Ral and Phospholipase D2-Dependent Pathway for Constitutive Metabotropic Glutamate Receptor Endocytosis
G-protein-coupled receptors play a central role in the regulation of neuronal cell communication. Class 1 metabotropic glutamate receptors (mGluRs) mGluR1a and mGluR5a, which are coupled with the hydrolysis of phosphoinositides, are essential for modulating excitatory neurotransmission at glutamater...
Saved in:
Published in | The Journal of neuroscience Vol. 24; no. 40; pp. 8752 - 8761 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Soc Neuroscience
06.10.2004
Society for Neuroscience |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | G-protein-coupled receptors play a central role in the regulation of neuronal cell communication. Class 1 metabotropic glutamate receptors (mGluRs) mGluR1a and mGluR5a, which are coupled with the hydrolysis of phosphoinositides, are essential for modulating excitatory neurotransmission at glutamatergic synapses. These receptors are constitutively internalized in heterologous cell cultures, neuronal cultures, and intact neuronal tissues. We show here that the small GTP-binding protein Ral, its guanine nucleotide exchange factor RalGDS (Ral GDP dissociation stimulator), and phospholipase D2 (PLD2) are constitutively associated with class 1 mGluRs and regulate constitutive mGluR endocytosis. Moreover, both Ral and PLD2 are colocalized with mGluRs in endocytic vesicles in both human embryonic kidney 293 (HEK 293) cells and neurons. Ral and PLD2 activity is required for the internalization of class 1 mGluRs but is not required for the internalization of the beta2-adrenergic receptor. Constitutive class 1 mGluR internalization is not dependent on the downstream Ral effector proteins Ral-binding protein 1 and PLD1 or either ADP-ribosylation factors ARF1 or ARF6. The treatment of HEK 293 cells and neurons with small interfering RNA both downregulates PLD2 expression and blocks mGluR1a and mGluR5a endocytosis. The constitutive internalization of mGluR1a and mGluR5a is also attenuated by the treatment of cells with 1-butanol to prevent PLD2-mediated phosphatidic acid formation. We propose that the formation of a mGluR-scaffolded RalGDS/Ral/PLD2 protein complex provides a novel alternative mechanism to beta-arrestins for the constitutive endocytosis of class 1 mGluRs. |
---|---|
AbstractList | G-protein-coupled receptors play a central role in the regulation of neuronal cell communication. Class 1 metabotropic glutamate receptors (mGluRs) mGluR1a and mGluR5a, which are coupled with the hydrolysis of phosphoinositides, are essential for modulating excitatory neurotransmission at glutamatergic synapses. These receptors are constitutively internalized in heterologous cell cultures, neuronal cultures, and intact neuronal tissues. We show here that the small GTP-binding protein Ral, its guanine nucleotide exchange factor RalGDS (Ral GDP dissociation stimulator), and phospholipase D2 (PLD2) are constitutively associated with class 1 mGluRs and regulate constitutive mGluR endocytosis. Moreover, both Ral and PLD2 are colocalized with mGluRs in endocytic vesicles in both human embryonic kidney 293 (HEK 293) cells and neurons. Ral and PLD2 activity is required for the internalization of class 1 mGluRs but is not required for the internalization of the β
