Disentangling the drivers of future Antarctic ice loss with a historically calibrated ice-sheet model

We use an observationally calibrated ice-sheet model to investigate the future trajectory of the Antarctic ice sheet related to uncertainties in the future balance between sub-shelf melting and ice discharge, on the one hand, and the surface mass balance, on the other. Our ensemble of simulations, f...

Full description

Saved in:
Bibliographic Details
Published inThe cryosphere Vol. 18; no. 2; pp. 653 - 681
Main Authors Coulon, Violaine, Klose, Ann Kristin, Kittel, Christoph, Edwards, Tamsin, Turner, Fiona, Winkelmann, Ricarda, Pattyn, Frank
Format Journal Article Web Resource
LanguageEnglish
Published Katlenburg-Lindau Copernicus GmbH 12.02.2024
Copernicus Publications
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We use an observationally calibrated ice-sheet model to investigate the future trajectory of the Antarctic ice sheet related to uncertainties in the future balance between sub-shelf melting and ice discharge, on the one hand, and the surface mass balance, on the other. Our ensemble of simulations, forced by a panel of climate models from the sixth phase of the Coupled Model Intercomparison Project (CMIP6), suggests that the ocean will be the primary driver of short-term Antarctic mass loss, initiating ice loss in West Antarctica already during this century. The atmosphere initially plays a mitigating role through increased snowfall, leading to an Antarctic contribution to global mean sea-level rise by 2100 of 6 (−8 to 15) cm under a low-emission scenario and 5.5 (−10 to 16) cm under a very high-emission scenario. However, under the very high-emission pathway, the influence of the atmosphere shifts beyond the end of the century, becoming an amplifying driver of mass loss as the ice sheet's surface mass balance decreases. We show that this transition occurs when Antarctic near-surface warming exceeds a critical threshold of +7.5 ∘C, at which the increase in surface runoff outweighs the increase in snow accumulation, a signal that is amplified by the melt–elevation feedback. Therefore, under the very high-emission scenario, oceanic and atmospheric drivers are projected to result in a complete collapse of the West Antarctic ice sheet along with significant grounding-line retreat in the marine basins of the East Antarctic ice sheet, leading to a median global mean sea-level rise of 2.75 (6.95) m by 2300 (3000). Under a more sustainable socio-economic pathway, we find that the Antarctic ice sheet may still contribute to a median global mean sea-level rise of 0.62 (1.85) m by 2300 (3000). However, the rate of sea-level rise is significantly reduced as mass loss is likely to remain confined to the Amundsen Sea Embayment, where present-day climate conditions seem sufficient to commit to a continuous retreat of Thwaites Glacier.
AbstractList We use an observationally calibrated ice-sheet model to investigate the future trajectory of the Antarctic ice sheet related to uncertainties in the future balance between sub-shelf melting and ice discharge, on the one hand, and the surface mass balance, on the other. Our ensemble of simulations, forced by a panel of climate models from the sixth phase of the Coupled Model Intercomparison Project (CMIP6), suggests that the ocean will be the primary driver of short-term Antarctic mass loss, initiating ice loss in West Antarctica already during this century. The atmosphere initially plays a mitigating role through increased snowfall, leading to an Antarctic contribution to global mean sea-level rise by 2100 of 6 (-8 to 15) cm under a low-emission scenario and 5.5 (-10 to 16) cm under a very high-emission scenario. However, under the very high-emission pathway, the influence of the atmosphere shifts beyond the end of the century, becoming an amplifying driver of mass loss as the ice sheet's surface mass balance decreases. We show that this transition occurs when Antarctic near-surface warming exceeds a critical threshold of +7.5 ∘C, at which the increase in surface runoff outweighs the increase in snow accumulation, a signal that is amplified by the melt–elevation feedback. Therefore, under the very high-emission scenario, oceanic and atmospheric drivers are projected to result in a complete collapse of the West Antarctic ice sheet along with significant grounding-line retreat in the marine basins of the East Antarctic ice sheet, leading to a median global mean sea-level rise of 2.75 (6.95) m by 2300 (3000). Under a more sustainable socio-economic pathway, we find that the Antarctic ice sheet may still contribute to a median global mean sea-level rise of 0.62 (1.85) m by 2300 (3000). However, the rate of sea-level rise is significantly reduced as mass loss is likely to remain confined to the Amundsen Sea Embayment, where present-day climate conditions seem sufficient to commit to a continuous retreat of Thwaites Glacier.
