A low-cost 3D printed microfluidic bioreactor and imaging chamber for live-organoid imaging
Organoids are biological systems grown in vitro and are observed to self-organize into 3D cellular tissues of specific organs. Brain organoids have emerged as valuable models for the study of human brain development in health and disease. Researchers are now in need of improved culturing and imaging...
Saved in:
Published in | Biomicrofluidics Vol. 15; no. 2; pp. 024105 - 24118 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Institute of Physics
01.03.2021
AIP Publishing LLC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Organoids are biological systems grown in vitro and are observed to self-organize into 3D cellular tissues of specific organs. Brain organoids have emerged as valuable models for the study of human brain development in health and disease. Researchers are now in need of improved culturing and imaging tools to capture the in vitro dynamics of development processes in the brain. Here, we describe the design of a microfluidic chip and bioreactor, to enable in situ tracking and imaging of brain organoids on-chip. The low-cost 3D printed microfluidic bioreactor supports organoid growth and provides an optimal imaging chamber for live-organoid imaging, with drug delivery support. This fully isolated design of a live-cell imaging and culturing platform enables long-term live-imaging of the intact live brain organoids as it grows. We can thus analyze their self-organization in a controlled environment with high temporal and spatial resolution. |
---|---|
AbstractList | Organoids are biological systems grown in vitro and are observed to self-organize into 3D cellular tissues of specific organs. Brain organoids have emerged as valuable models for the study of human brain development in health and disease. Researchers are now in need of improved culturing and imaging tools to capture the in vitro dynamics of development processes in the brain. Here, we describe the design of a microfluidic chip and bioreactor, to enable in situ tracking and imaging of brain organoids on-chip. The low-cost 3D printed microfluidic bioreactor supports organoid growth and provides an optimal imaging chamber for live-organoid imaging, with drug delivery support. This fully isolated design of a live-cell imaging and culturing platform enables long-term live-imaging of the intact live brain organoids as it grows. We can thus analyze their self-organization in a controlled environment with high temporal and spatial resolution. Organoids are biological systems grown in vitro and are observed to self-organize into 3D cellular tissues of specific organs. Brain organoids have emerged as valuable models for the study of human brain development in health and disease. Researchers are now in need of improved culturing and imaging tools to capture the in vitro dynamics of development processes in the brain. Here, we describe the design of a microfluidic chip and bioreactor, to enable in situ tracking and imaging of brain organoids on-chip. The low-cost 3D printed microfluidic bioreactor supports organoid growth and provides an optimal imaging chamber for live-organoid imaging, with drug delivery support. This fully isolated design of a live-cell imaging and culturing platform enables long-term live-imaging of the intact live brain organoids as it grows. We can thus analyze their self-organization in a controlled environment with high temporal and spatial resolution.Organoids are biological systems grown in vitro and are observed to self-organize into 3D cellular tissues of specific organs. Brain organoids have emerged as valuable models for the study of human brain development in health and disease. Researchers are now in need of improved culturing and imaging tools to capture the in vitro dynamics of development processes in the brain. Here, we describe the design of a microfluidic chip and bioreactor, to enable in situ tracking and imaging of brain organoids on-chip. The low-cost 3D printed