Plasma membrane changes during programmed cell deaths

Ruptured and intact plasma membranes are classically considered as hallmarks of necrotic and apoptotic cell death, respectively. As such, apoptosis is usually considered a non-inflammatory process while necrosis triggers in- flammation. Recent studies on necroptosis and pyroptosis, two types of prog...

Full description

Saved in:
Bibliographic Details
Published inCell research Vol. 28; no. 1; pp. 9 - 21
Main Authors Zhang, Yingying, Chen, Xin, Gueydan, Cyril, Han, Jiahuai
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.01.2018
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Ruptured and intact plasma membranes are classically considered as hallmarks of necrotic and apoptotic cell death, respectively. As such, apoptosis is usually considered a non-inflammatory process while necrosis triggers in- flammation. Recent studies on necroptosis and pyroptosis, two types of programmed necrosis, revealed that plasma membrane rupture is mediated by MLKL channels during necroptosis but depends on non-selective gasdermin D (GSDMD) pores during pyroptosis. Importantly, the morphology of dying cells executed by MLKL channels can be distinguished from that executed by GSDMD pores. Interestingly, it was found recently that secondary necrosis of apoptotic cells, a previously believed non-regulated form of cell lysis that occurs after apoptosis, can be programmed and executed by plasma membrane pore formation like that of pyroptosis. In addition, pyroptosis is associated with pyroptotic bodies, which have some similarities to apoptotic bodies. Therefore, different cell death programs induce distinctive reshuffling processes of the plasma membrane. Given the fact that the nature of released intracellular contents plays a crucial role in dying/dead cell-induced immunogenicity, not only membrane rupture or integrity but also the nature of plasma membrane breakdown would determine the fate of a cell as well as its ability to elicit an immune response. In this review, we will discuss recent advances in the field of apoptosis, necroptosis and pyroptosis, with an emphasis on the mechanisms underlying plasma membrane changes observed on dying cells and their implication in cell death-elicited immunogenicity.
AbstractList Ruptured and intact plasma membranes are classically considered as hallmarks of necrotic and apoptotic cell death, respectively. As such, apoptosis is usually considered a non-inflammatory process while necrosis triggers inflammation. Recent studies on necroptosis and pyroptosis, two types of programmed necrosis, revealed that plasma membrane rupture is mediated by MLKL channels during necroptosis but depends on non-selective gasdermin D (GSDMD) pores during pyroptosis. Importantly, the morphology of dying cells executed by MLKL channels can be distinguished from that executed by GSDMD pores. Interestingly, it was found recently that secondary necrosis of apoptotic cells, a previously believed non-regulated form of cell lysis that occurs after apoptosis, can be programmed and executed by plasma membrane pore formation like that of pyroptosis. In addition, pyroptosis is associated with pyroptotic bodies, which have some similarities to apoptotic bodies. Therefore, different cell death programs induce distinctive reshuffling processes of the plasma membrane. Given the fact that the nature of released intracellular contents plays a crucial role in dying/dead cell-induced immunogenicity, not only membrane rupture or integrity but also the nature of plasma membrane breakdown would determine the fate of a cell as well as its ability to elicit an immune response. In this review, we will discuss recent advances in the field of apoptosis, necroptosis and pyroptosis, with an emphasis on the mechanisms underlying plasma membrane changes observed on dying cells and their implication in cell death-elicited immunogenicity.
Ruptured and intact plasma membranes are classically considered as hallmarks of necrotic and apoptotic cell death, respectively. As such, apoptosis is usually considered a non-inflammatory process while necrosis triggers in- flammation. Recent studies on necroptosis and pyroptosis, two types of programmed necrosis, revealed that plasma membrane rupture is mediated by MLKL channels during necroptosis but depends on non-selective gasdermin D (GSDMD) pores during pyroptosis. Importantly, the morphology of dying cells executed by MLKL channels can be distinguished from that executed by GSDMD pores. Interestingly, it was found recently that secondary necrosis of apoptotic cells, a previously believed non-regulated form of cell lysis that occurs after apoptosis, can be programmed and executed by plasma membrane pore formation like that of pyroptosis. In addition, pyroptosis is associated with pyroptotic bodies, which have some similarities to apoptotic bodies. Therefore, different cell death programs induce distinctive reshuffling processes of the plasma membrane. Given the fact that the nature of released intracellular contents plays a crucial role in dying/dead cell-induced immunogenicity, not only membrane rupture or integrity but also the nature of plasma membrane breakdown would determine the fate of a cell as well as its ability to elicit an immune response. In this review, we will discuss recent advances in the field of apoptosis, necroptosis and pyroptosis, with an emphasis on the mechanisms underlying plasma membrane changes observed on dying cells and their implication in cell death-elicited immunogenicity.
Ruptured and intact plasma membranes are classically considered as hallmarks of necrotic and apoptotic cell death, respectively. As such, apoptosis is usually considered a non-inflammatory process while necrosis triggers inflammation. Recent studies on necroptosis and pyroptosis, two types of programmed necrosis, revealed that plasma membrane rupture is mediated by MLKL channels during necroptosis but depends on non-selective gasdermin D (GSDMD) pores during pyroptosis. Importantly, the morphology of dying cells executed by MLKL channels can be distinguished from that executed by GSDMD pores. Interestingly, it was found recently that secondary necrosis of apoptotic cells, a previously believed non-regulated form of cell lysis that occurs after apoptosis, can be programmed and executed by plasma membrane pore formation like that of pyroptosis. In addition, pyroptosis is associated with pyroptotic bodies, which have some similarities to apoptotic bodies. Therefore, different cell death programs induce distinctive reshuffling processes of the plasma membrane. Given the fact that the nature of released intracellular contents plays a crucial role in dying/dead cell-induced immunogenicity, not only membrane rupture or integrity but also the nature of plasma membrane breakdown would determine the fate of a cell as well as its ability to elicit an immune response. In this review, we will discuss recent advances in the field of apoptosis, necroptosis and pyroptosis, with an emphasis on the mechanisms underlying plasma membrane changes observed on dying cells and their implication in cell death-elicited immunogenicity.Ruptured and intact plasma membranes are classically considered as hallmarks of necrotic and apoptotic cell death, respectively. As such, apoptosis is usually considered a non-inflammatory process while necrosis triggers inflammation. Recent studies on necroptosis and pyroptosis, two types of programmed necrosis, revealed that plasma membrane rupture is mediated by MLKL channels during necroptosis but depends on non-selective gasdermin D (GSDMD) pores during pyroptosis. Importantly, the morphology of dying cells executed by MLKL channels can be distinguished from that executed by GSDMD pores. Interestingly, it was found recently that secondary necrosis of apoptotic cells, a previously believed non-regulated form of cell lysis that occurs after apoptosis, can be programmed and executed by plasma membrane pore formation like that of pyroptosis. In addition, pyroptosis is associated with pyroptotic bodies, which have some similarities to apoptotic bodies. Therefore, different cell death programs induce distinctive reshuffling processes of the plasma membrane. Given the fact that the nature of released intracellular contents plays a crucial role in dying/dead cell-induced immunogenicity, not only membrane rupture or integrity but also the nature of plasma membrane breakdown would determine the fate of a cell as well as its ability to elicit an immune response. In this review, we will discuss recent advances in the field of apoptosis, necroptosis and pyroptosis, with an emphasis on the mechanisms underlying plasma membrane changes observed on dying cells and their implication in cell death-elicited immunogenicity.
Author Yingying Zhang;Xin Chen;Cyril Gueydan;Jiahuai Han
AuthorAffiliation State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China;Laboratoire de Biologic Moldculaire du Gone, Facultd des Sciences, Universitd Libre de Bruxelles, 1050 Brussels, Belgium
Author_xml – sequence: 1
  givenname: Yingying
  surname: Zhang
  fullname: Zhang, Yingying
  organization: State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University
– sequence: 2
  givenname: Xin
  surname: Chen
  fullname: Chen, Xin
  organization: State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University
– sequence: 3
  givenname: Cyril
  surname: Gueydan
  fullname: Gueydan, Cyril
  organization: Laboratoire de Biologie Moléculaire du Gène, Faculté des Sciences, Université Libre de Bruxelles
– sequence: 4
  givenname: Jiahuai
  surname: Han
  fullname: Han, Jiahuai
  email: jhan@xmu.edu.cn
  organization: State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29076500$$D View this record in MEDLINE/PubMed
BookMark eNptkc1rFTEUxYNU7Ieu3MugG0HnefOd2QhStC0U6kLXIZNJ5k2ZSV6TGcH_3gzvtdTSVS7kdw_n3HOKjkIMDqG3GDYYqPpi04YAlhtM6Qt0giVTtVRUHZUZANcggByj05xvAQhnHL9Cx6QBKTjACeI_R5MnU01uapMJrrJbE3qXq25JQ-irXYp9MtPkusq6caw6Z-Ztfo1eejNm9-bwnqHfP77_Or-sr28urs6_XdeWSTrXRprOYakUIa31pKXC-YYbocB3nDkAj3lDZNt4S4wRRnpheYdbKaQlHit6hr7udXdLWyxYF-ZkRr1Lw2TSXx3NoP__CcNW9_GP5pKTcoMi8PEgkOLd4vKspyGvQUrUuGSNGy6ZkNA0Bf3wBL2NSwolXqEUJawRZKXePXb0YOX-ogXAe8CmmHNyXtthNvMQV4PDqDHotTVtk15b06W1svPpyc697PP05z2dd2tFLj0y-iz-_iC-jaG_KxsP6kIyBoxyQv8B5Rqxkw
CitedBy_id crossref_primary_10_1172_JCI138861
crossref_primary_10_1093_pcp_pcab077
crossref_primary_10_1016_j_isci_2020_101816
crossref_primary_10_1128_iai_00190_22
crossref_primary_10_1007_s10495_023_01906_5
crossref_primary_10_1016_j_fct_2022_113189
crossref_primary_10_4081_hls_2024_11803
crossref_primary_10_3389_fcell_2021_697832
crossref_primary_10_1126_sciadv_aba3009
crossref_primary_10_3892_br_2024_1831
crossref_primary_10_1049_nbt2_12062
crossref_primary_10_1371_journal_pone_0212699
crossref_primary_10_1080_19390211_2020_1731045
crossref_primary_10_3892_br_2024_1824
crossref_primary_10_3390_genes13050750
crossref_primary_10_3390_ijms231810224
crossref_primary_10_1016_j_tiv_2020_104906
crossref_primary_10_3390_cancers13081954
crossref_primary_10_1016_j_biopha_2021_112082
crossref_primary_10_1038_s41419_020_2476_2
crossref_primary_10_1371_journal_pone_0227950
crossref_primary_10_1016_j_jconrel_2020_12_030
crossref_primary_10_1371_journal_pone_0222267
crossref_primary_10_1590_1678_9199_jvatitd_2019_0009
crossref_primary_10_1021_acs_analchem_4c00946
crossref_primary_10_1177_0960327120926257
crossref_primary_10_3389_fonc_2021_635774
crossref_primary_10_1186_s12885_020_06964_5
crossref_primary_10_1002_tox_24266
crossref_primary_10_1155_2022_9030771
crossref_primary_10_3390_pharmaceutics12060497
crossref_primary_10_1021_acs_analchem_2c00874
crossref_primary_10_14233_ajchem_2023_26937
crossref_primary_10_1021_acs_jmedchem_9b01694
crossref_primary_10_3390_biom12101540
