Geometric modeling of homoepitaxial CVD diamond growth: I. The {1 0 0}{1 1 1}{1 1 0}{1 1 3} system

Plasma-assisted CVD homoepitaxial diamond growth is a process that must satisfy many stringent requirements to meet industrial applications, particularly in high-power electronics. Purity control and crystalline quality of the obtained samples are of paramount importance and their optimization is a...

Full description

Saved in:
Bibliographic Details
Published inJournal of crystal growth Vol. 310; no. 1; pp. 187 - 203
Main Authors Silva, F., Bonnin, X., Achard, J., Brinza, O., Michau, A., Gicquel, A.
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.01.2008
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Plasma-assisted CVD homoepitaxial diamond growth is a process that must satisfy many stringent requirements to meet industrial applications, particularly in high-power electronics. Purity control and crystalline quality of the obtained samples are of paramount importance and their optimization is a subject of active research. In the process of such studies, we have obtained high purity CVD diamond monocrystals with unusual morphologies, namely with apparent {1 1 3} stable faces. This phenomenon has led us to examine the process of CVD diamond growth and build up a 3D geometrical model, presented here, describing the film growth as a function of time. The model has been able to successfully describe the morphology of our obtained crystals and can be used as a predictive tool to predetermine the shape and size of a diamond crystal grown in a given process configuration. This renders accessible control of desirable properties such as largest usable diamond surface area and/or film thickness, before the cutting and polishing manufacture steps take place. The two latter steps are more sensitive to the geometry of the growth sectors, which will be addressed in a companion paper. Our model, applicable to the growth of any cubic lattice material, establishes a complete mapping of the final morphology state of growing diamond, as a function of the growth rates of the crystalline planes considered, namely {1 0 0}, {1 1 1}, {1 1 0}, and {1 1 3} planes, all of which have been observed experimentally in diamond films. The model makes no claim as to the stability of the obtained faces, such as the occurrence of non-epitaxial crystallites or twinning. It is also possible to deduce transient behavior of the crystal morphology as growth time is increased. The model conclusions are presented in the form of a series of diagrams, which trace the existence (and dominance) boundaries of each face type, in presence of the others, and where each boundary crossing represent a topology change in terms of number of faces, edges and vertices. We validate the model by matching it against crystals published in the literature and illustrate its predictive value by suggesting ways to increase usable surface area of the diamond film.
AbstractList Plasma-assisted CVD homoepitaxial diamond growth is a process that must satisfy many stringent requirements to meet industrial applications, particularly in high-power electronics. Purity control and crystalline quality of the obtained samples are of paramount importance and their optimization is a subject of active research. In the process of such studies, we have obtained high purity CVD diamond monocrystals with unusual morphologies, namely with apparent {1 1 3} stable faces. This phenomenon has led us to examine the process of CVD diamond growth and build up a 3D geometrical model, presented here, describing the film growth as a function of time. The model has been able to successfully describe the morphology of our obtained crystals and can be used as a predictive tool to predetermine the shape and size of a diamond crystal grown in a given process configuration. This renders accessible control of desirable properties such as largest usable diamond surface area and/or film thickness, before the cutting and polishing manufacture steps take place. The two latter steps are more sensitive to the geometry of the growth sectors, which will be addressed in a companion paper. Our model, applicable to the growth of any cubic lattice material, establishes a complete mapping of the final morphology state of growing diamond, as a function of the growth rates of the crystalline planes considered, namely {1 0 0}, {1 1 1}, {1 1 0}, and {1 1 3} planes, all of which have been observed experimentally in diamond films. The model makes no claim as to the stability of the obtained faces, such as the occurrence of non-epitaxial crystallites or twinning. It is also possible to deduce transient behavior of the crystal morphology as growth time is increased. The model conclusions are presented in the form of a series of diagrams, which trace the existence (and dominance) boundaries of each face type, in presence of the others, and where each boundary crossing represent a topology change in terms of number of faces, edges and vertices. We validate the model by matching it against crystals published in the literature and illustrate its predictive value by suggesting ways to increase usable surface area of the diamond film.
