Effects of different plant root exudates and their organic acid components on chemotaxis, biofilm formation and colonization by beneficial rhizosphere-associated bacterial strains
Aim It is necessary to understand the roles of root exudates involved in plant-microbe interactions to inform practical application of beneficial rhizosphere microbial strains. Methods Colonization of Bacillus amyloliquefaciens SQR9 (isolated from cucumber rhizosphere) and Bacillus subtilis N11 (iso...
Saved in:
Published in | Plant and soil Vol. 374; no. 1/2; pp. 689 - 700 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer
01.01.2014
Springer Netherlands Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Aim It is necessary to understand the roles of root exudates involved in plant-microbe interactions to inform practical application of beneficial rhizosphere microbial strains. Methods Colonization of Bacillus amyloliquefaciens SQR9 (isolated from cucumber rhizosphere) and Bacillus subtilis N11 (isolated from banana rhizosphere) of their original host was found to be more effective as compared to the colonization of the non-host plant. Organic acids in the root exudates of the two plants were identified by High performance liquid chromatography (HPLC). The chemotactic response and effects on biofilm formation were assessed for SQR9 and N11 in response to cucumber and banana root exudates, as well as their organic acids components. Results Citric acid detected exclusively in cucumber exudates could both attract SQR9 and induce its biofilm formation, whereas only chemotactic response but not biofilm formation was induced in N11. Fumarie acid that was only detected in banana root exudates revealed both significant roles on chemotaxis and biofilm formation of N11, while showing only effects on biofilm formation but not chemotaxis of SQR9. Conclusion The relationship between PGPR strain and root exudates components of its original host might contribute to preferential colonization. This study advances a clearer understanding of the mechanisms relevant to application of PGPR strains in agricultural production. |
---|---|
AbstractList | Aim: It is necessary to understand the roles of root exudates involved in plant-microbe interactions to inform practical application of beneficial rhizosphere microbial strains. Methods: Colonization of Bacillus amyloliquefaciens SQR9 (isolated from cucumber rhizosphere) and Bacillus subtilis N11 (isolated from banana rhizosphere) of their original host was found to be more effective as compared to the colonization of the non-host plant. Organic acids in the root exudates of the two plants were identified by High performance liquid chromatography (HPLC). The chemotactic response and effects on biofilm formation were assessed for SQR9 and N11 in response to cucumber and banana root exudates, as well as their organic acids components. Results: Citric acid detected exclusively in cucumber exudates could both attract SQR9 and induce its biofilm formation, whereas only chemotactic response but not biofilm formation was induced in N11. Fumaric acid that was only detected in banana root exudates revealed both significant roles on chemotaxis and biofilm formation of N11, while showing only effects on biofilm formation but not chemotaxis of SQR9. Conclusion: The relationship between PGPR strain and root exudates components of its original host might contribute to preferential colonization. This study advances a clearer understanding of the mechanisms relevant to application of PGPR strains in agricultural production. Aim It is necessary to understand the roles of root exudates involved in plant-microbe interactions to inform practical application of beneficial rhizosphere microbial strains. Methods Colonization of Bacillus amyloliquefaciens SQR9 (isolated from cucumber rhizosphere) and Bacillus subtilis N11 (isolated from banana rhizosphere) of their original host was found to be more effective as compared to the colonization of the non-host plant. Organic acids in the root exudates of the two plants were identified by High performance liquid chromatography (HPLC). The chemotactic response and effects on biofilm formation were assessed for SQR9 and N11 in response to cucumber and banana root exudates, as well as their organic acids components. Results Citric acid detected exclusively in cucumber exudates could both attract SQR9 and induce its biofilm formation, whereas only chemotactic response but not biofilm formation was induced in N11. Fumaric acid that was only detected in banana root exudates revealed both significant roles on chemotaxis and biofilm formation of N11, while showing only effects on biofilm formation but not chemotaxis of SQR9. Conclusion The relationship between PGPR strain and root exudates components of its original host might contribute to preferential colonization. This study advances a clearer understanding of the mechanisms relevant to application of PGPR strains in agricultural production. Keywords PGPR * Root exudates * Organic acids * Chemotaxis * Biofilm formation * Colonization It is necessary to understand the roles of root exudates involved in plant-microbe interactions to inform practical application of beneficial rhizosphere microbial strains. Colonization of Bacillus amyloliquefaciens SQR9 (isolated from cucumber rhizosphere) and Bacillus subtilis N11 (isolated from banana rhizosphere) of their original host was found to be more effective as compared to the colonization of the non-host plant. Organic acids in the root exudates of the two plants were identified by High performance liquid chromatography (HPLC). The chemotactic response and effects on biofilm formation were assessed for SQR9 and N11 in response to cucumber and banana root exudates, as well as their organic acids components. Citric acid detected exclusively in cucumber exudates could both attract SQR9 and induce its biofilm formation, whereas only chemotactic response but not biofilm formation was induced in N11. Fumaric acid that was only detected in banana root exudates revealed both significant roles on chemotaxis and biofilm formation of N11, while showing only effects on biofilm formation but not chemotaxis of SQR9. The relationship between PGPR strain and root exudates components of its original host might contribute to preferential colonization. This study advances a clearer understanding of the mechanisms relevant to application of PGPR strains in agricultural production.