microfluidic bioreactor supports organoid growth and provides an optimal imaging chamber for live-organoid imaging, with drug delivery support. This fully isolated design of a live-cell imaging and culturing platform enables long-term live-imaging of the intact live brain organoids as it grows. We can thus analyze their self-organization in a controlled environment with high temporal and spatial resolution. Organoids are biological systems grown and are observed to self-organize into 3D cellular tissues of specific organs. Brain organoids have emerged as valuable models for the study of human brain development in health and disease. Researchers are now in need of improved culturing and imaging tools to capture the dynamics of development processes in the brain. Here, we describe the design of a microfluidic chip and bioreactor, to enable tracking and imaging of brain organoids on-chip. The low-cost 3D printed microfluidic bioreactor supports organoid growth and provides an optimal imaging chamber for live-organoid imaging, with drug delivery support. This fully isolated design of a live-cell imaging and culturing platform enables long-term live-imaging of the intact live brain organoids as it grows. We can thus analyze their self-organization in a controlled environment with high temporal and spatial resolution. Organoids are biological systems grown in vitro and are observed to self-organize into 3D cellular tissues of specific organs. Brain organoids have emerged as valuable models for the study of human brain development in health and disease. Researchers are now in need of improved culturing and imaging tools to capture the in vitro dynamics of development processes in the brain. Here, we describe the design of a microfluidic chip and bioreactor, to enable in situ tracking and imaging of brain organoids on-chip. The low-cost 3D printed microfluidic bioreactor supports organoid growth and provides an optimal imaging chamber for live-organoid imaging, with drug delivery support. This fully isolated design of a live-cell imaging and culturing platform enables long-term live-imaging of the intact live brain organoids as it grows. We can thus analyze their self-organization in a controlled environment with high temporal and spatial resolution. |
Author | Tsang, Hayley Sur, Mriganka Prabhakar, Anil Khan, Ikram Delepine, Chloe Pham, Vincent |
Author_xml | – sequence: 1 givenname: Ikram surname: Khan fullname: Khan, Ikram organization: Department of Electrical Engineering, Indian Institute of Technology – sequence: 2 givenname: Anil surname: Prabhakar fullname: Prabhakar, Anil organization: Department of Electrical Engineering, Indian Institute of Technology – sequence: 3 givenname: Chloe surname: Delepine fullname: Delepine, Chloe organization: Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology – sequence: 4 givenname: Hayley surname: Tsang fullname: Tsang, Hayley organization: Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology – sequence: 5 givenname: Vincent surname: Pham fullname: Pham, Vincent organization: Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology – sequence: 6 givenname: Mriganka surname: Sur fullname: Sur, Mriganka organization: Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33868534$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtv1DAUhS3Uij5gwR9AlthQpLR-JI6zqVS1QCtVYgMrFtaNH1NXiT3YySD-PR7NdGgLYmXr3u8enXPvEdoLMViE3lBySongZ80pITUlrH2BDmnHWUVJI_ce_Q_QUc73hDS0ZewlOuBcCtnw-hB9v8BD_FnpmCfMr_Ay-TBZg0evU3TD7I3XuPcxWdBTTBiCwX6EhQ8LrO9g7G3CrtQHv7JVTAsI0e-IV2jfwZDt6-17jL59-vj18rq6_fL55vLittJ1y6eqFZo60mvdOil6gA5AllSso9SUWsel6RwTpnbO0d5Q2xXrIDWhPe1baPgxOt_oLud-tEbbMCUYVMkyQvqlInj1tBP8nVrElZKk5qzuisD7rUCKP2abJzX6rO0wQLBxzoo1tCFCCMIK-u4Zeh_nFEq8QpGOSEHpWvDtY0c7Kw97L8DJBihrzjlZt0MoUeubqkZtb1rYs2es9hNMPq7D-OGfEx82E_mB3MmvYvoDqqVx_4P_Vv4NMiu--g |
CODEN | BIOMGB |
