Optical and surface enhanced Raman scattering properties of Au nanoparticles embedded in and located on a carbonaceous matrix

Au nanoparticles (NPs) on the surface and embedded in a matrix have been the subject of studies dealing with a variety of spectroscopic and sensing applications. Here, we report on low energy Ar ion induced evolution of the morphology of a thin Au film on a polyethylene terephthalate (PET) substrate...

Full description

Saved in:
Bibliographic Details
Published inPhysical Chemistry Chemical Physics Vol. 18; no. 4; pp. 2468 - 2480
Main Authors Prakash, Jai, Kumar, Vinod, Kroon, R. E, Asokan, K, Rigato, V, Chae, K. H, Gautam, S, Swart, H. C
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry (RSC) 28.01.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Au nanoparticles (NPs) on the surface and embedded in a matrix have been the subject of studies dealing with a variety of spectroscopic and sensing applications. Here, we report on low energy Ar ion induced evolution of the morphology of a thin Au film on a polyethylene terephthalate (PET) substrate along with thermodynamic interpretations, and corresponding unique surface plasmon resonance (SPR) and photoluminescence (PL) properties. These properties are linked to the variation of surface nanostructures and the surface enhanced Raman scattering (SERS) effect of methyl orange (MO) dye molecules adsorbed on the surface. Ion induced thermal spike and sputtering resulted in dewetting of the film with subsequent formation of spherical NPs. This was followed by embedding of the NPs in the modified PET due to the thermodynamic driving forces involved. The surface and interface morphologies were studied using atomic force microscopy and cross-sectional transmission electron microscopy. X-ray photoelectron spectroscopy was used to study the chemical changes in the system upon irradiation. The optical properties were studied by diffuse reflectance UV-Vis spectroscopy and PL using a 325 nm He-Cd laser. The red shift of the SPR absorption and the blue shift of the PL emission have been correlated with the surface morphology. The blue PL emission bands at around 3.0 eV are in good agreement with the literature with respect to the morphological changes and the blue shift is attributed to compressive strain on the embedded Au NPs. Enhancement of the SERS signals is observed and found to be correlated with the SPR response of the Au nanostructures. The SERS analyses indicate that MO molecules may be adsorbed with different orientations on these surfaces i.e. Au NPs located on the surface or embedded in the modified PET. These polymeric substrates modified by NPs can have a potential application in solid-state light emitting devices and can be applied in SERS based sensors for the detection of organic compounds. Au nanoparticles (NPs) on the surface and embedded in a matrix have been the subject of studies dealing with a variety of spectroscopic and sensing applications.
AbstractList Au nanoparticles (NPs) on the surface and embedded in a matrix have been the subject of studies dealing with a variety of spectroscopic and sensing applications. Here, we report on low energy Ar ion induced evolution of the morphology of a thin Au film on a polyethylene terephthalate (PET) substrate along with thermodynamic interpretations, and corresponding unique surface plasmon resonance (SPR) and photoluminescence (PL) properties. These properties are linked to the variation of surface nanostructures and the surface enhanced Raman scattering (SERS) effect of methyl orange (MO) dye molecules adsorbed on the surface. Ion induced thermal spike and sputtering resulted in dewetting of the film with subsequent formation of spherical NPs. This was followed by embedding of the NPs in the modified PET due to the thermodynamic driving forces involved. The surface and interface morphologies were studied using atomic force microscopy and cross-sectional transmission electron microscopy. X-ray photoelectron spectroscopy was used to study the chemical changes in the system upon irradiation. The optical properties were studied by diffuse reflectance UV-Vis spectroscopy and PL using a 325 nm He-Cd laser. The red shift of the SPR absorption and the blue shift of the PL emission have been correlated with the surface morphology. The blue PL emission bands at around 3.0 eV are in good agreement with the literature with respect to the morphological changes and the blue shift is attributed to compressive strain on the embedded Au NPs. Enhancement of the SERS signals is observed and found to be correlated with the SPR response of the Au nanostructures. The SERS analyses indicate that MO molecules may be adsorbed with different orientations on these surfaces i.e. Au NPs located on the surface or embedded in the modified PET. These polymeric substrates modified by NPs can have a potential application in solid-state light emitting devices and can be applied in SERS based sensors for the detection of organic compounds. Au nanoparticles (NPs) on the surface and embedded in a matrix have been the subject of studies dealing with a variety of spectroscopic and sensing applications.
Au nanoparticles (NPs) on the surface and embedded in a matrix have been the subject of studies dealing with a variety of spectroscopic and sensing applications. Here, we report on low energy Ar ion induced evolution of the morphology of a thin Au film on a polyethylene terephthalate (PET) substrate along with thermodynamic interpretations, and corresponding unique surface plasmon resonance (SPR) and photoluminescence (PL) properties. These properties are linked to the variation of surface nanostructures and the surface enhanced Raman scattering (SERS) effect of methyl orange (MO) dye molecules adsorbed on the surface. Ion induced thermal spike and sputtering resulted in dewetting of the film with subsequent formation of spherical NPs. This was followed by embedding of the NPs in the modified PET due to the thermodynamic driving forces involved. The surface and interface morphologies were studied using atomic force microscopy and cross-sectional transmission electron microscopy. X-ray photoelectron spectroscopy was used to study the chemical changes in the system upon irradiation. The optical properties were studied by diffuse reflectance UV-Vis spectroscopy and PL using a 325 nm He-Cd laser. The red shift of the SPR absorption and the blue shift of the PL emission have been correlated with the surface morphology. The blue PL emission bands at around 3.0 eV are in good agreement with the literature with respect to the morphological changes and the blue shift is attributed to compressive strain on the embedded Au NPs. Enhancement of the SERS signals is observed and found to be correlated with the SPR response of the Au nanostructures. The SERS analyses indicate that MO molecules may be adsorbed with different orientations on these surfaces i.e. Au NPs located on the surface or embedded in the modified PET. These polymeric substrates modified by NPs can have a potential application in solid-state light emitting devices and can be applied in SERS based sensors for the detection of organic compounds.
