Optical and surface enhanced Raman scattering properties of Au nanoparticles embedded in and located on a carbonaceous matrix
Au nanoparticles (NPs) on the surface and embedded in a matrix have been the subject of studies dealing with a variety of spectroscopic and sensing applications. Here, we report on low energy Ar ion induced evolution of the morphology of a thin Au film on a polyethylene terephthalate (PET) substrate...
Saved in:
Published in | Physical Chemistry Chemical Physics Vol. 18; no. 4; pp. 2468 - 2480 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry (RSC)
28.01.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Au nanoparticles (NPs) on the surface and embedded in a matrix have been the subject of studies dealing with a variety of spectroscopic and sensing applications. Here, we report on low energy Ar ion induced evolution of the morphology of a thin Au film on a polyethylene terephthalate (PET) substrate along with thermodynamic interpretations, and corresponding unique surface plasmon resonance (SPR) and photoluminescence (PL) properties. These properties are linked to the variation of surface nanostructures and the surface enhanced Raman scattering (SERS) effect of methyl orange (MO) dye molecules adsorbed on the surface. Ion induced thermal spike and sputtering resulted in dewetting of the film with subsequent formation of spherical NPs. This was followed by embedding of the NPs in the modified PET due to the thermodynamic driving forces involved. The surface and interface morphologies were studied using atomic force microscopy and cross-sectional transmission electron microscopy. X-ray photoelectron spectroscopy was used to study the chemical changes in the system upon irradiation. The optical properties were studied by diffuse reflectance UV-Vis spectroscopy and PL using a 325 nm He-Cd laser. The red shift of the SPR absorption and the blue shift of the PL emission have been correlated with the surface morphology. The blue PL emission bands at around 3.0 eV are in good agreement with the literature with respect to the morphological changes and the blue shift is attributed to compressive strain on the embedded Au NPs. Enhancement of the SERS signals is observed and found to be correlated with the SPR response of the Au nanostructures. The SERS analyses indicate that MO molecules may be adsorbed with different orientations on these surfaces
i.e.
Au NPs located on the surface or embedded in the modified PET. These polymeric substrates modified by NPs can have a potential application in solid-state light emitting devices and can be applied in SERS based sensors for the detection of organic compounds.
Au nanoparticles (NPs) on the surface and embedded in a matrix have been the subject of studies dealing with a variety of spectroscopic and sensing applications. |
---|---|
AbstractList | Au nanoparticles (NPs) on the surface and embedded in a matrix have been the subject of studies dealing with a variety of spectroscopic and sensing applications. Here, we report on low energy Ar ion induced evolution of the morphology of a thin Au film on a polyethylene terephthalate (PET) substrate along with thermodynamic interpretations, and corresponding unique surface plasmon resonance (SPR) and photoluminescence (PL) properties. These properties are linked to the variation of surface nanostructures and the surface enhanced Raman scattering (SERS) effect of methyl orange (MO) dye molecules adsorbed on the surface. Ion induced thermal spike and sputtering resulted in dewetting of the film with subsequent formation of spherical NPs. This was followed by embedding of the NPs in the modified PET due to the thermodynamic driving forces involved. The surface and interface morphologies were studied using atomic force microscopy and cross-sectional transmission electron microscopy. X-ray photoelectron spectroscopy was used to study the chemical changes in the system upon irradiation. The optical properties were studied by diffuse reflectance UV-Vis spectroscopy and PL using a 325 nm He-Cd laser. The red shift of the SPR absorption and the blue shift of the PL emission have been correlated with the surface morphology. The blue PL emission bands at around 3.0 eV are in good agreement with the literature with respect to the morphological changes and the blue shift is attributed to compressive strain on the embedded Au NPs. Enhancement of the SERS signals is observed and found to be correlated with the SPR response of the Au nanostructures. The SERS analyses indicate that MO molecules may be adsorbed with different orientations on these surfaces
i.e.
Au NPs located on the surface or embedded in the modified PET. These polymeric substrates modified by NPs can have a potential application in solid-state light emitting devices and can be applied in SERS based sensors for the detection of organic compounds.
