Platelet membrane-coated nanoparticle-mediated targeting delivery of Rapamycin blocks atherosclerotic plaque development and stabilizes plaque in apolipoprotein E-deficient (ApoE−/−) mice
Although certain success has been achieved in atherosclerosis treatment, tremendous challenges remain in developing more efficient strategies to treat atherosclerosis. Platelets have inherent affinity to plaques and naturally home to atherosclerotic sites. Rapamycin features potent anti-atherosclero...
Saved in:
Published in | Nanomedicine Vol. 15; no. 1; pp. 13 - 24 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.01.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Although certain success has been achieved in atherosclerosis treatment, tremendous challenges remain in developing more efficient strategies to treat atherosclerosis. Platelets have inherent affinity to plaques and naturally home to atherosclerotic sites. Rapamycin features potent anti-atherosclerosis effect, but its clinical utility is limited by its low concentration at the atherosclerotic site and severe systemic toxicity. In the present study, we used platelet membrane-coated nanoparticles (PNP) as a targeted drug delivery platform to treat atherosclerosis through mimicking platelets' inherent targeting to plaques. PNP displayed 4.98-fold greater radiant efficiency than control nanoparticles in atherosclerotic arterial trees, indicating its effective homing to atherosclerotic plaques in vivo. In an atherosclerosis model established in apolipoprotein E-deficient mice, PNP encapsulating rapamycin significantly attenuated the progression of atherosclerosis and stabilized atherosclerotic plaques. These results demonstrated the perfect efficacy and pro-resolving potential of PNP as a targeted drug delivery platform for atherosclerosis treatment.
Platelet membranes were coated onto the surface of PLGA cores to mimic platelet inherent affinity to atherosclerotic plaques. TEM showed most PNP were well coated with platelet membranes. PNP could effectively target atherosclerotic plaques, delayed the progression of atherosclerosis and stabilized atherosclerotic plaques when encapsulating RAP, representing a promising platform for the treatment of atherosclerosis. [Display omitted] |
---|---|
AbstractList | Although certain success has been achieved in atherosclerosis treatment, tremendous challenges remain in developing more efficient strategies to treat atherosclerosis. Platelets have inherent affinity to plaques and naturally home to atherosclerotic sites. Rapamycin features potent anti-atherosclerosis effect, but its clinical utility is limited by its low concentration at the atherosclerotic site and severe systemic toxicity. In the present study, we used platelet membrane-coated nanoparticles (PNP) as a targeted drug delivery platform to treat atherosclerosis through mimicking platelets' inherent targeting to plaques. PNP displayed 4.98-fold greater radiant efficiency than control nanoparticles in atherosclerotic arterial trees, indicating its effective homing to atherosclerotic plaques in vivo. In an atherosclerosis model established in apolipoprotein E-deficient mice, PNP encapsulating rapamycin significantly attenuated the progression of atherosclerosis and stabilized atherosclerotic plaques. These results demonstrated the perfect efficacy and pro-resolving potential of PNP as a targeted drug delivery platform for atherosclerosis treatment.
Platelet membranes were coated onto the surface of PLGA cores to mimic platelet inherent affinity to atherosclerotic plaques. TEM showed most PNP were well coated with platelet membranes. PNP could effectively target atherosclerotic plaques, delayed the progression of atherosclerosis and stabilized atherosclerotic plaques when encapsulating RAP, representing a promising platform for the treatment of atherosclerosis. [Display omitted] Although certain success has been achieved in atherosclerosis treatment, tremendous challenges remain in developing more efficient strategies to treat atherosclerosis. Platelets have inherent affinity to plaques and naturally home to atherosclerotic sites. Rapamycin features potent anti-atherosclerosis effect, but its clinical utility is limited by its low concentration at the atherosclerotic site and severe systemic toxicity. In the present study, we used platelet membrane-coated nanoparticles (PNP) as a targeted drug delivery platform to treat atherosclerosis through mimicking platelets' inherent targeting to plaques. PNP displayed 4.98-fold greater radiant efficiency than control nanoparticles in atherosclerotic arterial trees, indicating its effective homing to atherosclerotic plaques in vivo. In an atherosclerosis model established in apolipoprotein E-deficient mice, PNP encapsulating rapamycin significantly attenuated the progression of atherosclerosis and stabilized atherosclerotic plaques. These results demonstrated the perfect efficacy and pro-resolving potential of PNP as a targeted drug delivery platform for atherosclerosis treatment. Although certain success has been achieved in atherosclerosis treatment, tremendous challenges remain in developing more efficient strategies to treat atherosclerosis. Platelets have inherent affinity to plaques and naturally home to atherosclerotic sites. Rapamycin features potent anti-atherosclerosis effect, but its clinical utility is limited by its low concentration at the atherosclerotic site and severe systemic toxicity. In the present study, we used platelet membrane-coated nanoparticles (PNP) as a targeted drug delivery platform to treat atherosclerosis through mimicking platelets' inherent targeting to plaques. PNP displayed 4.98-fold greater radiant efficiency than control nanoparticles in atherosclerotic arterial trees, indicating its effective homing to atherosclerotic plaques in vivo. In an atherosclerosis model established in apolipoprotein E-deficient mice, PNP encapsulating rapamycin significantly attenuated the progression of atherosclerosis and stabilized atherosclerotic plaques. These results demonstrated the perfect efficacy and pro-resolving potential of PNP as a targeted drug delivery platform for atherosclerosis treatment.Although certain success has been achieved in atherosclerosis treatment, tremendous challenges remain in developing more efficient strategies to treat atherosclerosis. Platelets have inherent affinity to plaques and naturally home to atherosclerotic sites. Rapamycin features potent anti-atherosclerosis effect, but its clinical utility is limited by its low concentration at the atherosclerotic site and severe systemic toxicity. In the present study, we used platelet membrane-coated nanoparticles (PNP) as a targeted drug delivery platform to treat atherosclerosis through mimicking platelets' inherent targeting to plaques. PNP displayed 4.98-fold greater radiant efficiency than control nanoparticles in atherosclerotic arterial trees, indicating its effective homing to atherosclerotic plaques in vivo. In an atherosclerosis model established in apolipoprotein E-deficient mice, PNP encapsulating rapamycin significantly attenuated the progression of atherosclerosis and stabilized atherosclerotic plaques. These results demonstrated the perfect efficacy and pro-resolving potential of PNP as a targeted drug delivery platform for atherosclerosis treatment. |