2
-adrenergic receptor. Constitutive class 1 mGluR internalization is not dependent on the downstream Ral effector proteins Ral-binding protein 1 and PLD1 or either ADP-ribosylation factors ARF1 or ARF6. The treatment of HEK 293 cells and neurons with small interfering RNA both downregulates PLD2 expression and blocks mGluR1a and mGluR5a endocytosis. The constitutive internalization of mGluR1a and mGluR5a is also attenuated by the treatment of cells with 1-butanol to prevent PLD2-mediated phosphatidic acid formation. We propose that the formation of a mGluR-scaffolded RalGDS/Ral/PLD2 protein complex provides a novel alternative mechanism to β-arrestins for the constitutive endocytosis of class 1 mGluRs. G-protein-coupled receptors play a central role in the regulation of neuronal cell communication. Class 1 metabotropic glutamate receptors (mGluRs) mGluR1a and mGluR5a, which are coupled with the hydrolysis of phosphoinositides, are essential for modulating excitatory neurotransmission at glutamatergic synapses. These receptors are constitutively internalized in heterologous cell cultures, neuronal cultures, and intact neuronal tissues. We show here that the small GTP-binding protein Ral, its guanine nucleotide exchange factor RalGDS (Ral GDP dissociation stimulator), and phospholipase D2 (PLD2) are constitutively associated with class 1 mGluRs and regulate constitutive mGluR endocytosis. Moreover, both Ral and PLD2 are colocalized with mGluRs in endocytic vesicles in both human embryonic kidney 293 (HEK 293) cells and neurons. Ral and PLD2 activity is required for the internalization of class 1 mGluRs but is not required for the internalization of the beta2-adrenergic receptor. Constitutive class 1 mGluR internalization is not dependent on the downstream Ral effector proteins Ral-binding protein 1 and PLD1 or either ADP-ribosylation factors ARF1 or ARF6. The treatment of HEK 293 cells and neurons with small interfering RNA both downregulates PLD2 expression and blocks mGluR1a and mGluR5a endocytosis. The constitutive internalization of mGluR1a and mGluR5a is also attenuated by the treatment of cells with 1-butanol to prevent PLD2-mediated phosphatidic acid formation. We propose that the formation of a mGluR-scaffolded RalGDS/Ral/PLD2 protein complex provides a novel alternative mechanism to beta-arrestins for the constitutive endocytosis of class 1 mGluRs. G-protein-coupled receptors play a central role in the regulation of neuronal cell communication. Class 1 metabotropic glutamate receptors (mGluRs) mGluR1a and mGluR5a, which are coupled with the hydrolysis of phosphoinositides, are essential for modulating excitatory neurotransmission at glutamatergic synapses. These receptors are constitutively internalized in heterologous cell cultures, neuronal cultures, and intact neuronal tissues. We show here that the small GTP-binding protein Ral, its guanine nucleotide