Multi-omics integration reveals a six-malignant cell maker gene signature for predicting prognosis in high-risk neuroblastoma

Background: Neuroblastoma is the most common extracranial solid tumor of childhood, arising from the sympathetic nervous system. High-risk neuroblastoma (HRNB) remains a major therapeutic challenge with low survival rates despite the intensification of therapy. This study aimed to develop a malignan...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in neuroinformatics Vol. 16; p. 1034793
Main Authors Yan, Zijun, Liu, Qiming, Cao, Ziyang, Wang, Jinxia, Zhang, Hongyang, Liu, Jiangbin, Zou, Lin
Format Journal Article
LanguageEnglish
Published Lausanne Frontiers Research Foundation 10.11.2022
Frontiers Media S.A
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Background: Neuroblastoma is the most common extracranial solid tumor of childhood, arising from the sympathetic nervous system. High-risk neuroblastoma (HRNB) remains a major therapeutic challenge with low survival rates despite the intensification of therapy. This study aimed to develop a malignant-cell marker gene signature (MMGS) that might serve as a prognostic indicator in HRNB patients. Methods: Multi-omics datasets, including mRNA expression (single-cell and bulk), DNA methylation, and clinical information of HRNB patients, were used to identify prognostic malignant cell marker genes. MMGS was established by univariate Cox analysis, LASSO, and stepwise multivariable Cox regression analysis. Kaplan–Meier (KM) curve and time-dependent receiver operating characteristic curve (tROC) were used to evaluate the prognostic value and performance of MMGS, respectively. MMGS further verified its reliability and accuracy in the independent validation set. Finally, the characteristics of functional enrichment, tumor immune features, and inflammatory activity between different MMGS risk groups were also investigated. Results: We constructed a prognostic model consisting of six malignant cell maker genes (MAPT, C1QTNF4, MEG3, NPW, RAMP1, and CDT1), which stratified patients into ultra-high-risk (UHR) and common-high-risk (CHR) group. Patients in the UHR group had significantly worse overall survival (OS) than those in the CHR group. MMGS was verified as an independent predictor for the OS of HRNB patients. The area under the curve (AUC) values of MMGS at 1-, 3-, and 5-year were 0.78, 0.693, and 0.618, respectively. Notably, functional enrichment, tumor immune features, and inflammatory activity analyses preliminarily indicated that the poor prognosis in the UHR group might result from the dysregulation of the metabolic process and immunosuppressive microenvironment. Conclusion: This study established a novel six-malignant cell maker gene prognostic model that can be used to predict the prognosis of HRNB patients, which may provide new insight for the treatment and personalized monitoring of HRNB patients.
AbstractList BackgroundNeuroblastoma is the most common extracranial solid tumor of childhood, arising from the sympathetic nervous system. High-risk neuroblastoma (HRNB) remains a major therapeutic challenge with low survival rates despite the intensification of therapy. This study aimed to develop a malignant-cell marker gene signature (MMGS) that might serve as a prognostic indicator in HRNB patients.MethodsMulti-omics datasets, including mRNA expression (single-cell and bulk), DNA methylation, and clinical information of HRNB patients, were used to identify prognostic malignant cell marker genes. MMGS was established by univariate Cox analysis, LASSO, and stepwise multivariable Cox regression analysis. Kaplan–Meier (KM) curve and time-dependent receiver operating characteristic curve (tROC) were used to evaluate the prognostic value and performance of MMGS, respectively. MMGS further verified its reliability and accuracy in the independent validation set. Finally, the characteristics of functional enrichment, tumor immune features, and inflammatory activity between different MMGS risk groups were also investigated.ResultsWe constructed a prognostic model consisting of six malignant cell maker genes (MAPT, C1QTNF4, MEG3, NPW, RAMP1, and CDT1), which stratified patients into ultra-high-risk (UHR) and common-high-risk (CHR) group. Patients in the UHR group had significantly worse overall survival (OS) than those in the CHR group. MMGS was verified as an independent predictor for the OS of HRNB patients. The area under the curve (AUC) values of MMGS at 1-, 3-, and 5-year were 0.78, 0.693, and 0.618, respectively. Notably, functional enrichment, tumor immune features, and inflammatory activity analyses preliminarily indicated that the poor prognosis in the UHR group might result from the dysregulation of the metabolic process and immunosuppressive microenvironment.ConclusionThis study established a novel six-malignant cell maker gene prognostic model that can be used to predict the prognosis of HRNB patients, which may provide new insight for the treatment and personalized monitoring of HRNB patients.