Au nanoparticles (NPs) on the surface and embedded in a matrix have been the subject of studies dealing with a variety of spectroscopic and sensing applications. Au nanoparticles (NPs) on the surface and embedded in a matrix have been the subject of studies dealing with a variety of spectroscopic and sensing applications. Here, we report on low energy Ar ion induced evolution of the morphology of a thin Au film on a polyethylene terephthalate (PET) substrate along with thermodynamic interpretations, and corresponding unique surface plasmon resonance (SPR) and photoluminescence (PL) properties. These properties are linked to the variation of surface nanostructures and the surface enhanced Raman scattering (SERS) effect of methyl orange (MO) dye molecules adsorbed on the surface. Ion induced thermal spike and sputtering resulted in dewetting of the film with subsequent formation of spherical NPs. This was followed by embedding of the NPs in the modified PET due to the thermodynamic driving forces involved. The surface and interface morphologies were studied using atomic force microscopy and cross-sectional transmission electron microscopy. X-ray photoelectron spectroscopy was used to study the chemical changes in the system upon irradiation. The optical properties were studied by diffuse reflectance UV-Vis spectroscopy and PL using a 325 nm He-Cd laser. The red shift of the SPR absorption and the blue shift of the PL emission have been correlated with the surface morphology. The blue PL emission bands at around 3.0 eV are in good agreement with the literature with respect to the morphological changes and the blue shift is attributed to compressive strain on the embedded Au NPs. Enhancement of the SERS signals is observed and found to be correlated with the SPR response of the Au nanostructures. The SERS analyses indicate that MO molecules may be adsorbed with different orientations on these surfaces i.e. Au NPs located on the surface or embedded in the modified PET. These polymeric substrates modified by NPs can have a potential application in solid-state light emitting devices and can be applied in SERS based sensors for the detection of organic compounds. Au nanoparticles (NPs) on the surface and embedded in a matrix have been the subject of studies dealing with a variety of spectroscopic and sensing applications. Here, we report on low energy Ar ion induced evolution of the morphology of a thin Au film on a polyethylene terephthalate (PET) substrate along with thermodynamic interpretations, and corresponding unique surface plasmon resonance (SPR) and photoluminescence (PL) properties. These properties are linked to the variation of surface nanostructures and the surface enhanced Raman scattering (SERS) effect of methyl orange (MO) dye molecules adsorbed on the surface. Ion induced thermal spike and sputtering resulted in dewetting of the film with subsequent formation of spherical NPs. This was followed by embedding of the NPs in the modified PET due to the thermodynamic driving forces involved. The surface and interface morphologies were studied using atomic force microscopy and cross-sectional transmission electron microscopy. X-ray photoelectron spectroscopy was used to study the chemical changes in the system upon irradiation. The optical properties were studied by diffuse reflectance UV-Vis spectroscopy and PL using a 325 nm He–Cd laser. The red shift of the SPR absorption and the blue shift of the PL emission have been correlated with the surface morphology. The blue PL emission bands at around 3.0 eV are in good agreement with the literature with respect to the morphological changes and the blue shift is attributed to compressive strain on the embedded Au NPs. Enhancement of the SERS signals is observed and found to be correlated with the SPR response of the Au nanostructures. The SERS analyses indicate that MO molecules may be adsorbed with different orientations on these surfaces i.e. Au NPs located on the surface or embedded in the modified PET. These polymeric substrates modified by NPs can have a potential application in solid-state light emitting devices and can be applied in SERS based sensors for the detection of organic compounds. Au nanoparticles (NPs) on the surface and embedded in a matrix have been the subject of studies dealing with a variety of spectroscopic and sensing applications. Here, we report on low energy Ar ion induced evolution of the morphology of a thin Au film on a polyethylene terephthalate (PET) substrate along with thermodynamic interpretations, and