exchange factor RalGDS (Ral GDP dissociation stimulator), and phospholipase D2 (PLD2) are constitutively associated with class 1 mGluRs and regulate constitutive mGluR endocytosis. Moreover, both Ral and PLD2 are colocalized with mGluRs in endocytic vesicles in both human embryonic kidney 293 (HEK 293) cells and neurons. Ral and PLD2 activity is required for the internalization of class 1 mGluRs but is not required for the internalization of the beta sub(2)-adrenergic receptor. Constitutive class 1 mGluR internalization is not dependent on the downstream Ral effector proteins Ral-binding protein 1 and PLD1 or either ADP-ribosylation factors ARF1 or ARF6. The treatment of HEK 293 cells and neurons with small interfering RNA both downregulates PLD2 expression and blocks mGluR1a and mGluR5a endocytosis. The constitutive internalization of mGluR1a and mGluR5a is also attenuated by the treatment of cells with 1-butanol to prevent PLD2-mediated phosphatidic acid formation. We propose that the formation of a mGluR-scaffolded RalGDS/Ral/PLD2 protein complex provides a novel alternative mechanism to beta-arrestins for the constitutive endocytosis of class 1 mGluRs. |
Author | Godin, Christina Bhattacharya, Moshmi Anborgh, Pieter H Ferguson, Stephen S. G Dale, Lianne B Poulter, Michael O Babwah, Andy V |
Author_xml | – sequence: 1 fullname: Bhattacharya, Moshmi – sequence: 2 fullname: Babwah, Andy V – sequence: 3 fullname: Godin, Christina – sequence: 4 fullname: Anborgh, Pieter H – sequence: 5 fullname: Dale, Lianne B – sequence: 6 fullname: Poulter, Michael O – sequence: 7 fullname: Ferguson, Stephen S. G |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/15470141$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU9v0zAYhy00xLrBV5hyglOK7fhPfEFCXdmGBpsKO1uO4zRGSRxsZ1G__Vy12saJky29z_vzz3rOwMngBgPABYJLRHHx-fvP9cPm7tfqZlkgSnNIlhhC8gYs0lTkmEB0AhYQc5gzwskpOAvhD4SQQ8TfgVNESboRtADbjeoyNdTZfevC2LrOjiqY7BLnl2Y0Q22GmN2r2M5qlzXOZys3hGjjFO2jyX6YqCoXvRutzq66KapeRZNtjDZjTPB6qJ3eRRdseA_eNqoL5sPxPAcP39a_V9f57d3Vzerrba4JL2KueFlgyCAWsCRClJThomSVQFwngPKmLkWtiNa6EJwrwTA1qNJNQyuMsELFOfhyyB2nqje1Tv296uToba_8Tjpl5b-TwbZy6x4l41gIClPAx2OAd38nE6LsbdCm69Rg3BQkY4IiQvB_QcS5QITvK7EDqL0LwZvmuQ2Cci9TPsuUe5kSErmXmRYvXv_lZe1oLwGfDkBrt-1svZGhV12XcCTnecZEEihLnp54AuUTrMw |
CitedBy_id | crossref_primary_10_1016_j_pharmthera_2005_08_006 crossref_primary_10_1074_jbc_M504508200 crossref_primary_10_1016_j_neuroscience_2008_07_042 crossref_primary_10_1124_mol_109_061069 crossref_primary_10_1016_j_neuroscience_2018_02_047 crossref_primary_10_1016_j_cellsig_2009_07_014 crossref_primary_10_1111_j_1471_4159_2007_05063_x crossref_primary_10_1042_BJ20101844 crossref_primary_10_1017_S0952523806232073 crossref_primary_10_1016_j_bbalip_2009_05_011 crossref_primary_10_1124_mol_114_094763 crossref_primary_10_1016_j_biocel_2016_03_003 crossref_primary_10_1016_j_neuron_2016_04_002 crossref_primary_10_1080_09687680903188340 crossref_primary_10_1074_jbc_M116_722355 crossref_primary_10_1021_cr200296t crossref_primary_10_1074_jbc_M701940200 crossref_primary_10_3233_BPL_210120 crossref_primary_10_1523_JNEUROSCI_5824_08_2009 