Neuroblastoma is the most common extracranial solid tumor of childhood, arising from the sympathetic nervous system. High-risk neuroblastoma (HRNB) remains a major therapeutic challenge with low survival rates despite the intensification of therapy. This study aimed to develop a malignant-cell marker gene signature (MMGS) that might serve as a prognostic indicator in HRNB patients.BackgroundNeuroblastoma is the most common extracranial solid tumor of childhood, arising from the sympathetic nervous system. High-risk neuroblastoma (HRNB) remains a major therapeutic challenge with low survival rates despite the intensification of therapy. This study aimed to develop a malignant-cell marker gene signature (MMGS) that might serve as a prognostic indicator in HRNB patients.Multi-omics datasets, including mRNA expression (single-cell and bulk), DNA methylation, and clinical information of HRNB patients, were used to identify prognostic malignant cell marker genes. MMGS was established by univariate Cox analysis, LASSO, and stepwise multivariable Cox regression analysis. Kaplan-Meier (KM) curve and time-dependent receiver operating characteristic curve (tROC) were used to evaluate the prognostic value and performance of MMGS, respectively. MMGS further verified its reliability and accuracy in the independent validation set. Finally, the characteristics of functional enrichment, tumor immune features, and inflammatory activity between different MMGS risk groups were also investigated.MethodsMulti-omics datasets, including mRNA expression (single-cell and bulk), DNA methylation, and clinical information of HRNB patients, were used to identify prognostic malignant cell marker genes. MMGS was established by univariate Cox analysis, LASSO, and stepwise multivariable Cox regression analysis. Kaplan-Meier (KM) curve and time-dependent receiver operating characteristic curve (tROC) were used to evaluate the prognostic value and performance of MMGS, respectively. MMGS further verified its reliability and accuracy in the independent validation set. Finally, the characteristics of functional enrichment, tumor immune features, and inflammatory activity between different MMGS risk groups were also investigated.We constructed a prognostic model consisting of six malignant cell maker genes (MAPT, C1QTNF4, MEG3, NPW, RAMP1, and CDT1), which stratified patients into ultra-high-risk (UHR) and common-high-risk (CHR) group. Patients in the UHR group had significantly worse overall survival (OS) than those in the CHR group. MMGS was verified as an independent predictor for the OS of HRNB patients. The area under the curve (AUC) values of MMGS at 1-, 3-, and 5-year were 0.78, 0.693, and 0.618, respectively. Notably, functional enrichment, tumor immune features, and inflammatory activity analyses preliminarily indicated that the poor prognosis in the UHR group might result from the dysregulation of the metabolic process and immunosuppressive microenvironment.ResultsWe constructed a prognostic model consisting of six malignant cell maker genes (MAPT, C1QTNF4, MEG3, NPW, RAMP1, and CDT1), which stratified patients into ultra-high-risk (UHR) and common-high-risk (CHR) group. Patients in the UHR group had significantly worse overall survival (OS) than those in the CHR group. MMGS was verified as an independent predictor for the OS of HRNB patients. The area under the curve (AUC) values of MMGS at 1-, 3-, and 5-year were 0.78, 0.693, and 0.618, respectively. Notably, functional enrichment, tumor immune features, and inflammatory activity analyses preliminarily indicated that the poor prognosis in the UHR group might result from the dysregulation of the metabolic process and immunosuppressive microenvironment.This study established a novel six-malignant cell maker gene prognostic model that can be used to predict the prognosis of HRNB patients, which may provide new insight for the treatment and personalized monitoring of HRNB patients.ConclusionThis study established a novel six-malignant cell maker gene prognostic model that can be used to predict the prognosis of HRNB patients, which may provide new insight for the treatment and personalized monitoring of HRNB patients.
Background: Neuroblastoma is the most common extracranial solid tumor of childhood, arising from the sympathetic nervous system. High-risk neuroblastoma (HRNB) remains a major therapeutic challenge with low survival rates despite the intensification of therapy. This study aimed to develop a malignant-cell marker gene signature (MMGS) that might serve as a prognostic indicator in HRNB patients. Methods: Multi-omics datasets, including mRNA expression (single-cell and bulk), DNA methylation, and clinical information of HRNB patients, were used to identify prognostic malignant cell marker genes. MMGS was established by univariate Cox analysis, LASSO, and stepwise multivariable Cox regression analysis. Kaplan–Meier (KM) curve and time-dependent receiver operating characteristic curve (tROC) were used to evaluate the prognostic value and performance of MMGS, respectively. MMGS further verified its reliability and accuracy in the independent validation set. Finally, the characteristics of functional enrichment, tumor immune features, and inflammatory activity between different MMGS risk groups were also investigated. Results: We constructed a prognostic model consisting of six malignant cell maker genes (MAPT, C1QTNF4, MEG3, NPW, RAMP1, and CDT1), which stratified patients into ultra-high-risk (UHR) and common-high-risk (CHR) group. Patients in the UHR group had significantly worse overall survival (OS) than those in the CHR group. MMGS was verified as an independent predictor for the OS of HRNB patients. The area under the curve (AUC) values of MMGS at 1-, 3-, and 5-year were 0.78, 0.693, and 0.618, respectively. Notably, functional enrichment, tumor immune features, and inflammatory activity analyses preliminarily indicated that the poor prognosis in the UHR group might result from the dysregulation of the metabolic process and immunosuppressive microenvironment. Conclusion: This study established a novel six-malignant cell maker gene prognostic model that can be used to predict the prognosis of HRNB patients, which may provide new insight for the treatment and personalized monitoring of HRNB patients.