crossref_primary_10_1016_j_foodchem_2022_135101
crossref_primary_10_1016_j_bbamem_2018_06_010
crossref_primary_10_3389_fcell_2023_1173235
crossref_primary_10_1002_biot_202000655
crossref_primary_10_1021_acsami_4c09243
crossref_primary_10_56083_RCV3N12_045
crossref_primary_10_1016_j_biomaterials_2023_122333
crossref_primary_10_1016_j_jbiotec_2023_01_006
crossref_primary_10_1016_j_cpme_2020_100103
crossref_primary_10_3389_fcell_2021_789948
crossref_primary_10_2139_ssrn_4020776
crossref_primary_10_32604_biocell_2022_016607
crossref_primary_10_3389_fendo_2023_1322907
crossref_primary_10_1002_tox_23383
crossref_primary_10_3389_fmicb_2022_812711
crossref_primary_10_1016_j_sjbs_2021_08_015
crossref_primary_10_1097_BS9_0000000000000064
crossref_primary_10_1002_adhm_202402697
crossref_primary_10_1016_j_psj_2023_102533
crossref_primary_10_1038_s41419_020_2248_z
crossref_primary_10_1002_advs_202204931
crossref_primary_10_1016_j_bioelechem_2020_107592
crossref_primary_10_1016_j_biopha_2022_113348
crossref_primary_10_1007_s10924_023_02838_6
crossref_primary_10_1038_s41419_021_03458_5
crossref_primary_10_3389_fphar_2021_717529
crossref_primary_10_1186_s12974_022_02557_0
crossref_primary_10_1016_j_bbrc_2019_11_110
crossref_primary_10_3389_fimmu_2023_1309635
crossref_primary_10_1016_j_cocis_2021_101453
crossref_primary_10_1016_j_brainres_2018_06_008
crossref_primary_10_1021_acs_jmedchem_4c02357
crossref_primary_10_1016_j_yexcr_2021_112521
crossref_primary_10_1038_s41598_021_88752_0
crossref_primary_10_1371_journal_ppat_1012855
crossref_primary_10_1016_j_toxlet_2024_04_007
crossref_primary_10_1021_acs_chemrestox_9b00220
crossref_primary_10_1007_s10753_023_01814_5
crossref_primary_10_1016_j_biopha_2024_117367
crossref_primary_10_1016_j_intimp_2024_112616
crossref_primary_10_12677_ACM_2024_142323
crossref_primary_10_1007_s10787_023_01275_0
crossref_primary_10_1016_j_brainresbull_2020_10_009
crossref_primary_10_1099_jmm_0_001835
crossref_primary_10_3103_S0096392519030052
crossref_primary_10_1016_j_bcp_2020_114023
crossref_primary_10_1016_j_ijbiomac_2018_06_074
crossref_primary_10_1016_j_mee_2022_111738
crossref_primary_10_1155_2022_2055773
crossref_primary_10_1371_journal_pbio_3001304
crossref_primary_10_1002_smo_20240059
crossref_primary_10_3390_coatings12020110
crossref_primary_10_1016_j_tox_2024_153827
crossref_primary_10_3389_fimmu_2022_847345
crossref_primary_10_1007_s11064_019_02935_w
crossref_primary_10_1039_D4TB00008K
crossref_primary_10_3389_fphar_2024_1389179
crossref_primary_10_1016_j_jpha_2020_04_002
crossref_primary_10_1016_j_molliq_2023_121908
crossref_primary_10_1016_j_cryobiol_2021_09_010
crossref_primary_10_1515_jcim_2023_0225
crossref_primary_10_3389_fendo_2019_00778
crossref_primary_10_3390_ijms23115921
crossref_primary_10_3390_ijms25179413
crossref_primary_10_1523_JNEUROSCI_0436_23_2023
crossref_primary_10_1021_acssensors_4c01963
crossref_primary_10_1186_s12974_020_01902_5
crossref_primary_10_1155_2021_8717565
crossref_primary_10_1039_D4CB00107A
crossref_primary_10_3892_ijo_2022_5308
crossref_primary_10_3390_app122211545
crossref_primary_10_3390_molecules23123306
crossref_primary_10_1002_jcp_30228
crossref_primary_10_1016_j_jconrel_2022_09_045
crossref_primary_10_1016_j_celrep_2024_114084
crossref_primary_10_18632_aging_103608
crossref_primary_10_3389_fcell_2024_1462339
crossref_primary_10_1016_j_addr_2020_05_005
crossref_primary_10_1038_s42003_022_03704_2
crossref_primary_10_1111_febs_16051
crossref_primary_10_1111_jop_12944
crossref_primary_10_1016_j_cell_2021_05_003
crossref_primary_10_3390_cancers14092171
crossref_primary_10_1186_s10020_022_00445_0
crossref_primary_10_1021_acsnano_1c03517
crossref_primary_10_1186_s12915_021_00972_y
crossref_primary_10_3390_ijms24021285
crossref_primary_10_3390_ijms21124204
crossref_primary_10_7570_jomes20120
crossref_primary_10_1038_s41420_022_01282_0
crossref_primary_10_1016_j_jmb_2021_167378
crossref_primary_10_1186_s12861_019_0201_0
crossref_primary_10_1016_j_isci_2024_109339
crossref_primary_10_18632_oncotarget_27535
crossref_primary_10_1038_s44318_024_00055_y
crossref_primary_10_1186_s12645_023_00160_3
crossref_primary_10_2174_1874467215666220127112201
crossref_primary_10_1007_s00277_023_05103_x
crossref_primary_10_1002_smll_202301748
crossref_primary_10_1146_annurev_immunol_111319_023800
crossref_primary_10_3390_ijms221810130
crossref_primary_10_1038_s41392_024_01896_z
crossref_primary_10_1016_j_envpol_2022_120933
crossref_primary_10_1074_jbc_RA118_005865
crossref_primary_10_1080_2314808X_2024_2369820
crossref_primary_10_1016_j_jlr_2024_100579
crossref_primary_10_1016_j_cej_2023_148287
crossref_primary_10_1016_j_tox_2022_153373
crossref_primary_10_1002_adma_201904058
crossref_primary_10_1016_j_fct_2023_114411
crossref_primary_10_3390_v13091835
crossref_primary_10_1038_s41420_023_01421_1
crossref_primary_10_1186_s12917_022_03326_0
crossref_primary_10_1016_j_scp_2022_100675
crossref_primary_10_1128_iai_00407_23
crossref_primary_10_1128_msystems_01209_20
crossref_primary_10_1097_GCO_0000000000000625
crossref_primary_10_1016_j_carres_2023_108986
crossref_primary_10_1021_acs_jafc_4c04216
crossref_primary_10_1002_1873_3468_14310
crossref_primary_10_1016_j_jpap_2023_100185
crossref_primary_10_1186_s12935_020_01633_w
crossref_primary_10_3389_fimmu_2022_932303
crossref_primary_10_3389_fimmu_2023_1150879
crossref_primary_10_1016_j_yexcr_2024_114029
crossref_primary_10_3390_biom13121740
crossref_primary_10_1083_jcb_202305026
crossref_primary_10_3389_fimmu_2022_841729
crossref_primary_10_1073_pnas_2210181120
crossref_primary_10_1016_j_jorganchem_2021_122032
crossref_primary_10_1007_s12035_024_04541_6
crossref_primary_10_1038_s41598_025_91425_x
crossref_primary_10_1152_ajprenal_00284_2021
crossref_primary_10_1166_sam_2024_4598
crossref_primary_10_1371_journal_pone_0216721
crossref_primary_10_3390_biom13091371
crossref_primary_10_3390_ijms22179317
crossref_primary_10_1021_acs_jmedchem_9b01317
crossref_primary_10_1111_1346_8138_15929
crossref_primary_10_3390_ijms231810453
crossref_primary_10_1007_s10534_018_0140_4
crossref_primary_10_3390_ijms22179430
crossref_primary_10_1038_s41419_021_03883_6
crossref_primary_10_1038_s41420_024_02285_9
crossref_primary_10_1101_cshperspect_a036400
crossref_primary_10_1016_j_nantod_2022_101392
crossref_primary_10_1002_adma_201805919
crossref_primary_10_1002_cbf_3823
crossref_primary_10_1002_elps_202100031
crossref_primary_10_1021_acs_analchem_9b02462
crossref_primary_10_1186_s12906_023_03969_y
crossref_primary_10_1080_1120009X_2023_2278014
crossref_primary_10_1016_j_bbadis_2025_167692
crossref_primary_10_1002_anie_202016399
crossref_primary_10_1016_j_ijbiomac_2023_125719
crossref_primary_10_3920_WMJ2021_2723
crossref_primary_10_4049_jimmunol_1901074
crossref_primary_10_1080_07391102_2024_2316764
crossref_primary_10_1016_j_tox_2021_152988
crossref_primary_10_3390_pathogens11050492
crossref_primary_10_1146_annurev_phyto_020620_095952
crossref_primary_10_1038_s41586_023_05991_z
crossref_primary_10_3390_cells13060495
crossref_primary_10_1161_CIRCRESAHA_124_325290
crossref_primary_10_1002_smll_202301671
crossref_primary_10_1016_j_bbamem_2019_183032
crossref_primary_10_1021_acsabm_0c01559
crossref_primary_10_3390_biomedicines12102272
crossref_primary_10_3390_cells9010095
crossref_primary_10_1007_s10495_018_01511_x
crossref_primary_10_3390_pathogens11111291
crossref_primary_10_1080_07388551_2020_1854672
crossref_primary_10_3389_fgene_2022_801419
crossref_primary_10_1007_s12975_018_0666_3
crossref_primary_10_1016_j_apsb_2024_11_011
crossref_primary_10_1016_j_cej_2020_124314
crossref_primary_10_3390_ijms22062842
crossref_primary_10_1007_s12035_025_04818_4
crossref_primary_10_1002_ange_202419759
crossref_primary_10_1016_j_canlet_2018_08_028
crossref_primary_10_1111_jcmm_15406
crossref_primary_10_1016_j_cej_2023_146748
crossref_primary_10_1016_j_toxlet_2020_10_003
crossref_primary_10_1186_s43141_023_00529_2
crossref_primary_10_1007_s40620_022_01269_1
crossref_primary_10_1016_j_dyepig_2019_107760
crossref_primary_10_3390_ijms25105133
crossref_primary_10_3390_ijms231810632
crossref_primary_10_3390_antiox10020215
crossref_primary_10_3390_cells9040963
crossref_primary_10_1002_smll_202104822
crossref_primary_10_1007_s12668_021_00913_7
crossref_primary_10_1186_s12866_024_03674_x
crossref_primary_10_1016_j_repbio_2022_100678
crossref_primary_10_1038_s41392_022_01110_y
crossref_primary_10_2174_1389200220666191105113754
crossref_primary_10_1007_s11356_022_24149_4
crossref_primary_10_1038_s41419_019_1323_9
crossref_primary_10_1016_j_ecoenv_2024_116777
crossref_primary_10_1016_j_gendis_2023_03_015
crossref_primary_10_1016_j_jep_2023_116941
crossref_primary_10_1016_j_molimm_2024_11_004
crossref_primary_10_32718_ujvas5_2_04
crossref_primary_10_1002_tox_23306
crossref_primary_10_3892_br_2025_1938
crossref_primary_10_3892_ol_2025_14948
crossref_primary_10_3390_antiox10060940
crossref_primary_10_1002_adfm_202417979
crossref_primary_10_1007_s00210_021_02174_3
crossref_primary_10_3390_cancers11121920
crossref_primary_10_26693_jmbs04_04_032
crossref_primary_10_3390_ijms23094753
crossref_primary_10_3390_ijms21113742
crossref_primary_10_1152_physiolgenomics_00053_2023
crossref_primary_10_3389_fonc_2021_622727
crossref_primary_10_1016_j_bpc_2019_106263
crossref_primary_10_1021_acsnano_5c00715
crossref_primary_10_1016_j_ijbiomac_2020_03_096
crossref_primary_10_1016_j_ecoenv_2023_115154
crossref_primary_10_3389_fonc_2022_932786
crossref_primary_10_1016_j_heliyon_2024_e41485
crossref_primary_10_1080_15287394_2024_2308801
crossref_primary_10_1007_s40199_018_0224_2
crossref_primary_10_1021_acsami_9b18666
crossref_primary_10_3389_fbioe_2022_939774
crossref_primary_10_1016_j_critrevonc_2023_104249
crossref_primary_10_3390_ijms24044168
crossref_primary_10_1038_s41467_024_52607_9
crossref_primary_10_3390_cells13040325
crossref_primary_10_3390_tropicalmed7080163
crossref_primary_10_1016_j_jep_2024_118197
crossref_primary_10_1080_07391102_2023_2274520
crossref_primary_10_1016_j_biopha_2022_113999
crossref_primary_10_1186_s10020_023_00732_4
crossref_primary_10_3389_fphar_2023_1094020
crossref_primary_10_1021_jacs_4c17268
crossref_primary_10_1007_s11356_022_23788_x
crossref_primary_10_1016_j_neuroscience_2022_11_005
crossref_primary_10_1038_s42003_023_04558_y
crossref_primary_10_1016_j_clinre_2021_101783
crossref_primary_10_1021_acsami_0c17648
crossref_primary_10_1002_advs_202407713
crossref_primary_10_1002_ange_202117401
crossref_primary_10_1002_anie_202415735
crossref_primary_10_1007_s00204_023_03516_1
crossref_primary_10_1021_acsomega_0c01416
crossref_primary_10_1186_s12920_023_01573_0
crossref_primary_10_3390_ijms22189986
crossref_primary_10_1016_j_jphotobiol_2022_112500
crossref_primary_10_1155_2021_2169017
crossref_primary_10_7566_JPSJ_92_064001
crossref_primary_10_3390_biomedicines9030246
crossref_primary_10_1038_s41401_020_0420_8
crossref_primary_10_1002_smtd_202301143
crossref_primary_10_1002_eji_201970107
crossref_primary_10_1016_j_tox_2020_152668
crossref_primary_10_1016_j_hazl_2023_100095
crossref_primary_10_1021_acs_analchem_4c00342
crossref_primary_10_1016_j_jnutbio_2022_109255
crossref_primary_10_1021_acssensors_3c00819
crossref_primary_10_1097_BS9_0000000000000051
crossref_primary_10_2174_1871520622666220201103431
crossref_primary_10_1016_j_jnutbio_2022_109018
crossref_primary_10_1016_j_cub_2020_12_005
crossref_primary_10_1039_C9CC03942B
crossref_primary_10_3390_jox15020045
crossref_primary_10_37349_ent_2022_00017
crossref_primary_10_1007_s00204_019_02572_w
crossref_primary_10_1016_j_bmc_2024_117849
crossref_primary_10_3390_molecules30040972
crossref_primary_10_1039_D3MA00016H
crossref_primary_10_3390_ijms19103082
crossref_primary_10_1016_j_cej_2024_151599
crossref_primary_10_3390_v16020280
crossref_primary_10_1038_s41422_024_01051_x
crossref_primary_10_1007_s00232_022_00227_z
crossref_primary_10_3748_wjg_v29_i22_3440
