Platelet membrane-coated nanoparticle-mediated targeting delivery of Rapamycin blocks atherosclerotic plaque development and stabilizes plaque in apolipoprotein E-deficient (ApoE−/−) mice

Although certain success has been achieved in atherosclerosis treatment, tremendous challenges remain in developing more efficient strategies to treat atherosclerosis. Platelets have inherent affinity to plaques and naturally home to atherosclerotic sites. Rapamycin features potent anti-atherosclero...

Full description

Saved in:
Bibliographic Details
Published inNanomedicine Vol. 15; no. 1; pp. 13 - 24
Main Authors Song, Yanan, Huang, Zheyong, Liu, Xin, Pang, Zhiqing, Chen, Jing, Yang, Hongbo, Zhang, Ning, Cao, Zhonglian, Liu, Ming, Cao, Jiatian, Li, Chenguang, Yang, Xiangdong, Gong, Hui, Qian, Juying, Ge, Junbo
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.01.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Although certain success has been achieved in atherosclerosis treatment, tremendous challenges remain in developing more efficient strategies to treat atherosclerosis. Platelets have inherent affinity to plaques and naturally home to atherosclerotic sites. Rapamycin features potent anti-atherosclerosis effect, but its clinical utility is limited by its low concentration at the atherosclerotic site and severe systemic toxicity. In the present study, we used platelet membrane-coated nanoparticles (PNP) as a targeted drug delivery platform to treat atherosclerosis through mimicking platelets' inherent targeting to plaques. PNP displayed 4.98-fold greater radiant efficiency than control nanoparticles in atherosclerotic arterial trees, indicating its effective homing to atherosclerotic plaques in vivo. In an atherosclerosis model established in apolipoprotein E-deficient mice, PNP encapsulating rapamycin significantly attenuated the progression of atherosclerosis and stabilized atherosclerotic plaques. These results demonstrated the perfect efficacy and pro-resolving potential of PNP as a targeted drug delivery platform for atherosclerosis treatment. Platelet membranes were coated onto the surface of PLGA cores to mimic platelet inherent affinity to atherosclerotic plaques. TEM showed most PNP were well coated with platelet membranes. PNP could effectively target atherosclerotic plaques, delayed the progression of atherosclerosis and stabilized atherosclerotic plaques when encapsulating RAP, representing a promising platform for the treatment of atherosclerosis. [Display omitted]
AbstractList Although certain success has been achieved in atherosclerosis treatment, tremendous challenges remain in developing more efficient strategies to treat atherosclerosis. Platelets have inherent affinity to plaques and naturally home to atherosclerotic sites. Rapamycin features potent anti-atherosclerosis effect, but its clinical utility is limited by its low concentration at the atherosclerotic site and severe systemic toxicity. In the present study, we used platelet membrane-coated nanoparticles (PNP) as a targeted drug delivery platform to treat atherosclerosis through mimicking platelets' inherent targeting to plaques. PNP displayed 4.98-fold greater radiant efficiency than control nanoparticles in atherosclerotic arterial trees, indicating its effective homing to atherosclerotic plaques in vivo. In an atherosclerosis model established in apolipoprotein E-deficient mice, PNP encapsulating rapamycin significantly attenuated the progression of atherosclerosis and stabilized atherosclerotic plaques. These results demonstrated the perfect efficacy and pro-resolving potential of PNP as a targeted drug delivery platform for atherosclerosis treatment. Platelet membranes were coated onto the surface of PLGA cores to mimic platelet inherent affinity to atherosclerotic plaques. TEM showed most PNP were well coated with platelet membranes. PNP could effectively target atherosclerotic plaques, delayed the progression of atherosclerosis and stabilized atherosclerotic plaques when encapsulating RAP, representing a promising platform for the treatment of atherosclerosis. [Display omitted]
Although certain success has been achieved in atherosclerosis treatment, tremendous challenges remain in developing more efficient strategies to treat atherosclerosis. Platelets have inherent affinity to plaques and naturally home to atherosclerotic sites. Rapamycin features potent anti-atherosclerosis effect, but its clinical utility is limited by its low concentration at the atherosclerotic site and severe systemic toxicity. In the present study, we used platelet membrane-coated nanoparticles (PNP) as a targeted drug delivery platform to treat atherosclerosis through mimicking platelets' inherent targeting to plaques. PNP displayed 4.98-fold greater radiant efficiency than control nanoparticles in atherosclerotic arterial trees, indicating its effective homing to atherosclerotic plaques in vivo. In an atherosclerosis model established in apolipoprotein E-deficient mice, PNP encapsulating rapamycin significantly attenuated the progression of atherosclerosis and stabilized atherosclerotic plaques. These results demonstrated the perfect efficacy and pro-resolving potential of PNP as a targeted drug delivery platform for atherosclerosis treatment.
Although certain success has been achieved in atherosclerosis treatment, tremendous challenges remain in developing more efficient strategies to treat atherosclerosis. Platelets have inherent affinity to plaques and naturally home to atherosclerotic sites. Rapamycin features potent anti-atherosclerosis effect, but its clinical utility is limited by its low concentration at the atherosclerotic site and severe systemic toxicity. In the present study, we used platelet membrane-coated nanoparticles (PNP) as a targeted drug delivery platform to treat atherosclerosis through mimicking platelets' inherent targeting to plaques. PNP displayed 4.98-fold greater radiant efficiency than control nanoparticles in atherosclerotic arterial trees, indicating its effective homing to atherosclerotic plaques in vivo. In an atherosclerosis model established in apolipoprotein E-deficient mice, PNP encapsulating rapamycin significantly attenuated the progression of atherosclerosis and stabilized atherosclerotic plaques. These results demonstrated the perfect efficacy and pro-resolving potential of PNP as a targeted drug delivery platform for atherosclerosis treatment.Although certain success has been achieved in atherosclerosis treatment, tremendous challenges remain in developing more efficient strategies to treat atherosclerosis. Platelets have inherent affinity to plaques and naturally home to atherosclerotic sites. Rapamycin features potent anti-atherosclerosis effect, but its clinical utility is limited by its low concentration at the atherosclerotic site and severe systemic toxicity. In the present study, we used platelet membrane-coated nanoparticles (PNP) as a targeted drug delivery platform to treat atherosclerosis through mimicking platelets' inherent targeting to plaques. PNP displayed 4.98-fold greater radiant efficiency than control nanoparticles in atherosclerotic arterial trees, indicating its effective homing to atherosclerotic plaques in vivo. In an atherosclerosis model established in apolipoprotein E-deficient mice, PNP encapsulating rapamycin significantly attenuated the progression of atherosclerosis and stabilized atherosclerotic plaques. These results demonstrated the perfect efficacy and pro-resolving potential of PNP as a targeted drug delivery platform for atherosclerosis treatment.