Plasma-assisted CVD homoepitaxial diamond growth is a process that must satisfy many stringent requirements to meet industrial applications, particularly in high-power electronics. Purity control and crystalline quality of the obtained samples are of paramount importance and their optimization is a subject of active research. In the process of such studies, we have obtained high purity CVD diamond monocrystals with unusual morphologies, namely with apparent {113} stable faces. This phenomenon has led us to examine the process of CVD diamond growth and build up a 3D geometrical model, presented here, describing the film growth as a function of time. The model has been able to successfully describe the morphology of our obtained crystals and can be used as a predictive tool to predetermine the shape and size of a diamond crystal grown in a given process configuration. This renders accessible control of desirable properties such as largest usable diamond surface area and/or film thickness, before the cutting and polishing manufacture steps take place. The two latter steps are more sensitive to the geometry of the growth sectors, which will be addressed in a companion paper. Our model, applicable to the growth of any cubic lattice material, establishes a complete mapping of the final morphology state of growing diamond, as a function of the growth rates of the crystalline planes considered, namely {100}, {111}, {110}, and {113} planes, all of which have been observed experimentally in diamond films. The model makes no claim as to the stability of the obtained faces, such as the occurrence of non-epitaxial crystallites or twinning. It is also possible to deduce transient behavior of the crystal morphology as growth time is increased. The model conclusions are presented in the form of a series of diagrams, which trace the existence (and dominance) boundaries of each face type, in presence of the others, and where each boundary crossing represent a topology change in terms of number of faces, edges and vertices. We validate the model by matching it against crystals published in the literature and illustrate its predictive value by suggesting ways to increase usable surface area of the diamond film.
Author Brinza, O.
Achard, J.
Gicquel, A.
Bonnin, X.
Michau, A.
Silva, F.
Author_xml – sequence: 1
  givenname: F.
  surname: Silva
  fullname: Silva, F.
  email: silva@limhp.univ-paris13.fr
– sequence: 2
  givenname: X.
  surname: Bonnin
  fullname: Bonnin, X.
– sequence: 3
  givenname: J.
  surname: Achard
  fullname: Achard, J.
– sequence: 4
  givenname: O.
  surname: Brinza
  fullname: Brinza, O.
– sequence: 5
  givenname: A.
  surname: Michau
  fullname: Michau, A.
– sequence: 6
  givenname: A.
  surname: Gicquel
  fullname: Gicquel, A.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19972223$$DView record in Pascal Francis
https://hal.science/hal-03575911$$DView record in HAL
BookMark eNqFkU1v1DAQhi1UJLaFv4B8AYlDgj_yZcSBailtpZW4FK7W7GTS9SqJFzstrFD_e73K0gOXypJHYz3vO_K8p-xk9CMx9laKXApZfdzmWwz7eBt8roSoc2FyURQv2EI2tc5KIdQJW6RbZUIVzSt2GuNWiKSUYsHWl-QHmoJDPviWejfect_xjR887dwEfxz0fPnzK28dDH5seRrze9p84tc5v9kQ_yu54OIhlXTmcuz0A4_7ONHwmr3soI_05ljP2I9vFzfLq2z1_fJ6eb7KsKj1lBmoDKyxBNXpFpo1lYRInYambUAiUIWEuiplV0P6mEYjunVbd6bGChpT6jP2YfbdQG93wQ0Q9taDs1fnK3t4E7qsSyPlvUzs-5ndBf_rjuJkBxeR-h5G8nfRallXWqkige-OIESEvgswootP9tKYWimlE_d55jD4GAN1FtP2JufHKYDrrRT2EJbd2n9h2UNYVhibwkry6j_504TnhF9mIaXN3jsKNqKjEal1gXCyrXfPWTwCRG-zKg