[PUBLICATION ABSTRACT] Aim It is necessary to understand the roles of root exudates involved in plant-microbe interactions to inform practical application of beneficial rhizosphere microbial strains. Methods Colonization of Bacillus amyloliquefaciens SQR9 (isolated from cucumber rhizosphere) and Bacillus subtilis N11 (isolated from banana rhizosphere) of their original host was found to be more effective as compared to the colonization of the non-host plant. Organic acids in the root exudates of the two plants were identified by High performance liquid chromatography (HPLC). The chemotactic response and effects on biofilm formation were assessed for SQR9 and N11 in response to cucumber and banana root exudates, as well as their organic acids components. Results Citric acid detected exclusively in cucumber exudates could both attract SQR9 and induce its biofilm formation, whereas only chemotactic response but not biofilm formation was induced in N11. Fumaric acid that was only detected in banana root exudates revealed both significant roles on chemotaxis and biofilm formation of N11, while showing only effects on biofilm formation but not chemotaxis of SQR9. Conclusion The relationship between PGPR strain and root exudates components of its original host might contribute to preferential colonization. This study advances a clearer understanding of the mechanisms relevant to application of PGPR strains in agricultural production. Aim It is necessary to understand the roles of root exudates involved in plant-microbe interactions to inform practical application of beneficial rhizosphere microbial strains. Methods Colonization of Bacillus amyloliquefaciens SQR9 (isolated from cucumber rhizosphere) and Bacillus subtilis N11 (isolated from banana rhizosphere) of their original host was found to be more effective as compared to the colonization of the non-host plant. Organic acids in the root exudates of the two plants were identified by High performance liquid chromatography (HPLC). The chemotactic response and effects on biofilm formation were assessed for SQR9 and N11 in response to cucumber and banana root exudates, as well as their organic acids components. Results Citric acid detected exclusively in cucumber exudates could both attract SQR9 and induce its biofilm formation, whereas only chemotactic response but not biofilm formation was induced in N11. Fumarie acid that was only detected in banana root exudates revealed both significant roles on chemotaxis and biofilm formation of N11, while showing only effects on biofilm formation but not chemotaxis of SQR9. Conclusion The relationship between PGPR strain and root exudates components of its original host might contribute to preferential colonization. This study advances a clearer understanding of the mechanisms relevant to application of PGPR strains in agricultural production. |
Audience | Academic |
Author | Li, Shuqing Wang, Dandan Liu, Yunpeng Shen, Qirong Zhang, Ruifu Zhang, Nan |
Author_xml | – sequence: 1 givenname: Nan surname: Zhang fullname: Zhang, Nan – sequence: 2 givenname: Dandan surname: Wang fullname: Wang, Dandan – sequence: 3 givenname: Yunpeng surname: Liu fullname: Liu, Yunpeng – sequence: 4 givenname: Shuqing surname: Li fullname: Li, Shuqing – sequence: 5 givenname: Qirong surname: Shen fullname: Shen, Qirong – sequence: 6 givenname: Ruifu surname: Zhang fullname: Zhang, Ruifu |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28611999$$DView record in Pascal Francis |
BookMark | eNqFks1q3DAQx0VJoZu0D9BDQVAKPdSpRrJl6xhC-gGBXlrozcjyaFeLLW0lLSR5rb5g5TqEkkOKQB-j3380o5lTcuKDR0JeAzsHxtqPCQBYXTEQFShoKvmMbKBpRdUwIU_IhjHBK9aqny_IaUp7tpxBbsjvK2vR5ESDpaMr-4g-08OkyxxDyBRvjqPOmKj2I807dJGGuNXeGaqNG6kJ86GE4hcXnpodziHrG5c-0MEF66aZ2hBnnV25XVyYMAXv7lbDcEsH9GidcXqicefuQjrsSgyVTikUY8aRDtpkjAuQctTOp5fkudVTwlf36xn58enq--WX6vrb56-XF9eVqVuRK2lRo2zGTjDeKSuacUQw2ClRD0NnmQRTK4UoWyYFMsRWW9CD1WKoeTuiOCPvV7-HGH4dMeV-dsngVD4HwzH1vGlAcVEr8V8UasUlBwF1Qd8-QvfhGH1JpFBSSSiVWajzldrqCXvnbSi5mzJGnJ0Jy58V-4WQogHJ664I3t271cnoyUbtjUv9IbpZx9uedxJAKVU4WDkTQ0oR7QMCrF9aqV9bqS-t1C-t1MuiaR9pjMt_K7gUZHpSyVdlKq_4LcZ_kn1C9GYV7VMO8SG-mqtG8LYRfwDFhuyl |
CODEN | PLSOA2 |
CitedBy_id | crossref_primary_10_1134_S1021443723603506 crossref_primary_10_3389_fsufs_2021_618092 crossref_primary_10_1016_j_jece_2024_113428 crossref_primary_10_1007_s00284_019_01699_4 crossref_primary_10_1186_s12864_015_1825_5 crossref_primary_10_4161_psb_27277 crossref_primary_10_1039_D1EN00740H crossref_primary_10_3389_fmicb_2020_548037 crossref_primary_10_1021_acs_jafc_2c08647 crossref_primary_10_1080_03235408_2020_1833279 crossref_primary_10_1590_s0102_053620190404 crossref_primary_10_1016_S1002_0160_15_60083_2 crossref_primary_10_3389_fmicb_2021_713349 crossref_primary_10_1016_j_isci_2022_105294 crossref_primary_10_1016_j_pedobi_2017_01_006 crossref_primary_10_1128_spectrum_01002_22 crossref_primary_10_1016_j_rhisph_2022_100559 crossref_primary_10_1007_s11104_014_2345_9 crossref_primary_10_1371_journal_pone_0171490 crossref_primary_10_1016_j_scitotenv_2018_07_247 crossref_primary_10_1016_j_resmic_2023_104149 crossref_primary_10_3389_fmicb_2020_600393 crossref_primary_10_1016_j_bej_2022_108378 crossref_primary_10_1186_s40168_024_01888_9 crossref_primary_10_1016_j_soilbio_2023_109074 crossref_primary_10_3390_ijerph16112002 crossref_primary_10_1016_j_micres_2018_08_017 crossref_primary_10_1093_hr_uhae049 crossref_primary_10_1039_C7CS00343A crossref_primary_10_1094_MPMI_07_16_0131_R crossref_primary_10_18343_jipi_26_4_582 crossref_primary_10_3390_nano14131164 crossref_primary_10_3390_ijms242216118 crossref_primary_10_1007_s10327_017_0752_5 crossref_primary_10_3390_plants12020371 crossref_primary_10_1016_j_scitotenv_2020_142223 crossref_primary_10_1111_1758_2229_12816 crossref_primary_10_1094_MPMI_02_24_0020_R crossref_primary_10_1134_S1062359021150061 crossref_primary_10_1016_j_scitotenv_2024_170205 crossref_primary_10_1016_j_apsoil_2024_105591 crossref_primary_10_1007_s42729_021_00669_9 crossref_primary_10_1038_s41438_020_00380_3 crossref_primary_10_1007_s00284_020_01944_1 crossref_primary_10_3389_fmicb_2017_01487 crossref_primary_10_3389_fpls_2022_1064058 crossref_primary_10_3390_microorganisms8040575 crossref_primary_10_3390_plants11010109 crossref_primary_10_3390_plants9030366 crossref_primary_10_1007_s11104_024_07094_8 crossref_primary_10_1111_pce_13214 crossref_primary_10_1007_s11240_016_0971_z crossref_primary_10_1016_j_tim_2024_02_003 crossref_primary_10_3389_fenvs_2018_00139 crossref_primary_10_1007_s10658_014_0569_4 crossref_primary_10_1021_acs_jafc_8b00041 crossref_primary_10_3390_plants12061209 crossref_primary_10_3389_fpls_2024_1491495 crossref_primary_10_1094_MPMI_09_17_0227_R crossref_primary_10_1016_j_agee_2018_10_014 crossref_primary_10_1021_pr500565m crossref_primary_10_3390_plants11030386 crossref_primary_10_1007_s11104_020_04663_5 crossref_primary_10_3390_microorganisms10050899 crossref_primary_10_1093_jpe_rtab046 crossref_primary_10_1111_een_12966 crossref_primary_10_3390_ijms22136655 crossref_primary_10_1016_j_sajb_2022_02_040 crossref_primary_10_1016_j_apsoil_2020_103817 crossref_primary_10_1080_08927014_2020_1832219 crossref_primary_10_3390_ijms221910388 crossref_primary_10_3390_nano9060841 crossref_primary_10_1016_j_scitotenv_2023_161600 crossref_primary_10_2478_s11756_020_00574_z crossref_primary_10_1016_j_tim_2023_07_011 crossref_primary_10_3389_fpls_2022_919696 crossref_primary_10_3390_microorganisms10081604 crossref_primary_10_1094_MPMI_34_1 crossref_primary_10_1016_j_sjbs_2023_103664 crossref_primary_10_1016_j_biocontrol_2016_03_011 crossref_primary_10_1111_pce_15283 crossref_primary_10_18016_ksutarimdoga_vi_992039 crossref_primary_10_1038_s41589_023_01462_8 crossref_primary_10_1007_s11104_016_3060_5 crossref_primary_10_1186_s13213_025_01793_y