Author Li, Chenguang
Liu, Ming
Qian, Juying
Yang, Hongbo
Gong, Hui
Pang, Zhiqing
Cao, Jiatian
Song, Yanan
Ge, Junbo
Huang, Zheyong
Yang, Xiangdong
Liu, Xin
Cao, Zhonglian
Chen, Jing
Zhang, Ning
Author_xml – sequence: 1
  givenname: Yanan
  surname: Song
  fullname: Song, Yanan
  organization: Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
– sequence: 2
  givenname: Zheyong
  surname: Huang
  fullname: Huang, Zheyong
  organization: Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
– sequence: 3
  givenname: Xin
  surname: Liu
  fullname: Liu, Xin
  organization: Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
– sequence: 4
  givenname: Zhiqing
  surname: Pang
  fullname: Pang, Zhiqing
  email: zqpang@fudan.edu.cn
  organization: School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai, China
– sequence: 5
  givenname: Jing
  surname: Chen
  fullname: Chen, Jing
  organization: Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
– sequence: 6
  givenname: Hongbo
  surname: Yang
  fullname: Yang, Hongbo
  organization: Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
– sequence: 7
  givenname: Ning
  surname: Zhang
  fullname: Zhang, Ning
  organization: Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
– sequence: 8
  givenname: Zhonglian
  surname: Cao
  fullname: Cao, Zhonglian
  organization: School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai, China
– sequence: 9
  givenname: Ming
  surname: Liu
  fullname: Liu, Ming
  organization: Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
– sequence: 10
  givenname: Jiatian
  surname: Cao
  fullname: Cao, Jiatian
  organization: Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
– sequence: 11
  givenname: Chenguang
  surname: Li
  fullname: Li, Chenguang
  organization: Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
– sequence: 12
  givenname: Xiangdong
  surname: Yang
  fullname: Yang, Xiangdong
  organization: Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
– sequence: 13
  givenname: Hui
  surname: Gong
  fullname: Gong, Hui
  organization: Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
– sequence: 14
  givenname: Juying
  surname: Qian
  fullname: Qian, Juying
  email: juyingqian@126.com
  organization: Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
– sequence: 15
  givenname: Junbo
  surname: Ge
  fullname: Ge, Junbo
  email: junboge@126.com
  organization: Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30171903$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtuFDEQhlsoiDzgAiyQl8miJ273axqxiaLhIUUCIVhb1e5y8MRtN7ZnpOEErLkQd-EkVDNJFlkEqSzbpf_7VfrrODtw3mGWvSz4ouBFc75eOHB-IXixXHAqLp5kR0VddXnXVOLg_l1Wh9lxjGvOy5bz7ll2WPKiLTpeHmW_P1lIaDGxEcc-gMNceeoMbPaeICSjLOYjDuZfN0G4xmTcNRvQmi2GHfOafYYJxp0yjvXWq5vIIH3D4COhwZMDmyx83yAxW7R-GtElBm5gMUFvrPmB8U5BFjB5ayY_EYn0XeUDaqPMzJxeTH715-evczpnbDQKn2dPNdiIL27vk-zr29WXy_f51cd3Hy4vrnJVtWXKm17zauBD06GqtRJDWaleYQ2gONZai7Kp2rbTNQrohYCi7Tnl2TW6wrpXujzJTve-NBbNGZMcTVRoLSXmN1EK3i3bli-7jqSvbqWbnnKTUzAjhJ28C50EYi9QFFEMqO8lBZfzZuVazunLebOSU3FB0PIBpEyCZLxLAYx9HH2zR5EC2hoMMs5xKtppQJXk4M3j-OsHuLLGGQX2Bnf_g_8CbGTaNg
CitedBy_id crossref_primary_10_1016_j_jconrel_2020_11_064
crossref_primary_10_3390_pharmaceutics13040503
crossref_primary_10_1039_D2TB00003B
crossref_primary_10_1016_j_biomaterials_2023_122450
crossref_primary_10_1038_s41392_021_00631_2
crossref_primary_10_2217_nnm_2019_0172
crossref_primary_10_1002_wnan_1702
crossref_primary_10_1016_j_ejphar_2023_175712
crossref_primary_10_1007_s10557_023_07461_0
crossref_primary_10_1016_j_bioadv_2022_212775
crossref_primary_10_1016_j_apsb_2022_03_026
crossref_primary_10_1680_jbibn_23_00042
crossref_primary_10_1093_rb_rbaa019
crossref_primary_10_1186_s12951_019_0494_y
crossref_primary_10_1016_j_biomaterials_2023_122065
crossref_primary_10_1016_j_nantod_2024_102414
crossref_primary_10_3389_fbioe_2023_1177151
crossref_primary_10_1016_j_bios_2022_114613
crossref_primary_10_1016_j_apsb_2023_06_005
crossref_primary_10_2147_IJN_S452824
crossref_primary_10_3390_pharmaceutics13091430
crossref_primary_10_2174_1389201024666230804140926
crossref_primary_10_1016_j_jconrel_2020_09_012
crossref_primary_10_1021_acsnano_4c04814
crossref_primary_10_3390_molecules26113428
crossref_primary_10_1186_s12951_024_02775_z
crossref_primary_10_3389_fchem_2022_868063
crossref_primary_10_1155_2022_7695078
crossref_primary_10_1002_adhm_202201214
crossref_primary_10_1055_s_0042_1751036
crossref_primary_10_3390_pharmaceutics13111887
crossref_primary_10_1016_j_apsb_2021_01_020
crossref_primary_10_1016_j_matchemphys_2024_129692
crossref_primary_10_33380_2305_2066_2024_13_4_1897
crossref_primary_10_1016_j_xinn_2022_100214
crossref_primary_10_1002_adhm_202000336
crossref_primary_10_1016_j_matdes_2024_112806
crossref_primary_10_3389_fphar_2021_755569
crossref_primary_10_3390_cells8080881
crossref_primary_10_1016_j_cej_2022_138992
crossref_primary_10_1002_jex2_49
crossref_primary_10_1016_j_ijpharm_2025_125228
crossref_primary_10_3389_fcell_2021_734720
crossref_primary_10_1021_acsami_3c16735
crossref_primary_10_1080_10717544_2023_2288797
crossref_primary_10_1186_s12951_022_01251_w
crossref_primary_10_1007_s13346_023_01494_6
crossref_primary_10_1016_j_jconrel_2023_12_052
crossref_primary_10_1016_j_ijpharm_2021_121297
crossref_primary_10_1039_C9BM01392J
crossref_primary_10_1021_acsbiomaterials_0c00281
crossref_primary_10_1016_j_addr_2021_01_005
crossref_primary_10_14336_AD_2022_1208
crossref_primary_10_2147_IJN_S290537
crossref_primary_10_1016_j_nano_2019_02_024
crossref_primary_10_1016_j_cej_2020_127296
crossref_primary_10_1049_nbt2_12137
crossref_primary_10_1080_21691401_2024_2416951
crossref_primary_10_2217_nnm_2019_0388
crossref_primary_10_1039_C9NH00291J
crossref_primary_10_1021_acsami_0c12688
crossref_primary_10_1080_1061186X_2024_2347353
crossref_primary_10_1021_acsabm_4c01373
crossref_primary_10_1016_j_colsurfb_2024_113893
crossref_primary_10_1039_D3BM00893B
crossref_primary_10_1186_s12951_024_02548_8
crossref_primary_10_1002_advs_202304294
crossref_primary_10_1093_rb_rbac064
crossref_primary_10_1186_s12951_021_01113_x
crossref_primary_10_1080_17425247_2021_1933428
crossref_primary_10_1016_j_biomaterials_2022_121529
crossref_primary_10_1039_D4TB00565A
crossref_primary_10_3390_ijms25063206
crossref_primary_10_1021_acsnano_1c03800
crossref_primary_10_1016_j_pmatsci_2020_100768
crossref_primary_10_1038_s41598_025_86716_2
crossref_primary_10_1080_10717544_2022_2117434
crossref_primary_10_1155_2022_8006642
crossref_primary_10_1186_s12951_021_01095_w
crossref_primary_10_1016_j_ijpharm_2022_122407
crossref_primary_10_1002_adhm_202302074
crossref_primary_10_1016_j_ijpharm_2022_121790
crossref_primary_10_1097_FJC_0000000000001208
crossref_primary_10_1016_j_ejpb_2022_01_004
crossref_primary_10_1039_D1NR06514A
crossref_primary_10_3389_fcvm_2022_1037741
crossref_primary_10_1039_C9RA10921H
crossref_primary_10_1016_j_ejps_2019_105136
crossref_primary_10_1039_D0BM02125C
crossref_primary_10_1177_20417314221088509
crossref_primary_10_1007_s13346_025_01792_1
crossref_primary_10_3390_pharmaceutics14020361
crossref_primary_10_2174_1389450120666190702162533
crossref_primary_10_1016_j_apsb_2020_12_018