corresponding unique surface plasmon resonance (SPR) and photoluminescence (PL) properties. These properties are linked to the variation of surface nanostructures and the surface enhanced Raman scattering (SERS) effect of methyl orange (MO) dye molecules adsorbed on the surface. Ion induced thermal spike and sputtering resulted in dewetting of the film with subsequent formation of spherical NPs. This was followed by embedding of the NPs in the modified PET due to the thermodynamic driving forces involved. The surface and interface morphologies were studied using atomic force microscopy and cross-sectional transmission electron microscopy. X-ray photoelectron spectroscopy was used to study the chemical changes in the system upon irradiation. The optical properties were studied by diffuse reflectance UV-Vis spectroscopy and PL using a 325 nm He-Cd laser. The red shift of the SPR absorption and the blue shift of the PL emission have been correlated with the surface morphology. The blue PL emission bands at around 3.0 eV are in good agreement with the literature with respect to the morphological changes and the blue shift is attributed to compressive strain on the embedded Au NPs. Enhancement of the SERS signals is observed and found to be correlated with the SPR response of the Au nanostructures. The SERS analyses indicate that MO molecules may be adsorbed with different orientations on these surfaces i.e. Au NPs located on the surface or embedded in the modified PET. These polymeric substrates modified by NPs can have a potential application in solid-state light emitting devices and can be applied in SERS based sensors for the detection of organic compounds.Au nanoparticles (NPs) on the surface and embedded in a matrix have been the subject of studies dealing with a variety of spectroscopic and sensing applications. Here, we report on low energy Ar ion induced evolution of the morphology of a thin Au film on a polyethylene terephthalate (PET) substrate along with thermodynamic interpretations, and corresponding unique surface plasmon resonance (SPR) and photoluminescence (PL) properties. These properties are linked to the variation of surface nanostructures and the surface enhanced Raman scattering (SERS) effect of methyl orange (MO) dye molecules adsorbed on the surface. Ion induced thermal spike and sputtering resulted in dewetting of the film with subsequent formation of spherical NPs. This was followed by embedding of the NPs in the modified PET due to the thermodynamic driving forces involved. The surface and interface morphologies were studied using atomic force microscopy and cross-sectional transmission electron microscopy. X-ray photoelectron spectroscopy was used to study the chemical changes in the system upon irradiation. The optical properties were studied by diffuse reflectance UV-Vis spectroscopy and PL using a 325 nm He-Cd laser. The red shift of the SPR absorption and the blue shift of the PL emission have been correlated with the surface morphology. The blue PL emission bands at around 3.0 eV are in good agreement with the literature with respect to the morphological changes and the blue shift is attributed to compressive strain on the embedded Au NPs. Enhancement of the SERS signals is observed and found to be correlated with the SPR response of the Au nanostructures. The SERS analyses indicate that MO molecules may be adsorbed with different orientations on these surfaces i.e. Au NPs located on the surface or embedded in the modified PET. These polymeric substrates modified by NPs can have a potential application in solid-state light emitting devices and can be applied in SERS based sensors for the detection of organic compounds. |
Author | Robin E. Kroon V. Rigato K. Asokan H.C. Swart K.H. Chae Jai Prakash Vinod Kumar Sanjeev Gautam |
AuthorAffiliation | Advanced Analysis Center Aruna Asif Ali Marg University of the Free State Korea Institute of Science and Technology INFN LaboratoriNazionali di Legnaro Inter University Accelerator Centre Dr. S.S. Bhatnagar University Institute of Chemical Engineering and Technology Department of Physics Panjab University |
AuthorAffiliation_xml | – sequence: 0 name: Korea Institute of Science and Technology – sequence: 0 name: INFN LaboratoriNazionali di Legnaro – sequence: 0 name: University of the Free State – sequence: 0 name: Panjab University – sequence: 0 name: Dr. S.S. Bhatnagar University Institute of Chemical Engineering and Technology – sequence: 0 name: Department of Physics – sequence: 0 name: Inter University Accelerator Centre – sequence: 0 name: Advanced Analysis Center – sequence: 0 name: Aruna Asif Ali Marg |
