TGF-β blockade improves the distribution and efficacy of therapeutics in breast carcinoma by normalizing the tumor stroma

Although the role of TGF-ß in tumor progression has been studied extensively, its impact on drug delivery in tumors remains far from understood. In this study, we examined the effect of TGF-ß blockade on the delivery and efficacy of conventional therapeutics and nanotherapeutics in orthotopic mammar...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 109; no. 41; pp. 16618 - 16623
Main Authors Liu, Jieqiong, Liao, Shan, Diop-Frimpong, Benjamin, Chen, Wei, Goel, Shom, Naxerova, Kamila, Ancukiewicz, Marek, Boucher, Yves, Jain, Rakesh K., Xu, Lei
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 09.10.2012
National Acad Sciences
Subjects
Online AccessGet full text
ISSN0027-8424
1091-6490
1091-6490
DOI10.1073/pnas.1117610109

Cover

Loading…
Abstract Although the role of TGF-ß in tumor progression has been studied extensively, its impact on drug delivery in tumors remains far from understood. In this study, we examined the effect of TGF-ß blockade on the delivery and efficacy of conventional therapeutics and nanotherapeutics in orthotopic mammary carcinoma mouse models. We used both genetic (overexpression of sTßRII, a soluble TGF-ß type II receptor) and pharmacologie (1D11, a TGF-ß neutralizing antibody) approaches to block TGF-ß signaling. In two orthotopic mammary carcinoma models (human MDA-MB-231 and murine 4T1 cell lines), TGF-ß blockade significantly decreased tumor growth and metastasis. TGF-ß blockade also increased the recruitment and incorporation of perivascular cells into tumor blood vessels and increased the fraction of perfused vessels. Moreover, TGF-ß blockade normalized the tumor interstitial matrix by decreasing collagen I content. As a result of this vessel and interstitial matrix normalization, TGF-ß blockade improved the intratumoral penetration of both a low-molecular-weight conventional chemotherapeutic drug and a nanotherapeutic agent leading to better control of tumor growth.
AbstractList Although the role of TGF-β in tumor progression has been studied extensively, its impact on drug delivery in tumors remains far from understood. In this study, we examined the effect of TGF-β blockade on the delivery and efficacy of conventional therapeutics and nanotherapeutics in orthotopic mammary carcinoma mouse models. We used both genetic (overexpression of sTβRII, a soluble TGF-β type II receptor) and pharmacologic (1D11, a TGF-β neutralizing antibody) approaches to block TGF-β signaling. In two orthotopic mammary carcinoma models (human MDA-MB-231 and murine 4T1 cell lines), TGF-β blockade significantly decreased tumor growth and metastasis. TGF-β blockade also increased the recruitment and incorporation of perivascular cells into tumor blood vessels and increased the fraction of perfused vessels. Moreover, TGF-β blockade normalized the tumor interstitial matrix by decreasing collagen I content. As a result of this vessel and interstitial matrix normalization, TGF-β blockade improved the intratumoral penetration of both a low-molecular-weight conventional chemotherapeutic drug and a nanotherapeutic agent, leading to better control of tumor growth.
Although the role of TGF-β in tumor progression has been studied extensively, its impact on drug delivery in tumors remains far from understood. In this study, we examined the effect of TGF-β blockade on the delivery and efficacy of conventional therapeutics and nanotherapeutics in orthotopic mammary carcinoma mouse models. We used both genetic (overexpression of sTβRII, a soluble TGF-β type II receptor) and pharmacologic (1D11, a TGF-β neutralizing antibody) approaches to block TGF-β signaling. In two orthotopic mammary carcinoma models (human MDA-MB-231 and murine 4T1 cell lines), TGF-β blockade significantly decreased tumor growth and metastasis. TGF-β blockade also increased the recruitment and incorporation of perivascular cells into tumor blood vessels and increased the fraction of perfused vessels. Moreover, TGF-β blockade normalized the tumor interstitial matrix by decreasing collagen I content. As a result of this vessel and interstitial matrix normalization, TGF-β blockade improved the intratumoral penetration of both a low-molecular-weight conventional chemotherapeutic drug and a nanotherapeutic agent, leading to better control of tumor growth.Although the role of TGF-β in tumor progression has been studied extensively, its impact on drug delivery in tumors remains far from understood. In this study, we examined the effect of TGF-β blockade on the delivery and efficacy of conventional therapeutics and nanotherapeutics in orthotopic mammary carcinoma mouse models. We used both genetic (overexpression of sTβRII, a soluble TGF-β type II receptor) and pharmacologic (1D11, a TGF-β neutralizing antibody) approaches to block TGF-β signaling. In two orthotopic mammary carcinoma models (human MDA-MB-231 and murine 4T1 cell lines), TGF-β blockade significantly decreased tumor growth and metastasis. TGF-β blockade also increased the recruitment and incorporation of perivascular cells into tumor blood vessels and increased the fraction of perfused vessels. Moreover, TGF-β blockade normalized the tumor interstitial matrix by decreasing collagen I content. As a result of this vessel and interstitial matrix normalization, TGF-β blockade improved the intratumoral penetration of both a low-molecular-weight conventional chemotherapeutic drug and a nanotherapeutic agent, leading to better control of tumor growth.
Although the role of TGF-ß in tumor progression has been studied extensively, its impact on drug delivery in tumors remains far from understood. In this study, we examined the effect of TGF-ß blockade on the delivery and efficacy of conventional therapeutics and nanotherapeutics in orthotopic mammary carcinoma mouse models. We used both genetic (overexpression of sTßRII, a soluble TGF-ß type II receptor) and pharmacologie (1D11, a TGF-ß neutralizing antibody) approaches to block TGF-ß signaling. In two orthotopic mammary carcinoma models (human MDA-MB-231 and murine 4T1 cell lines), TGF-ß blockade significantly decreased tumor growth and metastasis. TGF-ß blockade also increased the recruitment and incorporation of perivascular cells into tumor blood vessels and increased the fraction of perfused vessels. Moreover, TGF-ß blockade normalized the tumor interstitial matrix by decreasing collagen I content. As a result of this vessel and interstitial matrix normalization, TGF-ß blockade improved the intratumoral penetration of both a low-molecular-weight conventional chemotherapeutic drug and a nanotherapeutic agent leading to better control of tumor growth.
