Identification of astrocyte-expressed factors that modulate neural stem/progenitor cell differentiation

Multipotent neural stem/progenitor cells (NSPCs) can be isolated from many regions of the adult central nervous system (CNS), yet neurogenesis is restricted to the hippocampus and subventricular zone in vivo. Identification of the molecular cues that modulate NSPC fate choice is a prerequisite for t...

Full description

Saved in:
Bibliographic Details
Published inStem cells and development Vol. 15; no. 3; p. 407
Main Authors Barkho, Basam Z, Song, Hongjun, Aimone, James B, Smrt, Richard D, Kuwabara, Tomoko, Nakashima, Kinichi, Gage, Fred H, Zhao, Xinyu
Format Journal Article
LanguageEnglish
Published United States 01.06.2006
Subjects
Online AccessGet more information

Cover

Loading…
Abstract Multipotent neural stem/progenitor cells (NSPCs) can be isolated from many regions of the adult central nervous system (CNS), yet neurogenesis is restricted to the hippocampus and subventricular zone in vivo. Identification of the molecular cues that modulate NSPC fate choice is a prerequisite for their therapeutic applications. Previously, we demonstrated that primary astrocytes isolated from regions with higher neuroplasticity, such as newborn and adult hippocampus and newborn spinal cord, promoted neuronal differentiation of adult NSPCs, whereas astrocytes isolated from the nonneurogenic region of the adult spinal cord inhibited neural differentiation. To identify the factors expressed by these astrocytes that could modulate NSPC differentiation, we performed gene expression profiling analysis using Affymetrix rat genome arrays. Our results demonstrated that these astrocytes had distinct gene expression profiles. We further tested the functional effects of candidate factors that were differentially expressed in neurogenesis-promoting and -inhibiting astrocytes using in vitro NSPC differentiation assays. Our results indicated that two interleukins, IL-1beta and IL-6, and a combination of factors that included these two interleukins could promote NSPC neuronal differentiation, whereas insulin-like growth factor binding protein 6 (IGFBP6) and decorin inhibited neuronal differentiation of adult NSPCs. Our results have provided further evidence to support the ongoing hypothesis that, in adult mammalian brains, astrocytes play critical roles in modulating NSPC differentiation. The finding that cytokines and chemokines expressed by astrocytes could promote NSPC neuronal differentiation may help us to understand how injuries induce neurogenesis in adult brains.
AbstractList Multipotent neural stem/progenitor cells (NSPCs) can be isolated from many regions of the adult central nervous system (CNS), yet neurogenesis is restricted to the hippocampus and subventricular zone in vivo. Identification of the molecular cues that modulate NSPC fate choice is a prerequisite for their therapeutic applications. Previously, we demonstrated that primary astrocytes isolated from regions with higher neuroplasticity, such as newborn and adult hippocampus and newborn spinal cord, promoted neuronal differentiation of adult NSPCs, whereas astrocytes isolated from the nonneurogenic region of the adult spinal cord inhibited neural differentiation. To identify the factors expressed by these astrocytes that could modulate NSPC differentiation, we performed gene expression profiling analysis using Affymetrix rat genome arrays. Our results demonstrated that these astrocytes had distinct gene expression profiles. We further tested the functional effects of candidate factors that were differentially expressed in neurogenesis-promoting and -inhibiting astrocytes using in vitro NSPC differentiation assays. Our results indicated that two interleukins, IL-1beta and IL-6, and a combination of factors that included these two interleukins could promote NSPC neuronal differentiation, whereas insulin-like growth factor binding protein 6 (IGFBP6) and decorin inhibited neuronal differentiation of adult NSPCs. Our results have provided further evidence to support the ongoing hypothesis that, in adult mammalian brains, astrocytes play critical roles in modulating NSPC differentiation. The finding that cytokines and chemokines expressed by astrocytes could promote NSPC neuronal differentiation may help us to understand how injuries induce neurogenesis in adult brains.
