Unraveling microforging principle during in situ shot-peening-assisted cold spray additive manufacturing aluminum alloy through a multi-physics framework

Cold spray (CS) is a highly potential solid-state additive manufacturing (AM) technique. In situ shot-peening-assisted CSAM was proposed to additively manufacture fully dense deposits using cost-effective and renewable nitrogen gas. The role of in situ shot-peening particles is critical but remains...

Full description

Saved in:
Bibliographic Details
Published inMaterials & design Vol. 236; p. 112451
Main Authors Wang, Qian, Ma, Ninshu, Shi, Junmiao, Huang, Wenjia, Luo, Xiao-Tao, Geng, Peihao, Zhang, Mingxing, Zhang, Xian-Cheng, Li, Chang-Jiu
Format Journal Article
LanguageEnglish
Published Elsevier 01.12.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cold spray (CS) is a highly potential solid-state additive manufacturing (AM) technique. In situ shot-peening-assisted CSAM was proposed to additively manufacture fully dense deposits using cost-effective and renewable nitrogen gas. The role of in situ shot-peening particles is critical but remains unclear. Here, the process was quantitatively modeled to visualize the dynamic deformation, energy conversion, as well as cell/sub-grain size and microhardness evolutions, compared to those during the conventional CSAM process, identifying the key role of in situ shot-peening particles in the AA6061 extreme deformation and microstructure characteristics during in situ shot-peening-assisted CSAM. High-fidelity modeling was verified fully by comparing the experimental and model-reproduced deformation profiles, cell/sub-grain size distributions, and increases in microhardness. The results show that the kinetic energy of in situ shot-peening particles was 470 times higher and dissipated mainly through AA6061 plastic deformation (86.36% of total energy), leading to significant enhancement of microhardness and tensile strength. Moreover, the mixing ratio of large-size SS410 particles required to create a fully dense deposit was evaluated from an energy perspective, in good agreement with the experiment. This study elucidates the microforging principle during in situ shot-peening-assisted CSAM, providing scientific guidelines for high-quality and low-cost CSAM of high-strength aluminum alloys.
AbstractList Cold spray (CS) is a highly potential solid-state additive manufacturing (AM) technique. In situ shot-peening-assisted CSAM was proposed to additively manufacture fully dense deposits using cost-effective and renewable nitrogen gas. The role of in situ shot-peening particles is critical but remains unclear. Here, the process was quantitatively modeled to visualize the dynamic deformation, energy conversion, as well as cell/sub-grain size and microhardness evolutions, compared to those during the conventional CSAM process, identifying the key role of in situ shot-peening particles in the AA6061 extreme deformation and microstructure characteristics during in situ shot-peening-assisted CSAM. High-fidelity modeling was verified fully by comparing the experimental and model-reproduced deformation profiles, cell/sub-grain size distributions, and increases in microhardness. The results show that the kinetic energy of in situ shot-peening particles was 470 times higher and dissipated mainly through AA6061 plastic deformation (86.36% of total energy), leading to significant enhancement of microhardness and tensile strength. Moreover, the mixing ratio of large-size SS410 particles required to create a fully dense deposit was evaluated from an energy perspective, in good agreement with the experiment. This study elucidates the microforging principle during in situ shot-peening-assisted CSAM, providing scientific guidelines for high-quality and low-cost CSAM of high-strength aluminum alloys.