Au nanoparticles (NPs) on the surface and embedded in a matrix have been the subject of studies dealing with a variety of spectroscopic and sensing applications. Here, we report on low energy Ar ion induced evolution of the morphology of a thin Au film on a polyethylene terephthalate (PET) substrate along with thermodynamic interpretations, and corresponding unique surface plasmon resonance (SPR) and photoluminescence (PL) properties. These properties are linked to the variation of surface nanostructures and the surface enhanced Raman scattering (SERS) effect of methyl orange (MO) dye molecules adsorbed on the surface. Ion induced thermal spike and sputtering resulted in dewetting of the film with subsequent formation of spherical NPs. This was followed by embedding of the NPs in the modified PET due to the thermodynamic driving forces involved. The surface and interface morphologies were studied using atomic force microscopy and cross-sectional transmission electron microscopy. X-ray photoelectron spectroscopy was used to study the chemical changes in the system upon irradiation. The optical properties were studied by diffuse reflectance UV-Vis spectroscopy and PL using a 325 nm He–Cd laser. The red shift of the SPR absorption and the blue shift of the PL emission have been correlated with the surface morphology. The blue PL emission bands at around 3.0 eV are in good agreement with the literature with respect to the morphological changes and the blue shift is attributed to compressive strain on the embedded Au NPs. Enhancement of the SERS signals is observed and found to be correlated with the SPR response of the Au nanostructures. The SERS analyses indicate that MO molecules may be adsorbed with different orientations on these surfaces i.e. Au NPs located on the surface or embedded in the modified PET. These polymeric substrates modified by NPs can have a potential application in solid-state light emitting devices and can be applied in SERS based sensors for the detection of organic compounds.
Au nanoparticles (NPs) on the surface and embedded in a matrix have been the subject of studies dealing with a variety of spectroscopic and sensing applications. Here, we report on low energy Ar ion induced evolution of the morphology of a thin Au film on a polyethylene terephthalate (PET) substrate along with thermodynamic interpretations, and corresponding unique surface plasmon resonance (SPR) and photoluminescence (PL) properties. These properties are linked to the variation of surface nanostructures and the surface enhanced Raman scattering (SERS) effect of methyl orange (MO) dye molecules adsorbed on the surface. Ion induced thermal spike and sputtering resulted in dewetting of the film with subsequent formation of spherical NPs. This was followed by embedding of the NPs in the modified PET due to the thermodynamic driving forces involved. The surface and interface morphologies were studied using atomic force microscopy and cross-sectional transmission electron microscopy. X-ray photoelectron spectroscopy was used to study the chemical changes in the system upon irradiation. The optical properties were studied by diffuse reflectance UV-Vis spectroscopy and PL using a 325 nm He-Cd laser. The red shift of the SPR absorption and the blue shift of the PL emission have been correlated with the surface morphology. The blue PL emission bands at around 3.0 eV are in good agreement with the literature with respect to the morphological changes and the blue shift is attributed to compressive strain on the embedded Au NPs. Enhancement of the SERS signals is observed and found to be correlated with the SPR response of the Au nanostructures. The SERS analyses indicate that MO molecules may be adsorbed with different orientations on these surfaces i.e. Au NPs located on the surface or embedded in the modified PET. These polymeric substrates modified by NPs can have a potential application in solid-state light emitting devices and can be applied in SERS based sensors for the detection of organic compounds.Au nanoparticles (NPs) on the surface and embedded in a matrix have been the subject of studies dealing with a variety of spectroscopic and sensing applications. Here, we report on low energy Ar ion induced evolution of the morphology of a thin Au film on a polyethylene terephthalate (PET) substrate along with thermodynamic interpretations, and corresponding unique surface plasmon resonance (SPR) and photoluminescence (PL) properties. These properties are linked to the variation of surface nanostructures and the surface enhanced Raman scattering (SERS) effect of methyl orange (MO) dye molecules adsorbed on the surface. Ion induced thermal spike and sputtering resulted in dewetting of the film with subsequent formation of spherical NPs. This was followed by embedding of the NPs in the modified PET due to the thermodynamic driving forces involved. The surface and interface morphologies were studied using atomic force microscopy and cross-sectional transmission electron microscopy. X-ray photoelectron spectroscopy was used to study the chemical changes in the system upon irradiation. The optical properties were studied by diffuse reflectance UV-Vis spectroscopy and PL using a 325 nm He-Cd laser. The red shift of the SPR absorption and the blue shift of the PL emission have been correlated with the surface morphology. The blue PL emission bands at around 3.0 eV are in good agreement with the literature with respect to the morphological changes and the blue shift is attributed to compressive strain on the embedded Au NPs. Enhancement of the SERS signals is observed and found to be correlated with the SPR response of the Au nanostructures. The SERS analyses indicate that MO molecules may be adsorbed with different orientations on these surfaces i.e. Au NPs located on the surface or embedded in the modified PET. These polymeric substrates modified by NPs can have a potential application in solid-state light emitting devices and can be applied in SERS based sensors for the detection of organic compounds.