CODEN JCRGAE
CitedBy_id crossref_primary_10_1002_pssa_200982210
crossref_primary_10_1063_1_3251789
crossref_primary_10_1016_j_diamond_2013_01_006
crossref_primary_10_1063_5_0078022
crossref_primary_10_1002_pssa_200879716
crossref_primary_10_1002_pssa_201200045
crossref_primary_10_1016_j_diamond_2013_11_011
crossref_primary_10_1016_j_diamond_2015_12_019
crossref_primary_10_1016_j_vacuum_2021_110820
crossref_primary_10_1016_j_diamond_2015_12_016
crossref_primary_10_1080_26941112_2022_2162348
crossref_primary_10_3367_UFNe_2024_06_039692
crossref_primary_10_1016_j_diamond_2014_12_010
crossref_primary_10_1016_j_diamond_2016_03_011
crossref_primary_10_1016_j_carbon_2024_119298
crossref_primary_10_35848_1347_4065_ac06d8
crossref_primary_10_3367_UFNe_0185_201502b_0143
crossref_primary_10_1063_1_4923092
crossref_primary_10_1002_pssa_201600182
crossref_primary_10_1088_0953_8984_21_36_364221
crossref_primary_10_1002_pssa_201800371
crossref_primary_10_3367_UFNr_0185_201502b_0143
crossref_primary_10_4028_p_6bfVRH
crossref_primary_10_1016_j_diamond_2009_01_013
crossref_primary_10_1002_pssa_201100045
crossref_primary_10_1016_j_carbon_2022_07_044
crossref_primary_10_1016_j_diamond_2016_12_020
crossref_primary_10_1016_j_diamond_2024_111659
crossref_primary_10_1021_ar200317y
crossref_primary_10_1557_mrs_2014_96
crossref_primary_10_1021_jp811505w
crossref_primary_10_1016_j_diamond_2023_110548
crossref_primary_10_1021_jp1073208
crossref_primary_10_1002_pssa_201300071
crossref_primary_10_1088_2633_4356_ad589d
crossref_primary_10_2138_rmg_2022_88_13
crossref_primary_10_1557_PROC_1203_J16_01
crossref_primary_10_1016_S1003_6326_15_63762_1
crossref_primary_10_1021_am505974d
crossref_primary_10_1016_j_actamat_2021_117555
crossref_primary_10_1016_j_diamond_2008_01_006
crossref_primary_10_1063_1_4948373
crossref_primary_10_1002_pssa_202400085
crossref_primary_10_1002_pssa_202000502
crossref_primary_10_1080_26941112_2020_1869511
crossref_primary_10_3390_nano14050460
crossref_primary_10_4028_www_scientific_net_AMM_730_160
crossref_primary_10_1002_pssa_201431210
crossref_primary_10_1080_26941112_2024_2346083
crossref_primary_10_3367_UFNr_2024_06_039692
crossref_primary_10_1016_j_diamond_2009_01_038
crossref_primary_10_1021_acs_cgd_8b01424
crossref_primary_10_1021_jp803735a
crossref_primary_10_1038_s43246_022_00228_4
crossref_primary_10_1088_0953_8984_21_36_364201
crossref_primary_10_3390_ma14227081
Cites_doi 10.1103/PhysRevLett.76.2953
10.1103/PhysRevLett.70.966
10.1002/pssa.200405164
10.1103/PhysRevB.68.205306
10.1103/PhysRevLett.71.3170
10.1103/PhysRevB.72.125326
10.1016/j.diamond.2004.10.043
10.1016/0022-0248(89)90642-8
10.1103/PhysRevLett.66.1733
10.1016/0022-0248(92)90318-D
10.1103/PhysRev.82.87
10.1016/0022-0248(89)90643-X
10.1016/j.diamond.2006.02.005
10.1103/PhysRevB.65.115318
10.1103/PhysRevLett.69.3785
10.1016/j.jcrysgro.2005.07.046
10.1016/0039-6028(85)90828-3
10.3938/jkps.37.755
10.1002/pssa.200671101
10.1016/0925-9635(93)90047-6
10.1103/PhysRevLett.55.1765
ContentType Journal Article
Copyright 2007 Elsevier B.V.