ArticleNumber 112451
Author Ma, Ninshu
Zhang, Xian-Cheng
Luo, Xiao-Tao
Zhang, Mingxing
Li, Chang-Jiu
Wang, Qian
Shi, Junmiao
Geng, Peihao
Huang, Wenjia
Author_xml – sequence: 1
  givenname: Qian
  surname: Wang
  fullname: Wang, Qian
– sequence: 2
  givenname: Ninshu
  surname: Ma
  fullname: Ma, Ninshu
– sequence: 3
  givenname: Junmiao
  surname: Shi
  fullname: Shi, Junmiao
– sequence: 4
  givenname: Wenjia
  surname: Huang
  fullname: Huang, Wenjia
– sequence: 5
  givenname: Xiao-Tao
  surname: Luo
  fullname: Luo, Xiao-Tao
– sequence: 6
  givenname: Peihao
  surname: Geng
  fullname: Geng, Peihao
– sequence: 7
  givenname: Mingxing
  surname: Zhang
  fullname: Zhang, Mingxing
– sequence: 8
  givenname: Xian-Cheng
  surname: Zhang
  fullname: Zhang, Xian-Cheng
– sequence: 9
  givenname: Chang-Jiu
  surname: Li
  fullname: Li, Chang-Jiu
BookMark eNp9kcuO1DAQRb0YJOb1Byz8A2n8SOKYHRrxGGkkNszaqvjR7caxI9sZ1J_C35JMEAsWrKrqSvdIde8NuoopWoTeUXKghPbvz4cJqrHlwAjjB0pZ29ErdE1Y3zaUie4tuinlTAhjgrfX6NdzzPBig49HPHmdk0v5uB1z9lH7OVhslrwJPuLi64LLKdVmtjauYgOl-FKtwToFg8uc4YLBGF_9i8UTxMWBrrsfwjL5uEzrEtIF11NOy_GEAU9LqL6ZT5fidcEuw2R_pvzjDr1xEIq9_zNv0fPnT98fvjZP3748Pnx8anQreG0E1-DkSPvBaS31wKBjkjtj6Chh7E0n-MiZJECIZnYbQhsiQHREOmaA36LHnWsSnNX69gT5ohJ49SqscSjI1etglZZGOj1wOoihJcwB61eqdNIyokcqVla7s9YgS8nW_eVRorZ61Fnt9aitHrXXs9o-_GPTvkL1KdYMPvzf_Bu9LaJw
CitedBy_id crossref_primary_10_1016_j_corsci_2024_112284
crossref_primary_10_1016_j_mtcomm_2024_109812
crossref_primary_10_3390_ma17143484
crossref_primary_10_1016_j_msea_2024_147705
crossref_primary_10_1016_j_mtcomm_2024_110324
crossref_primary_10_1007_s13369_024_09784_y
crossref_primary_10_1007_s11666_024_01914_0
crossref_primary_10_1016_j_mfglet_2024_09_178
Cites_doi 10.1016/j.matdes.2021.109575
10.1016/j.corsci.2017.10.033
10.1080/09506608.2015.1116649
10.1016/j.actamat.2020.08.052
10.1098/rspa.2016.0936
10.1016/j.msea.2018.09.065
10.1016/j.matdes.2018.06.024
10.1016/j.pmatsci.2023.101108
10.1016/j.actamat.2021.116862
10.1016/j.pmatsci.2019.100590
10.1016/j.jclepro.2021.127606
10.1016/j.actamat.2019.01.004
10.1016/j.ijmachtools.2022.103890
10.1016/j.actbio.2022.06.002
10.1016/j.jallcom.2018.07.009
10.1016/j.pmatsci.2023.101102
10.1016/j.pmatsci.2017.10.001
10.1016/j.msea.2018.02.094
10.1016/j.actamat.2013.06.033
10.1016/j.actamat.2021.117271
10.1016/j.scriptamat.2017.09.042
10.1016/j.ijmachtools.2015.11.007
10.1016/j.surfcoat.2023.129423
10.1016/j.ijplas.2023.103630
10.1016/j.surfcoat.2018.01.055
10.1016/j.corsci.2010.05.023
10.1016/j.jma.2022.12.011
10.1016/j.jmst.2018.01.002
10.1007/s11666-017-0665-z
10.1016/j.pmatsci.2019.100578
10.1016/j.surfcoat.2020.126386
10.1016/j.matdes.2020.109133
10.1016/j.jmst.2017.09.015
10.1016/j.matdes.2021.109471
10.1016/j.surfcoat.2016.11.014
10.1016/j.surfcoat.2022.128269
10.1016/j.scriptamat.2021.114125
10.1016/j.apsusc.2018.03.103
10.1063/5.0040772
10.1016/j.actamat.2021.117311
10.1016/j.actamat.2020.08.038
10.1080/09506608.2016.1194948
10.1016/j.ijplas.2023.103598
10.1016/j.mser.2020.100596
10.1016/j.actamat.2005.10.005
10.1016/j.actamat.2015.06.054
10.1007/s11666-017-0586-x
10.1016/j.ijmachtools.2018.03.008
10.1038/nature23894
10.1016/j.surfcoat.2021.127087
10.1016/j.msea.2023.144582
10.1016/j.actamat.2020.04.044
10.1016/j.ijmecsci.2021.106526
10.1038/s41467-022-33188-x
10.1016/j.jmatprotec.2022.117815
10.1016/j.actamat.2018.09.041
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.1016/j.matdes.2023.112451
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID oai_doaj_org_article_c9d9fc831878402fa2600c9f9e20cb17
10_1016_j_matdes_2023_112451
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
29M
4.4
457
4G.