crossref_primary_10_1016_j_biopha_2023_114451
crossref_primary_10_3390_pharmaceutics15010073
crossref_primary_10_1016_j_cocis_2020_101408
crossref_primary_10_1002_btm2_10441
crossref_primary_10_1002_SMMD_20230015
crossref_primary_10_59717_j_xinn_med_2023_100015
crossref_primary_10_1016_j_biomaterials_2021_121324
crossref_primary_10_1002_advs_202204814
crossref_primary_10_1248_cpb_c21_00961
crossref_primary_10_1002_adbi_202000174
crossref_primary_10_1016_j_colsurfb_2022_112464
crossref_primary_10_1016_j_biomaterials_2021_120875
crossref_primary_10_1039_D1BM00924A
crossref_primary_10_1039_D4TB02477J
crossref_primary_10_1007_s11051_021_05370_7
crossref_primary_10_1016_j_isci_2022_105147
crossref_primary_10_1186_s40001_024_02124_8
crossref_primary_10_1016_j_colsurfb_2025_114542
crossref_primary_10_1016_j_ymeth_2019_12_004
crossref_primary_10_1186_s12944_023_01891_3
crossref_primary_10_1002_advs_202302918
crossref_primary_10_1016_j_actbio_2023_04_019
crossref_primary_10_1002_mabi_202200537
crossref_primary_10_1002_sstr_202000018
crossref_primary_10_1016_j_ijcha_2022_101149
crossref_primary_10_1016_j_ejps_2021_105803
crossref_primary_10_1016_j_nano_2021_102360
crossref_primary_10_1038_s41401_020_0436_0
crossref_primary_10_1016_j_nano_2023_102682
crossref_primary_10_3389_fphar_2022_1026386
crossref_primary_10_1002_adhm_202302320
crossref_primary_10_1002_adbi_202300141
crossref_primary_10_1016_j_envres_2023_116637
crossref_primary_10_1016_j_matdes_2023_112005
crossref_primary_10_3389_fbioe_2021_686684
crossref_primary_10_1002_SMMD_20240006
crossref_primary_10_1016_j_apsb_2023_05_018
crossref_primary_10_1016_j_cis_2025_103462
crossref_primary_10_1002_smll_202202962
crossref_primary_10_3389_fcell_2022_844050
crossref_primary_10_3390_biomedicines12071504
crossref_primary_10_1016_j_biomaterials_2023_122288
crossref_primary_10_1080_10717544_2021_1934188
crossref_primary_10_1093_rb_rbad069
crossref_primary_10_2147_IJN_S285952
crossref_primary_10_1016_j_jconrel_2023_06_023
crossref_primary_10_3390_nano11112790
crossref_primary_10_1039_D4NH00457D
crossref_primary_10_1016_j_biomaterials_2021_121028
crossref_primary_10_1038_s41569_021_00629_x
crossref_primary_10_3390_molecules29122873
crossref_primary_10_34133_2022_9845459
crossref_primary_10_1016_j_colsurfb_2024_113979
crossref_primary_10_1007_s12094_021_02771_x
crossref_primary_10_1007_s40820_019_0330_9
crossref_primary_10_1016_j_matt_2020_05_017
crossref_primary_10_1021_acsami_4c09548
crossref_primary_10_1039_D0BM00762E
crossref_primary_10_1186_s12951_022_01720_2
crossref_primary_10_1039_D2AN01374F
Cites_doi 10.1097/01.fjc.0000177985.14305.15
10.1517/14740338.2013.752814
10.1016/j.atherosclerosis.2007.09.019
10.1002/adma.201200607
10.1038/nature15373
10.1016/j.jcmg.2010.06.013
10.1016/j.atherosclerosis.2003.09.003
10.1097/FJC.0000000000000342
10.1177/2048872612441582
10.1172/JCI64099
10.1038/aps.2015.87
10.1016/j.jconrel.2015.07.019
10.1166/jbn.2015.1943
10.1161/CIRCRESAHA.114.302721
10.1034/j.1399-0012.2000.140201.x
10.1161/01.CIR.99.16.2164
10.1038/nm.2515
10.1111/j.1476-5381.2008.00080.x
10.1021/acsnano.7b07720
10.1016/j.atherosclerosis.2014.01.040
10.1021/nn503732m
10.1021/bm301996p
10.1111/j.1476-5381.2008.00102.x
10.1038/nm810
10.1084/jem.20012044
10.1021/bm300192t
10.1161/01.ATV.19.10.2524
10.1038/nature15218
10.1021/acsnano.5b02132
10.1124/jpet.108.144147
10.7150/thno.10020
10.1002/adma.201606209
10.1161/ATVBAHA.107.150474
10.1021/nl500618u
10.1111/j.1538-7836.2007.02517.x
10.1002/adhm.201500126
10.1016/j.biomaterials.2011.08.067
10.1021/bc300086d
10.1111/j.1538-7836.2007.02867.x
10.1016/j.biomaterials.2016.10.003
10.1182/blood-2016-07-692673
10.1073/pnas.1106634108
10.1002/adma.201503323
10.1111/jth.12088
10.3389/fphys.2014.00294
10.1038/nnano.2013.254
10.1016/j.nano.2014.12.006
10.1038/nnano.2013.54
10.1038/s41551-016-0011
10.4161/auto.3711
10.1160/TH07-11-0685
10.1182/blood-2002-07-2209
10.1159/000073571
10.1016/j.biomaterials.2017.02.041
10.2217/nnm-2017-0100
ContentType Journal Article
Copyright 2018 Elsevier Inc.
Copyright © 2018 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2018 Elsevier Inc.
– notice: Copyright © 2018 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.nano.2018.08.002
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1549-9642
EndPage 24
ExternalDocumentID 30171903
10_1016_j_nano_2018_08_002
S1549963418305069
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.GJ
.~1
0R~
123
1B1
1P~
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
AAAJQ
AABXZ
AAEDT
AAEDW
AAEPC
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARKO
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABGSF
ABMAC
ABMZM
ABUDA
ABWVN
ABXDB
ABXRA
ABZDS
ACDAQ
ACGFS
ACIEU
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADTZH
ADUVX
AEBSH
AECPX
AEHWI
AEIPS
AEKER
AEUPX
AEVXI
AEZYN
AFJKZ
AFPUW
AFRHN
AFRZQ
AFTJW
AFXIZ
AGCQF
AGEKW
AGHFR
AGUBO
AGYEJ
AHJVU
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALCLG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AXJTR
BJAXD
BKOJK
BLXMC
BNPGV
CJTIS
CS3
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LUGTX
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OD~
OGGZJ
OO0
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SEL
SES
SEW
SPC
SSH
SSI
SSM
SSP
SST
SSU
SSZ
T5K
Z5R
~G-
AACTN
AAIAV
AATCM
ABLVK
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
DOVZS
EFLBG
LCYCR
RIG
AAYXX
AGRNS
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c473t-6bf04d0d69ec5fc2d34cbce5aac0e5ff2364779f5e2ab22a17b000296f4e5bcf3
IEDL.DBID .~1
ISSN 1549-9634
1549-9642
IngestDate Fri Jul 11 09:02:18 EDT 2025
Mon Jul 21 06:06:24 EDT 2025
Thu Apr 24 22:57:02 EDT 2025
Tue Jul 01 01:49:54 EDT 2025
Fri Feb 23 02:12:38 EST 2024
Tue Aug 26 16:33:33 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords RAP
vWF
PT
ALT
DLS
Targeting delivery
SMCs
Autophagy
HDL
Platelet membrane-coated nanoparticle
PNP
LDL
CM-NP
Atherosclerosis
BUN
ApoE−/− mice
RAP-PNP
AST
RAP-NP
Rapamycin
TC
APTT
PLGA
TG
TEM
DiD
HUVECs
Language English
License Copyright © 2018 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c473t-6bf04d0d69ec5fc2d34cbce5aac0e5ff2364779f5e2ab22a17b000296f4e5bcf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 30171903
PQID 2098770899
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_2098770899
pubmed_primary_30171903
crossref_primary_10_1016_j_nano_2018_08_002
crossref_citationtrail_10_1016_j_nano_2018_08_002
elsevier_sciencedirect_doi_10_1016_j_nano_2018_08_002
elsevier_clinicalkey_doi_10_1016_j_nano_2018_08_002
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2019
2019-01-00
20190101
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: January 2019
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Nanomedicine
PublicationTitleAlternate Nanomedicine
PublicationYear 2019
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Mozaffarian, Benjamin, Go, Arnett, Blaha, Cushman (bb0005) 2015; 131
Jackson (bb0055) 2011; 17
Ravikumar, Modery, Wong, Dzuricky, Sen Gupta (bb0235) 2012; 23
Hu, Fang, Copp, Luk, Zhang (bb0080) 2013; 8
Wei, Ying, Dehaini, Su, Kroll, Zhou (bb0110) 2018; 12
Bentzon, Otsuka, Virmani, Falk (bb0175) 2014; 114
