Identification of astrocyte-expressed factors that modulate neural stem/progenitor cell differentiation
Multipotent neural stem/progenitor cells (NSPCs) can be isolated from many regions of the adult central nervous system (CNS), yet neurogenesis is restricted to the hippocampus and subventricular zone in vivo. Identification of the molecular cues that modulate NSPC fate choice is a prerequisite for t...
Saved in:
Published in | Stem cells and development Vol. 15; no. 3; p. 407 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
01.06.2006
|
Subjects | |
Online Access | Get more information |
Cover
Loading…
Abstract | Multipotent neural stem/progenitor cells (NSPCs) can be isolated from many regions of the adult central nervous system (CNS), yet neurogenesis is restricted to the hippocampus and subventricular zone in vivo. Identification of the molecular cues that modulate NSPC fate choice is a prerequisite for their therapeutic applications. Previously, we demonstrated that primary astrocytes isolated from regions with higher neuroplasticity, such as newborn and adult hippocampus and newborn spinal cord, promoted neuronal differentiation of adult NSPCs, whereas astrocytes isolated from the nonneurogenic region of the adult spinal cord inhibited neural differentiation. To identify the factors expressed by these astrocytes that could modulate NSPC differentiation, we performed gene expression profiling analysis using Affymetrix rat genome arrays. Our results demonstrated that these astrocytes had distinct gene expression profiles. We further tested the functional effects of candidate factors that were differentially expressed in neurogenesis-promoting and -inhibiting astrocytes using in vitro NSPC differentiation assays. Our results indicated that two interleukins, IL-1beta and IL-6, and a combination of factors that included these two interleukins could promote NSPC neuronal differentiation, whereas insulin-like growth factor binding protein 6 (IGFBP6) and decorin inhibited neuronal differentiation of adult NSPCs. Our results have provided further evidence to support the ongoing hypothesis that, in adult mammalian brains, astrocytes play critical roles in modulating NSPC differentiation. The finding that cytokines and chemokines expressed by astrocytes could promote NSPC neuronal differentiation may help us to understand how injuries induce neurogenesis in adult brains. |
---|---|
AbstractList | Multipotent neural stem/progenitor cells (NSPCs) can be isolated from many regions of the adult central nervous system (CNS), yet neurogenesis is restricted to the hippocampus and subventricular zone in vivo. Identification of the molecular cues that modulate NSPC fate choice is a prerequisite for their therapeutic applications. Previously, we demonstrated that primary astrocytes isolated from regions with higher neuroplasticity, such as newborn and adult hippocampus and newborn spinal cord, promoted neuronal differentiation of adult NSPCs, whereas astrocytes isolated from the nonneurogenic region of the adult spinal cord inhibited neural differentiation. To identify the factors expressed by these astrocytes that could modulate NSPC differentiation, we performed gene expression profiling analysis using Affymetrix rat genome arrays. Our results demonstrated that these astrocytes had distinct gene expression profiles. We further tested the functional effects of candidate factors that were differentially expressed