Author Yan, Zijun
Liu, Qiming
Wang, Jinxia
Liu, Jiangbin
Zhang, Hongyang
Zou, Lin
Cao, Ziyang
AuthorAffiliation 2 Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine , Shanghai , China
4 Department of General Surgery, Shanghai Children’s Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , China
1 Clinical Research Unit, Shanghai Children’s Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , China
3 State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Department of Computational Biology, School of Life Sciences, Fudan University , Shanghai , China
5 Center for Clinical Molecular Laboratory Medicine of Children’s Hospital of Chongqing Medical University , Chongqing , China
AuthorAffiliation_xml – name: 3 State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Department of Computational Biology, School of Life Sciences, Fudan University , Shanghai , China
– name: 5 Center for Clinical Molecular Laboratory Medicine of Children’s Hospital of Chongqing Medical University , Chongqing , China
– name: 2 Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine , Shanghai , China
– name: 1 Clinical Research Unit, Shanghai Children’s Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , China
– name: 4 Department of General Surgery, Shanghai Children’s Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , China
Author_xml – sequence: 1
  givenname: Zijun
  surname: Yan
  fullname: Yan, Zijun
– sequence: 2
  givenname: Qiming
  surname: Liu
  fullname: Liu, Qiming
– sequence: 3
  givenname: Ziyang
  surname: Cao
  fullname: Cao, Ziyang
– sequence: 4
  givenname: Jinxia
  surname: Wang
  fullname: Wang, Jinxia
– sequence: 5
  givenname: Hongyang
  surname: Zhang
  fullname: Zhang, Hongyang
– sequence: 6
  givenname: Jiangbin
  surname: Liu
  fullname: Liu, Jiangbin
– sequence: 7
  givenname: Lin
  surname: Zou
  fullname: Zou, Lin
BookMark eNp9kstu1TAQhiNUJNrCC7CKxIZNim9x7A0SqrhUKmIDa8uxxzk-TeyD7VRlwbvjcxGiXbDyaOafz6OZ_6I5CzFA07zG6IpSId-54IO7IoiQK4woGyR91pxjzknXY8nP_olfNBc5bxHihPfDefP76zoX38XFm9z6UGBKuvgY2gT3oOfc6jb7h27Rs5-CDqU1MM_tou8gtRMEqNWaL2uC1sXU7hJYb4oPUw3jFGL2e2y78dOmSz7ftQHWFMdZ5xIX_bJ57uon8Or0XjY_Pn38fv2lu_32-eb6w21n2EBLx7FgzGInBgPYYg7cMka1cJozRDDVBDFKqLV930sjuZWDG512wsgeOSvpZXNz5Nqot2qX_KLTLxW1V4dETJPSqXgzg3Ij2NFSIWAcGQyjsE73jktOxcA16yvr_ZG1W8cFrIFQkp4fQR9Xgt-oKd4rycWAEamAtydAij9XyEUtPu_XqgPENSsyMCRRPeFe-uaJdBvXFOqqqooyQQTHuKrIUWVSzDmB-zsMRmpvD3Wwh9rbQ53sUZvEkybjy-H0dWg__6_1D3C0x1o
CitedBy_id crossref_primary_10_1186_s12885_025_13560_y
crossref_primary_10_3390_cancers15133314
Cites_doi 10.1002/(sici)1097-0258(19970228)16:4<385:aid-sim380<3.0.co;2-3
10.1089/omi.2011.0118
10.1016/j.neo.2020.11.001
10.1038/s41423-020-00565-9
10.3389/fimmu.2020.00784
10.1186/1471-2105-14-7
10.1158/1078-0432.CCR-18-0599
10.1158/0008-5472.CAN-15-2507
10.1016/S0002-9440(10)63393-7
10.1038/ejhg.2014.72
10.1016/j.neuroscience.2019.12.039
10.1158/1078-0432.CCR-11-2483
10.3389/fimmu.2019.00168
10.1002/pbc.28328
10.1016/S1470-2045(09)70154-8
10.1093/jnci/djy022
10.1002/cac2.12016
10.1186/gb-2012-13-10-r95
10.2217/epi.12.21
10.1007/s11427-016-0054-1
10.1186/s13059-015-0694-1
10.3390/brainsci10110862
10.1126/science.aaw5473
10.7554/eLife.50796
10.1016/j.ccell.2020.08.014
10.1016/S1470-2045(17)30070-0
10.1152/ajpendo.00448.2020
10.1593/neo.121114
10.1016/j.cels.2015.12.004
10.1200/JCO.2008.16.6785
10.1186/bcr2234
10.1006/bbrc.2000.2390
10.1111/j.0006-341X.2005.030814.x
10.3389/fcell.2021.811297
10.1158/1078-0432.CCR-11-0610
10.1101/gr.239244.118
10.1038/nbt.4096
10.1038/s41587-019-0114-2
10.1038/nature07261
10.4143/crt.2016.511
10.1038/s41586-019-1922-8
10.1080/15384101.2018.1542898
10.3389/fimmu.2022.850745
10.1038/cmi.2016.16
10.1093/nar/gkv007
10.1038/nmeth.1315
10.1126/science.1254257
10.7150/ijbs.48126
10.1073/pnas.1208215109
10.1016/j.canlet.2011.05.005
10.1002/cne.20669
10.1210/me.2014-1304
10.1016/S0140-6736(07)60983-0
10.1186/s13046-020-01582-2
10.3233/CBM-191196
10.1038/s41577-019-0127-6
10.1158/1078-0432.CCR-07-4461
10.1038/ncomms3612
10.1200/JCO.21.00278
10.1038/ng.2529
ContentType Journal Article
Copyright 2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2022 Yan, Liu, Cao, Wang, Zhang, Liu and Zou.
Copyright © 2022 Yan, Liu, Cao, Wang, Zhang, Liu and Zou. 2022 Yan, Liu, Cao, Wang, Zhang, Liu and Zou
Copyright_xml – notice: 2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2022 Yan, Liu, Cao, Wang, Zhang, Liu and Zou.
– notice: Copyright © 2022 Yan, Liu, Cao, Wang, Zhang, Liu and Zou. 2022 Yan, Liu, Cao, Wang, Zhang, Liu and Zou
DBID AAYXX
CITATION
3V.
7XB
88I
8FE
8FH
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.3389/fninf.2022.1034793
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection (ProQuest)
ProQuest Central
Natural Science Collection (ProQuest)
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection (ProQuest)
Biological Sciences
Science Database (ProQuest)
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Proquest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1662-5196
ExternalDocumentID oai_doaj_org_article_fbedbd388ebb4e7b8dfa5f6963876a45
PMC9687102
10_3389_fninf_2022_1034793
GroupedDBID ---
29H
2WC
53G
5GY
5VS
8FE
8FH
9T4
AAFWJ
AAKPC
AAYXX
ABUWG
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AEGXH
AENEX
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARCSS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
CITATION
CS3
DIK
E3Z
F5P
GROUPED_DOAJ
GX1
HCIFZ
HYE
KQ8
LK8
M2P
M48
M7P
M~E
O5R
O5S
OK1
OVT
PGMZT
PIMPY
PQQKQ
PROAC
RNS
RPM
TR2
3V.