De Meyer, Hoylaerts, Kockx, Yamamoto, Herman, Bult (bb0260) 1999; 19
Shao, Han, Zeng, Su, Liu (bb0180) 2016; 37
Langer, Gawaz (bb0030) 2008; 99
Fang, Hu, Luk, Gao, Copp, Tai (bb0070) 2014; 14
Huo, Schober, Forlow, Smith, Hyman, Jung (bb0045) 2003; 9
Chen, Zhong, Zhang, Ji, Zhang, Zhao (bb0155) 2009; 156
Gallo, Padurean, Jayaraman, Marx, Roque, Adelman (bb0280) 1999; 99
Hu, Fang, Luk, Zhang (bb0075) 2013; 8
McCarty, Conley, Shentu, Tormoen, Zha, Xie (bb0225) 2010; 3
Modery, Ravikumar, Wong, Dzuricky, Durongkaveroj, Sen Gupta (bb0245) 2011; 32
Chung, Tirrell (bb0010) 2015; 4
Martinet, Verheye, De Meyer (bb0190) 2007; 3
Wu, Atkinson, Lindner (bb0025) 2017; 129
Hu, Sun, Qian, Wang, Bomba, Gu (bb0120) 2015; 27
Mueller, Beutner, Teupser, Ceglarek, Thiery (bb0150) 2008; 198
Guo, Shen, Wang, Wang, Li, Liu (bb0200) 2015; 5
Massberg, Brand, Gruner, Page, Muller, Muller (bb0050) 2002; 196
Hu, Fang, Wang, Luk, Thamphiwatana, Dehaini (bb0100) 2015; 526
von Hundelshausen, Schmitt (bb0020) 2014; 5
Dehaini, Wei, Fang, Masson, Angsantikul, Luk (bb0105) 2017; 29
Lindemann, Kramer, Seizer, Gawaz (bb0040) 2007; 5
Pallet, Legendre (bb0165) 2013; 12
Ravikumar, Modery, Wong, Gupta (bb0240) 2012; 13
Badimon, Badimon, Vilahur, Segales, Llorente (bb0265) 2002; 32
Wang, Sun, Ye, Hu, Bomba, Gu (bb0125) 2017; 1
Castro, Campistol, Sancho, Sanchez-Madrid, Casals, Andres (bb0130) 2004; 172
Foresta, Strapazzon, De Toni, Fabris, Grego, Gerosa (bb0210) 2013; 11
Martinet, De Loof, De Meyer (bb0160) 2014; 233
Luk, Zhang (bb0095) 2015; 220
Anselmo, Modery-Pawlowski, Menegatti, Kumar, Vogus, Tian (bb0220) 2014; 8
Karagkiozaki, Logothetidis, Pappa (bb0015) 2015; 11
Luo, Lu, Zhou, Ai, Sun, Sun (bb0185) 2016; 67
Lamming, Ye, Sabatini, Baur (bb0170) 2013; 123
Farokhzad (bb0275) 2015; 526
Kahan, Napoli, Kelly, Podbielski, Hussein, Urbauer (bb0195) 2000; 14
Pakala, Stabile, Jang, Clavijo, Waksman (bb0135) 2005; 46
Wei, Gao, Fang, Luk, Kroll, Dehaini (bb0115) 2016; 111
Doshi, Orje, Molins, Smith, Mitragotri, Ruggeri (bb0230) 2012; 24
Varga-Szabo, Pleines, Nieswandt (bb0270) 2008; 28
Fang, Jiang, Fang, Zhang (bb0090) 2017; 128
Modery-Pawlowski, Master, Pan, Howard, Sen Gupta (bb0250) 2013; 14
Burger, Wagner (bb0255) 2003; 101
Baetta, Granata, Canavesi, Ferri, Arnaboldi, Bellosta (bb0140) 2009; 328
Yurkin, Wang (bb0215) 2017; 12
Hu, Zhang, Aryal, Cheung, Fang, Zhang (bb0065) 2011; 108
Gawaz, Stellos, Langer (bb0035) 2008; 6
Pang, Hu, Fang, Luk, Gao, Wang (bb0085) 2015; 9
Zhao, Ding, Cyrus, Cheng, Tian, Ma (bb0145) 2009; 156
Badimon, Padro, Vilahur (bb0060) 2012; 1
Jacobin-Valat, Laroche-Traineau, Lariviere, Mornet, Sanchez, Biran (bb0205) 2015; 11
Martinet (10.1016/j.nano.2018.08.002_bb0190) 2007; 3
Ravikumar (10.1016/j.nano.2018.08.002_bb0235) 2012; 23
Anselmo (10.1016/j.nano.2018.08.002_bb0220) 2014; 8
Modery-Pawlowski (10.1016/j.nano.2018.08.002_bb0250) 2013; 14
Badimon (10.1016/j.nano.2018.08.002_bb0265) 2002; 32
Gallo (10.1016/j.nano.2018.08.002_bb0280) 1999; 99
Wei (10.1016/j.nano.2018.08.002_bb0110) 2018; 12
Burger (10.1016/j.nano.2018.08.002_bb0255) 2003; 101
Massberg (10.1016/j.nano.2018.08.002_bb0050) 2002; 196
Pakala (10.1016/j.nano.2018.08.002_bb0135) 2005; 46
Dehaini (10.1016/j.nano.2018.08.002_bb0105) 2017; 29
Wei (10.1016/j.nano.2018.08.002_bb0115) 2016; 111
Fang (10.1016/j.nano.2018.08.002_bb0070) 2014; 14
Hu (10.1016/j.nano.2018.08.002_bb0120) 2015; 27
Hu (10.1016/j.nano.2018.08.002_bb0075) 2013; 8
Badimon (10.1016/j.nano.2018.08.002_bb0060) 2012; 1
Hu (10.1016/j.nano.2018.08.002_bb0080) 2013; 8
Bentzon (10.1016/j.nano.2018.08.002_bb0175) 2014; 114
Yurkin (10.1016/j.nano.2018.08.002_bb0215) 2017; 12
Chung (10.1016/j.nano.2018.08.002_bb0010) 2015; 4
Farokhzad (10.1016/j.nano.2018.08.002_bb0275) 2015; 526
Fang (10.1016/j.nano.2018.08.002_bb0090) 2017; 128
McCarty (10.1016/j.nano.2018.08.002_bb0225) 2010; 3
Mozaffarian (10.1016/j.nano.2018.08.002_bb0005) 2015; 131
Huo (10.1016/j.nano.2018.08.002_bb0045) 2003; 9
De Meyer (10.1016/j.nano.2018.08.002_bb0260) 1999; 19
Ravikumar (10.1016/j.nano.2018.08.002_bb0240) 2012; 13
Hu (10.1016/j.nano.2018.08.002_bb0100) 2015; 526
Karagkiozaki (10.1016/j.nano.2018.08.002_bb0015) 2015; 11
Luk (10.1016/j.nano.2018.08.002_bb0095) 2015; 220
Luo (10.1016/j.nano.2018.08.002_bb0185) 2016; 67
Modery (10.1016/j.nano.2018.08.002_bb0245) 2011; 32
Jackson (10.1016/j.nano.2018.08.002_bb0055) 2011; 17
Kahan (10.1016/j.nano.2018.08.002_bb0195) 2000; 14
Foresta (10.1016/j.nano.2018.08.002_bb0210) 2013; 11
Varga-Szabo (10.1016/j.nano.2018.08.002_bb0270) 2008; 28
Doshi (10.1016/j.nano.2018.08.002_bb0230) 2012; 24
Mueller (10.1016/j.nano.2018.08.002_bb0150) 2008; 198
Wu (10.1016/j.nano.2018.08.002_bb0025) 2017; 129
Castro (10.1016/j.nano.2018.08.002_bb0130) 2004; 172
Guo (10.1016/j.nano.2018.08.002_bb0200) 2015; 5
Gawaz (10.1016/j.nano.2018.08.002_bb0035) 2008; 6
Lamming (10.1016/j.nano.2018.08.002_bb0170) 2013; 123
Langer (10.1016/j.nano.2018.08.002_bb0030) 2008; 99
Chen (10.1016/j.nano.2018.08.002_bb0155) 2009; 156
Wang (10.1016/j.nano.2018.08.002_bb0125) 2017; 1
Jacobin-Valat (10.1016/j.nano.2018.08.002_bb0205) 2015; 11
Martinet (10.1016/j.nano.2018.08.002_bb0160) 2014; 233
Hu (10.1016/j.nano.2018.08.002_bb0065) 2011; 108
Pang (10.1016/j.nano.2018.08.002_bb0085) 2015; 9
Shao (10.1016/j.nano.2018.08.002_bb0180) 2016; 37
von Hundelshausen (10.1016/j.nano.2018.08.002_bb0020) 2014; 5
Zhao (10.1016/j.nano.2018.08.002_bb0145) 2009; 156
Baetta (10.1016/j.nano.2018.08.002_bb0140) 2009; 328
Lindemann (10.1016/j.nano.2018.08.002_bb0040) 2007; 5
Pallet (10.1016/j.nano.2018.08.002_bb0165) 2013; 12
References_xml – volume: 9
  start-page: 6450
  year: 2015
  end-page: 6458
  ident: bb0085
  article-title: Detoxification of organophosphate poisoning using nanoparticle bioscavengers
  publication-title: ACS Nano
– volume: 27
  start-page: 7043
  year: 2015
  end-page: 7050
  ident: bb0120
  article-title: Anticancer platelet-mimicking Nanovehicles
  publication-title: Adv Mater
– volume: 67
  start-page: 266
  year: 2016
  end-page: 274
  ident: bb0185
  article-title: Autophagy: An exposing therapeutic target in atherosclerosis
  publication-title: J Cardiovasc Pharmacol
– volume: 9
  start-page: 61
  year: 2003
  end-page: 67
  ident: bb0045
  article-title: Circulating activated platelets exacerbate atherosclerosis in mice deficient in apolipoprotein E
  publication-title: Nat Med
– volume: 220
  start-page: 600
  year: 2015
  end-page: 607
  ident: bb0095
  article-title: Cell membrane-camouflaged nanoparticles for drug delivery
  publication-title: J Control Release
– volume: 14
  start-page: 97
  year: 2000
  end-page: 109
  ident: bb0195
  article-title: Therapeutic drug monitoring of sirolimus: correlations with efficacy and toxicity
  publication-title: Clin Transplant
– volume: 328
  start-page: 419
  year: 2009
  end-page: 425
  ident: bb0140
  article-title: Everolimus inhibits monocyte/macrophage migration in vitro and their accumulation in carotid lesions of cholesterol-fed rabbits
  publication-title: J Pharmacol Exp Ther
– volume: 8
  start-page: 933
  year: 2013
  end-page: 938
  ident: bb0075
  article-title: Nanoparticle-detained toxins for safe and effective vaccination