in neurogenesis-promoting and -inhibiting astrocytes using in vitro NSPC differentiation assays. Our results indicated that two interleukins, IL-1beta and IL-6, and a combination of factors that included these two interleukins could promote NSPC neuronal differentiation, whereas insulin-like growth factor binding protein 6 (IGFBP6) and decorin inhibited neuronal differentiation of adult NSPCs. Our results have provided further evidence to support the ongoing hypothesis that, in adult mammalian brains, astrocytes play critical roles in modulating NSPC differentiation. The finding that cytokines and chemokines expressed by astrocytes could promote NSPC neuronal differentiation may help us to understand how injuries induce neurogenesis in adult brains. |
Author | Smrt, Richard D Gage, Fred H Barkho, Basam Z Nakashima, Kinichi Aimone, James B Kuwabara, Tomoko Zhao, Xinyu Song, Hongjun |
Author_xml | – sequence: 1 givenname: Basam Z surname: Barkho fullname: Barkho, Basam Z organization: Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, 87131, USA – sequence: 2 givenname: Hongjun surname: Song fullname: Song, Hongjun – sequence: 3 givenname: James B surname: Aimone fullname: Aimone, James B – sequence: 4 givenname: Richard D surname: Smrt fullname: Smrt, Richard D – sequence: 5 givenname: Tomoko surname: Kuwabara fullname: Kuwabara, Tomoko – sequence: 6 givenname: Kinichi surname: Nakashima fullname: Nakashima, Kinichi – sequence: 7 givenname: Fred H surname: Gage fullname: Gage, Fred H – sequence: 8 givenname: Xinyu surname: Zhao fullname: Zhao, Xinyu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/16846377$$D View this record in MEDLINE/PubMed |
BookMark | eNo1j8lqwzAURbVIaYZ23V3RD9h5kmXJWZbQNoFAN-06aHhKXWzLSDI0f990Wl0OXA6cJZkNYUBC7hiUDJrNOllXcgBZsroUoGZkwWqhioo3ak6WKX0AcMkbcU3mTDZCVkotyGnvcMitb63ObRho8FSnHIM9Zyzwc4yYEjrqtc0hJprfdaZ9cFOnM9IBp6g7mjL26zGGEw7t5UUtdh11rfcYv90_4hty5XWX8PZvV-Tt6fF1uysOL8_77cOhsEJVuZDOCm-ZNLWDBpgx3BkNEiq7QWuZuZDBjYZaMNtU7hIINXOK19ozI4zmK3L_6x0n06M7jrHtdTwf_4v5F4ZnXEQ |
CitedBy_id | crossref_primary_10_1177_1073858413504465 crossref_primary_10_1016_j_nbd_2007_04_005 crossref_primary_10_3389_fnins_2016_00149 crossref_primary_10_1016_j_mtadv_2021_100160 crossref_primary_10_1002_stem_431 crossref_primary_10_1016_j_stem_2015_09_003 crossref_primary_10_1016_j_brainresrev_2008_10_004 crossref_primary_10_3389_fncel_2019_00201 crossref_primary_10_1002_jnr_21460 crossref_primary_10_1172_JCI93924 crossref_primary_10_1016_j_neulet_2018_07_021 crossref_primary_10_3389_fphar_2014_00204 crossref_primary_10_3389_fnagi_2020_00024 crossref_primary_10_1016_j_pneurobio_2010_10_008 crossref_primary_10_1093_stmcls_sxac027 crossref_primary_10_3727_096368912X655091 crossref_primary_10_1016_j_clp_2012_06_017 crossref_primary_10_1007_s12031_023_02105_2 crossref_primary_10_1016_j_neuron_2015_01_014 crossref_primary_10_1634_stemcells_2008_0116 crossref_primary_10_1002_glia_21247 crossref_primary_10_1007_s00441_007_0478_3 crossref_primary_10_1002_jnr_22447 crossref_primary_10_1007_s00401_015_1513_1 crossref_primary_10_3389_fncel_2015_00085 crossref_primary_10_1016_j_brainres_2020_146717 crossref_primary_10_1002_hipo_22200 crossref_primary_10_1101_gad_241547_114 crossref_primary_10_1634_stemcells_2007_0513 crossref_primary_10_1186_s12868_017_0382_z crossref_primary_10_1089_neu_2023_0135 crossref_primary_10_3389_fphar_2020_618065 crossref_primary_10_1089_neu_2016_4625 crossref_primary_10_3389_fphar_2019_01346 