2008 INIST-CNRS
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2007 Elsevier B.V.
– notice: 2008 INIST-CNRS
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
IQODW
7SR
7U5
8BQ
8FD
JG9
L7M
1XC
DOI 10.1016/j.jcrysgro.2007.09.044
DatabaseName CrossRef
Pascal-Francis
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Physics
EISSN 1873-5002
EndPage 203
ExternalDocumentID oai_HAL_hal_03575911v1
19972223
10_1016_j_jcrysgro_2007_09_044
S0022024807008287
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABNEU
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADIYS
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
D-I
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMV
HVGLF
HZ~
IHE
J1W
KOM
M24
M38
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SPD
SPG
SSQ
SSZ
T5K
TN5
VH1
WUQ
XPP
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
AFXIZ
EFKBS
IQODW
7SR
7U5
8BQ
8FD
JG9
L7M
1XC
ID FETCH-LOGICAL-c473t-9a69abc5a2f3da8be5eccef3a8d8a1cae6cec3651f7a8733c90fbd7f97c6a8953
IEDL.DBID AIKHN
ISSN 0022-0248
IngestDate Fri May 09 12:23:51 EDT 2025
Thu Jul 10 18:18:00 EDT 2025
Mon Jul 21 09:13:01 EDT 2025
Tue Jul 01 04:25:02 EDT 2025
Thu Apr 24 22:52:24 EDT 2025
Fri Feb 23 02:25:07 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords A1. Growth models
A3. Chemical vapor deposition processes
B1. Diamond
A1. Crystal morphology
A2. Single crystal growth
Crystal growth
Homoepitaxy
Cubic lattices
Growth rate
Industrial application
Synthetic diamond
Epitaxy
Geometrical model
Optimization
Transients
Thin films
Time dependence
Crystallites
PECVD
Crystal morphology
Epitaxial layers
Theoretical study
Twinning
Topology
Film growth
CVD
Monocrystals
Quality control
Growth mechanism
Surface area
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c473t-9a69abc5a2f3da8be5eccef3a8d8a1cae6cec3651f7a8733c90fbd7f97c6a8953
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ORCID 0000-0003-4217-7333
PQID 31763224
PQPubID 23500
PageCount 17
ParticipantIDs hal_primary_oai_HAL_hal_03575911v1
proquest_miscellaneous_31763224
pascalfrancis_primary_19972223
crossref_citationtrail_10_1016_j_jcrysgro_2007_09_044
crossref_primary_10_1016_j_jcrysgro_2007_09_044
elsevier_sciencedirect_doi_10_1016_j_jcrysgro_2007_09_044
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-01
PublicationDateYYYYMMDD 2008-01-01
PublicationDate_xml – month: 01
  year: 2008
  text: 2008-01
PublicationDecade 2000
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Journal of crystal growth
PublicationYear 2008
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Tallaire, Achard, Silva, Sussmann, Gicquel, Rzepka (bib3) 2004; 201