Author_xml | – sequence: 1 givenname: Jai surname: Prakash fullname: Prakash, Jai – sequence: 2 givenname: Vinod surname: Kumar fullname: Kumar, Vinod – sequence: 3 givenname: R. E surname: Kroon fullname: Kroon, R. E – sequence: 4 givenname: K surname: Asokan fullname: Asokan, K – sequence: 5 givenname: V surname: Rigato fullname: Rigato, V – sequence: 6 givenname: K. H surname: Chae fullname: Chae, K. H – sequence: 7 givenname: S surname: Gautam fullname: Gautam, S – sequence: 8 givenname: H. C surname: Swart fullname: Swart, H. C |
BackLink | https://cir.nii.ac.jp/crid/1873961342494794240$$DView record in CiNii https://www.ncbi.nlm.nih.gov/pubmed/26701612$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkk1rFTEUhoO02Fq7ca9k4UKEW5PJ5GtZL_UDCi2i6-Ekk2hgJhmTDOjC_97c3raCCN3k5JzzvG8OSZ6hg5iiQ-gFJWeUMP3OcrsQQVlvnqBj2gu20UT1Bw97KY7QaSnBEK645FSrp-ioE5JQQbtj9OdqqcHChCGOuKzZg3XYxR8QrRvxF5gh4mKhVpdD_I6XnBaXa3AFJ4_PVxwhpgVaxU6t5mbjxrEJQ7w1nFKTtjS1FFvIJsXmn9aCZ6g5_HqODj1MxZ3exRP07cPF1-2nzeXVx8_b88uN7SWrG2E4sR0zvrcehPQMqNZSjMLaTknPjVc9GM0Fg1ZmlrhOcujFaARTplPsBL3Z-7b5f66u1GEOxbppgribZqCKKKJ5R_jjqBREKcKobuirO3Q1sxuHJYcZ8u_h_nYbQPaAzamU7PxgQ4UaUqwZwjRQMuzecNjy7fXtG75vkrf_SO5d_wu_3MO52Afu74do_df7fgyhHb1bqZJM77pdr3upWyDsBg12sCc |
CitedBy_id | crossref_primary_10_1021_acsanm_9b00443 crossref_primary_10_1021_acsmaterialslett_2c00896 crossref_primary_10_1039_D4TB00184B crossref_primary_10_1088_1742_6596_1410_1_012140 crossref_primary_10_1016_j_molstruc_2022_134754 crossref_primary_10_1142_S179329202350114X crossref_primary_10_1039_D2ME00006G crossref_primary_10_1016_j_radphyschem_2020_109288 crossref_primary_10_2139_ssrn_4169679 crossref_primary_10_1088_1361_6528_aa7ba8 crossref_primary_10_1016_j_saa_2022_121576 crossref_primary_10_1016_j_vibspec_2022_103463 crossref_primary_10_1021_acsestwater_2c00402 crossref_primary_10_1039_C7ME00038C crossref_primary_10_1002_sia_5999 crossref_primary_10_1007_s11468_023_02081_8 crossref_primary_10_1002_aenm_201900889 crossref_primary_10_1002_slct_202102435 crossref_primary_10_1016_j_mne_2021_100100 crossref_primary_10_1007_s10853_018_2792_4 crossref_primary_10_1039_C8TC06299D crossref_primary_10_1002_smll_202308939 crossref_primary_10_1016_j_ijhydene_2021_10_099 crossref_primary_10_1021_acsami_7b07571 crossref_primary_10_1002_jrs_5186 crossref_primary_10_1039_C6CP04977J crossref_primary_10_1021_acsanm_7b00387 crossref_primary_10_1080_0144235X_2016_1187006 crossref_primary_10_1016_j_mtener_2018_07_003 crossref_primary_10_1016_j_mtsust_2021_100066 crossref_primary_10_1088_1757_899X_1029_1_012064 crossref_primary_10_1016_j_apsusc_2019_145227 crossref_primary_10_1039_C6RA27499D crossref_primary_10_1016_j_mtchem_2021_100428 crossref_primary_10_3390_photochem2030043 crossref_primary_10_1016_j_molliq_2025_127020 crossref_primary_10_1016_j_matlet_2021_130984 crossref_primary_10_1016_j_mne_2024_100239 crossref_primary_10_1039_D1TC04886D crossref_primary_10_1016_j_apmt_2018_02_002 crossref_primary_10_1016_j_chemosphere_2023_138077 crossref_primary_10_1016_j_ces_2020_115821 crossref_primary_10_1016_j_envres_2022_113550 crossref_primary_10_1016_j_jhazmat_2020_122222 crossref_primary_10_1007_s11356_022_24639_5 crossref_primary_10_1016_j_snb_2018_05_155 crossref_primary_10_1016_j_solener_2017_11_036 crossref_primary_10_1016_j_matchemphys_2021_125642 crossref_primary_10_1002_jemt_24598 crossref_primary_10_1039_D2SD00133K crossref_primary_10_1063_1_5009410 crossref_primary_10_1016_j_molstruc_2025_141327 crossref_primary_10_3390_molecules25225404 crossref_primary_10_1016_j_biteb_2019_100267 |
Cites_doi | 10.1063/1.2200285 10.1103/PhysRevB.33.7923 10.1007/s11468-012-9428-3 10.1039/c3an01924a 10.1039/c1sc00254f 10.1063/1.2161401 10.1016/j.cis.2015.10.010 10.1063/1.2967471 10.1007/s10853-012-6816-1 10.1016/j.nimb.2003.09.032 10.1021/ar960016n 10.1063/1.1985977 10.1016/j.jcis.2006.09.068 10.1007/s00340-003-1168-9 10.1016/0036-9748(85)90118-8 10.1063/1.1527712 10.1016/j.cplett.2007.09.045 10.1063/1.1372623 10.1021/la7025544 10.1021/ac5002355 10.1039/c3cp50198a 10.1016/j.chemphys.2006.09.024 10.1021/la703064m 10.1021/jp300260h 10.1021/cr200061k 10.1039/c3ra45255g 10.1016/j.matchemphys.2014.06.038 10.1103/PhysRevB.48.18178 10.1103/PhysRevLett.22.185 10.1039/C4CP05679E 10.1021/ac503636j 10.1021/nl050687r 10.1088/0957-4484/21/32/325701 10.1063/1.1359491 10.1103/PhysRevLett.93.077402 10.1007/s11468-012-9389-6 10.1063/1.476360 10.1166/sam.2012.1388 10.1002/1527-2648(200110)3:10<737::AID-ADEM737>3.0.CO;2-8 10.1088/0022-3727/44/12/125302 10.1088/0957-4484/18/34/345606 10.1088/0957-4484/18/35/355702 10.1063/1.2988288 10.1063/1.2359688 10.1016/j.apsusc.2008.07.066 10.5185/amlett.2010.12187 10.1063/1.1503387 10.1021/jp026731y 10.1364/OE.23.005547 10.1116/1.1247762 10.1016/j.vacuum.2010.02.003 10.1007/978-3-662-09109-8 10.1002/sia.740160185 10.1039/B514191E 10.5185/amlett.2012.ib.104 10.1016/j.apsusc.2009.01.055 10.1021/la0114530 10.1039/C4RA14061C 10.1038/srep01469 10.1063/1.1814939 10.1063/1.2894187 10.1063/1.126633 10.1063/1.2764556 |