crossref_primary_10_1088_2043_6254_ab5103
crossref_primary_10_1002_ctm2_812
crossref_primary_10_1021_acsami_1c02019
crossref_primary_10_1080_10286020_2024_2368841
crossref_primary_10_5483_BMBRep_2023_0024
crossref_primary_10_1016_j_ejps_2024_106896
crossref_primary_10_1111_bcpt_13694
crossref_primary_10_1038_s41420_021_00451_x
crossref_primary_10_1016_j_biopha_2024_116340
crossref_primary_10_1016_j_bios_2022_114362
crossref_primary_10_3390_ani10060956
crossref_primary_10_1016_j_rechem_2025_102155
crossref_primary_10_1002_mrm_30362
crossref_primary_10_1016_j_jinsphys_2021_104236
crossref_primary_10_1039_C9SC01218D
crossref_primary_10_1021_acs_analchem_9b03136
crossref_primary_10_1002_cyto_a_24851
crossref_primary_10_1007_s12094_023_03147_z
crossref_primary_10_1016_j_jphotobiol_2022_112600
crossref_primary_10_1016_j_heliyon_2025_e42201
crossref_primary_10_1007_s00018_021_03914_7
crossref_primary_10_1016_j_theriogenology_2022_03_024
crossref_primary_10_3390_nano9030451
crossref_primary_10_1242_dmm_039719
crossref_primary_10_3390_medicina59081461
crossref_primary_10_1039_D2CB00172A
crossref_primary_10_3390_app12052417
crossref_primary_10_1002_advs_202300589
crossref_primary_10_1016_j_tiv_2019_05_010
crossref_primary_10_1007_s10495_021_01703_y
crossref_primary_10_3389_fgene_2022_922055
crossref_primary_10_1016_j_poly_2022_115783
crossref_primary_10_1017_S1431927619014934
crossref_primary_10_1007_s10495_019_01551_x
crossref_primary_10_3389_fcell_2024_1510390
crossref_primary_10_1002_SMMD_20240005
crossref_primary_10_3390_membranes10110364
crossref_primary_10_1186_s41181_022_00156_1
crossref_primary_10_3389_fphar_2020_558894
crossref_primary_10_1007_s00204_019_02638_9
crossref_primary_10_1360_SSC_2023_0054
crossref_primary_10_1002_advs_202309021
crossref_primary_10_3892_ol_2023_13962
crossref_primary_10_1016_j_snb_2024_135371
crossref_primary_10_3390_ijms242316890
crossref_primary_10_1016_j_hbpd_2024_09_010
crossref_primary_10_1186_s13148_019_0698_x
crossref_primary_10_1021_acsomega_0c00360
crossref_primary_10_1007_s00204_021_03017_z
crossref_primary_10_1016_j_toxicon_2023_107067
crossref_primary_10_1016_j_phymed_2021_153548
crossref_primary_10_1186_s13578_019_0292_0
crossref_primary_10_1073_pnas_1717190115
crossref_primary_10_1134_S0006297922120100
crossref_primary_10_1038_s41598_018_36716_2
crossref_primary_10_1111_odi_14693
crossref_primary_10_3390_polym13223876
crossref_primary_10_1186_s12958_020_00588_x
crossref_primary_10_1016_j_jconrel_2024_08_047
crossref_primary_10_3390_pharmaceutics15010282
crossref_primary_10_1016_j_phymed_2022_154164
crossref_primary_10_3390_pathogens10070842
crossref_primary_10_1038_s41419_024_07134_2
crossref_primary_10_1128_mbio_03573_24
crossref_primary_10_1038_s41598_018_32576_y
crossref_primary_10_1093_procel_pwad050
crossref_primary_10_1017_S1431927620001324
crossref_primary_10_1007_s00253_023_12802_y
crossref_primary_10_1007_s12032_024_02338_0
crossref_primary_10_1038_s41575_020_0326_4
crossref_primary_10_1002_ange_202419376
crossref_primary_10_1007_s00204_020_02789_0
crossref_primary_10_1109_TPS_2022_3182717
crossref_primary_10_1007_s12192_020_01189_8
crossref_primary_10_3390_molecules26133937
crossref_primary_10_1007_s10143_020_01387_z
crossref_primary_10_4049_immunohorizons_2300095
crossref_primary_10_1016_j_freeradbiomed_2021_10_015
crossref_primary_10_1002_biof_1472
crossref_primary_10_1080_15376516_2021_1992553
crossref_primary_10_1007_s11010_020_03885_6
crossref_primary_10_1186_s12882_024_03570_6
crossref_primary_10_1590_1414_431x202010197
crossref_primary_10_1186_s12906_020_02944_1
crossref_primary_10_2147_JIR_S422189
crossref_primary_10_1021_acsami_3c11457
crossref_primary_10_1039_D2SC01260J
crossref_primary_10_1016_j_kint_2019_04_035
crossref_primary_10_3390_ijms24021518
crossref_primary_10_3389_fonc_2022_963928
crossref_primary_10_3389_fphys_2023_1165868
crossref_primary_10_1016_j_intimp_2022_109012
crossref_primary_10_1038_s41598_022_15348_7
crossref_primary_10_1016_j_biopha_2023_115572
crossref_primary_10_3892_mmr_2021_12477
crossref_primary_10_1155_2022_1854473
crossref_primary_10_1038_s41598_020_77954_7
crossref_primary_10_3390_ijms23116277
crossref_primary_10_1002_adma_202300548
crossref_primary_10_1038_s41418_018_0269_2
crossref_primary_10_1038_s41598_019_49198_7
crossref_primary_10_1002_adhm_202304304
crossref_primary_10_1038_s41467_023_40794_w
crossref_primary_10_3390_cells11152314
crossref_primary_10_1016_j_forsciint_2024_112085
crossref_primary_10_1128_mbio_01288_24
crossref_primary_10_1128_mSphere_00745_21
crossref_primary_10_1002_adhm_202201585
crossref_primary_10_2147_IJN_S436350
crossref_primary_10_1007_s11160_020_09614_y
crossref_primary_10_1007_s11481_020_09978_9
crossref_primary_10_3390_cells13050405
crossref_primary_10_1002_smtd_202300923
crossref_primary_10_1097_MD_0000000000028321
crossref_primary_10_1007_s12672_022_00474_5
crossref_primary_10_3389_fonc_2021_685377
crossref_primary_10_1161_ATVBAHA_120_315525
crossref_primary_10_1017_S0031182021000718
crossref_primary_10_1016_j_intimp_2024_113146
crossref_primary_10_1021_jacs_1c08630
crossref_primary_10_1016_j_phmed_2022_100056
crossref_primary_10_3390_cells9030627
crossref_primary_10_1089_scd_2021_0087
crossref_primary_10_3389_fendo_2023_1207142
crossref_primary_10_3389_fimmu_2018_02842
crossref_primary_10_1093_toxres_tfac017
crossref_primary_10_12997_jla_2020_9_3_380
crossref_primary_10_1080_01913123_2024_2428703
crossref_primary_10_3390_biom14010020
crossref_primary_10_1016_j_joen_2024_08_015
crossref_primary_10_17827_aktd_673798
crossref_primary_10_1002_dc_24316
crossref_primary_10_3389_fcell_2021_721795
crossref_primary_10_1039_C9SC04710G
crossref_primary_10_1016_j_biopha_2023_116001
crossref_primary_10_3389_fimmu_2019_01360
crossref_primary_10_1038_s41420_022_01101_6
crossref_primary_10_1021_acsnano_4c03879
crossref_primary_10_1016_j_biochi_2021_03_007
crossref_primary_10_1016_j_jhazmat_2023_133011
crossref_primary_10_1038_s41419_020_2459_3
crossref_primary_10_3390_nano10091675
crossref_primary_10_3390_cancers16142544
crossref_primary_10_1007_s12017_019_08586_y
crossref_primary_10_1007_s11010_020_03985_3
crossref_primary_10_3390_ijms241411694
crossref_primary_10_1042_BSR20221053
crossref_primary_10_3390_antiox12081617
crossref_primary_10_1039_D3TB02601A
crossref_primary_10_1080_03639045_2024_2439930
crossref_primary_10_1021_acsami_0c15176
crossref_primary_10_1002_ange_202016399
crossref_primary_10_1016_j_canlet_2020_01_034
crossref_primary_10_1016_j_ymthe_2023_12_008
crossref_primary_10_1007_s10495_022_01792_3
crossref_primary_10_1016_j_ijbiomac_2025_140116
crossref_primary_10_1155_2022_1842363
crossref_primary_10_1016_j_bcp_2022_115367
crossref_primary_10_1016_j_bioadv_2024_213938
crossref_primary_10_1016_j_molstruc_2023_135157
crossref_primary_10_1002_cmdc_201800707
crossref_primary_10_1002_mco2_255
crossref_primary_10_15407_cryo32_01_014
crossref_primary_10_1016_j_ejmech_2022_114843
crossref_primary_10_1016_j_prp_2023_154685
crossref_primary_10_1016_j_lfs_2022_120564
crossref_primary_10_1186_s12885_021_08404_4
crossref_primary_10_7717_peerj_12304
crossref_primary_10_1016_j_bios_2022_114403
crossref_primary_10_1161_CIRCRESAHA_124_323579
crossref_primary_10_1016_j_snb_2021_130409
crossref_primary_10_1002_nbm_5202
crossref_primary_10_1002_adhm_202401723
crossref_primary_10_1016_j_chembiol_2021_03_012
crossref_primary_10_1371_journal_pone_0228385
crossref_primary_10_1002_tox_23627
crossref_primary_10_1111_jop_13498
crossref_primary_10_3390_ijms22042075
crossref_primary_10_1002_ptr_6780
crossref_primary_10_1039_D0RA07309A
crossref_primary_10_1111_all_14907
crossref_primary_10_1002_adma_202210986
crossref_primary_10_2147_IJN_S435104
crossref_primary_10_1146_annurev_anchem_091619_101212
crossref_primary_10_1371_journal_pone_0286456
crossref_primary_10_1016_j_molimm_2019_07_009
crossref_primary_10_1038_s41413_023_00247_y
crossref_primary_10_1038_d41586_021_00297_4
crossref_primary_10_1002_2211_5463_13069
crossref_primary_10_1038_s41419_023_05634_1
crossref_primary_10_3389_fcell_2021_726513
crossref_primary_10_1039_C9NR08958F
crossref_primary_10_1002_jbt_23008
crossref_primary_10_1016_j_scitotenv_2024_171230
crossref_primary_10_1016_j_bbagen_2020_129708
crossref_primary_10_1093_micmic_ozad032
crossref_primary_10_1016_j_snb_2024_136629
crossref_primary_10_1111_php_13582
crossref_primary_10_1038_s41418_018_0214_4
crossref_primary_10_1021_acs_jnatprod_8b00733
crossref_primary_10_1080_08923973_2019_1666405
crossref_primary_10_32604_biocell_2025_059787
crossref_primary_10_2139_ssrn_3527420
crossref_primary_10_1016_j_molimm_2020_04_016
crossref_primary_10_3390_ijms23137023
crossref_primary_10_1021_acsanm_4c01194
crossref_primary_10_1021_acs_jmedchem_4c00949
crossref_primary_10_1111_jocd_13970
crossref_primary_10_1016_j_biomaterials_2021_121024
crossref_primary_10_1042_BST20211114
crossref_primary_10_1128_AAC_01002_20
crossref_primary_10_1016_j_fbio_2023_102723
crossref_primary_10_1021_acsami_1c03640
crossref_primary_10_1016_j_phrs_2023_107016
crossref_primary_10_2174_1567202619666220214105208
crossref_primary_10_1016_j_biomaterials_2019_119497
crossref_primary_10_3389_fphar_2022_860898
crossref_primary_10_1002_anie_202419376
crossref_primary_10_3390_v15030768
crossref_primary_10_1021_acs_inorgchem_4c01614
crossref_primary_10_1073_pnas_2417724121
crossref_primary_10_3390_ijms221910506
crossref_primary_10_1038_s41392_021_00507_5
crossref_primary_10_1080_16583655_2021_2010910
crossref_primary_10_1002_advs_202410405
crossref_primary_10_1016_j_pharmthera_2021_107919
crossref_primary_10_1007_s12029_021_00674_2
crossref_primary_10_1016_j_jsbmb_2023_106425
crossref_primary_10_1177_10738584241282632
crossref_primary_10_3390_ijms25052523
crossref_primary_10_1016_j_jep_2023_117373
crossref_primary_10_12998_wjcc_v8_i10_1848
crossref_primary_10_1080_01913123_2021_1987605
crossref_primary_10_3389_fgene_2021_755384
crossref_primary_10_2174_1389557523666230907093441
crossref_primary_10_1016_j_intimp_2019_01_002
crossref_primary_10_1523_JNEUROSCI_1867_19_2019
crossref_primary_10_1016_j_bioorg_2022_105706
crossref_primary_10_1016_j_isci_2022_104481
crossref_primary_10_1016_j_mtbio_2025_101476
crossref_primary_10_1016_j_cellsig_2021_110119
crossref_primary_10_1016_j_chemosphere_2019_07_063
crossref_primary_10_3389_fphar_2018_01298
crossref_primary_10_1021_acs_bioconjchem_0c00362
crossref_primary_10_1016_j_talanta_2023_124575
crossref_primary_10_1016_j_jmb_2021_167297
crossref_primary_10_1186_s13008_023_00087_6
crossref_primary_10_1080_09506608_2021_1988194
crossref_primary_10_1002_anie_202117401
crossref_primary_10_1002_smll_202102610
crossref_primary_10_1186_s12951_023_02026_7
crossref_primary_10_1667_RR15001_1
crossref_primary_10_1016_j_mtbio_2024_101191
crossref_primary_10_1080_24750263_2024_2310041
crossref_primary_10_3389_fonc_2024_1336734
crossref_primary_10_1002_advs_202205835
crossref_primary_10_1016_j_anireprosci_2022_107158
crossref_primary_10_1021_acs_est_3c01843
crossref_primary_10_3390_cancers13143579
crossref_primary_10_1016_j_bcp_2022_115042
crossref_primary_10_15407_dopovidi2019_04_094
crossref_primary_10_1016_j_cclet_2022_07_042
crossref_primary_10_3390_ijms25158252
crossref_primary_10_1155_2020_9242305
crossref_primary_10_1002_adfm_202002444
crossref_primary_10_1161_ATVBAHA_120_315037
crossref_primary_10_1016_j_mcn_2021_103679
crossref_primary_10_3390_ph15040467
crossref_primary_10_3389_fimmu_2022_917155
crossref_primary_10_1038_s42003_021_02181_3
crossref_primary_10_3390_biology11010141
crossref_primary_10_1016_j_mito_2020_12_004
crossref_primary_10_1007_s00018_022_04332_z
crossref_primary_10_1016_j_jmrt_2020_10_021
crossref_primary_10_1515_ntrev_2022_0052
crossref_primary_10_1016_j_ejphar_2023_175537
crossref_primary_10_1016_j_jgg_2024_02_005
crossref_primary_10_1016_j_snb_2021_129864
crossref_primary_10_3390_ijms20081887
crossref_primary_10_1016_j_yexcr_2019_06_008
