Unraveling microforging principle during in situ shot-peening-assisted cold spray additive manufacturing aluminum alloy through a multi-physics framework
Cold spray (CS) is a highly potential solid-state additive manufacturing (AM) technique. In situ shot-peening-assisted CSAM was proposed to additively manufacture fully dense deposits using cost-effective and renewable nitrogen gas. The role of in situ shot-peening particles is critical but remains...
Saved in:
Published in | Materials & design Vol. 236; p. 112451 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier
01.12.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cold spray (CS) is a highly potential solid-state additive manufacturing (AM) technique. In situ shot-peening-assisted CSAM was proposed to additively manufacture fully dense deposits using cost-effective and renewable nitrogen gas. The role of in situ shot-peening particles is critical but remains unclear. Here, the process was quantitatively modeled to visualize the dynamic deformation, energy conversion, as well as cell/sub-grain size and microhardness evolutions, compared to those during the conventional CSAM process, identifying the key role of in situ shot-peening particles in the AA6061 extreme deformation and microstructure characteristics during in situ shot-peening-assisted CSAM. High-fidelity modeling was verified fully by comparing the experimental and model-reproduced deformation profiles, cell/sub-grain size distributions, and increases in microhardness. The results show that the kinetic energy of in situ shot-peening particles was 470 times higher and dissipated mainly through AA6061 plastic deformation (86.36% of total energy), leading to significant enhancement of microhardness and tensile strength. Moreover, the mixing ratio of large-size SS410 particles required to create a fully dense deposit was evaluated from an energy perspective, in good agreement with the experiment. This study elucidates the microforging principle during in situ shot-peening-assisted CSAM, providing scientific guidelines for high-quality and low-cost CSAM of high-strength aluminum alloys. |
---|---|
AbstractList | Cold spray (CS) is a highly potential solid-state additive manufacturing (AM) technique. In situ shot-peening-assisted CSAM was proposed to additively manufacture fully dense deposits using cost-effective and renewable nitrogen gas. The role of in situ shot-peening particles is critical but remains unclear. Here, the process was quantitatively modeled to visualize the dynamic deformation, energy conversion, as well as cell/sub-grain size and microhardness evolutions, compared to those during the conventional CSAM process, identifying the key role of in situ shot-peening particles in the AA6061 extreme deformation and microstructure characteristics during in situ shot-peening-assisted CSAM. High-fidelity modeling was verified fully by comparing the experimental and model-reproduced deformation profiles, cell/sub-grain size distributions, and increases in microhardness. The results show that the kinetic energy of in situ shot-peening particles was 470 times higher and dissipated mainly through AA6061 plastic deformation (86.36% of total energy), leading to significant enhancement of microhardness and tensile strength. Moreover, the mixing ratio of large-size SS410 particles required to create a fully dense deposit was evaluated from an energy perspective, in good agreement with the experiment. This study elucidates the microforging principle during in situ shot-peening-assisted CSAM, providing scientific guidelines for high-quality and low-cost CSAM of high-strength aluminum alloys. |
ArticleNumber | 112451 |
Author | Ma, Ninshu Zhang, Xian-Cheng Luo, Xiao-Tao Zhang, Mingxing Li, Chang-Jiu Wang, Qian Shi, Junmiao Geng, Peihao Huang, Wenjia |