Author Robin E. Kroon
V. Rigato
K. Asokan
H.C. Swart
K.H. Chae
Jai Prakash
Vinod Kumar
Sanjeev Gautam
AuthorAffiliation Advanced Analysis Center
Aruna Asif Ali Marg
University of the Free State
Korea Institute of Science and Technology
INFN LaboratoriNazionali di Legnaro
Inter University Accelerator Centre
Dr. S.S. Bhatnagar University Institute of Chemical Engineering and Technology
Department of Physics
Panjab University
AuthorAffiliation_xml – sequence: 0
  name: Korea Institute of Science and Technology
– sequence: 0
  name: INFN LaboratoriNazionali di Legnaro
– sequence: 0
  name: University of the Free State
– sequence: 0
  name: Panjab University
– sequence: 0
  name: Dr. S.S. Bhatnagar University Institute of Chemical Engineering and Technology
– sequence: 0
  name: Department of Physics
– sequence: 0
  name: Inter University Accelerator Centre
– sequence: 0
  name: Advanced Analysis Center
– sequence: 0
  name: Aruna Asif Ali Marg
Author_xml – sequence: 1
  givenname: Jai
  surname: Prakash
  fullname: Prakash, Jai
– sequence: 2
  givenname: Vinod
  surname: Kumar
  fullname: Kumar, Vinod
– sequence: 3
  givenname: R. E
  surname: Kroon
  fullname: Kroon, R. E
– sequence: 4
  givenname: K
  surname: Asokan
  fullname: Asokan, K
– sequence: 5
  givenname: V
  surname: Rigato
  fullname: Rigato, V
– sequence: 6
  givenname: K. H
  surname: Chae
  fullname: Chae, K. H
– sequence: 7
  givenname: S
  surname: Gautam
  fullname: Gautam, S
– sequence: 8
  givenname: H. C
  surname: Swart
  fullname: Swart, H. C
BackLink https://cir.nii.ac.jp/crid/1873961342494794240$$DView record in CiNii
https://www.ncbi.nlm.nih.gov/pubmed/26701612$$D View this record in MEDLINE/PubMed
BookMark eNqFkk1rFTEUhoO02Fq7ca9k4UKEW5PJ5GtZL_UDCi2i6-Ekk2hgJhmTDOjC_97c3raCCN3k5JzzvG8OSZ6hg5iiQ-gFJWeUMP3OcrsQQVlvnqBj2gu20UT1Bw97KY7QaSnBEK645FSrp-ioE5JQQbtj9OdqqcHChCGOuKzZg3XYxR8QrRvxF5gh4mKhVpdD_I6XnBaXa3AFJ4_PVxwhpgVaxU6t5mbjxrEJQ7w1nFKTtjS1FFvIJsXmn9aCZ6g5_HqODj1MxZ3exRP07cPF1-2nzeXVx8_b88uN7SWrG2E4sR0zvrcehPQMqNZSjMLaTknPjVc9GM0Fg1ZmlrhOcujFaARTplPsBL3Z-7b5f66u1GEOxbppgribZqCKKKJ5R_jjqBREKcKobuirO3Q1sxuHJYcZ8u_h_nYbQPaAzamU7PxgQ4UaUqwZwjRQMuzecNjy7fXtG75vkrf_SO5d_wu_3MO52Afu74do_df7fgyhHb1bqZJM77pdr3upWyDsBg12sCc
CitedBy_id crossref_primary_10_1021_acsanm_9b00443
crossref_primary_10_1021_acsmaterialslett_2c00896
crossref_primary_10_1039_D4TB00184B
crossref_primary_10_1088_1742_6596_1410_1_012140
crossref_primary_10_1016_j_molstruc_2022_134754
crossref_primary_10_1142_S179329202350114X
crossref_primary_10_1039_D2ME00006G
crossref_primary_10_1016_j_radphyschem_2020_109288
crossref_primary_10_2139_ssrn_4169679
crossref_primary_10_1088_1361_6528_aa7ba8
crossref_primary_10_1016_j_saa_2022_121576
crossref_primary_10_1016_j_vibspec_2022_103463
crossref_primary_10_1021_acsestwater_2c00402
crossref_primary_10_1039_C7ME00038C
crossref_primary_10_1002_sia_5999
crossref_primary_10_1007_s11468_023_02081_8
crossref_primary_10_1002_aenm_201900889
crossref_primary_10_1002_slct_202102435
crossref_primary_10_1016_j_mne_2021_100100
crossref_primary_10_1007_s10853_018_2792_4
crossref_primary_10_1039_C8TC06299D
crossref_primary_10_1002_smll_202308939
crossref_primary_10_1016_j_ijhydene_2021_10_099
crossref_primary_10_1021_acsami_7b07571
crossref_primary_10_1002_jrs_5186
crossref_primary_10_1039_C6CP04977J
crossref_primary_10_1021_acsanm_7b00387
crossref_primary_10_1080_0144235X_2016_1187006
crossref_primary_10_1016_j_mtener_2018_07_003
crossref_primary_10_1016_j_mtsust_2021_100066
crossref_primary_10_1088_1757_899X_1029_1_012064
crossref_primary_10_1016_j_apsusc_2019_145227
crossref_primary_10_1039_C6RA27499D