We use an observationally calibrated ice-sheet model to investigate the future trajectory of the Antarctic ice sheet related to uncertainties in the future balance between sub-shelf melting and ice discharge, on the one hand, and the surface mass balance, on the other. Our ensemble of simulations, forced by a panel of climate models from the sixth phase of the Coupled Model Intercomparison Project (CMIP6), suggests that the ocean will be the primary driver of short-term Antarctic mass loss, initiating ice loss in West Antarctica already during this century. The atmosphere initially plays a mitigating role through increased snowfall, leading to an Antarctic contribution to global mean sea-level rise by 2100 of 6 (-8 to 15) cm under a low-emission scenario and 5.5 (-10 to 16) cm under a very high-emission scenario. However, under the very high-emission pathway, the influence of the atmosphere shifts beyond the end of the century, becoming an amplifying driver of mass loss as the ice sheet's surface mass balance decreases. We show that this transition occurs when Antarctic near-surface warming exceeds a critical threshold of +7.5 .sup." C, at which the increase in surface runoff outweighs the increase in snow accumulation, a signal that is amplified by the melt-elevation feedback. Therefore, under the very high-emission scenario, oceanic and atmospheric drivers are projected to result in a complete collapse of the West Antarctic ice sheet along with significant grounding-line retreat in the marine basins of the East Antarctic ice sheet, leading to a median global mean sea-level rise of 2.75 (6.95) m by 2300 (3000). Under a more sustainable socio-economic pathway, we find that the Antarctic ice sheet may still contribute to a median global mean sea-level rise of 0.62 (1.85) m by 2300 (3000). However, the rate of sea-level rise is significantly reduced as mass loss is likely to remain confined to the Amundsen Sea Embayment, where present-day climate conditions seem sufficient to commit to a continuous retreat of Thwaites Glacier.
We use an observationally calibrated ice-sheet model to investigate the future trajectory of the Antarctic ice sheet related to uncertainties in the future balance between sub-shelf melting and ice discharge, on the one hand, and the surface mass balance, on the other. Our ensemble of simulations, forced by a panel of climate models from the sixth phase of the Coupled Model Intercomparison Project (CMIP6), suggests that the ocean will be the primary driver of short-term Antarctic mass loss, initiating ice loss in West Antarctica already during this century. The atmosphere initially plays a mitigating role through increased snowfall, leading to an Antarctic contribution to global mean sea-level rise by 2100 of 6 ( − 8 to 15) cm under a low-emission scenario and 5.5 ( − 10 to 16) cm under a very high-emission scenario. However, under the very high-emission pathway, the influence of the atmosphere shifts beyond the end of the century, becoming an amplifying driver of mass loss as the ice sheet's surface mass balance decreases. We show that this transition occurs when Antarctic near-surface warming exceeds a critical threshold of + 7.5  ∘ C, at which the increase in surface runoff outweighs the increase in snow accumulation, a signal that is amplified by the melt–elevation feedback. Therefore, under the very high-emission scenario, oceanic and atmospheric drivers are projected to result in a complete collapse of the West Antarctic ice sheet along with significant grounding-line retreat in the marine basins of the East Antarctic ice sheet, leading to a median global mean sea-level rise of 2.75 (6.95) m by 2300 (3000). Under a more sustainable socio-economic pathway, we find that the Antarctic ice sheet may still contribute to a median global mean sea-level rise of 0.62 (1.85) m by 2300 (3000). However, the rate of sea-level rise is significantly reduced as mass loss is likely to remain confined to the Amundsen Sea Embayment, where present-day climate conditions seem sufficient to commit to a continuous retreat of Thwaites Glacier.
We use an observationally calibrated ice-sheet model to investigate the future trajectory of the Antarctic ice sheet related to uncertainties in the future balance between sub-shelf melting and ice discharge, on the one hand, and the surface mass balance, on the other. Our ensemble of simulations, forced by a panel of climate models from the sixth phase of the Coupled Model Intercomparison Project (CMIP6), suggests that the ocean will be the primary driver of short-term Antarctic mass loss, initiating ice loss in West Antarctica already during this century. The atmosphere initially plays a mitigating role through increased snowfall, leading to an Antarctic contribution to global mean sea-level rise by 2100 of 6 (-8 to 15)cm under a low-emission scenario and 5.5 (-10 to 16)cm under a very high-emission scenario. However, under the very high-emission pathway, the influence of the atmosphere shifts beyond the end of the century, becoming an amplifying driver of mass loss as the ice sheet's surface mass balance decreases. We show that this transition occurs when Antarctic near-surface warming exceeds a critical threshold of +7.5°C, at which the increase in surface runoff outweighs the increase in snow accumulation, a signal that is amplified by the melt-elevation feedback. Therefore, under the very high-emission scenario, oceanic and atmospheric drivers are projected to result in a complete collapse of the West Antarctic ice sheet along with significant grounding-line retreat in the marine basins of the East Antarctic ice sheet, leading to a median global mean sea-level rise of 2.75 (6.95)m by 2300 (3000). Under a more sustainable socio-economic pathway, we find that the Antarctic ice sheet may still contribute to a median global mean sea-level rise of 0.62 (1.85)m by 2300 (3000). However, the rate of sea-level rise is significantly reduced as mass loss is likely to remain confined to the Amundsen Sea Embayment, where present-day climate conditions seem sufficient to commit to a continuous retreat of Thwaites Glacier.