Author_xml | – sequence: 1 givenname: Qian surname: Wang fullname: Wang, Qian – sequence: 2 givenname: Ninshu surname: Ma fullname: Ma, Ninshu – sequence: 3 givenname: Junmiao surname: Shi fullname: Shi, Junmiao – sequence: 4 givenname: Wenjia surname: Huang fullname: Huang, Wenjia – sequence: 5 givenname: Xiao-Tao surname: Luo fullname: Luo, Xiao-Tao – sequence: 6 givenname: Peihao surname: Geng fullname: Geng, Peihao – sequence: 7 givenname: Mingxing surname: Zhang fullname: Zhang, Mingxing – sequence: 8 givenname: Xian-Cheng surname: Zhang fullname: Zhang, Xian-Cheng – sequence: 9 givenname: Chang-Jiu surname: Li fullname: Li, Chang-Jiu |
BookMark | eNp9kcuO1DAQRb0YJOb1Byz8A2n8SOKYHRrxGGkkNszaqvjR7caxI9sZ1J_C35JMEAsWrKrqSvdIde8NuoopWoTeUXKghPbvz4cJqrHlwAjjB0pZ29ErdE1Y3zaUie4tuinlTAhjgrfX6NdzzPBig49HPHmdk0v5uB1z9lH7OVhslrwJPuLi64LLKdVmtjauYgOl-FKtwToFg8uc4YLBGF_9i8UTxMWBrrsfwjL5uEzrEtIF11NOy_GEAU9LqL6ZT5fidcEuw2R_pvzjDr1xEIq9_zNv0fPnT98fvjZP3748Pnx8anQreG0E1-DkSPvBaS31wKBjkjtj6Chh7E0n-MiZJECIZnYbQhsiQHREOmaA36LHnWsSnNX69gT5ohJ49SqscSjI1etglZZGOj1wOoihJcwB61eqdNIyokcqVla7s9YgS8nW_eVRorZ61Fnt9aitHrXXs9o-_GPTvkL1KdYMPvzf_Bu9LaJw |
CitedBy_id | crossref_primary_10_1016_j_corsci_2024_112284 crossref_primary_10_1016_j_mtcomm_2024_109812 crossref_primary_10_3390_ma17143484 crossref_primary_10_1016_j_msea_2024_147705 crossref_primary_10_1016_j_mtcomm_2024_110324 crossref_primary_10_1007_s13369_024_09784_y crossref_primary_10_1007_s11666_024_01914_0 crossref_primary_10_1016_j_mfglet_2024_09_178 |
Cites_doi | 10.1016/j.matdes.2021.109575 10.1016/j.corsci.2017.10.033 10.1080/09506608.2015.1116649 10.1016/j.actamat.2020.08.052 10.1098/rspa.2016.0936 10.1016/j.msea.2018.09.065 10.1016/j.matdes.2018.06.024 10.1016/j.pmatsci.2023.101108 10.1016/j.actamat.2021.116862 10.1016/j.pmatsci.2019.100590 10.1016/j.jclepro.2021.127606 10.1016/j.actamat.2019.01.004 10.1016/j.ijmachtools.2022.103890 10.1016/j.actbio.2022.06.002 10.1016/j.jallcom.2018.07.009 10.1016/j.pmatsci.2023.101102 10.1016/j.pmatsci.2017.10.001 10.1016/j.msea.2018.02.094 10.1016/j.actamat.2013.06.033 10.1016/j.actamat.2021.117271 10.1016/j.scriptamat.2017.09.042 10.1016/j.ijmachtools.2015.11.007 10.1016/j.surfcoat.2023.129423 10.1016/j.ijplas.2023.103630 10.1016/j.surfcoat.2018.01.055 10.1016/j.corsci.2010.05.023 10.1016/j.jma.2022.12.011 10.1016/j.jmst.2018.01.002 10.1007/s11666-017-0665-z 10.1016/j.pmatsci.2019.100578 10.1016/j.surfcoat.2020.126386 10.1016/j.matdes.2020.109133 10.1016/j.jmst.2017.09.015 10.1016/j.matdes.2021.109471 10.1016/j.surfcoat.2016.11.014 10.1016/j.surfcoat.2022.128269 10.1016/j.scriptamat.2021.114125 10.1016/j.apsusc.2018.03.103 10.1063/5.0040772 10.1016/j.actamat.2021.117311 10.1016/j.actamat.2020.08.038 10.1080/09506608.2016.1194948 10.1016/j.ijplas.2023.103598 10.1016/j.mser.2020.100596 10.1016/j.actamat.2005.10.005 10.1016/j.actamat.2015.06.054 10.1007/s11666-017-0586-x 10.1016/j.ijmachtools.2018.03.008 10.1038/nature23894 10.1016/j.surfcoat.2021.127087 10.1016/j.msea.2023.144582 10.1016/j.actamat.2020.04.044 10.1016/j.ijmecsci.2021.106526 10.1038/s41467-022-33188-x 10.1016/j.jmatprotec.2022.117815 10.1016/j.actamat.2018.09.041 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.1016/j.matdes.2023.112451 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | oai_doaj_org_article_c9d9fc831878402fa2600c9f9e20cb17 10_1016_j_matdes_2023_112451 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 29M 4.4 457 4G. 5GY 5VS 7-5 8P~ 9JN AABNK AABXZ AAEDT AAEDW AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO AAYXX ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFS ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADVLN AEBSH AEIPS AEKER AEUPX AEZYN AFJKZ AFPUW AFRZQ AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRNS AGUBO AHHHB AHJVU AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BCNDV BJAXD BKOJK BLXMC BNPGV CITATION EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GROUPED_DOAJ HVGLF HZ~ IHE J1W JJJVA KOM M41 MAGPM MO0 O9- OAUVE OK1 P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SEW SMS SPC SSH SSM SST SSZ T5K WUQ ~G- EFKBS |