crossref_primary_10_1016_j_mtchem_2021_100428
crossref_primary_10_3390_photochem2030043
crossref_primary_10_1016_j_molliq_2025_127020
crossref_primary_10_1016_j_matlet_2021_130984
crossref_primary_10_1016_j_mne_2024_100239
crossref_primary_10_1039_D1TC04886D
crossref_primary_10_1016_j_apmt_2018_02_002
crossref_primary_10_1016_j_chemosphere_2023_138077
crossref_primary_10_1016_j_ces_2020_115821
crossref_primary_10_1016_j_envres_2022_113550
crossref_primary_10_1016_j_jhazmat_2020_122222
crossref_primary_10_1007_s11356_022_24639_5
crossref_primary_10_1016_j_snb_2018_05_155
crossref_primary_10_1016_j_solener_2017_11_036
crossref_primary_10_1016_j_matchemphys_2021_125642
crossref_primary_10_1002_jemt_24598
crossref_primary_10_1039_D2SD00133K
crossref_primary_10_1063_1_5009410
crossref_primary_10_1016_j_molstruc_2025_141327
crossref_primary_10_3390_molecules25225404
crossref_primary_10_1016_j_biteb_2019_100267
Cites_doi 10.1063/1.2200285
10.1103/PhysRevB.33.7923
10.1007/s11468-012-9428-3
10.1039/c3an01924a
10.1039/c1sc00254f
10.1063/1.2161401
10.1016/j.cis.2015.10.010
10.1063/1.2967471
10.1007/s10853-012-6816-1
10.1016/j.nimb.2003.09.032
10.1021/ar960016n
10.1063/1.1985977
10.1016/j.jcis.2006.09.068
10.1007/s00340-003-1168-9
10.1016/0036-9748(85)90118-8
10.1063/1.1527712
10.1016/j.cplett.2007.09.045
10.1063/1.1372623
10.1021/la7025544
10.1021/ac5002355
10.1039/c3cp50198a
10.1016/j.chemphys.2006.09.024
10.1021/la703064m
10.1021/jp300260h
10.1021/cr200061k
10.1039/c3ra45255g
10.1016/j.matchemphys.2014.06.038
10.1103/PhysRevB.48.18178
10.1103/PhysRevLett.22.185
10.1039/C4CP05679E
10.1021/ac503636j
10.1021/nl050687r
10.1088/0957-4484/21/32/325701
10.1063/1.1359491
10.1103/PhysRevLett.93.077402
10.1007/s11468-012-9389-6
10.1063/1.476360
10.1166/sam.2012.1388
10.1002/1527-2648(200110)3:10<737::AID-ADEM737>3.0.CO;2-8
10.1088/0022-3727/44/12/125302
10.1088/0957-4484/18/34/345606
10.1088/0957-4484/18/35/355702
10.1063/1.2988288
10.1063/1.2359688
10.1016/j.apsusc.2008.07.066
10.5185/amlett.2010.12187
10.1063/1.1503387
10.1021/jp026731y
10.1364/OE.23.005547
10.1116/1.1247762
10.1016/j.vacuum.2010.02.003
10.1007/978-3-662-09109-8
10.1002/sia.740160185
10.1039/B514191E
10.5185/amlett.2012.ib.104
10.1016/j.apsusc.2009.01.055
10.1021/la0114530
10.1039/C4RA14061C
10.1038/srep01469
10.1063/1.1814939
10.1063/1.2894187
10.1063/1.126633
10.1063/1.2764556
ContentType Journal Article
DBID RYH
AAYXX
CITATION
NPM
7X8
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1039/c5cp06134b
DatabaseName CiNii Complete
CrossRef
PubMed
MEDLINE - Academic
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
PubMed
CrossRef
MEDLINE - Academic
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1463-9084
EndPage 2480
ExternalDocumentID 26701612
10_1039_C5CP06134B
c5cp06134b
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
0-7
0R~
123
29O
2WC
4.4
53G
705
70~
7~J
87K
AAEMU
AAIWI
AAJAE
AAMEH
AANOJ
AAWGC
AAXHV
AAXPP
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFO
ACGFS
ACIWK
ACLDK
ACNCT
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AFVBQ
AGEGJ
AGKEF
AGRSR
AHGCF
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALUYA
ANBJS
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CS3
D0L
DU5
EBS
ECGLT
EE0
EF-
EJD
F5P
GGIMP
GNO
H13
HZ~
H~N
IDZ
J3G
J3I
M4U
N9A
NHB
O9-
P2P
R56
R7B
R7C
RAOCF
RCNCU
RNS
ROL
RPMJG
RRA
RRC
RSCEA
RYH
SKA
SKF
SLH
TN5
TWZ
UHB
VH6
WH7
YNT
-JG
AGSTE
OK1
UCJ
0UZ
1TJ
6TJ
71~
9M8
AAYXX
ACHDF
ACRPL
ADNMO
AFFNX
AGQPQ
AHGXI
ALSGL
ANLMG
ASPBG
AVWKF
BBWZM
CAG
CITATION
COF
EEHRC
FEDTE
HVGLF
H~9
IDY
J3H
L-8
MVM
NDZJH
RCLXC
RIG
XJT
XOL
ZCG
NPM
7X8