  publication-title: Nat Nanotechnol
– volume: 156
  start-page: 774
  year: 2009
  end-page: 785
  ident: bb0145
  article-title: Low-dose oral sirolimus reduces atherogenesis, vascular inflammation and modulates plaque composition in mice lacking the LDL receptor
  publication-title: Br J Pharmacol
– volume: 29
  year: 2017
  ident: bb0105
  article-title: Erythrocyte-platelet hybrid membrane coating for enhanced nanoparticle functionalization
  publication-title: Adv Mater
– volume: 12
  start-page: 177
  year: 2013
  end-page: 186
  ident: bb0165
  article-title: Adverse events associated with mTOR inhibitors
  publication-title: Expert Opin Drug Saf
– volume: 28
  start-page: 403
  year: 2008
  end-page: 412
  ident: bb0270
  article-title: Cell adhesion mechanisms in platelets
  publication-title: Arterioscler Thromb Vasc Biol
– volume: 101
  start-page: 2661
  year: 2003
  end-page: 2666
  ident: bb0255
  article-title: Platelet P-selectin facilitates atherosclerotic lesion development
  publication-title: Blood
– volume: 526
  start-page: 118
  year: 2015
  end-page: 121
  ident: bb0100
  article-title: Nanoparticle biointerfacing by platelet membrane cloaking
  publication-title: Nature
– volume: 24
  start-page: 3864
  year: 2012
  end-page: 3869
  ident: bb0230
  article-title: Platelet mimetic particles for targeting thrombi in flowing blood
  publication-title: Adv Mater
– volume: 6
  start-page: 235
  year: 2008
  end-page: 242
  ident: bb0035
  article-title: Platelets modulate atherogenesis and progression of atherosclerotic plaques via interaction with progenitor and dendritic cells
  publication-title: J Thromb Haemost
– volume: 526
  start-page: 47
  year: 2015
  end-page: 48
  ident: bb0275
  article-title: Nanotechnology: Platelet mimicry
  publication-title: Nature
– volume: 111
  start-page: 116
  year: 2016
  end-page: 123
  ident: bb0115
  article-title: Nanoparticles camouflaged in platelet membrane coating as an antibody decoy for the treatment of immune thrombocytopenia
  publication-title: Biomaterials
– volume: 114
  start-page: 1852
  year: 2014
  end-page: 1866
  ident: bb0175
  article-title: Mechanisms of plaque formation and rupture
  publication-title: Circ Res
– volume: 12
  start-page: 2007
  year: 2017
  end-page: 2019
  ident: bb0215
  article-title: Cell membrane-derived nanoparticles: emerging clinical opportunities for targeted drug delivery
  publication-title: Nanomedicine
– volume: 32
  start-page: 9504
  year: 2011
  end-page: 9514
  ident: bb0245
  article-title: Heteromultivalent liposomal nanoconstructs for enhanced targeting and shear-stable binding to active platelets for site-selective vascular drug delivery
  publication-title: Biomaterials
– volume: 14
  start-page: 910
  year: 2013
  end-page: 919
  ident: bb0250
  article-title: A platelet-mimetic paradigm for metastasis-targeted nanomedicine platforms
  publication-title: Biomacromolecules
– volume: 46
  start-page: 481
  year: 2005
  end-page: 486
  ident: bb0135
  article-title: Rapamycin attenuates atherosclerotic plaque progression in apolipoprotein E knockout mice: inhibitory effect on monocyte chemotaxis
  publication-title: J Cardiovasc Pharmacol
– volume: 5
  start-page: 294
  year: 2014
  ident: bb0020
  article-title: Platelets and their chemokines in atherosclerosis-clinical applications
  publication-title: Front Physiol
– volume: 11
  start-page: 927
  year: 2015
  end-page: 937
  ident: bb0205
  article-title: Nanoparticles functionalised with an anti-platelet human antibody for in vivo detection of atherosclerotic plaque by magnetic resonance imaging
  publication-title: Nanomedicine
– volume: 11
  start-page: 357
  year: 2013
  end-page: 365
  ident: bb0210
  article-title: Platelets express and release osteocalcin and co-localize in human calcified atherosclerotic plaques
  publication-title: J Thromb Haemost
– volume: 17
  start-page: 1423
  year: 2011
  end-page: 1436
  ident: bb0055
  article-title: Arterial thrombosis--insidious, unpredictable and deadly
  publication-title: Nat Med
– volume: 32
  start-page: 225
  year: 2002
  end-page: 231
  ident: bb0265
  article-title: Pathogenesis of the acute coronary syndromes and therapeutic implications
  publication-title: Pathophysiol Haemost Thromb
– volume: 128
  start-page: 69
  year: 2017
  end-page: 83
  ident: bb0090
  article-title: Cell membrane-derived nanomaterials for biomedical applications
  publication-title: Biomaterials
– volume: 11
  start-page: 191
  year: 2015
  end-page: 210
  ident: bb0015
  article-title: Nanomedicine for atherosclerosis: molecular imaging and treatment
  publication-title: J Biomed Nanotechnol
– volume: 37
  start-page: 150
  year: 2016
  end-page: 156
  ident: bb0180
  article-title: The roles of macrophage autophagy in atherosclerosis
  publication-title: Acta Pharmacol Sin
– volume: 99
  start-page: 480
  year: 2008
  end-page: 486
  ident: bb0030
  article-title: Platelet-vessel wall interactions in atherosclerotic disease
  publication-title: Thromb Haemost
– volume: 108
  start-page: 10980
  year: 2011
  end-page: 10985
  ident: bb0065
  article-title: Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform
  publication-title: Proc Natl Acad Sci U S A
– volume: 13
  start-page: 1495
  year: 2012
  end-page: 1502
  ident: bb0240
  article-title: Peptide-decorated liposomes promote arrest and aggregation of activated platelets under flow on vascular injury relevant protein surfaces in vitro
  publication-title: Biomacromolecules
– volume: 129
  start-page: 1415
  year: 2017
  end-page: 1419
  ident: bb0025
  article-title: Platelets and von Willebrand factor in atherogenesis
  publication-title: Blood
– volume: 1
  start-page: 0011
  year: 2017
  ident: bb0125
  article-title: In situ activation of platelets with checkpoint inhibitors for post-surgical cancer immunotherapy
  publication-title: Nat Biomed Eng
– volume: 131
  start-page: e29
  year: 2015
  end-page: 322
  ident: bb0005
  article-title: Heart disease and stroke statistics--2015 update: a report from the American Heart Association
  publication-title: Circulation
– volume: 8
  start-page: 336
  year: 2013
  end-page: 340
  ident: bb0080
  article-title: A biomimetic nanosponge that absorbs pore-forming toxins
  publication-title: Nat Nanotechnol
– volume: 4
  start-page: 2408
  year: 2015
  end-page: 2422
  ident: bb0010
  article-title: Recent advances in targeted, self-assembling nanoparticles to address vascular damage due to atherosclerosis
  publication-title: Adv Healthc Mater
– volume: 5
  start-page: 203
  year: 2007
  end-page: 211
  ident: bb0040
  article-title: Platelets, inflammation and atherosclerosis
  publication-title: J Thromb Haemost
– volume: 172
  start-page: 31
  year: 2004
  end-page: 38
  ident: bb0130
  article-title: Rapamycin attenuates atherosclerosis induced by dietary cholesterol in apolipoprotein-deficient mice through a p27 Kip1 -independent pathway
  publication-title: Atherosclerosis
– volume: 3
  start-page: 947
  year: 2010
  end-page: 955
  ident: bb0225