Gardeniers, Maas, van Meerten, Giling (bib22) 1989; 96
Silva, Achard, Bonnin, Michau, Tallaire, Brinza, Gicquel (bib1) 2006; 203
Bird, Clarke, King-Smith, Payne, Stich, Sutton (bib12) 1992; 69
Gardeniers, Maas, van Meerten, Giling (bib21) 1989; 96
Herring (bib11) 1951; 82
Horn-von Hoegen, Müller, Al-Falou, Henzler (bib17) 1993; 71
Stekolnikov, Bechstedt (bib8) 2005; 72
P. Hartman, in: Crystal Growth: An Introduction, North-Holland, Elsevier, 1973, p. 367.
Janssen, Schermer, van-Enckevort, Giling (bib6) 1992; 125
Giling, Van Enckevort (bib20) 1985; 161
Stekolnikov, Furthmüller, Bechstedt (bib9) 2002; 65
Achard, Tallaire, Sussmann, Silva, Gicquel (bib2) 2005; 284
Tallaire, Collins, Charles, Achard, Sussmann, Gicquel, Newton, Edmonds, Cruddace (bib4) 2006; 15
Horn-von Hoegen, Golla (bib18) 1996; 76
Knall, Pethica, Todd, Wilson (bib15) 1991; 66
Stekolnikov, Furthmüller, Bechstedt (bib10) 2003; 68
Wild, Koild, Müller-Sebert, Walcher, Kohl, Herres, Locher, Samlenski, Brenn (bib5) 1993; 2
Hong (bib13) 2000; 37
Gibson, McDonald, Unterwald (bib14) 1985; 55
Bauer, Schreck, Sternschulte, Stritzker (bib7) 2005; 14
Eaglesham, Unterwald, Jacobson (bib16) 1993; 70
Bennema, van der Eerden (bib23) 1987
Giling (10.1016/j.jcrysgro.2007.09.044_bib20) 1985; 161
Eaglesham (10.1016/j.jcrysgro.2007.09.044_bib16) 1993; 70
Knall (10.1016/j.jcrysgro.2007.09.044_bib15) 1991; 66
Tallaire (10.1016/j.jcrysgro.2007.09.044_bib3) 2004; 201
Wild (10.1016/j.jcrysgro.2007.09.044_bib5) 1993; 2
Stekolnikov (10.1016/j.jcrysgro.2007.09.044_bib10) 2003; 68
Bird (10.1016/j.jcrysgro.2007.09.044_bib12) 1992; 69
10.1016/j.jcrysgro.2007.09.044_bib19
Horn-von Hoegen (10.1016/j.jcrysgro.2007.09.044_bib18) 1996; 76
Hong (10.1016/j.jcrysgro.2007.09.044_bib13) 2000; 37
Gardeniers (10.1016/j.jcrysgro.2007.09.044_bib22) 1989; 96
Herring (10.1016/j.jcrysgro.2007.09.044_bib11) 1951; 82
Silva (10.1016/j.jcrysgro.2007.09.044_bib1) 2006; 203
Janssen (10.1016/j.jcrysgro.2007.09.044_bib6) 1992; 125
Achard (10.1016/j.jcrysgro.2007.09.044_bib2) 2005; 284
Horn-von Hoegen (10.1016/j.jcrysgro.2007.09.044_bib17) 1993; 71
Gardeniers (10.1016/j.jcrysgro.2007.09.044_bib21) 1989; 96
Stekolnikov (10.1016/j.jcrysgro.2007.09.044_bib9) 2002; 65
Gibson (10.1016/j.jcrysgro.2007.09.044_bib14) 1985; 55
Bennema (10.1016/j.jcrysgro.2007.09.044_bib23) 1987
Stekolnikov (10.1016/j.jcrysgro.2007.09.044_bib8) 2005; 72
Tallaire (10.1016/j.jcrysgro.2007.09.044_bib4) 2006; 15
Bauer (10.1016/j.jcrysgro.2007.09.044_bib7) 2005; 14
References_xml – volume: 125
  start-page: 42
  year: 1992
  ident: bib6
  publication-title: J. Crystal Growth
– reference: P. Hartman, in: Crystal Growth: An Introduction, North-Holland, Elsevier, 1973, p. 367.
– volume: 2
  start-page: 158
  year: 1993
  ident: bib5
  publication-title: Diamond Relat. Mater.