crossref_primary_10_1007_s10529_023_03346_2
crossref_primary_10_3390_biophysica1010005
crossref_primary_10_1002_kjm2_12752
crossref_primary_10_3390_molecules27113486
crossref_primary_10_1016_j_phymed_2023_154869
crossref_primary_10_1016_j_pestbp_2023_105456
crossref_primary_10_1016_j_bmc_2019_115044
crossref_primary_10_1007_s11064_023_04010_x
crossref_primary_10_3390_ijms252111601
crossref_primary_10_1021_acschembio_7b01082
crossref_primary_10_1681_ASN_2019020204
crossref_primary_10_1016_j_ijpddr_2023_05_004
crossref_primary_10_3390_molecules28083376
crossref_primary_10_1021_acsomega_3c09902
crossref_primary_10_1182_bloodadvances_2023011325
crossref_primary_10_1007_s10495_023_01915_4
crossref_primary_10_1007_s11010_023_04873_2
crossref_primary_10_1038_s41467_020_14906_9
crossref_primary_10_1016_j_bbamem_2018_12_017
crossref_primary_10_1242_jcs_242636
crossref_primary_10_3390_pathogens12060839
crossref_primary_10_1038_s41598_020_76086_2
crossref_primary_10_1038_s41416_018_0242_3
crossref_primary_10_2174_1871520621666211213092121
crossref_primary_10_1155_2020_8567182
crossref_primary_10_2147_IJGM_S337735
crossref_primary_10_1016_j_ccr_2023_215588
crossref_primary_10_1080_20013078_2019_1608786
crossref_primary_10_1007_s11033_023_09199_2
crossref_primary_10_1039_D1SC05319A
crossref_primary_10_1002_agt2_657
crossref_primary_10_1126_scisignal_abc6178
crossref_primary_10_1182_blood_2023023179
crossref_primary_10_1155_2019_9062098
crossref_primary_10_1186_s41181_023_00204_4
crossref_primary_10_31083_j_fbl2907254
crossref_primary_10_1111_exd_14289
crossref_primary_10_1002_adfm_202008061
crossref_primary_10_1016_j_matt_2022_08_026
crossref_primary_10_3390_ijms25010524
crossref_primary_10_1016_j_ekir_2018_11_005
crossref_primary_10_1111_cpr_13300
crossref_primary_10_1016_j_cej_2024_148610
crossref_primary_10_1080_10715762_2020_1763332
crossref_primary_10_1021_acsami_9b14746
crossref_primary_10_3389_fneur_2019_01241
crossref_primary_10_1007_s11033_020_06087_x
crossref_primary_10_3390_ijms24054528
crossref_primary_10_1002_asia_202400305
crossref_primary_10_1152_physiol_00029_2023
crossref_primary_10_1007_s10753_023_01839_w
crossref_primary_10_1038_s41467_021_25549_9
crossref_primary_10_1080_07391102_2023_2227712
crossref_primary_10_1097_MD_0000000000030564
crossref_primary_10_2337_db22_0153
crossref_primary_10_3390_molecules26195967
crossref_primary_10_1016_j_bioelechem_2024_108796
crossref_primary_10_1016_j_pestbp_2024_105956
crossref_primary_10_3390_ijms24087231
crossref_primary_10_1371_journal_pgen_1010515
crossref_primary_10_1016_j_biomaterials_2020_120061
crossref_primary_10_1038_s41418_018_0075_x
crossref_primary_10_1080_01635581_2020_1820054
crossref_primary_10_1016_j_cej_2022_140869
crossref_primary_10_1038_s41420_020_00349_0
crossref_primary_10_3389_fnmol_2024_1422646
crossref_primary_10_1016_j_pestbp_2020_01_011
crossref_primary_10_3389_fendo_2022_1032614
crossref_primary_10_1134_S0006297920020017
crossref_primary_10_1002_anie_202419759
crossref_primary_10_1016_j_jconrel_2024_05_014
crossref_primary_10_3390_v12090932
crossref_primary_10_1002_med_22101
crossref_primary_10_3390_ijms252212278
crossref_primary_10_1002_ctm2_269
crossref_primary_10_1016_j_bcp_2024_116642
crossref_primary_10_3389_fonc_2021_698811
crossref_primary_10_3390_jfb13040278
crossref_primary_10_1039_D4TB01620C
crossref_primary_10_1186_s12915_021_01018_z
crossref_primary_10_3892_ijmm_2019_4244
crossref_primary_10_1002_ange_202415735
crossref_primary_10_1007_s11626_024_01010_1
crossref_primary_10_1128_jvi_01588_24
crossref_primary_10_2174_0115734137294302240625045852
crossref_primary_10_3390_ijerph17030679
crossref_primary_10_1186_s12885_021_09046_2
crossref_primary_10_1007_s00204_021_02990_9
crossref_primary_10_1111_nph_19709
crossref_primary_10_1016_j_prp_2018_09_002
crossref_primary_10_1039_D2SC05727A
crossref_primary_10_3390_cells13161379
crossref_primary_10_1038_s41420_019_0230_2
crossref_primary_10_1155_2022_2680110
crossref_primary_10_1155_2023_4586398
crossref_primary_10_1021_acs_nanolett_9b03245
crossref_primary_10_3389_fimmu_2020_00814
crossref_primary_10_1021_acs_bioconjchem_0c00267
crossref_primary_10_1159_000517732
crossref_primary_10_3390_ijms24032897
crossref_primary_10_3390_ijms25179481
crossref_primary_10_1016_j_bcp_2019_113684
crossref_primary_10_1126_sciimmunol_ado5951
crossref_primary_10_3390_genes13020223
crossref_primary_10_1016_j_jare_2023_09_018
crossref_primary_10_1016_j_taap_2019_114626
crossref_primary_10_1038_s41556_020_0565_1
crossref_primary_10_1007_s10495_022_01807_z
crossref_primary_10_3390_ijms23031345
Cites_doi 10.1073/pnas.1200012109
10.1084/jem.20050915
10.1038/cr.2016.64
10.1016/j.immuni.2013.06.018
10.1091/mbc.e03-09-0668
10.1095/biolreprod.107.065045
10.1016/j.molcel.2016.01.011
10.1038/35070019
10.1038/nature09413
10.1038/nature18629
10.1016/j.cell.2016.02.034
10.1038/nature13147
10.1126/science.1172308
10.1111/j.1356-9597.2004.00745.x
10.1073/pnas.0600824103
10.4049/jimmunol.172.2.880
10.1038/nri.2016.147
10.1038/nm.2385
10.1038/cr.2013.171
10.1016/j.cub.2014.12.059
10.1038/sj.cdd.4402201
10.1038/nature11714
10.1016/j.immuni.2017.06.001
10.1073/pnas.1607769113
10.1016/j.it.2011.01.005
10.1038/nature18590
10.1073/pnas.94.25.13642
10.1038/cr.2016.87
10.1073/pnas.1305538110
10.1146/annurev-immunol-032414-112248
10.1016/j.cell.2014.04.007
10.1172/JCI1112
10.1038/nature15514
10.1016/j.str.2014.07.014
10.1038/cr.2016.26
10.1038/ncomms8439
10.1038/cdd.2014.76
10.1038/nri2215
10.1002/jlb.52.3.269
10.1146/annurev-physiol-021113-170259
10.1038/nri.2016.107
10.1038/cmi.2017.31
10.1038/nchembio.83
10.1038/bjc.1972.33
10.1038/cdd.2009.184
10.1038/cr.2016.100
10.1038/ni.2159
10.1016/j.celrep.2017.03.024
10.1038/ncomms14128
10.1016/j.cell.2009.05.037
10.1016/j.celrep.2016.03.037
10.1038/37022
10.1016/j.cell.2009.08.021
10.1074/jbc.273.25.15540
10.1080/01926230701320337
10.1242/jcs.02529
10.1007/s00018-010-0283-0
10.1038/cddis.2013.156
10.1038/cdd.2014.77
10.1002/path.2792
10.1073/pnas.95.23.13618
10.1007/s10495-006-9527-8
10.1126/science.aaf2154
10.1007/s00018-010-0285-y
10.1016/S0966-842X(00)01936-3
10.1111/imr.12287
10.1074/jbc.M700202200
10.1084/jem.20151613
10.1038/onc.2008.297
10.1038/nature15541
10.1126/science.aad0395
10.1126/science.278.5336.294
10.1038/nri.2016.153
10.1186/1748-717X-9-185
10.1038/cr.2015.139
10.1074/jbc.M112.435545
10.1007/978-3-319-39406-0_6
10.1038/cdd.2015.70
10.1038/nature22393
10.1016/j.celrep.2012.12.012
10.15252/embj.201694696
10.1083/jcb.200802081
10.1016/j.cell.2009.05.021
10.1126/science.276.5318.1571
10.1038/ncb2883
10.1016/j.cell.2011.11.031
10.1016/j.cell.2017.03.020
10.1016/S0960-9822(00)00598-4
10.1038/35070009
10.1073/pnas.1408987111
10.1146/annurev.biochem.73.011303.073706
10.1038/nri3607
10.1038/nrm2393
10.1016/j.molcel.2014.03.003
10.1007/s00262-011-1184-2
10.1016/j.celrep.2014.04.026
10.1242/dev.127.24.5245
10.1016/S0021-9258(18)42768-8
10.1242/jcs.111.19.2911
10.4049/jimmunol.141.8.2629
ContentType Journal Article
Copyright The Author(s) 2017
Copyright Nature Publishing Group Jan 2018
Copyright © 2017 The Author(s) 2017 The Author(s)
Copyright_xml – notice: The Author(s) 2017
– notice: Copyright Nature Publishing Group Jan 2018
– notice: Copyright © 2017 The Author(s) 2017 The Author(s)
DBID 2RA
92L
CQIGP
W94
WU4
~WA
C6C
AAYXX
CITATION
NPM
3V.
7QO
7QP
7QR
7T5
7TK
7TM
7TO
7U9
7X7
7XB
88E
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7N
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
7X8
5PM
DOI 10.1038/cr.2017.133
DatabaseName 维普_期刊
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库-自然科学
中文科技期刊数据库-自然科学-生物科学
中文科技期刊数据库- 镜像站点
Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Proquest Health and Medical Complete
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
ProQuest Medical Library
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

ProQuest Central Student
MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Plasma membrane changes during programmed cell deaths
EISSN 1748-7838
EndPage 21
ExternalDocumentID PMC5752838
29076500
10_1038_cr_2017_133
674404352
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ---
-01
-0A
-Q-
-SA
-S~
0R~
29B
2B.
2C.
2RA
2WC
36B
39C
3V.
4.4
406
53G
5GY
5VR
5XA
5XB
5XL
6J9
70F
7X7
88E
8FE
8FH
8FI
8FJ
92E
92I
92L
92M
92Q
93N
9D9
9DA
AADWK
AANZL
AATNV
AAWBL
AAYFA
AAYJO
AAZLF
ABAWZ
ABGIJ
ABJNI
ABUWG
ACAOD
ACBMV
ACBRV
ACBYP
ACGFO
ACGFS
ACIGE
ACIWK
ACKTT
ACPRK
ACRQY
ACTTH
ACVWB
ACZOJ
ADBBV
ADFRT
ADHDB
ADMDM
ADQMX
ADYYL
AEDAW
AEFTE
AEJRE
AENEX
AESKC
AEVLU
AEXYK
AFKRA
AFNRJ
AFRAH
AFSHS
AFUIB
AGEZK
AGGBP
AGHAI
AHMBA
AHSBF
AILAN
AJCLW
AJDOV
AJRNO
ALFFA
ALMA_UNASSIGNED_HOLDINGS
AMRJV
AMYLF
AOIJS
AXYYD
BAWUL
BBNVY
BENPR
BHPHI
BKKNO
BPHCQ
BVXVI
C1A
CAG
CAJEA
CAJUS
CCEZO
CCPQU
CCVFK
CHBEP
COF
CQIGP
CS3
CW9
DIK
DNIVK
DPUIP
DU5
E3Z
EBLON
EBS
EE.
EIOEI
EJD
EMB
EMOBN
F5P
FA0
FDQFY
FERAY
FIZPM
FSGXE
FYUFA
GX1
HCIFZ
HMCUK
HYE
HZ~
IWAJR
JSO
JUIAU
JZLTJ
KQ8
LK8
M1P
M7P
NAO
NQJWS
NXXTH
NYICJ
O9-
OK1
P2P
PQQKQ
PROAC
PSQYO
Q--
Q-0
R-A
RNS
RNT
RNTTT
RPM
RT1
S..
SNX
SNYQT
SOHCF
SRMVM
SV3
SWTZT
T8Q
TAOOD
TBHMF
TCJ
TDRGL
TGP
TR2
U1F
U1G
U5A
U5K
UKHRP
W94
WFFXF
WU4
XSB
~88
~WA
AACDK
AAHBH
AASML
AAXDM
AAYZH
ABAKF
ABZZP
ACMJI
AEFQL
AEMSY
AEUYN
AFBBN
AGQEE
AIGIU
ALIPV
C6C
FIGPU
LGEZI
LOTEE
NADUK
ROL
SOJ
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
AEZWR
AFDZB
AFHIU
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
NPM
7QO
7QP
7QR
7T5
7TK
7TM
7TO
7U9
7XB
8FD
8FK
ABRTQ
AZQEC
DWQXO
FR3
GNUQQ
H94
K9.
M7N
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
7X8
5PM
ID FETCH-LOGICAL-c473t-a7ade178822bcf2b36ef95a680fd54e00f15927b9fc2aa6a7f6c5d1b767c2f183
IEDL.DBID C6C
ISSN 1001-0602
1748-7838
IngestDate Thu Aug 21 14:09:25 EDT 2025
Fri Jul 11 10:24:18 EDT 2025
Fri Jul 25 09:02:02 EDT 2025
Thu Apr 03 07:00:26 EDT 2025
Tue Jul 01 03:41:35 EDT 2025
Thu Apr 24 23:03:19 EDT 2025
Fri Feb 21 02:38:08 EST 2025
Wed Feb 14 09:55:49 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords morphology
programmed cell death
mechanism
plasma membrane
immunology
Language English
License This work is licensed under a Creative Commons Attribution 4.0 Unported License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c473t-a7ade178822bcf2b36ef95a680fd54e00f15927b9fc2aa6a7f6c5d1b767c2f183
Notes Ruptured and intact plasma membranes are classically considered as hallmarks of necrotic and apoptotic cell death, respectively. As such, apoptosis is usually considered a non-inflammatory process while necrosis triggers in- flammation. Recent studies on necroptosis and pyroptosis, two types of programmed necrosis, revealed that plasma membrane rupture is mediated by MLKL channels during necroptosis but depends on non-selective gasdermin D (GSDMD) pores during pyroptosis. Importantly, the morphology of dying cells executed by MLKL channels can be distinguished from that executed by GSDMD pores. Interestingly, it was found recently that secondary necrosis of apoptotic cells, a previously believed non-regulated form of cell lysis that occurs after apoptosis, can be programmed and executed by plasma membrane pore formation like that of pyroptosis. In addition, pyroptosis is associated with pyroptotic bodies, which have some similarities to apoptotic bodies. Therefore, different cell death programs induce distinctive reshuffling processes of the plasma membrane. Given the fact that the nature of released intracellular contents plays a crucial role in dying/dead cell-induced immunogenicity, not only membrane rupture or integrity but also the nature of plasma membrane breakdown would determine the fate of a cell as well as its ability to elicit an immune response. In this review, we will discuss recent advances in the field of apoptosis, necroptosis and pyroptosis, with an emphasis on the mechanisms underlying plasma membrane changes observed on dying cells and their implication in cell death-elicited immunogenicity.
