A second-order dynamical system with Hessian-driven damping and penalty term associated to variational inequalities
We consider the minimization of a convex objective function subject to the set of minima of another convex function, under the assumption that both functions are twice continuously differentiable. We approach this optimization problem from a continuous perspective by means of a second-order dynamica...
Saved in:
Published in | Optimization Vol. 68; no. 7; pp. 1265 - 1277 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Philadelphia
Taylor & Francis
03.07.2019
Taylor & Francis LLC |
Subjects | |
Online Access | Get full text |
ISSN | 0233-1934 1029-4945 1029-4945 |
DOI | 10.1080/02331934.2018.1452922 |
Cover
Loading…
Abstract | We consider the minimization of a convex objective function subject to the set of minima of another convex function, under the assumption that both functions are twice continuously differentiable. We approach this optimization problem from a continuous perspective by means of a second-order dynamical system with Hessian-driven damping and a penalty term corresponding to the constrained function. By constructing appropriate energy functionals, we prove weak convergence of the trajectories generated by this differential equation to a minimizer of the optimization problem as well as convergence for the objective function values along the trajectories. The performed investigations rely on Lyapunov analysis in combination with the continuous version of the Opial Lemma. In case the objective function is strongly convex, we can even show strong convergence of the trajectories. |
---|---|
AbstractList | We consider the minimization of a convex objective function subject to the set of minima of another convex function, under the assumption that both functions are twice continuously differentiable. We approach this optimization problem from a continuous perspective by means of a second-order dynamical system with Hessian-driven damping and a penalty term corresponding to the constrained function. By constructing appropriate energy functionals, we prove weak convergence of the trajectories generated by this differential equation to a minimizer of the optimization problem as well as convergence for the objective function values along the trajectories. The performed investigations rely on Lyapunov analysis in combination with the continuous version of the Opial Lemma. In case the objective function is strongly convex, we can even show strong convergence of the trajectories. We consider the minimization of a convex objective function subject to the set of minima of another convex function, under the assumption that both functions are twice continuously differentiable. We approach this optimization problem from a continuous perspective by means of a second-order dynamical system with Hessian-driven damping and a penalty term corresponding to the constrained function. By constructing appropriate energy functionals, we prove weak convergence of the trajectories generated by this differential equation to a minimizer of the optimization problem as well as convergence for the objective function values along the trajectories. The performed investigations rely on Lyapunov analysis in combination with the continuous version of the Opial Lemma. In case the objective function is strongly convex, we can even show strong convergence of the trajectories.We