TGF-β blockade improves the distribution and efficacy of therapeutics in breast carcinoma by normalizing the tumor stroma
Although the role of TGF-ß in tumor progression has been studied extensively, its impact on drug delivery in tumors remains far from understood. In this study, we examined the effect of TGF-ß blockade on the delivery and efficacy of conventional therapeutics and nanotherapeutics in orthotopic mammar...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 109; no. 41; pp. 16618 - 16623 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
09.10.2012
National Acad Sciences |
Subjects | |
Online Access | Get full text |
ISSN | 0027-8424 1091-6490 1091-6490 |
DOI | 10.1073/pnas.1117610109 |
Cover
Loading…
Abstract | Although the role of TGF-ß in tumor progression has been studied extensively, its impact on drug delivery in tumors remains far from understood. In this study, we examined the effect of TGF-ß blockade on the delivery and efficacy of conventional therapeutics and nanotherapeutics in orthotopic mammary carcinoma mouse models. We used both genetic (overexpression of sTßRII, a soluble TGF-ß type II receptor) and pharmacologie (1D11, a TGF-ß neutralizing antibody) approaches to block TGF-ß signaling. In two orthotopic mammary carcinoma models (human MDA-MB-231 and murine 4T1 cell lines), TGF-ß blockade significantly decreased tumor growth and metastasis. TGF-ß blockade also increased the recruitment and incorporation of perivascular cells into tumor blood vessels and increased the fraction of perfused vessels. Moreover, TGF-ß blockade normalized the tumor interstitial matrix by decreasing collagen I content. As a result of this vessel and interstitial matrix normalization, TGF-ß blockade improved the intratumoral penetration of both a low-molecular-weight conventional chemotherapeutic drug and a nanotherapeutic agent leading to better control of tumor growth. |
---|---|
AbstractList | Although the role of TGF-β in tumor progression has been studied extensively, its impact on drug delivery in tumors remains far from understood. In this study, we examined the effect of TGF-β blockade on the delivery and efficacy of conventional therapeutics and nanotherapeutics in orthotopic mammary carcinoma mouse models. We used both genetic (overexpression of sTβRII, a soluble TGF-β type II receptor) and pharmacologic (1D11, a TGF-β neutralizing antibody) approaches to block TGF-β signaling. In two orthotopic mammary carcinoma models (human MDA-MB-231 and murine 4T1 cell lines), TGF-β blockade significantly decreased tumor growth and metastasis. TGF-β blockade also increased the recruitment and incorporation of perivascular cells into tumor blood vessels and increased the fraction of perfused vessels. Moreover, TGF-β blockade normalized the tumor interstitial matrix by decreasing collagen I content. As a result of this vessel and interstitial matrix normalization, TGF-β blockade improved the intratumoral penetration of both a low-molecular-weight conventional chemotherapeutic drug and a nanotherapeutic agent, leading to better control of tumor growth. Although the role of TGF-β in tumor progression has been studied extensively, its impact on drug delivery in tumors remains far from understood. In this study, we examined the effect of TGF-β blockade on the delivery and efficacy of conventional therapeutics and nanotherapeutics in orthotopic mammary carcinoma mouse models. We used both genetic (overexpression of sTβRII, a soluble TGF-β type II receptor) and pharmacologic (1D11, a TGF-β neutralizing antibody) approaches to block TGF-β signaling. In two orthotopic mammary carcinoma models (human MDA-MB-231 and murine 4T1 cell lines), TGF-β blockade significantly decreased tumor growth and metastasis. TGF-β blockade also increased the recruitment and incorporation of perivascular cells into tumor blood vessels and increased the fraction of perfused vessels. Moreover, TGF-β blockade normalized the tumor interstitial matrix by decreasing collagen I content. As a result of this vessel and interstitial matrix normalization, TGF-β blockade improved the intratumoral penetration of both a low-molecular-weight conventional chemotherapeutic drug and a nanotherapeutic agent, leading to better control of tumor growth.Although the role of TGF-β in tumor progression has been studied extensively, its impact on drug delivery in tumors remains far from understood. In this study, we examined the effect of TGF-β blockade on the delivery and efficacy of conventional therapeutics and nanotherapeutics in orthotopic mammary carcinoma mouse models. We used both genetic (overexpression of