Author | Li, Chenguang Liu, Ming Qian, Juying Yang, Hongbo Gong, Hui Pang, Zhiqing Cao, Jiatian Song, Yanan Ge, Junbo Huang, Zheyong Yang, Xiangdong Liu, Xin Cao, Zhonglian Chen, Jing Zhang, Ning |
Author_xml | – sequence: 1 givenname: Yanan surname: Song fullname: Song, Yanan organization: Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China – sequence: 2 givenname: Zheyong surname: Huang fullname: Huang, Zheyong organization: Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China – sequence: 3 givenname: Xin surname: Liu fullname: Liu, Xin organization: Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China – sequence: 4 givenname: Zhiqing surname: Pang fullname: Pang, Zhiqing email: zqpang@fudan.edu.cn organization: School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai, China – sequence: 5 givenname: Jing surname: Chen fullname: Chen, Jing organization: Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China – sequence: 6 givenname: Hongbo surname: Yang fullname: Yang, Hongbo organization: Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China – sequence: 7 givenname: Ning surname: Zhang fullname: Zhang, Ning organization: Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China – sequence: 8 givenname: Zhonglian surname: Cao fullname: Cao, Zhonglian organization: School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai, China – sequence: 9 givenname: Ming surname: Liu fullname: Liu, Ming organization: Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China – sequence: 10 givenname: Jiatian surname: Cao fullname: Cao, Jiatian organization: Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China – sequence: 11 givenname: Chenguang surname: Li fullname: Li, Chenguang organization: Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China – sequence: 12 givenname: Xiangdong surname: Yang fullname: Yang, Xiangdong organization: Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China – sequence: 13 givenname: Hui surname: Gong fullname: Gong, Hui organization: Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China – sequence: 14 givenname: Juying surname: Qian fullname: Qian, Juying email: juyingqian@126.com organization: Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China – sequence: 15 givenname: Junbo surname: Ge fullname: Ge, Junbo email: junboge@126.com organization: Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30171903$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtuFDEQhlsoiDzgAiyQl8miJ273axqxiaLhIUUCIVhb1e5y8MRtN7ZnpOEErLkQd-EkVDNJFlkEqSzbpf_7VfrrODtw3mGWvSz4ouBFc75eOHB-IXixXHAqLp5kR0VddXnXVOLg_l1Wh9lxjGvOy5bz7ll2WPKiLTpeHmW_P1lIaDGxEcc-gMNceeoMbPaeICSjLOYjDuZfN0G4xmTcNRvQmi2GHfOafYYJxp0yjvXWq5vIIH3D4COhwZMDmyx83yAxW7R-GtElBm5gMUFvrPmB8U5BFjB5ayY_EYn0XeUDaqPMzJxeTH715-evczpnbDQKn2dPNdiIL27vk-zr29WXy_f51cd3Hy4vrnJVtWXKm17zauBD06GqtRJDWaleYQ2gONZai7Kp2rbTNQrohYCi7Tnl2TW6wrpXujzJTve-NBbNGZMcTVRoLSXmN1EK3i3bli-7jqSvbqWbnnKTUzAjhJ28C50EYi9QFFEMqO8lBZfzZuVazunLebOSU3FB0PIBpEyCZLxLAYx9HH2zR5EC2hoMMs5xKtppQJXk4M3j-OsHuLLGGQX2Bnf_g_8CbGTaNg |
CitedBy_id | crossref_primary_10_1016_j_jconrel_2020_11_064 crossref_primary_10_3390_pharmaceutics13040503 crossref_primary_10_1039_D2TB00003B crossref_primary_10_1016_j_biomaterials_2023_122450 crossref_primary_10_1038_s41392_021_00631_2 crossref_primary_10_2217_nnm_2019_0172 crossref_primary_10_1002_wnan_1702 crossref_primary_10_1016_j_ejphar_2023_175712 crossref_primary_10_1007_s10557_023_07461_0 crossref_primary_10_1016_j_bioadv_2022_212775 crossref_primary_10_1016_j_apsb_2022_03_026 crossref_primary_10_1680_jbibn_23_00042 crossref_primary_10_1093_rb_rbaa019 crossref_primary_10_1186_s12951_019_0494_y crossref_primary_10_1016_j_biomaterials_2023_122065 crossref_primary_10_1016_j_nantod_2024_102414 crossref_primary_10_3389_fbioe_2023_1177151 crossref_primary_10_1016_j_bios_2022_114613 crossref_primary_10_1016_j_apsb_2023_06_005 crossref_primary_10_2147_IJN_S452824 crossref_primary_10_3390_pharmaceutics13091430 crossref_primary_10_2174_1389201024666230804140926 crossref_primary_10_1016_j_jconrel_2020_09_012 crossref_primary_10_1021_acsnano_4c04814 crossref_primary_10_3390_molecules26113428 crossref_primary_10_1186_s12951_024_02775_z crossref_primary_10_3389_fchem_2022_868063 crossref_primary_10_1155_2022_7695078 crossref_primary_10_1002_adhm_202201214 crossref_primary_10_1055_s_0042_1751036 crossref_primary_10_3390_pharmaceutics13111887 crossref_primary_10_1016_j_apsb_2021_01_020 crossref_primary_10_1016_j_matchemphys_2024_129692 crossref_primary_10_33380_2305_2066_2024_13_4_1897 crossref_primary_10_1016_j_xinn_2022_100214 crossref_primary_10_1002_adhm_202000336 crossref_primary_10_1016_j_matdes_2024_112806 crossref_primary_10_3389_fphar_2021_755569 crossref_primary_10_3390_cells8080881 crossref_primary_10_1016_j_cej_2022_138992 crossref_primary_10_1002_jex2_49 crossref_primary_10_1016_j_ijpharm_2025_125228 crossref_primary_10_3389_fcell_2021_734720 crossref_primary_10_1021_acsami_3c16735 crossref_primary_10_1080_10717544_2023_2288797 crossref_primary_10_1186_s12951_022_01251_w crossref_primary_10_1007_s13346_023_01494_6 crossref_primary_10_1016_j_jconrel_2023_12_052 crossref_primary_10_1016_j_ijpharm_2021_121297 crossref_primary_10_1039_C9BM01392J crossref_primary_10_1021_acsbiomaterials_0c00281 crossref_primary_10_1016_j_addr_2021_01_005 crossref_primary_10_14336_AD_2022_1208 crossref_primary_10_2147_IJN_S290537 crossref_primary_10_1016_j_nano_2019_02_024 crossref_primary_10_1016_j_cej_2020_127296 crossref_primary_10_1049_nbt2_12137 crossref_primary_10_1080_21691401_2024_2416951 crossref_primary_10_2217_nnm_2019_0388 crossref_primary_10_1039_C9NH00291J crossref_primary_10_1021_acsami_0c12688 crossref_primary_10_1080_1061186X_2024_2347353 crossref_primary_10_1021_acsabm_4c01373 crossref_primary_10_1016_j_colsurfb_2024_113893 crossref_primary_10_1039_D3BM00893B crossref_primary_10_1186_s12951_024_02548_8 crossref_primary_10_1002_advs_202304294 crossref_primary_10_1093_rb_rbac064 crossref_primary_10_1186_s12951_021_01113_x crossref_primary_10_1080_17425247_2021_1933428 crossref_primary_10_1016_j_biomaterials_2022_121529 crossref_primary_10_1039_D4TB00565A crossref_primary_10_3390_ijms25063206 crossref_primary_10_1021_acsnano_1c03800 crossref_primary_10_1016_j_pmatsci_2020_100768 crossref_primary_10_1038_s41598_025_86716_2 crossref_primary_10_1080_10717544_2022_2117434 crossref_primary_10_1155_2022_8006642 crossref_primary_10_1186_s12951_021_01095_w crossref_primary_10_1016_j_ijpharm_2022_122407 crossref_primary_10_1002_adhm_202302074 crossref_primary_10_1016_j_ijpharm_2022_121790 crossref_primary_10_1097_FJC_0000000000001208 crossref_primary_10_1016_j_ejpb_2022_01_004 