consider the minimization of a convex objective function subject to the set of minima of another convex function, under the assumption that both functions are twice continuously differentiable. We approach this optimization problem from a continuous perspective by means of a second-order dynamical system with Hessian-driven damping and a penalty term corresponding to the constrained function. By constructing appropriate energy functionals, we prove weak convergence of the trajectories generated by this differential equation to a minimizer of the optimization problem as well as convergence for the objective function values along the trajectories. The performed investigations rely on Lyapunov analysis in combination with the continuous version of the Opial Lemma. In case the objective function is strongly convex, we can even show strong convergence of the trajectories. |
Author | Boţ, Radu Ioan Csetnek, Ernö Robert |
Author_xml | – sequence: 1 givenname: Radu Ioan orcidid: 0000-0002-4469-314X surname: Boţ fullname: Boţ, Radu Ioan email: radu.bot@univie.ac.at organization: Faculty of Mathematics and Computer Science, Babeş-Bolyai University – sequence: 2 givenname: Ernö Robert surname: Csetnek fullname: Csetnek, Ernö Robert organization: Faculty of Mathematics, University of Vienna |
BookMark | eNqFkV1rFDEUhoNU7Lb6E4SAN97Mmo_5CoJYirZCwRu9DmeTM21KJtkmmS3z7511V6G90KsE8rwP5-Q9IychBiTkLWdrznr2gQkpuZL1WjDer3ndCCXEC7LiTKiqVnVzQlZ7ptpDp-Qs53vGBG9F_YqcSt6xvq2bFckXNKOJwVYxWUzUzgFGZ8DTPOeCI3105Y5eY84OQmWT22GgFsatC7cUgqVbDODLTAumkULO0TgoaGmJdAdpubu4ANQFfJjAu-IwvyYvB_AZ3xzPc_Lz65cfl9fVzferb5cXN5WpO1mqxkgjWIcdcNttGrnhysqOK9MIgxJEx-WgUDXWWlCDMgyU4Zve9sOgBoG1PCefDt7ttBnRGgwlgdfb5EZIs47g9NOX4O70bdzptuedFGwRvD8KUnyYMBc9umzQewgYp6yF5LKtVdfJBX33DL2PU1o2XyjRStU2i3GhmgNlUsw54fB3GM70vlb9p1a9r1Ufa11yH5_ljCu_v3aZ2_n_pj8f0i4MMY3wGJO3usDsYxoSBOOylv9W_AKWuL7m |
CitedBy_id | crossref_primary_10_1051_cocv_2022028 crossref_primary_10_1109_TCNS_2023_3259468 crossref_primary_10_1137_19M1307779 crossref_primary_10_1007_s11590_020_01663_3 crossref_primary_10_1109_TAC_2022_3204543 |
Cites_doi | 10.1137/S1052623403427859 10.1090/S0002-9947-09-04785-0 10.1137/110820300 10.1137/15M1012657 10.1007/s10957-013-0296-6 10.1090/tran/6965 10.1016/j.jde.2016.11.009 10.1007/s10957-011-9936-x 10.1016/j.jde.2009.06.014 10.1007/s10957-013-0414-5 10.1007/s002459900088 10.1016/j.jmaa.2015.11.032 10.1007/s10957-014-0700-x 10.1023/A:1011253113155 10.1007/978-3-642-57592-1_2 10.1007/s11228-014-0274-7 10.1051/cocv/2010024 10.1080/00036811.2016.1157589 10.1007/s10013-013-0050-2 10.1016/j.jde.2016.08.020 10.1137/100789464 |
ContentType | Journal Article |
Copyright | 2018 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group 2018 2018 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group 2018 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2018 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group 2018 The Author(s) |
Copyright_xml | – notice: 2018 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group 2018 – notice: 2018 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group – notice: 2018 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. – notice: 2018 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group 2018 The Author(s) |
DBID | 0YH AAYXX CITATION 7SC 7TB 8FD FR3 H8D JQ2 L7M L~C L~D 7X8 5PM |
DOI | 10.1080/02331934.2018.1452922 |