CitedBy_id | crossref_primary_10_1002_adbi_202100994 crossref_primary_10_1002_admt_202100049 crossref_primary_10_3390_ijms241310882 crossref_primary_10_1089_3dp_2023_0179 crossref_primary_10_1002_advs_202200475 crossref_primary_10_1038_s41420_023_01523_w crossref_primary_10_1002_adhm_202302686 crossref_primary_10_1002_adhm_202202936 crossref_primary_10_1016_j_biomaterials_2022_121514 crossref_primary_10_3390_mi13060832 crossref_primary_10_3389_frans_2024_1505510 crossref_primary_10_2139_ssrn_3908772 crossref_primary_10_1038_s41598_024_52866_y crossref_primary_10_1016_j_mattod_2025_02_002 crossref_primary_10_1002_admt_202400473 crossref_primary_10_1038_s42003_021_02779_7 crossref_primary_10_1038_s41598_023_38212_8 crossref_primary_10_1088_1758_5090_ad0c2c crossref_primary_10_1016_j_bios_2022_114750 crossref_primary_10_1016_j_bioactmat_2024_08_027 crossref_primary_10_1002_anbr_202100117 crossref_primary_10_1016_j_bios_2022_114734 crossref_primary_10_3390_mi14101829 crossref_primary_10_1016_j_conb_2025_103011 crossref_primary_10_1016_j_semcdb_2022_10_001 crossref_primary_10_1002_adhm_202301067 crossref_primary_10_1016_j_gde_2023_102097 crossref_primary_10_1038_s44222_023_00036_6 crossref_primary_10_3389_fmed_2024_1452298 crossref_primary_10_1002_adfm_202310961 crossref_primary_10_1152_ajpgi_00152_2022 crossref_primary_10_1002_adhm_202302456 crossref_primary_10_3390_cells11101699 crossref_primary_10_3389_ftox_2022_808620 crossref_primary_10_1016_j_metabol_2024_156065 crossref_primary_10_1242_dev_199463 crossref_primary_10_1002_mco2_274 |
Cites_doi | 10.1002/bit.26871 10.1016/j.reth.2019.05.006 10.3390/cells8050470 10.1038/nature05934 10.1016/j.biocel.2019.02.010 10.3390/mi10030165 10.1016/j.stemcr.2019.09.009 10.1016/j.lfs.2020.117405 10.1128/IAI.00282-18 10.1016/j.canlet.2019.04.039 10.15283/ijsc.2016.9.1.90 10.1093/hmg/ddy186 10.1002/anie.201504382 10.1016/j.cell.2006.07.024 10.1088/1361-6439/aaa993 10.1016/j.stem.2018.10.010 10.1021/bm3015736 10.1016/j.stem.2013.11.010 10.1371/journal.pone.0026603 10.1016/j.drudis.2016.07.003 10.1126/science.1247125 10.1016/j.jcmgh.2018.03.002 10.1093/eurheartj/ehy765 10.1016/j.neuron.2017.07.035.Human 10.1016/j.cell.2016.04.032 10.1038/nature22330 10.1002/cpcb.62 10.1016/J.BRAINRES.2019.146582 10.21037/sci.2018.09.06 10.1038/ncb2872 10.1016/j.stemcr.2019.11.004 10.1038/s41587-020-00763-w 10.1016/j.drudis.2019.01.007 10.1016/j.pt.2019.10.013 10.1038/nmeth.4304 10.1038/s41591-019-0371-0 10.1126/science.25.649.912 10.1038/s41575-020-0317-5 10.1016/j.cell.2007.11.019 10.1016/j.intimp.2019.105687 10.1089/ten.TEC.2017.0428 10.1002/elps.201900170 10.3390/inventions3030065 10.1038/nprot.2017.152 10.1016/j.stem.2018.05.016 10.1016/j.ijdevneu.2019.07.005 10.1016/j.matpr.2019.03.189 10.1126/science.aaw7894 10.1016/j.stemcr.2017.11.001 10.1038/mp.2017.86 10.3390/cancers13040737 |
ContentType | Journal Article |
Copyright | Author(s) 2021 Author(s). 2021 Author(s). Published under license by AIP Publishing. 2021 Author(s) 2021 Author(s) |
Copyright_xml | – notice: Author(s) – notice: 2021 Author(s). – notice: 2021 Author(s). Published under license by AIP Publishing. – notice: 2021 Author(s) 2021 Author(s) |
DBID | AAYXX CITATION NPM 8FD H8D L7M 7X8 5PM |
DOI | 10.1063/5.0041027 |
DatabaseName | CrossRef PubMed Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitleList | Technology Research Database MEDLINE - Academic PubMed CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1932-1058 |
ExternalDocumentID | PMC8043249 33868534 10_1063_5_0041027 bmf |
Genre | Journal Article |
GrantInformation_xml | – fundername: Department of Biotechnology, Ministry of Science and Technology, India grantid: BIRAC-BT/BIPP0946/36/15 funderid: https://doi.org/10.13039/501100001407 – fundername: Center for Computational Brain , IIT Madras – fundername: National Institutes of Health grantid: R01MH085802 funderid: https://doi.org/10.13039/100000002 – fundername: NIMH NIH HHS grantid: R01 MH085802 – fundername: ; – fundername: ; ; grantid: BIRAC-BT/BIPP0946/36/15 – fundername: ; ; grantid: R01MH085802 |