crossref_primary_10_1039_D1NR06514A crossref_primary_10_3389_fcvm_2022_1037741 crossref_primary_10_1039_C9RA10921H crossref_primary_10_1016_j_ejps_2019_105136 crossref_primary_10_1039_D0BM02125C crossref_primary_10_1177_20417314221088509 crossref_primary_10_1007_s13346_025_01792_1 crossref_primary_10_3390_pharmaceutics14020361 crossref_primary_10_2174_1389450120666190702162533 crossref_primary_10_1016_j_apsb_2020_12_018 crossref_primary_10_1016_j_biopha_2023_114451 crossref_primary_10_3390_pharmaceutics15010073 crossref_primary_10_1016_j_cocis_2020_101408 crossref_primary_10_1002_btm2_10441 crossref_primary_10_1002_SMMD_20230015 crossref_primary_10_59717_j_xinn_med_2023_100015 crossref_primary_10_1016_j_biomaterials_2021_121324 crossref_primary_10_1002_advs_202204814 crossref_primary_10_1248_cpb_c21_00961 crossref_primary_10_1002_adbi_202000174 crossref_primary_10_1016_j_colsurfb_2022_112464 crossref_primary_10_1016_j_biomaterials_2021_120875 crossref_primary_10_1039_D1BM00924A crossref_primary_10_1039_D4TB02477J crossref_primary_10_1007_s11051_021_05370_7 crossref_primary_10_1016_j_isci_2022_105147 crossref_primary_10_1186_s40001_024_02124_8 crossref_primary_10_1016_j_colsurfb_2025_114542 crossref_primary_10_1016_j_ymeth_2019_12_004 crossref_primary_10_1186_s12944_023_01891_3 crossref_primary_10_1002_advs_202302918 crossref_primary_10_1016_j_actbio_2023_04_019 crossref_primary_10_1002_mabi_202200537 crossref_primary_10_1002_sstr_202000018 crossref_primary_10_1016_j_ijcha_2022_101149 crossref_primary_10_1016_j_ejps_2021_105803 crossref_primary_10_1016_j_nano_2021_102360 crossref_primary_10_1038_s41401_020_0436_0 crossref_primary_10_1016_j_nano_2023_102682 crossref_primary_10_3389_fphar_2022_1026386 crossref_primary_10_1002_adhm_202302320 crossref_primary_10_1002_adbi_202300141 crossref_primary_10_1016_j_envres_2023_116637 crossref_primary_10_1016_j_matdes_2023_112005 crossref_primary_10_3389_fbioe_2021_686684 crossref_primary_10_1002_SMMD_20240006 crossref_primary_10_1016_j_apsb_2023_05_018 crossref_primary_10_1016_j_cis_2025_103462 crossref_primary_10_1002_smll_202202962 crossref_primary_10_3389_fcell_2022_844050 crossref_primary_10_3390_biomedicines12071504 crossref_primary_10_1016_j_biomaterials_2023_122288 crossref_primary_10_1080_10717544_2021_1934188 crossref_primary_10_1093_rb_rbad069 crossref_primary_10_2147_IJN_S285952 crossref_primary_10_1016_j_jconrel_2023_06_023 crossref_primary_10_3390_nano11112790 crossref_primary_10_1039_D4NH00457D crossref_primary_10_1016_j_biomaterials_2021_121028 crossref_primary_10_1038_s41569_021_00629_x crossref_primary_10_3390_molecules29122873 crossref_primary_10_34133_2022_9845459 crossref_primary_10_1016_j_colsurfb_2024_113979 crossref_primary_10_1007_s12094_021_02771_x crossref_primary_10_1007_s40820_019_0330_9 crossref_primary_10_1016_j_matt_2020_05_017 crossref_primary_10_1021_acsami_4c09548 crossref_primary_10_1039_D0BM00762E crossref_primary_10_1186_s12951_022_01720_2 crossref_primary_10_1039_D2AN01374F |
Cites_doi | 10.1097/01.fjc.0000177985.14305.15 10.1517/14740338.2013.752814 10.1016/j.atherosclerosis.2007.09.019 10.1002/adma.201200607 10.1038/nature15373 10.1016/j.jcmg.2010.06.013 10.1016/j.atherosclerosis.2003.09.003 10.1097/FJC.0000000000000342 10.1177/2048872612441582 10.1172/JCI64099 10.1038/aps.2015.87 10.1016/j.jconrel.2015.07.019 10.1166/jbn.2015.1943 10.1161/CIRCRESAHA.114.302721 10.1034/j.1399-0012.2000.140201.x 10.1161/01.CIR.99.16.2164 10.1038/nm.2515 10.1111/j.1476-5381.2008.00080.x 10.1021/acsnano.7b07720 10.1016/j.atherosclerosis.2014.01.040 10.1021/nn503732m 10.1021/bm301996p 10.1111/j.1476-5381.2008.00102.x 10.1038/nm810 10.1084/jem.20012044 10.1021/bm300192t 10.1161/01.ATV.19.10.2524 10.1038/nature15218 10.1021/acsnano.5b02132 10.1124/jpet.108.144147 10.7150/thno.10020 10.1002/adma.201606209 10.1161/ATVBAHA.107.150474 10.1021/nl500618u 10.1111/j.1538-7836.2007.02517.x 10.1002/adhm.201500126 10.1016/j.biomaterials.2011.08.067 10.1021/bc300086d 10.1111/j.1538-7836.2007.02867.x 10.1016/j.biomaterials.2016.10.003 10.1182/blood-2016-07-692673 10.1073/pnas.1106634108 10.1002/adma.201503323 10.1111/jth.12088 10.3389/fphys.2014.00294 10.1038/nnano.2013.254 10.1016/j.nano.2014.12.006 10.1038/nnano.2013.54 10.1038/s41551-016-0011 10.4161/auto.3711 10.1160/TH07-11-0685 10.1182/blood-2002-07-2209 10.1159/000073571 10.1016/j.biomaterials.2017.02.041 10.2217/nnm-2017-0100 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Inc. Copyright © 2018 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2018 Elsevier Inc. – notice: Copyright © 2018 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.nano.2018.08.002 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1549-9642 |
EndPage | 24 |
ExternalDocumentID | 30171903 10_1016_j_nano_2018_08_002 S1549963418305069 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .1- .FO .GJ .~1 0R~ 123 1B1 1P~ 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ AAAJQ AABXZ AAEDT AAEDW AAEPC AAIKJ AAKOC AALRI AAOAW AAQFI AARKO AATTM AAXKI AAXUO AAYWO ABBQC ABGSF ABMAC ABMZM ABUDA ABWVN ABXDB ABXRA ABZDS ACDAQ ACGFS ACIEU ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADTZH ADUVX AEBSH AECPX AEHWI AEIPS AEKER AEUPX AEVXI AEZYN AFJKZ AFPUW AFRHN AFRZQ AFTJW AFXIZ AGCQF AGEKW AGHFR AGUBO AGYEJ AHJVU AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALCLG ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AXJTR BJAXD BKOJK BLXMC BNPGV CJTIS CS3 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LUGTX M41 MAGPM MO0 N9A O-L O9- OAUVE OD~ OGGZJ OO0 OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SEL SES SEW SPC SSH SSI SSM SSP SST SSU SSZ T5K Z5R ~G- AACTN AAIAV AATCM ABLVK ABYKQ AFKWA AJBFU AJOXV AMFUW DOVZS EFLBG LCYCR RIG AAYXX AGRNS CITATION CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c473t-6bf04d0d69ec5fc2d34cbce5aac0e5ff2364779f5e2ab22a17b000296f4e5bcf3 |
IEDL.DBID | .~1 |
ISSN | 1549-9634 1549-9642 |
IngestDate | Fri Jul 11 09:02:18 EDT 2025 Mon Jul 21 06:06:24 EDT 2025 Thu Apr 24 22:57:02 EDT 2025 Tue Jul 01 01:49:54 EDT 2025 Fri Feb 23 02:12:38 EST 2024 Tue Aug 26 16:33:33 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | RAP vWF PT ALT DLS Targeting delivery SMCs Autophagy HDL Platelet membrane-coated nanoparticle PNP LDL CM-NP Atherosclerosis BUN ApoE−/− mice RAP-PNP AST RAP-NP Rapamycin TC APTT PLGA TG TEM DiD HUVECs |
Language | English |
License | Copyright © 2018 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c473t-6bf04d0d69ec5fc2d34cbce5aac0e5ff2364779f5e2ab22a17b000296f4e5bcf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 30171903 |
PQID | 2098770899 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2098770899 pubmed_primary_30171903 crossref_primary_10_1016_j_nano_2018_08_002 crossref_citationtrail_10_1016_j_nano_2018_08_002 elsevier_sciencedirect_doi_10_1016_j_nano_2018_08_002 elsevier_clinicalkey_doi_10_1016_j_nano_2018_08_002 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2019 2019-01-00 20190101 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – month: 01 year: 2019 text: January 2019 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Nanomedicine |