We use an observationally calibrated ice-sheet model to investigate the future trajectory of the Antarctic ice sheet related to uncertainties in the future balance between sub-shelf melting and ice discharge, on the one hand, and the surface mass balance, on the other. Our ensemble of simulations, forced by a panel of climate models from the sixth phase of the Coupled Model Intercomparison Project (CMIP6), suggests that the ocean will be the primary driver of short-term Antarctic mass loss, initiating ice loss in West Antarctica already during this century. The atmosphere initially plays a mitigating role through increased snowfall, leading to an Antarctic contribution to global mean sea-level rise by 2100 of 6 (−8 to 15) cm under a low-emission scenario and 5.5 (−10 to 16) cm under a very high-emission scenario. However, under the very high-emission pathway, the influence of the atmosphere shifts beyond the end of the century, becoming an amplifying driver of mass loss as the ice sheet's surface mass balance decreases. We show that this transition occurs when Antarctic near-surface warming exceeds a critical threshold of +7.5 ∘C, at which the increase in surface runoff outweighs the increase in snow accumulation, a signal that is amplified by the melt–elevation feedback. Therefore, under the very high-emission scenario, oceanic and atmospheric drivers are projected to result in a complete collapse of the West Antarctic ice sheet along with significant grounding-line retreat in the marine basins of the East Antarctic ice sheet, leading to a median global mean sea-level rise of 2.75 (6.95) m by 2300 (3000). Under a more sustainable socio-economic pathway, we find that the Antarctic ice sheet may still contribute to a median global mean sea-level rise of 0.62 (1.85) m by 2300 (3000). However, the rate of sea-level rise is significantly reduced as mass loss is likely to remain confined to the Amundsen Sea Embayment, where present-day climate conditions seem sufficient to commit to a continuous retreat of Thwaites Glacier.
Audience Academic
Author Klose, Ann Kristin
Turner, Fiona
Kittel, Christoph
Edwards, Tamsin
Pattyn, Frank
Winkelmann, Ricarda
Coulon, Violaine
Author_xml – sequence: 1
  fullname: Coulon, Violaine
– sequence: 2
  fullname: Klose, Ann Kristin
– sequence: 3
  fullname: Kittel, Christoph
– sequence: 4
  fullname: Edwards, Tamsin
– sequence: 5
  fullname: Turner, Fiona
– sequence: 6
  fullname: Winkelmann, Ricarda
– sequence: 7
  fullname: Pattyn, Frank
BookMark eNptkslr3DAUxk1Jocm0154FPfXgRJtt6TikSwYChS5noeXJo8FjpZKcNP99NTOlbSAXSTx-36e3XTRnc5yhad4SfNkRya-KbYlo-461FFP-ojknUvIWc8rP_nu_ai5y3mHcU4n5eQMfQoa56HmcwjyisgXkUriHlFH0yC9lSYDWFUi2BIuCBTTFnNFDKFuk0TbkElOwepoeUT2DSbqAO3Bt3gIUtI8OptfNS6-nDG_-3Kvmx6eP369v2tsvnzfX69vW8oGVtjeEaKsdUOk4gJUgKfa9FUyCk2IQRBNKobdMUA1sGDTVRGDB3YA73Bm2ajYnXxf1Tt2lsNfpUUUd1DEQ06h0qnVMoIwHbwfnDeUdZ1IYbOqnnjlr2GBqOquGnbymACNUrQnqnh7Nju9lqmZWGVCU9kIxwjvKqurdSXWX4s8FclG7uKS5Fq2opFzSysl_1KhrKmH2sSRt9yFbtR4EpXU8Q1-py2eoY4P2wdbh-1DjTwTvnwgqU-BXGfWSs9p8-_qsuU11ngn833YRrA77pIpVRKi6T-qwT-w3xo-9mQ
Cites_doi 10.1038/s41598-020-77403-5
10.5194/egusphere-2023-1532
10.1073/pnas.1017313108
10.1038/ngeo2563
10.1038/s41561-019-0510-8
10.1007/s00382-014-2378-z
10.1007/s40641-017-0071-0
10.1126/science.aaz5845
10.1038/nature22048
10.5194/tc-14-2715-2020
10.1126/sciadv.aaz1169
10.3189/172756400781819941
10.5194/tc-13-1349-2019
10.1038/nclimate1716
10.3189/002214308785836968
10.5194/gmd-6-687-2013
10.5194/tc-14-2331-2020
10.5194/tc-12-3229-2018
10.5194/gmd-15-553-2022
10.1038/s41558-018-0326-3
10.1038/s41586-018-0179-y
10.5194/tc-12-1969-2018
10.1029/2008JF001179
10.1038/nclimate2912
10.1038/s41467-018-08068-y
10.1038/nature15706
10.5194/tc-14-1459-2020
10.1029/2019JF005418
10.5194/tc-15-1215-2021
10.1017/jog.2017.42
10.1038/nature16147
10.3189/172756404781813961
10.1029/2020GL091733
10.1017/jfm.2018.742
10.3189/2013JoG13J081
10.1007/s10236-009-0252-z
10.1029/2006JF000664
10.1017/S0022143000013861
10.1038/s41558-018-0356-x
10.1198/TECH.2009.08040
10.1073/pnas.1812883116
10.1038/s41586-023-05762-w
