 9 start-page: 113 year: 2001 ident: BFcr2017133_CR78 publication-title: Trends Microbiol doi: 10.1016/S0966-842X(00)01936-3 – volume: 52 start-page: 269 year: 1992 ident: BFcr2017133_CR82 publication-title: J Leukoc Biol doi: 10.1002/jlb.52.3.269 – volume: 3 start-page: 339 year: 2001 ident: BFcr2017133_CR31 publication-title: Nat Cell Biol doi: 10.1038/35070009 – volume: 67 start-page: 1589 year: 2010 ident: BFcr2017133_CR25 publication-title: Cell Mol Life Sci doi: 10.1007/s00018-010-0285-y – volume: 169 start-page: 286 year: 2017 ident: BFcr2017133_CR73 publication-title: Cell doi: 10.1016/j.cell.2017.03.020 – volume: 111 start-page: 2911 year: 1998 ident: BFcr2017133_CR39 publication-title: J Cell Sci doi: 10.1242/jcs.111.19.2911 – volume: 3 start-page: 200 year: 2013 ident: BFcr2017133_CR102 publication-title: Cell Rep doi: 10.1016/j.celrep.2012.12.012 – volume: 137 start-page: 1112 year: 2009 ident: BFcr2017133_CR68 publication-title: Cell doi: 10.1016/j.cell.2009.05.037 – volume: 157 start-page: 1013 year: 2014 ident: BFcr2017133_CR77 publication-title: Cell doi: 10.1016/j.cell.2014.04.007 – volume: 37 start-page: pii year: 2017 ident: BFcr2017133_CR17 publication-title: Mol Cell Biol – volume: 9 start-page: 591 year: 2004 ident: BFcr2017133_CR36 publication-title: Genes Cells doi: 10.1111/j.1356-9597.2004.00745.x – volume: 4 start-page: e631 year: 2013 ident: BFcr2017133_CR97 publication-title: Cell Death Dis doi: 10.1038/cddis.2013.156 – volume: 8 start-page: 279 year: 2008 ident: BFcr2017133_CR4 publication-title: Nat Rev Immunol doi: 10.1038/nri2215 – volume: 25 start-page: 1285 year: 2015 ident: BFcr2017133_CR81 publication-title: Cell Res doi: 10.1038/cr.2015.139 – volume: 26 start-page: 643 year: 2016 ident: BFcr2017133_CR16 publication-title: Cell Res doi: 10.1038/cr.2016.64 – volume: 202 start-page: 1691 year: 2005 ident: BFcr2017133_CR92 publication-title: J Exp Med doi: 10.1084/jem.20050915 – volume: 111 start-page: 15072 year: 2014 ident: BFcr2017133_CR14 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1408987111 – volume: 467 start-page: 863 year: 2010 ident: BFcr2017133_CR47 publication-title: Nature doi: 10.1038/nature09413 – volume: 141 start-page: 2629 year: 1988 ident: BFcr2017133_CR56 publication-title: J Immunol doi: 10.4049/jimmunol.141.8.2629 – volume: 54 start-page: 133 year: 2014 ident: BFcr2017133_CR10 publication-title: Mol Cell doi: 10.1016/j.molcel.2014.03.003 – volume: 535 start-page: 111 year: 2016 ident: BFcr2017133_CR18 publication-title: Nature doi: 10.1038/nature18590 – volume: 26 start-page: 886 year: 2016 ident: BFcr2017133_CR100 publication-title: Cell Res doi: 10.1038/cr.2016.87 – volume: 15 start-page: 1089 year: 2004 ident: BFcr2017133_CR84 publication-title: Mol Biol Cell doi: 10.1091/mbc.e03-09-0668 – volume: 223 start-page: 177 year: 2011 ident: BFcr2017133_CR91 publication-title: J Pathol