PublicationTitleAlternate | Nanomedicine |
PublicationYear | 2019 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Mozaffarian, Benjamin, Go, Arnett, Blaha, Cushman (bb0005) 2015; 131 Jackson (bb0055) 2011; 17 Ravikumar, Modery, Wong, Dzuricky, Sen Gupta (bb0235) 2012; 23 Hu, Fang, Copp, Luk, Zhang (bb0080) 2013; 8 Wei, Ying, Dehaini, Su, Kroll, Zhou (bb0110) 2018; 12 Bentzon, Otsuka, Virmani, Falk (bb0175) 2014; 114 De Meyer, Hoylaerts, Kockx, Yamamoto, Herman, Bult (bb0260) 1999; 19 Shao, Han, Zeng, Su, Liu (bb0180) 2016; 37 Langer, Gawaz (bb0030) 2008; 99 Fang, Hu, Luk, Gao, Copp, Tai (bb0070) 2014; 14 Huo, Schober, Forlow, Smith, Hyman, Jung (bb0045) 2003; 9 Chen, Zhong, Zhang, Ji, Zhang, Zhao (bb0155) 2009; 156 Gallo, Padurean, Jayaraman, Marx, Roque, Adelman (bb0280) 1999; 99 Hu, Fang, Luk, Zhang (bb0075) 2013; 8 McCarty, Conley, Shentu, Tormoen, Zha, Xie (bb0225) 2010; 3 Modery, Ravikumar, Wong, Dzuricky, Durongkaveroj, Sen Gupta (bb0245) 2011; 32 Chung, Tirrell (bb0010) 2015; 4 Martinet, Verheye, De Meyer (bb0190) 2007; 3 Wu, Atkinson, Lindner (bb0025) 2017; 129 Hu, Sun, Qian, Wang, Bomba, Gu (bb0120) 2015; 27 Mueller, Beutner, Teupser, Ceglarek, Thiery (bb0150) 2008; 198 Guo, Shen, Wang, Wang, Li, Liu (bb0200) 2015; 5 Massberg, Brand, Gruner, Page, Muller, Muller (bb0050) 2002; 196 Hu, Fang, Wang, Luk, Thamphiwatana, Dehaini (bb0100) 2015; 526 von Hundelshausen, Schmitt (bb0020) 2014; 5 Dehaini, Wei, Fang, Masson, Angsantikul, Luk (bb0105) 2017; 29 Lindemann, Kramer, Seizer, Gawaz (bb0040) 2007; 5 Pallet, Legendre (bb0165) 2013; 12 Ravikumar, Modery, Wong, Gupta (bb0240) 2012; 13 Badimon, Badimon, Vilahur, Segales, Llorente (bb0265) 2002; 32 Wang, Sun, Ye, Hu, Bomba, Gu (bb0125) 2017; 1 Castro, Campistol, Sancho, Sanchez-Madrid, Casals, Andres (bb0130) 2004; 172 Foresta, Strapazzon, De Toni, Fabris, Grego, Gerosa (bb0210) 2013; 11 Martinet, De Loof, De Meyer (bb0160) 2014; 233 Luk, Zhang (bb0095) 2015; 220 Anselmo, Modery-Pawlowski, Menegatti, Kumar, Vogus, Tian (bb0220) 2014; 8 Karagkiozaki, Logothetidis, Pappa (bb0015) 2015; 11 Luo, Lu, Zhou, Ai, Sun, Sun (bb0185) 2016; 67 Lamming, Ye, Sabatini, Baur (bb0170) 2013; 123 Farokhzad (bb0275) 2015; 526 Kahan, Napoli, Kelly, Podbielski, Hussein, Urbauer (bb0195) 2000; 14 Pakala, Stabile, Jang, Clavijo, Waksman (bb0135) 2005; 46 Wei, Gao, Fang, Luk, Kroll, Dehaini (bb0115) 2016; 111 Doshi, Orje, Molins, Smith, Mitragotri, Ruggeri (bb0230) 2012; 24 Varga-Szabo, Pleines, Nieswandt (bb0270) 2008; 28 Fang, Jiang, Fang, Zhang (bb0090) 2017; 128 Modery-Pawlowski, Master, Pan, Howard, Sen Gupta (bb0250) 2013; 14 Burger, Wagner (bb0255) 2003; 101 Baetta, Granata, Canavesi, Ferri, Arnaboldi, Bellosta (bb0140) 2009; 328 Yurkin, Wang (bb0215) 2017; 12 Hu, Zhang, Aryal, Cheung, Fang, Zhang (bb0065) 2011; 108 Gawaz, Stellos, Langer (bb0035) 2008; 6 Pang, Hu, Fang, Luk, Gao, Wang (bb0085) 2015; 9 Zhao, Ding, Cyrus, Cheng, Tian, Ma (bb0145) 2009; 156 Badimon, Padro, Vilahur (bb0060) 2012; 1 Jacobin-Valat, Laroche-Traineau, Lariviere, Mornet, Sanchez, Biran (bb0205) 2015; 11 Martinet (10.1016/j.nano.2018.08.002_bb0190) 2007; 3 Ravikumar (10.1016/j.nano.2018.08.002_bb0235) 2012; 23 Anselmo (10.1016/j.nano.2018.08.002_bb0220) 2014; 8 Modery-Pawlowski (10.1016/j.nano.2018.08.002_bb0250) 2013; 14 Badimon (10.1016/j.nano.2018.08.002_bb0265) 2002; 32 Gallo (10.1016/j.nano.2018.08.002_bb0280) 1999; 99 Wei (10.1016/j.nano.2018.08.002_bb0110) 2018; 12 Burger (10.1016/j.nano.2018.08.002_bb0255) 2003; 101 Massberg (10.1016/j.nano.2018.08.002_bb0050) 2002; 196 Pakala (10.1016/j.nano.2018.08.002_bb0135) 2005; 46 Dehaini (10.1016/j.nano.2018.08.002_bb0105) 2017; 29 Wei (10.1016/j.nano.2018.08.002_bb0115) 2016; 111 Fang (10.1016/j.nano.2018.08.002_bb0070) 2014; 14 Hu (10.1016/j.nano.2018.08.002_bb0120) 2015; 27 Hu (10.1016/j.nano.2018.08.002_bb0075) 2013; 8 Badimon (10.1016/j.nano.2018.08.002_bb0060) 2012; 1 Hu (10.1016/j.nano.2018.08.002_bb0080) 2013; 8 Bentzon (10.1016/j.nano.2018.08.002_bb0175) 2014; 114 Yurkin (10.1016/j.nano.2018.08.002_bb0215) 2017; 12 Chung (10.1016/j.nano.2018.08.002_bb0010) 2015; 4 Farokhzad (10.1016/j.nano.2018.08.002_bb0275) 2015; 526 Fang (10.1016/j.nano.2018.08.002_bb0090) 2017; 128 McCarty (10.1016/j.nano.2018.08.002_bb0225) 2010; 3 Mozaffarian (10.1016/j.nano.2018.08.002_bb0005) 2015; 131 Huo (10.1016/j.nano.2018.08.002_bb0045) 2003; 9 De Meyer (10.1016/j.nano.2018.08.002_bb0260) 1999; 19 Ravikumar (10.1016/j.nano.2018.08.002_bb0240) 2012; 13 Hu (10.1016/j.nano.2018.08.002_bb0100) 2015; 526 Karagkiozaki (10.1016/j.nano.2018.08.002_bb0015) 2015; 11 Luk (10.1016/j.nano.2018.08.002_bb0095) 2015; 220 Luo (10.1016/j.nano.2018.08.002_bb0185) 2016; 67 Modery (10.1016/j.nano.2018.08.002_bb0245) 2011; 32 Jackson (10.1016/j.nano.2018.08.002_bb0055) 2011; 17 Kahan (10.1016/j.nano.2018.08.002_bb0195) 2000; 14 Foresta (10.1016/j.nano.2018.08.002_bb0210) 2013; 11 Varga-Szabo (10.1016/j.nano.2018.08.002_bb0270) 2008; 28 Doshi (10.1016/j.nano.2018.08.002_bb0230) 2012; 24 Mueller (10.1016/j.nano.2018.08.002_bb0150) 2008; 198 Wu (10.1016/j.nano.2018.08.002_bb0025) 2017; 129 Castro (10.1016/j.nano.2018.08.002_bb0130) 2004; 172 Guo (10.1016/j.nano.2018.08.002_bb0200) 2015; 5 Gawaz (10.1016/j.nano.2018.08.002_bb0035) 2008; 6 Lamming (10.1016/j.nano.2018.08.002_bb0170) 2013; 123 Langer (10.1016/j.nano.2018.08.002_bb0030) 2008; 99 Chen (10.1016/j.nano.2018.08.002_bb0155) 2009; 156 Wang (10.1016/j.nano.2018.08.002_bb0125) 2017; 1 Jacobin-Valat (10.1016/j.nano.2018.08.002_bb0205) 2015; 11 Martinet (10.1016/j.nano.2018.08.002_bb0160) 2014; 233 Hu (10.1016/j.nano.2018.08.002_bb0065) 2011; 108 Pang (10.1016/j.nano.2018.08.002_bb0085) 2015; 9 Shao (10.1016/j.nano.2018.08.002_bb0180) 2016; 37 von Hundelshausen (10.1016/j.nano.2018.08.002_bb0020) 2014; 5 Zhao (10.1016/j.nano.2018.08.002_bb0145) 2009; 156 Baetta (10.1016/j.nano.2018.08.002_bb0140) 2009; 328 Lindemann (10.1016/j.nano.2018.08.002_bb0040) 2007; 5 Pallet (10.1016/j.nano.2018.08.002_bb0165) 2013; 12 |