10.1191/0309133305pp453ra
10.5194/tc-7-1083-2013
10.1029/91JC01842
10.1016/j.epsl.2004.04.011
10.1073/pnas.2007117117
10.5194/tc-7-375-2013
10.1038/s41561-020-0616-z
10.1029/2009JD012737
10.1038/s41586-019-0889-9
10.1029/2011GL050713
10.5194/tc-6-743-2012
10.1017/9781009157964.006
10.1038/nature12567
10.5194/gmd-12-2255-2019
10.1038/d41586-020-00177-3
10.1029/2019GL084397
10.5194/tc-14-3033-2020
10.3189/S0260305500013586
10.1002/essoar.10505094.1
10.1038/nclimate2574
10.1017/jog.2019.53
10.1017/jog.2021.124
10.1002/2015JF003550
10.5194/tc-16-4931-2022
10.1017/9781009157896.011
10.1038/s41586-018-0712-z
10.1126/sciadv.aba1981
10.5194/tc-15-5739-2021
10.1126/science.1235798
10.5194/tc-14-2283-2020
10.1073/pnas.1415137112
10.1038/s41558-017-0020-x
10.5194/tc-14-833-2020
10.5194/tc-6-953-2012
10.1029/2019GL084941
10.1038/s41586-019-0901-4
10.1029/2018RG000622
10.5194/tc-15-5705-2021
10.1017/jog.2020.67
10.5194/gmd-14-3697-2021
10.1038/s43247-021-00289-2
10.1038/271321a0
10.5194/gmd-5-1273-2012
10.5194/tc-14-855-2020
10.1371/journal.pone.0170052
10.1017/aog.2016.13
10.1038/s41586-021-03427-0
10.5194/tc-10-1799-2016
10.1038/nature17145
10.22541/essoar.167591057.72675797/v1
10.3189/2013JoG12J129
10.1017/jog.2018.30
10.5194/tc-12-1479-2018
10.5194/esd-11-35-2020
10.1038/s41586-022-04946-0
10.5194/tc-16-4053-2022
10.5194/tc-14-3097-2020
10.5194/gmd-13-6481-2020
10.5194/tc-5-715-2011
10.1038/s41586-020-2727-5
10.5194/essd-15-1597-2023
10.1038/s41558-020-0764-6
10.1175/JPO-D-18-0131.1
10.1029/2020JF006003
10.1126/science.1256117
10.5194/tc-11-1-2017
10.5194/tc-13-1441-2019
10.1029/2019GL085027
10.1029/2022JF006914
10.1175/JCLI-D-22-0457.1
10.1038/s41586-021-03302-y
10.1029/2011GL050207
10.1016/j.epsl.2014.12.035
10.1007/s00382-020-05354-8
10.1038/s41558-022-01577-1
10.5194/tc-16-4537-2022
10.5194/tc-15-3751-2021
10.1017/S0022143000023327
10.1038/ngeo1787
10.1088/1748-9326/aac2f0
10.5194/tc-14-3111-2020
10.1098/rspa.2011.0422
10.1175/1520-0442(1999)012<2169:TDROTG>2.0.CO;2
10.1038/s41586-020-2627-8
10.5194/tc-16-4163-2022
10.5194/tc-12-49-2018
10.1016/S0022-1694(03)00257-9
10.1029/JB074i022p05240
ContentType Journal Article
Web Resource
Copyright COPYRIGHT 2024 Copernicus GmbH
2024. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 Copernicus GmbH
– notice: 2024. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ISR
7QH
7TG
7TN
7UA
ABUWG
AFKRA
ATCPS
AZQEC
BENPR
BFMQW
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
GNUQQ
H95
H96
HCIFZ
KL.
L.G
PATMY
PCBAR
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PYCSY
Q33
DOA
DOI 10.5194/tc-18-653-2024
DatabaseName CrossRef
Gale In Context: Science
Aqualine
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Water Resources Abstracts
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
Continental Europe Database
ProQuest Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
Université de Liège - Open Repository and Bibliography (ORBI)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Continental Europe Database
Aqualine
Environmental Science Collection
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Environmental Science Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList Publicly Available Content Database



CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: AUTh Library subscriptions: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Meteorology & Climatology
EISSN 1994-0424
1994-0416
EndPage 681
ExternalDocumentID oai_doaj_org_article_bfefc7dfb2454398b0b9d4f3dcb37b47
oai_orbi_ulg_ac_be_2268_314523
A782200676
10_5194_tc_18_653_2024
GeographicLocations Antarctica
GeographicLocations_xml – name: Antarctica
GroupedDBID 29F
2WC
3V.
5GY
5VS
7XC
8CJ
8FE
8FH
8R4
8R5
AAFWJ
AAYXX
ABDBF
ABUWG
ADBBV
AENEX
AFKRA
AFPKN
AHGZY
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BBORY
BCNDV
BENPR
BFMQW
BHPHI
BKSAR
BPHCQ
CCPQU
CITATION
D1J
D1K
E3Z
ESX
GROUPED_DOAJ
GX1
HCIFZ
IAO
IEA
ISR
ITC
K6-
KQ8
LK5
M7R
MM-
M~E
OK1
P2P
PATMY
PCBAR
PIMPY
PQQKQ
PROAC
PYCSY
Q2X
RIG
RKB
RNS
TR2
TUS
ZBA
~02
7QH
7TG
7TN
7UA
AZQEC
C1K
DWQXO
F1W
GNUQQ
H95
H96
KL.