– volume: 65
  start-page: 115318
  year: 2002
  ident: bib9
  publication-title: Phys. Rev. B
– volume: 66
  start-page: 1733
  year: 1991
  ident: bib15
  publication-title: Phys. Rev. Lett.
– volume: 96
  start-page: 832
  year: 1989
  ident: bib21
  publication-title: J. Crystal Growth
– volume: 161
  start-page: 567
  year: 1985
  ident: bib20
  publication-title: Surf. Sci.
– volume: 76
  start-page: 2953
  year: 1996
  ident: bib18
  publication-title: Phys. Rev. Lett.
– start-page: 1
  year: 1987
  ident: bib23
  publication-title: Morphology of Crystals
– volume: 14
  start-page: 266
  year: 2005
  ident: bib7
  publication-title: Diamond Relat. Mater.
– volume: 82
  start-page: 87
  year: 1951
  ident: bib11
  publication-title: Phys. Rev.
– volume: 69
  start-page: 3785
  year: 1992
  ident: bib12
  publication-title: Phys. Rev. Lett.
– volume: 37
  start-page: 93
  year: 2000
  ident: bib13
  publication-title: J. Korean Phys. Soc.
– volume: 68
  start-page: 205306
  year: 2003
  ident: bib10
  publication-title: Phys. Rev. B
– volume: 72
  start-page: 125326
  year: 2005
  ident: bib8
  publication-title: Phys. Rev. B (Condens. Matter Mater. Phys.)
– volume: 15
  start-page: 1700
  year: 2006
  ident: bib4
  publication-title: Diamond Relat. Mater.
– volume: 71
  start-page: 3170
  year: 1993
  ident: bib17
  publication-title: Phys. Rev. Lett.
– volume: 284
  start-page: 396
  year: 2005
  ident: bib2
  publication-title: J. Crystal Growth
– volume: 55
  start-page: 1765
  year: 1985
  ident: bib14
  publication-title: Phys. Rev. Lett.
– volume: 96
  start-page: 821
  year: 1989
  ident: bib22
  publication-title: J. Crystal Growth
– volume: 203
  start-page: 3049
  year: 2006
  ident: bib1
  publication-title: Phys. Status Solidi (a)
– volume: 201
  start-page: 2419
  year: 2004
  ident: bib3
  publication-title: Phys. Status Solidi (a)
– volume: 70
  start-page: 966
  year: 1993
  ident: bib16
  publication-title: Phys. Rev. Lett.
– volume: 76
  start-page: 2953
  year: 1996
  ident: 10.1016/j.jcrysgro.2007.09.044_bib18
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.76.2953
– volume: 70
  start-page: 966
  year: 1993
  ident: 10.1016/j.jcrysgro.2007.09.044_bib16
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.70.966
– volume: 201
  start-page: 2419
  year: 2004
  ident: 10.1016/j.jcrysgro.2007.09.044_bib3
  publication-title: Phys. Status Solidi (a)
  doi: 10.1002/pssa.200405164
– volume: 68
  start-page: 205306
  year: 2003
  ident: 10.1016/j.jcrysgro.2007.09.044_bib10
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.68.205306
– volume: 71
  start-page: 3170
  year: 1993
  ident: 10.1016/j.jcrysgro.2007.09.044_bib17
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.71.3170
– volume: 72
  start-page: 125326
  year: 2005
  ident: 10.1016/j.jcrysgro.2007.09.044_bib8
  publication-title: Phys. Rev. B (Condens. Matter Mater. Phys.)
  doi: 10.1103/PhysRevB.72.125326
– volume: 14
  start-page: 266
  year: 2005
  ident: 10.1016/j.jcrysgro.2007.09.044_bib7
  publication-title: Diamond Relat. Mater.