crossref_primary_10_1016_j_expneurol_2021_113943 crossref_primary_10_1002_glia_23085 crossref_primary_10_1007_s00441_017_2709_6 crossref_primary_10_1111_j_1460_9568_2011_07604_x crossref_primary_10_3389_fcell_2017_00052 crossref_primary_10_3389_fncel_2015_00501 crossref_primary_10_1016_j_bbrc_2007_06_150 crossref_primary_10_1016_j_brainres_2015_04_029 crossref_primary_10_1111_j_1460_9568_2007_05871_x crossref_primary_10_1111_j_1471_4159_2009_06548_x crossref_primary_10_1016_j_yexcr_2009_06_017 crossref_primary_10_1016_j_neuron_2023_09_014 crossref_primary_10_1007_s10571_015_0192_8 crossref_primary_10_1007_s12035_020_02039_5 crossref_primary_10_1111_ejn_12166 crossref_primary_10_1016_j_expneurol_2013_06_018 crossref_primary_10_1016_j_nbd_2014_11_016 crossref_primary_10_1073_pnas_1514652113 crossref_primary_10_1002_hipo_20719 crossref_primary_10_1016_j_pscychresns_2011_07_006 crossref_primary_10_1111_j_1582_4934_2007_00208_x crossref_primary_10_1016_j_neuropharm_2008_09_011 crossref_primary_10_1177_1073858408331372 crossref_primary_10_1016_j_psyneuen_2012_03_019 crossref_primary_10_1073_pnas_1513780112 crossref_primary_10_1038_sj_jcbfm_9600486 crossref_primary_10_1016_j_mcn_2009_04_007 crossref_primary_10_1134_S1819712420040054 crossref_primary_10_1523_JNEUROSCI_5259_11_2012 crossref_primary_10_1186_s12964_020_00549_2 crossref_primary_10_3233_JAD_221279 crossref_primary_10_1016_j_neulet_2011_08_003 crossref_primary_10_1111_j_1471_4159_2010_06670_x crossref_primary_10_1042_CS20120343 crossref_primary_10_1517_14728222_2010_501332 crossref_primary_10_1016_j_bbi_2012_09_003 crossref_primary_10_1111_j_1365_2184_2008_00486_x crossref_primary_10_3389_fneur_2022_844497 crossref_primary_10_1016_j_stem_2012_06_016 crossref_primary_10_1007_s00018_012_1062_x crossref_primary_10_1016_j_ymeth_2017_08_014 crossref_primary_10_1371_journal_pgen_1000898 crossref_primary_10_1111_j_1471_4159_2010_06849_x crossref_primary_10_1177_1179069519856876 crossref_primary_10_3892_etm_2017_4760 crossref_primary_10_1016_j_molcel_2020_05_016 crossref_primary_10_1152_physiol_00002_2009 crossref_primary_10_1016_j_molmed_2006_07_006 crossref_primary_10_1002_dvg_22406 crossref_primary_10_1038_nn_3212 crossref_primary_10_1038_nn_2360 crossref_primary_10_1111_acel_13101 crossref_primary_10_1007_s12975_019_00717_8 crossref_primary_10_1371_journal_pone_0134111 crossref_primary_10_1016_j_freeradbiomed_2009_08_016 crossref_primary_10_1038_s41467_023_39337_0 crossref_primary_10_1016_j_scr_2011_03_004 crossref_primary_10_1089_scd_2018_0132 crossref_primary_10_1093_hmg_ddu043 crossref_primary_10_1152_physiol_00017_2008 crossref_primary_10_1155_2013_260925 crossref_primary_10_1002_wsbm_1239 crossref_primary_10_1016_j_bbi_2023_07_008 crossref_primary_10_1371_journal_pone_0226584 crossref_primary_10_1016_j_stem_2010_02_017 crossref_primary_10_1016_j_pneurobio_2021_102124 crossref_primary_10_1093_jn_nxaa384 crossref_primary_10_1136_gpsych_2021_100529 crossref_primary_10_3390_ijms21197249 crossref_primary_10_3390_biomedicines8100372 crossref_primary_10_3390_life10100240 crossref_primary_10_12688_f1000research_4439_1 crossref_primary_10_1016_j_canlet_2007_04_005 crossref_primary_10_1016_j_neuroscience_2014_10_013 crossref_primary_10_12688_f1000research_4439_2 crossref_primary_10_1634_stemcells_2008_0519 crossref_primary_10_1002_glia_22614 crossref_primary_10_1074_jbc_M804899200 crossref_primary_10_1634_stemcells_2006_0726 