L.G
PQEST
PQUKI
PRINS
Q33
ID FETCH-LOGICAL-c473t-6b11acade29d4eec9e920f6c839ed98781a122e6c382ae377a2a18084d70505b3
IEDL.DBID DOA
ISSN 1994-0424
1994-0416
IngestDate Thu Jul 04 21:05:33 EDT 2024
Fri Oct 11 14:54:18 EDT 2024
Thu Oct 10 16:00:07 EDT 2024
Fri Feb 23 00:24:30 EST 2024
Tue Feb 20 11:58:08 EST 2024
Sat Sep 28 21:27:11 EDT 2024
Wed Sep 04 12:46:20 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c473t-6b11acade29d4eec9e920f6c839ed98781a122e6c382ae377a2a18084d70505b3
Notes scopus-id:2-s2.0-85186087386
ORCID 0000-0002-5919-153X
0000-0003-1248-3217
0000-0001-6586-9784
0000-0002-4760-4704
OpenAccessLink https://doaj.org/article/bfefc7dfb2454398b0b9d4f3dcb37b47
PQID 2924923149
PQPubID 105732
PageCount 29
ParticipantIDs doaj_primary_oai_doaj_org_article_bfefc7dfb2454398b0b9d4f3dcb37b47
liege_orbi_v2_oai_orbi_ulg_ac_be_2268_314523
proquest_journals_2924923149
gale_infotracmisc_A782200676
gale_infotracacademiconefile_A782200676
gale_incontextgauss_ISR_A782200676
crossref_primary_10_5194_tc_18_653_2024
PublicationCentury 2000
PublicationDate 2024-02-12
PublicationDateYYYYMMDD 2024-02-12
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-12
  day: 12
PublicationDecade 2020
PublicationPlace Katlenburg-Lindau
PublicationPlace_xml – name: Katlenburg-Lindau
PublicationTitle The cryosphere
PublicationYear 2024
Publisher Copernicus GmbH
Copernicus Publications
Publisher_xml – name: Copernicus GmbH
– name: Copernicus Publications
References ref57
ref56
ref59
ref58
ref53
ref52
ref55
ref54
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref100
ref101
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref13
ref12
ref15
ref128
ref14
ref129
ref97
ref126
ref96
ref127
ref11
ref99
ref124
ref10
ref98
ref125
ref17
ref16
ref19
ref18
ref93
ref133
ref92
ref95
ref131
ref94
ref132
ref130
ref91
ref90
ref89
ref86
ref85
ref88
ref87
ref82
ref81
ref84
ref83
ref80
ref79
ref108
ref78
ref109
ref106
ref107
ref75
ref104
ref74
ref105
ref77
ref102
ref76
ref103
ref2
ref1
ref71
ref111
ref70
ref112
ref73
ref72
ref110
ref68
ref119
ref67
ref117
ref69
ref118
ref64
ref115
ref63
ref116
ref66
ref113
ref65
ref114
ref60
ref122
ref123
ref62
ref120
ref61
ref121
References_xml – ident: ref54
  doi: 10.1038/s41598-020-77403-5
– ident: ref23
  doi: 10.5194/egusphere-2023-1532
– ident: ref95
  doi: 10.1073/pnas.1017313108
– ident: ref122
  doi: 10.1038/ngeo2563
– ident: ref77
  doi: 10.1038/s41561-019-0510-8
– ident: ref130
  doi: 10.1007/s00382-014-2378-z
– ident: ref3
  doi: 10.1007/s40641-017-0071-0
– ident: ref119
  doi: 10.1126/science.aaz5845
– ident: ref24
– ident: ref10
  doi: 10.1038/nature22048
– ident: ref106
  doi: 10.5194/tc-14-2715-2020
– ident: ref108
  doi: 10.1126/sciadv.aaz1169
– ident: ref50
  doi: 10.3189/172756400781819941
– ident: ref17
  doi: 10.5194/tc-13-1349-2019
– ident: ref57
  doi: 10.1038/nclimate1716
– ident: ref13
  doi: 10.3189/002214308785836968
– ident: ref11
  doi: 10.5194/gmd-6-687-2013
– ident: ref82
  doi: 10.5194/tc-14-2331-2020
– ident: ref99
  doi: 10.5194/tc-12-3229-2018
– ident: ref90
  doi: 10.5194/gmd-15-553-2022
– ident: ref9
  doi: 10.1038/s41558-018-0326-3
– ident: ref117
  doi: 10.1038/s41586-018-0179-y
– ident: ref97
  doi: 10.5194/tc-12-1969-2018
– ident: ref16
  doi: 10.1029/2008JF001179
– ident: ref36
  doi: 10.1038/nclimate2912
– ident: ref129
  doi: 10.1038/s41467-018-08068-y
– ident: ref42
  doi: 10.1038/nature15706
– ident: ref128
  doi: 10.5194/tc-14-1459-2020
– ident: ref39
  doi: 10.1029/2019JF005418
– ident: ref56
  doi: 10.5194/tc-15-1215-2021
– ident: ref12
  doi: 10.1017/jog.2017.42
– ident: ref104
  doi: 10.1038/nature16147
– ident: ref71
  doi: 10.3189/172756404781813961
– ident: ref38
  doi: 10.1029/2020GL091733
– ident: ref89
  doi: 10.1017/jfm.2018.742
– ident: ref112
  doi: 10.3189/2013JoG13J081
– ident: ref83
  doi: 10.1007/s10236-009-0252-z
– ident: ref110
  doi: 10.1029/2006JF000664
– ident: ref72
  doi: 10.1017/S0022143000013861
– ident: ref74
  doi: 10.1038/s41558-018-0356-x
– ident: ref69
  doi: 10.1198/TECH.2009.08040
– ident: ref103
  doi: 10.1073/pnas.1812883116
– ident: ref67
  doi: 10.1038/s41586-023-05762-w
– ident: ref48
  doi: 10.1191/0309133305pp453ra
– ident: ref4
  doi: 10.5194/tc-7-1083-2013
– ident: ref51