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c473t-6b50c23bf4cfa67f3a19976d6cc287f5bf84ab9563a9763c0e275a46db638b283
ISSN 1463-9076
1463-9084
IngestDate Fri Jul 11 07:01:02 EDT 2025
Fri Jul 11 04:54:15 EDT 2025
Wed Feb 19 02:00:16 EST 2025
Tue Jul 01 02:46:10 EDT 2025
Thu Apr 24 23:05:23 EDT 2025
Tue Dec 17 20:59:50 EST 2024
Thu Jun 26 23:33:19 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c473t-6b50c23bf4cfa67f3a19976d6cc287f5bf84ab9563a9763c0e275a46db638b283
Notes Electronic supplementary information (ESI) available. See DOI
10.1039/c5cp06134b
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3123-9906
0000-0002-1602-765X
0000-0003-3894-670X
0000-0003-0671-7750
0000-0001-9728-9370
0000-0001-9474-7647
0000-0002-6425-5120
OpenAccessLink https://www.openaccessrepository.it/record/76260
PMID 26701612
PQID 1760880319
PQPubID 23479
PageCount 13
ParticipantIDs pubmed_primary_26701612
proquest_miscellaneous_1808095205
rsc_primary_c5cp06134b
proquest_miscellaneous_1760880319
nii_cinii_1873961342494794240
crossref_citationtrail_10_1039_C5CP06134B
crossref_primary_10_1039_C5CP06134B
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-01-28
PublicationDateYYYYMMDD 2016-01-28
PublicationDate_xml – month: 01
  year: 2016
  text: 2016-01-28
  day: 28
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Physical Chemistry Chemical Physics
PublicationTitleAlternate Phys Chem Chem Phys
PublicationYear 2016
Publisher Royal Society of Chemistry (RSC)
Publisher_xml – name: Royal Society of Chemistry (RSC)
References Calliari (C5CP06134B-(cit41)/*[position()=1]) 2008; 255
El-Sayed (C5CP06134B-(cit50)/*[position()=1]) 2001; 34
Biswas (C5CP06134B-(cit33)/*[position()=1]) 2004; 217
Dollar (C5CP06134B-(cit59)/*[position()=1]) 1985; 19
Mathpal (C5CP06134B-(cit5)/*[position()=1]) 2015; 5
Prakash (C5CP06134B-(cit1)/*[position()=1]) 2015; 226
Prakash (C5CP06134B-(cit31)/*[position()=1]) 2011; 2
Halas (C5CP06134B-(cit51)/*[position()=1]) 2011; 111
Farrer (C5CP06134B-(cit21)/*[position()=1]) 2005; 5
Hu (C5CP06134B-(cit39)/*[position()=1]) 2003; 93
Eustis (C5CP06134B-(cit18)/*[position()=1]) 2006; 35
Jia (C5CP06134B-(cit25)/*[position()=1]) 2014; 86
Xiao (C5CP06134B-(cit61)/*[position()=1]) 2007; 447
Nakayama (C5CP06134B-(cit11)/*[position()=1]) 2008; 93
Mishra (C5CP06134B-(cit28)/*[position()=1]) 2007; 91
Yang (C5CP06134B-(cit22)/*[position()=1]) 2010; 21
Chen (C5CP06134B-(cit13)/*[position()=1]) 2015; 87
Sun (C5CP06134B-(cit53)/*[position()=1]) 2012; 116
Deshmukh (C5CP06134B-(cit3)/*[position()=1]) 2007; 23
Mishra (C5CP06134B-(cit56)/*[position()=1]) 2007; 18
Zheng (C5CP06134B-(cit20)/*[position()=1]) 2004; 93
Thune (C5CP06134B-(cit44)/*[position()=1]) 2005; 98
Marletta (C5CP06134B-(cit47)/*[position()=1]) 1990; 16
Karakouz (C5CP06134B-(cit54)/*[position()=1]) 2013; 15
Prakash (C5CP06134B-(cit32)/*[position()=1]) 2013; 4
Doren (C5CP06134B-(cit48)/*[position()=1]) 1994; 3
Wu (C5CP06134B-(cit60)/*[position()=1]) 2014; 4
Jana (C5CP06134B-(cit52)/*[position()=1]) 2002; 18
Kreibig (C5CP06134B-(cit8)/*[position()=1]) 1995
Prakash (C5CP06134B-(cit29)/*[position()=1]) 2011; 44
Singhal (C5CP06134B-(cit34)/*[position()=1]) 2013; 8
Hu (C5CP06134B-(cit37)/*[position()=1]) 2001; 89
Gaspar (C5CP06134B-(cit49)/*[position()=1]) 2013; 3
Kelly (C5CP06134B-(cit27)/*[position()=1]) 2003; 107
Hendrich (C5CP06134B-(cit55)/*[position()=1]) 2003; 76
Sivanesan (C5CP06134B-(cit23)/*[position()=1]) 2014; 139
Hu (C5CP06134B-(cit40)/*[position()=1]) 2002; 92
Takahiro (C5CP06134B-(cit43)/*[position()=1]) 2006; 100
Zhang (C5CP06134B-(cit62)/*[position()=1]) 2007; 305