7XB
88I
8FK
CCPQU
DWQXO
GNUQQ
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c473t-61844d1f87ce1d16e6d443a8fa640213a204323dd5559c96d97fbfaf8c950fd93
IEDL.DBID M48
ISSN 1662-5196
IngestDate Wed Aug 27 01:28:31 EDT 2025
Thu Aug 21 18:39:25 EDT 2025
Fri Jul 11 01:05:01 EDT 2025
Mon Jun 30 09:45:58 EDT 2025
Tue Jul 01 01:13:25 EDT 2025
Thu Apr 24 22:56:42 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c473t-61844d1f87ce1d16e6d443a8fa640213a204323dd5559c96d97fbfaf8c950fd93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Edited by: Jingwen Yan, Indiana University, Purdue University Indianapolis, United States
Reviewed by: Qian Qin, Massachusetts General Hospital and Harvard Medical School, United States; Lisha Zhu, The University of Chicago, United States
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fninf.2022.1034793
PQID 2734828611
PQPubID 4424404
ParticipantIDs doaj_primary_oai_doaj_org_article_fbedbd388ebb4e7b8dfa5f6963876a45
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9687102
proquest_miscellaneous_2740907932
proquest_journals_2734828611
crossref_primary_10_3389_fninf_2022_1034793
crossref_citationtrail_10_3389_fninf_2022_1034793
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-11-10
PublicationDateYYYYMMDD 2022-11-10
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-10
  day: 10
PublicationDecade 2020
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Frontiers in neuroinformatics
PublicationYear 2022
Publisher Frontiers Research Foundation
Frontiers Media S.A
Publisher_xml – name: Frontiers Research Foundation
– name: Frontiers Media S.A
References Song (B47) 2022; 13
Bonaventura (B4) 2019; 10
De Preter (B10) 2011; 17
He (B20) 2020; 40
Mayakonda (B32) 2018; 28
Ye (B57) 2020; 16
Rody (B45) 2009; 11
Ladenstein (B26) 2017; 18
Wang (B54) 2020; 28
Beygo (B2) 2015; 23
Modali (B33) 2015; 29
Newman (B36) 2019; 37
Tibshirani (B50) 1997; 16
Helmink (B22) 2020; 577
Vermeulen (B53) 2009; 10
Stigliani (B48) 2012; 14
Karakaidos (B25) 2004; 165
Maris (B31) 2007; 369
Zaman (B60) 2018; 17
Fernandez-Blanco (B16) 2021; 23
Heagerty (B21) 2005; 61
Tang (B49) 2009; 6
Papin (B40) 2020; 10
Butler (B6) 2018; 36
Luo (B30) 2016; 13
Paijens (B39) 2021; 18
Bilke (B3) 2008; 14
George (B18) 2020; 39
Li (B27) 2011; 308
Mosse (B34) 2008; 455
Wei (B55) 2018; 24
Li (B28) 2020; 429
Yang (B56) 2019; 8
Patel (B41) 2014; 344
Cottrell (B9) 2005; 490
Decock (B11) 2012; 13
Hanzelmann (B19) 2013; 14
Depuydt (B13) 2018; 110
Chen (B7) 2016; 59
Liberzon (B29) 2015; 1
Henrich (B23) 2016; 76
Petitprez (B42) 2020; 11
Zhang (B61) 2015; 16
Nagae (B35) 2000; 270
Novak (B37) 2020; 67
Yoshihara (B58) 2013; 4
Bravou (B5) 2005; 27
Sarver (B46) 2020; 319
Faubert (B15) 2020; 368
Irwin (B24) 2021; 39
Nunes-Xavier (B38) 2021; 9
Ritchie (B44) 2015; 43
DeNardo (B12) 2019; 19
Pugh (B43) 2013; 45
Garcia (B17) 2012; 18
Valentijn (B52) 2012; 109
Yu (B59) 2012; 16
Cohn (B8) 2009; 27
Dong (B14) 2020; 38
Touleimat (B51) 2012; 4
Amoroso (B1) 2018; 50
References_xml – volume: 16
  start-page: 385
  year: 1997
  ident: B50
  article-title: The lasso method for variable selection in the cox model.
  publication-title: Stat. Med.
  doi: 10.1002/(sici)1097-0258(19970228)16:4<385:aid-sim380<3.0.co;2-3
– volume: 16
  start-page: 284
  year: 2012
  ident: B59
  article-title: Clusterprofiler: An R package for comparing biological themes among gene clusters.
  publication-title: Omics
  doi: 10.1089/omi.2011.0118
– volume: 23
  start-page: 12
  year: 2021
  ident: B16
  article-title: Imbalance between genomic gain and loss identifies high-risk neuroblastoma patients with worse outcomes.
  publication-title: Neoplasia
  doi: 10.1016/j.neo.2020.11.001
– volume: 18
  start-page: 842
  year: 2021
  ident: B39
  article-title: Tumor-infiltrating lymphocytes in the immunotherapy era.
  publication-title: Cell Mol. Immunol.
  doi: 10.1038/s41423-020-00565-9
– volume: 11
  year: 2020
  ident: B42
  article-title: The tumor microenvironment in the response to immune checkpoint blockade therapies.
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2020.00784
– volume: 14
  year: 2013
  ident: B19
  article-title: Gsva: Gene set variation analysis for microarray and Rna-Seq data.
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-14-7
– volume: 24
  start-page: 5673
  year: 2018
  ident: B55
  article-title: Clinically relevant cytotoxic immune cell signatures and clonal expansion of T-Cell receptors in high-risk mycn-not-amplified human neuroblastoma.
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-18-0599
– volume: 76
  start-page: 5523
  year: 2016
  ident: B23
  article-title: Integrative genome-scale analysis identifies epigenetic mechanisms of transcriptional deregulation in unfavorable neuroblastomas.