GroupedDBID | 1UP 2-P 23N 2WC 4.4 53G 5GY 5VS 6J9 AAAAW AABDS AAEUA AAKDD AAPUP AAYIH ABFTF ABJNI ACBRY ACGFO ACGFS ACZLF ADBBV ADCTM AEGXH AEJMO AENEX AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AIAGR AJJCW ALEPV ALMA_UNASSIGNED_HOLDINGS AOIJS AQWKA ATXIE AWQPM BAWUL BPZLN C1A CS3 DU5 E3Z EBS EJD ESX F5P FDOHQ FFFMQ GX1 HYE M71 OK1 P2P RIP RNS RPM RQS TR2 AAGWI AAYXX ABJGX ADMLS CITATION OVT NPM 8FD H8D L7M 7X8 5PM |
ID | FETCH-LOGICAL-c473t-76c1f0bcc7f86baa9aa80632911dc7f938d9f26d4fff1bd1e9853a8c01b1b7a53 |
ISSN | 1932-1058 |
IngestDate | Thu Aug 21 17:34:00 EDT 2025 Thu Jul 10 20:38:29 EDT 2025 Mon Jun 30 04:32:29 EDT 2025 Mon Jul 21 05:59:04 EDT 2025 Tue Jul 01 03:53:18 EDT 2025 Thu Apr 24 23:03:01 EDT 2025 Fri Jun 21 00:13:49 EDT 2024 Thu Jun 23 13:36:48 EDT 2022 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | 1932-1058/2021/15(2)/024105/14/$30.00 Published under license by AIP Publishing. 2021 Author(s). |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c473t-76c1f0bcc7f86baa9aa80632911dc7f938d9f26d4fff1bd1e9853a8c01b1b7a53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7083-9360 0000-0002-6036-0361 |
OpenAccessLink | https://pubs.aip.org/aip/bmf/article-pdf/doi/10.1063/5.0041027/13690031/024105_1_online.pdf |
PMID | 33868534 |
PQID | 2509086119 |
PQPubID | 2050670 |
PageCount | 14 |
ParticipantIDs | proquest_journals_2509086119 crossref_citationtrail_10_1063_5_0041027 proquest_miscellaneous_2515066602 scitation_primary_10_1063_5_0041027 pubmed_primary_33868534 crossref_primary_10_1063_5_0041027 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8043249 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-03-01 |
PublicationDateYYYYMMDD | 2021-03-01 |
PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Melville |
PublicationTitle | Biomicrofluidics |
PublicationTitleAlternate | Biomicrofluidics |
PublicationYear | 2021 |
Publisher | American Institute of Physics AIP Publishing LLC |
Publisher_xml | – name: American Institute of Physics – name: AIP Publishing LLC |
References | Kim, Ginga, Takayama (c24) 2018 Duque-Correa, Maizels, Grencis, Berriman (c34) 2020 Ma, Xu, Zhang, Liu, Gao, Tian, Wei, Li, Zhang (c4) 2019 Karzbrun, Tshuva, Reiner (c46) 2018 Takahashi, Yamanaka (c18) 2006 Taguchi, Kaku, Ohmori, Sharmin, Ogawa, Sasaki, Nishinakamura (c11) 2014 Duzagac, Saorin, Memeo, Canzonieri, Rizzolio (c50) 2021 Leigh, Gilbert, Barker, Becker, Richardson, Hoyland, Covington, Dove (c32) 2013 Qian, Jacob, Song, Nguyen, Song, Ming (c42) 2018 Birey, Andersen, Makinson, Islam, Wei, Huber, Fan, Metzler, Panagiotakos, Thom, O’Rourke, Steinmetz, Bernstein, Hallmayer, Huguenard, Paşca (c44) 2017 Stock, Manzoli, Toni, Abreu, Poh, Ye, Roose, Pagliuca, Thanos, Ricordi, Tomei (c6) 2020 Moreno-Rivas, Hernández-Velázquez, Piazza, Marquez (c33) 2019 Nugraha, Buono, Emmert (c16) 2018 Zhang, Zhang (c5) 2020 Nagoshi, Tsuji, Nakamura, Okano (c1) 2019 Okita, Ichisaka, Yamanaka (c20) 2007 Park, Georgescu, Huh (c25) 2019 Sneddon, Tang, Stock, Bluestone, Roy, Desai (c7) 2018 Xia, He, Aji (c8) 2019 Yu, Hunziker, Choudhury (c49) 2019 Bagley, Reumann, Bian, Lévi-Strauss, Knoblich (c47) 2017 Brooks, Chen, Kelley, Mondal, Nagashima, De Val, Li, Chaitankar, Swaroop (c15) 2019 Skardal, Shupe, Atala (c26) 2016 Kondo, Inoue (c23) 2019 Takahashi, Tanabe, Ohnuki, Narita, Ichisaka, Tomoda (c19) 2007 Chahine, Wehbe, Hilal, Zoghbi, Melki, Habib (c9) 2016 Farkhondeh, Li, Gorshkov, Chen, Might, Rodems, Lo, Zheng (c22) 2019 Au, Huynh, Horowitz, Folch (c31) 2016 Miura, Li, Birey, Ikeda, Revah, Thete, Park, Puno, Lee, Porteus, Pasca (c45) 2020 Mostafa, Jafarzadeh-esfehani, Mahdi, Mohammad, Parizadeh, Vojdani, Ghandehari (c3) 2019 Cossellu, Ottonello, Kaigler, Mazzoleni (c39) 2017 Sloan, Darmanis, Huber, Khan, Birey, Caneda, Reimer, Quake, Barres, Sergiu (c43) 2018 Barrila, Crabbé, Yang, Franco, Nydam, Forsyth, Davis, Gangaraju, Mark Ott, Coyne, Bissell, Nickerson (c35) 2018 Wu, Uchimura, Donnelly, Kirita, Morris, Humphreys (c13) 2018 Lei, Ning, Cao, Liu, Zhang, Qiu (c38) 2011 Mellios, Feldman, Sheridan, Ip, Kwok, Amoah, Rosen, Rodriguez, Crawford, Swaminathan, Chou, Li, Ziats, Ernst, Jaenisch, Haggarty, Sur (c51) 