Author Chen, Wei
Ancukiewicz, Marek
Liao, Shan
Goel, Shom
Liu, Jieqiong
Xu, Lei
Naxerova, Kamila
Boucher, Yves
Jain, Rakesh K.
Diop-Frimpong, Benjamin
Author_xml – sequence: 1
  givenname: Jieqiong
  surname: Liu
  fullname: Liu, Jieqiong
– sequence: 2
  givenname: Shan
  surname: Liao
  fullname: Liao, Shan
– sequence: 3
  givenname: Benjamin
  surname: Diop-Frimpong
  fullname: Diop-Frimpong, Benjamin
– sequence: 4
  givenname: Wei
  surname: Chen
  fullname: Chen, Wei
– sequence: 5
  givenname: Shom
  surname: Goel
  fullname: Goel, Shom
– sequence: 6
  givenname: Kamila
  surname: Naxerova
  fullname: Naxerova, Kamila
– sequence: 7
  givenname: Marek
  surname: Ancukiewicz
  fullname: Ancukiewicz, Marek
– sequence: 8
  givenname: Yves
  surname: Boucher
  fullname: Boucher, Yves
– sequence: 9
  givenname: Rakesh K.
  surname: Jain
  fullname: Jain, Rakesh K.
– sequence: 10
  givenname: Lei
  surname: Xu
  fullname: Xu, Lei
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22996328$$D View this record in MEDLINE/PubMed
BookMark eNqFksFu1DAQhi1URLcLZ04gH7mk9cSOnVyQUEULUiUu5Ww5jt26JHawvZW2j9UH4Zlw2G0LSIiLR_L_za9fM3OEDnzwBqHXQI6BCHoye5WOAUBwIEC6Z2hVXqg468gBWhFSi6plNTtERyndEEK6piUv0GFddx2ndbtCd5fnZ9WPe9yPQX9Tg8FummO4NQnna4MHl3J0_Sa74LHyAzbWOq30Fge7AFHNpog6YedxH41KGWsVtfNhUrjfYh_ipEZ35_zVL8O8mULExbToL9Fzq8ZkXu3rGn09-3h5-qm6-HL--fTDRaWZoLlqTc-46GsYNOVU9BYsqanRTDWaMyI6YqzgqtaK8IZr2wiih8YO2oDRAwx0jd7vfOdNP5ny73NUo5yjm1TcyqCc_FPx7lpehVtJmWibMqc1erc3iOH7xqQsJ5e0GUflTdgkCS2hUKYM3f_RZQNACaMFfft7rMc8D7spQLMDdAwpRWOldlktqygp3Vi85HIDcrkB-XQDpe_kr74H63934H2URXiiO8lAAuewhHmzQ25SDvGRYcWD0k7Qn0cIzBY
CitedBy_id crossref_primary_10_1016_j_bone_2018_05_008
crossref_primary_10_1021_acs_nanolett_9b03211
crossref_primary_10_1016_j_nano_2015_07_015
crossref_primary_10_3390_cancers14010048
crossref_primary_10_3390_targets2030015
crossref_primary_10_1016_j_neo_2016_10_001
crossref_primary_10_3389_fonc_2016_00115
crossref_primary_10_3390_cancers14061519
crossref_primary_10_3390_cancers12061697
crossref_primary_10_1111_joim_12017
crossref_primary_10_1038_ncomms3516
crossref_primary_10_3390_biomedicines10092116
crossref_primary_10_1016_j_jconrel_2016_06_018
crossref_primary_10_1016_j_jnutbio_2018_09_021
crossref_primary_10_1016_j_biomaterials_2017_08_009
crossref_primary_10_2139_ssrn_4009643
crossref_primary_10_18632_oncoscience_87
crossref_primary_10_1007_s12609_019_00327_1
crossref_primary_10_1126_sciadv_aay9249
crossref_primary_10_1158_1541_7786_MCR_13_0535
crossref_primary_10_1002_advs_202402757
crossref_primary_10_1016_j_jconrel_2022_12_016
crossref_primary_10_1016_j_jconrel_2015_08_017
crossref_primary_10_3389_fcell_2021_641469
crossref_primary_10_1016_j_trecan_2018_02_005
crossref_primary_10_1002_jso_24998
crossref_primary_10_1016_j_cobme_2020_01_004
crossref_primary_10_1172_JCI92284
crossref_primary_10_1021_acs_molpharmaceut_0c00014
crossref_primary_10_1016_j_biomaterials_2018_04_056
crossref_primary_10_1016_j_trecan_2016_09_007
crossref_primary_10_1016_j_ceca_2019_02_010
crossref_primary_10_3390_cancers13092053
crossref_primary_10_1039_c3ib40165k
crossref_primary_10_1016_j_molonc_2015_02_001
crossref_primary_10_1093_annonc_mdx646
crossref_primary_10_1016_j_ccr_2012_10_011
crossref_primary_10_26508_lsa_202101261
crossref_primary_10_3390_ijms242417536
crossref_primary_10_2217_nnm_2017_0101
crossref_primary_10_1038_nrd_2015_13
crossref_primary_10_1158_1535_7163_MCT_15_0314
crossref_primary_10_1080_14728222_2020_1744568
crossref_primary_10_1016_j_addr_2015_11_001
crossref_primary_10_1016_j_jconrel_2015_08_055
crossref_primary_10_1016_j_abb_2023_109824
crossref_primary_10_1016_j_addr_2020_02_004
crossref_primary_10_54133_ajms_v7i2_1464
crossref_primary_10_1016_j_apsb_2021_03_033
crossref_primary_10_1038_s41467_017_00396_9
crossref_primary_10_1016_j_cytogfr_2018_06_002
crossref_primary_10_1124_jpet_117_247130
crossref_primary_10_1016_j_addr_2016_05_023
crossref_primary_10_1039_C9BM01843C
crossref_primary_10_2174_1381612826666200728141601
crossref_primary_10_1073_pnas_1318415110
crossref_primary_10_3892_ijo_2016_3724
crossref_primary_10_1016_j_ceb_2023_102309
crossref_primary_10_3389_fphar_2017_00952
crossref_primary_10_1016_j_ccell_2014_10_006
crossref_primary_10_1016_j_biopha_2016_04_046
crossref_primary_10_1038_aps_2017_34
crossref_primary_10_1038_nrc3603
crossref_primary_10_18632_oncotarget_15534
crossref_primary_10_1016_j_intimp_2023_110648
crossref_primary_10_1016_j_apsb_2020_05_008
crossref_primary_10_1038_s41565_023_01535_8