DatabaseName | Taylor & Francis Open Access CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | Aerospace Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: 0YH name: Taylor & Francis Open Access url: https://www.tandfonline.com sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
DocumentTitleAlternate | Optimization |
EISSN | 1029-4945 |
EndPage | 1277 |
ExternalDocumentID | PMC6817320 10_1080_02331934_2018_1452922 1452922 |
Genre | Article |
GrantInformation_xml | – fundername: FWF grantid: M 1682-N25; M 1682-N25; I 2419-N32 funderid: 10.13039/501100002428 – fundername: Austrian Science Fund grantid: I 2419-N32,M 1682-N25 funderid: 10.13039/501100002428 – fundername: ; ; grantid: I 2419-N32,M 1682-N25 – fundername: ; ; grantid: M 1682-N25; M 1682-N25; I 2419-N32 |
GroupedDBID | .7F .DC .QJ 0BK 0R~ 0YH 123 29N 30N 4.4 5VS AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACIWK ACTIO ADCVX ADGTB ADXPE AEISY AENEX AEOZL AEPSL AEYOC AFKVX AGDLA AGMYJ AHDZW AIJEM AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DKSSO DU5 EBS EJD E~A E~B GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P KYCEM LJTGL M4Z NA5 O9- P2P PQQKQ RIG RNANH ROSJB RTWRZ S-T SNACF TBQAZ TDBHL TEJ TFL TFT TFW TTHFI TUROJ TWF UT5 UU3 ZGOLN ~S~ AAGDL AAHIA AAYXX ADYSH AFRVT AIYEW AMPGV AMVHM CITATION 7SC 7TB 8FD FR3 H8D JQ2 L7M L~C L~D TASJS 7X8 5PM |
ID | FETCH-LOGICAL-c473t-5c3c207e7a1d7b53b19d3719c52ce3a2713f9e95ddda9f9c0a9c1b8d8ff9f2e43 |
IEDL.DBID | 0YH |
ISSN | 0233-1934 1029-4945 |
IngestDate | Thu Aug 21 14:36:32 EDT 2025 Tue Aug 05 09:33:27 EDT 2025 Wed Aug 13 10:50:32 EDT 2025 Tue Jul 01 03:52:12 EDT 2025 Thu Apr 24 22:55:19 EDT 2025 Wed Dec 25 09:09:09 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | open-access: http://creativecommons.org/licenses/by/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c473t-5c3c207e7a1d7b53b19d3719c52ce3a2713f9e95ddda9f9c0a9c1b8d8ff9f2e43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-4469-314X |
OpenAccessLink | https://www.tandfonline.com/doi/abs/10.1080/02331934.2018.1452922 |
PMID | 31708645 |
PQID | 2263965732 |
PQPubID | 27961 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_2313649773 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6817320 crossref_primary_10_1080_02331934_2018_1452922 proquest_journals_2263965732 crossref_citationtrail_10_1080_02331934_2018_1452922 informaworld_taylorfrancis_310_1080_02331934_2018_1452922 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-07-03 |
PublicationDateYYYYMMDD | 2019-07-03 |
PublicationDate_xml | – month: 07 year: 2019 text: 2019-07-03 day: 03 |
PublicationDecade | 2010 |
PublicationPlace | Philadelphia |
PublicationPlace_xml | – name: Philadelphia |
PublicationTitle | Optimization |
PublicationYear | 2019 |
Publisher | Taylor & Francis Taylor & Francis LLC |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis LLC |
References | CIT0010 CIT0012 CIT0011 CIT0014 CIT0013 CIT0016 CIT0015 CIT0018 CIT0017 CIT0019 CIT0021 CIT0020 CIT0023 CIT0022 Antipin AS (CIT0004) 1994; 30 Attouch H (CIT0005) 2002; 31 CIT0025 CIT0002 CIT0024 Attouch H (CIT0006) 2012; 4 CIT0026 CIT0007 Alvarez F (CIT0001) 2002; 81 Polyak BT (CIT0003) 1987 CIT0009 CIT0008 |