crossref_primary_10_2174_1874285801509010001 crossref_primary_10_3390_ijms25179542 crossref_primary_10_1016_j_rhisph_2021_100331 crossref_primary_10_1016_j_ibiod_2024_105941 crossref_primary_10_1016_j_microb_2024_100089 crossref_primary_10_1016_j_apsoil_2017_08_002 crossref_primary_10_1186_s12870_025_06321_3 crossref_primary_10_3389_fmicb_2022_868312 crossref_primary_10_1007_s00284_022_03027_9 crossref_primary_10_1111_jam_15480 crossref_primary_10_1007_s42729_023_01282_8 crossref_primary_10_1016_j_foodcont_2018_01_011 crossref_primary_10_1016_j_scitotenv_2017_09_298 crossref_primary_10_1016_j_mib_2019_10_006 crossref_primary_10_1007_s00248_021_01850_4 crossref_primary_10_1002_jsfa_12667 crossref_primary_10_3390_metabo12111100 crossref_primary_10_3390_microorganisms11122984 crossref_primary_10_1007_s13205_024_04001_x crossref_primary_10_1111_1462_2920_15197 crossref_primary_10_3389_fpls_2017_00659 crossref_primary_10_1007_s11104_023_05883_1 crossref_primary_10_3390_microorganisms11020232 crossref_primary_10_1007_s11104_015_2650_y crossref_primary_10_1007_s00284_023_03206_2 crossref_primary_10_1128_mBio_01664_16 crossref_primary_10_3389_fmicb_2024_1289466 crossref_primary_10_1016_j_micres_2021_126765 crossref_primary_10_1007_s11104_017_3497_1 crossref_primary_10_1016_j_crmicr_2024_100333 crossref_primary_10_1016_j_apsoil_2024_105270 crossref_primary_10_1016_j_plantsci_2019_04_010 crossref_primary_10_1038_s41598_021_93567_0 crossref_primary_10_1080_15226514_2021_1926912 crossref_primary_10_3390_plants11030393 crossref_primary_10_3389_fmicb_2020_560406 crossref_primary_10_3389_fpls_2022_894346 crossref_primary_10_1016_j_micres_2020_126486 crossref_primary_10_1038_s41396_021_00993_z crossref_primary_10_1016_j_jenvman_2022_115714 crossref_primary_10_1080_09583157_2021_1999394 crossref_primary_10_1016_j_jhazmat_2023_132033 crossref_primary_10_3389_fmicb_2020_575578 crossref_primary_10_1007_s13205_022_03115_4 crossref_primary_10_3390_microorganisms9102137 crossref_primary_10_1038_s41598_017_03793_8 crossref_primary_10_1016_j_cj_2024_12_022 crossref_primary_10_1016_j_rhisph_2023_100825 crossref_primary_10_1071_CP17441 crossref_primary_10_1007_s11738_019_3000_0 crossref_primary_10_1016_j_jenvman_2024_123836 crossref_primary_10_1094_PBIOMES_02_23_0011_R crossref_primary_10_3390_f14020179 crossref_primary_10_1016_j_scitotenv_2022_158190 crossref_primary_10_1016_j_still_2020_104577 crossref_primary_10_1016_j_isci_2023_107925 crossref_primary_10_1128_mSystems_00741_19 crossref_primary_10_3390_agronomy11030579 crossref_primary_10_3389_fmicb_2019_00098 crossref_primary_10_1016_j_scitotenv_2022_160158 crossref_primary_10_3390_su15010351 crossref_primary_10_1016_j_biocontrol_2019_104080 crossref_primary_10_1016_j_scienta_2017_01_047 crossref_primary_10_1094_MPMI_10_15_0239_R crossref_primary_10_1007_s00344_023_11115_8 crossref_primary_10_1002_jobm_202000405 crossref_primary_10_1186_s12866_023_02818_9 crossref_primary_10_1007_s12298_021_01034_x crossref_primary_10_1139_cjm_2020_0041 crossref_primary_10_1186_s40168_020_00824_x crossref_primary_10_1016_j_envpol_2021_118366 crossref_primary_10_1007_s12010_022_04075_4 crossref_primary_10_3389_fmicb_2021_658113 crossref_primary_10_1111_jam_15686 crossref_primary_10_2478_s11756_018_0127_1 crossref_primary_10_1080_15592324_2016_1187357 crossref_primary_10_3389_fmicb_2024_1354440 crossref_primary_10_1007_s00344_018_9868_x crossref_primary_10_1002_jobm_201600104 crossref_primary_10_1016_j_ijbiomac_2022_04_015 crossref_primary_10_7717_peerj_14404 crossref_primary_10_3117_plantroot_17_71 crossref_primary_10_1007_s11356_022_22381_6 crossref_primary_10_1016_j_biocontrol_2017_08_001 crossref_primary_10_3390_su151914643 crossref_primary_10_3389_fpls_2018_00112 crossref_primary_10_3390_ijms19123795 crossref_primary_10_1007_s12223_021_00851_7 crossref_primary_10_1007_s10342_020_01312_5 crossref_primary_10_1016_j_scitotenv_2024_172907 crossref_primary_10_1007_s11104_019_04344_y crossref_primary_10_1016_j_scitotenv_2024_170965 crossref_primary_10_1111_tpj_15261 crossref_primary_10_1016_j_envint_2019_105116 crossref_primary_10_1111_1462_2920_14472 crossref_primary_10_3389_fmicb_2021_747982 crossref_primary_10_1111_1462_2920_15680 crossref_primary_10_1016_j_jplph_2018_06_003 crossref_primary_10_3389_fpls_2021_658679 crossref_primary_10_1038_s41598_023_30915_2 crossref_primary_10_1007_s12038_021_00240_9 crossref_primary_10_1016_j_apsoil_2018_05_011 crossref_primary_10_1007_s12668_020_00724_2 crossref_primary_10_1016_j_catena_2022_106375 crossref_primary_10_1099_mgen_0_001064 crossref_primary_10_1007_s11104_022_05335_2 crossref_primary_10_1016_j_scitotenv_2023_166500 crossref_primary_10_1093_jxb_erab019 crossref_primary_10_1111_pce_15350 crossref_primary_10_1016_j_plaphy_2023_108245 crossref_primary_10_3390_su12093731 crossref_primary_10_1016_j_biocontrol_2018_05_016 crossref_primary_10_1007_s40333_023_0009_4 crossref_primary_10_1007_s12088_024_01194_w crossref_primary_10_3390_plants13050695 crossref_primary_10_1016_j_scienta_2022_111151 crossref_primary_10_1094_MPMI_08_20_0225_CR crossref_primary_10_1007_s10482_021_01636_1 crossref_primary_10_3390_microorganisms10061152 crossref_primary_10_1093_femsre_fuad066 crossref_primary_10_1021_acs_jafc_0c04579 crossref_primary_10_1016_j_scienta_2020_109480 crossref_primary_10_1094_MPMI_01_18_0003_R crossref_primary_10_1016_j_ecoenv_2021_112622 crossref_primary_10_5004_dwt_2018_23023 crossref_primary_10_1002_ldr_4731 crossref_primary_10_1128_mBio_00728_19 crossref_primary_10_3390_ijerph17165714 crossref_primary_10_1007_s10265_020_01237_5 crossref_primary_10_1016_j_scitotenv_2023_163175 crossref_primary_10_1016_j_scitotenv_2023_167774 crossref_primary_10_1016_j_pestbp_2021_104970 crossref_primary_10_1007_s11104_017_3445_0 crossref_primary_10_3390_microorganisms11071847 crossref_primary_10_1042_ETLS20210262 crossref_primary_10_3390_f11060652 crossref_primary_10_1007_s11274_019_2761_3 crossref_primary_10_1111_pbi_12279 crossref_primary_10_1371_journal_pone_0264276 crossref_primary_10_1186_s12870_024_04982_0 crossref_primary_10_1038_s42003_021_01988_4 crossref_primary_10_1016_j_micres_2023_127491 crossref_primary_10_3390_plants10051012 crossref_primary_10_1007_s11103_015_0337_7 crossref_primary_10_1016_j_apsoil_2018_10_009 crossref_primary_10_1016_j_envint_2023_107986 crossref_primary_10_1111_ppa_13641 crossref_primary_10_54097_jid_v2i3_7634 crossref_primary_10_1186_s12906_022_03513_4 crossref_primary_10_3390_horticulturae8100947 crossref_primary_10_3390_microorganisms11051103 crossref_primary_10_3389_fsufs_2024_1378436 crossref_primary_10_4315_JFP_20_021 crossref_primary_10_1371_journal_pone_0111208 crossref_primary_10_1111_1462_2920_12887 crossref_primary_10_1093_aob_mcx052 crossref_primary_10_3390_microorganisms8020307 crossref_primary_10_7554_eLife_79679 crossref_primary_10_1016_j_jia_2023_01_007 crossref_primary_10_1016_j_chemosphere_2020_125983 crossref_primary_10_1016_j_envpol_2020_116218 crossref_primary_10_3390_plants12183226 crossref_primary_10_1038_s41598_022_25142_0 crossref_primary_10_1021_acs_jafc_0c00073 crossref_primary_10_1016_j_ecoleng_2014_09_023 crossref_primary_10_1038_s41522_024_00510_y crossref_primary_10_1186_s12870_025_06056_1 crossref_primary_10_1128_JB_00293_21 crossref_primary_10_3389_fmicb_2023_1102547 crossref_primary_10_1038_s41598_021_92706_x |