sTβRII, a soluble TGF-β type II receptor) and pharmacologic (1D11, a TGF-β neutralizing antibody) approaches to block TGF-β signaling. In two orthotopic mammary carcinoma models (human MDA-MB-231 and murine 4T1 cell lines), TGF-β blockade significantly decreased tumor growth and metastasis. TGF-β blockade also increased the recruitment and incorporation of perivascular cells into tumor blood vessels and increased the fraction of perfused vessels. Moreover, TGF-β blockade normalized the tumor interstitial matrix by decreasing collagen I content. As a result of this vessel and interstitial matrix normalization, TGF-β blockade improved the intratumoral penetration of both a low-molecular-weight conventional chemotherapeutic drug and a nanotherapeutic agent, leading to better control of tumor growth. Although the role of TGF-ß in tumor progression has been studied extensively, its impact on drug delivery in tumors remains far from understood. In this study, we examined the effect of TGF-ß blockade on the delivery and efficacy of conventional therapeutics and nanotherapeutics in orthotopic mammary carcinoma mouse models. We used both genetic (overexpression of sTßRII, a soluble TGF-ß type II receptor) and pharmacologie (1D11, a TGF-ß neutralizing antibody) approaches to block TGF-ß signaling. In two orthotopic mammary carcinoma models (human MDA-MB-231 and murine 4T1 cell lines), TGF-ß blockade significantly decreased tumor growth and metastasis. TGF-ß blockade also increased the recruitment and incorporation of perivascular cells into tumor blood vessels and increased the fraction of perfused vessels. Moreover, TGF-ß blockade normalized the tumor interstitial matrix by decreasing collagen I content. As a result of this vessel and interstitial matrix normalization, TGF-ß blockade improved the intratumoral penetration of both a low-molecular-weight conventional chemotherapeutic drug and a nanotherapeutic agent leading to better control of tumor growth. |
Author | Chen, Wei Ancukiewicz, Marek Liao, Shan Goel, Shom Liu, Jieqiong Xu, Lei Naxerova, Kamila Boucher, Yves Jain, Rakesh K. Diop-Frimpong, Benjamin |
Author_xml | – sequence: 1 givenname: Jieqiong surname: Liu fullname: Liu, Jieqiong – sequence: 2 givenname: Shan surname: Liao fullname: Liao, Shan – sequence: 3 givenname: Benjamin surname: Diop-Frimpong fullname: Diop-Frimpong, Benjamin – sequence: 4 givenname: Wei surname: Chen fullname: Chen, Wei – sequence: 5 givenname: Shom surname: Goel fullname: Goel, Shom – sequence: 6 givenname: Kamila surname: Naxerova fullname: Naxerova, Kamila – sequence: 7 givenname: Marek surname: Ancukiewicz fullname: Ancukiewicz, Marek – sequence: 8 givenname: Yves surname: Boucher fullname: Boucher, Yves – sequence: 9 givenname: Rakesh K. surname: Jain fullname: Jain, Rakesh K. – sequence: 10 givenname: Lei surname: Xu fullname: Xu, Lei |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22996328$$D View this record in MEDLINE/PubMed |
BookMark | eNqFksFu1DAQhi1URLcLZ04gH7mk9cSOnVyQUEULUiUu5Ww5jt26JHawvZW2j9UH4Zlw2G0LSIiLR_L_za9fM3OEDnzwBqHXQI6BCHoye5WOAUBwIEC6Z2hVXqg468gBWhFSi6plNTtERyndEEK6piUv0GFddx2ndbtCd5fnZ9WPe9yPQX9Tg8FummO4NQnna4MHl3J0_Sa74LHyAzbWOq30Fge7AFHNpog6YedxH41KGWsVtfNhUrjfYh_ipEZ35_zVL8O8mULExbToL9Fzq8ZkXu3rGn09-3h5-qm6-HL--fTDRaWZoLlqTc-46GsYNOVU9BYsqanRTDWaMyI6YqzgqtaK8IZr2wiih8YO2oDRAwx0jd7vfOdNP5ny73NUo5yjm1TcyqCc_FPx7lpehVtJmWibMqc1erc3iOH7xqQsJ5e0GUflTdgkCS2hUKYM3f_RZQNACaMFfft7rMc8D7spQLMDdAwpRWOldlktqygp3Vi85HIDcrkB-XQDpe_kr74H63934H2URXiiO8lAAuewhHmzQ25SDvGRYcWD0k7Qn0cIzBY |
CitedBy_id | crossref_primary_10_1016_j_bone_2018_05_008 crossref_primary_10_1021_acs_nanolett_9b03211 crossref_primary_10_1016_j_nano_2015_07_015 crossref_primary_10_3390_cancers14010048 crossref_primary_10_3390_targets2030015 crossref_primary_10_1016_j_neo_2016_10_001 crossref_primary_10_3389_fonc_2016_00115 crossref_primary_10_3390_cancers14061519 crossref_primary_10_3390_cancers12061697 crossref_primary_10_1111_joim_12017 crossref_primary_10_1038_ncomms3516 crossref_primary_10_3390_biomedicines10092116 crossref_primary_10_1016_j_jconrel_2016_06_018 crossref_primary_10_1016_j_jnutbio_2018_09_021 crossref_primary_10_1016_j_biomaterials_2017_08_009 crossref_primary_10_2139_ssrn_4009643 crossref_primary_10_18632_oncoscience_87 crossref_primary_10_1007_s12609_019_00327_1 crossref_primary_10_1126_sciadv_aay9249 crossref_primary_10_1158_1541_7786_MCR_13_0535 crossref_primary_10_1002_advs_202402757 crossref_primary_10_1016_j_jconrel_2022_12_016 crossref_primary_10_1016_j_jconrel_2015_08_017 crossref_primary_10_3389_fcell_2021_641469 crossref_primary_10_1016_j_trecan_2018_02_005 