References_xml | – volume: 9 start-page: 6450 year: 2015 end-page: 6458 ident: bb0085 article-title: Detoxification of organophosphate poisoning using nanoparticle bioscavengers publication-title: ACS Nano – volume: 27 start-page: 7043 year: 2015 end-page: 7050 ident: bb0120 article-title: Anticancer platelet-mimicking Nanovehicles publication-title: Adv Mater – volume: 67 start-page: 266 year: 2016 end-page: 274 ident: bb0185 article-title: Autophagy: An exposing therapeutic target in atherosclerosis publication-title: J Cardiovasc Pharmacol – volume: 9 start-page: 61 year: 2003 end-page: 67 ident: bb0045 article-title: Circulating activated platelets exacerbate atherosclerosis in mice deficient in apolipoprotein E publication-title: Nat Med – volume: 220 start-page: 600 year: 2015 end-page: 607 ident: bb0095 article-title: Cell membrane-camouflaged nanoparticles for drug delivery publication-title: J Control Release – volume: 14 start-page: 97 year: 2000 end-page: 109 ident: bb0195 article-title: Therapeutic drug monitoring of sirolimus: correlations with efficacy and toxicity publication-title: Clin Transplant – volume: 328 start-page: 419 year: 2009 end-page: 425 ident: bb0140 article-title: Everolimus inhibits monocyte/macrophage migration in vitro and their accumulation in carotid lesions of cholesterol-fed rabbits publication-title: J Pharmacol Exp Ther – volume: 8 start-page: 933 year: 2013 end-page: 938 ident: bb0075 article-title: Nanoparticle-detained toxins for safe and effective vaccination publication-title: Nat Nanotechnol – volume: 156 start-page: 774 year: 2009 end-page: 785 ident: bb0145 article-title: Low-dose oral sirolimus reduces atherogenesis, vascular inflammation and modulates plaque composition in mice lacking the LDL receptor publication-title: Br J Pharmacol – volume: 29 year: 2017 ident: bb0105 article-title: Erythrocyte-platelet hybrid membrane coating for enhanced nanoparticle functionalization publication-title: Adv Mater – volume: 12 start-page: 177 year: 2013 end-page: 186 ident: bb0165 article-title: Adverse events associated with mTOR inhibitors publication-title: Expert Opin Drug Saf – volume: 28 start-page: 403 year: 2008 end-page: 412 ident: bb0270 article-title: Cell adhesion mechanisms in platelets publication-title: Arterioscler Thromb Vasc Biol – volume: 101 start-page: 2661 year: 2003 end-page: 2666 ident: bb0255 article-title: Platelet P-selectin facilitates atherosclerotic lesion development publication-title: Blood – volume: 526 start-page: 118 year: 2015 end-page: 121 ident: bb0100 article-title: Nanoparticle biointerfacing by platelet membrane cloaking publication-title: Nature – volume: 24 start-page: 3864 year: 2012 end-page: 3869 ident: bb0230 article-title: Platelet mimetic particles for targeting thrombi in flowing blood publication-title: Adv Mater – volume: 6 start-page: 235 year: 2008 end-page: 242 ident: bb0035 article-title: Platelets modulate atherogenesis and progression of atherosclerotic plaques via interaction with progenitor and dendritic cells publication-title: J Thromb Haemost – volume: 526 start-page: 47 year: 2015 end-page: 48 ident: bb0275 article-title: Nanotechnology: Platelet mimicry publication-title: Nature – volume: 111 start-page: 116 year: 2016 end-page: 123 ident: bb0115 article-title: Nanoparticles camouflaged in platelet membrane coating as an antibody decoy for the treatment of immune thrombocytopenia publication-title: Biomaterials – volume: 114 start-page: 1852 year: 2014 end-page: 1866 ident: bb0175 article-title: Mechanisms of plaque formation and rupture publication-title: Circ Res – volume: 12 start-page: 2007 year: 2017 end-page: 2019 ident: bb0215 article-title: Cell membrane-derived nanoparticles: emerging clinical opportunities for targeted drug delivery publication-title: Nanomedicine – volume: 32 start-page: 9504 year: 2011 end-page: 9514 ident: bb0245 article-title: Heteromultivalent liposomal nanoconstructs for enhanced targeting and shear-stable binding to active platelets for site-selective vascular drug delivery publication-title: Biomaterials – volume: 14 start-page: 910 year: 2013 end-page: 919 ident: bb0250 article-title: A platelet-mimetic paradigm for metastasis-targeted nanomedicine platforms publication-title: Biomacromolecules – volume: 46 start-page: 481 year: 2005 end-page: 486 ident: bb0135 article-title: Rapamycin attenuates atherosclerotic plaque progression in apolipoprotein E knockout mice: inhibitory effect on monocyte chemotaxis publication-title: J Cardiovasc Pharmacol – volume: 5 start-page: 294 year: 2014 ident: bb0020 article-title: Platelets and their chemokines in atherosclerosis-clinical applications publication-title: Front Physiol – volume: 11 start-page: 927 year: 2015 end-page: 937 ident: bb0205 article-title: Nanoparticles functionalised with an anti-platelet human antibody for in vivo detection of atherosclerotic plaque by magnetic resonance imaging publication-title: Nanomedicine – volume: 11 start-page: 357 year: 2013 end-page: 365 ident: bb0210 article-title: Platelets express and release osteocalcin and co-localize in human calcified atherosclerotic plaques publication-title: J Thromb Haemost – volume: 17 start-page: 1423 year: 2011 end-page: 1436 ident: bb0055 article-title: Arterial thrombosis--insidious, unpredictable and deadly publication-title: Nat Med – volume: 32 start-page: 225 year: 2002 end-page: 231 ident: bb0265 article-title: Pathogenesis of the acute coronary syndromes and therapeutic implications publication-title: Pathophysiol Haemost Thromb – volume: 128 start-page: 69 year: 2017 end-page: 83 ident: bb0090 article-title: Cell membrane-derived nanomaterials for biomedical applications publication-title: Biomaterials – volume: 11 start-page: 191 year: 2015 end-page: 210 ident: bb0015 article-title: Nanomedicine for atherosclerosis: molecular imaging and treatment publication-title: J Biomed Nanotechnol – volume: 37 start-page: 150 year: 2016 end-page: 156 ident: bb0180 article-title: The roles of macrophage autophagy in atherosclerosis publication-title: Acta Pharmacol Sin – volume: 99 start-page: 480 year: 2008 end-page: 486 ident: bb0030 article-title: Platelet-vessel wall interactions in atherosclerotic disease publication-title: Thromb Haemost – volume: 108 start-page: 10980 year: 2011 end-page: 10985 ident: bb0065 article-title: Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform publication-title: Proc Natl Acad Sci U S A – volume: 13 start-page: 1495 year: 2012 end-page: 1502 ident: bb0240 article-title: Peptide-decorated liposomes promote arrest and aggregation of activated platelets under flow on vascular injury relevant protein surfaces in vitro publication-title: Biomacromolecules – volume: 129 start-page: 1415 year: 2017 end-page: 1419 ident: bb0025 article-title: Platelets and von Willebrand factor in atherogenesis publication-title: Blood – volume: 1 start-page: 0011 year: 2017 ident: bb0125 article-title: In situ activation of platelets with checkpoint inhibitors for post-surgical cancer immunotherapy publication-title: Nat Biomed Eng – volume: 131 start-page: e29 year: 2015 end-page: 322 ident: bb0005 article-title: Heart disease and stroke statistics--2015 update: a report from the American Heart Association publication-title: Circulation – volume: 8 start-page: 336 year: 2013 end-page: 340 ident: bb0080 article-title: A biomimetic nanosponge that absorbs pore-forming toxins publication-title: Nat Nanotechnol – volume: 4 start-page: 2408 year: 2015 end-page: 2422 ident: bb0010 article-title: Recent advances in targeted, self-assembling nanoparticles to address vascular damage due to atherosclerosis publication-title: Adv Healthc Mater – volume: 5 start-page: 203 year: 2007 end-page: 211 ident: bb0040 article-title: Platelets, inflammation and atherosclerosis publication-title: J Thromb