Cites_doi | 10.1016/j.ejsobi.2011.08.009 10.1016/j.memsci.2011.04.030 10.1007/s00374-012-0718-x 10.1007/s11104-008-9814-y 10.1073/pnas.191384198 10.1099/00221287-74-1-77 10.4161/psb.4.8.9229 10.1007/s12275-012-1439-4 10.1093/jxb/eri205 10.1007/s00284-008-9137-5 10.1023/A:1004356007312 10.1104/pp.103.027888 10.1128/AEM.67.12.5849-5854.2001 10.1371/journal.pone.0043385 10.1016/j.tplants.2003.11.008 10.1099/mic.0.29112-0 10.1128/AEM.71.9.4951-4959.2005 10.1128/AEM.71.11.7292-7300.2005 10.1016/j.soilbio.2004.08.030 10.1007/s00374-011-0556-2 10.1094/MPMI.2002.15.11.1173 10.1146/annurev.arplant.57.032905.105159 10.1111/j.1365-3040.2009.01926.x 10.1023/A:1022888900465 10.1146/annurev.micro.62.081307.162918 10.1007/s00374-012-0675-4 10.1074/jbc.M112.433300 10.1007/s11104-011-0729-7 10.1046/j.1365-2958.2001.02709.x 10.1016/j.febslet.2004.10.062 10.1128/JB.185.6.1951-1957.2003 10.1111/j.1574-6941.2010.00860.x 10.1104/pp.104.044222 10.1016/S0168-6496(03)00155-7 10.1128/AEM.02188-07 10.1016/j.jbiotec.2010.12.022 10.1016/j.soilbio.2009.11.024 10.1016/j.copbio.2009.09.014 10.1128/JB.01590-07 10.1111/j.1365-2958.2012.08109.x 10.1371/journal.pone.0035498 10.1104/pp.108.127613 10.1128/AEM.02645-12 10.1038/ismej.2007.81 10.1111/j.1574-6968.2007.00827.x 10.1023/B:PLSO.0000035569.80747.c5 10.1016/S1001-0742(09)60029-2 |
ContentType | Journal Article |
Copyright | 2014 Springer Springer Science+Business Media Dordrecht 2013 2015 INIST-CNRS COPYRIGHT 2014 Springer Springer Science+Business Media Dordrecht 2014 |
Copyright_xml | – notice: 2014 Springer – notice: Springer Science+Business Media Dordrecht 2013 – notice: 2015 INIST-CNRS – notice: COPYRIGHT 2014 Springer – notice: Springer Science+Business Media Dordrecht 2014 |
DBID | AAYXX CITATION IQODW 3V. 7SN 7ST 7T7 7X2 88A 8FD 8FE 8FH 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 GNUQQ HCIFZ LK8 M0K M7P P64 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI RC3 SOI 7QL 7S9 L.6 |
DOI | 10.1007/s11104-013-1915-6 |
DatabaseName | CrossRef Pascal-Francis ProQuest Central (Corporate) Ecology Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Agricultural Science Collection Biology Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Database ProQuest Databases Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection Biological Sciences Agricultural Science Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Genetics Abstracts Environment Abstracts Bacteriology Abstracts (Microbiology B) AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Agricultural Science Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Environmental Sciences and Pollution Management ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability Genetics Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Biological Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection Biological Science Database ProQuest SciTech Collection Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Environment Abstracts ProQuest Central (Alumni) ProQuest One Academic (New) Bacteriology Abstracts (Microbiology B) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Technology Research Database Agricultural Science Database AGRICOLA |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture Botany Ecology |
EISSN | 1573-5036 |
EndPage | 700 |
ExternalDocumentID | 3161555221 A363516248 28611999 10_1007_s11104_013_1915_6 42953275 |
Genre | Feature |
GeographicLocations | Philippines China |
GeographicLocations_xml | – name: Philippines – name: China |
GroupedDBID | -~C -~X .86 .VR 06C 06D 0R~ 0VY 123 199 1N0 203 29O 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2XV 2~F 2~H 30V 4.4 406 408 409 40D 40E 5VS 67N 67Z 6NX 78A 7X2 8FE 8FH 8TC 8UJ 95- 95. 95~ 96X A8Z AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANXM AANZL AAPKM AARTL AASML AATNV AATVU AAUYE AAWCG AAXTN AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBHK ABBRH ABBXA ABDBE ABDBF ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABPLI ABQBU ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ABXSQ ACAOD ACBXY ACDTI ACGFS ACHIC ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACSTC ACUHS ACZOJ ADBBV ADHHG ADHIR ADIMF ADKNI ADKPE ADRFC ADTPH ADULT ADURQ ADYFF ADZKW AEBTG AEEJZ AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUPB AEUYN AEVLU AEXYK AEZWR AFBBN AFDZB AFGCZ AFHIU AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ AKMHD ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG APEBS AQVQM ARMRJ ASPBG ATCPS ATHPR AVWKF AXYYD AYFIA AZFZN B-. B0M BA0 BBNVY BDATZ BENPR BGNMA BHPHI BPHCQ BSONS CCPQU CS3 CSCUP DATOO DDRTE DL5 DNIVK DPUIP EAD EAP EBD EBLON EBS ECGQY EDH EIOEI EJD EMK EPAXT EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IAG IAO IEP IHE IJ- IKXTQ IPSME ITC ITM IWAJR IXC IZIGR IZQ I~X I~Y I~Z J-C J0Z JAAYA JBMMH JBSCW JCJTX JENOY JHFFW JKQEH JLS JLXEF JPM JST JZLTJ KDC KOV KPH LAK LK8 LLZTM M0K M4Y M7P MA- N2Q N9A NB0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P0- P19 PF0 PHGZM PHGZT PQGLB PQQKQ PROAC PT4 PT5 PUEGO Q2X QF4 QM4 QN7 QO4 QOK QOR QOS R89 R9I RHV RNS ROL RPX RSV S16 S27 S3A S3B SA0 SAP SBL SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SZN T13 TN5 TSG TSK TSV TUC TUS U2A U9L UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WJK WK8 Y6R YLTOR Z45 ZMTXR ZOVNA ~02 ~8M ~EX ~KM -4W -56 -5G -BR -EM -Y2 1SB 2.D 28- 2P1 2VQ 3SX 3V. 53G 5QI 88A AARHV ABQSL ACKIV ADINQ ADYPR AEFIE AFEXP AFFNX AGGDS AHAVH AIDBO BBWZM CAG COF EN4 GQ6 JSODD KOW M0L NDZJH OVD R4E RNI RZC RZE RZK S1Z S26 S28 SBY SCLPG T16 TEORI WK6 XOL Z5O Z7U Z7V Z7W Z7Y Z83 Z86 Z8O Z8P Z8Q Z8S Z8W Z92 ZCG AAYXX ADHKG AFOHR CITATION IQODW AEIIB PMFND 7SN 7ST 7T7 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ P64 PKEHL PQEST PQUKI RC3 SOI 7QL 7S9 L.6 |
ID | FETCH-LOGICAL-c473t-6feae65d830289f35dde1ce8934bb8f061c499ee67063e0ee7af1abfa3b427de3 |
IEDL.DBID | BENPR |
ISSN | 0032-079X |
IngestDate | Fri Jul 11 09:04:51 EDT 2025 Fri Jul 11 00:59:06 EDT 2025 Fri Jul 25 19:00:31 EDT 2025 Tue Jun 10 20:16:05 EDT 2025 Wed Apr 02 08:10:25 EDT 2025 Thu Apr 24 22:52:27 EDT 2025 Tue Jul 01 00:58:52 EDT 2025 Fri Feb 21 02:33:33 EST 2025 Sun Aug 24 12:10:33 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1/2 |
Keywords | Root exudates PGPR Biofilm formation Chemotaxis Organic acids Colonization Organic matter Exudate Root Strain Rhizosphere Vegetative apparatus Biofilm Prokaryote Bacteria Exudation Plant growth promoting rhizobacteria Microorganism Soil plant relation Formation Organic compounds |
Language | English |
License | http://www.springer.com/tdm CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c473t-6feae65d830289f35dde1ce8934bb8f061c499ee67063e0ee7af1abfa3b427de3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PQID | 1469610324 |