crossref_primary_10_1126_scitranslmed_abd4816
crossref_primary_10_1007_s10565_019_09461_z
crossref_primary_10_1136_jitc_2021_004122
crossref_primary_10_3390_cancers14040857
crossref_primary_10_1021_acsami_5b01473
crossref_primary_10_1002_cbin_11655
crossref_primary_10_1016_j_addr_2022_114504
crossref_primary_10_1016_j_devcel_2019_03_026
crossref_primary_10_1021_acsanm_3c00780
crossref_primary_10_1172_JCI131507
crossref_primary_10_1038_s41416_021_01330_z
crossref_primary_10_15252_embj_2018100532
crossref_primary_10_3389_fimmu_2021_791453
crossref_primary_10_1016_j_phrs_2017_05_010
crossref_primary_10_1039_D3BM00363A
crossref_primary_10_1007_s13346_021_01036_y
crossref_primary_10_1007_s12253_014_9753_2
crossref_primary_10_1016_j_jconrel_2013_03_010
crossref_primary_10_1016_j_ijsu_2017_07_080
crossref_primary_10_2217_nnm_16_37
crossref_primary_10_1016_j_biomaterials_2020_119902
crossref_primary_10_1016_j_yexcr_2016_05_006
crossref_primary_10_1515_nanoph_2019_0186
crossref_primary_10_1021_acs_chemrev_7b00013
crossref_primary_10_1186_s12885_016_2302_5
crossref_primary_10_1016_j_cej_2024_155781
crossref_primary_10_3390_ijms231912039
crossref_primary_10_1002_adfm_202107791
crossref_primary_10_3389_fphar_2023_1186712
crossref_primary_10_1016_j_jconrel_2014_05_019
crossref_primary_10_1039_C9TB01842E
crossref_primary_10_1007_s00418_018_1744_z
crossref_primary_10_1016_j_biomaterials_2015_11_061
crossref_primary_10_1080_17425247_2017_1243527
crossref_primary_10_3390_jcm11051250
crossref_primary_10_1088_0031_9155_60_4_1477
crossref_primary_10_1007_s10549_021_06431_0
crossref_primary_10_3389_fmolb_2022_864302
crossref_primary_10_1371_journal_pone_0085398
crossref_primary_10_1371_journal_pcbi_1005724
crossref_primary_10_1038_s41598_020_63996_4
crossref_primary_10_1002_adhm_202300420
crossref_primary_10_1089_cbr_2023_0138
crossref_primary_10_3389_fmolb_2023_1132353
crossref_primary_10_1002_adfm_201910369
crossref_primary_10_1155_2022_9396760
crossref_primary_10_1002_jcp_27027
crossref_primary_10_1016_j_humpath_2016_07_017
crossref_primary_10_1115_1_4034991
crossref_primary_10_3390_cancers5010149
crossref_primary_10_1089_hum_2020_078
crossref_primary_10_1039_C9BM01132C
crossref_primary_10_1021_acs_molpharmaceut_8b00319
crossref_primary_10_3389_fphar_2018_00185
crossref_primary_10_1038_s41568_024_00745_z
crossref_primary_10_3389_fmolb_2019_00160
crossref_primary_10_1111_imcb_12421
crossref_primary_10_1038_s41598_017_15531_1
crossref_primary_10_1016_j_jconrel_2022_04_013
crossref_primary_10_1021_nn404083m
crossref_primary_10_1158_2767_9764_CRC_23_0019
crossref_primary_10_1016_j_jconrel_2022_10_012
crossref_primary_10_1038_srep04984
crossref_primary_10_1021_acs_molpharmaceut_6b00465
crossref_primary_10_1016_j_jconrel_2020_11_063
crossref_primary_10_1039_D1NR01552D
crossref_primary_10_1007_s10637_017_0547_8
crossref_primary_10_1021_jacs_0c09029
crossref_primary_10_1158_1078_0432_CCR_22_0486
crossref_primary_10_3389_fcell_2025_1564626
crossref_primary_10_18632_oncotarget_12658
crossref_primary_10_1080_08977194_2023_2215335
crossref_primary_10_1093_jnci_djv017
crossref_primary_10_1093_neuonc_now112
crossref_primary_10_1016_j_cell_2023_05_044
crossref_primary_10_1073_pnas_1512570112
crossref_primary_10_1177_17588359211053700
crossref_primary_10_3390_cancers12051123
crossref_primary_10_3389_fimmu_2023_1199513
crossref_primary_10_1073_pnas_1315336110
crossref_primary_10_3390_pharmaceutics15071824
crossref_primary_10_1038_s41540_023_00309_1
crossref_primary_10_1002_path_4488
crossref_primary_10_1158_2326_6066_CIR_13_0207
crossref_primary_10_1016_j_celrep_2015_12_004
crossref_primary_10_1038_s41392_021_00544_0
crossref_primary_10_1002_adma_202306476
crossref_primary_10_1186_s40164_024_00591_7
crossref_primary_10_1021_acsnano_6b06040
crossref_primary_10_1007_s10549_021_06408_z
crossref_primary_10_1002_adhm_202101428
crossref_primary_10_18632_oncotarget_3204
crossref_primary_10_4161_cc_22811
crossref_primary_10_1016_j_trecan_2016_04_005
crossref_primary_10_1016_j_addr_2021_02_019
crossref_primary_10_1001_jamaoncol_2019_0892
crossref_primary_10_1186_2045_824X_6_1
crossref_primary_10_2147_IJN_S441418
crossref_primary_10_3390_cancers15030724
crossref_primary_10_3390_vaccines3020467
crossref_primary_10_3389_fonc_2020_576399
crossref_primary_10_1016_j_yexcr_2022_113195
crossref_primary_10_1038_s41418_021_00801_3
crossref_primary_10_1038_nrc_2017_41
crossref_primary_10_1002_wnan_1730