  doi: 10.1029/91JC01842
– ident: ref116
  doi: 10.1016/j.epsl.2004.04.011
– ident: ref111
  doi: 10.1073/pnas.2007117117
– ident: ref34
  doi: 10.5194/tc-7-375-2013
– ident: ref55
– ident: ref2
  doi: 10.1038/s41561-020-0616-z
– ident: ref43
  doi: 10.1029/2009JD012737
– ident: ref41
  doi: 10.1038/s41586-019-0889-9
– ident: ref63
  doi: 10.1029/2011GL050713
– ident: ref101
  doi: 10.5194/tc-6-743-2012
– ident: ref84
  doi: 10.1017/9781009157964.006
– ident: ref27
  doi: 10.1038/nature12567
– ident: ref32
  doi: 10.5194/gmd-12-2255-2019
– ident: ref46
  doi: 10.1038/d41586-020-00177-3
– ident: ref105
  doi: 10.1029/2019GL084397
– ident: ref115
  doi: 10.5194/tc-14-3033-2020
– ident: ref62
  doi: 10.3189/S0260305500013586
– ident: ref88
  doi: 10.1002/essoar.10505094.1
– ident: ref35
  doi: 10.1038/nclimate2574
– ident: ref113
  doi: 10.1017/jog.2019.53
– ident: ref19
  doi: 10.1017/jog.2021.124
– ident: ref73
  doi: 10.1002/2015JF003550
– ident: ref18
  doi: 10.5194/tc-16-4931-2022
– ident: ref33
  doi: 10.1017/9781009157896.011
– ident: ref14
  doi: 10.1038/s41586-018-0712-z
– ident: ref75
  doi: 10.1126/sciadv.aba1981
– ident: ref132
  doi: 10.5194/tc-15-5739-2021
– ident: ref102
  doi: 10.1126/science.1235798
– ident: ref21
  doi: 10.5194/tc-14-2283-2020
– ident: ref68
  doi: 10.1073/pnas.1415137112
– ident: ref98
  doi: 10.1038/s41558-017-0020-x
– ident: ref40
  doi: 10.5194/tc-14-833-2020
– ident: ref92
  doi: 10.5194/tc-6-953-2012
– ident: ref80
  doi: 10.1029/2019GL084941
– ident: ref29
  doi: 10.1038/s41586-019-0901-4
– ident: ref64
  doi: 10.1029/2018RG000622
– ident: ref5
  doi: 10.5194/tc-15-5705-2021
– ident: ref121
  doi: 10.1017/jog.2020.67
– ident: ref58
  doi: 10.5194/gmd-14-3697-2021
– ident: ref70
  doi: 10.1038/s43247-021-00289-2
– ident: ref76
  doi: 10.1038/271321a0
– ident: ref91
  doi: 10.5194/gmd-5-1273-2012
– ident: ref7
  doi: 10.5194/tc-14-855-2020
– ident: ref107
  doi: 10.1371/journal.pone.0170052
– ident: ref20
  doi: 10.1017/aog.2016.13
– ident: ref25
  doi: 10.1038/s41586-021-03427-0
– ident: ref65
  doi: 10.5194/tc-10-1799-2016
– ident: ref26
  doi: 10.1038/nature17145
– ident: ref124
  doi: 10.22541/essoar.167591057.72675797/v1
– ident: ref87
  doi: 10.3189/2013JoG12J129
– ident: ref45
  doi: 10.1017/jog.2018.30
– ident: ref125
  doi: 10.5194/tc-12-1479-2018
– ident: ref66
  doi: 10.5194/esd-11-35-2020
– ident: ref120
  doi: 10.1038/s41586-022-04946-0
– ident: ref118
  doi: 10.5194/tc-16-4053-2022
– ident: ref100
  doi: 10.5194/tc-14-3097-2020
– ident: ref93
  doi: 10.5194/gmd-13-6481-2020
– ident: ref131
  doi: 10.5194/tc-5-715-2011
– ident: ref37
  doi: 10.1038/s41586-020-2727-5
– ident: ref85
  doi: 10.5194/essd-15-1597-2023
– ident: ref133
  doi: 10.1038/s41558-020-0764-6
– ident: ref61
  doi: 10.1175/JPO-D-18-0131.1
– ident: ref22
  doi: 10.1029/2020JF006003
– ident: ref109
  doi: 10.1126/science.1256117
– ident: ref86
  doi: 10.5194/tc-11-1-2017
– ident: ref114
  doi: 10.5194/tc-13-1441-2019
– ident: ref44
  doi: 10.1029/2019GL085027
– ident: ref81
  doi: 10.1029/2022JF006914
– ident: ref96
  doi: 10.1175/JCLI-D-22-0457.1
– ident: ref30
  doi: 10.1038/s41586-021-03302-y
– ident: ref79
  doi: 10.1029/2011GL050207
– ident: ref94
  doi: 10.1016/j.epsl.2014.12.035
– ident: ref123
  doi: 10.1007/s00382-020-05354-8
– ident: ref126
  doi: 10.1038/s41558-022-01577-1
– ident: ref53
  doi: 10.5194/tc-16-4537-2022
– ident: ref78
  doi: 10.5194/tc-15-3751-2021
– ident: ref127
  doi: 10.1017/S0022143000023327
– ident: ref1
  doi: 10.1038/ngeo1787
– ident: ref6
  doi: 10.1088/1748-9326/aac2f0
– ident: ref52
  doi: 10.5194/tc-14-3111-2020
– ident: ref8
  doi: 10.1098/rspa.2011.0422
– ident: ref49
  doi: 10.1175/1520-0442(1999)012<2169:TDROTG>2.0.CO;2
– ident: ref59
  doi: 10.1038/s41586-020-2627-8
– ident: ref28
  doi: 10.5194/tc-16-4163-2022
– ident: ref60
  doi: 10.5194/tc-12-49-2018
– ident: ref47
  doi: 10.1016/S0022-1694(03)00257-9
– ident: ref15
  doi: 10.1029/JB074i022p05240
– ident: ref31
RestrictionsOnAccess open access
SSID ssj0062904
Score 2.4180098
Snippet We use an observationally calibrated ice-sheet model to investigate the future trajectory of the Antarctic ice sheet related to uncertainties in the future...