Author Smrt, Richard D
Gage, Fred H
Barkho, Basam Z
Nakashima, Kinichi
Aimone, James B
Kuwabara, Tomoko
Zhao, Xinyu
Song, Hongjun
Author_xml – sequence: 1
  givenname: Basam Z
  surname: Barkho
  fullname: Barkho, Basam Z
  organization: Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, 87131, USA
– sequence: 2
  givenname: Hongjun
  surname: Song
  fullname: Song, Hongjun
– sequence: 3
  givenname: James B
  surname: Aimone
  fullname: Aimone, James B
– sequence: 4
  givenname: Richard D
  surname: Smrt
  fullname: Smrt, Richard D
– sequence: 5
  givenname: Tomoko
  surname: Kuwabara
  fullname: Kuwabara, Tomoko
– sequence: 6
  givenname: Kinichi
  surname: Nakashima
  fullname: Nakashima, Kinichi
– sequence: 7
  givenname: Fred H
  surname: Gage
  fullname: Gage, Fred H
– sequence: 8
  givenname: Xinyu
  surname: Zhao
  fullname: Zhao, Xinyu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/16846377$$D View this record in MEDLINE/PubMed
BookMark eNo1j8lqwzAURbVIaYZ23V3RD9h5kmXJWZbQNoFAN-06aHhKXWzLSDI0f990Wl0OXA6cJZkNYUBC7hiUDJrNOllXcgBZsroUoGZkwWqhioo3ak6WKX0AcMkbcU3mTDZCVkotyGnvcMitb63ObRho8FSnHIM9Zyzwc4yYEjrqtc0hJprfdaZ9cFOnM9IBp6g7mjL26zGGEw7t5UUtdh11rfcYv90_4hty5XWX8PZvV-Tt6fF1uysOL8_77cOhsEJVuZDOCm-ZNLWDBpgx3BkNEiq7QWuZuZDBjYZaMNtU7hIINXOK19ozI4zmK3L_6x0n06M7jrHtdTwf_4v5F4ZnXEQ
CitedBy_id crossref_primary_10_1177_1073858413504465
crossref_primary_10_1016_j_nbd_2007_04_005
crossref_primary_10_3389_fnins_2016_00149
crossref_primary_10_1016_j_mtadv_2021_100160
crossref_primary_10_1002_stem_431
crossref_primary_10_1016_j_stem_2015_09_003
crossref_primary_10_1016_j_brainresrev_2008_10_004
crossref_primary_10_3389_fncel_2019_00201
crossref_primary_10_1002_jnr_21460
crossref_primary_10_1172_JCI93924
crossref_primary_10_1016_j_neulet_2018_07_021
crossref_primary_10_3389_fphar_2014_00204
crossref_primary_10_3389_fnagi_2020_00024
crossref_primary_10_1016_j_pneurobio_2010_10_008
crossref_primary_10_1093_stmcls_sxac027
crossref_primary_10_3727_096368912X655091
crossref_primary_10_1016_j_clp_2012_06_017
crossref_primary_10_1007_s12031_023_02105_2
crossref_primary_10_1016_j_neuron_2015_01_014
crossref_primary_10_1634_stemcells_2008_0116
crossref_primary_10_1002_glia_21247
crossref_primary_10_1007_s00441_007_0478_3
crossref_primary_10_1002_jnr_22447
crossref_primary_10_1007_s00401_015_1513_1
crossref_primary_10_3389_fncel_2015_00085
crossref_primary_10_1016_j_brainres_2020_146717
crossref_primary_10_1002_hipo_22200
crossref_primary_10_1101_gad_241547_114
crossref_primary_10_1634_stemcells_2007_0513
crossref_primary_10_1186_s12868_017_0382_z
crossref_primary_10_1089_neu_2023_0135
crossref_primary_10_3389_fphar_2020_618065
crossref_primary_10_1089_neu_2016_4625
crossref_primary_10_3389_fphar_2019_01346
crossref_primary_10_1016_j_expneurol_2021_113943
crossref_primary_10_1002_glia_23085
crossref_primary_10_1007_s00441_017_2709_6
crossref_primary_10_1111_j_1460_9568_2011_07604_x
crossref_primary_10_3389_fcell_2017_00052
crossref_primary_10_3389_fncel_2015_00501
crossref_primary_10_1016_j_bbrc_2007_06_150
crossref_primary_10_1016_j_brainres_2015_04_029
crossref_primary_10_1111_j_1460_9568_2007_05871_x
crossref_primary_10_1111_j_1471_4159_2009_06548_x
crossref_primary_10_1016_j_yexcr_2009_06_017
crossref_primary_10_1016_j_neuron_2023_09_014
crossref_primary_10_1007_s10571_015_0192_8
crossref_primary_10_1007_s12035_020_02039_5
crossref_primary_10_1111_ejn_12166
crossref_primary_10_1016_j_expneurol_2013_06_018
crossref_primary_10_1016_j_nbd_2014_11_016
crossref_primary_10_1073_pnas_1514652113
crossref_primary_10_1002_hipo_20719