ID | FETCH-LOGICAL-c473t-73caf9b168fcc9c82a5293fdd1b9ab6d573b3290a00c2e0a007cd07a7509f2da3 |
IEDL.DBID | DOA |
ISSN | 0264-1275 |
IngestDate | Wed Aug 27 01:31:34 EDT 2025 Thu Apr 24 22:51:56 EDT 2025 Tue Jul 01 00:34:32 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c473t-73caf9b168fcc9c82a5293fdd1b9ab6d573b3290a00c2e0a007cd07a7509f2da3 |
OpenAccessLink | https://doaj.org/article/c9d9fc831878402fa2600c9f9e20cb17 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_c9d9fc831878402fa2600c9f9e20cb17 crossref_primary_10_1016_j_matdes_2023_112451 crossref_citationtrail_10_1016_j_matdes_2023_112451 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-12-00 2023-12-01 |
PublicationDateYYYYMMDD | 2023-12-01 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-00 |
PublicationDecade | 2020 |
PublicationTitle | Materials & design |
PublicationYear | 2023 |
Publisher | Elsevier |
Publisher_xml | – name: Elsevier |
References | Aboulkhair (10.1016/j.matdes.2023.112451_b0140) 2019; 106 Zhou (10.1016/j.matdes.2023.112451_b0235) 2018; 766 Diab (10.1016/j.matdes.2023.112451_b0120) 2017; 309 Jafari (10.1016/j.matdes.2023.112451_b0040) 2021; 202 James (10.1016/j.matdes.2023.112451_b0225) 2022; 436 Hassani (10.1016/j.matdes.2023.112451_b0245) 2020; 199 Parsazadeh (10.1016/j.matdes.2023.112451_b0005) 2023; 135 Liu (10.1016/j.matdes.2023.112451_b0315) 2020; 196 Tiamiyu (10.1016/j.matdes.2023.112451_b0340) 2020; 403 Wang (10.1016/j.matdes.2023.112451_b0285) 2021; 413 Thompson (10.1016/j.matdes.2023.112451_b0025) 2015; 8 Luo (10.1016/j.matdes.2023.112451_b0230) 2018; 155 Tao (10.1016/j.matdes.2023.112451_b0130) 2010; 52 Yang (10.1016/j.matdes.2023.112451_b0260) 2018; 34 Liu (10.1016/j.matdes.2023.112451_b0335) 2019; 166 Kim (10.1016/j.matdes.2023.112451_b0190) 2023; 460 Fu (10.1016/j.matdes.2023.112451_b0150) 2023; 864 Murray (10.1016/j.matdes.2023.112451_b0175) 2018; 27 Prashar (10.1016/j.matdes.2023.112451_b0115) 2021; 310 Liu (10.1016/j.matdes.2023.112451_b0070) 2021; 220 Chadwick (10.1016/j.matdes.2023.112451_b0075) 2021; 211 Hassani-Gangaraj (10.1016/j.matdes.2023.112451_b0250) 2018; 145 Wang (10.1016/j.matdes.2023.112451_b0280) 2021; 48 Champagne (10.1016/j.matdes.2023.112451_b0185) 2016; 61 Suhonen (10.1016/j.matdes.2023.112451_b0125) 2013; 61 Ngai (10.1016/j.matdes.2023.112451_b0180) 2018; 130 Liu (10.1016/j.matdes.2023.112451_b0300) 2022; 177 Mostafaei (10.1016/j.matdes.2023.112451_b0055) 2023; 136 DebRoy (10.1016/j.matdes.2023.112451_b0020) 2018; 92 Flynn (10.1016/j.matdes.2023.112451_b0090) 2016; 101 Kotadia (10.1016/j.matdes.2023.112451_b0145) 2021; 46 Zhang (10.1016/j.matdes.2023.112451_b0305) 2018; 130 Shamsaei (10.1016/j.matdes.2023.112451_b0030) 2015; 8 Li (10.1016/j.matdes.2023.112451_b0095) 2018; 34 Hutasoit (10.1016/j.matdes.2023.112451_b0165) 2021; 204 10.1016/j.matdes.2023.112451_b0195 Gao (10.1016/j.matdes.2023.112451_b0265) 2023; 66 Hemeda (10.1016/j.matdes.2023.112451_b0270) 2021; 37 Liu (10.1016/j.matdes.2023.112451_b0010) 2021; 145 Veysset (10.1016/j.matdes.2023.112451_b0240) 2021; 8 Hu (10.1016/j.matdes.2023.112451_b0320) 2022; 13 Palmquist (10.1016/j.matdes.2023.112451_b0045) 2023; 156 Guo (10.1016/j.matdes.2023.112451_b0080) 2022; 59 Aldwell (10.1016/j.matdes.2023.112451_b0170) 2017; 26 Yildirim (10.1016/j.matdes.2023.112451_b0290) 2017; 473 Nikbakht (10.1016/j.matdes.2023.112451_b0330) 2018; 444 Pan (10.1016/j.matdes.2023.112451_b0200) 2023; 164 Hauser (10.1016/j.matdes.2023.112451_b0060) 2021; 41 Hassani-Gangaraj (10.1016/j.matdes.2023.112451_b0295) 2015; 97 Chen (10.1016/j.matdes.2023.112451_b0085) 2023; 166 Nautiyal (10.1016/j.matdes.2023.112451_b0160) 2018; 737 Oliveira (10.1016/j.matdes.2023.112451_b0035) 2020; 107 Fan (10.1016/j.matdes.2023.112451_b0215) 2020; 36 Martin (10.1016/j.matdes.2023.112451_b0135) 