5GY
5VS
7-5
8P~
9JN
AABNK
AABXZ
AAEDT
AAEDW
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
AAYXX
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFS
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADVLN
AEBSH
AEIPS
AEKER
AEUPX
AEZYN
AFJKZ
AFPUW
AFRZQ
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRNS
AGUBO
AHHHB
AHJVU
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BCNDV
BJAXD
BKOJK
BLXMC
BNPGV
CITATION
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GROUPED_DOAJ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MAGPM
MO0
O9-
OAUVE
OK1
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SEW
SMS
SPC
SSH
SSM
SST
SSZ
T5K
WUQ
~G-
EFKBS
ID FETCH-LOGICAL-c473t-73caf9b168fcc9c82a5293fdd1b9ab6d573b3290a00c2e0a007cd07a7509f2da3
IEDL.DBID DOA
ISSN 0264-1275
IngestDate Wed Aug 27 01:31:34 EDT 2025
Thu Apr 24 22:51:56 EDT 2025
Tue Jul 01 00:34:32 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c473t-73caf9b168fcc9c82a5293fdd1b9ab6d573b3290a00c2e0a007cd07a7509f2da3
OpenAccessLink https://doaj.org/article/c9d9fc831878402fa2600c9f9e20cb17
ParticipantIDs doaj_primary_oai_doaj_org_article_c9d9fc831878402fa2600c9f9e20cb17
crossref_primary_10_1016_j_matdes_2023_112451
crossref_citationtrail_10_1016_j_matdes_2023_112451
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-00
2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-00
PublicationDecade 2020
PublicationTitle Materials & design
PublicationYear 2023
Publisher Elsevier
Publisher_xml – name: Elsevier
References Aboulkhair (10.1016/j.matdes.2023.112451_b0140) 2019; 106
Zhou (10.1016/j.matdes.2023.112451_b0235) 2018; 766
Diab (10.1016/j.matdes.2023.112451_b0120) 2017; 309
Jafari (10.1016/j.matdes.2023.112451_b0040) 2021; 202
James (10.1016/j.matdes.2023.112451_b0225) 2022; 436
Hassani (10.1016/j.matdes.2023.112451_b0245) 2020; 199
Parsazadeh (10.1016/j.matdes.2023.112451_b0005) 2023; 135
Liu (10.1016/j.matdes.2023.112451_b0315) 2020; 196
Tiamiyu (10.1016/j.matdes.2023.112451_b0340) 2020; 403
Wang (10.1016/j.matdes.2023.112451_b0285) 2021; 413
Thompson (10.1016/j.matdes.2023.112451_b0025) 2015; 8
Luo (10.1016/j.matdes.2023.112451_b0230) 2018; 155
Tao (10.1016/j.matdes.2023.112451_b0130) 2010; 52
Yang (10.1016/j.matdes.2023.112451_b0260) 2018; 34
Liu (10.1016/j.matdes.2023.112451_b0335) 2019; 166
Kim (10.1016/j.matdes.2023.112451_b0190) 2023; 460
Fu (10.1016/j.matdes.2023.112451_b0150) 2023; 864
Murray (10.1016/j.matdes.2023.112451_b0175) 2018; 27
Prashar (10.1016/j.matdes.2023.112451_b0115) 2021; 310
Liu (10.1016/j.matdes.2023.112451_b0070) 2021; 220
Chadwick (10.1016/j.matdes.2023.112451_b0075) 2021; 211
Hassani-Gangaraj (10.1016/j.matdes.2023.112451_b0250) 2018; 145
Wang (10.1016/j.matdes.2023.112451_b0280) 2021; 48
Champagne (10.1016/j.matdes.2023.112451_b0185) 2016; 61
Suhonen (10.1016/j.matdes.2023.112451_b0125) 2013; 61
Ngai (10.1016/j.matdes.2023.112451_b0180) 2018; 130
Liu (10.1016/j.matdes.2023.112451_b0300) 2022; 177
Mostafaei (10.1016/j.matdes.2023.112451_b0055) 2023; 136
DebRoy (10.1016/j.matdes.2023.112451_b0020) 2018; 92
Flynn (10.1016/j.matdes.2023.112451_b0090) 2016; 101
Kotadia (10.1016/j.matdes.2023.112451_b0145) 2021; 46
Zhang (10.1016/j.matdes.2023.112451_b0305) 2018; 130