SourceID doaj
liege
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
StartPage 653
SubjectTerms Ablation
Amplification
Analysis
Antarctic ice sheet
Atmosphere
Atmospheric models
Automobile drivers
Boundary conditions
Climate
Climate models
Climatic conditions
Earth sciences & physical geography
Emission
Emissions
Glaciation
Glacier retreat
Glaciers
Glaciohydrology
Ice
Ice sheet models
Ice sheets
Ice shelves
Intercomparison
Mass
Mass balance
Mass balance of ice sheets
Ocean basins
Physical, chemical, mathematical & earth Sciences
Physique, chimie, mathématiques & sciences de la terre
Precipitation
Runoff
Sciences de la terre & géographie physique
Sea level
Sea level changes
Sea level rise
Sheet modelling
Simulation
Snow
Snow accumulation
Snowfall
Socioeconomic aspects
Surface runoff
Surface temperature
Temperature
SummonAdditionalLinks – databaseName: AUTh Library subscriptions: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdgfYAXBANEt4EshOAFa7XjxM4T6samgbQJDSbtzYq_2kpVM9J00v577ly3qELiJcrHKTn7Luefv35HyAdAFD4q5VmoyoZJGTzTIMnq2oa6kmDyxLZ_eVVd3Mjvt-VtHnBb5mWVm5iYArVvHY6RHwvsKAAYkfWXu98Ms0bh7GpOofGYDASXOE07ODm7-nG9icWVqEfreWUkwJVCrmkbAbXI494xrllVFuAoQu40S4m9fxujB3Ocvv4nVqcG6Pw5eZaRIx2vTf2CPAqLffIkJzGfPuyT4SUA4LZL4-T0Iz2dzwCNpquXJHydpV1GuGl3MaGA-qjv0pIM2ka6JhahYxDocM8UhehB56AnxWFa2tDplkxk_kDhiH1sgKoox5bTEHqaMuq8IjfnZ79OL1jOsMCcVEXPKst5g-vwRe1lCK4OtRjFygFqCr7WSvOGCxEqV2jRhEKpRjRcj7T0CjPg2eI12Vu0i_CG0FIJW9owckKWMvLKNlY0XukYvSol50PyaVPB5m5NpGGgA4KmML0zXBswhUFTDMkJ1v9WCgmw0422m5j8PxkbQ3TKR4ufK2ptRxaKEAvvbKGsVEPyHq1nkOJigWtoJs1quTTffl6bMYIibKUr0CkLxbbvoCLylgQoEbJi7Uge7UjCP-h2Hn9OTgIq2pm5F0nndL6ag87O2GAA52oD_gs9f3jbxpdMDhlL89fBD_7_-JA8xWpiKSvNEdnru1V4C8iot--y-_8BXicMiA
  priority: 102
  providerName: ProQuest
Title Disentangling the drivers of future Antarctic ice loss with a historically calibrated ice-sheet model
URI https://www.proquest.com/docview/2924923149
http://orbi.ulg.ac.be/handle/2268/314523
https://doaj.org/article/bfefc7dfb2454398b0b9d4f3dcb37b47
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwELbQ9gAvCAaIwpgshOAFa7HjxM5jNzYG0iY0mNQ3K_61VopSlKaT9t_vzkkrKh544SVKm1N1vbucv0t83xHyARCFj0p5FsqiZlIGzzRIsqqyoSoluDyx7V9elRc38vusmP0x6gv3hA30wIPhjm0M0SkfrZAFLJ7aZrbyMube2VxZOfSR82JTTA05uBRVNrxPRuJbwBwDXSOgFXncO8Y1K4scAkTIneUosfZvc_N-g6-t_8rRaeE5f0aejoiRTgdNn5NHoT0gj8fh5fP7AzK5BOC77NLzcfqRnjYLQKHp0wsSvixSdxE267a3FNAe9V3aikGXkQ6EInQKAh32SlHIGrQBPSk-nqU1nW9JRJp7CkesrQGiohxbzUPoaZqk85LcnJ_9Or1g42QF5qTKe1Zazmvcfy_AliG4KlQii6UDtBR8pZXmNRcilC7Xog65UrWouc609Aon39n8Fdlrl214TWihhC1syBz6J_LS1lbUXukYvSok5xPyaWNg83sg0DBQeKArTO8M1wZcYdAVE3KC9t9KIfF1-gLCwYzhYP4VDhPyHr1nkNqixb0zt_V6tTLffl6bKYIhXJ1L0GkUisu-A0OMrQjwj5ANa0fycEcS7j23c_lzChJQ0S7MnUg6p_N1Azo7Y4MBfKtNziVU_PBrm1gyY6pYGYEVMKBsWb35HwZ4S56gMVmaWXNI9vpuHd4BburtEdk_Obv6cX2UbhU4fp3xBxihF9Q