crossref_primary_10_1083_jcb_201811002 crossref_primary_10_1186_s13041_015_0111_4 crossref_primary_10_1016_j_mcn_2018_03_014 crossref_primary_10_1124_pr_119_019133 crossref_primary_10_1091_mbc_e10_02_0167 crossref_primary_10_1016_j_neuropharm_2006_07_020 crossref_primary_10_1074_jbc_M513637200 crossref_primary_10_1523_JNEUROSCI_0625_12_2012 crossref_primary_10_3389_fcell_2019_00083 crossref_primary_10_1158_0008_5472_CAN_20_1852 crossref_primary_10_1016_j_nlm_2015_12_009 crossref_primary_10_4062_biomolther_2016_186 crossref_primary_10_1111_j_1471_4159_2006_04351_x crossref_primary_10_1371_journal_pone_0011489 crossref_primary_10_1080_21541248_2016_1251378 crossref_primary_10_1124_pr_108_000166 crossref_primary_10_1210_me_2008_0436 crossref_primary_10_1038_mp_a001065_01 crossref_primary_10_1124_mol_109_063107 crossref_primary_10_1016_j_neuropharm_2021_108799 crossref_primary_10_1016_j_bbamcr_2007_03_023 crossref_primary_10_1517_14728222_11_5_707 crossref_primary_10_1517_17460441_3_4_375 crossref_primary_10_1016_j_cellsig_2005_05_027 crossref_primary_10_1016_j_jbior_2016_09_004 crossref_primary_10_1016_j_plipres_2019_101018 crossref_primary_10_1152_jn_00548_2005 crossref_primary_10_1016_j_cellsig_2009_03_011 crossref_primary_10_1111_j_1471_4159_2009_06217_x crossref_primary_10_1093_jmcb_mjv011 crossref_primary_10_1091_mbc_e05_05_0389 crossref_primary_10_1038_mt_2010_137 crossref_primary_10_1210_me_2009_0013 crossref_primary_10_1083_jcb_201504136 crossref_primary_10_1111_j_1365_201X_2007_01695_x crossref_primary_10_1016_j_neures_2007_10_003 crossref_primary_10_1111_j_1471_4159_2006_03736_x crossref_primary_10_1111_j_1471_4159_2009_05913_x crossref_primary_10_1111_tra_12824 crossref_primary_10_4049_jimmunol_0903138 crossref_primary_10_1159_000381457 crossref_primary_10_1083_jcb_200507061 crossref_primary_10_4049_jimmunol_1801019 crossref_primary_10_1016_j_pharmthera_2005_01_008 crossref_primary_10_1016_j_bbalip_2009_03_010 crossref_primary_10_1016_j_jbior_2014_09_010 crossref_primary_10_1097_01_wnr_0000186594_87328_c8 |
Cites_doi | 10.1016/S0028-3908(02)00361-1 10.1038/sj.bjp.0703651 10.1128/MCB.21.2.595-602.2001 10.1242/jcs.113.16.2837 10.1111/j.1476-5381.1996.tb15503.x 10.1096/fj.00-0072com 10.1016/S0955-0674(99)80067-2 10.1523/JNEUROSCI.19-15-06488.1999 10.1016/S0962-8924(03)00152-1 10.1046/j.1460-9568.2003.02499.x 10.1074/jbc.M006075200 10.1016/S0014-5793(98)00661-9 10.1073/pnas.95.7.3632 10.1091/mbc.E03-09-0673 10.1093/emboj/18.13.3629 10.1074/jbc.M205663200 10.1038/383447a0 10.1016/0896-6273(94)90043-4 10.1074/jbc.M313333200 10.1074/jbc.M112472200 10.1016/S0166-2236(02)02272-5 10.1126/science.271.5255.1533 10.1038/ncb821 10.1074/jbc.274.47.33671 10.1016/S0896-6273(00)81067-3 10.1124/mol.60.6.1243 10.1074/jbc.271.51.32874 10.1016/S0197-0186(02)00073-6 10.1074/jbc.M109160200 10.1046/j.1471-4159.2003.02189.x 10.1073/pnas.96.7.3712 10.1074/jbc.273.38.24592 10.1096/fasebj.9.2.7781920 10.1074/jbc.M108399200 10.1074/jbc.273.50.33722 10.1210/en.139.7.3185 10.1074/jbc.274.25.17794 10.1016/0092-8674(95)90525-1 10.1074/jbc.272.23.14817 10.1074/jbc.M206709200 10.1006/abio.1997.2299 10.1126/science.271.5247.363 10.1111/j.1471-4159.2004.02387.x |