Shamsaei (10.1016/j.matdes.2023.112451_b0030) 2015; 8
Li (10.1016/j.matdes.2023.112451_b0095) 2018; 34
Hutasoit (10.1016/j.matdes.2023.112451_b0165) 2021; 204
10.1016/j.matdes.2023.112451_b0195
Gao (10.1016/j.matdes.2023.112451_b0265) 2023; 66
Hemeda (10.1016/j.matdes.2023.112451_b0270) 2021; 37
Liu (10.1016/j.matdes.2023.112451_b0010) 2021; 145
Veysset (10.1016/j.matdes.2023.112451_b0240) 2021; 8
Hu (10.1016/j.matdes.2023.112451_b0320) 2022; 13
Palmquist (10.1016/j.matdes.2023.112451_b0045) 2023; 156
Guo (10.1016/j.matdes.2023.112451_b0080) 2022; 59
Aldwell (10.1016/j.matdes.2023.112451_b0170) 2017; 26
Yildirim (10.1016/j.matdes.2023.112451_b0290) 2017; 473
Nikbakht (10.1016/j.matdes.2023.112451_b0330) 2018; 444
Pan (10.1016/j.matdes.2023.112451_b0200) 2023; 164
Hauser (10.1016/j.matdes.2023.112451_b0060) 2021; 41
Hassani-Gangaraj (10.1016/j.matdes.2023.112451_b0295) 2015; 97
Chen (10.1016/j.matdes.2023.112451_b0085) 2023; 166
Nautiyal (10.1016/j.matdes.2023.112451_b0160) 2018; 737
Oliveira (10.1016/j.matdes.2023.112451_b0035) 2020; 107
Fan (10.1016/j.matdes.2023.112451_b0215) 2020; 36
Martin (10.1016/j.matdes.2023.112451_b0135) 2017; 549
Wang (10.1016/j.matdes.2023.112451_b0255) 2015; 8
Pathak (10.1016/j.matdes.2023.112451_b0110) 2020
Schmidt (10.1016/j.matdes.2023.112451_b0205) 2006; 54
Paul (10.1016/j.matdes.2023.112451_b0155) 2021; 204
Gibson (10.1016/j.matdes.2023.112451_b0015) 2021
10.1016/j.matdes.2023.112451_b0220
Wang (10.1016/j.matdes.2023.112451_b0275) 2020; 199
Ichikawa (10.1016/j.matdes.2023.112451_b0325) 2019; 164
Sames (10.1016/j.matdes.2023.112451_b0050) 2016; 61
Bagherifard (10.1016/j.matdes.2023.112451_b0100) 2021; 203
Bagherifard (10.1016/j.matdes.2023.112451_b0105) 2018; 721
Tekkaya (10.1016/j.matdes.2023.112451_b0310) 2023; 311
Thapliyal (10.1016/j.matdes.2023.112451_b0065) 2021; 219
Dowding (10.1016/j.matdes.2023.112451_b0210) 2020; 194
References_xml – volume: 203
  year: 2021
  ident: 10.1016/j.matdes.2023.112451_b0100
  article-title: Tailoring cold spray additive manufacturing of steel 316 L for static and cyclic load-bearing applications
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2021.109575
– volume: 130
  start-page: 231
  year: 2018
  ident: 10.1016/j.matdes.2023.112451_b0180
  article-title: Saltwater corrosion behavior of cold sprayed AA7075 aluminum alloy coatings
  publication-title: Corrosion Sci.
  doi: 10.1016/j.corsci.2017.10.033
– volume: 61
  start-page: 315
  year: 2016
  ident: 10.1016/j.matdes.2023.112451_b0050
  article-title: The metallurgy and processing science of metal additive manufacturing
  publication-title: Int. Mater. Rev.
  doi: 10.1080/09506608.2015.1116649
– volume: 199
  start-page: 326
  year: 2020
  ident: 10.1016/j.matdes.2023.112451_b0275
  article-title: Development of a material model for predicting extreme deformation and grain refinement during cold spraying
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2020.08.052
– year: 2021
  ident: 10.1016/j.matdes.2023.112451_b0015
– volume: 473
  start-page: 20160936
  year: 2017
  ident: 10.1016/j.matdes.2023.112451_b0290
  article-title: Rebound mechanics of micrometre-scale, spherical particles in high-velocity impacts
  publication-title: Proc. R. Soc. A-Math. Phys. Eng. Sci.