2017; 549 Wang (10.1016/j.matdes.2023.112451_b0255) 2015; 8 Pathak (10.1016/j.matdes.2023.112451_b0110) 2020 Schmidt (10.1016/j.matdes.2023.112451_b0205) 2006; 54 Paul (10.1016/j.matdes.2023.112451_b0155) 2021; 204 Gibson (10.1016/j.matdes.2023.112451_b0015) 2021 10.1016/j.matdes.2023.112451_b0220 Wang (10.1016/j.matdes.2023.112451_b0275) 2020; 199 Ichikawa (10.1016/j.matdes.2023.112451_b0325) 2019; 164 Sames (10.1016/j.matdes.2023.112451_b0050) 2016; 61 Bagherifard (10.1016/j.matdes.2023.112451_b0100) 2021; 203 Bagherifard (10.1016/j.matdes.2023.112451_b0105) 2018; 721 Tekkaya (10.1016/j.matdes.2023.112451_b0310) 2023; 311 Thapliyal (10.1016/j.matdes.2023.112451_b0065) 2021; 219 Dowding (10.1016/j.matdes.2023.112451_b0210) 2020; 194 |
References_xml | – volume: 203 year: 2021 ident: 10.1016/j.matdes.2023.112451_b0100 article-title: Tailoring cold spray additive manufacturing of steel 316 L for static and cyclic load-bearing applications publication-title: Mater. Des. doi: 10.1016/j.matdes.2021.109575 – volume: 130 start-page: 231 year: 2018 ident: 10.1016/j.matdes.2023.112451_b0180 article-title: Saltwater corrosion behavior of cold sprayed AA7075 aluminum alloy coatings publication-title: Corrosion Sci. doi: 10.1016/j.corsci.2017.10.033 – volume: 61 start-page: 315 year: 2016 ident: 10.1016/j.matdes.2023.112451_b0050 article-title: The metallurgy and processing science of metal additive manufacturing publication-title: Int. Mater. Rev. doi: 10.1080/09506608.2015.1116649 – volume: 199 start-page: 326 year: 2020 ident: 10.1016/j.matdes.2023.112451_b0275 article-title: Development of a material model for predicting extreme deformation and grain refinement during cold spraying publication-title: Acta Mater. doi: 10.1016/j.actamat.2020.08.052 – year: 2021 ident: 10.1016/j.matdes.2023.112451_b0015 – volume: 473 start-page: 20160936 year: 2017 ident: 10.1016/j.matdes.2023.112451_b0290 article-title: Rebound mechanics of micrometre-scale, spherical particles in high-velocity impacts publication-title: Proc. R. Soc. A-Math. Phys. Eng. Sci. doi: 10.1098/rspa.2016.0936 – volume: 737 start-page: 297 year: 2018 ident: 10.1016/j.matdes.2023.112451_b0160 article-title: In-situ mechanical investigation of the deformation of splat interfaces in cold-sprayed aluminum alloy publication-title: Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. doi: 10.1016/j.msea.2018.09.065 – volume: 155 start-page: 384 year: 2018 ident: 10.1016/j.matdes.2023.112451_b0230 article-title: Deposition behavior, microstructure and mechanical properties of an in-situ micro-forging assisted cold spray enabled additively manufactured Inconel 718 alloy publication-title: Mater. Des. doi: 10.1016/j.matdes.2018.06.024 – volume: 136 year: 2023 ident: 10.1016/j.matdes.2023.112451_b0055 article-title: Additive manufacturing of nickel-based superalloys: a state-of-the-art review on process-structure-defect-property relationship publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2023.101108 – volume: 211 year: 2021 ident: 10.1016/j.matdes.2023.112451_b0075 article-title: The development of grain structure during additive manufacturing publication-title: Acta Mater. doi: 10.1016/j.actamat.2021.116862 – volume: 66 year: 2023 ident: 10.1016/j.matdes.2023.112451_b0265 article-title: Tamping effect during additive manufacturing of copper coating by cold spray: a comprehensive molecular dynamics study publication-title: Addit. Manuf. – volume: 107 year: 2020 ident: 10.1016/j.matdes.2023.112451_b0035 article-title: Revisiting fundamental welding concepts to improve additive manufacturing: from theory to practice publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2019.100590 – volume: 310 year: 2021 ident: 10.1016/j.matdes.2023.112451_b0115 article-title: A comprehensive review on sustainable cold spray additive manufacturing: state of the art, challenges and