Electron Excitation of High Dipole Moment Molecules Re-examined
Emission from high-dipole moment molecules such as HCN allows determination of the density in molecular clouds, and is often considered to trace the "dense" gas available for star formation. We assess the importance of electron excitation in various environments. The ratio of the rate coef...
Saved in:
Published in | The Astrophysical journal Vol. 841; no. 1; pp. 25 - 35 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Philadelphia
The American Astronomical Society
20.05.2017
IOP Publishing |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Emission from high-dipole moment molecules such as HCN allows determination of the density in molecular clouds, and is often considered to trace the "dense" gas available for star formation. We assess the importance of electron excitation in various environments. The ratio of the rate coefficients for electrons and H2 molecules, 105 for HCN, yields the requirements for electron excitation to be of practical importance if and , where the numerical factors reflect the critical values and . This indicates that in regions where a large fraction of carbon is ionized, will be large enough to make electron excitation significant. The situation is in general similar for other "high-density tracers," including HCO+, CN, and CS. But there are significant differences in the critical electron fractional abundance, , defined by the value required for equal effect from collisions with H2 and e−. Electron excitation is, for example, unimportant for CO and C+. Electron excitation may be responsible for the surprisingly large spatial extent of emission from dense gas tracers in some molecular clouds. The enhanced estimates for HCN abundances and HCN/CO and HCN/HCO+ ratios observed in the nuclear regions of luminous galaxies may be in part a result of electron excitation of high dipole moment tracers. The importance of electron excitation will depend on detailed models of the chemistry, which may well be non-steady state and non-static. |
---|---|
AbstractList | Emission from high-dipole moment molecules such as HCN allows determination of the density in molecular clouds, and is often considered to trace the “dense” gas available for star formation. We assess the importance of electron excitation in various environments. The ratio of the rate coefficients for electrons and H
2
molecules, ≃10
5
for HCN, yields the requirements for electron excitation to be of practical importance if
and
, where the numerical factors reflect the critical values
and
. This indicates that in regions where a large fraction of carbon is ionized,
will be large enough to make electron excitation significant. The situation is in general similar for other “high-density tracers,” including HCO
+
, CN, and CS. But there are significant differences in the critical electron fractional abundance,
, defined by the value required for equal effect from collisions with H
2
and e
−
. Electron excitation is, for example, unimportant for CO and C
+
. Electron excitation may be responsible for the surprisingly large spatial extent of emission from dense gas tracers in some molecular clouds. The enhanced estimates for HCN abundances and HCN/CO and HCN/HCO
+
