Geometric modeling of homoepitaxial CVD diamond growth: I. The {1 0 0}{1 1 1}{1 1 0}{1 1 3} system
Plasma-assisted CVD homoepitaxial diamond growth is a process that must satisfy many stringent requirements to meet industrial applications, particularly in high-power electronics. Purity control and crystalline quality of the obtained samples are of paramount importance and their optimization is a...
Saved in:
Published in | Journal of crystal growth Vol. 310; no. 1; pp. 187 - 203 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
01.01.2008
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Plasma-assisted CVD homoepitaxial diamond growth is a process that must satisfy many stringent requirements to meet industrial applications, particularly in high-power electronics. Purity control and crystalline quality of the obtained samples are of paramount importance and their optimization is a subject of active research. In the process of such studies, we have obtained high purity CVD diamond monocrystals with unusual morphologies, namely with apparent {1
1
3} stable faces. This phenomenon has led us to examine the process of CVD diamond growth and build up a 3D geometrical model, presented here, describing the film growth as a function of time. The model has been able to successfully describe the morphology of our obtained crystals and can be used as a predictive tool to predetermine the shape and size of a diamond crystal grown in a given process configuration. This renders accessible control of desirable properties such as largest usable diamond surface area and/or film thickness, before the cutting and polishing manufacture steps take place. The two latter steps are more sensitive to the geometry of the growth sectors, which will be addressed in a companion paper.
Our model, applicable to the growth of any cubic lattice material, establishes a complete mapping of the final morphology state of growing diamond, as a function of the growth rates of the crystalline planes considered, namely {1
0
0}, {1
1
1}, {1
1
0}, and {1
1
3} planes, all of which have been observed experimentally in diamond films. The model makes no claim as to the stability of the obtained faces, such as the occurrence of non-epitaxial crystallites or twinning. It is also possible to deduce transient behavior of the crystal morphology as growth time is increased. The model conclusions are presented in the form of a series of diagrams, which trace the existence (and dominance) boundaries of each face type, in presence of the others, and where each boundary crossing represent a topology change in terms of number of faces, edges and vertices. We validate the model by matching it against crystals published in the literature and illustrate its predictive value by suggesting ways to increase usable surface area of the diamond film. |
---|---|
AbstractList | Plasma-assisted CVD homoepitaxial diamond growth is a process that must satisfy many stringent requirements to meet industrial applications, particularly in high-power electronics. Purity control and crystalline quality of the obtained samples are of paramount importance and their optimization is a subject of active research. In the process of such studies, we have obtained high purity CVD diamond monocrystals with unusual morphologies, namely with apparent {1
1
3} stable faces. This phenomenon has led us to examine the process of CVD diamond growth and build up a 3D geometrical model, presented here, describing the film growth as a function of time. The model has been able to successfully describe the morphology of our obtained crystals and can be used as a predictive tool to predetermine the shape and size of a diamond crystal grown in a given process configuration. This renders accessible control of desirable properties such as largest usable diamond surface area and/or film thickness, before the cutting and polishing manufacture steps take place. The two latter steps are more sensitive to the geometry of the growth sectors, which will be addressed in a companion paper.