PQPubID | 54098 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2551923493 proquest_miscellaneous_1492621314 proquest_journals_1469610324 gale_infotracacademiconefile_A363516248 pascalfrancis_primary_28611999 crossref_primary_10_1007_s11104_013_1915_6 crossref_citationtrail_10_1007_s11104_013_1915_6 springer_journals_10_1007_s11104_013_1915_6 jstor_primary_42953275 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20140101 20140100 2014-1-00 2014 |
PublicationDateYYYYMMDD | 2014-01-01 |
PublicationDate_xml | – month: 1 year: 2014 text: 20140101 day: 1 |
PublicationDecade | 2010 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht |
PublicationSubtitle | An International Journal on Plant-Soil Relationships |
PublicationTitle | Plant and soil |
PublicationTitleAbbrev | Plant Soil |
PublicationYear | 2014 |
Publisher | Springer Springer Netherlands Springer Nature B.V |
Publisher_xml | – name: Springer – name: Springer Netherlands – name: Springer Nature B.V |
References | Badri, Chaparro, Zhang, Shen, Vivanco (CR6) 2013; 288 Compant, Clement, Sessitsch (CR15) 2010; 42 Chen, Cao, Chai, Clardy, Kolter, Guo, Losick (CR13) 2012; 85 Rudrappa, Czymmek, Pare, Bais (CR36) 2008; 148 Gray, Smith (CR20) 2005; 37 Micallef, Channer, Shiaris, Colon-Carmona (CR31) 2009; 4 Andersen, Brodbeck, Oden, Shriner, Leite (CR2) 2007; 274 Hamon, Lazazzera (CR21) 2001; 42 Broeckling, Broz, Bergelson, Manter, Vivanco (CR10) 2008; 74 Hartmann, Schmid, van Tuinen, Berg (CR22) 2009; 321 Lugtenberg, Kamilova (CR29) 2009; 63 Fan, Borriss, Bleiss, Wu (CR19) 2012; 50 Bais, Park, Weir, Callaway, Vivanco (CR7) 2004; 9 Walker, Bais, Deziel, Schweizer, Rahme, Fall, Vivanco (CR43) 2004; 134 Sun, Wang, Zhu, Liao, Gu, Ren, Kapulnik, Xu (CR41) 2012; 7 Compant, Duffy, Nowak, Clement, Barka (CR14) 2005; 71 Dennis, Miller, Hirsch (CR17) 2010; 72 Neal, Ahmad, Gordon-Weeks, Ton (CR33) 2012; 7 Weng, Wang, Li, Shen, Zhang (CR44) 2012 de Weert, Vermeiren, Mulders, Kuiper, Hendrickx, Bloemberg, Vanderleyden, De Mol, Lugtenberg (CR16) 2002; 15 Kloepper, Schroth (CR25) 1978 Wieland, Neumann, Backhaus (CR45) 2001; 67 Branda, Gonzalez-Pastor, Ben-Yehuda, Losick, Kolter (CR9) 2001; 98 Sood (CR37) 2003; 45 Adler (CR1) 1973; 74 Bacilio-Jimenez, Aguilar-Flores, Ventura-Zapata, Perez-Campos, Bouquelet, Zenteno (CR3) 2003; 249 Broz, Manter, Vivanco (CR11) 2007; 1 Liu, Parales (CR28) 2008; 190 Li, Zhang, Zhang, Luo, Shen, Zhang, Shen (CR26) 2013; 49 Fan, Chen, Budiharjo, Bleiss, Vater, Borriss (CR18) 2011; 151 Timmusk, Grantcharova, Wagner (CR42) 2005; 71 CR50 Zhang, Wu, He, Li, Zhang, Shen, Yang, Zhang, Huang, Shen (CR49) 2011; 344 Badri, Weir, van der Lelie, Vivanco (CR5) 2009; 20 Bais, Weir, Perry, Gilroy, Vivanco (CR8) 2006; 57 Cao, Zhang, Ling, Yuan, Zheng, Shen, Shen (CR12) 2011; 47 Badri, Vivanco (CR4) 2009; 32 Ling, Raza, Ma, Huang, Shen (CR27) 2011; 47 Phillips, Fox, King, Bhuvaneswari, Teuber (CR34) 2004; 136 Morgan, Bending, White (CR32) 2005; 56 Qiu, Zhang, Xue, Zhang, Li, Zhang, Shen (CR35) 2012; 48 Xu, Shao, Li, Yan, Shen, Zhang (CR47) 2013; 79 Marschner, Crowley, Yang (CR30) 2004; 261 Stepanovic, Dakic, Opavski, Jezek, Ranin (CR40) 2003; 53 Soto, Sanjuan, Olivares (CR38) 2006; 152 Jakoby, Wang, Reidt, Weisshaar, Bauer (CR23) 2004; 577 Stanley, Britton, Grossman, Lazazzera (CR39) 2003; 185 Xu (CR46) 2011; 376 Jones (CR24) 1998; 205 Yaryura, Leon, Correa, Kerber, Pucheu, Garcia (CR48) 2008; 56 AK Broz (1915_CR11) 2007; 1 M Bacilio-Jimenez (1915_CR3) 2003; 249 1915_CR30 SG Sood (1915_CR37) 2003; 45 S Weert de (1915_CR16) 2002; 15 DA Phillips (1915_CR34) 2004; 136 B Fan (1915_CR18) 2011; 151 Y Cao (1915_CR12) 2011; 47 PC Andersen (1915_CR2) 2007; 274 A Hartmann (1915_CR22) 2009; 321 PG Dennis (1915_CR17) 2010; 72 H Xu (1915_CR46) 2011; 376 T Rudrappa (1915_CR36) 2008; 148 S Stepanovic (1915_CR40) 2003; 53 MJ Soto (1915_CR38) 2006; 152 Z Xu (1915_CR47) 2013; 79 S Timmusk (1915_CR42) 2005; 71 DV Badri (1915_CR6) 2013; 288 TS Walker (1915_CR43) 2004; 134 S Li (1915_CR26) 2013; 49 MA Hamon (1915_CR21) 2001; 42 B Fan (1915_CR19) 2012; 50 M Qiu (1915_CR35) 2012; 48 1915_CR50 N Ling (1915_CR27) 2011; 47 HP Bais (1915_CR8) 2006; 57 M Jakoby (1915_CR23) 2004; 577 X Liu (1915_CR28) 2008; 190 AL Neal (1915_CR33) 2012; 7 HP Bais (1915_CR7) 2004; 9 Y Chen (1915_CR13) 2012; 85 S Compant (1915_CR14) 2005; 71 JW Kloepper (1915_CR25) 1978 G Wieland (1915_CR45) 2001; 67 DL Jones (1915_CR24) 1998; 205 N Zhang (1915_CR49) 2011; 344 CD Broeckling (1915_CR10) 2008; 74 DV Badri (1915_CR5) 2009; 20 NR Stanley (1915_CR39) 2003; 185 S Sun (1915_CR41) 2012; 7 SS Branda (1915_CR9) 2001; 98 DV Badri (1915_CR4) 2009; 32 SA Micallef (1915_CR31) 2009; 4 J Weng (1915_CR44) 2012 J Adler (1915_CR1) 1973; 74 EJ Gray (1915_CR20) 2005; 37 BJJ Lugtenberg (1915_CR29) 2009; 63 S Compant (1915_CR15) 2010; 42 PM Yaryura (1915_CR48) 2008; 56 JA Morgan (1915_CR32) 2005; 56 |
References_xml | – volume: 47 start-page: 374 year: 2011 end-page: 379 ident: CR27 article-title: Identification and role of organic acids in watermelon root exudates for recruiting SQR-21 in the rhizosphere publication-title: Eur J Soil Biol doi: 10.1016/j.ejsobi.2011.08.009 – volume: 376 start-page: 266 year: 2011 end-page: 274 ident: CR46 article-title: D-Amino acid mitigated membrane biofouling and promoted biofilm publication-title: J Membr Sci doi: 10.1016/j.memsci.2011.04.030 – volume: 274 start-page: 10 year: 2007 end-page: 217 ident: CR2 article-title: Influence of xylem fluid chemistry on planktonic growth, biofilm formation and aggregation of publication-title: FEMS Microbiol Lett – volume: 49 start-page: 295 year: 2013 end-page: 303 ident: CR26 article-title: Antagonist HJ5 controls Verticillium wilt of cotton by root colonization and biofilm formation publication-title: Biol Fertil Soils doi: 10.1007/s00374-012-0718-x – volume: 321 start-page: 235 year: 2009 end-page: 257 ident: CR22 article-title: Plant-driven selection of microbes publication-title: Plant Soil doi: 10.1007/s11104-008-9814-y – volume: 98 start-page: 11621 year: 2001 end-page: 11626 ident: CR9 article-title: Fruiting body formation by publication-title: PNAS doi: 10.1073/pnas.191384198 – volume: 74 start-page: 77 year: 1973 end-page: 91 ident: CR1 article-title: A method for measuring chemotaxis and use of the method to determine optimum conditions for chemotaxis by publication-title: J Gen Microbiol doi: 10.1099/00221287-74-1-77 – volume: 4 start-page: 777 year: 2009 end-page: 780 ident: CR31 article-title: Plant age and genotype impact the progression of bacterial community succession in the rhizosphere publication-title: Plant Signal Behav doi: 10.4161/psb.4.8.9229 – volume: 53 start-page: 63 year: 2003 end-page: 74 ident: CR40 article-title: Influence of the growth medium composition on biofilm formation by publication-title: Ann Microbiol – volume: 50 start-page: 38 year: 2012 end-page: 44 ident: CR19 article-title: Gram-positive rhizobacterium FZB42 colonizes three types of plants in different patterns publication-title: J Microbiol doi: 10.1007/s12275-012-1439-4 – volume: 56 start-page: 1729 year: 2005 end-page: 1739 ident: CR32 article-title: Biological costs and benefits to plant-microbe interactions in the rhizosphere publication-title: J Exp Bot doi: 10.1093/jxb/eri205 – volume: 56 start-page: 625 year: 2008 end-page: 632 ident: CR48 article-title: Assessment of the role of chemotaxis and biofilm formation as requirements for colonization of roots and seeds of soybean plants by BNM339 publication-title: Curr Microbiol doi: 10.1007/s00284-008-9137-5 – volume: 205 start-page: 25 year: 1998 end-page: 44 ident: CR24 article-title: Organic acids in the rhizosphere - a critical review publication-title: Plant Soil doi: 10.1023/A:1004356007312 – volume: 134 start-page: 320 year: 2004 end-page: 331 ident: CR43 article-title: - plant root interactions, pathogenicity, biofilm formation, and root exudation publication-title: Plant Physiol doi: 10.1104/pp.103.027888 – volume: 67 start-page: 5849 year: 2001 end-page: 5854 ident: CR45 article-title: Variation of microbial communities in soil, rhizosphere, and rhizoplane in response to crop species, soil type, and crop development publication-title: Appl Environ Microbiol doi: 10.1128/AEM.67.12.5849-5854.2001 – volume: 7 start-page: e43385 year: 2012 ident: CR41 article-title: An active factor from tomato root exudates plays an important role in efficient establishment of mycorrhizal symbiosis publication-title: PLOS ONE doi: 10.1371/journal.pone.0043385 – ident: CR50 – volume: 9 start-page: 26 year: 2004 end-page: 32 ident: CR7 article-title: How plants communicate using the underground information superhighway publication-title: Trends Plant Sci doi: 10.1016/j.tplants.2003.11.008 – volume: 152 start-page: 3167 year: 2006 end-page: 3174 ident: CR38 article-title: Rhizobia and plant-pathogenic bacteria: common infection weapons publication-title: Microbiol doi: 10.1099/mic.0.29112-0 – volume: 71 start-page: 4951 year: 2005 end-page: 4959 ident: CR14 article-title: Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects publication-title: Appl Environ Microbiol doi: 10.1128/AEM.71.9.4951-4959.2005 – volume: 71 start-page: 7292 year: 2005 end-page: 7300 ident: CR42 article-title: invades plant roots and forms biofilms publication-title: Appl Environ Microbiol doi: 10.1128/AEM.71.11.7292-7300.2005 – volume: 37 start-page: 395 year: 2005 end-page: 412 ident: CR20 article-title: Intracellular and extracellular PGPR: commonalities and distinctions in the plant–bacterium signaling processes publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2004.08.030 – volume: 47 start-page: 495 year: 2011 end-page: 506 ident: CR12 article-title: SQR 9 can control Fusarium wilt in cucumber by colonizing plant roots publication-title: Biol Fertil Soils doi: 10.1007/s00374-011-0556-2 – volume: 15 start-page: 1173 year: 2002 end-page: 1180 ident: CR16 article-title: Flagella-driven chemotaxis towards exudate components is an important trait for tomato root colonization by publication-title: Mol Plant Microbe Interact doi: 10.1094/MPMI.2002.15.11.1173 – volume: 57 start-page: 233 year: 2006 end-page: 266 ident: CR8 article-title: The role of root exudates in rhizosphere interactions with plants and other organisms publication-title: Annu Rev Plant Biol doi: 10.1146/annurev.arplant.57.032905.105159 – volume: 32 start-page: 666 year: 2009 end-page: 681 ident: CR4 article-title: Regulation and function of root exudates publication-title: Plant Cell Environ doi: 10.1111/j.1365-3040.2009.01926.x – volume: 261 start-page: 199 year: 2004 end-page: 208 ident: CR30 article-title: Development of specific rhizosphere bacterial communities in relation to plant species, nutrition and soil type publication-title: Plant Soil – volume: 249 start-page: 271 year: 2003 end-page: 277 ident: CR3 article-title: Chemical characterization of root exudates from rice ( ) and their effects on the chemotactic response of endophytic bacteria publication-title: Plant Soil doi: 10.1023/A:1022888900465 – volume: 63 start-page: 541 year: 2009 end-page: 556 ident: CR29 article-title: Plant-growth-promoting rhizobacteria publication-title: Annu Rev Microbiol doi: 10.1146/annurev.micro.62.081307.162918 – volume: 48 start-page: 807 year: 2012 end-page: 816 ident: CR35 article-title: Application of bio-organic fertilizer can control Fusarium wilt of cucumber plants by regulating microbial community of rhizosphere soil publication-title: Biol Fertil Soils doi: 10.1007/s00374-012-0675-4 – volume: 288 start-page: 4502 year: 2013 end-page: 4512 ident: CR6 article-title: Application of natural blends of phytochemicals derived from the root exudates of to the soil reveal that phenolic-related compounds predominantly modulate the soil microbiome publication-title: J Biol Chem doi: 10.1074/jbc.M112.433300 – volume: 344 start-page: 87 year: 2011 end-page: 97 ident: CR49 article-title: A new bioorganic fertilizer can effectively control banana wilt by strong colonization with N11 publication-title: Plant Soil doi: 10.1007/s11104-011-0729-7 – volume: 42 start-page: 1199 year: 2001 end-page: 1209 ident: CR21 article-title: The sporulation transcription factor Spo0A is required for biofilm development in publication-title: Mol Microbiol doi: 10.1046/j.1365-2958.2001.02709.x – volume: 577 start-page: 528 year: 2004 end-page: 534 ident: CR23 article-title: is required for induction of iron mobilization genes in publication-title: FEBS Lett doi: 10.1016/j.febslet.2004.10.062 – volume: 185 start-page: 1951 year: 2003 end-page: 1957 ident: CR39 article-title: Identification of catabolite repression as a physiological regulator publication-title: J Bacteriol doi: 10.1128/JB.185.6.1951-1957.2003 – volume: 72 start-page: 313 year: 2010 end-page: 327 ident: CR17 article-title: Are root exudates more important than other sources of rhizodeposits in structuring rhizosphere bacterial communities? publication-title: FEMS Microbiol Ecol doi: 10.1111/j.1574-6941.2010.00860.x – volume: 136 start-page: 2887 year: 2004 end-page: 2894 ident: CR34 article-title: Microbial products trigger amino acid exudation from plant roots publication-title: Plant Physiol doi: 10.1104/pp.104.044222 – volume: 45 start-page: 219 year: 2003 end-page: 227 ident: CR37 article-title: Chemotactic response of plant-growth-promoting bacteria towards roots of vesicular-arbuscular mycorrhizal tomato plants publication-title: FEMS Microbiol Ecol doi: 10.1016/S0168-6496(03)00155-7 – volume: 74 start-page: 738 year: 2008 end-page: 744 ident: CR10 article-title: Root exudates regulate soil fungal community composition and diversity publication-title: Appl Environ Microbiol doi: 10.1128/AEM.02188-07 – volume: 151 start-page: 303 year: 2011 end-page: 311 ident: CR18 article-title: Efficient colonization of plant roots by the plant growth promoting bacterium FZB42, engineered to express green fluorescent protein publication-title: J Biotechnol doi: 10.1016/j.jbiotec.2010.12.022 – volume: 42 start-page: 669 year: 2010 end-page: 678 ident: CR15 article-title: Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2009.11.024 – volume: 20 start-page: 642 year: 2009 end-page: 650 ident: CR5 article-title: Rhizosphere chemical dialogues: plant-microbe interactions publication-title: Curr Opin Biotechnol doi: 10.1016/j.copbio.2009.09.014 – volume: 190 start-page: 972 year: 2008 end-page: 979 ident: CR28 article-title: Chemotaxis of to pyrimidines: a new role for the