crossref_primary_10_1021_acsbiomaterials_2c01179
crossref_primary_10_1146_annurev_bioeng_071813_105259
crossref_primary_10_1016_j_jconrel_2014_12_018
crossref_primary_10_1186_s12862_023_02129_7
crossref_primary_10_1007_s00018_013_1339_8
crossref_primary_10_1200_JCO_2012_46_3653
crossref_primary_10_1021_jacs_0c00650
crossref_primary_10_3892_ijo_2015_2816
crossref_primary_10_3390_cancers13184555
crossref_primary_10_1101_cshperspect_a022053
crossref_primary_10_1016_j_biomaterials_2019_119618
crossref_primary_10_1002_advs_201801309
crossref_primary_10_1021_acs_chemrev_0c00779
crossref_primary_10_1073_pnas_1818357116
crossref_primary_10_1039_C8CC00398J
crossref_primary_10_1016_j_addr_2018_06_014
crossref_primary_10_3389_fonc_2015_00214
crossref_primary_10_1016_j_bbcan_2018_09_002
crossref_primary_10_1021_acs_chemrev_3c00062
crossref_primary_10_1084_jem_20140692
crossref_primary_10_1016_j_biomaterials_2017_10_014
crossref_primary_10_1016_j_jnutbio_2021_108842
crossref_primary_10_1021_acs_bioconjchem_6b00437
crossref_primary_10_1016_j_cyto_2018_04_023
crossref_primary_10_1016_j_immuni_2015_02_006
crossref_primary_10_1016_j_yexcr_2015_11_009
crossref_primary_10_1016_j_biomaterials_2020_119999
crossref_primary_10_1016_j_nantod_2019_100800
crossref_primary_10_1158_1078_0432_CCR_17_3024
crossref_primary_10_1007_s10555_024_10166_x
crossref_primary_10_1007_s12033_024_01114_9
crossref_primary_10_3390_antibiotics10091136
crossref_primary_10_1111_bph_15861
crossref_primary_10_3390_cancers14051238
crossref_primary_10_1038_s41571_019_0308_z
crossref_primary_10_1016_j_jconrel_2024_12_078
crossref_primary_10_1016_j_jmps_2017_04_002
crossref_primary_10_1016_j_biomaterials_2019_119745
crossref_primary_10_15252_embr_201439246
crossref_primary_10_5648_jjiao_34_211
crossref_primary_10_1158_0008_5472_CAN_17_0084
crossref_primary_10_1039_C8BM01208C
crossref_primary_10_1002_adma_202211332
crossref_primary_10_1016_j_jconrel_2014_03_016
crossref_primary_10_1158_0008_5472_CAN_19_1595
crossref_primary_10_1038_onc_2016_182
crossref_primary_10_1080_10717544_2020_1809559
crossref_primary_10_1007_s10555_016_9650_0
crossref_primary_10_1016_j_drudis_2021_11_015
crossref_primary_10_1039_D3BM00346A
crossref_primary_10_3390_cancers13133146
crossref_primary_10_1007_s13277_015_4629_y
crossref_primary_10_1042_BCJ20160782
crossref_primary_10_1038_nrc_2017_93
crossref_primary_10_3390_cancers12102785
crossref_primary_10_1038_s42255_022_00582_0
crossref_primary_10_1016_j_jconrel_2013_06_036
crossref_primary_10_1007_s00109_015_1355_2
crossref_primary_10_1016_j_taap_2020_115112
crossref_primary_10_1007_s43152_020_00021_w
crossref_primary_10_1002_adfm_201801840
crossref_primary_10_1007_s13277_015_3338_x
crossref_primary_10_1002_dvdy_24505
crossref_primary_10_1016_j_phrs_2019_104401
crossref_primary_10_1002_btm2_10427
crossref_primary_10_1158_1078_0432_CCR_18_3957
crossref_primary_10_1172_jci_insight_85608
crossref_primary_10_1016_j_addr_2022_114319
crossref_primary_10_1002_cyto_a_23872
crossref_primary_10_1016_j_cytogfr_2022_07_008
crossref_primary_10_1089_jir_2014_0026
crossref_primary_10_1186_s12951_014_0037_5
crossref_primary_10_1007_s10616_023_00578_y
crossref_primary_10_3389_fimmu_2018_01679
crossref_primary_10_3390_antiox11061098
crossref_primary_10_1016_j_biomaterials_2017_05_046
crossref_primary_10_1002_cnr2_2018
crossref_primary_10_1016_j_ejpb_2024_114474
crossref_primary_10_1186_s12964_017_0175_0
crossref_primary_10_3390_cancers14122904
Cites_doi 10.1038/nm0698-655
10.1158/1078-0432.CCR-05-2141
10.1172/JCI0215234
10.1007/s10439-005-9007-2
10.1038/nrd3455
10.1158/0008-5472.CAN-04-0074
10.1038/nm0603-685
10.1038/ki.1995.274
10.1111/j.1349-7006.2006.00357.x
10.1146/annurev-chembioeng-061010-114300
10.1242/dmm.003863
10.1016/S0169-409X(00)00131-9
10.1002/pros.20424
10.1158/0008-5472.CAN-07-1522
10.1016/S0002-9440(10)63970-3
10.4049/jimmunol.166.12.7238
10.1002/mc.20134
10.1021/jm0205705
10.1073/pnas.0611660104
10.1038/labinvest.3700252
10.1038/sj.onc.1207290
10.1038/sj.onc.1205439
10.1007/s10555-006-9006-2
10.1073/pnas.1213353109
10.1158/0008-5472.CAN-05-2242
10.1002/pros.20166
10.1073/pnas.1018892108
10.1114/1.1424915
10.1016/S0002-9440(10)63838-2
10.1161/ATVBAHA.107.161521
10.1016/S0168-3659(01)00488-6
10.1158/1078-0432.CCR-09-1634
10.1167/iovs.02-0978
10.1038/nnano.2011.166
10.1038/nm879
10.1016/S0022-3565(24)38848-2
10.1152/physrev.00038.2010
10.1126/science.1104819
10.1073/pnas.081626898
10.1158/0008-5472.CAN-05-3077
10.1101/cshperspect.a003277