2018 Dickson (c36) 2020 Elitt, Barbar, Tesar (c21) 2018 Xia, Nivet, Sancho-Martinez, Gallegos, Suzuki, Okamura, Wu, Dubova, Esteban, Montserrat, Campistol, Izpisua Belmonte (c12) 2013 Klaus, Kanton, Kyrousi, Ayo-Martin, Di Giaimo, Riesenberg, O’Neill, Camp, Tocco, Santel, Rusha, Drukker, Schroeder, Götz, Robertson, Treutlein, Cappello (c48) 2019 DiStefano, Chen, Panebianco, Kaya, Brooks, Gieser, Morgan, Pohida, Swaroop (c40) 2018 Hu, Zhou, Li, Tang, Chen (c2) 2019 Wilson (c10) 1907 Wu, Lee, Ko, Chiang, Peng, Tung (c30) 2018 Mostajo-Radji, Schmitz, Montoya, Pollen (c14) 2020 Torino, Corrado, Iodice, Coppola (c29) 2018 Lin, Sved Skottvoll, Rayner, Pedersen-Bjergaard, Sullivan, Krauss, Ray Wilson, Harrison (c28) 2020 Phelan, Lelkes, Swaroop (c37) 2018 Aleman, Skardal (c27) 2019 Lancaster, Knoblich (c17) 2014 Qian, Nguyen, Song, Hadiono, Ogden, Hammack, Yao, Hamersky, Jacob, Zhong, Yoon, Jeang, Lin, Li, Thakor, Berg, Zhang, Kang, Chickering, Nauen, Ho, Wen, Christian, Shi, Maher, Wu, Jin, Tang, Song, Ming (c41) 2016 (2024031517225898500_c33) 2019; 13 (2024031517225898500_c37) 2018; 13 (2024031517225898500_c36) 2020; 17 (2024031517225898500_c19) 2007; 131 (2024031517225898500_c16) 2018; 39 (2024031517225898500_c32) 2013; 14 (2024031517225898500_c3) 2019; 110 (2024031517225898500_c44) 2017; 545 (2024031517225898500_c2) 2019; 76 (2024031517225898500_c50) 2021; 13 (2024031517225898500_c6) 2020; 14 (2024031517225898500_c35) 2018; 86 (2024031517225898500_c46) 2018; 81 (2024031517225898500_c15) 2019; 13 (2024031517225898500_c30) 2018; 28 (2024031517225898500_c1) 2019; 11 (2024031517225898500_c25) 2019; 364 (2024031517225898500_c27) 2019; 116 (2024031517225898500_c10) 1907; 25 (2024031517225898500_c14) 2020; 1729 (2024031517225898500_c21) 2018; 27 (2024031517225898500_c34) 2020; 36 (2024031517225898500_c18) 2006; 126 (2024031517225898500_c20) 2007; 448 (2024031517225898500_c47) 2017; 14 (2024031517225898500_c23) 2019; 8 (2024031517225898500_c11) 2014; 14 (2024031517225898500_c5) 2020; 246 (2024031517225898500_c38) 2011; 6 (2024031517225898500_c7) 2018; 22 (2024031517225898500_c26) 2016; 21 (2024031517225898500_c4) 2019; 74 (2024031517225898500_c28) 2020; 41 (2024031517225898500_c40) 2018; 10 (2024031517225898500_c42) 2018; 13 (2024031517225898500_c12) 2013; 15 (2024031517225898500_c31) 2016; 55 (2024031517225898500_c39) 2017; 24 (2024031517225898500_c41) 2016; 165 (2024031517225898500_c51) 2018; 23 (2024031517225898500_c13) 2018; 23 (2024031517225898500_c43) 2018; 95 (2024031517225898500_c22) 2019; 24 (2024031517225898500_c9) 2016; 9 (2024031517225898500_c24) 2018; 6 (2024031517225898500_c45) 2020; 38 (2024031517225898500_c8) 2019; 457 (2024031517225898500_c48) 2019; 25 (2024031517225898500_c17) 2014; 345 (2024031517225898500_c29) 2018; 3 (2024031517225898500_c49) 2019; 10 |
References_xml | – start-page: 1421 year: 2020 ident: c45 publication-title: Nat. Biotechnol. – start-page: 663 year: 2006 ident: c18 publication-title: Cell – start-page: 436 year: 2019 ident: c33 publication-title: Mater. Today: Proc. – start-page: 779 year: 2018 ident: c43 publication-title: Neuron – start-page: 6194 year: 2014 ident: c17 publication-title: Science – start-page: 861 year: 2007 ident: c19 publication-title: Cell – start-page: 165 year: 2019 ident: c49 publication-title: Micromachines – start-page: 80 year: 2019 ident: c2 publication-title: Int. J. Dev. Neurosci. – start-page: 20 year: 2019 ident: c8 publication-title: Cancer Lett. – start-page: 561 year: 2019 ident: c48 publication-title: Nat. Med. – start-page: 960 year: 2019 ident: c25 publication-title: Science – start-page: 4234 year: 2018 ident: c16 publication-title: Eur. Heart J. – start-page: 1399 year: 2016 ident: c26 publication-title: Drug Discov. Today – start-page: 1507 year: 2013 ident: c12 publication-title: Nat. Cell Biol. – start-page: 383 year: 2020 ident: c36 publication-title: Nat. Rev. Gastroenterol. Hepatol. – start-page: 1238 year: 2016 ident: c41 publication-title: Cell – start-page: 810 year: 2018 ident: c7 