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-15-2507
– volume: 165
  start-page: 1351
  year: 2004
  ident: B25
  article-title: Overexpression of the replication licensing regulators Hcdt1 and Hcdc6 characterizes a subset of non-small-cell lung carcinomas: Synergistic effect with mutant P53 on tumor growth and chromosomal instability–evidence of E2f-1 transcriptional control over Hcdt1.
  publication-title: Am. J. Pathol.
  doi: 10.1016/S0002-9440(10)63393-7
– volume: 23
  start-page: 180
  year: 2015
  ident: B2
  article-title: Novel deletions affecting the Meg3-Dmr provide further evidence for a hierarchical regulation of imprinting in 14q32.
  publication-title: Eur. J. Hum. Genet.
  doi: 10.1038/ejhg.2014.72
– volume: 429
  start-page: 1
  year: 2020
  ident: B28
  article-title: C1q/Tnf-related protein 4 induces signal transducer and activator of transcription 3 pathway and modulates food intake.
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2019.12.039
– volume: 18
  start-page: 2012
  year: 2012
  ident: B17
  article-title: A three-gene expression signature model for risk stratification of patients with neuroblastoma.
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-11-2483
– volume: 10
  year: 2019
  ident: B4
  article-title: Cold tumors: A therapeutic challenge for immunotherapy.
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2019.00168
– volume: 67
  year: 2020
  ident: B37
  article-title: Meg3 and Meg8 aberrant methylation in an infant with neuroblastoma.
  publication-title: Pediatr. Blood Cancer
  doi: 10.1002/pbc.28328
– volume: 10
  start-page: 663
  year: 2009
  ident: B53
  article-title: Predicting outcomes for children with neuroblastoma using a multigene-expression signature: A retrospective Siopen/Cog/Gpoh study.
  publication-title: Lancet Oncol.
  doi: 10.1016/S1470-2045(09)70154-8
– volume: 110
  start-page: 1084
  year: 2018
  ident: B13
  article-title: Genomic amplifications and distal 6q loss: Novel markers for poor survival in high-risk neuroblastoma patients.
  publication-title: J. Natl. Cancer Inst.
  doi: 10.1093/jnci/djy022
– volume: 40
  start-page: 105
  year: 2020
  ident: B20
  article-title: Gene signatures associated with genomic aberrations predict prognosis in neuroblastoma.
  publication-title: Cancer Commun. Lond
  doi: 10.1002/cac2.12016
– volume: 13
  year: 2012
  ident: B11
  article-title: Genome-wide promoter methylation analysis in neuroblastoma identifies prognostic methylation biomarkers.
  publication-title: Genome Biol.
  doi: 10.1186/gb-2012-13-10-r95
– volume: 4
  start-page: 325
  year: 2012
  ident: B51
  article-title: Complete pipeline for infinium((R)) human methylation 450k beadchip data processing using subset quantile normalization for accurate DNA methylation estimation.
  publication-title: Epigenomics
  doi: 10.2217/epi.12.21
– volume: 59
  start-page: 981
  year: 2016
  ident: B7
  article-title: Identifying and annotating human bifunctional rnas reveals their versatile functions.
  publication-title: Sci. China Life Sci.
  doi: 10.1007/s11427-016-0054-1
– volume: 16
  year: 2015
  ident: B61
  article-title: Comparison of Rna-Seq and microarray-based models for clinical endpoint prediction.
  publication-title: Genome Biol.
  doi: 10.1186/s13059-015-0694-1
– volume: 10
  year: 2020
  ident: B40
  article-title: Emerging evidences for an implication of the neurodegeneration-associated protein tau in cancer.
  publication-title: Brain Sci.
  doi: 10.3390/brainsci10110862
– volume: 368
  year: 2020
  ident: B15
  article-title: Metabolic reprogramming and cancer progression.
  publication-title: Science
  doi: 10.1126/science.aaw5473
– volume: 8
  year: 2019
  ident: B56
  article-title: Cdc7 activates replication checkpoint by phosphorylating the Chk1-binding domain of claspin in human cells.
  publication-title: Elife
  doi: 10.7554/eLife.50796
– volume: 38
  start-page: 716
  year: 2020
  ident: B14
  article-title: Single-cell characterization of malignant phenotypes and developmental trajectories of adrenal neuroblastoma.
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2020.08.014
– volume: 18
  start-page: 500
  year: 2017
  ident: B26
  article-title: Busulfan and melphalan versus carboplatin, etoposide, and melphalan as high-dose chemotherapy for high-risk neuroblastoma (Hr-Nbl1/Siopen): An international, randomised, multi-arm, open-label, phase 3 trial.
  publication-title: Lancet Oncol.
  doi: 10.1016/S1470-2045(17)30070-0
– volume: 319
  start-page: E1084
  year: 2020
  ident: B46
  article-title: Loss of Ctrp4 alters adiposity and food intake behaviors in obese mice.
  publication-title: Am. J. Physiol. Endocrinol. Metab.
  doi: 10.1152/ajpendo.00448.2020
– volume: 14
  start-page: 823
  year: 2012
  ident: B48
  article-title: High genomic instability predicts survival in metastatic high-risk neuroblastoma.
  publication-title: Neoplasia
  doi: 10.1593/neo.121114
– volume: 1
  start-page: 417
  year: 2015
  ident: B29
  article-title: The molecular signatures database (Msigdb) hallmark gene set collection.
  publication-title: Cell Syst.
  doi: 10.1016/j.cels.2015.12.004
– volume: 27
  start-page: 289
  year: 2009
  ident: B8
  article-title: The international neuroblastoma risk group (Inrg) classification system: An inrg task force report.
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.2008.16.6785
– volume: 27
  start-page: 1511
  year: 2005
  ident: B5
  article-title: Expression of the licensing factors, Cdt1 and geminin, in human colon cancer.
  publication-title: Int. J. Oncol.
– volume: 11
  year: 2009
  ident: B45
  article-title: T-cell metagene predicts a favorable prognosis in estrogen receptor-negative and Her2-positive breast cancers.
  publication-title: Breast Cancer Res.
  doi: 10.1186/bcr2234
– volume: 270
  start-page: 89
  year: 2000
  ident: B35
  article-title: Rat receptor-activity-modifying proteins (Ramps) for adrenomedullin/cgrp receptor: Cloning and upregulation in obstructive nephropathy.