ratios observed in the nuclear regions of luminous galaxies may be in part a result of electron excitation of high dipole moment tracers. The importance of electron excitation will depend on detailed models of the chemistry, which may well be non-steady state and non-static. Emission from high-dipole moment molecules such as HCN allows determination of the density in molecular clouds, and is often considered to trace the “dense” gas available for star formation. We assess the importance of electron excitation in various environments. The ratio of the rate coefficients for electrons and H{sub 2} molecules, ≃10{sup 5} for HCN, yields the requirements for electron excitation to be of practical importance if n(H{sub 2})⩽10{sup 5.5} cm{sup −3} and X(e{sup −})⩾10{sup −5}, where the numerical factors reflect the critical values n{sub c}(H{sub 2}) and X{sup ∗}(e{sup −}). This indicates that in regions where a large fraction of carbon is ionized, X(e{sup −}) will be large enough to make electron excitation significant. The situation is in general similar for other “high-density tracers,” including HCO{sup +}, CN, and CS. But there are significant differences in the critical electron fractional abundance, X{sup ∗}(e{sup −}), defined by the value required for equal effect from collisions with H{sub 2} and e{sup −}. Electron excitation is, for example, unimportant for CO and C{sup +}. Electron excitation may be responsible for the surprisingly large spatial extent of emission from dense gas tracers in some molecular clouds. The enhanced estimates for HCN abundances and HCN/CO and HCN/HCO{sup +} ratios observed in the nuclear regions of luminous galaxies may be in part a result of electron excitation of high dipole moment tracers. The importance of electron excitation will depend on detailed models of the chemistry, which may well be non-steady state and non-static. Emission from high-dipole moment molecules such as HCN allows determination of the density in molecular clouds, and is often considered to trace the "dense" gas available for star formation. We assess the importance of electron excitation in various environments. The ratio of the rate coefficients for electrons and H2 molecules, 105 for HCN, yields the requirements for electron excitation to be of practical importance if and , where the numerical factors reflect the critical values and . This indicates that in regions where a large fraction of carbon is ionized, will be large enough to make electron excitation significant. The situation is in general similar for other "high-density tracers," including HCO+, CN, and CS. But there are significant differences in the critical electron fractional abundance, , defined by the value required for equal effect from collisions with H2 and e−. Electron excitation is, for example, unimportant for CO and C+. Electron excitation may be responsible for the surprisingly large spatial extent of emission from dense gas tracers in some molecular clouds. The enhanced estimates for HCN abundances and HCN/CO and HCN/HCO+ ratios observed in the nuclear regions of luminous galaxies may be in part a result of electron excitation of high dipole moment tracers. The importance of electron excitation will depend on detailed models of the chemistry, which may well be non-steady state and non-static. Emission from high-dipole moment molecules such as HCN allows determination of the density in molecular clouds, and is often considered to trace the “dense” gas available for star formation. We assess the importance of electron excitation in various environments. The ratio of the rate coefficients for electrons and H2 molecules, ≃105 for HCN, yields the requirements for electron excitation to be of practical importance if \(n({{\rm{H}}}_{2})\leqslant {10}^{5.5}\) \({\mathrm{cm}}^{-3}\) and \(X({{\rm{e}}}^{-})\geqslant {10}^{-5}\), where the numerical factors reflect the critical values \({n}_{{\rm{c}}}({{\rm{H}}}_{2})\) and \({X}^{* }({{\rm{e}}}^{-})\). This indicates that in regions where a large fraction of carbon is ionized, \(X({{\rm{e}}}^{-})\) will be