  doi: 10.1098/rspa.2016.0936
– volume: 737
  start-page: 297
  year: 2018
  ident: 10.1016/j.matdes.2023.112451_b0160
  article-title: In-situ mechanical investigation of the deformation of splat interfaces in cold-sprayed aluminum alloy
  publication-title: Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process.
  doi: 10.1016/j.msea.2018.09.065
– volume: 155
  start-page: 384
  year: 2018
  ident: 10.1016/j.matdes.2023.112451_b0230
  article-title: Deposition behavior, microstructure and mechanical properties of an in-situ micro-forging assisted cold spray enabled additively manufactured Inconel 718 alloy
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2018.06.024
– volume: 136
  year: 2023
  ident: 10.1016/j.matdes.2023.112451_b0055
  article-title: Additive manufacturing of nickel-based superalloys: a state-of-the-art review on process-structure-defect-property relationship
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2023.101108
– volume: 211
  year: 2021
  ident: 10.1016/j.matdes.2023.112451_b0075
  article-title: The development of grain structure during additive manufacturing
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2021.116862
– volume: 66
  year: 2023
  ident: 10.1016/j.matdes.2023.112451_b0265
  article-title: Tamping effect during additive manufacturing of copper coating by cold spray: a comprehensive molecular dynamics study
  publication-title: Addit. Manuf.
– volume: 107
  year: 2020
  ident: 10.1016/j.matdes.2023.112451_b0035
  article-title: Revisiting fundamental welding concepts to improve additive manufacturing: from theory to practice
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2019.100590
– volume: 310
  year: 2021
  ident: 10.1016/j.matdes.2023.112451_b0115
  article-title: A comprehensive review on sustainable cold spray additive manufacturing: state of the art, challenges and future challenges
  publication-title: J. Clean Prod.
  doi: 10.1016/j.jclepro.2021.127606
– volume: 166
  start-page: 324
  year: 2019
  ident: 10.1016/j.matdes.2023.112451_b0335
  article-title: Elucidation of interface joining mechanism during friction stir welding through Cu/Cu-10Zn interfacial observations
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2019.01.004
– volume: 177
  year: 2022
  ident: 10.1016/j.matdes.2023.112451_b0300
  article-title: The state of the art for numerical simulations of the effect of the microstructure and its evolution in the metal-cutting processes
  publication-title: Int. J. Mach. Tools Manuf.
  doi: 10.1016/j.ijmachtools.2022.103890
– volume: 156
  start-page: 125
  year: 2023
  ident: 10.1016/j.matdes.2023.112451_b0045
  article-title: Complex geometry and integrated macro-porosity: clinical applications of electron beam melting to fabricate bespoke bone-anchored implants
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2022.06.002
– volume: 766
  start-page: 694
  year: 2018
  ident: 10.1016/j.matdes.2023.112451_b0235
  article-title: Local microstructure inhomogeneity and gas temperature effect in in-situ shot-peening assisted cold-sprayed Ti-6Al-4V coating
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2018.07.009
– volume: 135
  year: 2023
  ident: 10.1016/j.matdes.2023.112451_b0005
  article-title: Towards the next generation of machine learning models in additive manufacturing: a review of process dependent material evolution
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2023.101102
– volume: 92
  start-page: 112
  year: 2018
  ident: 10.1016/j.matdes.2023.112451_b0020
  article-title: Additive manufacturing of metallic components–process, structure and properties
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2017.10.001
– volume: 721
  start-page: 339
  year: 2018
  ident: 10.1016/j.matdes.2023.112451_b0105
  article-title: Cold spray deposition for additive manufacturing of freeform structural components compared to selective laser melting
  publication-title: Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process.
  doi: 10.1016/j.msea.2018.02.094
– volume: 61
  start-page: 6329
  year: 2013
  ident: 10.1016/j.matdes.2023.112451_b0125
  article-title: Residual stress development in cold sprayed Al, Cu and Ti coatings
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2013.06.033
– volume: 219
  year: 2021
  ident: 10.1016/j.matdes.2023.112451_b0065
  article-title: Segregation engineering of grain boundaries of a metastable Fe-Mn-Co-Cr-Si high entropy alloy with laser-powder bed fusion additive manufacturing
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2021.117271
– volume: 145
  start-page: 9
  year: 2018
  ident: 10.1016/j.matdes.2023.112451_b0250
  article-title: In-situ observations of single micro-particle impact bonding
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2017.09.042
– volume: 101
  start-page: 79
  year: 2016
  ident: 10.1016/j.matdes.2023.112451_b0090
  article-title: Hybrid additive and subtractive machine tools–Research and industrial developments
  publication-title: Int. J. Mach. Tools Manuf.