10.1038/nnano.2012.45
10.1158/0008-5472.CAN-08-0215
10.1038/nrclinonc.2010.139
10.1158/1078-0432.CCR-10-2429
10.2174/156800906778742460
10.1042/bj3550215
ContentType Journal Article
Copyright copyright © 1993-2008 National Academy of Sciences of the United States of America
Copyright_xml – notice: copyright © 1993-2008 National Academy of Sciences of the United States of America
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
DOI 10.1073/pnas.1117610109
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE
CrossRef
AGRICOLA

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate TGF-β blockade improves drug delivery
EISSN 1091-6490
EndPage 16623
ExternalDocumentID PMC3478596
22996328
10_1073_pnas_1117610109
109_41_16618
41763397
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: R01-CA115767
– fundername: NCI NIH HHS
  grantid: R01 CA126642
– fundername: NCI NIH HHS
  grantid: R01-CA85140
– fundername: NCI NIH HHS
  grantid: R01 CA085140
– fundername: NHLBI NIH HHS
  grantid: K99 HL111343
– fundername: NCI NIH HHS
  grantid: R01-CA126642
– fundername: NCI NIH HHS
  grantid: R01 CA115767
– fundername: NCI NIH HHS
  grantid: P01 CA080124
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
ADXHL
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HTVGU
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
MVM
N9A
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
-
02
0R
1AW
55
AAPBV
ABFLS
ABPTK
ADACO
ADZLD
AJYGW
ASUFR
DNJUQ
DOOOF
DWIUU
DZ
F20
JSODD
KM
PQEST
RHF
VQA
X
XHC
ZA5
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c473t-8eb467b21dc3637bf1f023ec4a5c640790ef76a2ca0656cf570cd5fdce1ecd1d3
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 14:02:31 EDT 2025
Fri Jul 11 01:19:41 EDT 2025
Fri Jul 11 05:54:44 EDT 2025
Mon Jul 21 05:21:11 EDT 2025
Thu Apr 24 22:59:41 EDT 2025
Tue Jul 01 04:59:02 EDT 2025
Wed Nov 11 00:30:03 EST 2020
Thu May 29 08:40:46 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 41
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c473t-8eb467b21dc3637bf1f023ec4a5c640790ef76a2ca0656cf570cd5fdce1ecd1d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Contributed by Rakesh K. Jain, August 29, 2012 (sent for review June 29, 2011)
2Present address: Department of Hepatobiliary Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China.
Author contributions: Y.B., R.K.J., and L.X. designed research; J.L., S.L., W.C., and S.G. performed research; J.L., S.L., B.D.-F., W.C., S.G., K.N., M.A., and L.X. analyzed data; and Y.B., R.K.J., and L.X. wrote the paper.
1Present address: Department of Breast Surgery, Sun-Yat-Sen Memorial Hospital, Sun-Yat-Sen University, Guangzhou 510120, China.
OpenAccessLink https://www.pnas.org/content/pnas/109/41/16618.full.pdf
PMID 22996328
PQID 1095813043
PQPubID 23479
PageCount 6
ParticipantIDs crossref_citationtrail_10_1073_pnas_1117610109
pubmed_primary_22996328
proquest_miscellaneous_1803142419
jstor_primary_41763397
crossref_primary_10_1073_pnas_1117610109
proquest_miscellaneous_1095813043
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3478596
pnas_primary_109_41_16618
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-10-09
PublicationDateYYYYMMDD 2012-10-09
PublicationDate_xml – month: 10
  year: 2012
  text: 2012-10-09
  day: 09
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2012
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References Monsky WL (e_1_3_3_46_2) 1999; 59
e_1_3_3_50_2
Netti PA (e_1_3_3_28_2) 2000; 60
e_1_3_3_16_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_33_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_40_2
e_1_3_3_5_2
Vaupel P (e_1_3_3_11_2) 1989; 49
e_1_3_3_7_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_23_2
e_1_3_3_48_2
e_1_3_3_25_2
e_1_3_3_1_2
e_1_3_3_44_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
e_1_3_3_17_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_32_2
e_1_3_3_30_2
Jang SH (e_1_3_3_49_2) 2001; 296
e_1_3_3_6_2
e_1_3_3_8_2
e_1_3_3_24_2
e_1_3_3_47_2
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
12070302 - J Clin Invest. 2002 Jun;109(12):1551-9
22432620 - Annu Rev Chem Biomol Eng. 2011;2:281-98
12954047 - J Med Chem. 2003 Sep 11;46(19):3953-6
15711566 - Lab Invest. 2005 Apr;85(4):512-21
17942899 - Cancer Res. 2007 Oct 15;67(20):9694-703
21278244 - Clin Cancer Res. 2011 Mar 15;17(6):1415-24
16541418 - Prostate. 2006 Jun 15;66(9):996-1004
22484912 - Nat Nanotechnol. 2012 Jun;7(6):383-8
16951986 - Cancer Metastasis Rev. 2006 Sep;25(3):435-57