ContentType | Journal Article |
DBID | RYH AAYXX CITATION NPM 7X8 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1039/c5cp06134b |
DatabaseName | CiNii Complete CrossRef PubMed MEDLINE - Academic Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | PubMed CrossRef MEDLINE - Academic Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1463-9084 |
EndPage | 2480 |
ExternalDocumentID | 26701612 10_1039_C5CP06134B c5cp06134b |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -DZ -~X 0-7 0R~ 123 29O 2WC 4.4 53G 705 70~ 7~J 87K AAEMU AAIWI AAJAE AAMEH AANOJ AAWGC AAXHV AAXPP ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFO ACGFS ACIWK ACLDK ACNCT ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AFVBQ AGEGJ AGKEF AGRSR AHGCF AKMSF ALMA_UNASSIGNED_HOLDINGS ALUYA ANBJS ANUXI APEMP ASKNT AUDPV AZFZN BLAPV BSQNT C6K CS3 D0L DU5 EBS ECGLT EE0 EF- EJD F5P GGIMP GNO H13 HZ~ H~N IDZ J3G J3I M4U N9A NHB O9- P2P R56 R7B R7C RAOCF RCNCU RNS ROL RPMJG RRA RRC RSCEA RYH SKA SKF SLH TN5 TWZ UHB VH6 WH7 YNT -JG AGSTE OK1 UCJ 0UZ 1TJ 6TJ 71~ 9M8 AAYXX ACHDF ACRPL ADNMO AFFNX AGQPQ AHGXI ALSGL ANLMG ASPBG AVWKF BBWZM CAG CITATION COF EEHRC FEDTE HVGLF H~9 IDY J3H L-8 MVM NDZJH RCLXC RIG XJT XOL ZCG NPM 7X8 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-c473t-6b50c23bf4cfa67f3a19976d6cc287f5bf84ab9563a9763c0e275a46db638b283 |
ISSN | 1463-9076 1463-9084 |
IngestDate | Fri Jul 11 07:01:02 EDT 2025 Fri Jul 11 04:54:15 EDT 2025 Wed Feb 19 02:00:16 EST 2025 Tue Jul 01 02:46:10 EDT 2025 Thu Apr 24 23:05:23 EDT 2025 Tue Dec 17 20:59:50 EST 2024 Thu Jun 26 23:33:19 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c473t-6b50c23bf4cfa67f3a19976d6cc287f5bf84ab9563a9763c0e275a46db638b283 |
Notes | Electronic supplementary information (ESI) available. See DOI 10.1039/c5cp06134b ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-3123-9906 0000-0002-1602-765X 0000-0003-3894-670X 0000-0003-0671-7750 0000-0001-9728-9370 0000-0001-9474-7647 0000-0002-6425-5120 |
OpenAccessLink | https://www.openaccessrepository.it/record/76260 |
PMID | 26701612 |
PQID | 1760880319 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | pubmed_primary_26701612 proquest_miscellaneous_1808095205 rsc_primary_c5cp06134b proquest_miscellaneous_1760880319 nii_cinii_1873961342494794240 crossref_citationtrail_10_1039_C5CP06134B crossref_primary_10_1039_C5CP06134B |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-01-28 |
PublicationDateYYYYMMDD | 2016-01-28 |
PublicationDate_xml | – month: 01 year: 2016 text: 2016-01-28 day: 28 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Physical Chemistry Chemical Physics |
PublicationTitleAlternate | Phys Chem Chem Phys |
PublicationYear | 2016 |
Publisher | Royal Society of Chemistry (RSC) |
Publisher_xml | – name: Royal Society of Chemistry (RSC) |
References | Calliari (C5CP06134B-(cit41)/*[position()=1]) 2008; 255 El-Sayed (C5CP06134B-(cit50)/*[position()=1]) 2001; 34 Biswas (C5CP06134B-(cit33)/*[position()=1]) 2004; 217 Dollar (C5CP06134B-(cit59)/*[position()=1]) 1985; 19 Mathpal (C5CP06134B-(cit5)/*[position()=1]) 2015; 5 Prakash (C5CP06134B-(cit1)/*[position()=1]) 2015; 226 Prakash (C5CP06134B-(cit31)/*[position()=1]) 2011; 2 Halas (C5CP06134B-(cit51)/*[position()=1]) 2011; 111 Farrer (C5CP06134B-(cit21)/*[position()=1]) 2005; 5 Hu (C5CP06134B-(cit39)/*[position()=1]) 2003; 93 Eustis (C5CP06134B-(cit18)/*[position()=1]) 2006; 35 Jia (C5CP06134B-(cit25)/*[position()=1]) 2014; 86 Xiao (C5CP06134B-(cit61)/*[position()=1]) 2007; 447 Nakayama (C5CP06134B-(cit11)/*[position()=1]) 2008; 93 Mishra (C5CP06134B-(cit28)/*[position()=1]) 2007; 91 Yang (C5CP06134B-(cit22)/*[position()=1]) 2010; 21 Chen (C5CP06134B-(cit13)/*[position()=1]) 2015; 87 Sun (C5CP06134B-(cit53)/*[position()=1]) 2012; 116 Deshmukh (C5CP06134B-(cit3)/*[position()=1]) 2007; 23 Mishra (C5CP06134B-(cit56)/*[position()=1]) 2007; 18 Zheng (C5CP06134B-(cit20)/*[position()=1]) 2004; 93 Thune (C5CP06134B-(cit44)/*[position()=1]) 2005; 98 Marletta (C5CP06134B-(cit47)/*[position()=1]) 1990; 16 