signal transducer tap publication-title: J Bacteriol doi: 10.1128/JB.01590-07 – volume: 85 start-page: 418 year: 2012 end-page: 430 ident: CR13 article-title: A sensor kinase involved in triggering biofilm formation on the roots of tomato plants publication-title: Mol Microbiol doi: 10.1111/j.1365-2958.2012.08109.x – volume: 7 start-page: e35498 year: 2012 ident: CR33 article-title: Benzoxazinoids in root exudates of maize attract to the rhizosphere publication-title: PLOS ONE doi: 10.1371/journal.pone.0035498 – volume: 148 start-page: 1547 year: 2008 end-page: 1556 ident: CR36 article-title: Root-secreted malic acid recruits beneficial soil bacteria publication-title: Plant Physiol doi: 10.1104/pp.108.127613 – year: 1978 ident: CR25 article-title: Plant growth-promoting rhizobacteria on radishes publication-title: Proceedings of the 4th International Conference on Plant Pathogenic Bacteria – year: 2012 ident: CR44 article-title: Enhanced root colonization and biocontrol activity of SQR-9 by gene desruption publication-title: Appl Microbiol Biotechnol – volume: 79 start-page: 808 year: 2013 end-page: 815 ident: CR47 article-title: Contribution of bacillomycin D in SQR9 to antifungal activity and biofilm formation publication-title: Appl Environ Microbiol doi: 10.1128/AEM.02645-12 – volume: 1 start-page: 763 year: 2007 end-page: 765 ident: CR11 article-title: Soil fungal abundance and diversity: another victim of the invasive plant publication-title: ISME J doi: 10.1038/ismej.2007.81 – volume: 136 start-page: 2887 year: 2004 ident: 1915_CR34 publication-title: Plant Physiol doi: 10.1104/pp.104.044222 – volume: 9 start-page: 26 year: 2004 ident: 1915_CR7 publication-title: Trends Plant Sci doi: 10.1016/j.tplants.2003.11.008 – volume: 37 start-page: 395 year: 2005 ident: 1915_CR20 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2004.08.030 – volume: 148 start-page: 1547 year: 2008 ident: 1915_CR36 publication-title: Plant Physiol doi: 10.1104/pp.108.127613 – volume: 71 start-page: 7292 year: 2005 ident: 1915_CR42 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.71.11.7292-7300.2005 – volume: 42 start-page: 669 year: 2010 ident: 1915_CR15 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2009.11.024 – volume: 56 start-page: 625 year: 2008 ident: 1915_CR48 publication-title: Curr Microbiol doi: 10.1007/s00284-008-9137-5 – volume: 79 start-page: 808 year: 2013 ident: 1915_CR47 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.02645-12 – volume: 185 start-page: 1951 year: 2003 ident: 1915_CR39 publication-title: J Bacteriol doi: 10.1128/JB.185.6.1951-1957.2003 – volume: 48 start-page: 807 year: 2012 ident: 1915_CR35 publication-title: Biol Fertil Soils doi: 10.1007/s00374-012-0675-4 – year: 2012 ident: 1915_CR44 publication-title: Appl Microbiol Biotechnol – volume: 67 start-page: 5849 year: 2001 ident: 1915_CR45 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.67.12.5849-5854.2001 – volume: 7 start-page: e43385 year: 2012 ident: 1915_CR41 publication-title: PLOS ONE doi: 10.1371/journal.pone.0043385 – volume: 4 start-page: 777 year: 2009 ident: 1915_CR31 publication-title: Plant Signal Behav doi: 10.4161/psb.4.8.9229 – volume: 71 start-page: 4951 year: 2005 ident: 1915_CR14 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.71.9.4951-4959.2005 – volume: 74 start-page: 738 year: 2008 ident: 1915_CR10 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.02188-07 – volume: 57 start-page: 233 year: 2006 ident: 1915_CR8 publication-title: Annu Rev Plant Biol doi: 10.1146/annurev.arplant.57.032905.105159 – volume: 47 start-page: 495 year: 2011 ident: 1915_CR12 publication-title: Biol Fertil Soils doi: 10.1007/s00374-011-0556-2 – volume: 74 start-page: 77 year: 1973 ident: 1915_CR1 publication-title: J Gen Microbiol doi: 10.1099/00221287-74-1-77 – volume: 151 start-page: 303 year: 2011 ident: 1915_CR18 publication-title: J Biotechnol doi: 10.1016/j.jbiotec.2010.12.022 – volume: 53 start-page: 63 year: 2003 ident: 1915_CR40 publication-title: Ann Microbiol – volume: 134 start-page: 320 year: 2004 ident: 1915_CR43 publication-title: Plant Physiol doi: 10.1104/pp.103.027888 – volume: 7 start-page: e35498 year: 2012 ident: 1915_CR33 publication-title: PLOS ONE doi: 10.1371/journal.pone.0035498 – volume: 47 start-page: 374 year: 2011 ident: 1915_CR27 publication-title: Eur J Soil Biol doi: 10.1016/j.ejsobi.2011.08.009 – volume: 15 start-page: 1173 year: 2002 ident: 1915_CR16 publication-title: Mol Plant Microbe Interact doi: 10.1094/MPMI.2002.15.11.1173 – volume: 274 start-page: 10 year: 2007 ident: 1915_CR2 publication-title: FEMS Microbiol Lett doi: 10.1111/j.1574-6968.2007.00827.x – volume: 288 start-page: 4502 year: 2013 ident: 1915_CR6 publication-title: J Biol Chem doi: 10.1074/jbc.M112.433300 – volume: 205 start-page: 25 year: 1998 ident: 1915_CR24 publication-title: Plant Soil doi: 10.1023/A:1004356007312 – volume: 20 start-page: 642 year: 2009 ident: 1915_CR5 publication-title: Curr Opin Biotechnol doi: 10.1016/j.copbio.2009.09.014 – volume: 56 start-page: 1729 year: 2005 ident: 1915_CR32 publication-title: J Exp Bot doi: 10.1093/jxb/eri205 – volume-title: Proceedings of the 4th International Conference on Plant Pathogenic Bacteria year: 1978 ident: 1915_CR25 – ident: 1915_CR30 doi: 10.1023/B:PLSO.0000035569.80747.c5 – volume: 42 start-page: 1199 year: 2001 ident: 1915_CR21 publication-title: Mol Microbiol doi: 10.1046/j.1365-2958.2001.02709.x – volume: 32 start-page: 666 year: 2009 ident: 1915_CR4 publication-title: Plant Cell Environ doi: 10.1111/j.1365-3040.2009.01926.x – volume: 85 start-page: 418 year: 2012 ident: 1915_CR13 publication-title: Mol Microbiol doi: 10.1111/j.1365-2958.2012.08109.x – volume: 249 start-page: 271 year: 2003 ident: 1915_CR3 publication-title: Plant Soil doi: 10.1023/A:1022888900465 – volume: 63 start-page: 541 year: 2009 ident: 1915_CR29 publication-title: Annu Rev Microbiol doi: 10.1146/annurev.micro.62.081307.162918 – volume: 49 start-page: 295 year: 2013 ident: 1915_CR26 publication-title: Biol Fertil Soils doi: 10.1007/s00374-012-0718-x – volume: 45 start-page: 219 year: 2003 ident: 1915_CR37 publication-title: FEMS Microbiol Ecol doi: 10.1016/S0168-6496(03)00155-7 – volume: 1 start-page: 763 year: 2007 ident: 1915_CR11 publication-title: ISME J doi: 10.1038/ismej.2007.81 – volume: 344 start-page: 87 year: 2011 ident: 1915_CR49 publication-title: Plant Soil doi: 10.1007/s11104-011-0729-7 – volume: 190 start-page: 972 year: 2008 ident: 1915_CR28 publication-title: J Bacteriol doi: 10.1128/JB.01590-07 – volume: 98 start-page: 11621 year: 2001 ident: 1915_CR9 publication-title: PNAS doi: 10.1073/pnas.191384198 – ident: 1915_CR50 doi: 10.1016/S1001-0742(09)60029-2 – volume: 577 start-page: 528 year: 2004 ident: 1915_CR23 publication-title: FEBS Lett doi: 10.1016/j.febslet.2004.10.062 – volume: 152 start-page: 3167 year: 2006 ident: 1915_CR38 publication-title: Microbiol doi: 10.1099/mic.0.29112-0 – volume: 321 start-page: 235 year: 2009 ident: 1915_CR22 publication-title: Plant Soil doi: 10.1007/s11104-008-9814-y – volume: 50 start-page: 38 year: 2012 ident: 1915_CR19 publication-title: J Microbiol doi: 10.1007/s12275-012-1439-4 – volume: 72 start-page: 313 year: 2010 ident: 1915_CR17 publication-title: FEMS Microbiol Ecol doi: 10.1111/j.1574-6941.2010.00860.x – volume: 376 start-page: 266 year: 2011 ident: 1915_CR46 publication-title: J Membr Sci doi: 10.1016/j.memsci.2011.04.030 |