Our model, applicable to the growth of any cubic lattice material, establishes a complete mapping of the final morphology state of growing diamond, as a function of the growth rates of the crystalline planes considered, namely {1
0
0}, {1
1
1}, {1
1
0}, and {1
1
3} planes, all of which have been observed experimentally in diamond films. The model makes no claim as to the stability of the obtained faces, such as the occurrence of non-epitaxial crystallites or twinning. It is also possible to deduce transient behavior of the crystal morphology as growth time is increased. The model conclusions are presented in the form of a series of diagrams, which trace the existence (and dominance) boundaries of each face type, in presence of the others, and where each boundary crossing represent a topology change in terms of number of faces, edges and vertices. We validate the model by matching it against crystals published in the literature and illustrate its predictive value by suggesting ways to increase usable surface area of the diamond film. Plasma-assisted CVD homoepitaxial diamond growth is a process that must satisfy many stringent requirements to meet industrial applications, particularly in high-power electronics. Purity control and crystalline quality of the obtained samples are of paramount importance and their optimization is a subject of active research. In the process of such studies, we have obtained high purity CVD diamond monocrystals with unusual morphologies, namely with apparent {113} stable faces. This phenomenon has led us to examine the process of CVD diamond growth and build up a 3D geometrical model, presented here, describing the film growth as a function of time. The model has been able to successfully describe the morphology of our obtained crystals and can be used as a predictive tool to predetermine the shape and size of a diamond crystal grown in a given process configuration. This renders accessible control of desirable properties such as largest usable diamond surface area and/or film thickness, before the cutting and polishing manufacture steps take place. The two latter steps are more sensitive to the geometry of the growth sectors, which will be addressed in a companion paper. Our model, applicable to the growth of any cubic lattice material, establishes a complete mapping of the final morphology state of growing diamond, as a function of the growth rates of the crystalline planes considered, namely {100}, {111}, {110}, and {113} planes, all of which have been observed experimentally in diamond films. The model makes no claim as to the stability of the obtained faces, such as the occurrence of non-epitaxial crystallites or twinning. It is also possible to deduce transient behavior of the crystal morphology as growth time is increased. The model conclusions are presented in the form of a series of diagrams, which trace the existence (and dominance) boundaries of each face type, in presence of the others, and where each boundary crossing represent a topology change in terms of number of faces, edges and vertices. We validate the model by matching it against crystals published in the literature and illustrate its predictive value by suggesting ways to increase usable surface area of the diamond film. |
Author | Brinza, O. Achard, J. Gicquel, A. Bonnin, X. Michau, A. Silva, F. |