doi: 10.1002/path.2792 – volume: 148 start-page: 213 year: 2012 ident: BFcr2017133_CR63 publication-title: Cell doi: 10.1016/j.cell.2011.11.031 – volume: 22 start-page: 1489 year: 2014 ident: BFcr2017133_CR13 publication-title: Structure doi: 10.1016/j.str.2014.07.014 – volume: 390 start-page: 350 year: 1997 ident: BFcr2017133_CR88 publication-title: Nature doi: 10.1038/37022 – volume: 113 start-page: 7858 year: 2016 ident: BFcr2017133_CR21 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1607769113 – volume: 12 start-page: 1143 year: 2011 ident: BFcr2017133_CR54 publication-title: Nat Immunol doi: 10.1038/ni.2159 – volume: 61 start-page: 215 year: 2012 ident: BFcr2017133_CR95 publication-title: Cancer Immunol Immunother doi: 10.1007/s00262-011-1184-2 – volume: 930 start-page: 133 year: 2016 ident: BFcr2017133_CR7 publication-title: Adv Exp Med Biol doi: 10.1007/978-3-319-39406-0_6 – volume: 67 start-page: 1567 year: 2010 ident: BFcr2017133_CR58 publication-title: Cell Mol Life Sci doi: 10.1007/s00018-010-0283-0 – volume: 15 start-page: 274 year: 2016 ident: BFcr2017133_CR99 publication-title: Cell Rep doi: 10.1016/j.celrep.2016.03.037 |
SSID | ssj0025451 |
Score | 2.6805954 |
SecondaryResourceType | review_article |
Snippet | Ruptured and intact plasma membranes are classically considered as hallmarks of necrotic and apoptotic cell death, respectively. As such, apoptosis is usually... |
SourceID | pubmedcentral proquest pubmed crossref springer chongqing |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 9 |
SubjectTerms | 631/250/1933 631/57/2271 631/80/82/23 Apoptosis Biomedical and Life Sciences Cell Biology Cell death Channel pores Channels Gangrene Immune response Immune system Immunogenicity Inflammation Life Sciences Lysis Membranes Mortality Necroptosis Necrosis Plasma Plasma membranes Pore formation Pores Pyroptosis Review Rupture Rupturing |
SummonAdditionalLinks | – databaseName: Proquest Health and Medical Complete dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEB58IHoR39YXFfQiVNO0TZqTiCjiQTwo7C20aaKC213d9eC_d6YvXVc8d2iGmSTzzSMzAEdcoFkOYxtwK_IgVhEL0Ci4QCrmXOxiWRRVt887cfMY3_aSXhNwGzVlle2dWF3UxcBQjPwMnWO0_UpwdT58C2hqFGVXmxEaszBPrctoV8vet8NFbFTZTnKZBVXyrNXPzNMzQ71AQ3ka0sTcRbxpyqc3tBWT1mkKck5XTv5Kn1ZW6XoFlhs46V_U-l-FGVuuwUI9YPJzHZJ7BMf9zO_bPnrFpfXrd74jv36d6DfVWbiUTxF8vyBAONqAx-urh8uboBmUEJhYRuMgk1lhQ3RmOc-N43kkrFNJJlLmiiS2jDkELVzmyhmeZSKTTpikCHMppOEOD_UmzJWD0m6Dj95hlBuWWkJSTqSpVS4hlMOKPM5U6sFuJyw9rBtiaFF1GUQo58FJKz5tmh7jNOriVVe57ijV5l2T3DXK3YOjjrj9059ke60edHO-Rvp7N3hw2H3Gk0HCQnEOPogmoVkqCIE92KrV1q3DFZOITZkHckKhHQF13Z78Ur48V923Ed8iJENBHLeq_8HWNPs7_7O_C0tImdZBnT2YG79_2H2EOeP8oNrLXy60-dU priority: 102 providerName: ProQuest |
Title | Plasma membrane changes during programmed cell deaths |