Mohapatra (C5CP06134B-(cit42)/*[position()=1]) 2008; 92
Hu (C5CP06134B-(cit35)/*[position()=1]) 2000; 76
Biswas (C5CP06134B-(cit7)/*[position()=1]) 2006; 88
Prakash (C5CP06134B-(cit45)/*[position()=1]) 2010; 84
Wonmi (C5CP06134B-(cit19)/*[position()=1]) 2008; 24
Eichelbaum (C5CP06134B-(cit2)/*[position()=1]) 2007; 18
Choulis (C5CP06134B-(cit10)/*[position()=1]) 2006; 88
Boyd (C5CP06134B-(cit58)/*[position()=1]) 1986; 33
Wilcoxon (C5CP06134B-(cit16)/*[position()=1]) 1998; 108
Meng (C5CP06134B-(cit38)/*[position()=1]) 2013; 48
Yang (C5CP06134B-(cit64)/*[position()=1]) 2010; 21
Dhara (C5CP06134B-(cit12)/*[position()=1]) 2004; 121
Lu (C5CP06134B-(cit24)/*[position()=1]) 2011; 2
Zhang (C5CP06134B-(cit63)/*[position()=1]) 2006; 331
Schmid (C5CP06134B-(cit6)/*[position()=1]) 2001; 3
Khriachtchev (C5CP06134B-(cit14)/*[position()=1]) 2001; 78
Lakshmi (C5CP06134B-(cit46)/*[position()=1]) 2012; 4
Ngoc (C5CP06134B-(cit17)/*[position()=1]) 2015; 23
Hovel (C5CP06134B-(cit57)/*[position()=1]) 1993; 48
Kim (C5CP06134B-(cit9)/*[position()=1]) 2008; 93
Mooradian (C5CP06134B-(cit15)/*[position()=1]) 1969; 22
Kumar (C5CP06134B-(cit4)/*[position()=1]) 2015; 17
Prakash (C5CP06134B-(cit30)/*[position()=1]) 2014; 147
Grochowska (C5CP06134B-(cit36)/*[position()=1]) 2013; 8
Si (C5CP06134B-(cit26)/*[position()=1]) 2009; 255
References_xml – issn: 1995
  publication-title: Optical properties of Metal clusters
  doi: Kreibig Vollmer
– volume: 88
  start-page: 213503
  year: 2006
  ident: C5CP06134B-(cit10)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2200285
– volume: 33
  start-page: 7923
  year: 1986
  ident: C5CP06134B-(cit58)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.33.7923
– volume: 8
  start-page: 105
  year: 2013
  ident: C5CP06134B-(cit36)/*[position()=1]
  publication-title: Plasmonics
  doi: 10.1007/s11468-012-9428-3
– volume: 139
  start-page: 1037
  year: 2014
  ident: C5CP06134B-(cit23)/*[position()=1]
  publication-title: Analyst
  doi: 10.1039/c3an01924a
– volume: 2
  start-page: 1817
  year: 2011
  ident: C5CP06134B-(cit24)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/c1sc00254f
– volume: 88
  start-page: 13103
  year: 2006
  ident: C5CP06134B-(cit7)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2161401
– volume: 226
  start-page: 187
  year: 2015
  ident: C5CP06134B-(cit1)/*[position()=1]
  publication-title: Adv. Colloid Interface Sci.
  doi: 10.1016/j.cis.2015.10.010
– volume: 93
  start-page: 73307
  year: 2008
  ident: C5CP06134B-(cit9)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2967471
– volume: 48
  start-page: 920
  year: 2013
  ident: C5CP06134B-(cit38)/*[position()=1]
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-012-6816-1
– volume: 217
  start-page: 39
  year: 2004
  ident: C5CP06134B-(cit33)/*[position()=1]
  publication-title: Nucl. Instrum. Methods Phys. Res., Sect. B
  doi: 10.1016/j.nimb.2003.09.032
– volume: 34
  start-page: 257
  year: 2001
  ident: C5CP06134B-(cit50)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar960016n
– volume: 98
  start-page: 34304
  year: 2005
  ident: C5CP06134B-(cit44)/*[position()=1]
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1985977
– volume: 305
  start-page: 270
  year: 2007
  ident: C5CP06134B-(cit62)/*[position()=1]
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2006.09.068
– volume: 76
  start-page: 869
  year: 2003
  ident: C5CP06134B-(cit55)/*[position()=1]
  publication-title: Appl. Phys. B: Lasers Opt.
  doi: 10.1007/s00340-003-1168-9
– volume: 19
  start-page: 481
  year: 1985
  ident: C5CP06134B-(cit59)/*[position()=1]
  publication-title: Scripta Metall.