crossref_primary_10_1002_jso_24998 crossref_primary_10_1016_j_cobme_2020_01_004 crossref_primary_10_1172_JCI92284 crossref_primary_10_1021_acs_molpharmaceut_0c00014 crossref_primary_10_1016_j_biomaterials_2018_04_056 crossref_primary_10_1016_j_trecan_2016_09_007 crossref_primary_10_1016_j_ceca_2019_02_010 crossref_primary_10_3390_cancers13092053 crossref_primary_10_1039_c3ib40165k crossref_primary_10_1016_j_molonc_2015_02_001 crossref_primary_10_1093_annonc_mdx646 crossref_primary_10_1016_j_ccr_2012_10_011 crossref_primary_10_26508_lsa_202101261 crossref_primary_10_3390_ijms242417536 crossref_primary_10_2217_nnm_2017_0101 crossref_primary_10_1038_nrd_2015_13 crossref_primary_10_1158_1535_7163_MCT_15_0314 crossref_primary_10_1080_14728222_2020_1744568 crossref_primary_10_1016_j_addr_2015_11_001 crossref_primary_10_1016_j_jconrel_2015_08_055 crossref_primary_10_1016_j_abb_2023_109824 crossref_primary_10_1016_j_addr_2020_02_004 crossref_primary_10_54133_ajms_v7i2_1464 crossref_primary_10_1016_j_apsb_2021_03_033 crossref_primary_10_1038_s41467_017_00396_9 crossref_primary_10_1016_j_cytogfr_2018_06_002 crossref_primary_10_1124_jpet_117_247130 crossref_primary_10_1016_j_addr_2016_05_023 crossref_primary_10_1039_C9BM01843C crossref_primary_10_2174_1381612826666200728141601 crossref_primary_10_1073_pnas_1318415110 crossref_primary_10_3892_ijo_2016_3724 crossref_primary_10_1016_j_ceb_2023_102309 crossref_primary_10_3389_fphar_2017_00952 crossref_primary_10_1016_j_ccell_2014_10_006 crossref_primary_10_1016_j_biopha_2016_04_046 crossref_primary_10_1038_aps_2017_34 crossref_primary_10_1038_nrc3603 crossref_primary_10_18632_oncotarget_15534 crossref_primary_10_1016_j_intimp_2023_110648 crossref_primary_10_1016_j_apsb_2020_05_008 crossref_primary_10_1038_s41565_023_01535_8 crossref_primary_10_1126_scitranslmed_abd4816 crossref_primary_10_1007_s10565_019_09461_z crossref_primary_10_1136_jitc_2021_004122 crossref_primary_10_3390_cancers14040857 crossref_primary_10_1021_acsami_5b01473 crossref_primary_10_1002_cbin_11655 crossref_primary_10_1016_j_addr_2022_114504 crossref_primary_10_1016_j_devcel_2019_03_026 crossref_primary_10_1021_acsanm_3c00780 crossref_primary_10_1172_JCI131507 crossref_primary_10_1038_s41416_021_01330_z crossref_primary_10_15252_embj_2018100532 crossref_primary_10_3389_fimmu_2021_791453 crossref_primary_10_1016_j_phrs_2017_05_010 crossref_primary_10_1039_D3BM00363A crossref_primary_10_1007_s13346_021_01036_y crossref_primary_10_1007_s12253_014_9753_2 crossref_primary_10_1016_j_jconrel_2013_03_010 crossref_primary_10_1016_j_ijsu_2017_07_080 crossref_primary_10_2217_nnm_16_37 crossref_primary_10_1016_j_biomaterials_2020_119902 crossref_primary_10_1016_j_yexcr_2016_05_006 crossref_primary_10_1515_nanoph_2019_0186 crossref_primary_10_1021_acs_chemrev_7b00013 crossref_primary_10_1186_s12885_016_2302_5 crossref_primary_10_1016_j_cej_2024_155781 crossref_primary_10_3390_ijms231912039 crossref_primary_10_1002_adfm_202107791 crossref_primary_10_3389_fphar_2023_1186712 crossref_primary_10_1016_j_jconrel_2014_05_019 crossref_primary_10_1039_C9TB01842E crossref_primary_10_1007_s00418_018_1744_z crossref_primary_10_1016_j_biomaterials_2015_11_061 crossref_primary_10_1080_17425247_2017_1243527 crossref_primary_10_3390_jcm11051250 crossref_primary_10_1088_0031_9155_60_4_1477 crossref_primary_10_1007_s10549_021_06431_0 crossref_primary_10_3389_fmolb_2022_864302 crossref_primary_10_1371_journal_pone_0085398 crossref_primary_10_1371_journal_pcbi_1005724 crossref_primary_10_1038_s41598_020_63996_4 crossref_primary_10_1002_adhm_202300420 crossref_primary_10_1089_cbr_2023_0138 crossref_primary_10_3389_fmolb_2023_1132353 crossref_primary_10_1002_adfm_201910369 crossref_primary_10_1155_2022_9396760 crossref_primary_10_1002_jcp_27027 crossref_primary_10_1016_j_humpath_2016_07_017 crossref_primary_10_1115_1_4034991 crossref_primary_10_3390_cancers5010149 crossref_primary_10_1089_hum_2020_078 crossref_primary_10_1039_C9BM01132C crossref_primary_10_1021_acs_molpharmaceut_8b00319 crossref_primary_10_3389_fphar_2018_00185 crossref_primary_10_1038_s41568_024_00745_z crossref_primary_10_3389_fmolb_2019_00160 crossref_primary_10_1111_imcb_12421 crossref_primary_10_1038_s41598_017_15531_1 crossref_primary_10_1016_j_jconrel_2022_04_013 crossref_primary_10_1021_nn404083m crossref_primary_10_1158_2767_9764_CRC_23_0019 crossref_primary_10_1016_j_jconrel_2022_10_012 crossref_primary_10_1038_srep04984 crossref_primary_10_1021_acs_molpharmaceut_6b00465 crossref_primary_10_1016_j_jconrel_2020_11_063 crossref_primary_10_1039_D1NR01552D crossref_primary_10_1007_s10637_017_0547_8 crossref_primary_10_1021_jacs_0c09029 