  article-title: Molecular imaging of activated von Willebrand factor to detect high-risk atherosclerotic phenotype
  publication-title: JACC Cardiovasc Imaging
– volume: 12
  start-page: 109
  year: 2018
  end-page: 116
  ident: bb0110
  article-title: Nanoparticle Functionalization with Platelet Membrane Enables Multifactored Biological Targeting and Detection of Atherosclerosis
  publication-title: ACS Nano
– volume: 1
  start-page: 60
  year: 2012
  end-page: 74
  ident: bb0060
  article-title: Atherosclerosis, platelets and thrombosis in acute ischaemic heart disease
  publication-title: Eur Heart J Acute Cardiovasc Care
– volume: 8
  start-page: 11243
  year: 2014
  end-page: 11253
  ident: bb0220
  article-title: Platelet-like nanoparticles: mimicking shape, flexibility, and surface biology of platelets to target vascular injuries
  publication-title: ACS Nano
– volume: 5
  start-page: 418
  year: 2015
  end-page: 430
  ident: bb0200
  article-title: Detection of high-risk atherosclerotic plaques with ultrasound molecular imaging of glycoprotein IIb/IIIa receptor on activated platelets
  publication-title: Theranostics
– volume: 99
  start-page: 2164
  year: 1999
  end-page: 2170
  ident: bb0280
  article-title: Inhibition of intimal thickening after balloon angioplasty in porcine coronary arteries by targeting regulators of the cell cycle
  publication-title: Circulation
– volume: 156
  start-page: 941
  year: 2009
  end-page: 951
  ident: bb0155
  article-title: Oral rapamycin attenuates inflammation and enhances stability of atherosclerotic plaques in rabbits independent of serum lipid levels
  publication-title: Br J Pharmacol
– volume: 198
  start-page: 39
  year: 2008
  end-page: 48
  ident: bb0150
  article-title: Prevention of atherosclerosis by the mTOR inhibitor everolimus in LDLR−/− mice despite severe hypercholesterolemia
  publication-title: Atherosclerosis
– volume: 123
  start-page: 980
  year: 2013
  end-page: 989
  ident: bb0170
  article-title: Rapalogs and mTOR inhibitors as anti-aging therapeutics
  publication-title: J Clin Invest
– volume: 14
  start-page: 2181
  year: 2014
  end-page: 2188
  ident: bb0070
  article-title: Cancer cell membrane-coated nanoparticles for anticancer vaccination and drug delivery
  publication-title: Nano Lett
– volume: 23
  start-page: 1266
  year: 2012
  end-page: 1275
  ident: bb0235
  article-title: Mimicking adhesive functionalities of blood platelets using ligand-decorated liposomes
  publication-title: Bioconjug Chem
– volume: 233
  start-page: 601
  year: 2014
  end-page: 607
  ident: bb0160
  article-title: mTOR inhibition: a promising strategy for stabilization of atherosclerotic plaques
  publication-title: Atherosclerosis
– volume: 19
  start-page: 2524
  year: 1999
  end-page: 2534
  ident: bb0260
  article-title: Intimal deposition of functional von Willebrand factor in atherogenesis
  publication-title: Arterioscler Thromb Vasc Biol
– volume: 196
  start-page: 887
  year: 2002
  end-page: 896
  ident: bb0050
  article-title: A critical role of platelet adhesion in the initiation of atherosclerotic lesion formation
  publication-title: J Exp Med
– volume: 3
  start-page: 241
  year: 2007
  end-page: 244
  ident: bb0190
  article-title: Everolimus-induced mTOR inhibition selectively depletes macrophages in atherosclerotic plaques by autophagy
  publication-title: Autophagy
– volume: 46
  start-page: 481
  year: 2005
  ident: 10.1016/j.nano.2018.08.002_bb0135
  article-title: Rapamycin attenuates atherosclerotic plaque progression in apolipoprotein E knockout mice: inhibitory effect on monocyte chemotaxis
  publication-title: J Cardiovasc Pharmacol
  doi: 10.1097/01.fjc.0000177985.14305.15
– volume: 12
  start-page: 177
  year: 2013
  ident: 10.1016/j.nano.2018.08.002_bb0165
  article-title: Adverse events associated with mTOR inhibitors
  publication-title: Expert Opin Drug Saf
  doi: 10.1517/14740338.2013.752814
– volume: 198
  start-page: 39
  year: 2008
  ident: 10.1016/j.nano.2018.08.002_bb0150
  article-title: Prevention of atherosclerosis by the mTOR inhibitor everolimus in LDLR−/− mice despite severe hypercholesterolemia
  publication-title: Atherosclerosis
  doi: 10.1016/j.atherosclerosis.2007.09.019
– volume: 24
  start-page: 3864
  year: 2012
  ident: 10.1016/j.nano.2018.08.002_bb0230
  article-title: Platelet mimetic particles for targeting thrombi in flowing blood
  publication-title: Adv Mater
  doi: 10.1002/adma.201200607
– volume: 526
  start-page: 118
  year: 2015
  ident: 10.1016/j.nano.2018.08.002_bb0100
  article-title: Nanoparticle biointerfacing by platelet membrane cloaking
  publication-title: Nature
  doi: 10.1038/nature15373
– volume: 3
  start-page: 947
  year: 2010
  ident: 10.1016/j.nano.2018.08.002_bb0225
  article-title: Molecular imaging of activated von Willebrand factor to detect high-risk atherosclerotic phenotype
  publication-title: JACC Cardiovasc Imaging
  doi: 10.1016/j.jcmg.2010.06.013
– volume: 172
  start-page: 31
  year: 2004
  ident: 10.1016/j.nano.2018.08.002_bb0130
  article-title: Rapamycin attenuates atherosclerosis induced by dietary cholesterol in apolipoprotein-deficient mice through a p27 Kip1 -independent pathway
  publication-title: Atherosclerosis
  doi: 10.1016/j.atherosclerosis.2003.09.003
– volume: 67
  start-page: 266
  year: 2016
  ident: 10.1016/j.nano.2018.08.002_bb0185
  article-title: Autophagy: An exposing therapeutic target in atherosclerosis
  publication-title: J Cardiovasc Pharmacol
  doi: 10.1097/FJC.0000000000000342
– volume: 1
  start-page: 60
  year: 2012
  ident: 10.1016/j.nano.2018.08.002_bb0060
  article-title: Atherosclerosis, platelets and thrombosis in acute ischaemic heart disease
  publication-title: Eur Heart J Acute Cardiovasc Care
  doi: 10.1177/2048872612441582
– volume: 123
  start-page: 980
  year: 2013
  ident: 10.1016/j.nano.2018.08.002_bb0170
  article-title: Rapalogs and mTOR inhibitors as anti-aging therapeutics
  publication-title: J Clin Invest
  doi: 10.1172/JCI64099
– volume: 37
  start-page: 150
  year: 2016
  ident: 10.1016/j.nano.2018.08.002_bb0180
  article-title: The roles of macrophage autophagy in atherosclerosis
  publication-title: Acta Pharmacol Sin
  doi: 10.1038/aps.2015.87
– volume: 220
  start-page: 600
  year: 2015
  ident: 10.1016/j.nano.2018.08.002_bb0095
  article-title: Cell membrane-camouflaged nanoparticles for drug delivery
  publication-title: J Control Release
  doi: 10.1016/j.jconrel.2015.07.019
– volume: 11
  start-page: 191
  year: 2015
  ident: 10.1016/j.nano.2018.08.002_bb0015
  article-title: Nanomedicine for atherosclerosis: molecular imaging and treatment
  publication-title: J Biomed Nanotechnol
  doi: 10.1166/jbn.2015.1943
– volume: 114
  start-page: 1852
  year: 2014
  ident: 10.1016/j.nano.2018.08.002_bb0175
  article-title: Mechanisms of plaque formation and rupture
  publication-title: Circ Res
  doi: 10.1161/CIRCRESAHA.114.302721
– volume: 14
  start-page: 97
  year: 2000
  ident: 10.1016/j.nano.2018.08.002_bb0195
  article-title: Therapeutic drug monitoring of sirolimus: correlations with efficacy and toxicity
  publication-title: Clin Transplant