Karakouz (C5CP06134B-(cit54)/*[position()=1]) 2013; 15 Prakash (C5CP06134B-(cit32)/*[position()=1]) 2013; 4 Doren (C5CP06134B-(cit48)/*[position()=1]) 1994; 3 Wu (C5CP06134B-(cit60)/*[position()=1]) 2014; 4 Jana (C5CP06134B-(cit52)/*[position()=1]) 2002; 18 Kreibig (C5CP06134B-(cit8)/*[position()=1]) 1995 Prakash (C5CP06134B-(cit29)/*[position()=1]) 2011; 44 Singhal (C5CP06134B-(cit34)/*[position()=1]) 2013; 8 Hu (C5CP06134B-(cit37)/*[position()=1]) 2001; 89 Gaspar (C5CP06134B-(cit49)/*[position()=1]) 2013; 3 Kelly (C5CP06134B-(cit27)/*[position()=1]) 2003; 107 Hendrich (C5CP06134B-(cit55)/*[position()=1]) 2003; 76 Sivanesan (C5CP06134B-(cit23)/*[position()=1]) 2014; 139 Hu (C5CP06134B-(cit40)/*[position()=1]) 2002; 92 Takahiro (C5CP06134B-(cit43)/*[position()=1]) 2006; 100 Zhang (C5CP06134B-(cit62)/*[position()=1]) 2007; 305 Mohapatra (C5CP06134B-(cit42)/*[position()=1]) 2008; 92 Hu (C5CP06134B-(cit35)/*[position()=1]) 2000; 76 Biswas (C5CP06134B-(cit7)/*[position()=1]) 2006; 88 Prakash (C5CP06134B-(cit45)/*[position()=1]) 2010; 84 Wonmi (C5CP06134B-(cit19)/*[position()=1]) 2008; 24 Eichelbaum (C5CP06134B-(cit2)/*[position()=1]) 2007; 18 Choulis (C5CP06134B-(cit10)/*[position()=1]) 2006; 88 Boyd (C5CP06134B-(cit58)/*[position()=1]) 1986; 33 Wilcoxon (C5CP06134B-(cit16)/*[position()=1]) 1998; 108 Meng (C5CP06134B-(cit38)/*[position()=1]) 2013; 48 Yang (C5CP06134B-(cit64)/*[position()=1]) 2010; 21 Dhara (C5CP06134B-(cit12)/*[position()=1]) 2004; 121 Lu (C5CP06134B-(cit24)/*[position()=1]) 2011; 2 Zhang (C5CP06134B-(cit63)/*[position()=1]) 2006; 331 Schmid (C5CP06134B-(cit6)/*[position()=1]) 2001; 3 Khriachtchev (C5CP06134B-(cit14)/*[position()=1]) 2001; 78 Lakshmi (C5CP06134B-(cit46)/*[position()=1]) 2012; 4 Ngoc (C5CP06134B-(cit17)/*[position()=1]) 2015; 23 Hovel (C5CP06134B-(cit57)/*[position()=1]) 1993; 48 Kim (C5CP06134B-(cit9)/*[position()=1]) 2008; 93 Mooradian (C5CP06134B-(cit15)/*[position()=1]) 1969; 22 Kumar (C5CP06134B-(cit4)/*[position()=1]) 2015; 17 Prakash (C5CP06134B-(cit30)/*[position()=1]) 2014; 147 Grochowska (C5CP06134B-(cit36)/*[position()=1]) 2013; 8 Si (C5CP06134B-(cit26)/*[position()=1]) 2009; 255 |
References_xml | – issn: 1995 publication-title: Optical properties of Metal clusters doi: Kreibig Vollmer – volume: 88 start-page: 213503 year: 2006 ident: C5CP06134B-(cit10)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.2200285 – volume: 33 start-page: 7923 year: 1986 ident: C5CP06134B-(cit58)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.33.7923 – volume: 8 start-page: 105 year: 2013 ident: C5CP06134B-(cit36)/*[position()=1] publication-title: Plasmonics doi: 10.1007/s11468-012-9428-3 – volume: 139 start-page: 1037 year: 2014 ident: C5CP06134B-(cit23)/*[position()=1] publication-title: Analyst doi: 10.1039/c3an01924a – volume: 2 start-page: 1817 year: 2011 ident: C5CP06134B-(cit24)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/c1sc00254f – volume: 88 start-page: 13103 year: 2006 ident: C5CP06134B-(cit7)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.2161401 – volume: 226 start-page: 187 year: 2015 ident: C5CP06134B-(cit1)/*[position()=1] publication-title: Adv. Colloid Interface Sci. doi: 10.1016/j.cis.2015.10.010 – volume: 93 start-page: 73307 year: 2008 ident: C5CP06134B-(cit9)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.2967471 – volume: 48 start-page: 920 year: 2013 ident: C5CP06134B-(cit38)/*[position()=1] publication-title: J. Mater. Sci. doi: 10.1007/s10853-012-6816-1 – volume: 217 start-page: 39 year: 2004 ident: C5CP06134B-(cit33)/*[position()=1] publication-title: Nucl. Instrum. Methods Phys. Res., Sect. B doi: 10.1016/j.nimb.2003.09.032 – volume: 34 start-page: 257 year: 2001 ident: C5CP06134B-(cit50)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/ar960016n – volume: 98 start-page: 34304 year: 2005 ident: C5CP06134B-(cit44)/*[position()=1] publication-title: J. Appl. Phys. doi: 10.1063/1.1985977 – volume: 305 start-page: 270 year: 2007 ident: C5CP06134B-(cit62)/*[position()=1] publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2006.09.068 – volume: 76 start-page: 869 year: 2003 ident: C5CP06134B-(cit55)/*[position()=1] publication-title: Appl. Phys. B: Lasers Opt. doi: 10.1007/s00340-003-1168-9 – volume: 19 start-page: 481 year: 1985 ident: C5CP06134B-(cit59)/*[position()=1] publication-title: Scripta Metall. doi: 10.1016/0036-9748(85)90118-8 – volume: 93 start-page: 165 year: 2003 ident: C5CP06134B-(cit39)/*[position()=1] publication-title: J. Appl. Phys. doi: 10.1063/1.1527712 – volume: 447 start-page: 305 year: 