crossref_primary_10_1016_j_neurobiolaging_2008_12_011 crossref_primary_10_3390_cells11050846 crossref_primary_10_1007_s12264_024_01206_1 crossref_primary_10_1016_j_neuron_2019_11_029 crossref_primary_10_1016_j_neuint_2013_08_002 crossref_primary_10_1016_j_redox_2020_101664 crossref_primary_10_3389_fcell_2020_611269 crossref_primary_10_1016_j_mbs_2012_04_001 crossref_primary_10_1111_ejn_14969 crossref_primary_10_1016_j_conb_2017_10_025 crossref_primary_10_1016_j_neulet_2024_137832 crossref_primary_10_3390_jcm9061941 crossref_primary_10_1007_s12035_022_03102_z crossref_primary_10_1093_cercor_bhy284 crossref_primary_10_1002_stem_1408 crossref_primary_10_1016_j_neuroscience_2015_08_055 crossref_primary_10_1163_156856207781494449 crossref_primary_10_1111_j_1471_4159_2012_07664_x crossref_primary_10_1016_j_brainresbull_2019_05_007 crossref_primary_10_1002_smll_202205871 crossref_primary_10_1002_stem_1196 crossref_primary_10_1159_000097674 crossref_primary_10_1515_revneuro_2017_0024 crossref_primary_10_1016_j_nbd_2010_10_023 crossref_primary_10_1002_glia_20771 crossref_primary_10_1016_j_nbd_2010_01_008 crossref_primary_10_1515_med_2023_0680 crossref_primary_10_1016_j_neubiorev_2014_01_010 crossref_primary_10_1038_mp_2013_4 crossref_primary_10_1021_pr900926n crossref_primary_10_1186_1748_717X_2_23 crossref_primary_10_1042_BST20130198 crossref_primary_10_1289_EHP5139 crossref_primary_10_1016_j_tins_2011_12_005 crossref_primary_10_1038_cr_2009_56 crossref_primary_10_2217_rme_09_62 crossref_primary_10_1007_s00726_013_1489_x crossref_primary_10_1523_JNEUROSCI_3693_13_2013 crossref_primary_10_1096_fj_09_150573 crossref_primary_10_1155_2017_1719050 crossref_primary_10_3389_fncel_2018_00432 crossref_primary_10_3892_etm_2016_4016 crossref_primary_10_1002_stem_509 crossref_primary_10_1016_j_cyto_2021_155582 crossref_primary_10_1038_s41368_023_00253_0 crossref_primary_10_1002_stem_746 crossref_primary_10_3389_fcell_2020_00533 crossref_primary_10_1016_j_celrep_2018_06_044 crossref_primary_10_1083_jcb_200908151 crossref_primary_10_1016_j_nbd_2024_106417 crossref_primary_10_1152_physrev_00004_2014 crossref_primary_10_1371_journal_pone_0051436 crossref_primary_10_1038_cddiscovery_2017_54 crossref_primary_10_1016_j_neulet_2011_12_019 crossref_primary_10_1002_jnr_21797 crossref_primary_10_3390_medicina56110625 crossref_primary_10_1155_2021_6338722 crossref_primary_10_1007_s12035_012_8287_4 crossref_primary_10_1016_j_matbio_2009_06_001 crossref_primary_10_1002_jbm_a_32741 crossref_primary_10_1371_journal_pone_0038243 crossref_primary_10_3389_fcell_2019_00086 crossref_primary_10_1016_j_neubiorev_2021_09_030 crossref_primary_10_1038_cr_2015_31 crossref_primary_10_1016_j_devcel_2021_08_005 crossref_primary_10_1089_vim_2018_0091 crossref_primary_10_1016_j_brainres_2020_146700 crossref_primary_10_1016_j_scr_2015_09_010 crossref_primary_10_1017_S0954579415000164 crossref_primary_10_3389_fnins_2024_1416738 crossref_primary_10_1016_j_bbrc_2009_12_015 crossref_primary_10_1186_s12987_022_00332_0 crossref_primary_10_1002_smll_201202208 crossref_primary_10_1186_s13287_024_03818_w crossref_primary_10_1007_s11064_012_0868_0 crossref_primary_10_1111_jnc_13213 crossref_primary_10_1016_j_ceca_2012_04_014 crossref_primary_10_1073_pnas_0708861105 crossref_primary_10_1186_scrt448 crossref_primary_10_1369_jhc_2009_952275 crossref_primary_10_3389_fncel_2016_00131 crossref_primary_10_1007_s00402_010_1233_x crossref_primary_10_2302_kjm_59_79 crossref_primary_10_3233_BPL_180065 