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1006/bbrc.2000.2390
– volume: 61
  start-page: 92
  year: 2005
  ident: B21
  article-title: Survival model predictive accuracy and roc curves.
  publication-title: Biometrics
  doi: 10.1111/j.0006-341X.2005.030814.x
– volume: 9
  year: 2021
  ident: B38
  article-title: Garcia de protein tyrosine phosphatases in neuroblastoma: Emerging roles as biomarkers and therapeutic targets.
  publication-title: Front. Cell Dev. Biol.
  doi: 10.3389/fcell.2021.811297
– volume: 17
  start-page: 7684
  year: 2011
  ident: B10
  article-title: Mirna expression profiling enables risk stratification in archived and fresh neuroblastoma tumor samples.
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-11-0610
– volume: 28
  start-page: 1747
  year: 2018
  ident: B32
  article-title: Maftools: Efficient and comprehensive analysis of somatic variants in cancer.
  publication-title: Genome Res.
  doi: 10.1101/gr.239244.118
– volume: 36
  start-page: 411
  year: 2018
  ident: B6
  article-title: Integrating single-cell transcriptomic data across different conditions, technologies, and species.
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.4096
– volume: 37
  start-page: 773
  year: 2019
  ident: B36
  article-title: Determining cell type abundance and expression from bulk tissues with digital cytometry.
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-019-0114-2
– volume: 455
  start-page: 930
  year: 2008
  ident: B34
  article-title: Identification of alk as a major familial neuroblastoma predisposition gene.
  publication-title: Nature
  doi: 10.1038/nature07261
– volume: 50
  start-page: 148
  year: 2018
  ident: B1
  article-title: Topotecan-vincristine-doxorubicin in stage 4 high-risk neuroblastoma patients failing to achieve a complete metastatic response to rapid cojec: A siopen study.
  publication-title: Cancer Res. Treat.
  doi: 10.4143/crt.2016.511
– volume: 577
  start-page: 549
  year: 2020
  ident: B22
  article-title: B cells and tertiary lymphoid structures promote immunotherapy response.
  publication-title: Nature
  doi: 10.1038/s41586-019-1922-8
– volume: 17
  start-page: 2474
  year: 2018
  ident: B60
  article-title: Mapt (Tau) expression is a biomarker for an increased rate of survival in pediatric neuroblastoma.
  publication-title: Cell Cycle
  doi: 10.1080/15384101.2018.1542898
– volume: 13
  year: 2022
  ident: B47
  article-title: Identification and validation of a novel signature based on Nk cell marker genes to predict prognosis and immunotherapy response in lung adenocarcinoma by integrated analysis of single-cell and bulk Rna-sequencing.
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2022.850745
– volume: 13
  start-page: 688
  year: 2016
  ident: B30
  article-title: Expression of the novel adipokine C1qtnf-related protein 4 (Ctrp4) suppresses colitis and colitis-associated colorectal cancer in mice.
  publication-title: Cell Mol. Immunol.
  doi: 10.1038/cmi.2016.16
– volume: 43
  year: 2015
  ident: B44
  article-title: Limma powers differential expression analyses for rna-sequencing and microarray studies.
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkv007
– volume: 6
  start-page: 377
  year: 2009
  ident: B49
  article-title: Mrna-seq whole-transcriptome analysis of a single cell.
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1315
– volume: 344
  start-page: 1396
  year: 2014
  ident: B41
  article-title: Single-cell Rna-Seq highlights intratumoral heterogeneity in primary glioblastoma.
  publication-title: Science
  doi: 10.1126/science.1254257
– volume: 16
  start-page: 3050
  year: 2020
  ident: B57
  article-title: Downregulation of Meg3 promotes neuroblastoma development through Foxo1-mediated autophagy and mtor-mediated epithelial-mesenchymal transition.
  publication-title: Int. J. Biol. Sci.
  doi: 10.7150/ijbs.48126
– volume: 109
  start-page: 19190
  year: 2012
  ident: B52
  article-title: Functional mycn signature predicts outcome of neuroblastoma irrespective of mycn amplification.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1208215109
– volume: 308
  start-page: 203
  year: 2011
  ident: B27
  article-title: Identification of C1qtnf-related protein 4 as a potential cytokine that stimulates the stat3 and Nf-Kappab pathways and promotes cell survival in human cancer cells.
  publication-title: Cancer Lett.
  doi: 10.1016/j.canlet.2011.05.005
– volume: 490
  start-page: 239
  year: 2005
  ident: B9
  article-title: Localization of calcitonin receptor-like receptor and receptor activity modifying protein 1 in enteric neurons. Dorsal root ganglia, and the spinal cord of the rat.
  publication-title: J. Comp. Neurol.
  doi: 10.1002/cne.20669
– volume: 29
  start-page: 224
  year: 2015
  ident: B33
  article-title: Epigenetic regulation of the lncrna Meg3 and its target C-Met in pancreatic neuroendocrine tumors.
  publication-title: Mol. Endocrinol.
  doi: 10.1210/me.2014-1304
– volume: 369
  start-page: 2106
  year: 2007
  ident: B31
  article-title: Neuroblastoma.
  publication-title: Lancet
  doi: 10.1016/S0140-6736(07)60983-0
– volume: 39
  year: 2020
  ident: B18
  article-title: Novel therapeutic strategies targeting telomere maintenance mechanisms in high-risk neuroblastoma.
  publication-title: J. Exp. Clin. Cancer Res.
  doi: 10.1186/s13046-020-01582-2
– volume: 28
  start-page: 275
  year: 2020
  ident: B54
  article-title: Five-gene signature derived from M6a regulators to improve prognosis prediction of neuroblastoma.
  publication-title: Cancer Biomark.
  doi: 10.3233/CBM-191196
– volume: 19
  start-page: 369
  year: 2019
  ident: B12
  article-title: Macrophages as regulators of tumour immunity and immunotherapy.