Author_xml | – sequence: 1 givenname: F. surname: Silva fullname: Silva, F. email: silva@limhp.univ-paris13.fr – sequence: 2 givenname: X. surname: Bonnin fullname: Bonnin, X. – sequence: 3 givenname: J. surname: Achard fullname: Achard, J. – sequence: 4 givenname: O. surname: Brinza fullname: Brinza, O. – sequence: 5 givenname: A. surname: Michau fullname: Michau, A. – sequence: 6 givenname: A. surname: Gicquel fullname: Gicquel, A. |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19972223$$DView record in Pascal Francis https://hal.science/hal-03575911$$DView record in HAL |
BookMark | eNqFkU1v1DAQhi1UJLaFv4B8AYlDgj_yZcSBailtpZW4FK7W7GTS9SqJFzstrFD_e73K0gOXypJHYz3vO_K8p-xk9CMx9laKXApZfdzmWwz7eBt8roSoc2FyURQv2EI2tc5KIdQJW6RbZUIVzSt2GuNWiKSUYsHWl-QHmoJDPviWejfect_xjR887dwEfxz0fPnzK28dDH5seRrze9p84tc5v9kQ_yu54OIhlXTmcuz0A4_7ONHwmr3soI_05ljP2I9vFzfLq2z1_fJ6eb7KsKj1lBmoDKyxBNXpFpo1lYRInYambUAiUIWEuiplV0P6mEYjunVbd6bGChpT6jP2YfbdQG93wQ0Q9taDs1fnK3t4E7qsSyPlvUzs-5ndBf_rjuJkBxeR-h5G8nfRallXWqkige-OIESEvgswootP9tKYWimlE_d55jD4GAN1FtP2JufHKYDrrRT2EJbd2n9h2UNYVhibwkry6j_504TnhF9mIaXN3jsKNqKjEal1gXCyrXfPWTwCRG-zKg |
CODEN | JCRGAE |
CitedBy_id | crossref_primary_10_1002_pssa_200982210 crossref_primary_10_1063_1_3251789 crossref_primary_10_1016_j_diamond_2013_01_006 crossref_primary_10_1063_5_0078022 crossref_primary_10_1002_pssa_200879716 crossref_primary_10_1002_pssa_201200045 crossref_primary_10_1016_j_diamond_2013_11_011 crossref_primary_10_1016_j_diamond_2015_12_019 crossref_primary_10_1016_j_vacuum_2021_110820 crossref_primary_10_1016_j_diamond_2015_12_016 crossref_primary_10_1080_26941112_2022_2162348 crossref_primary_10_3367_UFNe_2024_06_039692 crossref_primary_10_1016_j_diamond_2014_12_010 crossref_primary_10_1016_j_diamond_2016_03_011 crossref_primary_10_1016_j_carbon_2024_119298 crossref_primary_10_35848_1347_4065_ac06d8 crossref_primary_10_3367_UFNe_0185_201502b_0143 crossref_primary_10_1063_1_4923092 crossref_primary_10_1002_pssa_201600182 crossref_primary_10_1088_0953_8984_21_36_364221 crossref_primary_10_1002_pssa_201800371 crossref_primary_10_3367_UFNr_0185_201502b_0143 crossref_primary_10_4028_p_6bfVRH crossref_primary_10_1016_j_diamond_2009_01_013 crossref_primary_10_1002_pssa_201100045 crossref_primary_10_1016_j_carbon_2022_07_044 crossref_primary_10_1016_j_diamond_2016_12_020 crossref_primary_10_1016_j_diamond_2024_111659 crossref_primary_10_1021_ar200317y crossref_primary_10_1557_mrs_2014_96 crossref_primary_10_1021_jp811505w crossref_primary_10_1016_j_diamond_2023_110548 crossref_primary_10_1021_jp1073208 crossref_primary_10_1002_pssa_201300071 crossref_primary_10_1088_2633_4356_ad589d crossref_primary_10_2138_rmg_2022_88_13 crossref_primary_10_1557_PROC_1203_J16_01 crossref_primary_10_1016_S1003_6326_15_63762_1 crossref_primary_10_1021_am505974d crossref_primary_10_1016_j_actamat_2021_117555 crossref_primary_10_1016_j_diamond_2008_01_006 crossref_primary_10_1063_1_4948373 crossref_primary_10_1002_pssa_202400085 crossref_primary_10_1002_pssa_202000502 crossref_primary_10_1080_26941112_2020_1869511 crossref_primary_10_3390_nano14050460 crossref_primary_10_4028_www_scientific_net_AMM_730_160 crossref_primary_10_1002_pssa_201431210 crossref_primary_10_1080_26941112_2024_2346083 crossref_primary_10_3367_UFNr_2024_06_039692 crossref_primary_10_1016_j_diamond_2009_01_038 crossref_primary_10_1021_acs_cgd_8b01424 crossref_primary_10_1021_jp803735a crossref_primary_10_1038_s43246_022_00228_4 crossref_primary_10_1088_0953_8984_21_36_364201 crossref_primary_10_3390_ma14227081 |