crossref_primary_10_1039_c2ib20129a crossref_primary_10_1002_glia_20974 crossref_primary_10_1016_j_neuron_2011_05_001 crossref_primary_10_1016_j_brainres_2012_07_034 crossref_primary_10_1007_s12640_010_9199_6 crossref_primary_10_1371_journal_pone_0017225 crossref_primary_10_1007_s12038_008_0060_5 crossref_primary_10_1002_glia_20848 crossref_primary_10_1186_s13024_017_0230_8 crossref_primary_10_3389_fonc_2020_603738 crossref_primary_10_1002_stem_1950 crossref_primary_10_1111_j_1440_169X_2012_01339_x crossref_primary_10_3390_biom10091327 crossref_primary_10_3390_genes9060285 |
ContentType | Journal Article |
DBID | CGR CUY CVF ECM EIF NPM |
DOI | 10.1089/scd.2006.15.407 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Biology |
ExternalDocumentID | 16846377 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NINDS NIH HHS grantid: F32 NS010826-01 – fundername: NIMH NIH HHS grantid: R01 MH080434 – fundername: NINDS NIH HHS grantid: F32 NS010826 – fundername: NINDS NIH HHS grantid: F32 NS010826-02 |
GroupedDBID | --- .GJ 0R~ 0VX 1-M 123 29Q 34G 39C 4.4 53G ABBKN ABJNI ACGFS ADBBV ADNWM AENEX ALMA_UNASSIGNED_HOLDINGS BNQNF CAG CGR COF CS3 CUY CVF DU5 EBS ECM EIF EJD F5P IAO IER IHR IM4 ITC MV1 NPM NQHIM O9- RML UE5 |
ID | FETCH-LOGICAL-c473t-6dc4fc16b5d0801bb2dba0603c9ecc1bdbabe9a0541c83d154051d725af1b4ba2 |
ISSN | 1547-3287 |
IngestDate | Sat Sep 28 07:40:00 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c473t-6dc4fc16b5d0801bb2dba0603c9ecc1bdbabe9a0541c83d154051d725af1b4ba2 |
OpenAccessLink | https://naist.repo.nii.ac.jp/records/9098 |
PMID | 16846377 |
ParticipantIDs | pubmed_primary_16846377 |
PublicationCentury | 2000 |
PublicationDate | 2006-Jun |
PublicationDateYYYYMMDD | 2006-06-01 |
PublicationDate_xml | – month: 06 year: 2006 text: 2006-Jun |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Stem cells and development |
PublicationTitleAlternate | Stem Cells Dev |
PublicationYear | 2006 |
References | 15147501 - J Neurochem. 2004 Jun;89(5):1092-100 14615545 - Science. 2003 Dec 5;302(5651):1760-5 11986659 - Nature. 2002 May 2;417(6884):39-44 12748381 - Proc Natl Acad Sci U S A. 2003 May 27;100(11):6777-82 10493749 - J Neurosci. 1999 Oct 1;19(19):8487-97 3288247 - APMIS. 1988 May;96(5):379-94 10377448 - Proc Natl Acad Sci U S A. 1999 Jun 22;96(13):7526-31 16022595 - Annu Rev Neurosci. 2005;28:223-50 11826087 - J Neurosci. 2002 Feb 1;22(3):612-3 12014193 - Curr Top Microbiol Immunol. 2002;265:23-48 7758431 - Endocr Rev. 1995 Feb;16(1):3-34 10027563 - J Neurobiol. 1999 Jan;38(1):65-81 10486560 - FEBS Lett. 1999 Aug 20;457(1):43-6 11080174 - J Neurochem. 2000 Dec;75(6):2227-40 11784794 - J Neurosci. 2002 Jan 15;22(2):486-92 15094071 - Eur J Pharmacol. 2004 Apr 19;490(1-3):25-31 12109873 - Mol Neurobiol. 2002 Jun;25(3):233-44 12608702 - Neurochem Res. 2003 Feb;28(2):293-305 15020086 - J Neurosci Methods. 2004 May 30;135(1-2):27-33 14749353 - Endocrinology. 2004 May;145(5):2412-20 11745644 - J Comp Neurol. 2001 Dec 17;441(3):187-96 15380473 - Exp Neurol. 2004 Oct;189(2):204-21 12670304 - Eur J Neurosci. 2003 Mar;17(6):1159-72 12571445 - J Cereb Blood Flow Metab. 2003 Feb;23(2):137-49 9416670 - Trends Neurosci. 1997 Dec;20(12):570-7 10205054 - Science. 1999 Apr 16;284(5413):479-82 11333968 - Nature. 2001 May 3;411(6833):42-3 14550766 - Mol Cell Neurosci. 2003 Sep;24(1):23-40 14585599 - Trends Neurosci. 2003 Nov;26(11):597-603 10398678 - Genes Dev. 1999 Jul 1;13(13):1647-52 8361683 - Neurotoxicology. 