large enough to make electron excitation significant. The situation is in general similar for other “high-density tracers,” including HCO+, CN, and CS. But there are significant differences in the critical electron fractional abundance, \({X}^{* }({{\rm{e}}}^{-})\), defined by the value required for equal effect from collisions with H2 and e−. Electron excitation is, for example, unimportant for CO and C+. Electron excitation may be responsible for the surprisingly large spatial extent of emission from dense gas tracers in some molecular clouds. The enhanced estimates for HCN abundances and HCN/CO and HCN/HCO+ ratios observed in the nuclear regions of luminous galaxies may be in part a result of electron excitation of high dipole moment tracers. The importance of electron excitation will depend on detailed models of the chemistry, which may well be non-steady state and non-static. |
Author | Kauffmann, Jens Goldsmith, Paul F. |
Author_xml | – sequence: 1 givenname: Paul F. orcidid: 0000-0002-6622-8396 surname: Goldsmith fullname: Goldsmith, Paul F. email: paul.f.goldsmith@jpl.nasa.gov organization: California Institute of Technology Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena CA 91109, USA – sequence: 2 givenname: Jens surname: Kauffmann fullname: Kauffmann, Jens organization: Max-Planck-Institut für Radioastronomie , Auf dem Hügel 69, D-53121 Bonn, Germany |
BackLink | https://www.osti.gov/biblio/22872705$$D View this record in Osti.gov |
BookMark | eNp9kEtLw0AUhQepYFvduwzo0th5JZOsRGq1QkWQLtwN4-SOnZJmYiaF-u-dELUg6uo--M7l3DNCg8pVgNApwZcs42JCEpbFnCViolRqCD1Aw-_VAA0xxjxOmXg-QiPv191I83yIrmYl6LZxVTTbaduq1obWmWhuX1fRja1dCdGD20DVhhLQbQk-eoIYdmpjKyiO0aFRpYeTzzpGy9vZcjqPF49399PrRay5YG2cC6Ep5lyonDEMwHgOKTBjKBRQ5FyTF0EzajJucpIKTAqVKK4LpTgHzdgYnfVnnW-t9MEp6JV2VRXMS0ozQQVO9lTduLct-Fau3bapgi9JWZpkCeGCBirtKd047xsw8uvxtlG2lATLLlHZxSe7-GSfaBDiH8K6sRvVvP8nOe8l1tV7M6pey4wTSSRNZF2YgF38gv159QOnI5Ot |
CitedBy_id | crossref_primary_10_1051_0004_6361_201936885 crossref_primary_10_1051_0004_6361_202348205 crossref_primary_10_3847_1538_4357_aac512 crossref_primary_10_1051_0004_6361_201935556 crossref_primary_10_1051_0004_6361_201936800 crossref_primary_10_1093_mnras_staa1814 crossref_primary_10_1051_0004_6361_202449148 crossref_primary_10_3847_1538_4357_ac2c08 crossref_primary_10_1146_annurev_astro_052920_010254 crossref_primary_10_1051_0004_6361_202142210 crossref_primary_10_3847_1538_4357_abf4cd crossref_primary_10_1051_0004_6361_202140670 crossref_primary_10_3847_1538_4357_aaf72a crossref_primary_10_3847_1538_4357_ab6d76 crossref_primary_10_1051_0004_6361_202038648 crossref_primary_10_1051_0004_6361_202348331 crossref_primary_10_3847_1538_4357_ab8938 crossref_primary_10_1051_0004_6361_202346598 crossref_primary_10_3847_1538_4357_aab2ac crossref_primary_10_3847_1538_4357_ad18b9 crossref_primary_10_1051_0004_6361_202140419 crossref_primary_10_1140_epjd_s10053_022_00575_4 crossref_primary_10_3847_1538_4357_ac67ea crossref_primary_10_1051_0004_6361_202347050 crossref_primary_10_1007_s00159_019_0121_9 crossref_primary_10_3847_1538_4357_aa99d6 crossref_primary_10_1007_s00159_020_00128_x crossref_primary_10_3847_1538_4357_ab41ff crossref_primary_10_1051_0004_6361_202347409 crossref_primary_10_3847_2041_8213_ad9f5e crossref_primary_10_1051_0004_6361_202038040 crossref_primary_10_1093_mnras_sty035 crossref_primary_10_1051_0004_6361_202038886 crossref_primary_10_1051_0004_6361_201731123 crossref_primary_10_3847_1538_4357_ab2b95 crossref_primary_10_1051_0004_6361_201834409 crossref_primary_10_1051_0004_6361_202038641 crossref_primary_10_3847_1538_4357_ac91ce crossref_primary_10_1051_epjconf_202226500019 crossref_primary_10_1051_0004_6361_201936516 crossref_primary_10_1093_mnras_stad784 crossref_primary_10_1146_annurev_astro_032620_021910 crossref_primary_10_1146_annurev_astro_071221_052651 crossref_primary_10_1051_0004_6361_201731833 crossref_primary_10_1051_0004_6361_202451567 crossref_primary_10_1093_mnras_sty220 crossref_primary_10_1051_0004_6361_202449496 crossref_primary_10_3847_1538_4357_aadf32 crossref_primary_10_1093_mnras_stz1758 |