11181938 - J Pharmacol Exp Ther. 2001 Mar;296(3):1035-42
2684393 - Cancer Res. 1989 Dec 1;49(23):6449-65
12778167 - Nat Med. 2003 Jun;9(6):685-93
17307870 - Proc Natl Acad Sci U S A. 2007 Feb 27;104(9):3460-5
16520902 - Ann Biomed Eng. 2006 Jan;34(1):114-27
15637262 - Science. 2005 Jan 7;307(5706):58-62
9623964 - Nat Med. 1998 Jun;4(6):655-7
11390472 - J Immunol. 2001 Jun 15;166(12):7238-43
11772451 - J Control Release. 2002 Jan 17;78(1-3):81-95
20145179 - Clin Cancer Res. 2010 Feb 15;16(4):1191-205
12032856 - Oncogene. 2002 May 16;21(22):3541-51
11256966 - Biochem J. 2001 Apr 1;355(Pt 1):215-22
20810549 - Cold Spring Harb Perspect Biol. 2011 Jan;3(1):a003277
15468171 - Prostate. 2005 Apr 1;63(1):81-90
12754503 - Nat Med. 2003 Jun;9(6):796-800
21282607 - Proc Natl Acad Sci U S A. 2011 Feb 15;108(7):2909-14
21629292 - Nat Rev Drug Discov. 2011 Jun;10(6):417-27
11141505 - Am J Pathol. 2001 Jan;158(1):305-16
21742796 - Physiol Rev. 2011 Jul;91(3):1071-121
16551876 - Clin Cancer Res. 2006 Mar 15;12(6):1906-12
22932871 - Proc Natl Acad Sci U S A. 2012 Sep 18;109(38):15101-8
22020122 - Nat Nanotechnol. 2011 Dec;6(12):815-23
11259838 - Adv Drug Deliv Rev. 2001 Mar 1;46(1-3):149-68
20838415 - Nat Rev Clin Oncol. 2010 Nov;7(11):653-64
11853267 - Ann Biomed Eng. 2001 Dec;29(12):1150-8
19164813 - Arterioscler Thromb Vasc Biol. 2009 May;29(5):630-8
14755254 - Oncogene. 2004 Mar 4;23(9):1681-92
18483268 - Cancer Res. 2008 May 15;68(10):3835-43
16424039 - Cancer Res. 2006 Jan 15;66(2):1033-9
11274375 - Proc Natl Acad Sci U S A. 2001 Apr 10;98(8):4628-33
16167351 - Mol Carcinog. 2005 Nov;44(3):151-61
17129361 - Cancer Sci. 2007 Jan;98(1):127-33
10463618 - Cancer Res. 1999 Aug 15;59(16):4129-35
10811131 - Cancer Res. 2000 May 1;60(9):2497-503
20223936 - Dis Model Mech. 2010 May-Jun;3(5-6):317-32
12547702 - Am J Pathol. 2003 Feb;162(2):439-47
7564067 - Kidney Int. 1995 Jul;48(1):111-7
16510565 - Cancer Res. 2006 Mar 1;66(5):2509-13
15172975 - Cancer Res. 2004 Jun 1;64(11):3731-6
17100564 - Curr Cancer Drug Targets. 2006 Nov;6(7):565-78
12882787 - Invest Ophthalmol Vis Sci. 2003 Aug;44(8):3394-401
References_xml – ident: e_1_3_3_9_2
  doi: 10.1038/nm0698-655
– ident: e_1_3_3_13_2
  doi: 10.1158/1078-0432.CCR-05-2141
– ident: e_1_3_3_8_2
  doi: 10.1172/JCI0215234
– ident: e_1_3_3_45_2
  doi: 10.1007/s10439-005-9007-2
– ident: e_1_3_3_24_2
  doi: 10.1038/nrd3455
– ident: e_1_3_3_22_2
  doi: 10.1158/0008-5472.CAN-04-0074
– ident: e_1_3_3_16_2
  doi: 10.1038/nm0603-685
– ident: e_1_3_3_17_2
  doi: 10.1038/ki.1995.274
– ident: e_1_3_3_5_2
  doi: 10.1111/j.1349-7006.2006.00357.x
– ident: e_1_3_3_10_2
  doi: 10.1146/annurev-chembioeng-061010-114300
– ident: e_1_3_3_48_2
  doi: 10.1242/dmm.003863
– ident: e_1_3_3_2_2
  doi: 10.1016/S0169-409X(00)00131-9
– ident: e_1_3_3_44_2
  doi: 10.1002/pros.20424
– ident: e_1_3_3_6_2
  doi: 10.1158/0008-5472.CAN-07-1522
– ident: e_1_3_3_36_2
  doi: 10.1016/S0002-9440(10)63970-3
– volume: 49
  start-page: 6449
  year: 1989
  ident: e_1_3_3_11_2
  article-title: Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: A review
  publication-title: Cancer Res
– ident: e_1_3_3_37_2
  doi: 10.4049/jimmunol.166.12.7238
– ident: e_1_3_3_34_2
  doi: 10.1002/mc.20134
– ident: e_1_3_3_42_2
  doi: 10.1021/jm0205705
– ident: e_1_3_3_20_2
  doi: 10.1073/pnas.0611660104
– ident: e_1_3_3_18_2
  doi: 10.1038/labinvest.3700252
– ident: e_1_3_3_15_2
  doi: 10.1038/sj.onc.1207290
– ident: e_1_3_3_39_2
  doi: 10.1038/sj.onc.1205439
– ident: e_1_3_3_32_2
  doi: 10.1007/s10555-006-9006-2
– ident: e_1_3_3_14_2
  doi: 10.1073/pnas.1213353109
– ident: e_1_3_3_47_2
  doi: 10.1158/0008-5472.CAN-05-2242
– ident: e_1_3_3_40_2
  doi: 10.1002/pros.20166
– ident: e_1_3_3_27_2
  doi: 10.1073/pnas.1018892108
– ident: e_1_3_3_12_2
  doi: 10.1114/1.1424915
– ident: e_1_3_3_35_2
  doi: 10.1016/S0002-9440(10)63838-2
– ident: e_1_3_3_23_2
  doi: 10.1161/ATVBAHA.107.161521
– ident: e_1_3_3_31_2
  doi: 10.1016/S0168-3659(01)00488-6
– ident: e_1_3_3_7_2
  doi: 10.1158/1078-0432.CCR-09-1634
– ident: e_1_3_3_41_2
  doi: 10.1167/iovs.02-0978
– ident: e_1_3_3_19_2
  doi: 10.1038/nnano.2011.166
– ident: e_1_3_3_30_2
  doi: 10.1038/nm879
– volume: 296
  start-page: 1035
  year: 2001
  ident: e_1_3_3_49_2
  article-title: Enhancement of paclitaxel delivery to solid tumors by apoptosis-inducing pretreatment: Effect of treatment schedule
  publication-title: J Pharmacol Exp Ther
  doi: 10.1016/S0022-3565(24)38848-2