Cites_doi | 10.1103/PhysRevLett.76.2953 10.1103/PhysRevLett.70.966 10.1002/pssa.200405164 10.1103/PhysRevB.68.205306 10.1103/PhysRevLett.71.3170 10.1103/PhysRevB.72.125326 10.1016/j.diamond.2004.10.043 10.1016/0022-0248(89)90642-8 10.1103/PhysRevLett.66.1733 10.1016/0022-0248(92)90318-D 10.1103/PhysRev.82.87 10.1016/0022-0248(89)90643-X 10.1016/j.diamond.2006.02.005 10.1103/PhysRevB.65.115318 10.1103/PhysRevLett.69.3785 10.1016/j.jcrysgro.2005.07.046 10.1016/0039-6028(85)90828-3 10.3938/jkps.37.755 10.1002/pssa.200671101 10.1016/0925-9635(93)90047-6 10.1103/PhysRevLett.55.1765 |
ContentType | Journal Article |
Copyright | 2007 Elsevier B.V. 2008 INIST-CNRS Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2007 Elsevier B.V. – notice: 2008 INIST-CNRS – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION IQODW 7SR 7U5 8BQ 8FD JG9 L7M 1XC |
DOI | 10.1016/j.jcrysgro.2007.09.044 |
DatabaseName | CrossRef Pascal-Francis Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Physics |
EISSN | 1873-5002 |
EndPage | 203 |
ExternalDocumentID | oai_HAL_hal_03575911v1 19972223 10_1016_j_jcrysgro_2007_09_044 S0022024807008287 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29K 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABNEU ABXDB ABYKQ ACDAQ ACFVG ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADIYS ADMUD AEBSH AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AI. AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CS3 D-I DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMV HVGLF HZ~ IHE J1W KOM M24 M38 M41 MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SMS SPC SPCBC SPD SPG SSQ SSZ T5K TN5 VH1 WUQ XPP ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH AFXIZ EFKBS IQODW 7SR 7U5 8BQ 8FD JG9 L7M 1XC |
ID | FETCH-LOGICAL-c473t-9a69abc5a2f3da8be5eccef3a8d8a1cae6cec3651f7a8733c90fbd7f97c6a8953 |
IEDL.DBID | AIKHN |
ISSN | 0022-0248 |
IngestDate | Fri May 09 12:23:51 EDT 2025 Thu Jul 10 18:18:00 EDT 2025 Mon Jul 21 09:13:01 EDT 2025 Tue Jul 01 04:25:02 EDT 2025 Thu Apr 24 22:52:24 EDT 2025 Fri Feb 23 02:25:07 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | A1. Growth models A3. Chemical vapor deposition processes B1. Diamond A1. Crystal morphology A2. Single crystal growth Crystal growth Homoepitaxy Cubic lattices Growth rate Industrial application Synthetic diamond Epitaxy Geometrical model Optimization Transients Thin films Time dependence Crystallites PECVD Crystal morphology Epitaxial layers Theoretical study Twinning Topology Film growth CVD Monocrystals Quality control Growth mechanism Surface area |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c473t-9a69abc5a2f3da8be5eccef3a8d8a1cae6cec3651f7a8733c90fbd7f97c6a8953 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ORCID | 0000-0003-4217-7333 |
PQID | 31763224 |
PQPubID | 23500 |
PageCount | 17 |
ParticipantIDs | hal_primary_oai_HAL_hal_03575911v1 proquest_miscellaneous_31763224 pascalfrancis_primary_19972223 crossref_citationtrail_10_1016_j_jcrysgro_2007_09_044 crossref_primary_10_1016_j_jcrysgro_2007_09_044 elsevier_sciencedirect_doi_10_1016_j_jcrysgro_2007_09_044 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2008-01 |
PublicationDateYYYYMMDD | 2008-01-01 |
PublicationDate_xml | – month: 01 year: 2008 text: 2008-01 |
PublicationDecade | 2000 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Journal of crystal growth |