ContentType | Journal Article |
Copyright | Copyright © 2004 Society for Neuroscience 0270-6474/04/248752-10.00/0 2004 |
Copyright_xml | – notice: Copyright © 2004 Society for Neuroscience 0270-6474/04/248752-10.00/0 2004 |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7TK 7X8 5PM |
DOI | 10.1523/JNEUROSCI.3155-04.2004 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Neurosciences Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Neurosciences Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic Neurosciences Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1529-2401 |
EndPage | 8761 |
ExternalDocumentID | 10_1523_JNEUROSCI_3155_04_2004 15470141 www24_40_8752 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - 08R 2WC 34G 39C 3O- 53G 55 5GY 5RE 5VS ABFLS ABIVO ABPTK ABUFD ACNCT ADACO ADBBV ADCOW AENEX AETEA AFFNX AFMIJ AIZTS AJYGW ALMA_UNASSIGNED_HOLDINGS BAWUL CS3 DIK DL DU5 DZ E3Z EBS EJD F5P FA8 FH7 GJ GX1 H13 HYE H~9 KQ8 L7B MVM O0- OK1 P0W P2P QZG R.V RHF RHI RIG RPM TFN UQL VH1 WH7 WOQ X X7M XJT ZA5 ZGI ZXP --- -DZ -~X .55 .GJ 18M AAFWJ ABBAR ACGUR AFCFT AFHIN AFOSN AHWXS AI. AOIJS BTFSW CGR CUY CVF ECM EIF NPM TR2 W8F YBU YHG YKV YNH YSK AAYXX CITATION 7TK 7X8 5PM |
ID | FETCH-LOGICAL-c473t-a783206029084998562386b917cc4757fd89da4ccc3977a9625e1bcff5b212a13 |
IEDL.DBID | RPM |
ISSN | 0270-6474 |
IngestDate | Tue Sep 17 21:23:10 EDT 2024 Fri Oct 25 06:04:05 EDT 2024 Fri Oct 25 00:04:14 EDT 2024 Thu Sep 26 18:20:22 EDT 2024 Sat Sep 28 07:45:44 EDT 2024 Tue Nov 10 19:18:36 EST 2020 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 40 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c473t-a783206029084998562386b917cc4757fd89da4ccc3977a9625e1bcff5b212a13 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
OpenAccessLink | https://www.jneurosci.org/content/jneuro/24/40/8752.full.pdf |
PMID | 15470141 |
PQID | 17791471 |
PQPubID | 23462 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6729950 proquest_miscellaneous_66951442 proquest_miscellaneous_17791471 crossref_primary_10_1523_JNEUROSCI_3155_04_2004 pubmed_primary_15470141 highwire_smallpub1_www24_40_8752 |
ProviderPackageCode | RHF RHI |
PublicationCentury | 2000 |
PublicationDate | 20041006 2004-Oct-06 2004-10-06 |
PublicationDateYYYYMMDD | 2004-10-06 |
PublicationDate_xml | – month: 10 year: 2004 text: 20041006 day: 06 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The Journal of neuroscience |
PublicationTitleAlternate | J Neurosci |
PublicationYear | 2004 |
Publisher | Soc Neuroscience Society for Neuroscience |
Publisher_xml | – name: Soc Neuroscience – name: Society for Neuroscience |