– ident: e_1_3_3_25_2
  doi: 10.1152/physrev.00038.2010
– ident: e_1_3_3_26_2
  doi: 10.1126/science.1104819
– ident: e_1_3_3_29_2
  doi: 10.1073/pnas.081626898
– ident: e_1_3_3_50_2
  doi: 10.1158/0008-5472.CAN-05-3077
– ident: e_1_3_3_3_2
  doi: 10.1101/cshperspect.a003277
– volume: 60
  start-page: 2497
  year: 2000
  ident: e_1_3_3_28_2
  article-title: Role of extracellular matrix assembly in interstitial transport in solid tumors
  publication-title: Cancer Res
– ident: e_1_3_3_21_2
  doi: 10.1038/nnano.2012.45
– ident: e_1_3_3_4_2
  doi: 10.1158/0008-5472.CAN-08-0215
– ident: e_1_3_3_1_2
  doi: 10.1038/nrclinonc.2010.139
– ident: e_1_3_3_43_2
  doi: 10.1158/1078-0432.CCR-10-2429
– volume: 59
  start-page: 4129
  year: 1999
  ident: e_1_3_3_46_2
  article-title: Augmentation of transvascular transport of macromolecules and nanoparticles in tumors using vascular endothelial growth factor
  publication-title: Cancer Res
– ident: e_1_3_3_33_2
  doi: 10.2174/156800906778742460
– ident: e_1_3_3_38_2
  doi: 10.1042/bj3550215
– reference: 15172975 - Cancer Res. 2004 Jun 1;64(11):3731-6
– reference: 20145179 - Clin Cancer Res. 2010 Feb 15;16(4):1191-205
– reference: 11141505 - Am J Pathol. 2001 Jan;158(1):305-16
– reference: 9623964 - Nat Med. 1998 Jun;4(6):655-7
– reference: 11274375 - Proc Natl Acad Sci U S A. 2001 Apr 10;98(8):4628-33
– reference: 12547702 - Am J Pathol. 2003 Feb;162(2):439-47
– reference: 20838415 - Nat Rev Clin Oncol. 2010 Nov;7(11):653-64
– reference: 16520902 - Ann Biomed Eng. 2006 Jan;34(1):114-27
– reference: 16551876 - Clin Cancer Res. 2006 Mar 15;12(6):1906-12
– reference: 17100564 - Curr Cancer Drug Targets. 2006 Nov;6(7):565-78
– reference: 12954047 - J Med Chem. 2003 Sep 11;46(19):3953-6
– reference: 14755254 - Oncogene. 2004 Mar 4;23(9):1681-92
– reference: 15711566 - Lab Invest. 2005 Apr;85(4):512-21
– reference: 21282607 - Proc Natl Acad Sci U S A. 2011 Feb 15;108(7):2909-14
– reference: 12778167 - Nat Med. 2003 Jun;9(6):685-93
– reference: 11390472 - J Immunol. 2001 Jun 15;166(12):7238-43
– reference: 22432620 - Annu Rev Chem Biomol Eng. 2011;2:281-98
– reference: 15468171 - Prostate. 2005 Apr 1;63(1):81-90
– reference: 11256966 - Biochem J. 2001 Apr 1;355(Pt 1):215-22
– reference: 2684393 - Cancer Res. 1989 Dec 1;49(23):6449-65
– reference: 22484912 - Nat Nanotechnol. 2012 Jun;7(6):383-8
– reference: 7564067 - Kidney Int. 1995 Jul;48(1):111-7
– reference: 20223936 - Dis Model Mech. 2010 May-Jun;3(5-6):317-32
– reference: 17942899 - Cancer Res. 2007 Oct 15;67(20):9694-703
– reference: 11853267 - Ann Biomed Eng. 2001 Dec;29(12):1150-8
– reference: 20810549 - Cold Spring Harb Perspect Biol. 2011 Jan;3(1):a003277
– reference: 21629292 - Nat Rev Drug Discov. 2011 Jun;10(6):417-27
– reference: 11259838 - Adv Drug Deliv Rev. 2001 Mar 1;46(1-3):149-68
– reference: 21278244 - Clin Cancer Res. 2011 Mar 15;17(6):1415-24
– reference: 16424039 - Cancer Res. 2006 Jan 15;66(2):1033-9
– reference: 11181938 - J Pharmacol Exp Ther. 2001 Mar;296(3):1035-42
– reference: 18483268 - Cancer Res. 2008 May 15;68(10):3835-43
– reference: 16541418 - Prostate. 2006 Jun 15;66(9):996-1004
– reference: 12882787 - Invest Ophthalmol Vis Sci. 2003 Aug;44(8):3394-401
– reference: 17307870 - Proc Natl Acad Sci U S A. 2007 Feb 27;104(9):3460-5
– reference: 21742796 - Physiol Rev. 2011 Jul;91(3):1071-121
– reference: 12032856 - Oncogene. 2002 May 16;21(22):3541-51
– reference: 10811131 - Cancer Res. 2000 May 1;60(9):2497-503
– reference: 12754503 - Nat Med. 2003 Jun;9(6):796-800
– reference: 16951986 - Cancer Metastasis Rev. 2006 Sep;25(3):435-57
– reference: 17129361 - Cancer Sci. 2007 Jan;98(1):127-33
– reference: 19164813 - Arterioscler Thromb Vasc Biol. 2009 May;29(5):630-8
– reference: 11772451 - J Control Release. 2002 Jan 17;78(1-3):81-95
– reference: 12070302 - J Clin Invest. 2002 Jun;109(12):1551-9
– reference: 10463618 - Cancer Res. 1999 Aug 15;59(16):4129-35
– reference: 16167351 - Mol Carcinog. 2005 Nov;44(3):151-61
– reference: 15637262 - Science. 2005 Jan 7;307(5706):58-62
– reference: 16510565 - Cancer Res. 2006 Mar 1;66(5):2509-13
– reference: 22020122 - Nat Nanotechnol. 2011 Dec;6(12):815-23
– reference: 22932871 - Proc Natl Acad Sci U S A. 2012 Sep 18;109(38):15101-8
SSID ssj0009580
Score 2.5376651
Snippet Although the role of TGF-ß in tumor progression has been studied extensively, its impact on drug delivery in tumors remains far from understood. In this study,...