Haemost – volume: 172 start-page: 31 year: 2004 end-page: 38 ident: bb0130 article-title: Rapamycin attenuates atherosclerosis induced by dietary cholesterol in apolipoprotein-deficient mice through a p27 Kip1 -independent pathway publication-title: Atherosclerosis – volume: 3 start-page: 947 year: 2010 end-page: 955 ident: bb0225 article-title: Molecular imaging of activated von Willebrand factor to detect high-risk atherosclerotic phenotype publication-title: JACC Cardiovasc Imaging – volume: 12 start-page: 109 year: 2018 end-page: 116 ident: bb0110 article-title: Nanoparticle Functionalization with Platelet Membrane Enables Multifactored Biological Targeting and Detection of Atherosclerosis publication-title: ACS Nano – volume: 1 start-page: 60 year: 2012 end-page: 74 ident: bb0060 article-title: Atherosclerosis, platelets and thrombosis in acute ischaemic heart disease publication-title: Eur Heart J Acute Cardiovasc Care – volume: 8 start-page: 11243 year: 2014 end-page: 11253 ident: bb0220 article-title: Platelet-like nanoparticles: mimicking shape, flexibility, and surface biology of platelets to target vascular injuries publication-title: ACS Nano – volume: 5 start-page: 418 year: 2015 end-page: 430 ident: bb0200 article-title: Detection of high-risk atherosclerotic plaques with ultrasound molecular imaging of glycoprotein IIb/IIIa receptor on activated platelets publication-title: Theranostics – volume: 99 start-page: 2164 year: 1999 end-page: 2170 ident: bb0280 article-title: Inhibition of intimal thickening after balloon angioplasty in porcine coronary arteries by targeting regulators of the cell cycle publication-title: Circulation – volume: 156 start-page: 941 year: 2009 end-page: 951 ident: bb0155 article-title: Oral rapamycin attenuates inflammation and enhances stability of atherosclerotic plaques in rabbits independent of serum lipid levels publication-title: Br J Pharmacol – volume: 198 start-page: 39 year: 2008 end-page: 48 ident: bb0150 article-title: Prevention of atherosclerosis by the mTOR inhibitor everolimus in LDLR−/− mice despite severe hypercholesterolemia publication-title: Atherosclerosis – volume: 123 start-page: 980 year: 2013 end-page: 989 ident: bb0170 article-title: Rapalogs and mTOR inhibitors as anti-aging therapeutics publication-title: J Clin Invest – volume: 14 start-page: 2181 year: 2014 end-page: 2188 ident: bb0070 article-title: Cancer cell membrane-coated nanoparticles for anticancer vaccination and drug delivery publication-title: Nano Lett – volume: 23 start-page: 1266 year: 2012 end-page: 1275 ident: bb0235 article-title: Mimicking adhesive functionalities of blood platelets using ligand-decorated liposomes publication-title: Bioconjug Chem – volume: 233 start-page: 601 year: 2014 end-page: 607 ident: bb0160 article-title: mTOR inhibition: a promising strategy for stabilization of atherosclerotic plaques publication-title: Atherosclerosis – volume: 19 start-page: 2524 year: 1999 end-page: 2534 ident: bb0260 article-title: Intimal deposition of functional von Willebrand factor in atherogenesis publication-title: Arterioscler Thromb Vasc Biol – volume: 196 start-page: 887 year: 2002 end-page: 896 ident: bb0050 article-title: A critical role of platelet adhesion in the initiation of atherosclerotic lesion formation publication-title: J Exp Med – volume: 3 start-page: 241 year: 2007 end-page: 244 ident: bb0190 article-title: Everolimus-induced mTOR inhibition selectively depletes macrophages in atherosclerotic plaques by autophagy publication-title: Autophagy – volume: 46 start-page: 481 year: 2005 ident: 10.1016/j.nano.2018.08.002_bb0135 article-title: Rapamycin attenuates atherosclerotic plaque progression in apolipoprotein E knockout mice: inhibitory effect on monocyte chemotaxis publication-title: J Cardiovasc Pharmacol doi: 10.1097/01.fjc.0000177985.14305.15 – volume: 12 start-page: 177 year: 2013 ident: 10.1016/j.nano.2018.08.002_bb0165 article-title: Adverse events associated with mTOR inhibitors publication-title: Expert Opin Drug Saf doi: 10.1517/14740338.2013.752814 – volume: 198 start-page: 39 year: 2008 ident: 10.1016/j.nano.2018.08.002_bb0150 article-title: Prevention of atherosclerosis by the mTOR inhibitor everolimus in LDLR−/− mice despite severe hypercholesterolemia publication-title: Atherosclerosis doi: 10.1016/j.atherosclerosis.2007.09.019 – volume: 24 start-page: 3864 year: 2012 ident: 10.1016/j.nano.2018.08.002_bb0230 article-title: Platelet mimetic particles for targeting thrombi in flowing blood publication-title: Adv Mater doi: 10.1002/adma.201200607 – volume: 526 start-page: 118 year: 2015 ident: 10.1016/j.nano.2018.08.002_bb0100 article-title: Nanoparticle biointerfacing by platelet membrane cloaking publication-title: Nature doi: 10.1038/nature15373 – volume: 3 start-page: 947 year: 2010 ident: 10.1016/j.nano.2018.08.002_bb0225 article-title: Molecular imaging of activated von Willebrand factor to detect high-risk atherosclerotic phenotype publication-title: JACC Cardiovasc Imaging doi: 10.1016/j.jcmg.2010.06.013 – volume: 172 start-page: 31 year: 2004 ident: 10.1016/j.nano.2018.08.002_bb0130 article-title: Rapamycin attenuates atherosclerosis induced by dietary cholesterol in apolipoprotein-deficient mice through a p27 Kip1 -independent pathway publication-title: Atherosclerosis doi: 10.1016/j.atherosclerosis.2003.09.003 – volume: 67 start-page: 266 year: 2016 ident: 10.1016/j.nano.2018.08.002_bb0185 article-title: Autophagy: An exposing therapeutic target in atherosclerosis publication-title: J Cardiovasc Pharmacol doi: 10.1097/FJC.0000000000000342 – volume: 1 start-page: 60 year: 2012 ident: 10.1016/j.nano.2018.08.002_bb0060 article-title: Atherosclerosis, platelets and thrombosis in acute ischaemic heart disease publication-title: Eur Heart J Acute Cardiovasc Care doi: 10.1177/2048872612441582 – volume: 123 start-page: 980 year: 2013 ident: 10.1016/j.nano.2018.08.002_bb0170 article-title: Rapalogs and mTOR inhibitors as anti-aging therapeutics publication-title: J Clin Invest doi: 10.1172/JCI64099 – volume: 37 start-page: 150 year: 2016 ident: 10.1016/j.nano.2018.08.002_bb0180 article-title: The roles of macrophage autophagy in atherosclerosis publication-title: Acta Pharmacol Sin doi: 10.1038/aps.2015.87 – volume: 220 start-page: 600 year: 2015 ident: 10.1016/j.nano.2018.08.002_bb0095 article-title: Cell membrane-camouflaged nanoparticles for drug delivery publication-title: J Control Release doi: 10.1016/j.jconrel.2015.07.019 – volume: 11 start-page: 191 year: 2015 ident: 10.1016/j.nano.2018.08.002_bb0015 article-title: Nanomedicine for atherosclerosis: molecular imaging and treatment publication-title: J Biomed Nanotechnol doi: 10.1166/jbn.2015.1943 – volume: 114 start-page: 1852 year: 2014 ident: 10.1016/j.nano.2018.08.002_bb0175 article-title: Mechanisms of plaque formation and rupture publication-title: Circ Res doi: 10.1161/CIRCRESAHA.114.302721 – volume: 14 start-page: 97 year: 2000 ident: 10.1016/j.nano.2018.08.002_bb0195 