SSID | ssj0003216 |
Score | 2.5711393 |
Snippet | Aim It is necessary to understand the roles of root exudates involved in plant-microbe interactions to inform practical application of beneficial rhizosphere... Aim It is necessary to understand the roles of root exudates involved in plant-microbe interactions to inform practical application of beneficial rhizosphere... It is necessary to understand the roles of root exudates involved in plant-microbe interactions to inform practical application of beneficial rhizosphere... Aim: It is necessary to understand the roles of root exudates involved in plant-microbe interactions to inform practical application of beneficial rhizosphere... AIM: It is necessary to understand the roles of root exudates involved in plant-microbe interactions to inform practical application of beneficial rhizosphere... |
SourceID | proquest gale pascalfrancis crossref springer jstor |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 689 |
SubjectTerms | Acid soils Agricultural production Agronomy. Soil science and plant productions Animal, plant and microbial ecology Bacillus (Bacteria) Bacillus amyloliquefaciens Bacillus subtilis bananas Biochemistry and biology biofilm Biofilms Biological and medical sciences Biomedical and Life Sciences Botanical research Chemical, physicochemical, biochemical and biological properties Chemotaxis citric acid Colonization Cucumbers Cucumis sativus Ecology fumaric acid Fundamental and applied biological sciences. Psychology General agronomy. Plant production Health aspects high performance liquid chromatography Life Sciences Liquid chromatography Microbial colonization Microbiological research Microbiology Musa Organic acids Organic matter Physics, chemistry, biochemistry and biology of agricultural and forest soils Plant growth Plant Physiology Plant roots Plant Sciences Plant-pathogen relationships Plant-soil relationships Plants Regular Article Rhizobium Rhizosphere Root exudates roots soil Soil microorganisms Soil science Soil Science & Conservation Soil-plant relationships. Soil fertility Soil-plant relationships. Soil fertility. Fertilization. Amendments Studies |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fi9QwEB70VNAH0dXD6nlEEAQ10DZp2j6ucsch6JML-1aSNJGFu_bY7sLt33X_4M2kP84VPfBt6U7TNjOZfJNMvgF4nwhfWy0lV7FOuTROcVPWPqxbaZwuS-NpaeD7D3W2kN-W2XI4x92N2e7jlmTw1LeH3XCmoowJwTHGyLi6Dw8yDN0pj2uRzif3K9JQ75R-8Dgvl-NW5t-a2JuMBpfcpyVSjqTusJt8X99iD4D-sWcapqLTZ_B0wJBs3iv9OdxzzQyezH-tBx4NN4OHX1pEfbsZPDoJtNS7F3DdExV3rPVsLIuyYZfn2LUM4fOGuasthf8d003NwgYC62s-WabtqmaUfd42lHjB2oahslHL-mrVfWZmRYW_L9h0EjI0QQ8ej3kys2MG3WrPV8HWlOnXEaOB43owEFcz01NHo0AXSld0L2FxevLz6xkfSjZwK3Ox4co77VRWE6tYUXqRofdMrENQJI0pPIIHiyGWcypHaORi53LtE228Fkamee3EIRw0-CmvgPlaGu-LWPlSyUynJpHG5gW6DGNl7OoI4lF3lR34zOndzqtbJmZSd4XqrkjdlYrg43TLZU_mcZfwBzKIigY6tmv1cF6hpb7C63OBWC1RqSwiOAw2M7WJc3wm0jyL4HjPiCaBtFAJ8T9EcDRaVTX4jo6CsVIRz6GM4N30N4562srRjWu3JEM8j4lI7pDBYJHguyxFBJ9Gi_3tMf_68Nf_Jf0GHiOGlP2q1BEcbNZb9xZx2sYch3F5A3vIN3M priority: 102 providerName: Springer Nature |
Title | Effects of different plant root exudates and their organic acid components on chemotaxis, biofilm formation and colonization by beneficial rhizosphere-associated bacterial strains |
URI | https://www.jstor.org/stable/42953275 https://link.springer.com/article/10.1007/s11104-013-1915-6 https://www.proquest.com/docview/1469610324 https://www.proquest.com/docview/1492621314 https://www.proquest.com/docview/2551923493 |
Volume | 374 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fi9NAEB681gd9ED09LnqWFQRBDebHZpM8Sauth-IhYqE-hd1kVwpnUpsU7v4u_0Fnkk3OCvapod1sk53ZmW9nZ78BeO6Hpsgl567wZOBypYWr0sK0cSuJ7jJVhkIDny_E-ZJ_XEUrG3CrbVplbxNbQ11UOcXI3-CMTgWxv_G3m18uVY2i3VVbQuMIxmiCk2QE49n84svXwRaHQVv8lC5cL05X_b5me3gOPR9lYIQurlkiV-x5JmufuxxFSpiUNY6Z6Ypd7KHRfzZQW7-0uA_3LKBk004DHsAtXR7D3emPrSXV0Mdwe1YhBLx-CL87ruKaVYb1lVEatrnE0WWIoBumr3YUAaiZLAvW7iGwruxTzmS-LhgloFcl5V6wqmQobxS0vFrXr5laU-3vn2w4DNl2QZTY_UlPpq6ZQsvaUVawLSX71URqoF1pdUQXTHXs0digbqtX1I9guZh_e3fu2qoNbs7jsHGF0VKLqCBisSQ1YYQG1M814iKuVGIQP-S4ytJaxIiOtKd1LI0vlZGh4kFc6PAERiW-yikwU3BlTOIJkwoeyUD5XOVxglZD5dzThQNeL7Est5Tm9GyX2Q0ZMwk5QyFnJORMOPByuGXT8XkcavyC1CCjuY795tIeWahorPD7aYhwzRcBTxw4aTVl6BPdfBQGceTAZE91hgZBInyigHDgrNelzJqPOrtRdgeeDT_jxKfdHFnqakdtiOrRD_0DbXC9SAiep6EDr3o9_etv_vfijw8_1BO4g7iRd5GoMxg1251-itisURMYT2fvZwv6_PD903xiJ-QEjpbB9A-JGz1f |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VFAk4IChUGEpZJBAS1ML2rtf2AaEUWqW0jRBqpdzMrr2LIhU7xIlo_hQX_iAzfqQEidx6i5L1xvY8dx7fALzwuc0zJYQrPRW4Qhvp6iS3ddxKoblMtKXQwOlQDs7Fp1E42oBfXS8MlVV2OrFW1HmZUYz8LUp0Ign9Tbyf_HBpahRlV7sRGg1bHJvFTzyyVe-OPiJ9XwbB4cHZh4HbThVwMxHxmSutUUaGOQFfxYnlIQq4nxm020Lr2KJ9y_AUYIyM0Hobz5hIWV9pq7gWQZQbjvvegE3BpRf0YHP_YPj5y1L386AetkofXC9KRl0etW7WQ0tLFR_cxTNS6MoVS9jag6Ymkgo0VYU0ss1wjRXv95-EbW0HD-_B3daBZf2G4-7Dhim24E7_27QF8TBbcHO_RJdz8QB-N9jIFSst6yaxzNjkAqnJ0GOfMXM5p4hDxVSRszpnwZoxUxlT2ThnVPBeFlTrwcqCIX8hY6nLcbXH9JhmjX9ny-bLeguC4O46S5leMI2avIHIYFMqLqwIRMG4quVJkzPdoFXjgqqellE9hPNroec29Ap8lEfAbC60tbEnbSJFqALtC51FMWopnQnP5A54HcXSrIVQp3u7SK_An4nIKRI5JSKn0oHXy0smDX7IusWviA1S0i24b6baFomS3hV-3-foHvoyELED2zWnLPdEtyLkQRQ6sLvCOssFQSx9gpxwYKfjpbRVV1V6JVwOPF_-jIqGskeqMOWc1hC0pM_9NWvwfEonBpFwB950fPrX3_zvwR-vv6lncGtwdnqSnhwNj5_AbfRZRRMF24HebDo3T9EvnOndVhgZfL1u-f8Db7N4Fw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VFCE4IChUGEpZJBAS1Kof67V9QCiljVoKUYWolJvZtXdRpGKH2BHN7-LGr2PGrxIkcustStYb2_OenfkG4IXrmyyVnNvCkZ7NlRa2ijNT560kmstYGUoNfBqL43P-YRJMNuB31wtDZZWdTqwVdVaklCPfR4mOBaG_8X3TlkWcHY7ezX7YNEGKTlq7cRoNi5zq5U8M38q3J4dI65eeNzr68v7YbicM2CkP_coWRkstgoxAsKLY-AEKu5tqtOFcqcigrUsxItBahGjJtaN1KI0rlZG-4l6YaR_3vQGbIUVFA9g8OBqffe7tgO_Vg1fpg-2E8aQ7U60b99DqUvWHb2O8FNhixSq2tqGpj6RiTVkivUwzaGPFE_7n8La2iaN7cLd1Ztmw4b77sKHzLbgz_DZvAT30Ftw8KND9XD6AXw1OcskKw7qpLBWbXSBlGXrvFdOXC8o-lEzmGavPL1gzciplMp1mjIrfi5zqPliRM-Q1ZDJ5OS33mJrS3PHvrG_ErLcgOO6uy5SpJVOo1Ru4DDanQsOSABW0LVv-1BlTDXI1LijryRnlQzi_FnpuwyDHR3kEzGRcGRM5wsSCB9JTLldpGKHGUil3dGaB01EsSVs4dbq3i-QKCJqInCCREyJyIix43V8ya7BE1i1-RWyQkJ7BfVPZtksU9K7w-6GPrqIrPB5ZsF1zSr8nuhiB74WBBbsrrNMv8CLhEvyEBTsdLyWt6iqTK0Gz4Hn_MyodOkmSuS4WtIZgJl3fXbMGY1WKHnjsW_Cm49O__uZ_D_54_U09g1so98nHk_HpE7iN7itvEmI7MKjmC_0UXcRK7bayyODrdYv_H-3DfEw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+different+plant+root+exudates+and+their+organic+acid+components+on+chemotaxis%2C+biofilm+formation+and+colonization+by+beneficial+rhizosphere-associated+bacterial+strains&rft.jtitle=Plant+and+soil&rft.au=NAN+ZHANG&rft.au=DANDAN+WANG&rft.au=YUNPENG+LIU&rft.au=SHUQING+LI&rft.date=2014&rft.pub=Springer&rft.issn=0032-079X&rft.volume=374&rft.issue=1-2&rft.spage=689&rft.epage=700&rft_id=info:doi/10.1007%2Fs11104-013-1915-6&rft.externalDBID=n%2Fa&rft.externalDocID=28611999 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-079X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-079X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-079X&client=summon |