References | 2023041303085809000_24.40.8752.9 2023041303085809000_24.40.8752.1 2023041303085809000_24.40.8752.3 2023041303085809000_24.40.8752.4 2023041303085809000_24.40.8752.5 (2023041303085809000_24.40.8752.38) 1997; 51 2023041303085809000_24.40.8752.6 2023041303085809000_24.40.8752.40 2023041303085809000_24.40.8752.7 2023041303085809000_24.40.8752.41 2023041303085809000_24.40.8752.42 2023041303085809000_24.40.8752.10 2023041303085809000_24.40.8752.32 2023041303085809000_24.40.8752.11 2023041303085809000_24.40.8752.33 2023041303085809000_24.40.8752.12 2023041303085809000_24.40.8752.34 2023041303085809000_24.40.8752.13 (2023041303085809000_24.40.8752.37) 2004; 89 2023041303085809000_24.40.8752.14 2023041303085809000_24.40.8752.15 (2023041303085809000_24.40.8752.20) 1999; 19 2023041303085809000_24.40.8752.17 2023041303085809000_24.40.8752.39 2023041303085809000_24.40.8752.18 2023041303085809000_24.40.8752.19 (2023041303085809000_24.40.8752.2) 2002; 4 (2023041303085809000_24.40.8752.35) 1996; 118 (2023041303085809000_24.40.8752.16) 2001; 53 2023041303085809000_24.40.8752.30 2023041303085809000_24.40.8752.31 2023041303085809000_24.40.8752.43 2023041303085809000_24.40.8752.22 2023041303085809000_24.40.8752.44 2023041303085809000_24.40.8752.23 2023041303085809000_24.40.8752.45 2023041303085809000_24.40.8752.24 2023041303085809000_24.40.8752.46 2023041303085809000_24.40.8752.25 2023041303085809000_24.40.8752.26 2023041303085809000_24.40.8752.27 2023041303085809000_24.40.8752.28 2023041303085809000_24.40.8752.29 (2023041303085809000_24.40.8752.21) 2000; 113 (2023041303085809000_24.40.8752.36) 1995; 9 (2023041303085809000_24.40.8752.8) 1999; 22 |
References_xml | – ident: 2023041303085809000_24.40.8752.41 doi: 10.1016/S0028-3908(02)00361-1 – volume: 51 start-page: 357 year: 1997 ident: 2023041303085809000_24.40.8752.38 publication-title: Mol Pharmacol – ident: 2023041303085809000_24.40.8752.44 doi: 10.1038/sj.bjp.0703651 – ident: 2023041303085809000_24.40.8752.43 doi: 10.1128/MCB.21.2.595-602.2001 – volume: 113 start-page: 2837 year: 2000 ident: 2023041303085809000_24.40.8752.21 publication-title: J Cell Sci doi: 10.1242/jcs.113.16.2837 – volume: 118 start-page: 1035 year: 1996 ident: 2023041303085809000_24.40.8752.35 publication-title: Br J Pharmacol doi: 10.1111/j.1476-5381.1996.tb15503.x – volume: 22 start-page: 497 year: 1999 ident: 2023041303085809000_24.40.8752.8 publication-title: Neurn – ident: 2023041303085809000_24.40.8752.40 doi: 10.1096/fj.00-0072com – ident: 2023041303085809000_24.40.8752.6 doi: 10.1016/S0955-0674(99)80067-2 – volume: 19 start-page: 6488 year: 1999 ident: 2023041303085809000_24.40.8752.20 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.19-15-06488.1999 – ident: 2023041303085809000_24.40.8752.15 doi: 10.1016/S0962-8924(03)00152-1 – ident: 2023041303085809000_24.40.8752.30 doi: 10.1046/j.1460-9568.2003.02499.x – ident: 2023041303085809000_24.40.8752.9 doi: 10.1074/jbc.M006075200 – ident: 2023041303085809000_24.40.8752.22 doi: 10.1016/S0014-5793(98)00661-9 – ident: 2023041303085809000_24.40.8752.27 doi: 10.1073/pnas.95.7.3632 – ident: 2023041303085809000_24.40.8752.14 doi: 10.1091/mbc.E03-09-0673 – ident: 2023041303085809000_24.40.8752.33 doi: 10.1093/emboj/18.13.3629 – ident: 2023041303085809000_24.40.8752.18 doi: 10.1074/jbc.M205663200 – ident: 2023041303085809000_24.40.8752.19 doi: 10.1038/383447a0 – ident: 2023041303085809000_24.40.8752.32 doi: 10.1016/0896-6273(94)90043-4 – ident: 2023041303085809000_24.40.8752.12 doi: 10.1074/jbc.M313333200 – ident: 