programmed cell death; plasma membrane; mechanism; morphology; immunology
31-1568
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
OpenAccessLink https://www.nature.com/articles/cr.2017.133
PMID 29076500
PQID 1983249629
PQPubID 536307
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5752838
proquest_miscellaneous_1957467099
proquest_journals_1983249629
pubmed_primary_29076500
crossref_citationtrail_10_1038_cr_2017_133
crossref_primary_10_1038_cr_2017_133
springer_journals_10_1038_cr_2017_133
chongqing_primary_674404352
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-01-01
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 01
  year: 2018
  text: 2018-01-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Cell research
PublicationTitleAbbrev Cell Res
PublicationTitleAlternate Cell Research
PublicationYear 2018
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Lane, Allan, Woodman (CR41) 2005; 118
Shi, Zhao, Wang (CR79) 2015; 526
Casares, Pequignot, Tesniere (CR92) 2005; 202
Scheithauer, Belka, Lauber (CR94) 2014; 9
Lin, Li, Yang (CR102) 2013; 3
Ding, Wang, Liu (CR18) 2016; 535
Cvetanovic, Ucker (CR85) 2004; 172
Tomiyoshi, Horita, Nishita (CR36) 2004; 9
Pradelli, Beneteau, Ricci (CR25) 2010; 67
Van Herreweghe, Festjens, Declercq (CR58) 2010; 67
Wallach, Kang, Dillon (CR5) 2016; 352
Krysko, Agostinis, Krysko (CR96) 2011; 32
Poon, Chiu, Armstrong (CR48) 2014; 507
Hildebrand, Tanzer, Lucet (CR14) 2014; 111
Monks, Smith-Steinhart, Kruk (CR44) 2008; 78
Yoon, Kovalenko, Bogdanov (CR74) 2017; 47
Kayagaki, Stowe, Lee (CR80) 2015; 526
Coleman, Sahai, Yeo (CR31) 2001; 3
Wood, Turmaine, Weber (CR42) 2000; 127
Xia, Fang, Chen (CR15) 2016; 26
Huang, Zheng, Wang (CR17) 2017; 37
Cho, Challa, Moquin (CR68) 2009; 137
Nagata, Tanaka (CR2) 2017; 17
Ros, Pena-Blanco, Hanggi (CR72) 2017; 19
Jorgensen, Rayamajhi, Miao (CR76) 2017; 17
Cai, Jitkaew, Zhao (CR9) 2014; 16
Aglietti, Estevez, Gupta (CR21) 2016; 113
Wu, Yang, Wang (CR60) 2014; 21
Stern, Savill, Haslett (CR83) 1996; 149
Voll, Herrmann, Roth (CR88) 1997; 390
Chen, Zhou, Li (CR62) 2013; 288
He, Wang, Miao (CR67) 2009; 137
Wang, Sun, Su (CR10) 2014; 54
Kurokawa, Kornbluth (CR8) 2009; 138
Brouckaert, Kalai, Krysko (CR84) 2004; 15
Yatim, Jusforgues-Saklani, Orozco (CR98) 2015; 350
Sborgi, Ruhl, Mulvihill (CR20) 2016; 35
Vanden Berghe, Vanlangenakker, Parthoens (CR50) 2010; 17
Lee, MacDonald, Reinhard (CR33) 1997; 94
Jorgensen, Miao (CR75) 2015; 265
Jiang, Wang (CR26) 2004; 73
Laster, Wood, Gooding (CR56) 1988; 141
Rudel, Bokoch (CR34) 1997; 276
Kothakota, Azuma, Reinhard (CR46) 1997; 278
Quarato, Guy, Grace (CR71) 2016; 61
Meagher, Savill, Baker (CR82) 1992; 52
Chan, Luz, Moriwaki (CR55) 2015; 33
Sebbagh, Renvoize, Hamelin (CR32) 2001; 3
Vilas, Corvi, Plummer (CR35) 2006; 103
Parnaik, Raff, Scholes (CR43) 2000; 10
Gong, Guy, Olauson (CR73) 2017; 169
Zhang, Han (CR16) 2016; 26
Kerr, Wyllie, Currie (CR23) 1972; 26
Jorgensen, Zhang, Krantz (CR103) 2016; 213
Janicke, Ng, Sprengart (CR30) 1998; 273
Walker, Harmon, Gobe (CR1) 1988; 13
Christofferson, Li, Yuan (CR66) 2014; 76
Berg, Levitte, O'Sullivan (CR52) 2016; 165
Schulzeosthoff, Bakker, Vanhaesebroeck (CR57) 1992; 267
Dondelinger, Declercq, Montessuit (CR12) 2014; 7
Su, Quade, Wang (CR13) 2014; 22
Huang, Li, Liu (CR89) 2011; 17
Elmore (CR24) 2007; 35
Degterev, Yuan (CR28) 2008; 9
Krysko, Love Aaes, Bachert (CR97) 2013; 4
Zhao, Jitkaew, Cai (CR64) 2012; 109
Obeid, Panaretakis, Joza (CR93) 2007; 14
Rodriguez, Weinlich, Brown (CR70) 2016; 23
Juncadella, Kadl, Sharma (CR45) 2013; 493
Vandenabeele, Vandecasteele, Bachert (CR7) 2016; 930
Krysko, D'Herde, Vandenabeele (CR87) 2006; 11
Wang, Gao, Shi (CR53) 2017; 547
He, Wan, Hu (CR81) 2015; 25
Cai, Zhang, Choksi (CR100) 2016; 26
Chekeni, Elliott, Sandilos (CR47) 2010; 467
Aaes, Kaczmarek, Delvaeye (CR99) 2016; 15
Zhang, Shao, Lin (CR59) 2009; 325
Degterev, Hitomi, Germscheid (CR65) 2008; 4
Poon, Lucas, Rossi (CR37) 2014; 14
Torgerson, McNiven (CR39) 1998; 111
Liu, Zhang, Ruan (CR19) 2016; 535
Fadok, Bratton, Konowal (CR86) 1998; 101
Ren, Jia, Zhao (CR6) 2017; 14
Galluzzi, Buque, Kepp (CR51) 2017; 17
Cookson, Brennan (CR78) 2001; 9
Sun, Wang, Wang (CR63) 2012; 148
Li, Yuan (CR27) 2008; 27
Gregory, Pound (CR91) 2011; 223
Kono, Rock (CR4) 2008; 8
Orozco, Yatim, Werner (CR61) 2014; 21
Ford, Petrova, Pound (CR90) 2015; 25
Fackler, Grosse (CR40) 2008; 181
Zheng, Schlosser, Dao (CR29) 1998; 95
Garg, Krysko, Vandenabeele (CR95) 2012; 61
Balasubramanian, Mirnikjoo, Schroit (CR38) 2007; 282
Han, Zhong, Zhang (CR54) 2011; 12
Linkermann, Brasen, Darding (CR101) 2013; 110
Rogers, Fernandes-Alnemri, Mayes (CR3) 2017; 8
Atkin-Smith, Tixeira, Paone (CR49) 2015; 6
Murphy, Czabotar, Hildebrand (CR69) 2013; 39
Lamkanfi, Dixit (CR77) 2014; 157
Chen, Li, Ren (CR11) 2014; 24
Chen, He, Hu (CR22) 2016; 26
S Yoon (BFcr2017133_CR74) 2017; 47
Q Huang (BFcr2017133_CR89) 2011; 17
RD Berg (BFcr2017133_CR52) 2016; 165
G Brouckaert (BFcr2017133_CR84) 2004; 15
J Han (BFcr2017133_CR54) 2011; 12
X Liu (BFcr2017133_CR19) 2016; 535
J Li (BFcr2017133_CR27) 2008; 27
N Casares (BFcr2017133_CR92) 2005; 202
A Linkermann (BFcr2017133_CR101) 2013; 110
SM Laster (BFcr2017133_CR56) 1988; 141
H Kono (BFcr2017133_CR4) 2008; 8
S Elmore (BFcr2017133_CR24) 2007; 35
N Lee (BFcr2017133_CR33) 1997; 94
X Jiang (BFcr2017133_CR26) 2004; 73
ZY Cai (BFcr2017133_CR9) 2014; 16
VA Fadok (BFcr2017133_CR86) 1998; 101
C Rogers (BFcr2017133_CR3) 2017; 8
X Chen (BFcr2017133_CR11) 2014; 24
JJ Shi (BFcr2017133_CR79) 2015; 526
IKH Poon (BFcr2017133_CR37) 2014; 14
J Zhao (BFcr2017133_CR64) 2012; 109
CD Gregory (BFcr2017133_CR91) 2011; 223
W Wood (BFcr2017133_CR42) 2000; 127
J Lin (BFcr2017133_CR102) 2013; 3
R Parnaik (BFcr2017133_CR43) 2000; 10
DA Rodriguez (BFcr2017133_CR70) 2016; 23
S Nagata (BFcr2017133_CR2) 2017; 17
K Schulzeosthoff (BFcr2017133_CR57) 1992; 267
I Jorgensen (BFcr2017133_CR103) 2016; 213
YS Cho (BFcr2017133_CR68) 2009; 137
DV Krysko (BFcr2017133_CR87) 2006; 11
LA Pradelli (BFcr2017133_CR25) 2010; 67
L Sborgi (BFcr2017133_CR20) 2016; 35
Z Cai (BFcr2017133_CR100) 2016; 26
TS Zheng (BFcr2017133_CR29) 1998; 95
U Ros (BFcr2017133_CR72) 2017; 19
J Ren (BFcr2017133_CR6) 2017; 14
J Ding (BFcr2017133_CR18) 2016; 535
WT He (BFcr2017133_CR81) 2015; 25
L Galluzzi (BFcr2017133_CR51) 2017; 17
O Krysko (BFcr2017133_CR97) 2013; 4
M Cvetanovic (BFcr2017133_CR85) 2004; 172
RU Janicke (BFcr2017133_CR30) 1998; 273
DL Huang (BFcr2017133_CR17) 2017; 37
GK Atkin-Smith (BFcr2017133_CR49) 2015; 6
S He (BFcr2017133_CR67) 2009; 137
LM Sun (BFcr2017133_CR63) 2012; 148
WZ Chen (BFcr2017133_CR62) 2013; 288
I Jorgensen (BFcr2017133_CR75) 2015; 265
T Rudel (BFcr2017133_CR34) 1997; 276
HY Wang (BFcr2017133_CR10) 2014; 54
YY Zhang (BFcr2017133_CR16) 2016; 26
M Sebbagh (BFcr2017133_CR32) 2001; 3
S Kothakota (BFcr2017133_CR46) 1997; 278
DV Krysko (BFcr2017133_CR96) 2011; 32
Y Wang (BFcr2017133_CR53) 2017; 547
RR Torgerson (BFcr2017133_CR39) 1998; 111
LC Meagher (BFcr2017133_CR82) 1992; 52
I Jorgensen (BFcr2017133_CR76) 2017; 17
RE Voll (BFcr2017133_CR88) 1997; 390
D Wallach (BFcr2017133_CR5) 2016; 352
CA Ford (BFcr2017133_CR90) 2015; 25
M Lamkanfi (BFcr2017133_CR77) 2014; 157
AD Garg (BFcr2017133_CR95) 2012; 61
JM Hildebrand (BFcr2017133_CR14) 2014; 111
IJ Juncadella (BFcr2017133_CR45) 2013; 493
G Tomiyoshi (BFcr2017133_CR36) 2004; 9
BT Cookson (BFcr2017133_CR78) 2001; 9
DW Zhang (BFcr2017133_CR59) 2009; 325
M Kurokawa (BFcr2017133_CR8) 2009; 138
TL Aaes (BFcr2017133_CR99) 2016; 15
XN Wu (BFcr2017133_CR60) 2014; 21
K Balasubramanian (BFcr2017133_CR38) 2007; 282
JM Murphy (BFcr2017133_CR69) 2013; 39
JF Kerr (BFcr2017133_CR23) 1972; 26
FKM Chan (BFcr2017133_CR55) 2015; 33
OT Fackler (BFcr2017133_CR40) 2008; 181
J Monks (BFcr2017133_CR44) 2008; 78
A Degterev (BFcr2017133_CR28) 2008; 9
T Vanden Berghe (BFcr2017133_CR50) 2010; 17
Y Dondelinger (BFcr2017133_CR12) 2014; 7
P Vandenabeele (BFcr2017133_CR7) 2016; 930
L Su (BFcr2017133_CR13) 2014; 22
F Van Herreweghe (BFcr2017133_CR58) 2010; 67
B Xia (BFcr2017133_CR15) 2016; 26
ML Coleman (BFcr2017133_CR31) 2001; 3
NI Walker (BFcr2017133_CR1) 1988; 13
RA Aglietti (BFcr2017133_CR21) 2016; 113
A Degterev (BFcr2017133_CR65) 2008; 4
YN Gong (BFcr2017133_CR73) 2017; 169
GL Vilas (BFcr2017133_CR35) 2006; 103
DE Christofferson (BFcr2017133_CR66) 2014; 76
X Chen (BFcr2017133_CR22) 2016; 26
FB Chekeni (BFcr2017133_CR47) 2010; 467
S Orozco (BFcr2017133_CR61) 2014; 21
N Kayagaki (BFcr2017133_CR80) 2015; 526
H Scheithauer (BFcr2017133_CR94) 2014; 9
IKH Poon (BFcr2017133_CR48) 2014; 507
M Obeid (BFcr2017133_CR93) 2007; 14
G Quarato (BFcr2017133_CR71) 2016; 61
M Stern (BFcr2017133_CR83) 1996; 149
JD Lane (BFcr2017133_CR41) 2005; 118
N Yatim (BFcr2017133_CR98) 2015; 350
References_xml – volume: 109
  start-page: 5322
  year: 2012
  end-page: 5327
  ident: CR64
  article-title: Mixed lineage kinase domain-like is a key receptor interacting protein 3 downstream component of TNF-induced necrosis
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1200012109
– volume: 202
  start-page: 1691
  year: 2005
  end-page: 1701
  ident: CR92
  article-title: Caspase-dependent immunogenicity of doxorubicin-induced tumor cell death
  publication-title: J Exp Med
  doi: 10.1084/jem.20050915
– volume: 26
  start-page: 643
  year: 2016
  end-page: 644
  ident: CR16
  article-title: Electrophysiologist shows a cation channel function of MLKL
  publication-title: Cell Res
  doi: 10.1038/cr.2016.64
– volume: 39
  start-page: 443
  year: 2013
  end-page: 453
  ident: CR69
  article-title: The pseudokinase MLKL mediates necroptosis via a molecular switch mechanism
  publication-title: Immunity
  doi: 10.1016/j.immuni.2013.06.018
– volume: 15
  start-page: 1089
  year: 2004
  end-page: 1100
  ident: CR84
  article-title: Phagocytosis of necrotic cells by macrophages is phosphatidylserine dependent and does not induce inflammatory cytokine production
  publication-title: Mol Biol Cell
  doi: 10.1091/mbc.e03-09-0668
– volume: 78
  start-page: 586
  year: 2008
  end-page: 594
  ident: CR44
  article-title: Epithelial cells remove apoptotic epithelial cells during post-lactation involution of the mouse mammary gland
  publication-title: Biol Reprod
  doi: 10.1095/biolreprod.107.065045
– volume: 61
  start-page: 589
  year: 2016
  end-page: 601
  ident: CR71
  article-title: Sequential engagement of distinct MLKL phosphatidylinositol-binding sites executes necroptosis
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2016.01.011
– volume: 3
  start-page: 346
  year: 2001
  end-page: 352
  ident: CR32
  article-title: Caspase-3-mediated cleavage of ROCK I induces MLC phosphorylation and apoptotic membrane blebbing
  publication-title: Nat Cell Biol
  doi: 10.1038/35070019
– volume: 13
  start-page: 18
  year: 1988
  end-page: 54
  ident: CR1
  article-title: Patterns of cell death
  publication-title: Methods Achiev Exp Pathol
– volume: 37
  start-page: pii
  year: 2017
  ident: CR17
  article-title: The MLKL channel in necroptosis is an octamer formed by tetramers in a dyadic process
  publication-title: Mol Cell Biol
– volume: 467
  start-page: 863
  year: 2010
  end-page: U136
  ident: CR47
  article-title: Pannexin 1 channels mediate 'find-me' signal release and membrane permeability during apoptosis
  publication-title: Nature
  doi: 10.1038/nature09413
– volume: 535
  start-page: 153
  year: 2016
  end-page: 158
  ident: CR19
  article-title: Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores
  publication-title: Nature
  doi: 10.1038/nature18629
– volume: 165
  start-page: 139
  year: 2016
  end-page: 152
  ident: CR52
  article-title: Lysosomal disorders drive susceptibility to tuberculosis by compromising macrophage migration
  publication-title: Cell
  doi: 10.1016/j.cell.2016.02.034
– volume: 507
  start-page: 329
  year: 2014
  end-page: 334
  ident: CR48
  article-title: Unexpected link between an antibiotic, pannexin channels and apoptosis
  publication-title: Nature
  doi: 10.1038/nature13147
– volume: 325
  start-page: 332
  year: 2009
  end-page: 336
  ident: CR59
  article-title: RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis
  publication-title: Science
  doi: 10.1126/science.1172308
– volume: 9
  start-page: 591
  year: 2004
  end-page: 600
  ident: CR36
  article-title: Caspase-mediated cleavage and activation of LIM-kinase 1 and its role in apoptotic membrane blebbing
  publication-title: Genes Cells
  doi: 10.1111/j.1356-9597.2004.00745.x
– volume: 103
  start-page: 6542
  year: 2006
  end-page: 6547
  ident: CR35
  article-title: Posttranslational myristoylation of caspase-activated p21-activated protein kinase 2 (PAK2) potentiates late apoptotic events
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0600824103
– volume: 172
  start-page: 880
  year: 2004
  end-page: 889
  ident: CR85