future challenges publication-title: J. Clean Prod. doi: 10.1016/j.jclepro.2021.127606 – volume: 166 start-page: 324 year: 2019 ident: 10.1016/j.matdes.2023.112451_b0335 article-title: Elucidation of interface joining mechanism during friction stir welding through Cu/Cu-10Zn interfacial observations publication-title: Acta Mater. doi: 10.1016/j.actamat.2019.01.004 – volume: 177 year: 2022 ident: 10.1016/j.matdes.2023.112451_b0300 article-title: The state of the art for numerical simulations of the effect of the microstructure and its evolution in the metal-cutting processes publication-title: Int. J. Mach. Tools Manuf. doi: 10.1016/j.ijmachtools.2022.103890 – volume: 156 start-page: 125 year: 2023 ident: 10.1016/j.matdes.2023.112451_b0045 article-title: Complex geometry and integrated macro-porosity: clinical applications of electron beam melting to fabricate bespoke bone-anchored implants publication-title: Acta Biomater. doi: 10.1016/j.actbio.2022.06.002 – volume: 766 start-page: 694 year: 2018 ident: 10.1016/j.matdes.2023.112451_b0235 article-title: Local microstructure inhomogeneity and gas temperature effect in in-situ shot-peening assisted cold-sprayed Ti-6Al-4V coating publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2018.07.009 – volume: 135 year: 2023 ident: 10.1016/j.matdes.2023.112451_b0005 article-title: Towards the next generation of machine learning models in additive manufacturing: a review of process dependent material evolution publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2023.101102 – volume: 92 start-page: 112 year: 2018 ident: 10.1016/j.matdes.2023.112451_b0020 article-title: Additive manufacturing of metallic components–process, structure and properties publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2017.10.001 – volume: 721 start-page: 339 year: 2018 ident: 10.1016/j.matdes.2023.112451_b0105 article-title: Cold spray deposition for additive manufacturing of freeform structural components compared to selective laser melting publication-title: Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. doi: 10.1016/j.msea.2018.02.094 – volume: 61 start-page: 6329 year: 2013 ident: 10.1016/j.matdes.2023.112451_b0125 article-title: Residual stress development in cold sprayed Al, Cu and Ti coatings publication-title: Acta Mater. doi: 10.1016/j.actamat.2013.06.033 – volume: 219 year: 2021 ident: 10.1016/j.matdes.2023.112451_b0065 article-title: Segregation engineering of grain boundaries of a metastable Fe-Mn-Co-Cr-Si high entropy alloy with laser-powder bed fusion additive manufacturing publication-title: Acta Mater. doi: 10.1016/j.actamat.2021.117271 – volume: 145 start-page: 9 year: 2018 ident: 10.1016/j.matdes.2023.112451_b0250 article-title: In-situ observations of single micro-particle impact bonding publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2017.09.042 – volume: 101 start-page: 79 year: 2016 ident: 10.1016/j.matdes.2023.112451_b0090 article-title: Hybrid additive and subtractive machine tools–Research and industrial developments publication-title: Int. J. Mach. Tools Manuf. doi: 10.1016/j.ijmachtools.2015.11.007 – volume: 460 year: 2023 ident: 10.1016/j.matdes.2023.112451_b0190 article-title: Microstructure and corrosion resistance of chromate conversion coating on cold sprayed aluminum alloy 2024 publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2023.129423 – volume: 166 year: 2023 ident: 10.1016/j.matdes.2023.112451_b0085 article-title: On adiabatic shear instability in impacts of micron-scale Al-6061 particles with sapphire and Al-6061 substrates publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2023.103630 – volume: 46 year: 2021 ident: 10.1016/j.matdes.2023.112451_b0145 article-title: A review of Laser Powder Bed Fusion Additive Manufacturing of aluminium alloys: microstructure and properties publication-title: Addit. Manuf. – ident: 10.1016/j.matdes.2023.112451_b0195 