crossref_primary_10_1158_1078_0432_CCR_22_0486 crossref_primary_10_3389_fcell_2025_1564626 crossref_primary_10_18632_oncotarget_12658 crossref_primary_10_1080_08977194_2023_2215335 crossref_primary_10_1093_jnci_djv017 crossref_primary_10_1093_neuonc_now112 crossref_primary_10_1016_j_cell_2023_05_044 crossref_primary_10_1073_pnas_1512570112 crossref_primary_10_1177_17588359211053700 crossref_primary_10_3390_cancers12051123 crossref_primary_10_3389_fimmu_2023_1199513 crossref_primary_10_1073_pnas_1315336110 crossref_primary_10_3390_pharmaceutics15071824 crossref_primary_10_1038_s41540_023_00309_1 crossref_primary_10_1002_path_4488 crossref_primary_10_1158_2326_6066_CIR_13_0207 crossref_primary_10_1016_j_celrep_2015_12_004 crossref_primary_10_1038_s41392_021_00544_0 crossref_primary_10_1002_adma_202306476 crossref_primary_10_1186_s40164_024_00591_7 crossref_primary_10_1021_acsnano_6b06040 crossref_primary_10_1007_s10549_021_06408_z crossref_primary_10_1002_adhm_202101428 crossref_primary_10_18632_oncotarget_3204 crossref_primary_10_4161_cc_22811 crossref_primary_10_1016_j_trecan_2016_04_005 crossref_primary_10_1016_j_addr_2021_02_019 crossref_primary_10_1001_jamaoncol_2019_0892 crossref_primary_10_1186_2045_824X_6_1 crossref_primary_10_2147_IJN_S441418 crossref_primary_10_3390_cancers15030724 crossref_primary_10_3390_vaccines3020467 crossref_primary_10_3389_fonc_2020_576399 crossref_primary_10_1016_j_yexcr_2022_113195 crossref_primary_10_1038_s41418_021_00801_3 crossref_primary_10_1038_nrc_2017_41 crossref_primary_10_1002_wnan_1730 crossref_primary_10_1021_acsbiomaterials_2c01179 crossref_primary_10_1146_annurev_bioeng_071813_105259 crossref_primary_10_1016_j_jconrel_2014_12_018 crossref_primary_10_1186_s12862_023_02129_7 crossref_primary_10_1007_s00018_013_1339_8 crossref_primary_10_1200_JCO_2012_46_3653 crossref_primary_10_1021_jacs_0c00650 crossref_primary_10_3892_ijo_2015_2816 crossref_primary_10_3390_cancers13184555 crossref_primary_10_1101_cshperspect_a022053 crossref_primary_10_1016_j_biomaterials_2019_119618 crossref_primary_10_1002_advs_201801309 crossref_primary_10_1021_acs_chemrev_0c00779 crossref_primary_10_1073_pnas_1818357116 crossref_primary_10_1039_C8CC00398J crossref_primary_10_1016_j_addr_2018_06_014 crossref_primary_10_3389_fonc_2015_00214 crossref_primary_10_1016_j_bbcan_2018_09_002 crossref_primary_10_1021_acs_chemrev_3c00062 crossref_primary_10_1084_jem_20140692 crossref_primary_10_1016_j_biomaterials_2017_10_014 crossref_primary_10_1016_j_jnutbio_2021_108842 crossref_primary_10_1021_acs_bioconjchem_6b00437 crossref_primary_10_1016_j_cyto_2018_04_023 crossref_primary_10_1016_j_immuni_2015_02_006 crossref_primary_10_1016_j_yexcr_2015_11_009 crossref_primary_10_1016_j_biomaterials_2020_119999 crossref_primary_10_1016_j_nantod_2019_100800 crossref_primary_10_1158_1078_0432_CCR_17_3024 crossref_primary_10_1007_s10555_024_10166_x crossref_primary_10_1007_s12033_024_01114_9 crossref_primary_10_3390_antibiotics10091136 crossref_primary_10_1111_bph_15861 crossref_primary_10_3390_cancers14051238 crossref_primary_10_1038_s41571_019_0308_z crossref_primary_10_1016_j_jconrel_2024_12_078 crossref_primary_10_1016_j_jmps_2017_04_002 crossref_primary_10_1016_j_biomaterials_2019_119745 crossref_primary_10_15252_embr_201439246 crossref_primary_10_5648_jjiao_34_211 crossref_primary_10_1158_0008_5472_CAN_17_0084 crossref_primary_10_1039_C8BM01208C crossref_primary_10_1002_adma_202211332 crossref_primary_10_1016_j_jconrel_2014_03_016 crossref_primary_10_1158_0008_5472_CAN_19_1595 crossref_primary_10_1038_onc_2016_182 crossref_primary_10_1080_10717544_2020_1809559 crossref_primary_10_1007_s10555_016_9650_0 crossref_primary_10_1016_j_drudis_2021_11_015 crossref_primary_10_1039_D3BM00346A crossref_primary_10_3390_cancers13133146 crossref_primary_10_1007_s13277_015_4629_y crossref_primary_10_1042_BCJ20160782 crossref_primary_10_1038_nrc_2017_93 crossref_primary_10_3390_cancers12102785 crossref_primary_10_1038_s42255_022_00582_0 crossref_primary_10_1016_j_jconrel_2013_06_036 crossref_primary_10_1007_s00109_015_1355_2 crossref_primary_10_1016_j_taap_2020_115112 crossref_primary_10_1007_s43152_020_00021_w crossref_primary_10_1002_adfm_201801840 crossref_primary_10_1007_s13277_015_3338_x crossref_primary_10_1002_dvdy_24505 crossref_primary_10_1016_j_phrs_2019_104401 crossref_primary_10_1002_btm2_10427 crossref_primary_10_1158_1078_0432_CCR_18_3957 crossref_primary_10_1172_jci_insight_85608 crossref_primary_10_1016_j_addr_2022_114319 crossref_primary_10_1002_cyto_a_23872 crossref_primary_10_1016_j_cytogfr_2022_07_008 crossref_primary_10_1089_jir_2014_0026 crossref_primary_10_1186_s12951_014_0037_5 crossref_primary_10_1007_s10616_023_00578_y crossref_primary_10_3389_fimmu_2018_01679 crossref_primary_10_3390_antiox11061098 crossref_primary_10_1016_j_biomaterials_2017_05_046 crossref_primary_10_1002_cnr2_2018 crossref_primary_10_1016_j_ejpb_2024_114474 crossref_primary_10_1186_s12964_017_0175_0 crossref_primary_10_3390_cancers14122904 |