Cites_doi | 10.1088/0004-637X/698/2/1244 10.1086/160323 10.1063/1.447269 10.1086/172355 10.1088/0004-637X/747/2/90 10.1086/171908 10.1051/0004-6361:20066820 10.1117/12.606257 10.1088/0022-3700/8/17/017 10.1051/0004-6361/201423987 10.1111/j.1365-2966.2010.16826.x 10.1086/503252 10.1063/1.1672903 10.1093/pasj/65.5.100 10.1086/192110 10.1088/0004-637X/803/1/37 10.1086/182562 10.1093/mnras/279.3.L41 10.1086/506604 10.1051/0004-6361:20066130 10.1086/426860 10.1086/157569 10.1051/0004-6361:20053845 10.1111/j.1365-2966.2011.19896.x 10.1086/374617 10.1051/0004-6361/201629862 10.1051/0004-6361:20035774 10.1086/177532 10.1051/0004-6361:20041729 10.1051/0004-6361/201117919 10.1051/0004-6361/201425105 10.1046/j.1365-8711.2001.04480.x 10.1086/382999 10.1086/312850 10.1086/163111 10.1051/0004-6361:20079270 10.1093/mnras/stt730 10.1063/1.4880499 10.1016/0022-2852(68)90011-8 10.1051/0004-6361:200810803 10.1051/0004-6361:20042398 10.1093/mnras/221.1.33P 10.1086/382592 10.1046/j.1365-8711.2002.05982.x 10.1088/0004-637X/715/2/1370 10.1051/0004-6361/201526410 10.1086/167953 10.1051/0004-6361:200810571 10.1051/0004-6361/201424349 10.1088/0004-637X/780/2/183 10.1111/j.1365-2966.2010.16312.x 10.1088/0004-637X/721/2/1570 10.1088/0004-637X/774/2/134 10.1086/175305 10.1111/j.1365-2966.2007.12416.x 10.1051/0004-6361:20054363 10.1086/153006 10.1088/0004-637X/765/2/108 10.1086/312847 10.1111/j.1365-2966.2010.16207.x 10.1086/172270 10.1086/185947 10.1086/155229 10.1086/182711 10.1046/j.1365-8711.1999.02451.x |
ContentType | Journal Article |
Copyright | 2017. The American Astronomical Society. All rights reserved. Copyright IOP Publishing May 20, 2017 |
Copyright_xml | – notice: 2017. The American Astronomical Society. All rights reserved. – notice: Copyright IOP Publishing May 20, 2017 |
DBID | AAYXX CITATION 7TG 8FD H8D KL. L7M OTOTI |
DOI | 10.3847/1538-4357/aa6f12 |
DatabaseName | CrossRef Meteorological & Geoastrophysical Abstracts Technology Research Database Aerospace Database Meteorological & Geoastrophysical Abstracts - Academic Advanced Technologies Database with Aerospace OSTI.GOV |
DatabaseTitle | CrossRef Aerospace Database Meteorological & Geoastrophysical Abstracts Technology Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | CrossRef Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics Physics |
DocumentTitleAlternate | Electron Excitation of High Dipole Moment Molecules Re-examined |
EISSN | 1538-4357 |
ExternalDocumentID | 22872705 10_3847_1538_4357_aa6f12 apjaa6f12 |
GroupedDBID | -DZ -~X 123 1JI 23N 2FS 2WC 4.4 6J9 85S AAFWJ AAGCD AAJIO AALHV ABHWH ACBEA ACGFS ACHIP ACNCT ADACN AEFHF AENEX AFPKN AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN CJUJL CRLBU CS3 EBS EJD F5P FRP GROUPED_DOAJ IJHAN IOP KOT M~E N5L O3W O43 OK1 PJBAE RIN RNS ROL SJN SY9 T37 TN5 TR2 WH7 XSW AAYXX CITATION 7TG 8FD AEINN H8D KL. L7M ABPTK OTOTI |
ID | FETCH-LOGICAL-c473t-977c20447a9330ee349e6e3ff2eded94c1b7282f84f916701da5a4cdaa44ec33 |
IEDL.DBID | O3W |
ISSN | 0004-637X |
IngestDate | Fri May 19 01:45:17 EDT 2023 Wed Aug 13 09:17:22 EDT 2025 Tue Jul 01 04:08:58 EDT 2025 Thu Apr 24 22:59:38 EDT 2025 Wed Aug 21 03:33:03 EDT 2024 Thu Jan 07 13:49:48 EST 2021 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c473t-977c20447a9330ee349e6e3ff2eded94c1b7282f84f916701da5a4cdaa44ec33 |