  doi: 10.1016/j.diamond.2004.10.043
– ident: 10.1016/j.jcrysgro.2007.09.044_bib19
– volume: 96
  start-page: 821
  year: 1989
  ident: 10.1016/j.jcrysgro.2007.09.044_bib22
  publication-title: J. Crystal Growth
  doi: 10.1016/0022-0248(89)90642-8
– volume: 66
  start-page: 1733
  year: 1991
  ident: 10.1016/j.jcrysgro.2007.09.044_bib15
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.66.1733
– volume: 125
  start-page: 42
  year: 1992
  ident: 10.1016/j.jcrysgro.2007.09.044_bib6
  publication-title: J. Crystal Growth
  doi: 10.1016/0022-0248(92)90318-D
– start-page: 1
  year: 1987
  ident: 10.1016/j.jcrysgro.2007.09.044_bib23
– volume: 82
  start-page: 87
  year: 1951
  ident: 10.1016/j.jcrysgro.2007.09.044_bib11
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.82.87
– volume: 96
  start-page: 832
  year: 1989
  ident: 10.1016/j.jcrysgro.2007.09.044_bib21
  publication-title: J. Crystal Growth
  doi: 10.1016/0022-0248(89)90643-X
– volume: 15
  start-page: 1700
  year: 2006
  ident: 10.1016/j.jcrysgro.2007.09.044_bib4
  publication-title: Diamond Relat. Mater.
  doi: 10.1016/j.diamond.2006.02.005
– volume: 65
  start-page: 115318
  year: 2002
  ident: 10.1016/j.jcrysgro.2007.09.044_bib9
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.65.115318
– volume: 69
  start-page: 3785
  year: 1992
  ident: 10.1016/j.jcrysgro.2007.09.044_bib12
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.69.3785
– volume: 284
  start-page: 396
  year: 2005
  ident: 10.1016/j.jcrysgro.2007.09.044_bib2
  publication-title: J. Crystal Growth
  doi: 10.1016/j.jcrysgro.2005.07.046
– volume: 161
  start-page: 567
  year: 1985
  ident: 10.1016/j.jcrysgro.2007.09.044_bib20
  publication-title: Surf. Sci.
  doi: 10.1016/0039-6028(85)90828-3
– volume: 37
  start-page: 93
  year: 2000
  ident: 10.1016/j.jcrysgro.2007.09.044_bib13
  publication-title: J. Korean Phys. Soc.
  doi: 10.3938/jkps.37.755
– volume: 203
  start-page: 3049
  year: 2006
  ident: 10.1016/j.jcrysgro.2007.09.044_bib1
  publication-title: Phys. Status Solidi (a)
  doi: 10.1002/pssa.200671101
– volume: 2
  start-page: 158
  year: 1993
  ident: 10.1016/j.jcrysgro.2007.09.044_bib5
  publication-title: Diamond Relat. Mater.
  doi: 10.1016/0925-9635(93)90047-6
– volume: 55
  start-page: 1765
  year: 1985
  ident: 10.1016/j.jcrysgro.2007.09.044_bib14
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.55.1765
SSID ssj0001610
Score 2.1134205
Snippet Plasma-assisted CVD homoepitaxial diamond growth is a process that must satisfy many stringent requirements to meet industrial applications, particularly in...
SourceID hal
proquest
pascalfrancis
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 187
SubjectTerms A1. Crystal morphology
A1. Growth models
A2. Single crystal growth
A3. Chemical vapor deposition processes
B1. Diamond
Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.)