Cites_doi | 10.1038/nm0698-655 10.1158/1078-0432.CCR-05-2141 10.1172/JCI0215234 10.1007/s10439-005-9007-2 10.1038/nrd3455 10.1158/0008-5472.CAN-04-0074 10.1038/nm0603-685 10.1038/ki.1995.274 10.1111/j.1349-7006.2006.00357.x 10.1146/annurev-chembioeng-061010-114300 10.1242/dmm.003863 10.1016/S0169-409X(00)00131-9 10.1002/pros.20424 10.1158/0008-5472.CAN-07-1522 10.1016/S0002-9440(10)63970-3 10.4049/jimmunol.166.12.7238 10.1002/mc.20134 10.1021/jm0205705 10.1073/pnas.0611660104 10.1038/labinvest.3700252 10.1038/sj.onc.1207290 10.1038/sj.onc.1205439 10.1007/s10555-006-9006-2 10.1073/pnas.1213353109 10.1158/0008-5472.CAN-05-2242 10.1002/pros.20166 10.1073/pnas.1018892108 10.1114/1.1424915 10.1016/S0002-9440(10)63838-2 10.1161/ATVBAHA.107.161521 10.1016/S0168-3659(01)00488-6 10.1158/1078-0432.CCR-09-1634 10.1167/iovs.02-0978 10.1038/nnano.2011.166 10.1038/nm879 10.1016/S0022-3565(24)38848-2 10.1152/physrev.00038.2010 10.1126/science.1104819 10.1073/pnas.081626898 10.1158/0008-5472.CAN-05-3077 10.1101/cshperspect.a003277 10.1038/nnano.2012.45 10.1158/0008-5472.CAN-08-0215 10.1038/nrclinonc.2010.139 10.1158/1078-0432.CCR-10-2429 10.2174/156800906778742460 10.1042/bj3550215 |
ContentType | Journal Article |
Copyright | copyright © 1993-2008 National Academy of Sciences of the United States of America |
Copyright_xml | – notice: copyright © 1993-2008 National Academy of Sciences of the United States of America |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
DOI | 10.1073/pnas.1117610109 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE CrossRef AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | TGF-β blockade improves drug delivery |
EISSN | 1091-6490 |
EndPage | 16623 |
ExternalDocumentID | PMC3478596 22996328 10_1073_pnas_1117610109 109_41_16618 41763397 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: R01-CA115767 – fundername: NCI NIH HHS grantid: R01 CA126642 – fundername: NCI NIH HHS grantid: R01-CA85140 – fundername: NCI NIH HHS grantid: R01 CA085140 – fundername: NHLBI NIH HHS grantid: K99 HL111343 – fundername: NCI NIH HHS grantid: R01-CA126642 – fundername: NCI NIH HHS grantid: R01 CA115767 – fundername: NCI NIH HHS grantid: P01 CA080124 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT ADXHL AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HH5 HTVGU HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 MVM N9A N~3 O9- OK1 P-O PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM - 02 0R 1AW 55 AAPBV ABFLS ABPTK ADACO ADZLD AJYGW ASUFR DNJUQ DOOOF DWIUU DZ F20 JSODD KM PQEST RHF VQA X XHC ZA5 AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c473t-8eb467b21dc3637bf1f023ec4a5c640790ef76a2ca0656cf570cd5fdce1ecd1d3 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 14:02:31 EDT 2025 Fri Jul 11 01:19:41 EDT 2025 Fri Jul 11 05:54:44 EDT 2025 Mon Jul 21 05:21:11 EDT 2025 Thu Apr 24 22:59:41 EDT 2025 Tue Jul 01 04:59:02 EDT 2025 Wed Nov 11 00:30:03 EST 2020 Thu May 29 08:40:46 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 41 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c473t-8eb467b21dc3637bf1f023ec4a5c640790ef76a2ca0656cf570cd5fdce1ecd1d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Contributed by Rakesh K. Jain, August 29, 2012 (sent for review June 29, 2011) 2Present address: Department of Hepatobiliary Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China. Author contributions: Y.B., R.K.J., and L.X. designed research; J.L., S.L., W.C., and S.G. performed research; J.L., S.L., B.D.-F., W.C., S.G., K.N., M.A., and L.X. analyzed data; and Y.B., R.K.J., and L.X. wrote the paper. 1Present address: Department of Breast Surgery, Sun-Yat-Sen Memorial Hospital, Sun-Yat-Sen University, Guangzhou 510120, China. |
OpenAccessLink | https://www.pnas.org/content/pnas/109/41/16618.full.pdf |
PMID | 22996328 |
PQID | 1095813043 |
PQPubID | 23479 |
PageCount | 6 |
ParticipantIDs | crossref_citationtrail_10_1073_pnas_1117610109 pubmed_primary_22996328 proquest_miscellaneous_1803142419 jstor_primary_41763397 crossref_primary_10_1073_pnas_1117610109 proquest_miscellaneous_1095813043 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3478596 pnas_primary_109_41_16618 |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-10-09 |
PublicationDateYYYYMMDD | 2012-10-09 |