publication-title: Cell Press – start-page: 992 year: 2019 ident: c22 publication-title: Drug Discov. Today – start-page: 565 year: 2018 ident: c37 publication-title: Stem Cell Invest. – start-page: 53 year: 2014 ident: c11 publication-title: Cell Stem Cell – start-page: 1051 year: 2018 ident: c51 publication-title: Molecular Psychiatry – start-page: 170 year: 2020 ident: c34 publication-title: Trends Parasitol. – start-page: 1 year: 2018 ident: c35 publication-title: Infect. Immun. – start-page: 043001 year: 2018 ident: c30 publication-title: J. Micromech. Microeng. – start-page: 75 year: 2019 ident: c1 publication-title: Regener. Ther. – start-page: 105687 year: 2019 ident: c4 publication-title: Int. Immunopharmacol. – start-page: 891 year: 2019 ident: c15 publication-title: Stem Cell Rep. – start-page: 54 year: 2017 ident: c44 publication-title: Nature – start-page: 3862 year: 2016 ident: c31 publication-title: Angew. Chem., Int. Ed. – start-page: 75 year: 2019 ident: c3 publication-title: Int. J. Biochem. Cell Biol. – start-page: 123 year: 2018 ident: c24 publication-title: Cell. Mol. Gastroenterol. Hepatol. – start-page: 743 year: 2017 ident: c47 publication-title: Nat. Methods – start-page: 565 year: 2018 ident: c42 publication-title: Nat. Protoc. – start-page: 91 year: 2020 ident: c6 publication-title: Stem Cell Rep. – start-page: 1 year: 2018 ident: c46 publication-title: Curr. Protoc. Cell Biol. – start-page: 470 year: 2019 ident: c23 publication-title: Cells – start-page: 56 year: 2020 ident: c28 publication-title: Electrophoresis – start-page: 1 year: 2011 ident: c38 publication-title: PLoS ONE – start-page: 117405 year: 2020 ident: c5 publication-title: Life Sci. – start-page: 737 year: 2021 ident: c50 publication-title: Cancers – start-page: 89 year: 2018 ident: c21 publication-title: Hum. Mol. Genet. – start-page: 187 year: 2017 ident: c39 publication-title: Tissue Eng. – start-page: 936 year: 2019 ident: c27 publication-title: Biotechnol. Bioeng. – start-page: 1 year: 2018 ident: c29 publication-title: Inventions – start-page: 186 year: 2013 ident: c32 publication-title: Biomacromolecules – start-page: 912 year: 1907 ident: c10 publication-title: Science – start-page: 313 year: 2007 ident: c20 publication-title: Nature – start-page: 300 year: 2018 ident: c40 publication-title: Stem Cell Rep. – start-page: 869 year: 2018 ident: c13 publication-title: Cell Stem Cell – start-page: 146582 year: 2020 ident: c14 publication-title: Brain Res. – start-page: 90 year: 2016 ident: c9 publication-title: Int. J. Stem Cells – volume: 116 start-page: 936 year: 2019 ident: 2024031517225898500_c27 publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.26871 – volume: 11 start-page: 75 year: 2019 ident: 2024031517225898500_c1 publication-title: Regener. Ther. doi: 10.1016/j.reth.2019.05.006 – volume: 8 start-page: 470 year: 2019 ident: 2024031517225898500_c23 publication-title: Cells doi: 10.3390/cells8050470 – volume: 448 start-page: 313 year: 2007 ident: 2024031517225898500_c20 publication-title: Nature doi: 10.1038/nature05934 – volume: 110 start-page: 75 year: 2019 ident: 2024031517225898500_c3 publication-title: Int. J. Biochem. Cell Biol. doi: 10.1016/j.biocel.2019.02.010 – volume: 10 start-page: 165 year: 2019 ident: 2024031517225898500_c49 publication-title: Micromachines doi: 10.3390/mi10030165 – volume: 13 start-page: 891 year: 2019 ident: 2024031517225898500_c15 publication-title: Stem Cell Rep. doi: 10.1016/j.stemcr.2019.09.009 – volume: 246 start-page: 117405 year: 2020 ident: 2024031517225898500_c5 publication-title: Life Sci. doi: 10.1016/j.lfs.2020.117405 – volume: 86 start-page: 1 year: 2018 ident: 2024031517225898500_c35 publication-title: Infect. Immun. doi: 10.1128/IAI.00282-18 – volume: 457 start-page: 20 year: 2019 ident: 2024031517225898500_c8 publication-title: Cancer Lett. doi: 10.1016/j.canlet.2019.04.039 – volume: 9 start-page: 90 year: 2016 ident: 2024031517225898500_c9 publication-title: Int. J. Stem Cells doi: 10.15283/ijsc.2016.9.1.90 – volume: 