article-title: Therapeutic drug monitoring of sirolimus: correlations with efficacy and toxicity publication-title: Clin Transplant doi: 10.1034/j.1399-0012.2000.140201.x – volume: 99 start-page: 2164 year: 1999 ident: 10.1016/j.nano.2018.08.002_bb0280 article-title: Inhibition of intimal thickening after balloon angioplasty in porcine coronary arteries by targeting regulators of the cell cycle publication-title: Circulation doi: 10.1161/01.CIR.99.16.2164 – volume: 17 start-page: 1423 year: 2011 ident: 10.1016/j.nano.2018.08.002_bb0055 article-title: Arterial thrombosis--insidious, unpredictable and deadly publication-title: Nat Med doi: 10.1038/nm.2515 – volume: 156 start-page: 774 year: 2009 ident: 10.1016/j.nano.2018.08.002_bb0145 article-title: Low-dose oral sirolimus reduces atherogenesis, vascular inflammation and modulates plaque composition in mice lacking the LDL receptor publication-title: Br J Pharmacol doi: 10.1111/j.1476-5381.2008.00080.x – volume: 12 start-page: 109 year: 2018 ident: 10.1016/j.nano.2018.08.002_bb0110 article-title: Nanoparticle Functionalization with Platelet Membrane Enables Multifactored Biological Targeting and Detection of Atherosclerosis publication-title: ACS Nano doi: 10.1021/acsnano.7b07720 – volume: 233 start-page: 601 year: 2014 ident: 10.1016/j.nano.2018.08.002_bb0160 article-title: mTOR inhibition: a promising strategy for stabilization of atherosclerotic plaques publication-title: Atherosclerosis doi: 10.1016/j.atherosclerosis.2014.01.040 – volume: 8 start-page: 11243 year: 2014 ident: 10.1016/j.nano.2018.08.002_bb0220 article-title: Platelet-like nanoparticles: mimicking shape, flexibility, and surface biology of platelets to target vascular injuries publication-title: ACS Nano doi: 10.1021/nn503732m – volume: 14 start-page: 910 year: 2013 ident: 10.1016/j.nano.2018.08.002_bb0250 article-title: A platelet-mimetic paradigm for metastasis-targeted nanomedicine platforms publication-title: Biomacromolecules doi: 10.1021/bm301996p – volume: 156 start-page: 941 year: 2009 ident: 10.1016/j.nano.2018.08.002_bb0155 article-title: Oral rapamycin attenuates inflammation and enhances stability of atherosclerotic plaques in rabbits independent of serum lipid levels publication-title: Br J Pharmacol doi: 10.1111/j.1476-5381.2008.00102.x – volume: 9 start-page: 61 year: 2003 ident: 10.1016/j.nano.2018.08.002_bb0045 article-title: Circulating activated platelets exacerbate atherosclerosis in mice deficient in apolipoprotein E publication-title: Nat Med doi: 10.1038/nm810 – volume: 196 start-page: 887 year: 2002 ident: 10.1016/j.nano.2018.08.002_bb0050 article-title: A critical role of platelet adhesion in the initiation of atherosclerotic lesion formation publication-title: J Exp Med doi: 10.1084/jem.20012044 – volume: 13 start-page: 1495 year: 2012 ident: 10.1016/j.nano.2018.08.002_bb0240 article-title: Peptide-decorated liposomes promote arrest and aggregation of activated platelets under flow on vascular injury relevant protein surfaces in vitro publication-title: Biomacromolecules doi: 10.1021/bm300192t – volume: 19 start-page: 2524 year: 1999 ident: 10.1016/j.nano.2018.08.002_bb0260 article-title: Intimal deposition of functional von Willebrand factor in atherogenesis publication-title: Arterioscler Thromb Vasc Biol doi: 10.1161/01.ATV.19.10.2524 – volume: 526 start-page: 47 year: 2015 ident: 10.1016/j.nano.2018.08.002_bb0275 article-title: Nanotechnology: Platelet mimicry publication-title: Nature doi: 10.1038/nature15218 – volume: 9 start-page: 6450 year: 2015 ident: 10.1016/j.nano.2018.08.002_bb0085 article-title: Detoxification of organophosphate poisoning using nanoparticle bioscavengers publication-title: ACS Nano doi: 10.1021/acsnano.5b02132 – volume: 328 start-page: 419 year: 2009 ident: 10.1016/j.nano.2018.08.002_bb0140 article-title: Everolimus inhibits monocyte/macrophage migration in vitro and their accumulation in carotid lesions of cholesterol-fed rabbits publication-title: J Pharmacol Exp Ther doi: 10.1124/jpet.108.144147 – volume: 5 start-page: 418 year: 2015 ident: 10.1016/j.nano.2018.08.002_bb0200 article-title: Detection of high-risk atherosclerotic plaques with ultrasound molecular imaging of glycoprotein IIb/IIIa receptor on activated platelets publication-title: Theranostics doi: 10.7150/thno.10020 – volume: 29 year: 2017 ident: 10.1016/j.nano.2018.08.002_bb0105 article-title: Erythrocyte-platelet hybrid membrane coating for enhanced nanoparticle functionalization publication-title: Adv Mater doi: 10.1002/adma.201606209 – volume: 28 start-page: 403 year: 2008 ident: 10.1016/j.nano.2018.08.002_bb0270 article-title: Cell adhesion mechanisms in platelets publication-title: Arterioscler Thromb Vasc Biol doi: 10.1161/ATVBAHA.107.150474 – volume: 14 start-page: 2181 year: 2014 ident: 10.1016/j.nano.2018.08.002_bb0070 article-title: Cancer cell membrane-coated nanoparticles for anticancer vaccination and drug delivery publication-title: Nano Lett doi: 10.1021/nl500618u – volume: 5 start-page: 203 issue: Suppl. 1 year: 2007 ident: 10.1016/j.nano.2018.08.002_bb0040 article-title: Platelets, inflammation and atherosclerosis publication-title: J Thromb Haemost doi: 10.1111/j.1538-7836.2007.02517.x – volume: 4 start-page: 2408 year: 2015 ident: 10.1016/j.nano.2018.08.002_bb0010 article-title: Recent advances in targeted, self-assembling nanoparticles to address vascular damage due to atherosclerosis publication-title: Adv Healthc Mater doi: 10.1002/adhm.201500126 – volume: 32 start-page: 9504 year: 2011 ident: 10.1016/j.nano.2018.08.002_bb0245 article-title: Heteromultivalent liposomal nanoconstructs for enhanced targeting and shear-stable binding to active platelets for site-selective vascular drug delivery publication-title: Biomaterials doi: 10.1016/j.biomaterials.2011.08.067 – volume: 23 start-page: 1266 year: 2012 ident: 10.1016/j.nano.2018.08.002_bb0235 article-title: Mimicking adhesive functionalities of blood platelets using ligand-decorated liposomes publication-title: Bioconjug Chem doi: 10.1021/bc300086d – volume: 6 start-page: 235 year: 2008 ident: 10.1016/j.nano.2018.08.002_bb0035 article-title: Platelets modulate atherogenesis and progression of atherosclerotic plaques via interaction with progenitor and dendritic cells publication-title: J Thromb Haemost doi: 10.1111/j.1538-7836.2007.02867.x – volume: 111 start-page: 116 year: 2016 ident: 10.1016/j.nano.2018.08.002_bb0115 article-title: Nanoparticles camouflaged in platelet membrane coating as an antibody decoy for the treatment of immune thrombocytopenia publication-title: Biomaterials doi: 10.1016/j.biomaterials.2016.10.003 – volume: 129 start-page: 1415 year: 2017 ident: 10.1016/j.nano.2018.08.002_bb0025 article-title: Platelets and von Willebrand factor in atherogenesis publication-title: Blood doi: 10.1182/blood-2016-07-692673 – volume: 108 start-page: 10980 year: 2011 ident: 10.1016/j.nano.2018.08.002_bb0065 article-title: Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1106634108 – volume: 27 start-page: 7043 year: 2015 ident: 10.1016/j.nano.2018.08.002_bb0120 article-title: Anticancer platelet-mimicking Nanovehicles publication-title: Adv Mater doi: 10.1002/adma.201503323 – volume: 11 start-page: 357 year: 2013 ident: 10.1016/j.nano.2018.08.002_bb0210 article-title: Platelets express and release osteocalcin and co-localize in human calcified atherosclerotic plaques publication-title: J Thromb Haemost doi: 10.1111/jth.12088 – volume: 5 start-page: 294 year: 2014 ident: 10.1016/j.nano.2018.08.002_bb0020 article-title: Platelets and their chemokines in atherosclerosis-clinical applications publication-title: Front Physiol doi: 10.3389/fphys.2014.00294 – volume: 8 start-page: 933 year: 2013 ident: 10.1016/j.nano.2018.08.002_bb0075 article-title: Nanoparticle-detained toxins for safe and effective vaccination publication-title: Nat Nanotechnol doi: 10.1038/nnano.2013.254 – volume: 11 start-page: 927 year: 2015 ident: 10.1016/j.nano.2018.08.002_bb0205 article-title: Nanoparticles functionalised with an anti-platelet human antibody for in vivo detection of atherosclerotic plaque by magnetic resonance imaging publication-title: Nanomedicine doi: 10.1016/j.nano.2014.12.006 – volume: 8 start-page: 336 year: 2013 ident: 10.1016/j.nano.2018.08.002_bb0080 article-title: A biomimetic nanosponge that absorbs pore-forming toxins publication-title: Nat Nanotechnol doi: 10.1038/nnano.2013.54 – volume: 1 start-page: 0011 year: 2017 ident: 10.1016/j.nano.2018.08.002_bb0125 article-title: In situ activation of platelets with checkpoint inhibitors for post-surgical cancer immunotherapy publication-title: Nat Biomed Eng doi: 10.1038/s41551-016-0011 – volume: 3 start-page: 241 year: 2007 ident: 10.1016/j.nano.2018.08.002_bb0190 article-title: Everolimus-induced mTOR inhibition selectively depletes macrophages in atherosclerotic plaques by autophagy publication-title: Autophagy doi: 10.4161/auto.3711 – volume: 99 start-page: 480 year: 2008 ident: 10.1016/j.nano.2018.08.002_bb0030 article-title: Platelet-vessel wall interactions in atherosclerotic disease publication-title: Thromb Haemost doi: 10.1160/TH07-11-0685 – volume: 101 start-page: 2661 year: 2003 ident: 10.1016/j.nano.2018.08.002_bb0255 article-title: Platelet P-selectin facilitates atherosclerotic lesion development publication-title: Blood doi: 10.1182/blood-2002-07-2209 – volume: 32 start-page: 225 year: 2002 ident: 10.1016/j.nano.2018.08.002_bb0265 article-title: Pathogenesis of the acute coronary syndromes and therapeutic implications publication-title: Pathophysiol Haemost Thromb doi: 10.1159/000073571 – volume: 131 start-page: e29 year: 2015 ident: 10.1016/j.nano.2018.08.002_bb0005 article-title: Heart disease and stroke statistics--2015 update: a report from the American Heart Association publication-title: Circulation – volume: 128 start-page: 69 year: 2017 ident: 10.1016/j.nano.2018.08.002_bb0090 article-title: Cell membrane-derived nanomaterials for biomedical applications publication-title: Biomaterials doi: 10.1016/j.biomaterials.2017.02.041 – volume: 12 start-page: 2007 year: 2017 ident: 10.1016/j.nano.2018.08.002_bb0215 article-title: Cell membrane-derived nanoparticles: emerging clinical opportunities for targeted drug delivery publication-title: Nanomedicine doi: 10.2217/nnm-2017-0100 |
SSID | ssj0037009 |
Score | 2.5886035 |
Snippet | Although certain success has been achieved in atherosclerosis treatment, tremendous challenges remain in developing more efficient strategies to treat... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 13 |
SubjectTerms | Animals Apolipoproteins E - genetics Apolipoproteins E - physiology Atherosclerosis Atherosclerosis - drug therapy Atherosclerosis - genetics Atherosclerosis - pathology Autophagy Blood Platelets - physiology Cell Membrane - chemistry Cell Membrane - metabolism Cells, Cultured Drug Delivery Systems Immunosuppressive Agents - pharmacology Male Mice Mice, Inbred C57BL Mice, Knockout Nanoparticles - administration & dosage Nanoparticles - chemistry Plaque, Atherosclerotic - drug therapy Plaque, Atherosclerotic - genetics Plaque, Atherosclerotic - pathology Platelet Adhesiveness Platelet membrane-coated nanoparticle Rapamycin Sirolimus - pharmacology Targeting delivery |
Title | Platelet membrane-coated nanoparticle-mediated targeting delivery of Rapamycin blocks atherosclerotic plaque development and stabilizes plaque in apolipoprotein E-deficient (ApoE−/−) mice |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1549963418305069 https://dx.doi.org/10.1016/j.nano.2018.08.002 https://www.ncbi.nlm.nih.gov/pubmed/30171903 https://www.proquest.com/docview/2098770899 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqIiEuiDdLoTISBxBy10lsJz6uVlstj1ZVoVJvkeOHVNhNou720B44c-YP8V_4Jcw4ySIOLRKH1SrWjOO1JzOT9TefCXkFQb2wIjiWZD5lwuWKGZkYpjm3xkrpkgSLkw8O1fxEvD-Vp1tkOtTCIKyy9_2dT4_eum8Z97M5bs_Oxp-QXAzMR4BRcskVFvEJkaOV733bwDyynEeYBwozlO4LZzqMV21qLABMir0OUnldcLou-YxBaP8eudtnj3TSDfA-2fL1A3L7oN8ff0h-Hi0gd4SloEu_hPfg2jPbQIujOIa2_2Eslotga4cDh-hFnV8gQuOSNoEeQwBdXkKPtIJQ93VFY5bYrED1vIEeaLswME7q_gCOqKkdhUQTobZXfjVIQBcGj4Fom8gHAZcz5jySVqDO60nbzH59_zGGzxu6BJf1iJzszz5P56w_ooFZkWdrpqrAheNOaW9lsKnLhK2sl8ZY7mUIkZ4-10H61FRpapI8bm5qFYSXlQ3ZY7JdN7V_SqjSSlikgoGcRyTaG0hEQ6UrhRxnhSpGJBnWprQ9fzkeo7EoB6DalxLnssT1LPFsTZ6OyNuNTtuxd9wonQ1LXg51qeBJSwguN2rJjdZflvtPvZeDVZXwSOM-DVhFc7ECIV3kOe7HjsiTztw2o8-Q30jz7Nl_3nWH3IEr3f2J9Jxsr88v_AtIq9bVbnxudsmtyfT44xF-v_swP_wNTJQo1Q |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbKVoJeEG-2vIzEAYTcdRLbiY-raqst7a4QtFJvkeOHVNhNou72UH4BZ_4Q_4Vfwkweizi0SBxyiONxHHsyM4m_-UzIG3DqmRXBsSjxMRMuVczIyDDNuTVWShdFmJw8m6vpqfhwJs-2yH6fC4Owys72tza9sdZdyagbzVF9fj76jORioD4ClJJLrvQtso3sVHJAtseHR9N5b5CTlDdID6zPUKDLnWlhXqUpMQcwyvZaVOV1_um6-LPxQwf3yN0ugKTjto_3yZYvH5Dbs26J_CH5-XEB4SPMBl36JXwKl57ZCkocxT7U3bOxJmMES1soODgw6vwCQRpXtAr0E_jQ5RW0SAvwdl9XtAkUqxWIXlTQAq0XBvpJ3R_METWloxBrItr2m1_1NaAJgztB1FVDCQGnE-Y88lagzNtxXU1-ff8xguMdXYLVekRODyYn-1PW7dLArEiTNVNF4MJxp7S3MtjYJcIW1ktjLPcyhIahPtVB-tgUcWyitFnf1CoILwsbksdkUFalf0qo0kpYZIOBsEdE2huIRUOhC4U0Z5nKhiTq5ya3HYU57qSxyHus2pccxzLH-cxxe00eD8n7jUzdEnjcWDvppzzvU1PBmObgX26Ukhupv5T3n3Kve63K4a3GpRrQiupyBZV0lqa4JDskT1p12_Q-QYojzZPd_7zrK3JnejI7zo8P50fPyA5c0e0_pedksL649C8gyloXL7u36DcHBinx |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Platelet+membrane-coated+nanoparticle-mediated+targeting+delivery+of+Rapamycin+blocks+atherosclerotic+plaque+development+and+stabilizes+plaque+in+apolipoprotein+E-deficient+%28ApoE%E2%88%92%2F%E2%88%92%29+mice&rft.jtitle=Nanomedicine&rft.au=Song%2C+Yanan&rft.au=Huang%2C+Zheyong&rft.au=Liu%2C+Xin&rft.au=Pang%2C+Zhiqing&rft.date=2019-01-01&rft.issn=1549-9634&rft.volume=15&rft.issue=1&rft.spage=13&rft.epage=24&rft_id=info:doi/10.1016%2Fj.nano.2018.08.002&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_nano_2018_08_002 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-9634&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-9634&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-9634&client=summon |