  doi: 10.1034/j.1399-0012.2000.140201.x
– volume: 99
  start-page: 2164
  year: 1999
  ident: 10.1016/j.nano.2018.08.002_bb0280
  article-title: Inhibition of intimal thickening after balloon angioplasty in porcine coronary arteries by targeting regulators of the cell cycle
  publication-title: Circulation
  doi: 10.1161/01.CIR.99.16.2164
– volume: 17
  start-page: 1423
  year: 2011
  ident: 10.1016/j.nano.2018.08.002_bb0055
  article-title: Arterial thrombosis--insidious, unpredictable and deadly
  publication-title: Nat Med
  doi: 10.1038/nm.2515
– volume: 156
  start-page: 774
  year: 2009
  ident: 10.1016/j.nano.2018.08.002_bb0145
  article-title: Low-dose oral sirolimus reduces atherogenesis, vascular inflammation and modulates plaque composition in mice lacking the LDL receptor
  publication-title: Br J Pharmacol
  doi: 10.1111/j.1476-5381.2008.00080.x
– volume: 12
  start-page: 109
  year: 2018
  ident: 10.1016/j.nano.2018.08.002_bb0110
  article-title: Nanoparticle Functionalization with Platelet Membrane Enables Multifactored Biological Targeting and Detection of Atherosclerosis
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b07720
– volume: 233
  start-page: 601
  year: 2014
  ident: 10.1016/j.nano.2018.08.002_bb0160
  article-title: mTOR inhibition: a promising strategy for stabilization of atherosclerotic plaques
  publication-title: Atherosclerosis
  doi: 10.1016/j.atherosclerosis.2014.01.040
– volume: 8
  start-page: 11243
  year: 2014
  ident: 10.1016/j.nano.2018.08.002_bb0220
  article-title: Platelet-like nanoparticles: mimicking shape, flexibility, and surface biology of platelets to target vascular injuries
  publication-title: ACS Nano
  doi: 10.1021/nn503732m
– volume: 14
  start-page: 910
  year: 2013
  ident: 10.1016/j.nano.2018.08.002_bb0250
  article-title: A platelet-mimetic paradigm for metastasis-targeted nanomedicine platforms
  publication-title: Biomacromolecules
  doi: 10.1021/bm301996p
– volume: 156
  start-page: 941
  year: 2009
  ident: 10.1016/j.nano.2018.08.002_bb0155
  article-title: Oral rapamycin attenuates inflammation and enhances stability of atherosclerotic plaques in rabbits independent of serum lipid levels
  publication-title: Br J Pharmacol
  doi: 10.1111/j.1476-5381.2008.00102.x
– volume: 9
  start-page: 61
  year: 2003
  ident: 10.1016/j.nano.2018.08.002_bb0045
  article-title: Circulating activated platelets exacerbate atherosclerosis in mice deficient in apolipoprotein E
  publication-title: Nat Med
  doi: 10.1038/nm810
– volume: 196
  start-page: 887
  year: 2002
  ident: 10.1016/j.nano.2018.08.002_bb0050
  article-title: A critical role of platelet adhesion in the initiation of atherosclerotic lesion formation
  publication-title: J Exp Med
  doi: 10.1084/jem.20012044
– volume: 13
  start-page: 1495
  year: 2012
  ident: 10.1016/j.nano.2018.08.002_bb0240
  article-title: Peptide-decorated liposomes promote arrest and aggregation of activated platelets under flow on vascular injury relevant protein surfaces in vitro
  publication-title: Biomacromolecules
  doi: 10.1021/bm300192t
– volume: 19
  start-page: 2524
  year: 1999
  ident: 10.1016/j.nano.2018.08.002_bb0260
  article-title: Intimal deposition of functional von Willebrand factor in atherogenesis
  publication-title: Arterioscler Thromb Vasc Biol
  doi: 10.1161/01.ATV.19.10.2524
– volume: 526
  start-page: 47
  year: 2015
  ident: 10.1016/j.nano.2018.08.002_bb0275
  article-title: Nanotechnology: Platelet mimicry
  publication-title: Nature
  doi: 10.1038/nature15218
– volume: 9
  start-page: 6450
  year: 2015
  ident: 10.1016/j.nano.2018.08.002_bb0085
  article-title: Detoxification of organophosphate poisoning using nanoparticle bioscavengers
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b02132
– volume: 328
  start-page: 419
  year: 2009
  ident: 10.1016/j.nano.2018.08.002_bb0140
  article-title: Everolimus inhibits monocyte/macrophage migration in vitro and their accumulation in carotid lesions of cholesterol-fed rabbits
  publication-title: J Pharmacol Exp Ther
  doi: 10.1124/jpet.108.144147
– volume: 5
  start-page: 418
  year: 2015
  ident: 10.1016/j.nano.2018.08.002_bb0200
  article-title: Detection of high-risk atherosclerotic plaques with ultrasound molecular imaging of glycoprotein IIb/IIIa receptor on activated platelets
  publication-title: Theranostics
  doi: 10.7150/thno.10020
– volume: 29
  year: 2017
  ident: 10.1016/j.nano.2018.08.002_bb0105
  article-title: Erythrocyte-platelet hybrid membrane coating for enhanced nanoparticle functionalization
  publication-title: Adv Mater
  doi: 10.1002/adma.201606209
– volume: 28
  start-page: 403
  year: 2008
  ident: 10.1016/j.nano.2018.08.002_bb0270
  article-title: Cell adhesion mechanisms in platelets
  publication-title: Arterioscler Thromb Vasc Biol
  doi: 10.1161/ATVBAHA.107.150474
– volume: 14
  start-page: 2181
  year: 2014
  ident: 10.1016/j.nano.2018.08.002_bb0070
  article-title: Cancer cell membrane-coated nanoparticles for anticancer vaccination and drug delivery
  publication-title: Nano Lett
  doi: 10.1021/nl500618u
– volume: 5
  start-page: 203
  issue: Suppl. 1
  year: 2007
  ident: 10.1016/j.nano.2018.08.002_bb0040
  article-title: Platelets, inflammation and atherosclerosis
  publication-title: J Thromb Haemost
  doi: 10.1111/j.1538-7836.2007.02517.x
– volume: 4
  start-page: 2408
  year: 2015
  ident: 10.1016/j.nano.2018.08.002_bb0010
  article-title: Recent advances in targeted, self-assembling nanoparticles to address vascular damage due to atherosclerosis
  publication-title: Adv Healthc Mater
  doi: 10.1002/adhm.201500126
– volume: 32
  start-page: 9504
  year: 2011
  ident: 10.1016/j.nano.2018.08.002_bb0245
  article-title: Heteromultivalent liposomal nanoconstructs for enhanced targeting and shear-stable binding to active platelets for site-selective vascular drug delivery
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2011.08.067
– volume: 23
  start-page: 1266
  year: 2012
  ident: 10.1016/j.nano.2018.08.002_bb0235
  article-title: Mimicking adhesive functionalities of blood platelets using ligand-decorated liposomes
  publication-title: Bioconjug Chem
  doi: 10.1021/bc300086d
– volume: 6
  start-page: 235
  year: 2008
  ident: 10.1016/j.nano.2018.08.002_bb0035
  article-title: Platelets modulate atherogenesis and progression of atherosclerotic plaques via interaction with progenitor and dendritic cells
  publication-title: J Thromb Haemost
  doi: 10.1111/j.1538-7836.2007.02867.x
– volume: 111
  start-page: 116
  year: 2016
  ident: 10.1016/j.nano.2018.08.002_bb0115
  article-title: Nanoparticles camouflaged in platelet membrane coating as an antibody decoy for the treatment of immune thrombocytopenia
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2016.10.003
– volume: 129
  start-page: 1415
  year: 2017
  ident: 10.1016/j.nano.2018.08.002_bb0025
  article-title: Platelets and von Willebrand factor in atherogenesis
  publication-title: Blood
  doi: 10.1182/blood-2016-07-692673
– volume: 108
  start-page: 10980
  year: 2011
  ident: 10.1016/j.nano.2018.08.002_bb0065
  article-title: Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1106634108