2023041303085809000_24.40.8752.29 doi: 10.1074/jbc.M112472200 – ident: 2023041303085809000_24.40.8752.5 doi: 10.1016/S0166-2236(02)02272-5 – ident: 2023041303085809000_24.40.8752.13 doi: 10.1126/science.271.5255.1533 – volume: 4 start-page: 547 year: 2002 ident: 2023041303085809000_24.40.8752.2 publication-title: Nat Cell Biol doi: 10.1038/ncb821 – ident: 2023041303085809000_24.40.8752.39 doi: 10.1074/jbc.274.47.33671 – volume: 53 start-page: 1 year: 2001 ident: 2023041303085809000_24.40.8752.16 publication-title: Pharmacol Rev – ident: 2023041303085809000_24.40.8752.28 doi: 10.1016/S0896-6273(00)81067-3 – ident: 2023041303085809000_24.40.8752.10 doi: 10.1124/mol.60.6.1243 – ident: 2023041303085809000_24.40.8752.42 doi: 10.1074/jbc.271.51.32874 – ident: 2023041303085809000_24.40.8752.11 doi: 10.1016/S0197-0186(02)00073-6 – ident: 2023041303085809000_24.40.8752.34 doi: 10.1074/jbc.M109160200 – ident: 2023041303085809000_24.40.8752.24 doi: 10.1046/j.1471-4159.2003.02189.x – ident: 2023041303085809000_24.40.8752.25 doi: 10.1073/pnas.96.7.3712 – ident: 2023041303085809000_24.40.8752.4 doi: 10.1074/jbc.273.38.24592 – volume: 9 start-page: 175 year: 1995 ident: 2023041303085809000_24.40.8752.36 publication-title: FASEB J doi: 10.1096/fasebj.9.2.7781920 – ident: 2023041303085809000_24.40.8752.7 doi: 10.1074/jbc.M108399200 – ident: 2023041303085809000_24.40.8752.45 doi: 10.1074/jbc.273.50.33722 – ident: 2023041303085809000_24.40.8752.3 doi: 10.1210/en.139.7.3185 – ident: 2023041303085809000_24.40.8752.1 doi: 10.1074/jbc.274.25.17794 – ident: 2023041303085809000_24.40.8752.26 doi: 10.1016/0092-8674(95)90525-1 – ident: 2023041303085809000_24.40.8752.46 doi: 10.1074/jbc.272.23.14817 – ident: 2023041303085809000_24.40.8752.23 doi: 10.1074/jbc.M206709200 – ident: 2023041303085809000_24.40.8752.31 doi: 10.1006/abio.1997.2299 – ident: 2023041303085809000_24.40.8752.17 doi: 10.1126/science.271.5247.363 – volume: 89 start-page: 1009 year: 2004 ident: 2023041303085809000_24.40.8752.37 publication-title: J Neurochem doi: 10.1111/j.1471-4159.2004.02387.x |
SSID | ssj0007017 |
Score | 2.1367822 |
Snippet | G-protein-coupled receptors play a central role in the regulation of neuronal cell communication. Class 1 metabotropic glutamate receptors (mGluRs) mGluR1a and... |
SourceID | pubmedcentral proquest crossref pubmed highwire |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 8752 |
SubjectTerms | Animals Cell Line Cells, Cultured Cellular/Molecular Endocytosis Humans Neurons - chemistry Neurons - metabolism Phospholipase D - physiology ral GTP-Binding Proteins - analysis ral GTP-Binding Proteins - physiology Rats Receptor, Metabotropic Glutamate 5 Receptors, Metabotropic Glutamate - analysis Receptors, Metabotropic Glutamate - metabolism Signal Transduction |
Title | Ral and Phospholipase D2-Dependent Pathway for Constitutive Metabotropic Glutamate Receptor Endocytosis |