crossref_primary_10_1016_j_pscychresns_2011_07_006
crossref_primary_10_1111_j_1582_4934_2007_00208_x
crossref_primary_10_1016_j_neuropharm_2008_09_011
crossref_primary_10_1177_1073858408331372
crossref_primary_10_1016_j_psyneuen_2012_03_019
crossref_primary_10_1073_pnas_1513780112
crossref_primary_10_1038_sj_jcbfm_9600486
crossref_primary_10_1016_j_mcn_2009_04_007
crossref_primary_10_1134_S1819712420040054
crossref_primary_10_1523_JNEUROSCI_5259_11_2012
crossref_primary_10_1186_s12964_020_00549_2
crossref_primary_10_3233_JAD_221279
crossref_primary_10_1016_j_neulet_2011_08_003
crossref_primary_10_1111_j_1471_4159_2010_06670_x
crossref_primary_10_1042_CS20120343
crossref_primary_10_1517_14728222_2010_501332
crossref_primary_10_1016_j_bbi_2012_09_003
crossref_primary_10_1111_j_1365_2184_2008_00486_x
crossref_primary_10_3389_fneur_2022_844497
crossref_primary_10_1016_j_stem_2012_06_016
crossref_primary_10_1007_s00018_012_1062_x
crossref_primary_10_1016_j_ymeth_2017_08_014
crossref_primary_10_1371_journal_pgen_1000898
crossref_primary_10_1111_j_1471_4159_2010_06849_x
crossref_primary_10_1177_1179069519856876
crossref_primary_10_3892_etm_2017_4760
crossref_primary_10_1016_j_molcel_2020_05_016
crossref_primary_10_1152_physiol_00002_2009
crossref_primary_10_1016_j_molmed_2006_07_006
crossref_primary_10_1002_dvg_22406
crossref_primary_10_1038_nn_3212
crossref_primary_10_1038_nn_2360
crossref_primary_10_1111_acel_13101
crossref_primary_10_1007_s12975_019_00717_8
crossref_primary_10_1371_journal_pone_0134111
crossref_primary_10_1016_j_freeradbiomed_2009_08_016
crossref_primary_10_1038_s41467_023_39337_0
crossref_primary_10_1016_j_scr_2011_03_004
crossref_primary_10_1089_scd_2018_0132
crossref_primary_10_1093_hmg_ddu043
crossref_primary_10_1152_physiol_00017_2008
crossref_primary_10_1155_2013_260925
crossref_primary_10_1002_wsbm_1239
crossref_primary_10_1016_j_bbi_2023_07_008
crossref_primary_10_1371_journal_pone_0226584
crossref_primary_10_1016_j_stem_2010_02_017
crossref_primary_10_1016_j_pneurobio_2021_102124
crossref_primary_10_1093_jn_nxaa384
crossref_primary_10_1136_gpsych_2021_100529
crossref_primary_10_3390_ijms21197249
crossref_primary_10_3390_biomedicines8100372
crossref_primary_10_3390_life10100240
crossref_primary_10_12688_f1000research_4439_1
crossref_primary_10_1016_j_canlet_2007_04_005
crossref_primary_10_1016_j_neuroscience_2014_10_013
crossref_primary_10_12688_f1000research_4439_2
crossref_primary_10_1634_stemcells_2008_0519
crossref_primary_10_1002_glia_22614
crossref_primary_10_1074_jbc_M804899200
crossref_primary_10_1634_stemcells_2006_0726
crossref_primary_10_1016_j_neurobiolaging_2008_12_011
crossref_primary_10_3390_cells11050846
crossref_primary_10_1007_s12264_024_01206_1
crossref_primary_10_1016_j_neuron_2019_11_029
crossref_primary_10_1016_j_neuint_2013_08_002
crossref_primary_10_1016_j_redox_2020_101664
crossref_primary_10_3389_fcell_2020_611269
crossref_primary_10_1016_j_mbs_2012_04_001
crossref_primary_10_1111_ejn_14969
crossref_primary_10_1016_j_conb_2017_10_025
crossref_primary_10_1016_j_neulet_2024_137832
crossref_primary_10_3390_jcm9061941
crossref_primary_10_1007_s12035_022_03102_z
crossref_primary_10_1093_cercor_bhy284
crossref_primary_10_1002_stem_1408
crossref_primary_10_1016_j_neuroscience_2015_08_055
crossref_primary_10_1163_156856207781494449
crossref_primary_10_1111_j_1471_4159_2012_07664_x
crossref_primary_10_1016_j_brainresbull_2019_05_007
crossref_primary_10_1002_smll_202205871
crossref_primary_10_1002_stem_1196
crossref_primary_10_1159_000097674
crossref_primary_10_1515_revneuro_2017_0024