PublicationYear | 2008 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Tallaire, Achard, Silva, Sussmann, Gicquel, Rzepka (bib3) 2004; 201 Gardeniers, Maas, van Meerten, Giling (bib22) 1989; 96 Silva, Achard, Bonnin, Michau, Tallaire, Brinza, Gicquel (bib1) 2006; 203 Bird, Clarke, King-Smith, Payne, Stich, Sutton (bib12) 1992; 69 Gardeniers, Maas, van Meerten, Giling (bib21) 1989; 96 Herring (bib11) 1951; 82 Horn-von Hoegen, Müller, Al-Falou, Henzler (bib17) 1993; 71 Stekolnikov, Bechstedt (bib8) 2005; 72 P. Hartman, in: Crystal Growth: An Introduction, North-Holland, Elsevier, 1973, p. 367. Janssen, Schermer, van-Enckevort, Giling (bib6) 1992; 125 Giling, Van Enckevort (bib20) 1985; 161 Stekolnikov, Furthmüller, Bechstedt (bib9) 2002; 65 Achard, Tallaire, Sussmann, Silva, Gicquel (bib2) 2005; 284 Tallaire, Collins, Charles, Achard, Sussmann, Gicquel, Newton, Edmonds, Cruddace (bib4) 2006; 15 Horn-von Hoegen, Golla (bib18) 1996; 76 Knall, Pethica, Todd, Wilson (bib15) 1991; 66 Stekolnikov, Furthmüller, Bechstedt (bib10) 2003; 68 Wild, Koild, Müller-Sebert, Walcher, Kohl, Herres, Locher, Samlenski, Brenn (bib5) 1993; 2 Hong (bib13) 2000; 37 Gibson, McDonald, Unterwald (bib14) 1985; 55 Bauer, Schreck, Sternschulte, Stritzker (bib7) 2005; 14 Eaglesham, Unterwald, Jacobson (bib16) 1993; 70 Bennema, van der Eerden (bib23) 1987 Giling (10.1016/j.jcrysgro.2007.09.044_bib20) 1985; 161 Eaglesham (10.1016/j.jcrysgro.2007.09.044_bib16) 1993; 70 Knall (10.1016/j.jcrysgro.2007.09.044_bib15) 1991; 66 Tallaire (10.1016/j.jcrysgro.2007.09.044_bib3) 2004; 201 Wild (10.1016/j.jcrysgro.2007.09.044_bib5) 1993; 2 Stekolnikov (10.1016/j.jcrysgro.2007.09.044_bib10) 2003; 68 Bird (10.1016/j.jcrysgro.2007.09.044_bib12) 1992; 69 10.1016/j.jcrysgro.2007.09.044_bib19 Horn-von Hoegen (10.1016/j.jcrysgro.2007.09.044_bib18) 1996; 76 Hong (10.1016/j.jcrysgro.2007.09.044_bib13) 2000; 37 Gardeniers (10.1016/j.jcrysgro.2007.09.044_bib22) 1989; 96 Herring (10.1016/j.jcrysgro.2007.09.044_bib11) 1951; 82 Silva (10.1016/j.jcrysgro.2007.09.044_bib1) 2006; 203 Janssen (10.1016/j.jcrysgro.2007.09.044_bib6) 1992; 125 Achard (10.1016/j.jcrysgro.2007.09.044_bib2) 2005; 284 Horn-von Hoegen (10.1016/j.jcrysgro.2007.09.044_bib17) 1993; 71 Gardeniers (10.1016/j.jcrysgro.2007.09.044_bib21) 1989; 96 Stekolnikov (10.1016/j.jcrysgro.2007.09.044_bib9) 2002; 65 Gibson (10.1016/j.jcrysgro.2007.09.044_bib14) 1985; 55 Bennema (10.1016/j.jcrysgro.2007.09.044_bib23) 1987 Stekolnikov (10.1016/j.jcrysgro.2007.09.044_bib8) 2005; 72 Tallaire (10.1016/j.jcrysgro.2007.09.044_bib4) 2006; 15 Bauer (10.1016/j.jcrysgro.2007.09.044_bib7) 2005; 14 |
References_xml | – volume: 125 start-page: 42 year: 1992 ident: bib6 publication-title: J. Crystal Growth – reference: P. Hartman, in: Crystal Growth: An Introduction, North-Holland, Elsevier, 1973, p. 367. – volume: 2 start-page: 158 year: 1993 ident: bib5 publication-title: Diamond Relat. Mater. – volume: 65 start-page: 115318 year: 2002 ident: bib9 publication-title: Phys. Rev. B – volume: 66 start-page: 1733 year: 1991 ident: bib15 publication-title: Phys. Rev. Lett. – volume: 96 start-page: 832 year: 1989 ident: bib21 publication-title: J. Crystal Growth – volume: 161 start-page: 567 year: 1985 ident: bib20 publication-title: Surf. Sci. – volume: 76 start-page: 2953 year: 1996 ident: bib18 publication-title: Phys. Rev. Lett. – start-page: 1 year: 1987 ident: bib23 publication-title: Morphology of Crystals – volume: 14 start-page: 266 year: 2005 ident: bib7 publication-title: Diamond Relat. Mater. – volume: 82 start-page: 87 year: 1951 ident: bib11 publication-title: Phys. Rev. – volume: 69 start-page: 3785 year: 1992 ident: bib12 publication-title: Phys. Rev. Lett. – volume: 37 start-page: 93 year: 2000 ident: bib13 publication-title: J. Korean Phys. Soc. – volume: 68 start-page: 205306 year: 2003 ident: bib10 publication-title: Phys. Rev. B – volume: 72 start-page: 125326 year: 2005 ident: bib8 publication-title: Phys. Rev. B (Condens. Matter Mater. Phys.) – volume: 15 start-page: 1700 