Cross-disciplinary physics: materials science; rheology
Engineering Sciences
Exact sciences and technology
Fullerenes and related materials; diamonds, graphite
Materials science
Methods of deposition of films and coatings; film growth and epitaxy
Physics
Specific materials
Theory and models of film growth
Title Geometric modeling of homoepitaxial CVD diamond growth: I. The {1 0 0}{1 1 1}{1 1 0}{1 1 3} system
URI https://dx.doi.org/10.1016/j.jcrysgro.2007.09.044
https://www.proquest.com/docview/31763224
https://hal.science/hal-03575911
Volume 310
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB417QEQqqCACJRgIa6brGPv2uYWpZSUR08U9Wb5tUojmo3alIdQ-e0dZ72hFUI9oD1Ya2m0lufb8Wh35vsAXksmA_XcZypULEOE2MxyIzL0t7dSBS58bE7-dFhOjvj74-J4A8ZtL0wsq0yxv4npq2idZgZpNweLk5PY4zscRkYuBO2Ktr0DW0OmSoT21ujgw-RwHZAxqclb0vBocK1ReNafubOfsYMisRmqfs75v86ozjQWS95fmHPcv6oRvvgrhq8Opv0HsJ0ySjJqFv0QNsJ8B-6MWyG3Hbh3jXPwEdh3oT6NMlqOrFRwcJLUFZnWp3WICiI_EJBk_GWPIHAQop7gqr8vp2_IQZ8gpsgvSnKSX-KAVzOkO3ZJGl7ox3C0__bzeJIloYXMccGWmTKlMtYVZlgxb6QNBToWfWekl4Y6E0oXHCsLWgkjBWNO5ZX1olLClUaqgj2BzXk9D0-BuEALn-cOLS1HKyUtq5iVhpdWOMa7ULRbq11iIY9iGF91W242061LokSm0LnS6JIuDNZ2i4aH41YL1XpO30CUxsPiVttX6Or1gyIF92T0Uce5nEVJU0q_0S70biDhz7piMzKmXV142UJDo8vjnxgzD_XFucakrcRIyp_9xxqfw92mdiV-DtqFzeXZRXiBCdLS9qDT_0176TW4AiKSD68
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB615VAQQlCoCI_WQlw32Y29a5tbFSgppD21qDfLr1Ua0WzUpjyEym9nZh99CKEe0B6stTKK5fk8HiUz3wfwVnEVsyBComPJE0SIS5ywMkF_B6d0FDJQc_L-QTE-Ep-O8-MVGHW9MFRW2cb-JqbX0bqdGbS7OVicnFCP73BIjFwI2pq2fRXuCTy-dDr7v6_rPDClSTvKcPr4jTbhWX_mz35S_0TLZaj7qRD_uqFWp1Qq-XBhz3H3ykb24q8IXl9Lu4_hUZtPsp1myU9gJc43YH3UybhtwIMbjINPwX2M1SmJaHlWa-DgJKtKNq1Oq0j6IT8Qjmz05T1D2CBAA8NVf19O37G9PkNEsV8ZS1l6iQM-zdC-8UvWsEI_g6PdD4ejcdLKLCReSL5MtC20dT63w5IHq1zM0a3oOauCspm3sfDR8yLPSmmV5NzrtHRBllr6wiqd801Ym1fz-ByYj1ke0tSjpRNopZXjJXfKisJJz0UP8m5rjW85yEkK46vpis1mpnMJCWRKk2qDLunB4Mpu0bBw3GmhO8-ZW3gyeFXcafsGXX31RUTAPd6ZGJpLOQmaZtm3rAdbt5BwvS5qRcakqwfbHTQMupz-h7HzWF2cG0zZCoyj4sV_rHEb1seH-xMz2Tv4_BLuN1Us9MPQK1hbnl3E15gqLd1WfRT-AFyFEHM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Geometric+modeling+of+homoepitaxial+CVD+diamond+growth%3A+I.+The+%7B100%7D%7B111%7D%7B110%7D%7B113%7D+system&rft.jtitle=Journal+of+crystal+growth&rft.au=Silva%2C+F&rft.au=Bonnin%2C+X&rft.au=Achard%2C+J&rft.au=Brinza%2C+O&rft.date=2008-01-01&rft.issn=0022-0248&rft.volume=310&rft.issue=1&rft.spage=187&rft.epage=203&rft_id=info:doi/10.1016%2Fj.jcrysgro.2007.09.044&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-0248&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-0248&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-0248&client=summon