27 start-page: 89 year: 2018 ident: 2024031517225898500_c21 publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddy186 – volume: 55 start-page: 3862 year: 2016 ident: 2024031517225898500_c31 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201504382 – volume: 126 start-page: 663 year: 2006 ident: 2024031517225898500_c18 publication-title: Cell doi: 10.1016/j.cell.2006.07.024 – volume: 28 start-page: 043001 year: 2018 ident: 2024031517225898500_c30 publication-title: J. Micromech. Microeng. doi: 10.1088/1361-6439/aaa993 – volume: 23 start-page: 869 year: 2018 ident: 2024031517225898500_c13 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2018.10.010 – volume: 14 start-page: 186 year: 2013 ident: 2024031517225898500_c32 publication-title: Biomacromolecules doi: 10.1021/bm3015736 – volume: 14 start-page: 53 year: 2014 ident: 2024031517225898500_c11 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2013.11.010 – volume: 6 start-page: 1 year: 2011 ident: 2024031517225898500_c38 publication-title: PLoS ONE doi: 10.1371/journal.pone.0026603 – volume: 21 start-page: 1399 year: 2016 ident: 2024031517225898500_c26 publication-title: Drug Discov. Today doi: 10.1016/j.drudis.2016.07.003 – volume: 345 start-page: 6194 year: 2014 ident: 2024031517225898500_c17 publication-title: Science doi: 10.1126/science.1247125 – volume: 6 start-page: 123 year: 2018 ident: 2024031517225898500_c24 publication-title: Cell. Mol. Gastroenterol. Hepatol. doi: 10.1016/j.jcmgh.2018.03.002 – volume: 39 start-page: 4234 year: 2018 ident: 2024031517225898500_c16 publication-title: Eur. Heart J. doi: 10.1093/eurheartj/ehy765 – volume: 95 start-page: 779 year: 2018 ident: 2024031517225898500_c43 publication-title: Neuron doi: 10.1016/j.neuron.2017.07.035.Human – volume: 165 start-page: 1238 year: 2016 ident: 2024031517225898500_c41 publication-title: Cell doi: 10.1016/j.cell.2016.04.032 – volume: 545 start-page: 54 year: 2017 ident: 2024031517225898500_c44 publication-title: Nature doi: 10.1038/nature22330 – volume: 81 start-page: 1 year: 2018 ident: 2024031517225898500_c46 publication-title: Curr. Protoc. Cell Biol. doi: 10.1002/cpcb.62 – volume: 1729 start-page: 146582 year: 2020 ident: 2024031517225898500_c14 publication-title: Brain Res. doi: 10.1016/J.BRAINRES.2019.146582 – volume: 13 start-page: 565 year: 2018 ident: 2024031517225898500_c37 publication-title: Stem Cell Invest. doi: 10.21037/sci.2018.09.06 – volume: 15 start-page: 1507 year: 2013 ident: 2024031517225898500_c12 publication-title: Nat. Cell Biol. doi: 10.1038/ncb2872 – volume: 14 start-page: 91 year: 2020 ident: 2024031517225898500_c6 publication-title: Stem Cell Rep. doi: 10.1016/j.stemcr.2019.11.004 – volume: 38 start-page: 1421 year: 2020 ident: 2024031517225898500_c45 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-020-00763-w – volume: 24 start-page: 992 year: 2019 ident: 2024031517225898500_c22 publication-title: Drug Discov. Today doi: 10.1016/j.drudis.2019.01.007 – volume: 36 start-page: 170 year: 2020 ident: 2024031517225898500_c34 publication-title: Trends Parasitol. doi: 10.1016/j.pt.2019.10.013 – volume: 14 start-page: 743 year: 2017 ident: 2024031517225898500_c47 publication-title: Nat. Methods doi: 10.1038/nmeth.4304 – volume: 25 start-page: 561 year: 2019 ident: 2024031517225898500_c48 publication-title: Nat. Med. doi: 10.1038/s41591-019-0371-0 – volume: 25 start-page: 912 year: 1907 ident: 2024031517225898500_c10 publication-title: Science doi: 10.1126/science.25.649.912 – volume: 17 start-page: 383 year: 2020 ident: 2024031517225898500_c36 publication-title: Nat. Rev. Gastroenterol. Hepatol. doi: 10.1038/s41575-020-0317-5 – volume: 131 start-page: 861 year: 2007 ident: 2024031517225898500_c19 publication-title: Cell doi: 10.1016/j.cell.2007.11.019 – volume: 74 start-page: 105687 year: 2019 ident: 2024031517225898500_c4 publication-title: Int. Immunopharmacol. doi: 10.1016/j.intimp.2019.105687 – volume: 24 start-page: 187 year: 2017 ident: 2024031517225898500_c39 publication-title: Tissue Eng. doi: 