crossref_primary_10_1016_j_nbd_2010_10_023
crossref_primary_10_1002_glia_20771
crossref_primary_10_1016_j_nbd_2010_01_008
crossref_primary_10_1515_med_2023_0680
crossref_primary_10_1016_j_neubiorev_2014_01_010
crossref_primary_10_1038_mp_2013_4
crossref_primary_10_1021_pr900926n
crossref_primary_10_1186_1748_717X_2_23
crossref_primary_10_1042_BST20130198
crossref_primary_10_1289_EHP5139
crossref_primary_10_1016_j_tins_2011_12_005
crossref_primary_10_1038_cr_2009_56
crossref_primary_10_2217_rme_09_62
crossref_primary_10_1007_s00726_013_1489_x
crossref_primary_10_1523_JNEUROSCI_3693_13_2013
crossref_primary_10_1096_fj_09_150573
crossref_primary_10_1155_2017_1719050
crossref_primary_10_3389_fncel_2018_00432
crossref_primary_10_3892_etm_2016_4016
crossref_primary_10_1002_stem_509
crossref_primary_10_1016_j_cyto_2021_155582
crossref_primary_10_1038_s41368_023_00253_0
crossref_primary_10_1002_stem_746
crossref_primary_10_3389_fcell_2020_00533
crossref_primary_10_1016_j_celrep_2018_06_044
crossref_primary_10_1083_jcb_200908151
crossref_primary_10_1016_j_nbd_2024_106417
crossref_primary_10_1152_physrev_00004_2014
crossref_primary_10_1371_journal_pone_0051436
crossref_primary_10_1038_cddiscovery_2017_54
crossref_primary_10_1016_j_neulet_2011_12_019
crossref_primary_10_1002_jnr_21797
crossref_primary_10_3390_medicina56110625
crossref_primary_10_1155_2021_6338722
crossref_primary_10_1007_s12035_012_8287_4
crossref_primary_10_1016_j_matbio_2009_06_001
crossref_primary_10_1002_jbm_a_32741
crossref_primary_10_1371_journal_pone_0038243
crossref_primary_10_3389_fcell_2019_00086
crossref_primary_10_1016_j_neubiorev_2021_09_030
crossref_primary_10_1038_cr_2015_31
crossref_primary_10_1016_j_devcel_2021_08_005
crossref_primary_10_1089_vim_2018_0091
crossref_primary_10_1016_j_brainres_2020_146700
crossref_primary_10_1016_j_scr_2015_09_010
crossref_primary_10_1017_S0954579415000164
crossref_primary_10_3389_fnins_2024_1416738
crossref_primary_10_1016_j_bbrc_2009_12_015
crossref_primary_10_1186_s12987_022_00332_0
crossref_primary_10_1002_smll_201202208
crossref_primary_10_1186_s13287_024_03818_w
crossref_primary_10_1007_s11064_012_0868_0
crossref_primary_10_1111_jnc_13213
crossref_primary_10_1016_j_ceca_2012_04_014
crossref_primary_10_1073_pnas_0708861105
crossref_primary_10_1186_scrt448
crossref_primary_10_1369_jhc_2009_952275
crossref_primary_10_3389_fncel_2016_00131
crossref_primary_10_1007_s00402_010_1233_x
crossref_primary_10_2302_kjm_59_79
crossref_primary_10_3233_BPL_180065
crossref_primary_10_1039_c2ib20129a
crossref_primary_10_1002_glia_20974
crossref_primary_10_1016_j_neuron_2011_05_001
crossref_primary_10_1016_j_brainres_2012_07_034
crossref_primary_10_1007_s12640_010_9199_6
crossref_primary_10_1371_journal_pone_0017225
crossref_primary_10_1007_s12038_008_0060_5
crossref_primary_10_1002_glia_20848
crossref_primary_10_1186_s13024_017_0230_8
crossref_primary_10_3389_fonc_2020_603738
crossref_primary_10_1002_stem_1950
crossref_primary_10_1111_j_1440_169X_2012_01339_x
crossref_primary_10_3390_biom10091327
crossref_primary_10_3390_genes9060285
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.1089/scd.2006.15.407
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Biology
ExternalDocumentID 16846377
Genre Journal Article
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: F32 NS010826-01
– fundername: NIMH NIH HHS
  grantid: R01 MH080434
– fundername: NINDS NIH HHS
  grantid: F32 NS010826
– fundername: NINDS NIH HHS
  grantid: F32 NS010826-02
GroupedDBID ---
.GJ
0R~
0VX
1-M
123
29Q
34G
39C
4.4
53G
ABBKN