  doi: 10.1016/j.ijmachtools.2015.11.007
– volume: 460
  year: 2023
  ident: 10.1016/j.matdes.2023.112451_b0190
  article-title: Microstructure and corrosion resistance of chromate conversion coating on cold sprayed aluminum alloy 2024
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2023.129423
– volume: 166
  year: 2023
  ident: 10.1016/j.matdes.2023.112451_b0085
  article-title: On adiabatic shear instability in impacts of micron-scale Al-6061 particles with sapphire and Al-6061 substrates
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2023.103630
– volume: 46
  year: 2021
  ident: 10.1016/j.matdes.2023.112451_b0145
  article-title: A review of Laser Powder Bed Fusion Additive Manufacturing of aluminium alloys: microstructure and properties
  publication-title: Addit. Manuf.
– ident: 10.1016/j.matdes.2023.112451_b0195
  doi: 10.1016/j.surfcoat.2018.01.055
– volume: 37
  year: 2021
  ident: 10.1016/j.matdes.2023.112451_b0270
  article-title: Particle-based simulation of cold spray: influence of oxide layer on impact process
  publication-title: Addit. Manuf.
– volume: 52
  start-page: 3191
  year: 2010
  ident: 10.1016/j.matdes.2023.112451_b0130
  article-title: Microstructure and corrosion performance of a cold sprayed aluminium coating on AZ91D magnesium alloy
  publication-title: Corrosion Sci.
  doi: 10.1016/j.corsci.2010.05.023
– ident: 10.1016/j.matdes.2023.112451_b0220
  doi: 10.1016/j.jma.2022.12.011
– volume: 8
  start-page: 149
  year: 2015
  ident: 10.1016/j.matdes.2023.112451_b0255
  article-title: Characterization and modeling of the bonding process in cold spray additive manufacturing
  publication-title: Addit. Manuf.
– volume: 34
  start-page: 1570
  year: 2018
  ident: 10.1016/j.matdes.2023.112451_b0260
  article-title: Characterizations and anisotropy of cold-spraying additive-manufactured copper bulk
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2018.01.002
– volume: 27
  start-page: 159
  year: 2018
  ident: 10.1016/j.matdes.2023.112451_b0175
  article-title: Heat treatment of cold-sprayed C355 Al for repair: microstructure and mechanical properties
  publication-title: J. Therm. Spray Technol.
  doi: 10.1007/s11666-017-0665-z
– volume: 106
  year: 2019
  ident: 10.1016/j.matdes.2023.112451_b0140
  article-title: 3D printing of aluminium alloys: additive manufacturing of aluminium alloys using selective laser melting
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2019.100578
– volume: 403
  year: 2020
  ident: 10.1016/j.matdes.2023.112451_b0340
  article-title: Particle flattening during cold spray: mechanistic regimes revealed by single particle impact tests
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2020.126386
– volume: 196
  year: 2020
  ident: 10.1016/j.matdes.2023.112451_b0315
  article-title: Prediction of microstructure gradient distribution in machined surface induced by high speed machining through a coupled FE and CA approach
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2020.109133
– volume: 34
  start-page: 440
  year: 2018
  ident: 10.1016/j.matdes.2023.112451_b0095
  article-title: Solid-state additive manufacturing and repairing by cold spraying: a review
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2017.09.015
– volume: 202
  year: 2021
  ident: 10.1016/j.matdes.2023.112451_b0040
  article-title: Wire and arc additive manufacturing: opportunities and challenges to control the quality and accuracy of manufactured parts
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2021.109471
– volume: 309
  start-page: 423
  year: 2017
  ident: 10.1016/j.matdes.2023.112451_b0120
  article-title: The effect of pure aluminum cold spray coating on corrosion and corrosion fatigue of magnesium (3% Al-1% Zn) extrusion
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2016.11.014
– start-page: 1
  year: 2020
  ident: 10.1016/j.matdes.2023.112451_b0110
  article-title: Cold spray: its prominence as an additive manufacturing technology
– volume: 436
  year: 2022
  ident: 10.1016/j.matdes.2023.112451_b0225
  article-title: Effect of zirconia secondary peening on the microstructure and mechanical behavior of Al6061 cold spray coatings
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2022.128269
– volume: 204
  year: 2021
  ident: 10.1016/j.matdes.2023.112451_b0155
  article-title: Role of in-situ splat sintering on elastic and damping behavior of cold sprayed aluminum coatings
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2021.114125
– volume: 444
  start-page: 621
  year: 2018
  ident: 10.1016/j.matdes.2023.112451_b0330
  article-title: Asymmetrical bonding in cold spraying of dissimilar materials
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2018.03.103
– volume: 48
  year: 2021
  ident: 10.1016/j.matdes.2023.112451_b0280
  article-title: Towards better understanding supersonic impact-bonding behavior of cold sprayed 6061–T6 aluminum alloy based on a high-accuracy material model
  publication-title: Addit. Manuf.