  doi: 10.1016/0036-9748(85)90118-8
– volume: 93
  start-page: 165
  year: 2003
  ident: C5CP06134B-(cit39)/*[position()=1]
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1527712
– volume: 447
  start-page: 305
  year: 2007
  ident: C5CP06134B-(cit61)/*[position()=1]
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2007.09.045
– volume: 89
  start-page: 7777
  year: 2001
  ident: C5CP06134B-(cit37)/*[position()=1]
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1372623
– volume: 23
  start-page: 13169
  year: 2007
  ident: C5CP06134B-(cit3)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/la7025544
– volume: 86
  start-page: 3955
  year: 2014
  ident: C5CP06134B-(cit25)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/ac5002355
– volume: 15
  start-page: 4656
  year: 2013
  ident: C5CP06134B-(cit54)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c3cp50198a
– volume: 331
  start-page: 55
  year: 2006
  ident: C5CP06134B-(cit63)/*[position()=1]
  publication-title: Chem. Phys.
  doi: 10.1016/j.chemphys.2006.09.024
– volume: 24
  start-page: 4174
  year: 2008
  ident: C5CP06134B-(cit19)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/la703064m
– volume: 116
  start-page: 9000
  year: 2012
  ident: C5CP06134B-(cit53)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp300260h
– volume: 111
  start-page: 3913
  year: 2011
  ident: C5CP06134B-(cit51)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr200061k
– volume: 4
  start-page: 10043
  year: 2014
  ident: C5CP06134B-(cit60)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/c3ra45255g
– volume: 147
  start-page: 920
  year: 2014
  ident: C5CP06134B-(cit30)/*[position()=1]
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2014.06.038
– volume: 48
  start-page: 178
  year: 1993
  ident: C5CP06134B-(cit57)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.48.18178
– volume: 22
  start-page: 185
  year: 1969
  ident: C5CP06134B-(cit15)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.22.185
– volume: 17
  start-page: 8596
  year: 2015
  ident: C5CP06134B-(cit4)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C4CP05679E
– volume: 87
  start-page: 216
  year: 2015
  ident: C5CP06134B-(cit13)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/ac503636j
– volume: 5
  start-page: 1139
  year: 2005
  ident: C5CP06134B-(cit21)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl050687r
– volume: 21
  start-page: 325701
  year: 2010
  ident: C5CP06134B-(cit22)/*[position()=1]
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/21/32/325701
– volume: 78
  start-page: 1994
  year: 2001
  ident: C5CP06134B-(cit14)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1359491
– volume: 93
  start-page: 077402
  year: 2004
  ident: C5CP06134B-(cit20)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.93.077402
– volume: 8
  start-page: 295
  year: 2013
  ident: C5CP06134B-(cit34)/*[position()=1]
  publication-title: Plasmonics
  doi: 10.1007/s11468-012-9389-6
– volume: 108
  start-page: 9137
  year: 1998
  ident: C5CP06134B-(cit16)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.476360
– volume: 4
  start-page: 1024
  year: 2012
  ident: C5CP06134B-(cit46)/*[position()=1]
  publication-title: Sci. Adv. Mater.
  doi: 10.1166/sam.2012.1388
– volume: 3
  start-page: 737
  year: 2001
  ident: C5CP06134B-(cit6)/*[position()=1]
  publication-title: Adv. Eng. Mater.
  doi: 10.1002/1527-2648(200110)3:10<737::AID-ADEM737>3.0.CO;2-8
– volume: 44
  start-page: 125302
  year: 2011
  ident: C5CP06134B-(cit29)/*[position()=1]
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/44/12/125302
– volume: 18
  start-page: 345606
  year: 2007
  ident: C5CP06134B-(cit56)/*[position()=1]
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/18/34/345606
– volume: 18
  start-page: 355702
  year: 2007
  ident: C5CP06134B-(cit2)/*[position()=1]
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/18/35/355702
– volume: 93
  start-page: 121904
  year: 2008
  ident: C5CP06134B-(cit11)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2988288
– volume: 100
  start-page: 84325
  year: 2006
  ident: C5CP06134B-(cit43)/*[position()=1]
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2359688
– volume: 255
  start-page: 2214
  year: 2008
  ident: C5CP06134B-(cit41)/*[position()=1]
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2008.07.066
– volume: 2
  start-page: 71
  year: 2011
  ident: C5CP06134B-(cit31)/*[position()=1]
  publication-title: Adv. Mater. Lett.
  doi: 10.5185/amlett.2010.12187
– volume: 92
  start-page: 3995
  year: 2002
  ident: C5CP06134B-(cit40)/*[position()=1]
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1503387
– volume: 21
  start-page: 325701
  year: 2010
  ident: C5CP06134B-(cit64)/*[position()=1]
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/21/32/325701
– volume: 107
  start-page: 668
  year: 2003
  ident: C5CP06134B-(cit27)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp026731y
– volume: 23
  start-page: 5547
  year: 2015
  ident: C5CP06134B-(cit17)/*[position()=1]
  publication-title: Opt. Express
  doi: 10.1364/OE.23.005547
– volume: 3
  start-page: 337
  year: 1994
  ident: C5CP06134B-(cit48)/*[position()=1]
  publication-title: Surf. Sci. Spectra
  doi: 10.1116/1.1247762
– volume: 84
  start-page: 1275
  year: 2010
  ident: C5CP06134B-(cit45)/*[position()=1]
  publication-title: Vacuum
  doi: 10.1016/j.vacuum.2010.02.003
– volume-title: Optical properties of Metal clusters
  year: 1995
  ident: C5CP06134B-(cit8)/*[position()=1]
  doi: 10.1007/978-3-662-09109-8
– volume: 16
  start-page: 407
  year: 1990
  ident: C5CP06134B-(cit47)/*[position()=1]
  publication-title: Surf. Interface Anal.