year: 2006 ident: bib4 publication-title: Diamond Relat. Mater. – volume: 71 start-page: 3170 year: 1993 ident: bib17 publication-title: Phys. Rev. Lett. – volume: 284 start-page: 396 year: 2005 ident: bib2 publication-title: J. Crystal Growth – volume: 55 start-page: 1765 year: 1985 ident: bib14 publication-title: Phys. Rev. Lett. – volume: 96 start-page: 821 year: 1989 ident: bib22 publication-title: J. Crystal Growth – volume: 203 start-page: 3049 year: 2006 ident: bib1 publication-title: Phys. Status Solidi (a) – volume: 201 start-page: 2419 year: 2004 ident: bib3 publication-title: Phys. Status Solidi (a) – volume: 70 start-page: 966 year: 1993 ident: bib16 publication-title: Phys. Rev. Lett. – volume: 76 start-page: 2953 year: 1996 ident: 10.1016/j.jcrysgro.2007.09.044_bib18 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.76.2953 – volume: 70 start-page: 966 year: 1993 ident: 10.1016/j.jcrysgro.2007.09.044_bib16 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.70.966 – volume: 201 start-page: 2419 year: 2004 ident: 10.1016/j.jcrysgro.2007.09.044_bib3 publication-title: Phys. Status Solidi (a) doi: 10.1002/pssa.200405164 – volume: 68 start-page: 205306 year: 2003 ident: 10.1016/j.jcrysgro.2007.09.044_bib10 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.68.205306 – volume: 71 start-page: 3170 year: 1993 ident: 10.1016/j.jcrysgro.2007.09.044_bib17 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.71.3170 – volume: 72 start-page: 125326 year: 2005 ident: 10.1016/j.jcrysgro.2007.09.044_bib8 publication-title: Phys. Rev. B (Condens. Matter Mater. Phys.) doi: 10.1103/PhysRevB.72.125326 – volume: 14 start-page: 266 year: 2005 ident: 10.1016/j.jcrysgro.2007.09.044_bib7 publication-title: Diamond Relat. Mater. doi: 10.1016/j.diamond.2004.10.043 – ident: 10.1016/j.jcrysgro.2007.09.044_bib19 – volume: 96 start-page: 821 year: 1989 ident: 10.1016/j.jcrysgro.2007.09.044_bib22 publication-title: J. Crystal Growth doi: 10.1016/0022-0248(89)90642-8 – volume: 66 start-page: 1733 year: 1991 ident: 10.1016/j.jcrysgro.2007.09.044_bib15 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.66.1733 – volume: 125 start-page: 42 year: 1992 ident: 10.1016/j.jcrysgro.2007.09.044_bib6 publication-title: J. Crystal Growth doi: 10.1016/0022-0248(92)90318-D – start-page: 1 year: 1987 ident: 10.1016/j.jcrysgro.2007.09.044_bib23 – volume: 82 start-page: 87 year: 1951 ident: 10.1016/j.jcrysgro.2007.09.044_bib11 publication-title: Phys. Rev. doi: 10.1103/PhysRev.82.87 – volume: 96 start-page: 832 year: 1989 ident: 10.1016/j.jcrysgro.2007.09.044_bib21 publication-title: J. Crystal Growth doi: 10.1016/0022-0248(89)90643-X – volume: 15 start-page: 1700 year: 2006 ident: 10.1016/j.jcrysgro.2007.09.044_bib4 publication-title: Diamond Relat. Mater. doi: 10.1016/j.diamond.2006.02.005 – volume: 65 start-page: 115318 year: 2002 ident: 10.1016/j.jcrysgro.2007.09.044_bib9 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.65.115318 – volume: 69 start-page: 3785 year: 1992 ident: 10.1016/j.jcrysgro.2007.09.044_bib12 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.69.3785 – volume: 284 start-page: 396 year: 2005 ident: 10.1016/j.jcrysgro.2007.09.044_bib2 publication-title: J. Crystal Growth doi: 10.1016/j.jcrysgro.2005.07.046 – volume: 161 start-page: 567 year: 1985 ident: 10.1016/j.jcrysgro.2007.09.044_bib20 publication-title: Surf. Sci. doi: 10.1016/0039-6028(85)90828-3 – volume: 37 start-page: 93 year: 2000 ident: 10.1016/j.jcrysgro.2007.09.044_bib13 publication-title: J. Korean Phys. Soc. doi: 10.3938/jkps.37.755 – volume: 203 start-page: 3049 year: 2006 ident: 10.1016/j.jcrysgro.2007.09.044_bib1 publication-title: Phys. Status Solidi (a) doi: 10.1002/pssa.200671101 – volume: 2 start-page: 158 year: 1993 ident: 10.1016/j.jcrysgro.2007.09.044_bib5 publication-title: Diamond Relat. Mater. doi: 10.1016/0925-9635(93)90047-6 – volume: 55 start-page: 1765 year: 1985 ident: 10.1016/j.jcrysgro.2007.09.044_bib14 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.55.1765 |