Notes | AAS04013 Interstellar Matter and the Local Universe ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-6622-8396 |
OpenAccessLink | https://iopscience.iop.org/article/10.3847/1538-4357/aa6f12/pdf |
PQID | 2365851472 |
PQPubID | 4562441 |
PageCount | 11 |
ParticipantIDs | crossref_primary_10_3847_1538_4357_aa6f12 iop_journals_10_3847_1538_4357_aa6f12 proquest_journals_2365851472 crossref_citationtrail_10_3847_1538_4357_aa6f12 osti_scitechconnect_22872705 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-05-20 |
PublicationDateYYYYMMDD | 2017-05-20 |
PublicationDate_xml | – month: 05 year: 2017 text: 2017-05-20 day: 20 |
PublicationDecade | 2010 |
PublicationPlace | Philadelphia |
PublicationPlace_xml | – name: Philadelphia – name: United States |
PublicationTitle | The Astrophysical journal |
PublicationTitleAbbrev | APJ |
PublicationTitleAlternate | Astrophys. J |
PublicationYear | 2017 |
Publisher | The American Astronomical Society IOP Publishing |
Publisher_xml | – name: The American Astronomical Society – name: IOP Publishing |
References | Boland (apjaa6f12bib9) 1982; 261 Lique (apjaa6f12bib41) 2006; 451 Schöier (apjaa6f12bib55) 2005; 432 Wootten (apjaa6f12bib68) 1979; 234 Drdla (apjaa6f12bib15) 1989; 345 Esteban (apjaa6f12bib19) 2013; 433 Faure (apjaa6f12bib20) 2001; 325 Stoerzer (apjaa6f12bib58) 1996; 310 Vera (apjaa6f12bib64) 2014; 140 Sarrasin (apjaa6f12bib54) 2010; 404 Zsargó (apjaa6f12bib70) 2003; 589 Goorvitch (apjaa6f12bib29) 1994; 95 Neufeld (apjaa6f12bib50) 2006; 649 Chieze (apjaa6f12bib11) 1989; 221 Winnewisser (apjaa6f12bib67) 1968; 28 Dumouchel (apjaa6f12bib16) 2010; 406 Cubick (apjaa6f12bib12) 2008; 488 Monteiro (apjaa6f12bib48) 1986; 221 Green (apjaa6f12bib30) 1974; 191 Le Petit (apjaa6f12bib38) 2006; 164 Guelin (apjaa6f12bib31) 1977; 217 Lepp (apjaa6f12bib39) 1996; 306 Allison (apjaa6f12bib4) 1971; 13 Sofia (apjaa6f12bib56) 2004; 605 Meixner (apjaa6f12bib47) 1993; 405 Kohno (apjaa6f12bib37) 2001 Varambhia (apjaa6f12bib63) 2010; 403 Gerin (apjaa6f12bib26) 2015; 573 Elitzur (apjaa6f12bib18) 1978; 222 Godard (apjaa6f12bib27) 2009; 495 Tielens (apjaa6f12bib59) 1985; 291 Dickinson (apjaa6f12bib13) 1977; 54 Wilson (apjaa6f12bib66) 2002; 337 Federman (apjaa6f12bib22) 1996; 279 Goldsmith (apjaa6f12bib71) 2013; 774 Buldakov (apjaa6f12bib10) 2004; 5743 Maloney (apjaa6f12bib42) 1996; 466 Röllig (apjaa6f12bib53) 2006; 451 Turner (apjaa6f12bib60) 1992; 399 Hsieh (apjaa6f12bib35) 2012; 747 Linke (apjaa6f12bib40) 1977; 214 Aalto (apjaa6f12bib1) 2012; 537 Wiesenfeld (apjaa6f12bib65) 2014; 780 Barinovs (apjaa6f12bib5) 2005; 620 Harada (apjaa6f12bib33) 2013; 765 Stacey (apjaa6f12bib57) 1993; 404 van der Tak (apjaa6f12bib62) 2007; 468 Izumi (apjaa6f12bib36) 2013; 65 Gao (apjaa6f12bib25) 2004; 606 Xie (apjaa6f12bib69) 1995; 440 Howe (apjaa6f12bib34) 2000; 539 Martín (apjaa6f12bib44) 2015; 573 Muenter (apjaa6f12bib49) 1970; 52 Flower (apjaa6f12bib23) 1999; 305 Fuente (apjaa6f12bib24) 2008; 492 Maret (apjaa6f12bib43) 2009; 698 Aalto (apjaa6f12bib2) 2015a; 574 Aalto (apjaa6f12bib3) 2015b; 584 Bisbas (apjaa6f12bib7) 2015; 803 Kauffmann (apjaa6f12bib72) 2017 Goldsmith (apjaa6f12bib28) 2010; 715 Meijerink (apjaa6f12bib45) 2005; 436 Harada (apjaa6f12bib32) 2010; 721 Usero (apjaa6f12bib61) 2004; 419 Faure (apjaa6f12bib21) 2007; 382 Pety (apjaa6f12bib51) 2017; 599 Ben Abdallah (apjaa6f12bib6) 2012; 419 Meijerink (apjaa6f12bib46) 2007; 461 Ebenstein (apjaa6f12bib17) 1984; 80 Plume (apjaa6f12bib52) 2000; 539 Black (apjaa6f12bib8) 1991; 369 Dickinson (apjaa6f12bib14) 1975; 8 |