– volume: 8
  year: 2021
  ident: 10.1016/j.matdes.2023.112451_b0240
  article-title: High-velocity micro-projectile impact testing
  publication-title: Appl. Phys. Rev.
  doi: 10.1063/5.0040772
– volume: 59
  year: 2022
  ident: 10.1016/j.matdes.2023.112451_b0080
  article-title: Phase transformation dynamics guided alloy development for additive manufacturing
  publication-title: Addit. Manuf.
– volume: 220
  year: 2021
  ident: 10.1016/j.matdes.2023.112451_b0070
  article-title: Additive manufacturing of high strength copper alloy with heterogeneous grain structure through laser powder bed fusion
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2021.117311
– volume: 199
  start-page: 480
  year: 2020
  ident: 10.1016/j.matdes.2023.112451_b0245
  article-title: Microparticle impact-bonding modes for mismatched metals: from co-deformation to splatting and penetration
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2020.08.038
– volume: 61
  start-page: 437
  year: 2016
  ident: 10.1016/j.matdes.2023.112451_b0185
  article-title: The unique abilities of cold spray deposition
  publication-title: Int. Mater. Rev.
  doi: 10.1080/09506608.2016.1194948
– volume: 164
  year: 2023
  ident: 10.1016/j.matdes.2023.112451_b0200
  article-title: Two laser beam modulation of microstructure and residual stress field in cold sprayed Al alloy for recovering fatigue performance
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2023.103598
– volume: 145
  year: 2021
  ident: 10.1016/j.matdes.2023.112451_b0010
  article-title: Additive manufacturing of structural materials
  publication-title: Mater. Sci. Eng. R-Rep.
  doi: 10.1016/j.mser.2020.100596
– volume: 41
  year: 2021
  ident: 10.1016/j.matdes.2023.112451_b0060
  article-title: Oxidation in wire arc additive manufacturing of aluminium alloys
  publication-title: Addit. Manuf.
– volume: 54
  start-page: 729
  year: 2006
  ident: 10.1016/j.matdes.2023.112451_b0205
  article-title: Development of a generalized parameter window for cold spray deposition
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2005.10.005
– volume: 36
  year: 2020
  ident: 10.1016/j.matdes.2023.112451_b0215
  article-title: A new strategy for strengthening additively manufactured cold spray deposits through in-process densification
  publication-title: Addit. Manuf.
– volume: 97
  start-page: 105
  year: 2015
  ident: 10.1016/j.matdes.2023.112451_b0295
  article-title: Experimental assessment and simulation of surface nanocrystallization by severe shot peening
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2015.06.054
– volume: 26
  start-page: 1573
  year: 2017
  ident: 10.1016/j.matdes.2023.112451_b0170
  article-title: Machinability of Al 6061 deposited with cold spray additive manufacturing
  publication-title: J. Therm. Spray Technol.
  doi: 10.1007/s11666-017-0586-x
– volume: 130
  start-page: 36
  year: 2018
  ident: 10.1016/j.matdes.2023.112451_b0305
  article-title: Predictive modelling of microstructure changes, micro-hardness and residual stress in machining of 304 austenitic stainless steel
  publication-title: Int. J. Mach. Tools Manuf.
  doi: 10.1016/j.ijmachtools.2018.03.008
– volume: 8
  start-page: 12
  year: 2015
  ident: 10.1016/j.matdes.2023.112451_b0030
  article-title: An overview of Direct Laser Deposition for additive manufacturing; Part II: mechanical behavior, process parameter optimization and control
  publication-title: Addit. Manuf.