SSID | ssj0001610 |
Score | 2.1134205 |
Snippet | Plasma-assisted CVD homoepitaxial diamond growth is a process that must satisfy many stringent requirements to meet industrial applications, particularly in... |
SourceID | hal proquest pascalfrancis crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 187 |
SubjectTerms | A1. Crystal morphology A1. Growth models A2. Single crystal growth A3. Chemical vapor deposition processes B1. Diamond Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.) Cross-disciplinary physics: materials science; rheology Engineering Sciences Exact sciences and technology Fullerenes and related materials; diamonds, graphite Materials science Methods of deposition of films and coatings; film growth and epitaxy Physics Specific materials Theory and models of film growth |
Title | Geometric modeling of homoepitaxial CVD diamond growth: I. The {1 0 0}{1 1 1}{1 1 0}{1 1 3} system |
URI | https://dx.doi.org/10.1016/j.jcrysgro.2007.09.044 https://www.proquest.com/docview/31763224 https://hal.science/hal-03575911 |
Volume | 310 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB417QEQqqCACJRgIa6brGPv2uYWpZSUR08U9Wb5tUojmo3alIdQ-e0dZ72hFUI9oD1Ya2m0lufb8Wh35vsAXksmA_XcZypULEOE2MxyIzL0t7dSBS58bE7-dFhOjvj74-J4A8ZtL0wsq0yxv4npq2idZgZpNweLk5PY4zscRkYuBO2Ktr0DW0OmSoT21ujgw-RwHZAxqclb0vBocK1ReNafubOfsYMisRmqfs75v86ozjQWS95fmHPcv6oRvvgrhq8Opv0HsJ0ySjJqFv0QNsJ8B-6MWyG3Hbh3jXPwEdh3oT6NMlqOrFRwcJLUFZnWp3WICiI_EJBk_GWPIHAQop7gqr8vp2_IQZ8gpsgvSnKSX-KAVzOkO3ZJGl7ox3C0__bzeJIloYXMccGWmTKlMtYVZlgxb6QNBToWfWekl4Y6E0oXHCsLWgkjBWNO5ZX1olLClUaqgj2BzXk9D0-BuEALn-cOLS1HKyUtq5iVhpdWOMa7ULRbq11iIY9iGF91W242061LokSm0LnS6JIuDNZ2i4aH41YL1XpO30CUxsPiVttX6Or1gyIF92T0Uce5nEVJU0q_0S70biDhz7piMzKmXV142UJDo8vjnxgzD_XFucakrcRIyp_9xxqfw92mdiV-DtqFzeXZRXiBCdLS9qDT_0176TW4AiKSD68 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB615VAQQlCoCI_WQlw32Y29a5tbFSgppD21qDfLr1Ua0WzUpjyEym9nZh99CKEe0B6stTKK5fk8HiUz3wfwVnEVsyBComPJE0SIS5ywMkF_B6d0FDJQc_L-QTE-Ep-O8-MVGHW9MFRW2cb-JqbX0bqdGbS7OVicnFCP73BIjFwI2pq2fRXuCTy-dDr7v6_rPDClSTvKcPr4jTbhWX_mz35S_0TLZaj7qRD_uqFWp1Qq-XBhz3H3ykb24q8IXl9Lu4_hUZtPsp1myU9gJc43YH3UybhtwIMbjINPwX2M1SmJaHlWa-DgJKtKNq1Oq0j6IT8Qjmz05T1D2CBAA8NVf19O37G9PkNEsV8ZS1l6iQM-zdC-8UvWsEI_g6PdD4ejcdLKLCReSL5MtC20dT63w5IHq1zM0a3oOauCspm3sfDR8yLPSmmV5NzrtHRBllr6wiqd801Ym1fz-ByYj1ke0tSjpRNopZXjJXfKisJJz0UP8m5rjW85yEkK46vpis1mpnMJCWRKk2qDLunB4Mpu0bBw3GmhO8-ZW3gyeFXcafsGXX31RUTAPd6ZGJpLOQmaZtm3rAdbt5BwvS5qRcakqwfbHTQMupz-h7HzWF2cG0zZCoyj4sV_rHEb1seH-xMz2Tv4_BLuN1Us9MPQK1hbnl3E15gqLd1WfRT-AFyFEHM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Geometric+modeling+of+homoepitaxial+CVD+diamond+growth%3A+I.+The+%7B100%7D%7B111%7D%7B110%7D%7B113%7D+system&rft.jtitle=Journal+of+crystal+growth&rft.au=Silva%2C+F&rft.au=Bonnin%2C+X&rft.au=Achard%2C+J&rft.au=Brinza%2C+O&rft.date=2008-01-01&rft.issn=0022-0248&rft.volume=310&rft.issue=1&rft.spage=187&rft.epage=203&rft_id=info:doi/10.1016%2Fj.jcrysgro.2007.09.044&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-0248&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-0248&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-0248&client=summon |