References_xml | – volume: 54 start-page: 645 year: 1977 ident: apjaa6f12bib13 publication-title: A&A – volume: 698 start-page: 1244 year: 2009 ident: apjaa6f12bib43 publication-title: ApJ doi: 10.1088/0004-637X/698/2/1244 – volume: 261 start-page: 110 year: 1982 ident: apjaa6f12bib9 publication-title: ApJ doi: 10.1086/160323 – volume: 80 start-page: 3989 year: 1984 ident: apjaa6f12bib17 publication-title: JChPh doi: 10.1063/1.447269 – volume: 405 start-page: 216 year: 1993 ident: apjaa6f12bib47 publication-title: ApJ doi: 10.1086/172355 – volume: 747 start-page: 90 year: 2012 ident: apjaa6f12bib35 publication-title: ApJ doi: 10.1088/0004-637X/747/2/90 – volume: 399 start-page: 114 year: 1992 ident: apjaa6f12bib60 publication-title: ApJ doi: 10.1086/171908 – volume: 468 start-page: 627 year: 2007 ident: apjaa6f12bib62 publication-title: A&A doi: 10.1051/0004-6361:20066820 – volume: 5743 start-page: 16 year: 2004 ident: apjaa6f12bib10 publication-title: Proc. SPIE doi: 10.1117/12.606257 – year: 2017 ident: apjaa6f12bib72 publication-title: A&A – volume: 8 start-page: 2846 year: 1975 ident: apjaa6f12bib14 publication-title: JPhB doi: 10.1088/0022-3700/8/17/017 – volume: 13 start-page: 331 year: 1971 ident: apjaa6f12bib4 publication-title: A&A – volume: 574 start-page: A85 year: 2015a ident: apjaa6f12bib2 publication-title: A&A doi: 10.1051/0004-6361/201423987 – volume: 406 start-page: 2488 year: 2010 ident: apjaa6f12bib16 publication-title: MNRAS doi: 10.1111/j.1365-2966.2010.16826.x – volume: 164 start-page: 506 year: 2006 ident: apjaa6f12bib38 publication-title: ApJS doi: 10.1086/503252 – volume: 52 start-page: 6033 year: 1970 ident: apjaa6f12bib49 publication-title: JChPh doi: 10.1063/1.1672903 – volume: 310 start-page: 592 year: 1996 ident: apjaa6f12bib58 publication-title: A&A – volume: 65 start-page: 100 year: 2013 ident: apjaa6f12bib36 publication-title: PASJ doi: 10.1093/pasj/65.5.100 – volume: 95 start-page: 535 year: 1994 ident: apjaa6f12bib29 publication-title: ApJS doi: 10.1086/192110 – volume: 803 start-page: 37 year: 2015 ident: apjaa6f12bib7 publication-title: ApJ doi: 10.1088/0004-637X/803/1/37 – volume: 217 start-page: L165 year: 1977 ident: apjaa6f12bib31 publication-title: ApJL doi: 10.1086/182562 – volume: 279 start-page: L41 year: 1996 ident: apjaa6f12bib22 publication-title: MNRAS doi: 10.1093/mnras/279.3.L41 – volume: 649 start-page: 816 year: 2006 ident: apjaa6f12bib50 publication-title: ApJ doi: 10.1086/506604 – volume: 221 start-page: 89 year: 1989 ident: apjaa6f12bib11 publication-title: A&A – volume: 461 start-page: 793 year: 2007 ident: apjaa6f12bib46 publication-title: A&A doi: 10.1051/0004-6361:20066130 – volume: 620 start-page: 537 year: 2005 ident: apjaa6f12bib5 publication-title: ApJ doi: 10.1086/426860 – volume: 234 start-page: 876 year: 1979 ident: apjaa6f12bib68 publication-title: ApJ doi: 10.1086/157569 – volume: 451 start-page: 917 year: 2006 ident: apjaa6f12bib53 publication-title: A&A doi: 10.1051/0004-6361:20053845 – volume: 419 start-page: 2441 year: 2012 ident: apjaa6f12bib6 publication-title: MNRAS doi: 10.1111/j.1365-2966.2011.19896.x – volume: 589 start-page: 319 year: 2003 ident: apjaa6f12bib70 publication-title: ApJ doi: 10.1086/374617 – volume: 599 start-page: A98 year: 2017 ident: apjaa6f12bib51 publication-title: A&A doi: 10.1051/0004-6361/201629862 – volume: 419 start-page: 897 year: 2004 ident: apjaa6f12bib61 publication-title: A&A doi: 10.1051/0004-6361:20035774 – volume: 466 start-page: 561 year: 1996 ident: apjaa6f12bib42 publication-title: ApJ doi: 10.1086/177532 – volume: 432 start-page: 369 year: 2005 ident: apjaa6f12bib55 publication-title: A&A doi: 10.1051/0004-6361:20041729 – volume: 537 start-page: A44 year: 2012 ident: apjaa6f12bib1 