URI | http://www.jneurosci.org/cgi/content/abstract/24/40/8752 https://www.ncbi.nlm.nih.gov/pubmed/15470141 https://search.proquest.com/docview/17791471 https://search.proquest.com/docview/66951442 https://pubmed.ncbi.nlm.nih.gov/PMC6729950 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELa6PXFBQHkslOID4pbGSfxIjtW2pRRtVR6VerMc2ymRdp2oSVXtv2fsJIVFcOGaTCIr89nzfc54BqH3lOos0ZbBTEtFRBWzUWlIFqUmrxRRwvIgFJcX_OyKnl-z6x3EprMwIWlfl_WhW60PXf0j5Fa2ax1PeWLx5XLBgREWjMQzNAOAThJ9XH4FCW12QW6BLqKCjseCQXDF5xc-Pe7b4hMoVcYiEvZUhs48VPiMx-3gNBUM_hv5_DOH8regdPoEPR7ZJD4aRv0U7Vj3DO0dOVDS6w3-gEN-Z9g430M3X8FSOQMXm66FRa9uIYLh4zQ6Hhvh9vgS-OC92mBgsti38gx5BLAe4qXtAS39bdPWGn8EtCpguhYD6bQtqHZ84kyjN33T1d1zdHV68n1xFo1tFiJNRdZHSsCsJpykBclB_-SeEeW8BB2nwYCJyuSFUVRr7cmiKkAx2aTUVcVKiHsqyV6gXdc4-wrhihNTEWMqlVPKjClYZQ3nSqtMZ7ricxRP31e2QzUN6VUIOEc-OEd650hCfYdMOkd4coPs1mq1gq-eSEBJSiUlEtRWOkfvJvdImBv-h4dytrnrZCJEkUD0_bcF58AwKYV3vBzc-WtYIyTmSGw5-sHA1-XevgNwDfW5R3i-_u8n36BHQz1J3xNoH-32t3f2LXCfvjxAs89f8oOA-J9igwVw |
link.rule.ids | 230,315,730,783,787,888,27936,27937,53804,53806 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKOcCFAoWyvOoD4paNk_iRHKtty7Z0VxW0qDfLsR2I2E2iJqtq-fWM8yhsBQe4JpMo0cx4vi_5PIPQO0p1FGjLINNC4VHFrJcaEnmhiTNFlLC8JYqzOZ9e0tMrdrWF2LAXphXt6zQfF4vluMi_tdrKaqn9QSfmn88mHBBhwoh_D92HfCV0IOn9AixIO2gXCBcwIypovzEYKJd_OncCuc-TE-CqjHmk_arSzeahwmkeN8vT0DL4T_Dzroryt7J0vIO-DC_UqVG-j1dNOtY_7vR6_Oc3fowe9UAVH3Snn6AtWzxFuwcFkPTlGr_HrXS0_Sa_i75-AktVGDhY1hWsp3kFxREfht5hP2O3wecANW_UGgNIxm5KaCtRgKUWz2wDgdhcl1Wu8QdIBAUg2mLAs7ZqwPioMKVeN2Wd18_Q5fHRxWTq9RMcPE1F1HhKwIJBOAkTEgO1ih3YinkKFFGDAROZiROjqNba4VCVABmzQaqzjKVQUlUQPUfbRVnYFwhnnJiMGJOpmFJmTMIyazhXWkU60hkfIX9wnKy6Rh3SERzwurz1unRel4S64Zt0hPDgX1kv1WIB7gwkuCOkkhIJRC4cof3B7xLSzv1LUYUtV7UMhEgCKOx_t-AcwCulcI-9Lk5-PVYfayMkNiLo1sC1_N48A3HRtv7u4-Dlf1-5jx5ML2Zn8uxk_vEVeti1rXSjh16j7eZ6Zd8AxGrSt21C_QSmECZ3 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5BkRAXXoUSXt0D4uZ4ba937WOVNLSFRBFQqeKyWu8DLBLbqh2h8OuZ9aM0FVx6tceWrZnZ-b715xmE3lGqokCZGDIt5B6VsfEyTSIv1ImVRHLDWqI4X7CTc3p2EV9cG_XVivZVlo-L1Xpc5D9abWW1Vv6gE_OX8wkDRJjGxK-09e-ie5CzhA1EvV-EOWmH7QLpAnZEOe1_Dgba5Z8tnEjuy-QU-Goce6TdWenm81DudI-7JWpoG_wvCHpTSXmtNM0eoW_DS3WKlJ_jTZON1e8b_R5v9daP0cMesOKjzuQJumOKp2j_qACyvt7i97iVkLZ78_vo-2ewlIWGg2VdwbqaV1Ak8TT0pv2s3QYvAXL-klsMYBm7aaGtVAGWXDw3DQRkc1lWucIfICEkgGmDAdeaqgHj40KXatuUdV4_Q-ez46-TE6-f5OApyqPGkxwWDsJImJIEKFbiQFfCMqCKCgxibnWSakmVUg6PyhRImQkyZW2cQWmVQfQc7RVlYV4gbBnRlmhtZUJprHUaW6MZk0pGKlKWjZA_OE9UXcMO4YgOeF5ceV44zwtC3RBOOkJ48LGo13K1ApcGAlwSUkGJAEIXjtDh4HsB6ee-qcjClJtaBJynART4_1swBiCWUrjHQRcrfx-rj7cR4jtRdGXgWn_vnoHYaFuA97Hw8tZXHqL7y-lMfDpdfHyFHnTdK90Eotdor7ncmDeAtJrsbZtTfwDL-ij3 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ral+and+Phospholipase+D2-Dependent+Pathway+for+Constitutive+Metabotropic+Glutamate+Receptor+Endocytosis&rft.jtitle=The+Journal+of+neuroscience&rft.au=Bhattacharya%2C+Moshmi&rft.au=Babwah%2C+Andy+V.&rft.au=Godin%2C+Christina&rft.au=Anborgh%2C+Pieter+H.&rft.date=2004-10-06&rft.issn=0270-6474&rft.eissn=1529-2401&rft.volume=24&rft.issue=40&rft.spage=8752&rft.epage=8761&rft_id=info:doi/10.1523%2FJNEUROSCI.3155-04.2004&rft.externalDBID=n%2Fa&rft.externalDocID=10_1523_JNEUROSCI_3155_04_2004 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-6474&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-6474&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-6474&client=summon |