PublicationDate_xml | – month: 10 year: 2012 text: 2012-10-09 day: 09 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2012 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | Monsky WL (e_1_3_3_46_2) 1999; 59 e_1_3_3_50_2 Netti PA (e_1_3_3_28_2) 2000; 60 e_1_3_3_16_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_33_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_40_2 e_1_3_3_5_2 Vaupel P (e_1_3_3_11_2) 1989; 49 e_1_3_3_7_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_23_2 e_1_3_3_48_2 e_1_3_3_25_2 e_1_3_3_1_2 e_1_3_3_44_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 e_1_3_3_17_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_32_2 e_1_3_3_30_2 Jang SH (e_1_3_3_49_2) 2001; 296 e_1_3_3_6_2 e_1_3_3_8_2 e_1_3_3_24_2 e_1_3_3_47_2 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 12070302 - J Clin Invest. 2002 Jun;109(12):1551-9 22432620 - Annu Rev Chem Biomol Eng. 2011;2:281-98 12954047 - J Med Chem. 2003 Sep 11;46(19):3953-6 15711566 - Lab Invest. 2005 Apr;85(4):512-21 17942899 - Cancer Res. 2007 Oct 15;67(20):9694-703 21278244 - Clin Cancer Res. 2011 Mar 15;17(6):1415-24 16541418 - Prostate. 2006 Jun 15;66(9):996-1004 22484912 - Nat Nanotechnol. 2012 Jun;7(6):383-8 16951986 - Cancer Metastasis Rev. 2006 Sep;25(3):435-57 11181938 - J Pharmacol Exp Ther. 2001 Mar;296(3):1035-42 2684393 - Cancer Res. 1989 Dec 1;49(23):6449-65 12778167 - Nat Med. 2003 Jun;9(6):685-93 17307870 - Proc Natl Acad Sci U S A. 2007 Feb 27;104(9):3460-5 16520902 - Ann Biomed Eng. 2006 Jan;34(1):114-27 15637262 - Science. 2005 Jan 7;307(5706):58-62 9623964 - Nat Med. 1998 Jun;4(6):655-7 11390472 - J Immunol. 2001 Jun 15;166(12):7238-43 11772451 - J Control Release. 2002 Jan 17;78(1-3):81-95 20145179 - Clin Cancer Res. 2010 Feb 15;16(4):1191-205 12032856 - Oncogene. 2002 May 16;21(22):3541-51 11256966 - Biochem J. 2001 Apr 1;355(Pt 1):215-22 20810549 - Cold Spring Harb Perspect Biol. 2011 Jan;3(1):a003277 15468171 - Prostate. 2005 Apr 1;63(1):81-90 12754503 - Nat Med. 2003 Jun;9(6):796-800 21282607 - Proc Natl Acad Sci U S A. 2011 Feb 15;108(7):2909-14 21629292 - Nat Rev Drug Discov. 2011 Jun;10(6):417-27 11141505 - Am J Pathol. 2001 Jan;158(1):305-16 21742796 - Physiol Rev. 2011 Jul;91(3):1071-121 16551876 - Clin Cancer Res. 2006 Mar 15;12(6):1906-12 22932871 - Proc Natl Acad Sci U S A. 2012 Sep 18;109(38):15101-8 22020122 - Nat Nanotechnol. 2011 Dec;6(12):815-23 11259838 - Adv Drug Deliv Rev. 2001 Mar 1;46(1-3):149-68 20838415 - Nat Rev Clin Oncol. 2010 Nov;7(11):653-64 11853267 - Ann Biomed Eng. 2001 Dec;29(12):1150-8 19164813 - Arterioscler Thromb Vasc Biol. 2009 May;29(5):630-8 14755254 - Oncogene. 2004 Mar 4;23(9):1681-92 18483268 - Cancer Res. 2008 May 15;68(10):3835-43 16424039 - Cancer Res. 2006 Jan 15;66(2):1033-9 11274375 - Proc Natl Acad Sci U S A. 2001 Apr 10;98(8):4628-33 16167351 - Mol Carcinog. 2005 Nov;44(3):151-61 17129361 - Cancer Sci. 2007 Jan;98(1):127-33 10463618 - Cancer Res. 1999 Aug 15;59(16):4129-35 10811131 - Cancer Res. 2000 May 1;60(9):2497-503 20223936 - Dis Model Mech. 2010 May-Jun;3(5-6):317-32 12547702 - Am J Pathol. 2003 Feb;162(2):439-47 7564067 - Kidney Int. 1995 Jul;48(1):111-7 16510565 - Cancer Res. 2006 Mar 1;66(5):2509-13 15172975 - Cancer Res. 2004 Jun 1;64(11):3731-6 17100564 - Curr Cancer Drug Targets. 2006 Nov;6(7):565-78 12882787 - Invest Ophthalmol Vis Sci. 2003 Aug;44(8):3394-401 |
References_xml | – ident: e_1_3_3_9_2 doi: 10.1038/nm0698-655 – ident: e_1_3_3_13_2 doi: 10.1158/1078-0432.CCR-05-2141 – ident: e_1_3_3_8_2 doi: 10.1172/JCI0215234 – ident: e_1_3_3_45_2 doi: 10.1007/s10439-005-9007-2 – ident: e_1_3_3_24_2 doi: 10.1038/nrd3455 – ident: e_1_3_3_22_2 doi: 10.1158/0008-5472.CAN-04-0074 – ident: e_1_3_3_16_2 doi: 10.1038/nm0603-685 – ident: e_1_3_3_17_2 doi: 10.1038/ki.1995.274 – ident: e_1_3_3_5_2 doi: 10.1111/j.1349-7006.2006.00357.x – ident: e_1_3_3_10_2 doi: 10.1146/annurev-chembioeng-061010-114300 – ident: e_1_3_3_48_2 doi: 10.1242/dmm.003863 – ident: e_1_3_3_2_2 doi: 10.1016/S0169-409X(00)00131-9 – ident: e_1_3_3_44_2 doi: 10.1002/pros.20424 – ident: e_1_3_3_6_2 doi: 10.1158/0008-5472.CAN-07-1522 – ident: e_1_3_3_36_2 doi: 10.1016/S0002-9440(10)63970-3 – volume: 49 start-page: 6449 year: 1989 ident: e_1_3_3_11_2 article-title: Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: A review publication-title: Cancer Res – ident: e_1_3_3_37_2 doi: 10.4049/jimmunol.166.12.7238 – ident: e_1_3_3_34_2 doi: 10.1002/mc.20134 – ident: e_1_3_3_42_2 doi: 10.1021/jm0205705 – ident: e_1_3_3_20_2 doi: 10.1073/pnas.0611660104 – ident: e_1_3_3_18_2 doi: 10.1038/labinvest.3700252 – ident: e_1_3_3_15_2 doi: 10.1038/sj.onc.1207290 – ident: e_1_3_3_39_2 doi: 10.1038/sj.onc.1205439 – ident: e_1_3_3_32_2 doi: 10.1007/s10555-006-9006-2 – ident: e_1_3_3_14_2 doi: 10.1073/pnas.1213353109 – ident: e_1_3_3_47_2 doi: 10.1158/0008-5472.CAN-05-2242 – ident: e_1_3_3_40_2 doi: 10.1002/pros.20166 – ident: e_1_3_3_27_2 doi: 10.1073/pnas.1018892108 – ident: e_1_3_3_12_2 doi: 10.1114/1.1424915 – ident: e_1_3_3_35_2 doi: 10.1016/S0002-9440(10)63838-2 – ident: e_1_3_3_23_2 doi: 10.1161/ATVBAHA.107.161521 – ident: e_1_3_3_31_2 doi: 10.1016/S0168-3659(01)00488-6 – ident: e_1_3_3_7_2 doi: 10.1158/1078-0432.CCR-09-1634 – ident: e_1_3_3_41_2 doi: 10.1167/iovs.02-0978 – ident: e_1_3_3_19_2 doi: 10.1038/nnano.2011.166 – ident: e_1_3_3_30_2 doi: 10.1038/nm879 – volume: 296 start-page: 1035 year: 2001 ident: e_1_3_3_49_2 article-title: Enhancement of paclitaxel delivery to solid tumors by apoptosis-inducing pretreatment: Effect of treatment schedule publication-title: J Pharmacol Exp Ther doi: 10.1016/S0022-3565(24)38848-2 – ident: e_1_3_3_25_2 doi: 10.1152/physrev.00038.2010 – ident: e_1_3_3_26_2 doi: 10.1126/science.1104819 – ident: e_1_3_3_29_2 doi: 10.1073/pnas.081626898 – ident: e_1_3_3_50_2 doi: 10.1158/0008-5472.CAN-05-3077 – ident: e_1_3_3_3_2 doi: 10.1101/cshperspect.a003277 – volume: 60 start-page: 2497 year: 2000 ident: e_1_3_3_28_2 article-title: Role of extracellular matrix assembly in interstitial transport in solid tumors publication-title: Cancer Res – ident: e_1_3_3_21_2 doi: 10.1038/nnano.2012.45 – ident: e_1_3_3_4_2 doi: 10.1158/0008-5472.CAN-08-0215 – ident: e_1_3_3_1_2 doi: 10.1038/nrclinonc.2010.139 – ident: e_1_3_3_43_2 doi: 10.1158/1078-0432.CCR-10-2429 – volume: 59 start-page: 4129 year: 1999 ident: e_1_3_3_46_2 article-title: Augmentation of transvascular transport of macromolecules and nanoparticles in tumors using vascular endothelial growth factor publication-title: Cancer Res – ident: e_1_3_3_33_2 doi: 10.2174/156800906778742460 – ident: e_1_3_3_38_2 doi: 10.1042/bj3550215 – reference: 15172975 - Cancer Res. 2004 Jun 1;64(11):3731-6 – reference: 20145179 - Clin Cancer Res. 2010 Feb 15;16(4):1191-205 – reference: 11141505 - Am J Pathol. 2001 Jan;158(1):305-16 – reference: 9623964 - Nat Med. 1998 Jun;4(6):655-7 – reference: 11274375 - Proc Natl Acad Sci U S A. 2001 Apr 10;98(8):4628-33 – reference: 12547702 - Am J Pathol. 2003 Feb;162(2):439-47 – reference: 20838415 - Nat Rev Clin Oncol. 2010 Nov;7(11):653-64 – reference: 16520902 - Ann Biomed Eng. 2006 Jan;34(1):114-27 – reference: 16551876 - Clin Cancer Res. 2006 Mar 15;12(6):1906-12 – reference: 17100564 - Curr Cancer Drug Targets. 2006 Nov;6(7):565-78 – reference: 12954047 - J Med Chem. 2003 Sep 11;46(19):3953-6 – reference: 14755254 - Oncogene. 2004 Mar 4;23(9):1681-92 – reference: 15711566 - Lab Invest. 2005 Apr;85(4):512-21 – reference: 21282607 - Proc Natl Acad Sci U S A. 2011 Feb 15;108(7):2909-14 – reference: 12778167 - Nat Med. 2003 Jun;9(6):685-93 – reference: 11390472 - J Immunol. 2001 Jun 15;166(12):7238-43 – reference: 22432620 - Annu Rev Chem Biomol Eng. 2011;2:281-98 – reference: 15468171 - Prostate. 2005 Apr 1;63(1):81-90 – reference: 11256966 - Biochem J. 2001 Apr 1;355(Pt 1):215-22 – reference: 2684393 - Cancer Res. 1989 Dec 1;49(23):6449-65 – reference: 22484912 - Nat Nanotechnol. 2012 Jun;7(6):383-8 – reference: 7564067 - Kidney Int. 1995 Jul;48(1):111-7 – reference: 20223936 - Dis Model Mech. 2010 May-Jun;3(5-6):317-32 – reference: 17942899 - Cancer Res. 2007 Oct 15;67(20):9694-703 – reference: 11853267 - Ann Biomed Eng. 2001 Dec;29(12):1150-8 – reference: 20810549 - Cold Spring Harb Perspect Biol. 2011 Jan;3(1):a003277 – reference: 21629292 - Nat Rev Drug Discov. 2011 Jun;10(6):417-27 – reference: 11259838 - Adv Drug Deliv Rev. 2001 Mar 1;46(1-3):149-68 – reference: 21278244 - Clin Cancer Res. 2011 Mar 15;17(6):1415-24 – reference: 16424039 - Cancer Res. 2006 Jan 15;66(2):1033-9 – reference: 11181938 - J Pharmacol Exp Ther. 2001 Mar;296(3):1035-42 – reference: 18483268 - Cancer Res. 2008 May 15;68(10):3835-43 – reference: 16541418 - Prostate. 2006 Jun 15;66(9):996-1004 – reference: 12882787 - Invest Ophthalmol Vis Sci. 2003 Aug;44(8):3394-401 – reference: 17307870 - Proc Natl Acad Sci U S A. 2007 Feb 27;104(9):3460-5 – reference: 21742796 - Physiol Rev. 2011 Jul;91(3):1071-121 – reference: 12032856 - Oncogene. 2002 May 16;21(22):3541-51 – reference: 10811131 - Cancer Res. 2000 May 1;60(9):2497-503 – reference: 12754503 - Nat Med. 2003 Jun;9(6):796-800 – reference: 16951986 - Cancer Metastasis Rev. 2006 Sep;25(3):435-57 – reference: 17129361 - Cancer Sci. 2007 Jan;98(1):127-33 – reference: 19164813 - Arterioscler Thromb Vasc Biol. 2009 May;29(5):630-8 – reference: 11772451 - J Control Release. 2002 Jan 17;78(1-3):81-95 – reference: 12070302 - J Clin Invest. 2002 Jun;109(12):1551-9 – reference: 10463618 - Cancer Res. 1999 Aug 15;59(16):4129-35 – reference: 16167351 - Mol Carcinog. 2005 Nov;44(3):151-61 – reference: 15637262 - Science. 2005 Jan 7;307(5706):58-62 – reference: 16510565 - Cancer Res. 2006 Mar 1;66(5):2509-13 – reference: 22020122 - Nat Nanotechnol. 2011 Dec;6(12):815-23 – reference: 22932871 - Proc Natl Acad Sci U S A. 2012 Sep 18;109(38):15101-8 |