2007 ident: C5CP06134B-(cit61)/*[position()=1] publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2007.09.045 – volume: 89 start-page: 7777 year: 2001 ident: C5CP06134B-(cit37)/*[position()=1] publication-title: J. Appl. Phys. doi: 10.1063/1.1372623 – volume: 23 start-page: 13169 year: 2007 ident: C5CP06134B-(cit3)/*[position()=1] publication-title: Langmuir doi: 10.1021/la7025544 – volume: 86 start-page: 3955 year: 2014 ident: C5CP06134B-(cit25)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/ac5002355 – volume: 15 start-page: 4656 year: 2013 ident: C5CP06134B-(cit54)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c3cp50198a – volume: 331 start-page: 55 year: 2006 ident: C5CP06134B-(cit63)/*[position()=1] publication-title: Chem. Phys. doi: 10.1016/j.chemphys.2006.09.024 – volume: 24 start-page: 4174 year: 2008 ident: C5CP06134B-(cit19)/*[position()=1] publication-title: Langmuir doi: 10.1021/la703064m – volume: 116 start-page: 9000 year: 2012 ident: C5CP06134B-(cit53)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp300260h – volume: 111 start-page: 3913 year: 2011 ident: C5CP06134B-(cit51)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr200061k – volume: 4 start-page: 10043 year: 2014 ident: C5CP06134B-(cit60)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/c3ra45255g – volume: 147 start-page: 920 year: 2014 ident: C5CP06134B-(cit30)/*[position()=1] publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2014.06.038 – volume: 48 start-page: 178 year: 1993 ident: C5CP06134B-(cit57)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.48.18178 – volume: 22 start-page: 185 year: 1969 ident: C5CP06134B-(cit15)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.22.185 – volume: 17 start-page: 8596 year: 2015 ident: C5CP06134B-(cit4)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C4CP05679E – volume: 87 start-page: 216 year: 2015 ident: C5CP06134B-(cit13)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/ac503636j – volume: 5 start-page: 1139 year: 2005 ident: C5CP06134B-(cit21)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl050687r – volume: 21 start-page: 325701 year: 2010 ident: C5CP06134B-(cit22)/*[position()=1] publication-title: Nanotechnology doi: 10.1088/0957-4484/21/32/325701 – volume: 78 start-page: 1994 year: 2001 ident: C5CP06134B-(cit14)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.1359491 – volume: 93 start-page: 077402 year: 2004 ident: C5CP06134B-(cit20)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.93.077402 – volume: 8 start-page: 295 year: 2013 ident: C5CP06134B-(cit34)/*[position()=1] publication-title: Plasmonics doi: 10.1007/s11468-012-9389-6 – volume: 108 start-page: 9137 year: 1998 ident: C5CP06134B-(cit16)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.476360 – volume: 4 start-page: 1024 year: 2012 ident: C5CP06134B-(cit46)/*[position()=1] publication-title: Sci. Adv. Mater. doi: 10.1166/sam.2012.1388 – volume: 3 start-page: 737 year: 2001 ident: C5CP06134B-(cit6)/*[position()=1] publication-title: Adv. Eng. Mater. doi: 10.1002/1527-2648(200110)3:10<737::AID-ADEM737>3.0.CO;2-8 – volume: 44 start-page: 125302 year: 2011 ident: C5CP06134B-(cit29)/*[position()=1] publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/44/12/125302 – volume: 18 start-page: 345606 year: 2007 ident: C5CP06134B-(cit56)/*[position()=1] publication-title: Nanotechnology doi: 10.1088/0957-4484/18/34/345606 – volume: 18 start-page: 355702 year: 2007 ident: C5CP06134B-(cit2)/*[position()=1] publication-title: Nanotechnology doi: 10.1088/0957-4484/18/35/355702 – volume: 93 start-page: 121904 year: 2008 ident: C5CP06134B-(cit11)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.2988288 – volume: 100 start-page: 84325 year: 2006 ident: C5CP06134B-(cit43)/*[position()=1] publication-title: J. Appl. Phys. doi: 10.1063/1.2359688 – volume: 255 start-page: 2214 year: 2008 ident: C5CP06134B-(cit41)/*[position()=1] publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2008.07.066 – volume: 2 start-page: 71 year: 2011 ident: C5CP06134B-(cit31)/*[position()=1] publication-title: Adv. Mater. Lett. doi: 10.5185/amlett.2010.12187 – volume: 92 start-page: 3995 year: 2002 ident: C5CP06134B-(cit40)/*[position()=1] publication-title: J. Appl. Phys. doi: 10.1063/1.1503387 – volume: 21 start-page: 325701 year: 2010 ident: C5CP06134B-(cit64)/*[position()=1] publication-title: Nanotechnology doi: 10.1088/0957-4484/21/32/325701 – volume: 107 start-page: 668 year: 2003 ident: C5CP06134B-(cit27)/*[position()=1] publication-title: J. Phys. Chem. B