ABJNI
ACGFS
ADBBV
ADNWM
AENEX
ALMA_UNASSIGNED_HOLDINGS
BNQNF
CAG
CGR
COF
CS3
CUY
CVF
DU5
EBS
ECM
EIF
EJD
F5P
IAO
IER
IHR
IM4
ITC
MV1
NPM
NQHIM
O9-
RML
UE5
ID FETCH-LOGICAL-c473t-6dc4fc16b5d0801bb2dba0603c9ecc1bdbabe9a0541c83d154051d725af1b4ba2
ISSN 1547-3287
IngestDate Sat Sep 28 07:40:00 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c473t-6dc4fc16b5d0801bb2dba0603c9ecc1bdbabe9a0541c83d154051d725af1b4ba2
OpenAccessLink https://naist.repo.nii.ac.jp/records/9098
PMID 16846377
ParticipantIDs pubmed_primary_16846377
PublicationCentury 2000
PublicationDate 2006-Jun
PublicationDateYYYYMMDD 2006-06-01
PublicationDate_xml – month: 06
  year: 2006
  text: 2006-Jun
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Stem cells and development
PublicationTitleAlternate Stem Cells Dev
PublicationYear 2006
References 15147501 - J Neurochem. 2004 Jun;89(5):1092-100
14615545 - Science. 2003 Dec 5;302(5651):1760-5
11986659 - Nature. 2002 May 2;417(6884):39-44
12748381 - Proc Natl Acad Sci U S A. 2003 May 27;100(11):6777-82
10493749 - J Neurosci. 1999 Oct 1;19(19):8487-97
3288247 - APMIS. 1988 May;96(5):379-94
10377448 - Proc Natl Acad Sci U S A. 1999 Jun 22;96(13):7526-31
16022595 - Annu Rev Neurosci. 2005;28:223-50
11826087 - J Neurosci. 2002 Feb 1;22(3):612-3
12014193 - Curr Top Microbiol Immunol. 2002;265:23-48
7758431 - Endocr Rev. 1995 Feb;16(1):3-34
10027563 - J Neurobiol. 1999 Jan;38(1):65-81
10486560 - FEBS Lett. 1999 Aug 20;457(1):43-6
11080174 - J Neurochem. 2000 Dec;75(6):2227-40
11784794 - J Neurosci. 2002 Jan 15;22(2):486-92
15094071 - Eur J Pharmacol. 2004 Apr 19;490(1-3):25-31
12109873 - Mol Neurobiol. 2002 Jun;25(3):233-44
12608702 - Neurochem Res. 2003 Feb;28(2):293-305
15020086 - J Neurosci Methods. 2004 May 30;135(1-2):27-33
14749353 - Endocrinology. 2004 May;145(5):2412-20
11745644 - J Comp Neurol. 2001 Dec 17;441(3):187-96
15380473 - Exp Neurol. 2004 Oct;189(2):204-21
12670304 - Eur J Neurosci. 2003 Mar;17(6):1159-72
12571445 - J Cereb Blood Flow Metab. 2003 Feb;23(2):137-49
9416670 - Trends Neurosci. 1997 Dec;20(12):570-7
10205054 - Science. 1999 Apr 16;284(5413):479-82
11333968 - Nature. 2001 May 3;411(6833):42-3
14550766 - Mol Cell Neurosci. 2003 Sep;24(1):23-40
14585599 - Trends Neurosci. 2003 Nov;26(11):597-603
10398678 - Genes Dev. 1999 Jul 1;13(13):1647-52
8361683 - Neurotoxicology. 1993 Spring;14(1):83-144
9143557 - Mol Cell Neurosci. 1997;8(6):389-404
11806820 - Genome Biol. 2002;3(1):PREPRINT0001
12151543 - J Neurosci. 2002 Aug 1;22(15):6639-49
14684875 - J Neurosci. 2003 Dec 17;23(37):11732-40
11138785 - Immunol Rev. 2000 Oct;177:52-67
8876144 - Proc Natl Acad Sci U S A. 1996 Oct 15;93(21):11382-8
12767487 - Neurosci Res. 2003 Jun;46(2):241-9
15537713 - Proc Natl Acad Sci U S A. 2004 Nov 23;101(47):16659-64
15035981 - Cell. 2004 Mar 19;116(6):779-93
10430040 - J Neuroimmunol. 1999 Aug 3;98(2):77-88
1377078 - Brain Res. 1992 Jan 8;569(1):14-25
11134512 - Proc Natl Acad Sci U S A. 2001 Jan 2;98(1):31-6
10840056 - Proc Natl Acad Sci U S A. 2000 Jun 20;97(13):7579-84
11005875 - Proc Natl Acad Sci U S A. 2000 Sep 26;97(20):11038-43
7504720 - J Neurosci. 1993 Dec;13(12):5092-104
14522241 - Ageing Res Rev. 2003 Oct;2(4):367-81
7957866 - FEBS Lett. 1994 Oct 24;353(3):243-5
10751442 - J Neurosci. 2000 Apr 15;20(8):2896-903
11553794 - Proc Natl Acad Sci U S A. 2001 Sep 25;98(20):11450-5
References_xml
SSID ssj0026284
Score 2.3418977
Snippet Multipotent neural stem/progenitor cells (NSPCs) can be isolated from many regions of the adult central nervous system (CNS), yet neurogenesis is restricted to...