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/s41577-019-0127-6
– volume: 14
  start-page: 5540
  year: 2008
  ident: B3
  article-title: Whole chromosome alterations predict survival in high-risk neuroblastoma without Mycn amplification.
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-07-4461
– volume: 4
  year: 2013
  ident: B58
  article-title: Inferring tumour purity and stromal and immune cell admixture from expression data.
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3612
– volume: 39
  start-page: 3229
  year: 2021
  ident: B24
  article-title: Revised neuroblastoma risk classification system: A report from the children’s oncology group.
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.21.00278
– volume: 45
  start-page: 279
  year: 2013
  ident: B43
  article-title: The genetic landscape of high-risk neuroblastoma.
  publication-title: Nat. Genet.
  doi: 10.1038/ng.2529
SSID ssj0062657
Score 2.299056
Snippet Background: Neuroblastoma is the most common extracranial solid tumor of childhood, arising from the sympathetic nervous system. High-risk neuroblastoma (HRNB)...
Neuroblastoma is the most common extracranial solid tumor of childhood, arising from the sympathetic nervous system. High-risk neuroblastoma (HRNB) remains a...
BackgroundNeuroblastoma is the most common extracranial solid tumor of childhood, arising from the sympathetic nervous system. High-risk neuroblastoma (HRNB)...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 1034793
SubjectTerms Algorithms
Cell cycle
Children
DNA methylation
Gene expression
Genes
high-risk neuroblastoma
Inflammation
malignant cell maker gene
Medical prognosis
Metabolism
Microenvironments
multi-omics integration
Mutation
Neuroblastoma
Neuroscience
Patients
Prognosis
prognostic model
Receptor activity modifying proteins
Regression analysis
Risk groups
single-cell
Solid tumors
Sympathetic nervous system
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQT1wQtCACLRokxAVZXSeOP44FUVUcOFGpN8ufsILNVrtbCQ78d2ac7Kq5wIUcEydy5o3jGefNM2NvyiIJodWCW5sKlz4LbkS0vI0y6RJ6PCpB9rO6upafbvqbe1t9ESdslAceDXdeQk4hdcbkEGTWwaTi-6LIb7TysqqX4py3T6bGbzBG6b0eS2QwBbPnZUC4MBlsWyoyp8Wk2TRU1fpnIeacIHlvxrl8zB5NoSJcjF18wh7k4ZidXAyYJq9-wVuo5M26Kn7CftdCWk4lxlvYS0CgyYEUmtDDwMN2-ZOvMOr-StQXoAV7WPnveQPoQhmIx1E1PgGjWLjd0P8bYkQDEbiG9XZJjwUSN-bERoeqgxkw9MbO-Kfs-vLjlw9XfNpZgUepux2nXV5kEsXomEUSKqskZedN8QrzSdF5qphtu5QIqmhVsohb8cVE2y9Kst0zdjSsh_ycQZZF47CXuRNeipJMJ6MPWcWgFj5Y2zCxN7SLk-w47X7xw2H6QeC4Co4jcNwETsPeHe65HUU3_tr6PeF3aEmC2fUEupGb3Mj9y40adrpH302jeOtG6R-jhGjY68NlHH-EkR_y-o7aYIZMKoNtw_TMa2Ydml8Zlt-qkrdVhiK8F__jDV6yh2QVXimKp-xot7nLZxgw7cKrOjb-AAw-Guc
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9NAEF1BeuGCKAVhKNUiIS5o1ay9Xu-eUFu1qjhUCFGpN2s_SwSxQ5xKcOC_M7NZp_jSHONN4vjNjmfGb94Q8j7OPeeNnDOtfWTCBM4Ud5qVTvgm2hpeiSB7JS-vxeeb-iYX3IZMqxx9YnLUvndYIz_eyrAoyfmn1S-GU6Pw6WoeofGY7IELVmpG9k7Pr758HX0xROt1s22VgVRMH8cOYIOksCyx2RyLSpPbUVLtn4SaU6Lkf3eei2fkaQ4Z6ckW433yKHTPycFJB-ny8g_9QBOJM1XHD8jf1FDLsNV4oKMUBFx6ikpNYGnU0GHxmy0h-r5FCgzFwj1dmh9hTcGUAkU-R9L6pBDN0tUan-MgM5oikavrhwV-LUWRY4asdJr0MC2E4HAy5gW5vjj_dnbJ8oQF5kRTbRhOexGeR9W4wD2XQXohKqOikZBX8spg52xZeY-QOS29Bvyiicrpeh69rl6SWdd34RWhQcQGtr8IFTeCR68q4YwN0lk5N1brgvDxQrcuy4_jFIyfLaQhCE6bwGkRnDaDU5CPu8-stuIbD64-Rfx2K1E4O73Rr2_bvA_baIO3vlIqWCtCY5WPpo4S3VAjjagLcjii3-bdPLT3tleQd7vDsA8RI9OF_g7XQKaMaoNlQZqJ1UxOaHqkW3xPit5aKoz0Xj_842_IE_y_LJEQD8lss74LbyEk2tijbPf_AGpqEgU
  priority: 102
  providerName: ProQuest