  doi: 10.1002/sia.740160185
– volume: 35
  start-page: 209
  year: 2006
  ident: C5CP06134B-(cit18)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/B514191E
– volume: 4
  start-page: 408
  year: 2013
  ident: C5CP06134B-(cit32)/*[position()=1]
  publication-title: Adv. Mater. Lett.
  doi: 10.5185/amlett.2012.ib.104
– volume: 255
  start-page: 6007
  year: 2009
  ident: C5CP06134B-(cit26)/*[position()=1]
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2009.01.055
– volume: 18
  start-page: 922
  year: 2002
  ident: C5CP06134B-(cit52)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/la0114530
– volume: 5
  start-page: 12555
  year: 2015
  ident: C5CP06134B-(cit5)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C4RA14061C
– volume: 3
  start-page: 1469
  year: 2013
  ident: C5CP06134B-(cit49)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/srep01469
– volume: 121
  start-page: 12595
  year: 2004
  ident: C5CP06134B-(cit12)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1814939
– volume: 92
  start-page: 103105
  year: 2008
  ident: C5CP06134B-(cit42)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2894187
– volume: 76
  start-page: 3215
  year: 2000
  ident: C5CP06134B-(cit35)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.126633
– volume: 91
  start-page: 63103
  year: 2007
  ident: C5CP06134B-(cit28)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2764556
SSID ssib058575198
ssib017386372
ssib000613318
ssib001535616
ssib003172005
ssib000198787
ssj0001513
ssib004908703
Score 2.42034
Snippet Au nanoparticles (NPs) on the surface and embedded in a matrix have been the subject of studies dealing with a variety of spectroscopic and sensing...
SourceID proquest
pubmed
crossref
rsc
nii
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2468
SubjectTerms Blue shift
Correlation
Emission spectroscopy
Morphology
Nanoparticles
Nanostructure
Polyethylene terephthalates
Raman scattering
Title Optical and surface enhanced Raman scattering properties of Au nanoparticles embedded in and located on a carbonaceous matrix
URI https://cir.nii.ac.jp/crid/1873961342494794240
https://www.ncbi.nlm.nih.gov/pubmed/26701612
https://www.proquest.com/docview/1760880319
https://www.proquest.com/docview/1808095205
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6l7QEuiFchQNEiuKDKYO_Djo_BKirvCKWot2h3batRiR3lISEkrvxuZry7dqIGBFwsZ2xvEn-fZ2fH8yDkmZFcSQ2rE2m4CQSLTKBTmQfC6CQtFZNG40Lxw8f49Ey8PZfnvd7Pjail9Uq_MN935pX8D6ogA1wxS_YfkG0HBQHsA76wBYRh-1cYf5qv2mT_5XpRKnhIi-rCvtT_rNA9vzRNAU2bc17PMYralpkdro8rVcGS2UXGHRczXYAWwlpMzYA4y6E5iuHKWMBag81uCoyYnWFZ_2-bZu3Io218_zi7hyLrO1k2vodRlrX5ZKOFulTLCxuqO-1eKbmQ7y_Tqs5bKdj31lnQZU4Ml_Wl9d6-23RdRI3rwqWCF1bdipgHaWibxF3Vx52zwSpXYTvwXNH6IceiqUaaOVonYmtqgD83nzX4szhB-5Z1M18bj-gP7ZEDBssN0JcHw5Pxm_ftnA52EffFbXn6svsqLCbtLt6ybPaq6XTXogWOLHxrmcaEGd8kN9zagw4t4rdIr6huk2uZh-wO-eEIRQF_6ghFPaFoQyjaEYp2hKJ1SYdrukUo6glFp1UzoCMUreEj3SQUtYS6S85en4yz08D15wiMSPgqiLUMDeO6FKZUcVJyhVFLcY6h-IOklLocCAVPfswViLkJC5ZIJeJcg9LXYNcekv2qror7hCaRSMSAFaaEaziXuhikOIeXIctzFvM-ee7v7cS44vXYQ-XrpAmi4Okkk9mogeRVnzxtz53bki07zzoCiGAw3EaDhKcoZiLFlgtg5vbJEw_eBFDA12iqwnsyiZIYpmbM_vvDOViuNZUslH1yzyLf_hbPlz45BCq04o5TD357yUNyvXuOHpH91WJdHIFRvNKPHWN_AXwjtvU
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optical+and+surface+enhanced+Raman+scattering+properties+of+Au+nanoparticles+embedded+in+and+located+on+a+carbonaceous+matrix&rft.jtitle=Physical+chemistry+chemical+physics+%3A+PCCP&rft.au=Prakash%2C+Jai&rft.au=Kumar%2C+Vinod&rft.au=Kroon%2C+R+E&rft.au=Asokan%2C+K&rft.date=2016-01-28&rft.eissn=1463-9084&rft.volume=18&rft.issue=4&rft.spage=2468&rft_id=info:doi/10.1039%2Fc5cp06134b&rft_id=info%3Apmid%2F26701612&rft.externalDocID=26701612
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9076&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9076&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9076&client=summon