  article-title: Innate immune discrimination of apoptotic cells: repression of proinflammatory macrophage transcription is coupled directly to specific recognition
  publication-title: J Immunol
  doi: 10.4049/jimmunol.172.2.880
– volume: 17
  start-page: 151
  year: 2017
  end-page: 164
  ident: CR76
  article-title: Programmed cell death as a defence against infection
  publication-title: Nat Rev Immunol
  doi: 10.1038/nri.2016.147
– volume: 17
  start-page: 860
  year: 2011
  end-page: 866
  ident: CR89
  article-title: Caspase 3-mediated stimulation of tumor cell repopulation during cancer radiotherapy
  publication-title: Nat Med
  doi: 10.1038/nm.2385
– volume: 24
  start-page: 105
  year: 2014
  end-page: 121
  ident: CR11
  article-title: Translocation of mixed lineage kinase domain-like protein to plasma membrane leads to necrotic cell death
  publication-title: Cell Res
  doi: 10.1038/cr.2013.171
– volume: 25
  start-page: 577
  year: 2015
  end-page: 588
  ident: CR90
  article-title: Oncogenic properties of apoptotic tumor cells in aggressive B cell lymphoma
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2014.12.059
– volume: 14
  start-page: 1848
  year: 2007
  end-page: 1850
  ident: CR93
  article-title: Calreticulin exposure is required for the immunogenicity of gamma-irradiation and UVC light-induced apoptosis
  publication-title: Cell Death Differ
  doi: 10.1038/sj.cdd.4402201
– volume: 493
  start-page: 547
  year: 2013
  end-page: 551
  ident: CR45
  article-title: Apoptotic cell clearance by bronchial epithelial cells critically influences airway inflammation
  publication-title: Nature
  doi: 10.1038/nature11714
– volume: 47
  start-page: 51
  year: 2017
  end-page: 65
  ident: CR74
  article-title: MLKL, the protein that mediates necroptosis, also regulates endosomal trafficking and extracellular vesicle generation
  publication-title: Immunity
  doi: 10.1016/j.immuni.2017.06.001
– volume: 141
  start-page: 2629
  year: 1988
  end-page: 2634
  ident: CR56
  article-title: Tumor necrosis factor can induce both apoptic and necrotic forms of cell-lysis
  publication-title: J Immunol
– volume: 113
  start-page: 7858
  year: 2016
  end-page: 7863
  ident: CR21
  article-title: GsdmD p30 elicited by caspase-11 during pyroptosis forms pores in membranes
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1607769113
– volume: 32
  start-page: 157
  year: 2011
  end-page: 164
  ident: CR96
  article-title: Emerging role of damage-associated molecular patterns derived from mitochondria in inflammation
  publication-title: Trends Immunol
  doi: 10.1016/j.it.2011.01.005
– volume: 535
  start-page: 111
  year: 2016
  end-page: 116
  ident: CR18
  article-title: Pore-forming activity and structural autoinhibition of the gasdermin family
  publication-title: Nature
  doi: 10.1038/nature18590
– volume: 94
  start-page: 13642
  year: 1997
  end-page: 13647
  ident: CR33
  article-title: Activation of hPAK65 by caspase cleavage induces some of the morphological and biochemical changes of apoptosis
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.94.25.13642
– volume: 26
  start-page: 886
  year: 2016
  end-page: 900
  ident: CR100
  article-title: Activation of cell-surface proteases promotes necroptosis, inflammation and cell migration
  publication-title: Cell Res
  doi: 10.1038/cr.2016.87
– volume: 110
  start-page: 12024
  year: 2013
  end-page: 12029
  ident: CR101
  article-title: Two independent pathways of regulated necrosis mediate ischemia-reperfusion injury
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1305538110
– volume: 33
  start-page: 79
  year: 2015
  end-page: 106
  ident: CR55
  article-title: Programmed necrosis in the cross talk of cell death and inflammation
  publication-title: Annu Rev Immunol
  doi: 10.1146/annurev-immunol-032414-112248
– volume: 157
  start-page: 1013
  year: 2014
  end-page: 1022
  ident: CR77
  article-title: Mechanisms and functions of inflammasomes
  publication-title: Cell
  doi: 10.1016/j.cell.2014.04.007
– volume: 101
  start-page: 890
  year: 1998
  end-page: 898
  ident: CR86
  article-title: Macrophages that have ingested apoptotic cells inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF
  publication-title: J Clin Invest
  doi: 10.1172/JCI1112
– volume: 526
  start-page: 660
  year: 2015
  end-page: 665
  ident: CR79
  article-title: Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death
  publication-title: Nature
  doi: 10.1038/nature15514
– volume: 22
  start-page: 1489
  year: 2014
  end-page: 1500
  ident: CR13
  article-title: A plug release mechanism for membrane permeation by MLKL
  publication-title: Structure
  doi: 10.1016/j.str.2014.07.014
– volume: 26
  start-page: 517
  year: 2016
  end-page: 528
  ident: CR15
  article-title: MLKL forms cation channels
  publication-title: Cell Res
  doi: 10.1038/cr.2016.26
– volume: 6
  start-page: 7439
  year: 2015
  ident: CR49
  article-title: A novel mechanism of generating extracellular vesicles during apoptosis via a beads-on-a-string membrane structure
  publication-title: Nat Commun
  doi: 10.1038/ncomms8439
– volume: 21
  start-page: 1511
  year: 2014
  end-page: 1521
  ident: CR61
  article-title: RIPK1 both positively and negatively regulates RIPK3 oligomerization and necroptosis
  publication-title: Cell Death Differ
  doi: 10.1038/cdd.2014.76
– volume: 127
  start-page: 5245
  year: 2000
  end-page: 5252
  ident: CR42
  article-title: Mesenchymal cells engulf and clear apoptotic footplate cells in macrophageless PU.1 null mouse embryos
  publication-title: Development
– volume: 8
  start-page: 279
  year: 2008
  end-page: 289
  ident: CR4
  article-title: How dying cells alert the immune system to danger
  publication-title: Nat Rev Immunol
  doi: 10.1038/nri2215
– volume: 52
  start-page: 269
  year: 1992
  end-page: 273
  ident: CR82
  article-title: Phagocytosis of apoptotic neutrophils does not induce macrophage release of thromboxane B2
  publication-title: J Leukoc Biol
  doi: 10.1002/jlb.52.3.269
– volume: 76
  start-page: 129
  year: 2014
  end-page: 150
  ident: CR66
  article-title: Control of life-or-death decisions by RIP1 kinase
  publication-title: Annu Rev Physiol
  doi: 10.1146/annurev-physiol-021113-170259
– volume: 17
  start-page: 97
  year: 2017
  end-page: 111
  ident: CR51
  article-title: Immunogenic cell death in cancer and infectious disease
  publication-title: Nat Rev Immunol
  doi: 10.1038/nri.2016.107
– volume: 14
  start-page: 639
  year: 2017
  end-page: 642
  ident: CR6
  article-title: The RIP3-RIP1-NF-kappaB signaling axis is dispensable for necroptotic cells to elicit cross-priming of CD8+ T cells
  publication-title: Cell Mol Immunol
  doi: 10.1038/cmi.2017.31
– volume: 111
  start-page: 2911
  year: 1998
  end-page: 2922
  ident: CR39
  article-title: The actin-myosin cytoskeleton mediates reversible agonist-induced membrane blebbing
  publication-title: J Cell Sci
– volume: 4
  start-page: 313
  year: 2008
  end-page: 321
  ident: CR65
  article-title: Identification of RIP1 kinase as a specific cellular target of necrostatins
  publication-title: Nat Chem Biol
  doi: 10.1038/nchembio.83
– volume: 26
  start-page: 239
  year: 1972
  end-page: 257
  ident: CR23
  article-title: Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics
  publication-title: Br J Cancer
  doi: 10.1038/bjc.1972.33
– volume: 149
  start-page: 911
  year: 1996
  end-page: 921
  ident: CR83
  article-title: Human monocyte-derived macrophage phagocytosis of senescent eosinophils undergoing apoptosis. Mediation by alpha v beta 3/CD36/thrombospondin recognition mechanism and lack of phlogistic response
  publication-title: Am J Pathol
– volume: 17
  start-page: 922
  year: 2010
  end-page: 930
  ident: CR50
  article-title: Necroptosis, necrosis and secondary necrosis converge on similar cellular disintegration features
  publication-title: Cell Death Differ
  doi: 10.1038/cdd.2009.184
– volume: 26
  start-page: 1007
  year: 2016
  end-page: 1020
  ident: CR22
  article-title: Pyroptosis is driven by non-selective gasdermin-D pore and its morphology is different from MLKL channel-mediated necroptosis
  publication-title: Cell Res
  doi: 10.1038/cr.2016.100
– volume: 12
  start-page: 1143
  year: 2011
  end-page: 1149
  ident: CR54
  article-title: Programmed necrosis: backup to and competitor with apoptosis in the immune system
  publication-title: Nat Immunol
  doi: 10.1038/ni.2159
– volume: 19
  start-page: 175
  year: 2017
  end-page: 187
  ident: CR72
  article-title: Necroptosis execution is mediated by plasma membrane nanopores independent of calcium
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2017.03.024
– volume: 8
  start-page: 14128
  year: 2017
  ident: CR3
  article-title: Cleavage of DFNA5 by caspase-3 during apoptosis mediates progression to secondary necrotic/pyroptotic cell death
  publication-title: Nat Commun
  doi: 10.1038/ncomms14128
– volume: 137
  start-page: 1112
  year: 2009
  end-page: 1123
  ident: CR68
  article-title: Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation
  publication-title: Cell
  doi: 10.1016/j.cell.2009.05.037
– volume: 15
  start-page: 274
  year: 2016
  end-page: 287
  ident: CR99
  article-title: Vaccination with necroptotic cancer cells induces efficient anti-tumor immunity
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2016.03.037
– volume: 390
  start-page: 350
  year: 1997
  end-page: 351
  ident: CR88
  article-title: Immunosuppressive effects of apoptotic cells
  publication-title: Nature
  doi: 10.1038/37022
– volume: 138
  start-page: 838
  year: 2009
  end-page: 854
  ident: CR8
  article-title: Caspases and kinases in a death grip
  publication-title: Cell
  doi: 10.1016/j.cell.2009.08.021
– volume: 273
  start-page: 15540
  year: 1998
  end-page: 15545
  ident: CR30
  article-title: Caspase-3 is required for alpha-fodrin cleavage but dispensable for cleavage of other death substrates in apoptosis
  publication-title: J Biol Chem
  doi: 10.1074/jbc.273.25.15540
– volume: 35
  start-page: 495
  year: 2007
  end-page: 516
  ident: CR24
  article-title: Apoptosis: a review of programmed cell death
  publication-title: Toxicol Pathol
  doi: 10.1080/01926230701320337
– volume: 118
  start-page: 4059
  year: 2005
  end-page: 4071
  ident: CR41
  article-title: Active relocation of chromatin and endoplasmic reticulum into blebs in late apoptotic cells
  publication-title: J Cell Sci
  doi: 10.1242/jcs.02529
– volume: 67
  start-page: 1567
  year: 2010
  end-page: 1579
  ident: CR58
  article-title: Tumor necrosis factor-mediated cell death: to break or to burst, that's the question
  publication-title: Cell Mol Life Sci
  doi: 10.1007/s00018-010-0283-0
– volume: 4
  start-page: e631
  year: 2013
  ident: CR97
  article-title: Many faces of DAMPs in cancer therapy
  publication-title: Cell Death Dis
  doi: 10.1038/cddis.2013.156
– volume: 21
  start-page: 1709
  year: 2014
  end-page: 1720
  ident: CR60
  article-title: Distinct roles of RIP1-RIP3 hetero- and RIP3-RIP3 homo-interaction in mediating necroptosis
  publication-title: Cell Death Differ
  doi: 10.1038/cdd.2014.77
– volume: 223
  start-page: 177
  year: 2011
  end-page: 194
  ident: CR91
  article-title: Cell death in the neighbourhood: direct microenvironmental effects of apoptosis in normal and neoplastic tissues
  publication-title: J Pathol
  doi: 10.1002/path.2792
– volume: 95
  start-page: 13618
  year: 1998
  end-page: 13623
  ident: CR29
  article-title: Caspase-3 controls both cytoplasmic and nuclear events associated with Fas-mediated apoptosis
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.95.23.13618
– volume: 11
  start-page: 1709
  year: 2006
  end-page: 1726
  ident: CR87
  article-title: Clearance of apoptotic and necrotic cells and its immunological consequences
  publication-title: Apoptosis
  doi: 10.1007/s10495-006-9527-8
– volume: 352
  start-page: aaf2154
  year: 2016
  ident: CR5
  article-title: Programmed necrosis in inflammation: toward identification of the effector molecules
  publication-title: Science
  doi: 10.1126/science.aaf2154
– volume: 267
  start-page: 5317
  year: 1992
  end-page: 5323
  ident: CR57
  article-title: Cytotoxic activity of tumor-necrosis-factor is mediated by early damage of mitochondrial functions - evidence for the involvement of mitochondrial radical generation
  publication-title: J Biol Chem
– volume: 67
  start-page: 1589
  year: 2010
  end-page: 1597
  ident: CR25
  article-title: Mitochondrial control of caspase-dependent and -independent cell death
  publication-title: Cell Mol Life Sci
  doi: 10.1007/s00018-010-0285-y
– volume: 9
  start-page: 113
  year: 2001
  end-page: 114
  ident: CR78
  article-title: Pro-inflammatory programmed cell death