doi: 10.1021/jp026731y – volume: 23 start-page: 5547 year: 2015 ident: C5CP06134B-(cit17)/*[position()=1] publication-title: Opt. Express doi: 10.1364/OE.23.005547 – volume: 3 start-page: 337 year: 1994 ident: C5CP06134B-(cit48)/*[position()=1] publication-title: Surf. Sci. Spectra doi: 10.1116/1.1247762 – volume: 84 start-page: 1275 year: 2010 ident: C5CP06134B-(cit45)/*[position()=1] publication-title: Vacuum doi: 10.1016/j.vacuum.2010.02.003 – volume-title: Optical properties of Metal clusters year: 1995 ident: C5CP06134B-(cit8)/*[position()=1] doi: 10.1007/978-3-662-09109-8 – volume: 16 start-page: 407 year: 1990 ident: C5CP06134B-(cit47)/*[position()=1] publication-title: Surf. Interface Anal. doi: 10.1002/sia.740160185 – volume: 35 start-page: 209 year: 2006 ident: C5CP06134B-(cit18)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/B514191E – volume: 4 start-page: 408 year: 2013 ident: C5CP06134B-(cit32)/*[position()=1] publication-title: Adv. Mater. Lett. doi: 10.5185/amlett.2012.ib.104 – volume: 255 start-page: 6007 year: 2009 ident: C5CP06134B-(cit26)/*[position()=1] publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2009.01.055 – volume: 18 start-page: 922 year: 2002 ident: C5CP06134B-(cit52)/*[position()=1] publication-title: Langmuir doi: 10.1021/la0114530 – volume: 5 start-page: 12555 year: 2015 ident: C5CP06134B-(cit5)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C4RA14061C – volume: 3 start-page: 1469 year: 2013 ident: C5CP06134B-(cit49)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/srep01469 – volume: 121 start-page: 12595 year: 2004 ident: C5CP06134B-(cit12)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.1814939 – volume: 92 start-page: 103105 year: 2008 ident: C5CP06134B-(cit42)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.2894187 – volume: 76 start-page: 3215 year: 2000 ident: C5CP06134B-(cit35)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.126633 – volume: 91 start-page: 63103 year: 2007 ident: C5CP06134B-(cit28)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.2764556 |
SSID | ssib058575198 ssib017386372 ssib000613318 ssib001535616 ssib003172005 ssib000198787 ssj0001513 ssib004908703 |
Score | 2.42034 |
Snippet | Au nanoparticles (NPs) on the surface and embedded in a matrix have been the subject of studies dealing with a variety of spectroscopic and sensing... |
SourceID | proquest pubmed crossref rsc nii |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2468 |
SubjectTerms | Blue shift Correlation Emission spectroscopy Morphology Nanoparticles Nanostructure Polyethylene terephthalates Raman scattering |
Title | Optical and surface enhanced Raman scattering properties of Au nanoparticles embedded in and located on a carbonaceous matrix |
URI | https://cir.nii.ac.jp/crid/1873961342494794240 https://www.ncbi.nlm.nih.gov/pubmed/26701612 https://www.proquest.com/docview/1760880319 https://www.proquest.com/docview/1808095205 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6l7QEuiFchQNEiuKDKYO_Djo_BKirvCKWot2h3batRiR3lISEkrvxuZry7dqIGBFwsZ2xvEn-fZ2fH8yDkmZFcSQ2rE2m4CQSLTKBTmQfC6CQtFZNG40Lxw8f49Ey8PZfnvd7Pjail9Uq_MN935pX8D6ogA1wxS_YfkG0HBQHsA76wBYRh-1cYf5qv2mT_5XpRKnhIi-rCvtT_rNA9vzRNAU2bc17PMYralpkdro8rVcGS2UXGHRczXYAWwlpMzYA4y6E5iuHKWMBag81uCoyYnWFZ_2-bZu3Io218_zi7hyLrO1k2vodRlrX5ZKOFulTLCxuqO-1eKbmQ7y_Tqs5bKdj31lnQZU4Ml_Wl9d6-23RdRI3rwqWCF1bdipgHaWibxF3Vx52zwSpXYTvwXNH6IceiqUaaOVonYmtqgD83nzX4szhB-5Z1M18bj-gP7ZEDBssN0JcHw5Pxm_ftnA52EffFbXn6svsqLCbtLt6ybPaq6XTXogWOLHxrmcaEGd8kN9zagw4t4rdIr6huk2uZh-wO-eEIRQF_6ghFPaFoQyjaEYp2hKJ1SYdrukUo6glFp1UzoCMUreEj3SQUtYS6S85en4yz08D15wiMSPgqiLUMDeO6FKZUcVJyhVFLcY6h-IOklLocCAVPfswViLkJC5ZIJeJcg9LXYNcekv2qror7hCaRSMSAFaaEaziXuhikOIeXIctzFvM-ee7v7cS44vXYQ-XrpAmi4Okkk9mogeRVnzxtz53bki07zzoCiGAw3EaDhKcoZiLFlgtg5vbJEw_eBFDA12iqwnsyiZIYpmbM_vvDOViuNZUslH1yzyLf_hbPlz45BCq04o5TD357yUNyvXuOHpH91WJdHIFRvNKPHWN_AXwjtvU |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optical+and+surface+enhanced+Raman+scattering+properties+of+Au+nanoparticles+embedded+in+and+located+on+a+carbonaceous+matrix&rft.jtitle=Physical+chemistry+chemical+physics+%3A+PCCP&rft.au=Prakash%2C+Jai&rft.au=Kumar%2C+Vinod&rft.au=Kroon%2C+R+E&rft.au=Asokan%2C+K&rft.date=2016-01-28&rft.eissn=1463-9084&rft.volume=18&rft.issue=4&rft.spage=2468&rft_id=info:doi/10.1039%2Fc5cp06134b&rft_id=info%3Apmid%2F26701612&rft.externalDocID=26701612 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9076&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9076&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9076&client=summon |