SourceID pubmed
SourceType Index Database
StartPage 407
SubjectTerms Animals
Animals, Newborn
Astrocytes - cytology
Astrocytes - metabolism
Basic Helix-Loop-Helix Transcription Factors - genetics
Cell Differentiation - drug effects
Cells, Cultured
Cytokines - pharmacology
Gene Expression Profiling
Gene Expression Regulation - drug effects
Humans
Mice
Nerve Tissue Proteins - genetics
Neurons - cytology
Neurons - drug effects
Promoter Regions, Genetic - drug effects
Proteins - metabolism
Rats
Stem Cells - cytology
Stem Cells - drug effects
Title Identification of astrocyte-expressed factors that modulate neural stem/progenitor cell differentiation
URI https://www.ncbi.nlm.nih.gov/pubmed/16846377
Volume 15
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI4GCIkL4v1GOXBDhaZNmvY4IdCEBJeBxA0lTQoCjU2jSIxfwU_GeXQtBSTg0m19bau_OLZj-0PogEsScybBLdEiAwdFkSBjnAc8VDSF-UwUhVnRvbhMetf0_IbddDrvjayll1Ie5W_f1pX8R6qwD-RqqmT_INnpTWEHvAf5whYkDNtfydhV2RY-7GaX9J9LmJEmpQ70q01xBXuyotQp70VpmG8MYZc-NI0sba2IHhgC3vEQvgVG9_jQhPKnvCllQ3LehO3DFfYk191Z1VlHdVR0_Hg_dKsZz2JQL370ff5vD14fXqaw7AJeXGDV5uzWRND9gSso8tX_Pju5EaOocqkqtUpBlUV-aq30LmvgK24oUep4cL8o9zDNLB2lcmtIhB21zgTpjAZW1iQBuyrmvzja6rZdHZpBMzw1evPSRH-8A59ElsF6-m-qVlFpdtz6VaYXrb9Ty1-xdsvVElr0DgfuOvQso45-WkHzjoJ0soruPmMIDwv8DYawxxA2GMIVhrDDEDYYOq4RhA04cAtBa-j67PTqpBd48o0gpzwug0TltMhJIpkCp4JIGSkpwiSM8wxGPZHwSepMgMVP8jRWxFj-RPGIiYJIKkW0jmafADybCAuwEjPwc2ViWiExJnRBqIqFTCTNQia30IZ7Qrcj12Hltnp22z8e2UELNdB20VwBQ1rvgX1Yyn0rtA9YiGhc
link.rule.ids 783
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+astrocyte-expressed+factors+that+modulate+neural+stem%2Fprogenitor+cell+differentiation&rft.jtitle=Stem+cells+and+development&rft.au=Barkho%2C+Basam+Z&rft.au=Song%2C+Hongjun&rft.au=Aimone%2C+James+B&rft.au=Smrt%2C+Richard+D&rft.date=2006-06-01&rft.issn=1547-3287&rft.volume=15&rft.issue=3&rft.spage=407&rft_id=info:doi/10.1089%2Fscd.2006.15.407&rft_id=info%3Apmid%2F16846377&rft_id=info%3Apmid%2F16846377&rft.externalDocID=16846377
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1547-3287&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1547-3287&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1547-3287&client=summon