  publication-title: Trends Microbiol
  doi: 10.1016/S0966-842X(00)01936-3
– volume: 265
  start-page: 130
  year: 2015
  end-page: 142
  ident: CR75
  article-title: Pyroptotic cell death defends against intracellular pathogens
  publication-title: Immunol Rev
  doi: 10.1111/imr.12287
– volume: 282
  start-page: 18357
  year: 2007
  end-page: 18364
  ident: CR38
  article-title: Regulated externalization of phosphatidylserine at the cell surface - implications for apoptosis
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M700202200
– volume: 213
  start-page: 2113
  year: 2016
  end-page: 2128
  ident: CR103
  article-title: Pyroptosis triggers pore-induced intracellular traps (PITs) that capture bacteria and lead to their clearance by efferocytosis
  publication-title: J Exp Med
  doi: 10.1084/jem.20151613
– volume: 27
  start-page: 6194
  year: 2008
  end-page: 6206
  ident: CR27
  article-title: Caspases in apoptosis and beyond
  publication-title: Oncogene
  doi: 10.1038/onc.2008.297
– volume: 526
  start-page: 666
  year: 2015
  end-page: 671
  ident: CR80
  article-title: Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling
  publication-title: Nature
  doi: 10.1038/nature15541
– volume: 350
  start-page: 328
  year: 2015
  end-page: 334
  ident: CR98
  article-title: RIPK1 and NF-kappaB signaling in dying cells determines cross-priming of CD8(+) T cells
  publication-title: Science
  doi: 10.1126/science.aad0395
– volume: 278
  start-page: 294
  year: 1997
  end-page: 298
  ident: CR46
  article-title: Caspase-3-generated fragment of gelsolin: effector of morphological change in apoptosis
  publication-title: Science
  doi: 10.1126/science.278.5336.294
– volume: 17
  start-page: 333
  year: 2017
  end-page: 340
  ident: CR2
  article-title: Programmed cell death and the immune system
  publication-title: Nat Rev Immunol
  doi: 10.1038/nri.2016.153
– volume: 9
  start-page: 185
  year: 2014
  ident: CR94
  article-title: Immunological aspects of radiotherapy
  publication-title: Radiat Oncol
  doi: 10.1186/1748-717X-9-185
– volume: 25
  start-page: 1285
  year: 2015
  end-page: 1298
  ident: CR81
  article-title: Gasdermin D is an executor of pyroptosis and required for interleukin-1 beta secretion
  publication-title: Cell Res
  doi: 10.1038/cr.2015.139
– volume: 288
  start-page: 16247
  year: 2013
  end-page: 16261
  ident: CR62
  article-title: Diverse sequence determinants control human and mouse receptor interacting protein 3 (RIP3) and mixed lineage kinase domain-like (MLKL) interaction in necroptotic signaling
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M112.435545
– volume: 930
  start-page: 133
  year: 2016
  end-page: 149
  ident: CR7
  article-title: Immunogenic apoptotic cell death and anticancer immunity
  publication-title: Adv Exp Med Biol
  doi: 10.1007/978-3-319-39406-0_6
– volume: 23
  start-page: 76
  year: 2016
  end-page: 88
  ident: CR70
  article-title: Characterization of RIPK3-mediated phosphorylation of the activation loop of MLKL during necroptosis
  publication-title: Cell Death Differ
  doi: 10.1038/cdd.2015.70
– volume: 547
  start-page: 99
  year: 2017
  end-page: 103
  ident: CR53
  article-title: Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin
  publication-title: Nature
  doi: 10.1038/nature22393
– volume: 3
  start-page: 200
  year: 2013
  end-page: 210
  ident: CR102
  article-title: A role of RIP3-mediated macrophage necrosis in atherosclerosis development
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2012.12.012
– volume: 35
  start-page: 1766
  year: 2016
  end-page: 1778
  ident: CR20
  article-title: GSDMD membrane pore formation constitutes the mechanism of pyroptotic cell death
  publication-title: EMBO J
  doi: 10.15252/embj.201694696
– volume: 181
  start-page: 879
  year: 2008
  end-page: 884
  ident: CR40
  article-title: Cell motility through plasma membrane blebbing
  publication-title: J Cell Biol
  doi: 10.1083/jcb.200802081
– volume: 137
  start-page: 1100
  year: 2009
  end-page: 1111
  ident: CR67
  article-title: Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha
  publication-title: Cell
  doi: 10.1016/j.cell.2009.05.021
– volume: 276
  start-page: 1571
  year: 1997
  end-page: 1574
  ident: CR34
  article-title: Membrane and morphological changes in apoptotic cells regulated by caspase-mediated activation of PAK2
  publication-title: Science
  doi: 10.1126/science.276.5318.1571
– volume: 16
  start-page: 55
  year: 2014
  end-page: 65
  ident: CR9
  article-title: Plasma membrane translocation of trimerized MLKL protein is required for TNF-induced necroptosis
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb2883
– volume: 148
  start-page: 213
  year: 2012
  end-page: 227
  ident: CR63
  article-title: Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase
  publication-title: Cell
  doi: 10.1016/j.cell.2011.11.031
– volume: 169
  start-page: 286
  year: 2017
  end-page: 300
  ident: CR73
  article-title: ESCRT-III acts downstream of MLKL to regulate necroptotic cell death and its consequences
  publication-title: Cell
  doi: 10.1016/j.cell.2017.03.020
– volume: 10
  start-page: 857
  year: 2000
  end-page: 860
  ident: CR43
  article-title: Differences between the clearance of apoptotic cells by professional and non-professional phagocytes
  publication-title: Curr Biol
  doi: 10.1016/S0960-9822(00)00598-4
– volume: 3
  start-page: 339
  year: 2001
  end-page: 345
  ident: CR31
  article-title: Membrane blebbing during apoptosis results from caspase-mediated activation of ROCK I
  publication-title: Nat Cell Biol
  doi: 10.1038/35070009
– volume: 111
  start-page: 15072
  year: 2014
  end-page: 15077
  ident: CR14
  article-title: Activation of the pseudokinase MLKL unleashes the four-helix bundle domain to induce membrane localization and necroptotic cell death
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1408987111
– volume: 73
  start-page: 87
  year: 2004
  end-page: 106
  ident: CR26
  article-title: Cytochrome C-mediated apoptosis
  publication-title: Annu Rev Biochem
  doi: 10.1146/annurev.biochem.73.011303.073706
– volume: 14
  start-page: 166
  year: 2014
  end-page: 180
  ident: CR37
  article-title: Apoptotic cell clearance: basic biology and therapeutic potential
  publication-title: Nat Rev Immunol
  doi: 10.1038/nri3607
– volume: 9
  start-page: 378
  year: 2008
  end-page: 390
  ident: CR28
  article-title: Expansion and evolution of cell death programmes
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/nrm2393
– volume: 54
  start-page: 133
  year: 2014
  end-page: 146
  ident: CR10
  article-title: Mixed lineage kinase domain-like protein MLKL causes necrotic membrane disruption upon phosphorylation by RIP3
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2014.03.003
– volume: 61
  start-page: 215
  year: 2012
  end-page: 221
  ident: CR95
  article-title: Hypericin-based photodynamic therapy induces surface exposure of damage-associated molecular patterns like HSP70 and calreticulin
  publication-title: Cancer Immunol Immunother
  doi: 10.1007/s00262-011-1184-2
– volume: 7
  start-page: 971
  year: 2014
  end-page: 981
  ident: CR12
  article-title: MLKL compromises plasma membrane integrity by binding to phosphatidylinositol phosphates
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2014.04.026
– volume: 149
  start-page: 911
  year: 1996
  ident: BFcr2017133_CR83
  publication-title: Am J Pathol
– volume: 26
  start-page: 517
  year: 2016
  ident: BFcr2017133_CR15
  publication-title: Cell Res
  doi: 10.1038/cr.2016.26
– volume: 61
  start-page: 589
  year: 2016
  ident: BFcr2017133_CR71
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2016.01.011
– volume: 13
  start-page: 18
  year: 1988
  ident: BFcr2017133_CR1
  publication-title: Methods Achiev Exp Pathol
– volume: 25
  start-page: 577
  year: 2015
  ident: BFcr2017133_CR90
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2014.12.059
– volume: 350
  start-page: 328
  year: 2015
  ident: BFcr2017133_CR98
  publication-title: Science
  doi: 10.1126/science.aad0395
– volume: 278
  start-page: 294
  year: 1997
  ident: BFcr2017133_CR46
  publication-title: Science
  doi: 10.1126/science.278.5336.294
– volume: 35
  start-page: 495
  year: 2007
  ident: BFcr2017133_CR24
  publication-title: Toxicol Pathol
  doi: 10.1080/01926230701320337
– volume: 10
  start-page: 857
  year: 2000
  ident: BFcr2017133_CR43
  publication-title: Curr Biol
  doi: 10.1016/S0960-9822(00)00598-4
– volume: 172
  start-page: 880
  year: 2004
  ident: BFcr2017133_CR85
  publication-title: J Immunol
  doi: 10.4049/jimmunol.172.2.880
– volume: 137
  start-page: 1100
  year: 2009
  ident: BFcr2017133_CR67
  publication-title: Cell
  doi: 10.1016/j.cell.2009.05.021
– volume: 47
  start-page: 51
  year: 2017
  ident: BFcr2017133_CR74
  publication-title: Immunity
  doi: 10.1016/j.immuni.2017.06.001
– volume: 526
  start-page: 666
  year: 2015
  ident: BFcr2017133_CR80
  publication-title: Nature
  doi: 10.1038/nature15541
– volume: 181
  start-page: 879
  year: 2008
  ident: BFcr2017133_CR40
  publication-title: J Cell Biol
  doi: 10.1083/jcb.200802081
– volume: 103
  start-page: 6542
  year: 2006
  ident: BFcr2017133_CR35
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0600824103
– volume: 23
  start-page: 76
  year: 2016
  ident: BFcr2017133_CR70
  publication-title: Cell Death Differ
  doi: 10.1038/cdd.2015.70
– volume: 535
  start-page: 153
  year: 2016
  ident: BFcr2017133_CR19
  publication-title: Nature
  doi: 10.1038/nature18629
– volume: 507
  start-page: 329
  year: 2014
  ident: BFcr2017133_CR48
  publication-title: Nature
  doi: 10.1038/nature13147
– volume: 35
  start-page: 1766
  year: 2016
  ident: BFcr2017133_CR20
  publication-title: EMBO J
  doi: 10.15252/embj.201694696
– volume: 110
  start-page: 12024
  year: 2013
  ident: BFcr2017133_CR101
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1305538110
– volume: 94
  start-page: 13642
  year: 1997
  ident: BFcr2017133_CR33
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.94.25.13642
– volume: 76
  start-page: 129
  year: 2014
  ident: BFcr2017133_CR66
  publication-title: Annu Rev Physiol
  doi: 10.1146/annurev-physiol-021113-170259
– volume: 273
  start-page: 15540
  year: 1998
  ident: BFcr2017133_CR30
  publication-title: J Biol Chem
  doi: 10.1074/jbc.273.25.15540
– volume: 78
  start-page: 586
  year: 2008
  ident: BFcr2017133_CR44
  publication-title: Biol Reprod
  doi: 10.1095/biolreprod.107.065045
– volume: 265
  start-page: 130
  year: 2015
  ident: BFcr2017133_CR75
  publication-title: Immunol Rev
  doi: 10.1111/imr.12287
– volume: 493
  start-page: 547
  year: 2013
  ident: BFcr2017133_CR45
  publication-title: Nature
  doi: 10.1038/nature11714
– volume: 213
  start-page: 2113
  year: 2016
  ident: BFcr2017133_CR103
  publication-title: J Exp Med
  doi: 10.1084/jem.20151613
– volume: 26
  start-page: 1007
  year: 2016
  ident: BFcr2017133_CR22
  publication-title: Cell Res
  doi: 10.1038/cr.2016.100
– volume: 14
  start-page: 639
  year: 2017
  ident: BFcr2017133_CR6
  publication-title: Cell Mol Immunol
  doi: 10.1038/cmi.2017.31
– volume: 21
  start-page: 1709
  year: 2014
  ident: BFcr2017133_CR60
  publication-title: Cell Death Differ
  doi: 10.1038/cdd.2014.77
– volume: 17
  start-page: 151
  year: 2017
  ident: BFcr2017133_CR76
  publication-title: Nat Rev Immunol
  doi: 10.1038/nri.2016.147
– volume: 19
  start-page: 175
  year: 2017
  ident: BFcr2017133_CR72
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2017.03.024
– volume: 26
  start-page: 239
  year: 1972
  ident: BFcr2017133_CR23
  publication-title: Br J Cancer
  doi: 10.1038/bjc.1972.33
– volume: 17
  start-page: 860
  year: 2011
  ident: BFcr2017133_CR89
  publication-title: Nat Med
  doi: 10.1038/nm.2385
– volume: 9
  start-page: 185
  year: 2014
  ident: BFcr2017133_CR94
  publication-title: Radiat Oncol
  doi: 10.1186/1748-717X-9-185
– volume: 325
  start-page: 332
  year: 2009
  ident: BFcr2017133_CR59
  publication-title: Science
  doi: 10.1126/science.1172308
– volume: 127
  start-page: 5245
  year: 2000
  ident: BFcr2017133_CR42
  publication-title: Development
  doi: 10.1242/dev.127.24.5245
– volume: 95
  start-page: 13618
  year: 1998
  ident: BFcr2017133_CR29
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.95.23.13618
– volume: 14
  start-page: 166
  year: 2014
  ident: BFcr2017133_CR37
  publication-title: Nat Rev Immunol
  doi: 10.1038/nri3607
– volume: 17
  start-page: 97
  year: 2017
  ident: BFcr2017133_CR51
  publication-title: Nat Rev Immunol
  doi: 10.1038/nri.2016.107
– volume: 16
  start-page: 55
  year: 2014
  ident: BFcr2017133_CR9
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb2883
– volume: 27
  start-page: 6194