Although the role of TGF-β in tumor progression has been studied extensively, its impact on drug delivery in tumors remains far from understood. In this study,...
SourceID pubmedcentral
proquest
pubmed
crossref
pnas
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 16618
SubjectTerms animal models
Animals
Antibiotics, Antineoplastic - administration & dosage
Antibiotics, Antineoplastic - pharmacokinetics
Antibodies, Neutralizing - administration & dosage
Antibodies, Neutralizing - immunology
Antineoplastic Combined Chemotherapy Protocols - therapeutic use
Antineoplastics
Apoptosis
Apoptosis - drug effects
Biological Sciences
Blood vessels
Blotting, Western
breast neoplasms
Breast Neoplasms - drug therapy
Breast Neoplasms - metabolism
Breast Neoplasms - pathology
Cancer
Cell growth
Cell Line, Tumor
Cell Proliferation - drug effects
collagen
Collagen Type I - metabolism
Collagens
Doxorubicin - pharmacokinetics
Doxorubicin - therapeutic use
drug therapy
drugs
Female
gene overexpression
Humans
Lung Neoplasms - metabolism
Lung Neoplasms - prevention & control
Lung Neoplasms - secondary
Metastasis
Mice
Mice, Nude
neoplasm cells
neutralizing antibodies
Perfusion
Physical Sciences
Protein-Serine-Threonine Kinases - genetics
Protein-Serine-Threonine Kinases - metabolism
Receptors
Receptors, Transforming Growth Factor beta - genetics
Receptors, Transforming Growth Factor beta - metabolism
Signal Transduction - drug effects
Signal Transduction - genetics
Tissue Distribution
transforming growth factor beta
Transforming Growth Factor beta - antagonists & inhibitors
Transforming Growth Factor beta - immunology
Transforming Growth Factor beta - metabolism
Treatment Outcome
Tumor Burden - drug effects
Tumors
Xenograft Model Antitumor Assays
Title TGF-β blockade improves the distribution and efficacy of therapeutics in breast carcinoma by normalizing the tumor stroma
URI https://www.jstor.org/stable/41763397
http://www.pnas.org/content/109/41/16618.abstract
https://www.ncbi.nlm.nih.gov/pubmed/22996328
https://www.proquest.com/docview/1095813043
https://www.proquest.com/docview/1803142419
https://pubmed.ncbi.nlm.nih.gov/PMC3478596
Volume 109
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FcuGCKFAILy0SlYoqh_ixfhzb0LRCqKpEK3KL7PW6NTR2SewD-Vn8EMRPYmYfthNaVLhEyXp2HXs-z3zrnZkl5I3PYvAEXmbBQygsz4m5lTDGrGAoIoeHPIRmjLY49o_OvA8TNun1fnWiluoqGfDltXkl_6NVaAO9YpbsP2i2GRQa4DvoFz5Bw_B5Ox0fjq3t0cH2voMB6PxrnApMe5yXWEoWGWWKZXH1jlZymUBgxQjc4V2FBpjUKxkUm2B8eoW1qnlelLMYmWmBlPYyX5qkqqqelXNMMCm1Pde89qTxgwsTdXBsXjPutUkr2pIsdq3dk-N2C-SPeS3RlItv0OW8bY7li9xPFy2E3-fllTWew1XqWOJ9UXyJZ3kjMNLpJp9F3n2jYTsyNi7qWmkHPKencqsHQhlm4DWW76mtRRvL3faqTQEtbYht4B1hx6vDb5XX_IfLABuH-xwX8QLdRwB00gy7Upx7zWk2oYxyET9wpzjAtB3gDrnrwMQFXcXhxO6UgQ5VUpS-QlNsKnDfrf2DFZ6kQmWx_i4IXTcXWg_p7XCk0wfkvp7c0D2F1E3SE8VDsmmUTnd0jfO3j8gSofvzBzWwpQa2FKBDu7ClAFtqYEvLjHZhS_OCKtjSBrY0-U47sJUDSthSBdvH5Gx8cDo6svQ2IBb3AreyQpGAIUkcO-Wu7wZJZmdgXgT3YsZxGToaiizwY4fHQKd9nrFgyFOWwa2wBU_t1N0iG0VZiKeERiDIUwEkWMReEtgRH_rcZQFnvoj8kPfJwNz0Kdc18nGrlsvpDWruk52mw5UqD3Oz6JbUYiPnwREXpgN90peibf8Ijk0lgvvktdH1FOw-LubFhSjrBUqxEAio5_5FJsTNKYCjw8mfKHw0Z3GAh_quA2cIVpDTCGDd-dUjRX4h68-7XhCyyH92-2t_Tu61D_oLslHNa_ESyHyVvJLPx29vQ_bY
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TGF-%CE%B2+blockade+improves+the+distribution+and+efficacy+of+therapeutics+in+breast+carcinoma+by+normalizing+the+tumor+stroma&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Liu%2C+Jieqiong&rft.au=Liao%2C+Shan&rft.au=Diop-Frimpong%2C+Benjamin&rft.au=Chen%2C+Wei&rft.date=2012-10-09&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=109&rft.issue=41&rft.spage=16618&rft.epage=16623&rft_id=info:doi/10.1073%2Fpnas.1117610109&rft.externalDBID=n%2Fa&rft.externalDocID=10_1073_pnas_1117610109
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F109%2F41.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F109%2F41.cover.gif