link.rule.ids 230,315,786,790,870,891,2115,21416,27955,27956,33777,43838,74657
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELegfRgvCAaIwgALIXjBWuM4sfOEurGpg7VCY5P2ZsVfbaWoGWmKtP-eOzctqpB4ifJxSi6-8_nnr98R8gEQhQtSOubzrGRCeMcUSLKiML7IBZg8su1Ppvn4Rny7zW67AbdVt6xyGxNjoHa1xTHyY44dBQAjovhy94th1iicXe1SaDwkfaTcVD3SPzmb_rjaxuKcF8PNvDIS4AouNrSNgFrEcWtZoliepeAoXOw1S5G9fxej-xVOX_8Tq2MDdP6EPO6QIx1tTP2UPPDLQ3LQJTGf3x-SwQQAcN3EcXL6kZ5WC0Cj8eoZ8V8XcZcRbtpdziigPuqauCSD1oFuiEXoCAQa3DNFIXrQCvSkOExLSzrfkYlU9xSO2McGqIpybDX3vqUxo85zcnN-dn06Zl2GBWaFTFuWmyQpcR0-L5zw3ha-4MOQW0BN3hVKqqRMOPe5TRUvfSplyctEDZVwEjPgmfQF6S3rpX9JaCa5yYwfWi4yEZLclIaXTqoQnMxEkgzIp20B67sNkYaGDgiaQrdWJ0qDKTSaYkBOsPx3UkiAHW_UzUx39Umb4IOVLhj8XFooMzTwCyF11qTSCDkg79F6GikulriGZlauVyt98fNKjxAUYSudg06dUKjbBgqi25IAf4SsWHuSR3uSUAft3uPP0UlARbPQv3nUOZ6vK9DZauM14FylwX-h5w9v2_qS7kLGSv918Ff_f_yOHIyvJ5f68mL6_TV5hEXGYoaaI9Jrm7V_AyipNW-7qvAHOQwPfg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdglYAXBANEYYCFELxgrXEcO3lC3Ue1AaumwaS9WfFXW6lqRpoi7b_nznWLKiReqrQ5pRff-fyzff4dIR8AUbiglGNeFjUTwjtWgiSrKuMrKcDkkW3_YizPrsXXm-Im5T8tU1rlJibGQO0ai2vkhxwnCgBGRHUYUlrE5cnoy-0vhhWkcKc1ldO4T3pKyAImYr2j0_Hl1SYuS14N1nvMSIYruFhTOAKCEYedZVnJZJGD03CxM0RFJv9tvO7NcSv7n7gdB6PRE_I4oUg6XJv9KbnnF_vkYSpoPr3bJ_0LAMNNG9fM6Ud6PJ8BMo3fnhF_MosnjvAA72JCAQFS18b0DNoEuiYZoUMQaPH8FIVIQuegJ8UlW1rT6ZZYZH5H4RPn2wBbUY4tp953NFbXeU6uR6c_j89YqrbArFB5x6TJshpz8nnlhPe28hUfBGkBQXlXlarM6oxzL21e8trnStW8zspBKZzCangmf0H2Fs3CvyS0UNwUxg8sF4UImTS14bVTZQhOFSLL-uTTpoH17ZpUQ8NkBE2hO6uzUoMpNJqiT46w_bdSSIYdf2jaiU59S5vgg1UuGPy7vCrNwMArhNxZkysjVJ-8R-tppLtYoONM6tVyqc9_XOkhAiQcsSXolIRC07XQEOl4ArwRMmTtSB7sSEJ_tDu3P0cnARXNTP_mUed4vZqDzlYbrwHzlhp8ueA5PG3jSzqFj6X-6-yv_n_7HXkAvUB_Px9_e00eYYuxWKzmgOx17cq_AcDUmbepJ_wBDKATsg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Disentangling+the+drivers+of+future+Antarctic+ice+loss+with+a+historically+calibrated+ice-sheet+model&rft.jtitle=The+cryosphere&rft.au=V.+Coulon&rft.au=A.+K.+Klose&rft.au=A.+K.+Klose&rft.au=C.+Kittel&rft.date=2024-02-12&rft.pub=Copernicus+Publications&rft.issn=1994-0416&rft.eissn=1994-0424&rft.volume=18&rft.spage=653&rft.epage=681&rft_id=info:doi/10.5194%2Ftc-18-653-2024&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_bfefc7dfb2454398b0b9d4f3dcb37b47
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1994-0424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1994-0424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1994-0424&client=summon