  year: 2008
  ident: BFcr2017133_CR27
  publication-title: Oncogene
  doi: 10.1038/onc.2008.297
– volume: 33
  start-page: 79
  year: 2015
  ident: BFcr2017133_CR55
  publication-title: Annu Rev Immunol
  doi: 10.1146/annurev-immunol-032414-112248
– volume: 276
  start-page: 1571
  year: 1997
  ident: BFcr2017133_CR34
  publication-title: Science
  doi: 10.1126/science.276.5318.1571
– volume: 288
  start-page: 16247
  year: 2013
  ident: BFcr2017133_CR62
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M112.435545
– volume: 8
  start-page: 14128
  year: 2017
  ident: BFcr2017133_CR3
  publication-title: Nat Commun
  doi: 10.1038/ncomms14128
– volume: 21
  start-page: 1511
  year: 2014
  ident: BFcr2017133_CR61
  publication-title: Cell Death Differ
  doi: 10.1038/cdd.2014.76
– volume: 17
  start-page: 922
  year: 2010
  ident: BFcr2017133_CR50
  publication-title: Cell Death Differ
  doi: 10.1038/cdd.2009.184
– volume: 282
  start-page: 18357
  year: 2007
  ident: BFcr2017133_CR38
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M700202200
– volume: 526
  start-page: 660
  year: 2015
  ident: BFcr2017133_CR79
  publication-title: Nature
  doi: 10.1038/nature15514
– volume: 11
  start-page: 1709
  year: 2006
  ident: BFcr2017133_CR87
  publication-title: Apoptosis
  doi: 10.1007/s10495-006-9527-8
– volume: 138
  start-page: 838
  year: 2009
  ident: BFcr2017133_CR8
  publication-title: Cell
  doi: 10.1016/j.cell.2009.08.021
– volume: 9
  start-page: 378
  year: 2008
  ident: BFcr2017133_CR28
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/nrm2393
– volume: 3
  start-page: 346
  year: 2001
  ident: BFcr2017133_CR32
  publication-title: Nat Cell Biol
  doi: 10.1038/35070019
– volume: 352
  start-page: aaf2154
  year: 2016
  ident: BFcr2017133_CR5
  publication-title: Science
  doi: 10.1126/science.aaf2154
– volume: 547
  start-page: 99
  year: 2017
  ident: BFcr2017133_CR53
  publication-title: Nature
  doi: 10.1038/nature22393
– volume: 101
  start-page: 890
  year: 1998
  ident: BFcr2017133_CR86
  publication-title: J Clin Invest
  doi: 10.1172/JCI1112
– volume: 4
  start-page: 313
  year: 2008
  ident: BFcr2017133_CR65
  publication-title: Nat Chem Biol
  doi: 10.1038/nchembio.83
– volume: 109
  start-page: 5322
  year: 2012
  ident: BFcr2017133_CR64
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1200012109
– volume: 73
  start-page: 87
  year: 2004
  ident: BFcr2017133_CR26
  publication-title: Annu Rev Biochem
  doi: 10.1146/annurev.biochem.73.011303.073706
– volume: 6
  start-page: 7439
  year: 2015
  ident: BFcr2017133_CR49
  publication-title: Nat Commun
  doi: 10.1038/ncomms8439
– volume: 32
  start-page: 157
  year: 2011
  ident: BFcr2017133_CR96
  publication-title: Trends Immunol
  doi: 10.1016/j.it.2011.01.005
– volume: 7
  start-page: 971
  year: 2014
  ident: BFcr2017133_CR12
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2014.04.026
– volume: 118
  start-page: 4059
  year: 2005
  ident: BFcr2017133_CR41
  publication-title: J Cell Sci
  doi: 10.1242/jcs.02529
– volume: 39
  start-page: 443
  year: 2013
  ident: BFcr2017133_CR69
  publication-title: Immunity
  doi: 10.1016/j.immuni.2013.06.018
– volume: 24
  start-page: 105
  year: 2014
  ident: BFcr2017133_CR11
  publication-title: Cell Res
  doi: 10.1038/cr.2013.171
– volume: 17
  start-page: 333
  year: 2017
  ident: BFcr2017133_CR2
  publication-title: Nat Rev Immunol
  doi: 10.1038/nri.2016.153
– volume: 14
  start-page: 1848
  year: 2007
  ident: BFcr2017133_CR93
  publication-title: Cell Death Differ
  doi: 10.1038/sj.cdd.4402201
– volume: 165
  start-page: 139
  year: 2016
  ident: BFcr2017133_CR52
  publication-title: Cell
  doi: 10.1016/j.cell.2016.02.034
– volume: 267
  start-page: 5317
  year: 1992
  ident: BFcr2017133_CR57
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(18)42768-8
– volume: 9
  start-page: 113
  year: 2001
  ident: BFcr2017133_CR78
  publication-title: Trends Microbiol
  doi: 10.1016/S0966-842X(00)01936-3
– volume: 52
  start-page: 269
  year: 1992
  ident: BFcr2017133_CR82
  publication-title: J Leukoc Biol
  doi: 10.1002/jlb.52.3.269
– volume: 3
  start-page: 339
  year: 2001
  ident: BFcr2017133_CR31
  publication-title: Nat Cell Biol
  doi: 10.1038/35070009
– volume: 67
  start-page: 1589
  year: 2010
  ident: BFcr2017133_CR25
  publication-title: Cell Mol Life Sci
  doi: 10.1007/s00018-010-0285-y
– volume: 169
  start-page: 286
  year: 2017
  ident: BFcr2017133_CR73
  publication-title: Cell
  doi: 10.1016/j.cell.2017.03.020
– volume: 111
  start-page: 2911
  year: 1998
  ident: BFcr2017133_CR39
  publication-title: J Cell Sci
  doi: 10.1242/jcs.111.19.2911
– volume: 3
  start-page: 200
  year: 2013
  ident: BFcr2017133_CR102
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2012.12.012
– volume: 137
  start-page: 1112
  year: 2009
  ident: BFcr2017133_CR68
  publication-title: Cell
  doi: 10.1016/j.cell.2009.05.037
– volume: 157
  start-page: 1013
  year: 2014
  ident: BFcr2017133_CR77
  publication-title: Cell
  doi: 10.1016/j.cell.2014.04.007
– volume: 37
  start-page: pii
  year: 2017
  ident: BFcr2017133_CR17
  publication-title: Mol Cell Biol
– volume: 9
  start-page: 591
  year: 2004
  ident: BFcr2017133_CR36
  publication-title: Genes Cells
  doi: 10.1111/j.1356-9597.2004.00745.x
– volume: 4
  start-page: e631
  year: 2013
  ident: BFcr2017133_CR97
  publication-title: Cell Death Dis
  doi: 10.1038/cddis.2013.156
– volume: 8
  start-page: 279
  year: 2008
  ident: BFcr2017133_CR4
  publication-title: Nat Rev Immunol
  doi: 10.1038/nri2215
– volume: 25
  start-page: 1285
  year: 2015
  ident: BFcr2017133_CR81
  publication-title: Cell Res
  doi: 10.1038/cr.2015.139
– volume: 26
  start-page: 643
  year: 2016
  ident: BFcr2017133_CR16
  publication-title: Cell Res
  doi: 10.1038/cr.2016.64
– volume: 202
  start-page: 1691
  year: 2005
  ident: BFcr2017133_CR92
  publication-title: J Exp Med
  doi: 10.1084/jem.20050915
– volume: 111
  start-page: 15072
  year: 2014
  ident: BFcr2017133_CR14
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1408987111
– volume: 467
  start-page: 863
  year: 2010
  ident: BFcr2017133_CR47
  publication-title: Nature
  doi: 10.1038/nature09413
– volume: 141
  start-page: 2629
  year: 1988
  ident: BFcr2017133_CR56
  publication-title: J Immunol
  doi: 10.4049/jimmunol.141.8.2629
– volume: 54
  start-page: 133
  year: 2014
  ident: BFcr2017133_CR10
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2014.03.003
– volume: 535
  start-page: 111
  year: 2016
  ident: BFcr2017133_CR18
  publication-title: Nature
  doi: 10.1038/nature18590
– volume: 26
  start-page: 886
  year: 2016
  ident: BFcr2017133_CR100
  publication-title: Cell Res
  doi: 10.1038/cr.2016.87
– volume: 15
  start-page: 1089
  year: 2004
  ident: BFcr2017133_CR84
  publication-title: Mol Biol Cell
  doi: 10.1091/mbc.e03-09-0668
– volume: 223
  start-page: 177
  year: 2011
  ident: BFcr2017133_CR91
  publication-title: J Pathol
  doi: 10.1002/path.2792
– volume: 148
  start-page: 213
  year: 2012
  ident: BFcr2017133_CR63
  publication-title: Cell
  doi: 10.1016/j.cell.2011.11.031
– volume: 22
  start-page: 1489
  year: 2014
  ident: BFcr2017133_CR13
  publication-title: Structure
  doi: 10.1016/j.str.2014.07.014
– volume: 390
  start-page: 350
  year: 1997
  ident: BFcr2017133_CR88
  publication-title: Nature
  doi: 10.1038/37022
– volume: 113
  start-page: 7858
  year: 2016
  ident: BFcr2017133_CR21
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1607769113
– volume: 12
  start-page: 1143
  year: 2011
  ident: BFcr2017133_CR54
  publication-title: Nat Immunol
  doi: 10.1038/ni.2159
– volume: 61
  start-page: 215
  year: 2012
  ident: BFcr2017133_CR95
  publication-title: Cancer Immunol Immunother
  doi: 10.1007/s00262-011-1184-2
– volume: 930
  start-page: 133
  year: 2016
  ident: BFcr2017133_CR7
  publication-title: Adv Exp Med Biol
  doi: 10.1007/978-3-319-39406-0_6
– volume: 67
  start-page: 1567
  year: 2010
  ident: BFcr2017133_CR58
  publication-title: Cell Mol Life Sci
  doi: 10.1007/s00018-010-0283-0
– volume: 15
  start-page: 274
  year: 2016
  ident: BFcr2017133_CR99
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2016.03.037
SSID ssj0025451
Score 2.6805954
SecondaryResourceType review_article
Snippet Ruptured and intact plasma membranes are classically considered as hallmarks of necrotic and apoptotic cell death, respectively. As such, apoptosis is usually...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
chongqing
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 9
SubjectTerms 631/250/1933
631/57/2271
631/80/82/23
Apoptosis
Biomedical and Life Sciences
Cell Biology
Cell death
Channel pores
Channels
Gangrene
Immune response
Immune system
Immunogenicity
Inflammation
Life Sciences
Lysis
Membranes
Mortality
Necroptosis
Necrosis
Plasma
Plasma membranes
Pore formation
Pores
Pyroptosis
Review
Rupture
Rupturing
SummonAdditionalLinks – databaseName: Proquest Health and Medical Complete
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEB58IHoR39YXFfQiVNO0TZqTiCjiQTwo7C20aaKC213d9eC_d6YvXVc8d2iGmSTzzSMzAEdcoFkOYxtwK_IgVhEL0Ci4QCrmXOxiWRRVt887cfMY3_aSXhNwGzVlle2dWF3UxcBQjPwMnWO0_UpwdT58C2hqFGVXmxEaszBPrctoV8vet8NFbFTZTnKZBVXyrNXPzNMzQ71AQ3ka0sTcRbxpyqc3tBWT1mkKck5XTv5Kn1ZW6XoFlhs46V_U-l-FGVuuwUI9YPJzHZJ7BMf9zO_bPnrFpfXrd74jv36d6DfVWbiUTxF8vyBAONqAx-urh8uboBmUEJhYRuMgk1lhQ3RmOc-N43kkrFNJJlLmiiS2jDkELVzmyhmeZSKTTpikCHMppOEOD_UmzJWD0m6Dj95hlBuWWkJSTqSpVS4hlMOKPM5U6sFuJyw9rBtiaFF1GUQo58FJKz5tmh7jNOriVVe57ijV5l2T3DXK3YOjjrj9059ke60edHO-Rvp7N3hw2H3Gk0HCQnEOPogmoVkqCIE92KrV1q3DFZOITZkHckKhHQF13Z78Ur48V923Ed8iJENBHLeq_8HWNPs7_7O_C0tImdZBnT2YG79_2H2EOeP8oNrLXy60-dU
  priority: 102
  providerName: ProQuest
Title Plasma membrane changes during programmed cell deaths
URI http://lib.cqvip.com/qk/85240X/201801/674404352.html
https://link.springer.com/article/10.1038/cr.2017.133
https://www.ncbi.nlm.nih.gov/pubmed/29076500
https://www.proquest.com/docview/1983249629
https://www.proquest.com/docview/1957467099
https://pubmed.ncbi.nlm.nih.gov/PMC5752838
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB3xIaReEFDaBugqleilUqjjOHZ8hBUIcUCoKtLerMSxSyU2W9jlwL9nJk4ilu2BWyRPYmsm9ryxx28AjrlEt5wKl3Anq0TojCXoFHyiNPNeeKHqumX7vJaXt-Jqkk86nu15l1YZKC3bZbrPDvtpibszVScYUq3DJnG2U6Q1luMhuqI-26NNio8lpe3shTvlxeuXiULhbtb8eUDHsOyKVvDlaprkm7PS1gVd7MB2hx3j0zDaXVhzzR5shWqSzx8hv0EkPC3jqZtiCNy4OFzqncfhKmLcpWJhVzFt18c1ob_5PtxenP8eXyZdVYTECpUtklKVtUsxcuW8sp5XmXRe56UsmK9z4RjziFC4qrS3vCxlqby0eZ1WSirLPc7gT7DRzBr3BWIMBbPKssIRbPKyKJz2OUEaVlei1EUEh4OyzL_AfmFkSymIuC2CH736jO0Ixamuxb1pD7azwthHQ3o3qPcIjgfh_kv_FTvq7WC6yTQ3qcZlR2jJdQTfhmacBqQsVOfsiWRyKpyCeDeCz8FsQz9cM4VAlEWglgw6CBDF9nJL8_eupdpGMIv4CxXxvTf9q2GtDv_gnXKH8AEfi7CVcwQbi8cn9xXBzaIawbqaqBFsnp1f3_watb_4CwWh904
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VItReEJRHQwsYqb0ghTpOYscHhBBQbWmpOLTS3kzi2IDEZtvuVqh_it_ITJykLIu49WzHdubh-cZjzwDsCIlmOclcLJys4kynPEaj4GOlufeZz1Rdt9k-j-XoNPs4zscr8Kt_C0PXKvs9sd2o66mlM_I9dI7R9msp9Juz85iqRlF0tS-hEcTi0F39RJdt9vrgPfJ3V4j9DyfvRnFXVSC2mUrncanK2iXo-QlRWS-qVDqv81IW3Nd55jj3aOGFqrS3oixlqby0eZ1USiorPGoAjnsLbqPh5eTsqfG1g0e_3UZXyUWXdHNoIzxrL_Ys5R5N1KuEKvSu4c7WfD1H27RoDZcg7vJNzb_Cta0V3L8Hdzv4yt4GebsPK67ZgDuhoOXVA8g_IxiflGziJuiFN46Fd8UzFl5Dsu42GE7FKGLAagKgs4dweiMkfASrzbRxm8DQG00rywtHyM3LonDa54SqeF1lpS4i2BqIZc5CAg4j26yGCB0jeNmTz9gupzmV1vhh2th6Whh7YYjuBukewc7QuR_pn922ez6YTp9n5lr6IngxNKMmErGQnNNL6pNT7RaE3BE8Dmwb5hGaK8TCPAK1wNChA2X5Xmxpvn9rs30jnkYIiITY7Vn_x7KWl__k_8t_Dmujk09H5ujg-HAL1vGrIhwobcPq_OLSPUWINa-etXLN4MtNK9JvbmE3tw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrXhcEJRXaIEgtReksI6T2PEBIaBdtRStVohKvZnEsWklNtt2t0L9a_w6ZuIksCzi1nMcx_rG4_kmM54B2OYCzXKc2ohbUUapSliERsFFUjHnUpfKqmqqfY7F_lH68Tg7XoOf3V0YSqvszsTmoK5mhv6RD9E5RtuvBFdD16ZFTHZHb8_OI-ogRZHWrp2G3yKH9uoHum_zNwe7KOsdzkd7Xz7sR22HgcikMllEhSwqG6MXyHlpHC8TYZ3KCpEzV2WpZcyhteeyVM7wohCFdMJkVVxKIQ13qA047w1Yl-QVDWD9_d548rl39wiEJtZKDrugPKINf8k9HxqqRBrL1zH1672N51z97Rwt1bJtXCG8q3mbfwVvG5s4ugd3WzIbvvO77z6s2XoDbvr2llcPIJsgNZ8W4dRO0SevbehvGc9DfzcybHPD8FMhxQ_Ciujo_CEcXQuIj2BQz2r7BEL0TZPSsNwSj3Miz61yGXEsVpVpofIANnuw9Jkvx6FFU-MQiWQArzr4tGkrnFOjje-6ibQnuTYXmnDXiHsA2_3gbqZ_Dtvq5KBb7Z7r33sxgJf9Y9RLAgvhnF3SmIw6uSABD-CxF1v_Ha6YRGbMApBLAu0HUM3v5Sf16UlT-xvZNRJCBGKnE_0fy1pd_tP_L_8F3EIl0p8OxoebcAdfyv3fpS0YLC4u7TPkW4vyebuxQ_h63br0C0IlPVI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Plasma+membrane+changes+during+programmed+cell+deaths&rft.jtitle=Cell+research&rft.au=Zhang%2C+Yingying&rft.au=Chen%2C+Xin&rft.au=Gueydan%2C+Cyril&rft.au=Han%2C+Jiahuai&rft.date=2018-01-01&rft.pub=Nature+Publishing+Group&rft.issn=1001-0602&rft.eissn=1748-7838&rft.volume=28&rft.issue=1&rft.spage=9&rft.epage=21&rft_id=info:doi/10.1038%2Fcr.2017.133&rft_id=info%3Apmid%2F29076500&rft.externalDocID=PMC5752838
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85240X%2F85240X.jpg