SSID | ssj0009580 |
Score | 2.5376651 |
Snippet | Although the role of TGF-ß in tumor progression has been studied extensively, its impact on drug delivery in tumors remains far from understood. In this study,... Although the role of TGF-β in tumor progression has been studied extensively, its impact on drug delivery in tumors remains far from understood. In this study,... |
SourceID | pubmedcentral proquest pubmed crossref pnas jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 16618 |
SubjectTerms | animal models Animals Antibiotics, Antineoplastic - administration & dosage Antibiotics, Antineoplastic - pharmacokinetics Antibodies, Neutralizing - administration & dosage Antibodies, Neutralizing - immunology Antineoplastic Combined Chemotherapy Protocols - therapeutic use Antineoplastics Apoptosis Apoptosis - drug effects Biological Sciences Blood vessels Blotting, Western breast neoplasms Breast Neoplasms - drug therapy Breast Neoplasms - metabolism Breast Neoplasms - pathology Cancer Cell growth Cell Line, Tumor Cell Proliferation - drug effects collagen Collagen Type I - metabolism Collagens Doxorubicin - pharmacokinetics Doxorubicin - therapeutic use drug therapy drugs Female gene overexpression Humans Lung Neoplasms - metabolism Lung Neoplasms - prevention & control Lung Neoplasms - secondary Metastasis Mice Mice, Nude neoplasm cells neutralizing antibodies Perfusion Physical Sciences Protein-Serine-Threonine Kinases - genetics Protein-Serine-Threonine Kinases - metabolism Receptors Receptors, Transforming Growth Factor beta - genetics Receptors, Transforming Growth Factor beta - metabolism Signal Transduction - drug effects Signal Transduction - genetics Tissue Distribution transforming growth factor beta Transforming Growth Factor beta - antagonists & inhibitors Transforming Growth Factor beta - immunology Transforming Growth Factor beta - metabolism Treatment Outcome Tumor Burden - drug effects Tumors Xenograft Model Antitumor Assays |
Title | TGF-β blockade improves the distribution and efficacy of therapeutics in breast carcinoma by normalizing the tumor stroma |
URI | https://www.jstor.org/stable/41763397 http://www.pnas.org/content/109/41/16618.abstract https://www.ncbi.nlm.nih.gov/pubmed/22996328 https://www.proquest.com/docview/1095813043 https://www.proquest.com/docview/1803142419 https://pubmed.ncbi.nlm.nih.gov/PMC3478596 |
Volume | 109 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FcuGCKFAILy0SlYoqh_ixfhzb0LRCqKpEK3KL7PW6NTR2SewD-Vn8EMRPYmYfthNaVLhEyXp2HXs-z3zrnZkl5I3PYvAEXmbBQygsz4m5lTDGrGAoIoeHPIRmjLY49o_OvA8TNun1fnWiluoqGfDltXkl_6NVaAO9YpbsP2i2GRQa4DvoFz5Bw_B5Ox0fjq3t0cH2voMB6PxrnApMe5yXWEoWGWWKZXH1jlZymUBgxQjc4V2FBpjUKxkUm2B8eoW1qnlelLMYmWmBlPYyX5qkqqqelXNMMCm1Pde89qTxgwsTdXBsXjPutUkr2pIsdq3dk-N2C-SPeS3RlItv0OW8bY7li9xPFy2E3-fllTWew1XqWOJ9UXyJZ3kjMNLpJp9F3n2jYTsyNi7qWmkHPKencqsHQhlm4DWW76mtRRvL3faqTQEtbYht4B1hx6vDb5XX_IfLABuH-xwX8QLdRwB00gy7Upx7zWk2oYxyET9wpzjAtB3gDrnrwMQFXcXhxO6UgQ5VUpS-QlNsKnDfrf2DFZ6kQmWx_i4IXTcXWg_p7XCk0wfkvp7c0D2F1E3SE8VDsmmUTnd0jfO3j8gSofvzBzWwpQa2FKBDu7ClAFtqYEvLjHZhS_OCKtjSBrY0-U47sJUDSthSBdvH5Gx8cDo6svQ2IBb3AreyQpGAIUkcO-Wu7wZJZmdgXgT3YsZxGToaiizwY4fHQKd9nrFgyFOWwa2wBU_t1N0iG0VZiKeERiDIUwEkWMReEtgRH_rcZQFnvoj8kPfJwNz0Kdc18nGrlsvpDWruk52mw5UqD3Oz6JbUYiPnwREXpgN90peibf8Ijk0lgvvktdH1FOw-LubFhSjrBUqxEAio5_5FJsTNKYCjw8mfKHw0Z3GAh_quA2cIVpDTCGDd-dUjRX4h68-7XhCyyH92-2t_Tu61D_oLslHNa_ESyHyVvJLPx29vQ_bY |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TGF-%CE%B2+blockade+improves+the+distribution+and+efficacy+of+therapeutics+in+breast+carcinoma+by+normalizing+the+tumor+stroma&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Liu%2C+Jieqiong&rft.au=Liao%2C+Shan&rft.au=Diop-Frimpong%2C+Benjamin&rft.au=Chen%2C+Wei&rft.date=2012-10-09&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=109&rft.issue=41&rft.spage=16618&rft.epage=16623&rft_id=info:doi/10.1073%2Fpnas.1117610109&rft.externalDBID=n%2Fa&rft.externalDocID=10_1073_pnas_1117610109 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F109%2F41.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F109%2F41.cover.gif |