doi: 10.1016/j.surfcoat.2018.01.055 – volume: 37 year: 2021 ident: 10.1016/j.matdes.2023.112451_b0270 article-title: Particle-based simulation of cold spray: influence of oxide layer on impact process publication-title: Addit. Manuf. – volume: 52 start-page: 3191 year: 2010 ident: 10.1016/j.matdes.2023.112451_b0130 article-title: Microstructure and corrosion performance of a cold sprayed aluminium coating on AZ91D magnesium alloy publication-title: Corrosion Sci. doi: 10.1016/j.corsci.2010.05.023 – ident: 10.1016/j.matdes.2023.112451_b0220 doi: 10.1016/j.jma.2022.12.011 – volume: 8 start-page: 149 year: 2015 ident: 10.1016/j.matdes.2023.112451_b0255 article-title: Characterization and modeling of the bonding process in cold spray additive manufacturing publication-title: Addit. Manuf. – volume: 34 start-page: 1570 year: 2018 ident: 10.1016/j.matdes.2023.112451_b0260 article-title: Characterizations and anisotropy of cold-spraying additive-manufactured copper bulk publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2018.01.002 – volume: 27 start-page: 159 year: 2018 ident: 10.1016/j.matdes.2023.112451_b0175 article-title: Heat treatment of cold-sprayed C355 Al for repair: microstructure and mechanical properties publication-title: J. Therm. Spray Technol. doi: 10.1007/s11666-017-0665-z – volume: 106 year: 2019 ident: 10.1016/j.matdes.2023.112451_b0140 article-title: 3D printing of aluminium alloys: additive manufacturing of aluminium alloys using selective laser melting publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2019.100578 – volume: 403 year: 2020 ident: 10.1016/j.matdes.2023.112451_b0340 article-title: Particle flattening during cold spray: mechanistic regimes revealed by single particle impact tests publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2020.126386 – volume: 196 year: 2020 ident: 10.1016/j.matdes.2023.112451_b0315 article-title: Prediction of microstructure gradient distribution in machined surface induced by high speed machining through a coupled FE and CA approach publication-title: Mater. Des. doi: 10.1016/j.matdes.2020.109133 – volume: 34 start-page: 440 year: 2018 ident: 10.1016/j.matdes.2023.112451_b0095 article-title: Solid-state additive manufacturing and repairing by cold spraying: a review publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2017.09.015 – volume: 202 year: 2021 ident: 10.1016/j.matdes.2023.112451_b0040 article-title: Wire and arc additive manufacturing: opportunities and challenges to control the quality and accuracy of manufactured parts publication-title: Mater. Des. doi: 10.1016/j.matdes.2021.109471 – volume: 309 start-page: 423 year: 2017 ident: 10.1016/j.matdes.2023.112451_b0120 article-title: The effect of pure aluminum cold spray coating on corrosion and corrosion fatigue of magnesium (3% Al-1% Zn) extrusion publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2016.11.014 – start-page: 1 year: 2020 ident: 10.1016/j.matdes.2023.112451_b0110 article-title: Cold spray: its prominence as an additive manufacturing technology – volume: 436 year: 2022 ident: 10.1016/j.matdes.2023.112451_b0225 article-title: Effect of zirconia secondary peening on the microstructure and mechanical behavior of Al6061 cold spray coatings publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2022.128269 – volume: 204 year: 2021 ident: 10.1016/j.matdes.2023.112451_b0155 article-title: Role of in-situ splat sintering on elastic and damping behavior of cold sprayed aluminum coatings publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2021.114125 – volume: 444 start-page: 621 year: 2018 ident: 10.1016/j.matdes.2023.112451_b0330 article-title: Asymmetrical bonding in cold spraying of dissimilar materials publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2018.03.103 – volume: 48 year: 2021 ident: 10.1016/j.matdes.2023.112451_b0280 article-title: Towards better understanding