– volume: 549
  start-page: 365
  year: 2017
  ident: 10.1016/j.matdes.2023.112451_b0135
  article-title: 3D printing of high-strength aluminium alloys
  publication-title: Nature
  doi: 10.1038/nature23894
– volume: 413
  year: 2021
  ident: 10.1016/j.matdes.2023.112451_b0285
  article-title: Capturing cold-spray bonding features of pure Cu from in situ deformation behavior using a high-accuracy material model
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2021.127087
– volume: 864
  year: 2023
  ident: 10.1016/j.matdes.2023.112451_b0150
  article-title: Large-size ultra-high strength-plasticity aluminum alloys fabricated by wire arc additive manufacturing via added nanoparticles
  publication-title: Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process.
  doi: 10.1016/j.msea.2023.144582
– volume: 194
  start-page: 40
  year: 2020
  ident: 10.1016/j.matdes.2023.112451_b0210
  article-title: Particle size effects in metallic microparticle impact-bonding
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2020.04.044
– volume: 8
  start-page: 36
  year: 2015
  ident: 10.1016/j.matdes.2023.112451_b0025
  article-title: An overview of Direct Laser Deposition for additive manufacturing; Part I: transport phenomena, modeling and diagnostics
  publication-title: Addit. Manuf.
– volume: 204
  year: 2021
  ident: 10.1016/j.matdes.2023.112451_b0165
  article-title: Effects of build orientation and heat treatment on microstructure, mechanical and corrosion properties of Al6061 aluminium parts built by cold spray additive manufacturing process
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2021.106526
– volume: 13
  start-page: 5816
  year: 2022
  ident: 10.1016/j.matdes.2023.112451_b0320
  article-title: Inhibiting weld cracking in high-strength aluminium alloys
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-33188-x
– volume: 311
  year: 2023
  ident: 10.1016/j.matdes.2023.112451_b0310
  article-title: Modeling of microstructural workpiece rim zone modifications during hard machining
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2022.117815
– volume: 164
  start-page: 39
  year: 2019
  ident: 10.1016/j.matdes.2023.112451_b0325
  article-title: Elucidation of cold-spray deposition mechanism by auger electron spectroscopic evaluation of bonding interface oxide film
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2018.09.041
SSID ssj0022734
Score 2.4630704
Snippet Cold spray (CS) is a highly potential solid-state additive manufacturing (AM) technique. In situ shot-peening-assisted CSAM was proposed to additively...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 112451
SubjectTerms Additive manufacturing
Cold spray
Extreme deformation
Grain refinement
Microforging
Title Unraveling microforging principle during in situ shot-peening-assisted cold spray additive manufacturing aluminum alloy through a multi-physics framework
URI https://doaj.org/article/c9d9fc831878402fa2600c9f9e20cb17
Volume 236
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1FeuoE1IrGbh0dAVAgJJip1ixw_RBFNozYZ-lP4t9zFSVWmLkyRLDuyfBffI999x9id4WkWch0FQlDqJnL4zQkMVhz6trFOpNSOCpzf3pOXyeh1Gk-3Wn0RJszTA_uDu9fSSKczVL0UYxHuFDGqa-mk5aEuoraOHG1eH0x1oRaRtvjsCrHypXFfNNciu9AVNJaourmgCppRHP0xSlvc_a2RGR-xw847hAe_q2O2Z8sTdrDFGXjKfiYldQyiKnKYE5oOvU5qNARVnzYHX3oIsxJWs7qB1eeiDiqMV3EwQF-ZBGsAFcDAqlqqNRCmiG49mKuyoUoHv17hvTUrmznQv_k1dB19QEELQgx8TmQFrod3nbHJ-Pnj6SXo-isEepSKOkiFVk4WUZI5raXOuIrR-DtjokKqIjFxKgrBZajwwLmlR6pNmCpyMhw3SpyzQbko7QUDgXEP0fy0sTZeGYVNjBXOyUQpZYUeMtEfcK478nHqgfGd9yizr9yLJSex5F4sQxZsVlWefGPH_EeS3WYuUWe3AyiIvFOofJdCXf7HS67YPu3L416u2aBeNvYGvZe6uG0V9Rcuku_D
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unraveling+microforging+principle+during+in+situ+shot-peening-assisted+cold+spray+additive+manufacturing+aluminum+alloy+through+a+multi-physics+framework&rft.jtitle=Materials+%26+design&rft.au=Qian+Wang&rft.au=Ninshu+Ma&rft.au=Junmiao+Shi&rft.au=Wenjia+Huang&rft.date=2023-12-01&rft.pub=Elsevier&rft.issn=0264-1275&rft.volume=236&rft.spage=112451&rft_id=info:doi/10.1016%2Fj.matdes.2023.112451&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_c9d9fc831878402fa2600c9f9e20cb17
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0264-1275&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0264-1275&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0264-1275&client=summon