1993 Spring;14(1):83-144 9143557 - Mol Cell Neurosci. 1997;8(6):389-404 11806820 - Genome Biol. 2002;3(1):PREPRINT0001 12151543 - J Neurosci. 2002 Aug 1;22(15):6639-49 14684875 - J Neurosci. 2003 Dec 17;23(37):11732-40 11138785 - Immunol Rev. 2000 Oct;177:52-67 8876144 - Proc Natl Acad Sci U S A. 1996 Oct 15;93(21):11382-8 12767487 - Neurosci Res. 2003 Jun;46(2):241-9 15537713 - Proc Natl Acad Sci U S A. 2004 Nov 23;101(47):16659-64 15035981 - Cell. 2004 Mar 19;116(6):779-93 10430040 - J Neuroimmunol. 1999 Aug 3;98(2):77-88 1377078 - Brain Res. 1992 Jan 8;569(1):14-25 11134512 - Proc Natl Acad Sci U S A. 2001 Jan 2;98(1):31-6 10840056 - Proc Natl Acad Sci U S A. 2000 Jun 20;97(13):7579-84 11005875 - Proc Natl Acad Sci U S A. 2000 Sep 26;97(20):11038-43 7504720 - J Neurosci. 1993 Dec;13(12):5092-104 14522241 - Ageing Res Rev. 2003 Oct;2(4):367-81 7957866 - FEBS Lett. 1994 Oct 24;353(3):243-5 10751442 - J Neurosci. 2000 Apr 15;20(8):2896-903 11553794 - Proc Natl Acad Sci U S A. 2001 Sep 25;98(20):11450-5 |
References_xml | |
SSID | ssj0026284 |
Score | 2.3418977 |
Snippet | Multipotent neural stem/progenitor cells (NSPCs) can be isolated from many regions of the adult central nervous system (CNS), yet neurogenesis is restricted to... |
SourceID | pubmed |
SourceType | Index Database |
StartPage | 407 |
SubjectTerms | Animals Animals, Newborn Astrocytes - cytology Astrocytes - metabolism Basic Helix-Loop-Helix Transcription Factors - genetics Cell Differentiation - drug effects Cells, Cultured Cytokines - pharmacology Gene Expression Profiling Gene Expression Regulation - drug effects Humans Mice Nerve Tissue Proteins - genetics Neurons - cytology Neurons - drug effects Promoter Regions, Genetic - drug effects Proteins - metabolism Rats Stem Cells - cytology Stem Cells - drug effects |
Title | Identification of astrocyte-expressed factors that modulate neural stem/progenitor cell differentiation |
URI | https://www.ncbi.nlm.nih.gov/pubmed/16846377 |
Volume | 15 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI4GCIkL4v1GOXBDhaZNmvY4IdCEBJeBxA0lTQoCjU2jSIxfwU_GeXQtBSTg0m19bau_OLZj-0PogEsScybBLdEiAwdFkSBjnAc8VDSF-UwUhVnRvbhMetf0_IbddDrvjayll1Ie5W_f1pX8R6qwD-RqqmT_INnpTWEHvAf5whYkDNtfydhV2RY-7GaX9J9LmJEmpQ70q01xBXuyotQp70VpmG8MYZc-NI0sba2IHhgC3vEQvgVG9_jQhPKnvCllQ3LehO3DFfYk191Z1VlHdVR0_Hg_dKsZz2JQL370ff5vD14fXqaw7AJeXGDV5uzWRND9gSso8tX_Pju5EaOocqkqtUpBlUV-aq30LmvgK24oUep4cL8o9zDNLB2lcmtIhB21zgTpjAZW1iQBuyrmvzja6rZdHZpBMzw1evPSRH-8A59ElsF6-m-qVlFpdtz6VaYXrb9Ty1-xdsvVElr0DgfuOvQso45-WkHzjoJ0soruPmMIDwv8DYawxxA2GMIVhrDDEDYYOq4RhA04cAtBa-j67PTqpBd48o0gpzwug0TltMhJIpkCp4JIGSkpwiSM8wxGPZHwSepMgMVP8jRWxFj-RPGIiYJIKkW0jmafADybCAuwEjPwc2ViWiExJnRBqIqFTCTNQia30IZ7Qrcj12Hltnp22z8e2UELNdB20VwBQ1rvgX1Yyn0rtA9YiGhc |
link.rule.ids | 783 |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+astrocyte-expressed+factors+that+modulate+neural+stem%2Fprogenitor+cell+differentiation&rft.jtitle=Stem+cells+and+development&rft.au=Barkho%2C+Basam+Z&rft.au=Song%2C+Hongjun&rft.au=Aimone%2C+James+B&rft.au=Smrt%2C+Richard+D&rft.date=2006-06-01&rft.issn=1547-3287&rft.volume=15&rft.issue=3&rft.spage=407&rft_id=info:doi/10.1089%2Fscd.2006.15.407&rft_id=info%3Apmid%2F16846377&rft_id=info%3Apmid%2F16846377&rft.externalDocID=16846377 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1547-3287&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1547-3287&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1547-3287&client=summon |