supersonic impact-bonding behavior of cold sprayed 6061–T6 aluminum alloy based on a high-accuracy material model publication-title: Addit. Manuf. – volume: 8 year: 2021 ident: 10.1016/j.matdes.2023.112451_b0240 article-title: High-velocity micro-projectile impact testing publication-title: Appl. Phys. Rev. doi: 10.1063/5.0040772 – volume: 59 year: 2022 ident: 10.1016/j.matdes.2023.112451_b0080 article-title: Phase transformation dynamics guided alloy development for additive manufacturing publication-title: Addit. Manuf. – volume: 220 year: 2021 ident: 10.1016/j.matdes.2023.112451_b0070 article-title: Additive manufacturing of high strength copper alloy with heterogeneous grain structure through laser powder bed fusion publication-title: Acta Mater. doi: 10.1016/j.actamat.2021.117311 – volume: 199 start-page: 480 year: 2020 ident: 10.1016/j.matdes.2023.112451_b0245 article-title: Microparticle impact-bonding modes for mismatched metals: from co-deformation to splatting and penetration publication-title: Acta Mater. doi: 10.1016/j.actamat.2020.08.038 – volume: 61 start-page: 437 year: 2016 ident: 10.1016/j.matdes.2023.112451_b0185 article-title: The unique abilities of cold spray deposition publication-title: Int. Mater. Rev. doi: 10.1080/09506608.2016.1194948 – volume: 164 year: 2023 ident: 10.1016/j.matdes.2023.112451_b0200 article-title: Two laser beam modulation of microstructure and residual stress field in cold sprayed Al alloy for recovering fatigue performance publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2023.103598 – volume: 145 year: 2021 ident: 10.1016/j.matdes.2023.112451_b0010 article-title: Additive manufacturing of structural materials publication-title: Mater. Sci. Eng. R-Rep. doi: 10.1016/j.mser.2020.100596 – volume: 41 year: 2021 ident: 10.1016/j.matdes.2023.112451_b0060 article-title: Oxidation in wire arc additive manufacturing of aluminium alloys publication-title: Addit. Manuf. – volume: 54 start-page: 729 year: 2006 ident: 10.1016/j.matdes.2023.112451_b0205 article-title: Development of a generalized parameter window for cold spray deposition publication-title: Acta Mater. doi: 10.1016/j.actamat.2005.10.005 – volume: 36 year: 2020 ident: 10.1016/j.matdes.2023.112451_b0215 article-title: A new strategy for strengthening additively manufactured cold spray deposits through in-process densification publication-title: Addit. Manuf. – volume: 97 start-page: 105 year: 2015 ident: 10.1016/j.matdes.2023.112451_b0295 article-title: Experimental assessment and simulation of surface nanocrystallization by severe shot peening publication-title: Acta Mater. doi: 10.1016/j.actamat.2015.06.054 – volume: 26 start-page: 1573 year: 2017 ident: 10.1016/j.matdes.2023.112451_b0170 article-title: Machinability of Al 6061 deposited with cold spray additive manufacturing publication-title: J. Therm. Spray Technol. doi: 10.1007/s11666-017-0586-x – volume: 130 start-page: 36 year: 2018 ident: 10.1016/j.matdes.2023.112451_b0305 article-title: Predictive modelling of microstructure changes, micro-hardness and residual stress in machining of 304 austenitic stainless steel publication-title: Int. J. Mach. Tools Manuf. doi: 10.1016/j.ijmachtools.2018.03.008 – volume: 8 start-page: 12 year: 2015 ident: 10.1016/j.matdes.2023.112451_b0030 article-title: An overview of Direct Laser Deposition for additive manufacturing; Part II: mechanical behavior, process parameter optimization and control publication-title: Addit. Manuf. – volume: 549 start-page: 365 year: 2017 ident: 10.1016/j.matdes.2023.112451_b0135 article-title: 3D printing of high-strength aluminium alloys publication-title: Nature doi: 10.1038/nature23894 – volume: 413 year: 2021 ident: 10.1016/j.matdes.2023.112451_b0285 article-title: Capturing cold-spray bonding features of pure Cu from in situ deformation behavior using a high-accuracy material model publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2021.127087 – volume: 864 year: 2023 ident: 10.1016/j.matdes.2023.112451_b0150 article-title: Large-size ultra-high strength-plasticity aluminum alloys fabricated by wire arc additive manufacturing via added nanoparticles publication-title: Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. doi: 10.1016/j.msea.2023.144582 – volume: 194 start-page: 40 year: 2020 ident: 10.1016/j.matdes.2023.112451_b0210 article-title: Particle size effects in metallic microparticle impact-bonding publication-title: Acta Mater. doi: 10.1016/j.actamat.2020.04.044 – volume: 8 start-page: 36 year: 2015 ident: 10.1016/j.matdes.2023.112451_b0025 article-title: An overview of Direct Laser Deposition for additive manufacturing; Part I: transport phenomena, modeling and diagnostics publication-title: Addit. Manuf. – volume: 204 year: 2021 ident: 10.1016/j.matdes.2023.112451_b0165 article-title: Effects of build orientation and heat treatment on microstructure, mechanical and corrosion properties of Al6061 aluminium parts built by cold spray additive manufacturing process publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2021.106526 – volume: 13 start-page: 5816 year: 2022 ident: 10.1016/j.matdes.2023.112451_b0320 article-title: Inhibiting weld cracking in high-strength aluminium alloys publication-title: Nat. Commun. doi: 10.1038/s41467-022-33188-x – volume: 311 year: 2023 ident: 10.1016/j.matdes.2023.112451_b0310 article-title: Modeling of microstructural workpiece rim zone modifications during hard machining publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2022.117815 – volume: 164 start-page: 39 year: 2019 ident: 10.1016/j.matdes.2023.112451_b0325 article-title: Elucidation of cold-spray deposition mechanism by auger electron spectroscopic evaluation of bonding interface oxide film publication-title: Acta Mater. doi: 10.1016/j.actamat.2018.09.041 |
SSID | ssj0022734 |
Score | 2.4630704 |
Snippet | Cold spray (CS) is a highly potential solid-state additive manufacturing (AM) technique. In situ shot-peening-assisted CSAM was proposed to additively... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
StartPage | 112451 |
SubjectTerms | Additive manufacturing Cold spray Extreme deformation Grain refinement Microforging |
Title | Unraveling microforging principle during in situ shot-peening-assisted cold spray additive manufacturing aluminum alloy through a multi-physics framework |
URI | https://doaj.org/article/c9d9fc831878402fa2600c9f9e20cb17 |
Volume | 236 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1FeuoE1IrGbh0dAVAgJJip1ixw_RBFNozYZ-lP4t9zFSVWmLkyRLDuyfBffI999x9id4WkWch0FQlDqJnL4zQkMVhz6trFOpNSOCpzf3pOXyeh1Gk-3Wn0RJszTA_uDu9fSSKczVL0UYxHuFDGqa-mk5aEuoraOHG1eH0x1oRaRtvjsCrHypXFfNNciu9AVNJaourmgCppRHP0xSlvc_a2RGR-xw847hAe_q2O2Z8sTdrDFGXjKfiYldQyiKnKYE5oOvU5qNARVnzYHX3oIsxJWs7qB1eeiDiqMV3EwQF-ZBGsAFcDAqlqqNRCmiG49mKuyoUoHv17hvTUrmznQv_k1dB19QEELQgx8TmQFrod3nbHJ-Pnj6SXo-isEepSKOkiFVk4WUZI5raXOuIrR-DtjokKqIjFxKgrBZajwwLmlR6pNmCpyMhw3SpyzQbko7QUDgXEP0fy0sTZeGYVNjBXOyUQpZYUeMtEfcK478nHqgfGd9yizr9yLJSex5F4sQxZsVlWefGPH_EeS3WYuUWe3AyiIvFOofJdCXf7HS67YPu3L416u2aBeNvYGvZe6uG0V9Rcuku_D |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unraveling+microforging+principle+during+in+situ+shot-peening-assisted+cold+spray+additive+manufacturing+aluminum+alloy+through+a+multi-physics+framework&rft.jtitle=Materials+%26+design&rft.au=Qian+Wang&rft.au=Ninshu+Ma&rft.au=Junmiao+Shi&rft.au=Wenjia+Huang&rft.date=2023-12-01&rft.pub=Elsevier&rft.issn=0264-1275&rft.volume=236&rft.spage=112451&rft_id=info:doi/10.1016%2Fj.matdes.2023.112451&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_c9d9fc831878402fa2600c9f9e20cb17 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0264-1275&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0264-1275&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0264-1275&client=summon |