10.1089/ten.TEC.2017.0428 – volume: 41 start-page: 56 year: 2020 ident: 2024031517225898500_c28 publication-title: Electrophoresis doi: 10.1002/elps.201900170 – volume: 3 start-page: 1 year: 2018 ident: 2024031517225898500_c29 publication-title: Inventions doi: 10.3390/inventions3030065 – volume: 13 start-page: 565 year: 2018 ident: 2024031517225898500_c42 publication-title: Nat. Protoc. doi: 10.1038/nprot.2017.152 – volume: 22 start-page: 810 year: 2018 ident: 2024031517225898500_c7 publication-title: Cell Press doi: 10.1016/j.stem.2018.05.016 – volume: 76 start-page: 80 year: 2019 ident: 2024031517225898500_c2 publication-title: Int. J. Dev. Neurosci. doi: 10.1016/j.ijdevneu.2019.07.005 – volume: 13 start-page: 436 year: 2019 ident: 2024031517225898500_c33 publication-title: Mater. Today: Proc. doi: 10.1016/j.matpr.2019.03.189 – volume: 364 start-page: 960 year: 2019 ident: 2024031517225898500_c25 publication-title: Science doi: 10.1126/science.aaw7894 – volume: 10 start-page: 300 year: 2018 ident: 2024031517225898500_c40 publication-title: Stem Cell Rep. doi: 10.1016/j.stemcr.2017.11.001 – volume: 23 start-page: 1051 issue: 4 year: 2018 ident: 2024031517225898500_c51 publication-title: Molecular Psychiatry doi: 10.1038/mp.2017.86 – volume: 13 start-page: 737 year: 2021 ident: 2024031517225898500_c50 publication-title: Cancers doi: 10.3390/cancers13040737 |
SSID | ssj0051722 |
Score | 2.43325 |
Snippet | Organoids are biological systems grown in vitro and are observed to self-organize into 3D cellular tissues of specific organs. Brain organoids have emerged as... Organoids are biological systems grown and are observed to self-organize into 3D cellular tissues of specific organs. Brain organoids have emerged as valuable... Organoids are biological systems grown in vitro and are observed to self-organize into 3D cellular tissues of specific organs. Brain organoids have emerged as... |
SourceID | pubmedcentral proquest pubmed crossref scitation |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 024105 |
SubjectTerms | Bioreactors Brain Chambers Low cost Medical imaging Microfluidics Organs Regular Spatial resolution Three dimensional printing |
Title | A low-cost 3D printed microfluidic bioreactor and imaging chamber for live-organoid imaging |
URI | http://dx.doi.org/10.1063/5.0041027 https://www.ncbi.nlm.nih.gov/pubmed/33868534 https://www.proquest.com/docview/2509086119 https://www.proquest.com/docview/2515066602 https://pubmed.ncbi.nlm.nih.gov/PMC8043249 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZgOQAHxJvCgszjgFRlSezESY7VFihIcOpKlThEthOr0bZJ1aYg-PWM48RJaIUWLlHlTOLU83k8nhnPIPTGY1z6IWEOC0PX8QWPHRG6kaNg5sUkBWko9NnhL1_Z7ML_vAgWXVhzfbqkEmfy19FzJf_DVWgDvupTsv_AWftSaIDfwF-4AofheiUeT8ar8ocjy101ptOxNtFp_XGtY-zUap-nuRyLvAS1UFvmjZtgbaoSySXXlUDqIMMVCDynru5U5pZi4OzNy_47O_fP0lhPP11u-drK2C0XS35p4rYnRRfBMYUFbpMbA-r5clVaRM13jc16xn-2bubGDkF6gViN6ARNEIS6ScR-lh1pa-Vt0MMVOSrGQW-CsdfWLh8UoLBbq1r__B9LmA0srF3qjCZB0jx6Hd0gsIHQtS0-LmzwT-CZFJn2-9qcU4y-s70ONZWD7cdhFO1NUFpM_ERPRZnfRXeavQWeGKDcQ9ey4j663cs4-QB9m-AWMphOcQMZ3Gcv7iCDATK4AQRuIIMBMngAmZbiIbr48H5-PnOa-hoOTE9aOSGTnnKFlKGKmOA85jyCESCw_qXQFtMojRVhqa-U8kTqZTHodjySric8EfKAPkInRVlkTxAWhCoVelRmPPBTopPaZYJI15ccnuJyhN62Y5m0g6RroKySA46N0CtLujEZV44RnbYMSZoJuUtAm49hh-558Qi9tLdBXGofGC-ycq9pdEpNxlwyQo8N_2wvlEYM_qE_QuGAs5ZAp2If3inyZZ2SPaozW0K_ry0G_vbxR6i-l9uOItmk6ulVxuEZutXNxVN0Um332XPQkivxogb8b8u5vRs |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+low-cost+3D+printed+microfluidic+bioreactor+and+imaging+chamber+for+live-organoid+imaging&rft.jtitle=Biomicrofluidics&rft.au=Khan%2C+Ikram&rft.au=Prabhakar%2C+Anil&rft.au=Delepine%2C+Chloe&rft.au=Tsang%2C+Hayley&rft.date=2021-03-01&rft.issn=1932-1058&rft.eissn=1932-1058&rft.volume=15&rft.issue=2&rft_id=info:doi/10.1063%2F5.0041027&rft.externalDBID=n%2Fa&rft.externalDocID=10_1063_5_0041027 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-1058&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-1058&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-1058&client=summon |