publication-title: A&A doi: 10.1051/0004-6361/201117919 – volume: 573 start-page: A116 year: 2015 ident: apjaa6f12bib44 publication-title: A&A doi: 10.1051/0004-6361/201425105 – volume: 325 start-page: 443 year: 2001 ident: apjaa6f12bib20 publication-title: MNRAS doi: 10.1046/j.1365-8711.2001.04480.x – volume: 606 start-page: 271 year: 2004 ident: apjaa6f12bib25 publication-title: ApJ doi: 10.1086/382999 – volume: 539 start-page: L137 year: 2000 ident: apjaa6f12bib34 publication-title: ApJL doi: 10.1086/312850 – volume: 291 start-page: 722 year: 1985 ident: apjaa6f12bib59 publication-title: ApJ doi: 10.1086/163111 – volume: 488 start-page: 623 year: 2008 ident: apjaa6f12bib12 publication-title: A&A doi: 10.1051/0004-6361:20079270 – volume: 433 start-page: 382 year: 2013 ident: apjaa6f12bib19 publication-title: MNRAS doi: 10.1093/mnras/stt730 – volume: 306 start-page: L21 year: 1996 ident: apjaa6f12bib39 publication-title: A&A – volume: 140 year: 2014 ident: apjaa6f12bib64 publication-title: JChPh doi: 10.1063/1.4880499 – volume: 28 start-page: 266 year: 1968 ident: apjaa6f12bib67 publication-title: JMoSp doi: 10.1016/0022-2852(68)90011-8 – volume: 495 start-page: 847 year: 2009 ident: apjaa6f12bib27 publication-title: A&A doi: 10.1051/0004-6361:200810803 – volume: 436 start-page: 397 year: 2005 ident: apjaa6f12bib45 publication-title: A&A doi: 10.1051/0004-6361:20042398 – volume: 221 start-page: 33P year: 1986 ident: apjaa6f12bib48 publication-title: MNRAS doi: 10.1093/mnras/221.1.33P – volume: 605 start-page: 272 year: 2004 ident: apjaa6f12bib56 publication-title: ApJ doi: 10.1086/382592 – volume: 337 start-page: 1027 year: 2002 ident: apjaa6f12bib66 publication-title: MNRAS doi: 10.1046/j.1365-8711.2002.05982.x – volume: 715 start-page: 1370 year: 2010 ident: apjaa6f12bib28 publication-title: ApJ doi: 10.1088/0004-637X/715/2/1370 – volume: 584 start-page: A42 year: 2015b ident: apjaa6f12bib3 publication-title: A&A doi: 10.1051/0004-6361/201526410 – volume: 345 start-page: 815 year: 1989 ident: apjaa6f12bib15 publication-title: ApJ doi: 10.1086/167953 – volume: 492 start-page: 675 year: 2008 ident: apjaa6f12bib24 publication-title: A&A doi: 10.1051/0004-6361:200810571 – volume: 573 start-page: A30 year: 2015 ident: apjaa6f12bib26 publication-title: A&A doi: 10.1051/0004-6361/201424349 – volume: 780 start-page: 183 year: 2014 ident: apjaa6f12bib65 publication-title: ApJ doi: 10.1088/0004-637X/780/2/183 – volume: 404 start-page: 518 year: 2010 ident: apjaa6f12bib54 publication-title: MNRAS doi: 10.1111/j.1365-2966.2010.16312.x – volume: 721 start-page: 1570 year: 2010 ident: apjaa6f12bib32 publication-title: ApJ doi: 10.1088/0004-637X/721/2/1570 – volume: 774 start-page: 134 year: 2013 ident: apjaa6f12bib71 publication-title: ApJ doi: 10.1088/0004-637X/774/2/134 – volume: 440 start-page: 674 year: 1995 ident: apjaa6f12bib69 publication-title: ApJ doi: 10.1086/175305 – volume: 382 start-page: 840 year: 2007 ident: apjaa6f12bib21 publication-title: MNRAS doi: 10.1111/j.1365-2966.2007.12416.x – start-page: 672 year: 2001 ident: apjaa6f12bib37 – volume: 451 start-page: 1125 year: 2006 ident: apjaa6f12bib41 publication-title: A&A doi: 10.1051/0004-6361:20054363 – volume: 191 start-page: 653 year: 1974 ident: apjaa6f12bib30 publication-title: ApJ doi: 10.1086/153006 – volume: 765 start-page: 108 year: 2013 ident: apjaa6f12bib33 publication-title: ApJ doi: 10.1088/0004-637X/765/2/108 – volume: 539 start-page: L133 year: 2000 ident: apjaa6f12bib52 publication-title: ApJL doi: 10.1086/312847 – volume: 403 start-page: 1409 year: 2010 ident: apjaa6f12bib63 publication-title: MNRAS doi: 10.1111/j.1365-2966.2010.16207.x – volume: 404 start-page: 219 year: 1993 ident: apjaa6f12bib57 publication-title: ApJ doi: 10.1086/172270 – volume: 369 start-page: L9 year: 1991 ident: apjaa6f12bib8 publication-title: ApJL doi: 10.1086/185947 – volume: 214 start-page: 50 year: 1977 ident: apjaa6f12bib40 publication-title: ApJ doi: 10.1086/155229 – volume: 222 start-page: L141 year: 1978 ident: apjaa6f12bib18 publication-title: ApJL doi: 10.1086/182711 – volume: 305 start-page: 651 year: 1999 ident: apjaa6f12bib23 publication-title: MNRAS doi: 10.1046/j.1365-8711.1999.02451.x |