Title Multi-omics integration reveals a six-malignant cell maker gene signature for predicting prognosis in high-risk neuroblastoma
URI https://www.proquest.com/docview/2734828611
https://www.proquest.com/docview/2740907932
https://pubmed.ncbi.nlm.nih.gov/PMC9687102
https://doaj.org/article/fbedbd388ebb4e7b8dfa5f6963876a45
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVKe-GCgIIIlJUrIS7IsE4cfxxQ1VYtFRIVQqy0t8iO7XZFN1uyW6k98N-Z8SYrIlFO5JBD7ESOnx3POG_eEPImjj3nSo6ZMT4yYQNnmteG5bXwKroSjkSQPZdnE_F5Wk63SJ_uqOvA5V9dO8wnNWmv3t_-vDuACf8RPU5Ybz_EBorB1ctzDCHHraIHZAdWJoUZDb6IzV8FsN1LtQ6cuee-weKUNPwHhueQNvnHOnT6mDzqDEh6uEb8CdkKzVOye9iA8zy_o29ponSmvfJd8iuF1zIMPF7SXhgCgKCo2wTvTy1dzm7ZHGzxCyTEUNzGp3P7I7QUBlagyO5Iyp8UbFt63eJfHeRJU6R1NYvlDB9LUfKYIUedJnVMBwY5NMY-I5PTk-_HZ6zLt8BqoYoVw9wvwvOoVR245zJIL0RhdbQSvExeWIyjzQvvEcDaSG8AzWijrk05jt4Uz8l2s2jCC0KDiAo-BiIU3AoevS5EbV2QtZNj64zJCO87uqo7MXLMiXFVgVOC4FQJnArBqTpwMvJuc8_1Worjn7WPEL9NTZTRThcW7UXVzcoquuCdL7QOzomgnPbRllHiR0lJK8qM7PXoV_3QrNaCQFpynpH9TTHMSsTINmFxg3XAb0btwTwjajBqBg0aljSzy6TvbaRGu-_l_3iDV-Qh9gpLxMU9sr1qb8JrMKNWbkR2jk7Ov34bpW0IOH-a8lGaL78B0dMmDg
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEF1V6QEuCCiIlAKLBFzQql57vbYPCLXQKqUlQqiVejP7WSKIHeJU0AN_id_IzNoO-NJbc4w3ycZvdjyz--YNIS98ZDnPZMSKwnomlOMs56ZgsRE28zqFVyDITuXkTHw4T883yJ--FgZplb1PDI7a1gb3yHdbGZZccv528YNh1yg8Xe1baLRmceyufkLK1rw5eg_4vozjw4PTdxPWdRVgRmTJimGHE2G5zzPjuOXSSStEonKvJORSPFFYLRon1uI0TSFtAXP2yuemSCNvUXwJXP6mSGQUj8jm_sH00-fe90N2kGZtaQ6kfsWur8BMIAmNYyxux02sweMvdAkYhLZDYuZ_T7rDu-ROF6LSvdam7pENV90nW3sVpOfzK_qKBtJo2I3fIr9DAS_D0uaG9tITADVFZSiwbKpoM_vF5hDtXyDlhuJBAZ2rb25JwXQdRf5I0BalED3TxRLPjZCJTZE4VtXNDL-WoqgyQxY8DfqbGkJ-mIx6QM5u5N4_JKOqrtwjQp3wGbgb4RKuBPc2T4RR2kmjZaR0UYwJ7290aTq5c-y68b2EtAfBKQM4JYJTduCMyev1Zxat2Me1o_cRv_VIFOoOb9TLi7Jb96XXzmqb5LnTWrhM59ar1Et0e5lUIh2TnR79svMeTfnP1sfk-foyrHvESFWuvsQxkJmjumE8JtnAagYTGl6pZl-Dgnghc4wst6__8Wfk1uT040l5cjQ9fkxu439ngQC5Q0ar5aV7AuHYSj_t1gAlX2562f0FSddObA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3BbtQwELWqrYS4IKAgAgWMBFyQtevEceIDQi3tqqVoVSEq9Rbs2C4r2GTZbAU98GN8HTNOspBLb80xcRInMx7P2G_eEPLSTyznmZwwpaxnQjvOcl4qFpfCZt6kcASA7EwenYkP5-n5FvnT58IgrLK3icFQ27rENfJxS8OSS87HvoNFnB5M3y1_MKwghTutfTmNVkVO3NVPCN-at8cHIOtXcTw9_Pz-iHUVBlgpsmTNsNqJsNznWem45dJJK0Sic68lxFU80Zg5GifWYpdLJa2C_nvt81KlE2-RiAnM_3aGUdGIbO8fzk4_9fMARApp1qbpQBioxr4ClYGANI4x0R0XtAZTYagYMHBzhyDN_2a96V1yp3NX6V6rX_fIlqvuk529CkL1xRV9TQOANKzM75DfIZmXYZpzQ3saChA7RZYo0HKqaTP_xRbg-V8g_IbipgFd6G9uRUGNHUUsSeAZpeBJ0-UK95AQlU0RRFbVzRwfS5FgmSEingYuTgPuP3RGPyBnN_LvH5JRVVfuEaFO-AxMj3AJ14J7myei1MbJ0siJNkpFhPc_uig76nOswPG9gBAIhVME4RQonKITTkTebO5ZtsQf17beR_ltWiJpdzhRry6KzgYU3jhrbJLnzhjhMpNbr1Mv0QRmUos0Iru99IvOkjTFP72PyIvNZbABKCNdufoS20CUjkyHcUSygdYMOjS8Us2_BjZxJXP0Mh9f__Ln5BYMt-Lj8ezkCbmNn84CFnKXjNarS_cUPLO1edYNAUq-3PSo-wt7T1Kh
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-omics+integration+reveals+a+six-malignant+cell+maker+gene+signature+for+predicting+prognosis+in+high-risk+neuroblastoma&rft.jtitle=Frontiers+in+neuroinformatics&rft.au=Zijun+Yan&rft.au=Zijun+Yan&rft.au=Qiming+Liu&rft.au=Ziyang+Cao&rft.date=2022-11-10&rft.pub=Frontiers+Media+S.A&rft.eissn=1662-5196&rft.volume=16&rft_id=info:doi/10.3389%2Ffninf.2022.1034793&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_fbedbd388ebb4e7b8dfa5f6963876a45
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5196&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5196&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5196&client=summon