URI | http://lib.cqvip.com/qk/85240X/201801/674404352.html https://link.springer.com/article/10.1038/cr.2017.133 https://www.ncbi.nlm.nih.gov/pubmed/29076500 https://www.proquest.com/docview/1983249629 https://www.proquest.com/docview/1957467099 https://pubmed.ncbi.nlm.nih.gov/PMC5752838 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB3xIaReEFDaBugqleilUqjjOHZ8hBUIcUCoKtLerMSxSyU2W9jlwL9nJk4ilu2BWyRPYmsm9ryxx28AjrlEt5wKl3Anq0TojCXoFHyiNPNeeKHqumX7vJaXt-Jqkk86nu15l1YZKC3bZbrPDvtpibszVScYUq3DJnG2U6Q1luMhuqI-26NNio8lpe3shTvlxeuXiULhbtb8eUDHsOyKVvDlaprkm7PS1gVd7MB2hx3j0zDaXVhzzR5shWqSzx8hv0EkPC3jqZtiCNy4OFzqncfhKmLcpWJhVzFt18c1ob_5PtxenP8eXyZdVYTECpUtklKVtUsxcuW8sp5XmXRe56UsmK9z4RjziFC4qrS3vCxlqby0eZ1WSirLPc7gT7DRzBr3BWIMBbPKssIRbPKyKJz2OUEaVlei1EUEh4OyzL_AfmFkSymIuC2CH736jO0Ixamuxb1pD7azwthHQ3o3qPcIjgfh_kv_FTvq7WC6yTQ3qcZlR2jJdQTfhmacBqQsVOfsiWRyKpyCeDeCz8FsQz9cM4VAlEWglgw6CBDF9nJL8_eupdpGMIv4CxXxvTf9q2GtDv_gnXKH8AEfi7CVcwQbi8cn9xXBzaIawbqaqBFsnp1f3_watb_4CwWh904 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VItReEJRHQwsYqb0ghTpOYscHhBBQbWmpOLTS3kzi2IDEZtvuVqh_it_ITJykLIu49WzHdubh-cZjzwDsCIlmOclcLJys4kynPEaj4GOlufeZz1Rdt9k-j-XoNPs4zscr8Kt_C0PXKvs9sd2o66mlM_I9dI7R9msp9Juz85iqRlF0tS-hEcTi0F39RJdt9vrgPfJ3V4j9DyfvRnFXVSC2mUrncanK2iXo-QlRWS-qVDqv81IW3Nd55jj3aOGFqrS3oixlqby0eZ1USiorPGoAjnsLbqPh5eTsqfG1g0e_3UZXyUWXdHNoIzxrL_Ys5R5N1KuEKvSu4c7WfD1H27RoDZcg7vJNzb_Cta0V3L8Hdzv4yt4GebsPK67ZgDuhoOXVA8g_IxiflGziJuiFN46Fd8UzFl5Dsu42GE7FKGLAagKgs4dweiMkfASrzbRxm8DQG00rywtHyM3LonDa54SqeF1lpS4i2BqIZc5CAg4j26yGCB0jeNmTz9gupzmV1vhh2th6Whh7YYjuBukewc7QuR_pn922ez6YTp9n5lr6IngxNKMmErGQnNNL6pNT7RaE3BE8Dmwb5hGaK8TCPAK1wNChA2X5Xmxpvn9rs30jnkYIiITY7Vn_x7KWl__k_8t_Dmujk09H5ujg-HAL1vGrIhwobcPq_OLSPUWINa-etXLN4MtNK9JvbmE3tw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrXhcEJRXaIEgtReksI6T2PEBIaBdtRStVohKvZnEsWklNtt2t0L9a_w6ZuIksCzi1nMcx_rG4_kmM54B2OYCzXKc2ohbUUapSliERsFFUjHnUpfKqmqqfY7F_lH68Tg7XoOf3V0YSqvszsTmoK5mhv6RD9E5RtuvBFdD16ZFTHZHb8_OI-ogRZHWrp2G3yKH9uoHum_zNwe7KOsdzkd7Xz7sR22HgcikMllEhSwqG6MXyHlpHC8TYZ3KCpEzV2WpZcyhteeyVM7wohCFdMJkVVxKIQ13qA047w1Yl-QVDWD9_d548rl39wiEJtZKDrugPKINf8k9HxqqRBrL1zH1672N51z97Rwt1bJtXCG8q3mbfwVvG5s4ugd3WzIbvvO77z6s2XoDbvr2llcPIJsgNZ8W4dRO0SevbehvGc9DfzcybHPD8FMhxQ_Ciujo_CEcXQuIj2BQz2r7BEL0TZPSsNwSj3Miz61yGXEsVpVpofIANnuw9Jkvx6FFU-MQiWQArzr4tGkrnFOjje-6ibQnuTYXmnDXiHsA2_3gbqZ_Dtvq5KBb7Z7r33sxgJf9Y9RLAgvhnF3SmIw6uSABD-CxF1v_Ha6YRGbMApBLAu0HUM3v5Sf16UlT-xvZNRJCBGKnE_0fy1pd_tP_L_8F3EIl0p8OxoebcAdfyv3fpS0YLC4u7TPkW4vyebuxQ_h63br0C0IlPVI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Plasma+membrane+changes+during+programmed+cell+deaths&rft.jtitle=Cell+research&rft.au=Zhang%2C+Yingying&rft.au=Chen%2C+Xin&rft.au=Gueydan%2C+Cyril&rft.au=Han%2C+Jiahuai&rft.date=2018-01-01&rft.pub=Nature+Publishing+Group&rft.issn=1001-0602&rft.eissn=1748-7838&rft.volume=28&rft.issue=1&rft.spage=9&rft.epage=21&rft_id=info:doi/10.1038%2Fcr.2017.133&rft_id=info%3Apmid%2F29076500&rft.externalDocID=PMC5752838 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85240X%2F85240X.jpg |