SSID | ssj0004299 |
Score | 2.4890497 |
Snippet | Emission from high-dipole moment molecules such as HCN allows determination of the density in molecular clouds, and is often considered to trace the "dense"... Emission from high-dipole moment molecules such as HCN allows determination of the density in molecular clouds, and is often considered to trace the “dense”... |
SourceID | osti proquest crossref iop |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 25 |
SubjectTerms | Abundance Astrochemistry Astrophysics ASTROPHYSICS, COSMOLOGY AND ASTRONOMY CARBON IONS CARBON MONOXIDE CARBON NITRIDES COLLISIONS COSMIC GASES CYANIDES DENSITY DIPOLE MOMENTS ELECTRONS ELEMENT ABUNDANCE EMISSION EXCITATION GALAXIES HYDROCYANIC ACID HYDROGEN ISM: molecules Molecular clouds molecular processes MOLECULES Organic chemistry photon-dominated region (PDR) Spatial analysis Star & galaxy formation Star formation STARS Tracers |
Title | Electron Excitation of High Dipole Moment Molecules Re-examined |
URI | https://iopscience.iop.org/article/10.3847/1538-4357/aa6f12 https://www.proquest.com/docview/2365851472 https://www.osti.gov/biblio/22872705 |
Volume | 841 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR3va9Uw8Ngmgl9Ep7Kn28gHFfxQX5qkTYsfZOgbU5gbMvF9C2l6gcn2WnwVtv9-d23fxnCMfepBr2lyyf1McgfwVus0RMxNIjGzifGR5GAVZII2C9KWdan662KHP_KDX-b7PJuvwafruzBNO4r-jwQOiYIHEjJ_a5Kl055HScvbqfd55ArDj3SRF-x5HenfN5ciVTnavibJtZ0Pe5R3tnBLJ63Tf0k-N8Rh_8nnXunsP4Ono7Uo9oa-PYc1XGzC1t6S49fN-aV4L3p4CE8sN-Hx8QC9gM-zsb6NmF2EMQ-3aKLgcx3i62nbnKE45OwLHT36Crm4FD8xwQt_ToZn_RJO9mcnXw6SsVhCEozVXUJ2XFDSGOs5RIGoTYk56hgV1liXJqSVJfcqFiaSRWhlWvvMm1B7bwwGrV_BxqJZ4BYIcjEq0m2FZWRVyRJjZtIySI4XRYMTmK6o5VYD4HoWZ44cCqavY_o6pq8b6DuBD9dftEMSjXtw39EEuJGTlvfg7dzC8-0fV5jUpU5lrq3jBLZ5Ch2tJs6GG_jYUOicIg9RWZnR69XU3rShdM67pMaq1w_sxRt4oljPy4zEzTZsdH__4Q5ZKV21C-vfjo53-zV5BQMV3ew |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR3LTtwwcFSoinpBhRax5eVDW6mHdB0_4s2pQrAr-oCiiqp7sxxnLIFgE7FBon_fcZItQkWIU0bKxLHHnqftGYB3UqY-YKYSjtokygWSg4XnCRrtucnLXLTXxY5PsqNf6utUT_s6p-1dmKruRf8nArtEwR0JI39LkqXDlkdJy5uhc1lIxbAuwxI81zLLYu2GH_L33cVIkff2r0oyaabdPuWDrdzTS0v0b5LRFXHZfzK6VTyTV7DaW4xsv-vfGjzD2Tps7s9jDLu6-sM-sBbuQhTzdXhx2kGv4fO4r3HDxre-z8XNqsDi2Q52eF5Xl8iOYwaGhh5tlVycs5-Y4K27IuOzfANnk_HZwVHSF0xIvDKySciW84IrZVwMUyBKlWOGMgSBJZa58mlhyMUKIxXIKjQ8LZ12ypfOKYVeyg1YnlUz3ARGbkZB-m1kIrIoeI5BqzT3PMaMgsIBDBfUsosBxJoWl5acikhfG-lrI31tR98BfPz3Rd0l0ngE9z1NgO25af4I3s49PFdf2JFKbWqFtrQqBrAdp9DSiooZcX08OuQbK8hLFIZrer2Y2rs2hMziTqky4u0Te7EHK6eHE_v9y8m3LXgpotrnmqTPNiw31ze4Q0ZLU-y2C_MvklTg0g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electron+Excitation+of+High+Dipole+Moment+Molecules+Re-examined&rft.jtitle=The+Astrophysical+journal&rft.au=Goldsmith%2C+Paul+F.&rft.au=Kauffmann%2C+Jens&rft.date=2017-05-20&rft.issn=0004-637X&rft.eissn=1538-4357&rft.volume=841&rft.issue=1&rft.spage=25&rft_id=info:doi/10.3847%2F1538-4357%2Faa6f12&rft.externalDBID=n%2Fa&rft.externalDocID=10_3847_1538_4357_aa6f12 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-637X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-637X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-637X&client=summon |