– volume: 27
  start-page: 7043
  year: 2015
  ident: 10.1016/j.nano.2018.08.002_bb0120
  article-title: Anticancer platelet-mimicking Nanovehicles
  publication-title: Adv Mater
  doi: 10.1002/adma.201503323
– volume: 11
  start-page: 357
  year: 2013
  ident: 10.1016/j.nano.2018.08.002_bb0210
  article-title: Platelets express and release osteocalcin and co-localize in human calcified atherosclerotic plaques
  publication-title: J Thromb Haemost
  doi: 10.1111/jth.12088
– volume: 5
  start-page: 294
  year: 2014
  ident: 10.1016/j.nano.2018.08.002_bb0020
  article-title: Platelets and their chemokines in atherosclerosis-clinical applications
  publication-title: Front Physiol
  doi: 10.3389/fphys.2014.00294
– volume: 8
  start-page: 933
  year: 2013
  ident: 10.1016/j.nano.2018.08.002_bb0075
  article-title: Nanoparticle-detained toxins for safe and effective vaccination
  publication-title: Nat Nanotechnol
  doi: 10.1038/nnano.2013.254
– volume: 11
  start-page: 927
  year: 2015
  ident: 10.1016/j.nano.2018.08.002_bb0205
  article-title: Nanoparticles functionalised with an anti-platelet human antibody for in vivo detection of atherosclerotic plaque by magnetic resonance imaging
  publication-title: Nanomedicine
  doi: 10.1016/j.nano.2014.12.006
– volume: 8
  start-page: 336
  year: 2013
  ident: 10.1016/j.nano.2018.08.002_bb0080
  article-title: A biomimetic nanosponge that absorbs pore-forming toxins
  publication-title: Nat Nanotechnol
  doi: 10.1038/nnano.2013.54
– volume: 1
  start-page: 0011
  year: 2017
  ident: 10.1016/j.nano.2018.08.002_bb0125
  article-title: In situ activation of platelets with checkpoint inhibitors for post-surgical cancer immunotherapy
  publication-title: Nat Biomed Eng
  doi: 10.1038/s41551-016-0011
– volume: 3
  start-page: 241
  year: 2007
  ident: 10.1016/j.nano.2018.08.002_bb0190
  article-title: Everolimus-induced mTOR inhibition selectively depletes macrophages in atherosclerotic plaques by autophagy
  publication-title: Autophagy
  doi: 10.4161/auto.3711
– volume: 99
  start-page: 480
  year: 2008
  ident: 10.1016/j.nano.2018.08.002_bb0030
  article-title: Platelet-vessel wall interactions in atherosclerotic disease
  publication-title: Thromb Haemost
  doi: 10.1160/TH07-11-0685
– volume: 101
  start-page: 2661
  year: 2003
  ident: 10.1016/j.nano.2018.08.002_bb0255
  article-title: Platelet P-selectin facilitates atherosclerotic lesion development
  publication-title: Blood
  doi: 10.1182/blood-2002-07-2209
– volume: 32
  start-page: 225
  year: 2002
  ident: 10.1016/j.nano.2018.08.002_bb0265
  article-title: Pathogenesis of the acute coronary syndromes and therapeutic implications
  publication-title: Pathophysiol Haemost Thromb
  doi: 10.1159/000073571
– volume: 131
  start-page: e29
  year: 2015
  ident: 10.1016/j.nano.2018.08.002_bb0005
  article-title: Heart disease and stroke statistics--2015 update: a report from the American Heart Association
  publication-title: Circulation
– volume: 128
  start-page: 69
  year: 2017
  ident: 10.1016/j.nano.2018.08.002_bb0090
  article-title: Cell membrane-derived nanomaterials for biomedical applications
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2017.02.041
– volume: 12
  start-page: 2007
  year: 2017
  ident: 10.1016/j.nano.2018.08.002_bb0215
  article-title: Cell membrane-derived nanoparticles: emerging clinical opportunities for targeted drug delivery
  publication-title: Nanomedicine
  doi: 10.2217/nnm-2017-0100
SSID ssj0037009
Score 2.5886035
Snippet Although certain success has been achieved in atherosclerosis treatment, tremendous challenges remain in developing more efficient strategies to treat...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 13
SubjectTerms Animals
Apolipoproteins E - genetics
Apolipoproteins E - physiology
Atherosclerosis
Atherosclerosis - drug therapy
Atherosclerosis - genetics
Atherosclerosis - pathology
Autophagy
Blood Platelets - physiology
Cell Membrane - chemistry
Cell Membrane - metabolism
Cells, Cultured
Drug Delivery Systems
Immunosuppressive Agents - pharmacology
Male
Mice
Mice, Inbred C57BL
Mice, Knockout
Nanoparticles - administration & dosage
Nanoparticles - chemistry
Plaque, Atherosclerotic - drug therapy
Plaque, Atherosclerotic - genetics
Plaque, Atherosclerotic - pathology
Platelet Adhesiveness
Platelet membrane-coated nanoparticle
Rapamycin
Sirolimus - pharmacology
Targeting delivery
Title Platelet membrane-coated nanoparticle-mediated targeting delivery of Rapamycin blocks atherosclerotic plaque development and stabilizes plaque in apolipoprotein E-deficient (ApoE−/−) mice
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1549963418305069
https://dx.doi.org/10.1016/j.nano.2018.08.002
https://www.ncbi.nlm.nih.gov/pubmed/30171903
https://www.proquest.com/docview/2098770899
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqIiEuiDdLoTISBxBy10lsJz6uVlstj1ZVoVJvkeOHVNhNou720B44c-YP8V_4Jcw4ySIOLRKH1SrWjOO1JzOT9TefCXkFQb2wIjiWZD5lwuWKGZkYpjm3xkrpkgSLkw8O1fxEvD-Vp1tkOtTCIKyy9_2dT4_eum8Z97M5bs_Oxp-QXAzMR4BRcskVFvEJkaOV733bwDyynEeYBwozlO4LZzqMV21qLABMir0OUnldcLou-YxBaP8eudtnj3TSDfA-2fL1A3L7oN8ff0h-Hi0gd4SloEu_hPfg2jPbQIujOIa2_2Eslotga4cDh-hFnV8gQuOSNoEeQwBdXkKPtIJQ93VFY5bYrED1vIEeaLswME7q_gCOqKkdhUQTobZXfjVIQBcGj4Fom8gHAZcz5jySVqDO60nbzH59_zGGzxu6BJf1iJzszz5P56w_ooFZkWdrpqrAheNOaW9lsKnLhK2sl8ZY7mUIkZ4-10H61FRpapI8bm5qFYSXlQ3ZY7JdN7V_SqjSSlikgoGcRyTaG0hEQ6UrhRxnhSpGJBnWprQ9fzkeo7EoB6DalxLnssT1LPFsTZ6OyNuNTtuxd9wonQ1LXg51qeBJSwguN2rJjdZflvtPvZeDVZXwSOM-DVhFc7ECIV3kOe7HjsiTztw2o8-Q30jz7Nl_3nWH3IEr3f2J9Jxsr88v_AtIq9bVbnxudsmtyfT44xF-v_swP_wNTJQo1Q
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbKVoJeEG-2vIzEAYTcdRLbiY-raqst7a4QtFJvkeOHVNhNou72UH4BZ_4Q_4Vfwkweizi0SBxyiONxHHsyM4m_-UzIG3DqmRXBsSjxMRMuVczIyDDNuTVWShdFmJw8m6vpqfhwJs-2yH6fC4Owys72tza9sdZdyagbzVF9fj76jORioD4ClJJLrvQtso3sVHJAtseHR9N5b5CTlDdID6zPUKDLnWlhXqUpMQcwyvZaVOV1_um6-LPxQwf3yN0ugKTjto_3yZYvH5Dbs26J_CH5-XEB4SPMBl36JXwKl57ZCkocxT7U3bOxJmMES1soODgw6vwCQRpXtAr0E_jQ5RW0SAvwdl9XtAkUqxWIXlTQAq0XBvpJ3R_METWloxBrItr2m1_1NaAJgztB1FVDCQGnE-Y88lagzNtxXU1-ff8xguMdXYLVekRODyYn-1PW7dLArEiTNVNF4MJxp7S3MtjYJcIW1ktjLPcyhIahPtVB-tgUcWyitFnf1CoILwsbksdkUFalf0qo0kpYZIOBsEdE2huIRUOhC4U0Z5nKhiTq5ya3HYU57qSxyHus2pccxzLH-cxxe00eD8n7jUzdEnjcWDvppzzvU1PBmObgX26Ukhupv5T3n3Kve63K4a3GpRrQiupyBZV0lqa4JDskT1p12_Q-QYojzZPd_7zrK3JnejI7zo8P50fPyA5c0e0_pedksL649C8gyloXL7u36DcHBinx
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Platelet+membrane-coated+nanoparticle-mediated+targeting+delivery+of+Rapamycin+blocks+atherosclerotic+plaque+development+and+stabilizes+plaque+in+apolipoprotein+E-deficient+%28ApoE%E2%88%92%2F%E2%88%92%29+mice&rft.jtitle=Nanomedicine&rft.au=Song%2C+Yanan&rft.au=Huang%2C+Zheyong&rft.au=Liu%2C+Xin&rft.au=Pang%2C+Zhiqing&rft.date=2019-01-01&rft.issn=1549-9634&rft.volume=15&rft.issue=1&rft.spage=13&rft.epage=24&rft_id=info:doi/10.1016%2Fj.nano.2018.08.002&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_nano_2018_08_002
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-9634&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-9634&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-9634&client=summon