References_xml | – ident: CIT0025 doi: 10.1137/S1052623403427859 – volume: 4 start-page: 27 issue: 1 year: 2012 ident: CIT0006 publication-title: Differ Equ Appl – volume: 31 start-page: 643 issue: 3 year: 2002 ident: CIT0005 publication-title: Link with proximal methods, Control Cybern – volume: 81 start-page: 747 issue: 8 year: 2002 ident: CIT0001 publication-title: Application to optimization and mechanics, J Math Pures Appl – ident: CIT0024 doi: 10.1090/S0002-9947-09-04785-0 – volume: 30 start-page: 1475 issue: 9 year: 1994 ident: CIT0004 publication-title: Differ Uravneniya – ident: CIT0010 doi: 10.1137/110820300 – ident: CIT0023 doi: 10.1137/15M1012657 – ident: CIT0012 doi: 10.1007/s10957-013-0296-6 – ident: CIT0018 doi: 10.1090/tran/6965 – volume-title: Introduction to optimization (Translated from the Russian), Translations series in mathematics and engineering year: 1987 ident: CIT0003 – ident: CIT0021 doi: 10.1016/j.jde.2016.11.009 – ident: CIT0013 doi: 10.1007/s10957-011-9936-x – ident: CIT0009 doi: 10.1016/j.jde.2009.06.014 – ident: CIT0022 doi: 10.1007/s10957-013-0414-5 – ident: CIT0002 doi: 10.1007/s002459900088 – ident: CIT0017 doi: 10.1016/j.jmaa.2015.11.032 – ident: CIT0016 doi: 10.1007/s10957-014-0700-x – ident: CIT0026 doi: 10.1023/A:1011253113155 – ident: CIT0008 doi: 10.1007/978-3-642-57592-1_2 – ident: CIT0014 doi: 10.1007/s11228-014-0274-7 – ident: CIT0019 doi: 10.1051/cocv/2010024 – ident: CIT0020 doi: 10.1080/00036811.2016.1157589 – ident: CIT0015 doi: 10.1007/s10013-013-0050-2 – ident: CIT0007 doi: 10.1016/j.jde.2016.08.020 – ident: CIT0011 doi: 10.1137/100789464 |
SSID | ssj0021624 |
Score | 2.2331958 |
Snippet | We consider the minimization of a convex objective function subject to the set of minima of another convex function, under the assumption that both functions... |
SourceID | pubmedcentral proquest crossref informaworld |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1265 |
SubjectTerms | Convergence convex optimization Damping Differential equations Dynamical systems Lyapunov analysis Newton dynamics nonautonomous systems Optimization Trajectories |
Title | A second-order dynamical system with Hessian-driven damping and penalty term associated to variational inequalities |
URI | https://www.tandfonline.com/doi/abs/10.1080/02331934.2018.1452922 https://www.proquest.com/docview/2263965732 https://www.proquest.com/docview/2313649773 https://pubmed.ncbi.nlm.nih.gov/PMC6817320 |
Volume | 68 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQe4ED4im2lMpIXA1x_IqPq5Yq4sCJiscl8lMgQbZqUiT-PTOJs9ocUA8cI3vsyDNjz4zH3xDyxucondKBGaskkyFoUKnImasrmVMj8PIKsy0-6vZKfviilmzCoaRVog-dZ6CIaa9G5XZ-WDLi3sExA4IjMCLCG1B1VdsaduHjGqUVRLr62u59Lq6nurZIwpBmecTzr2FWx9MKvHRlgq4TKA9OpMtH5GExJel25v1jci_1T8iDA4DBp2TY0gE93sgmiE0a5_rzQDUjOFMMw9IWU2Fdz-INbn00ul_4iIrC-tDrBFOMfyhu4NQVVqZIxx39DV52iSRSmHF-nQl-9zNydfn-03nLSpkFFqQRI1NBhLoyyTgejVfCcxuF4TaoOiThanBjs01WxRidzTZUzgbum9jkbHOdpHhOjvpdn14Qip1EUrlx3Evo7nKuZZZgYnntkzYbIpfV7ULBIMdSGD87vkCVFqZ0yJSuMGVD3u7JrmcQjrsI7CHrunGKfuS5VEkn7qA9XfjcFX0eOjBShdXKCGh-vW8GTcTrFden3S30EVxoCfa02BCzko_9TyOW97ql__F9wvTWDYfBq5P_-PGX5D582imXWJySo_HmNr0Ci2n0Z5NOnJHjbXvx7fNf8WgQDA |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxQxDI5QOQAH3ogtBYLENctk8pocK9RqgbKnVuptlKdAlNmqO4sEv772PFY7SFUPPSdOMhk7sR37MyEffY7SKR2YsUoyGYIGkYqcubKQOVUCH68w2mKpF2fy67k638mFwbBKtKFzDxTRndUo3OiMHkPiPsE9A5wj0CXCK5B1VdoSjuH7ymqDVQxEsdwaXVx3hW2RhCHNmMVz0zCT-2mCXjrRQacRlDtX0vETEsaP6SNRfs03rZ-Hf__hPN7ta5-Sx4PGSg97FntG7qXmOXm0g2P4gqwP6RoN68g6JE8a-zL3QNUDRVP09tIFRty6hsUrPGFpdL8xV4vCwuhlginavxTvCeoGjkmRtiv6B4z5wWFJYcY-CRTM-5fk7Pjo9POCDdUcWJBGtEwFEcrCJON4NF4Jz20UhtugypCEK8FazjZZFWN0NttQOBu4r2KVs81lkuIV2WtWTXpNKHYSSeXKcS-hu8u5lFmCJue1T9rMiBz_YR0GqHOsuHFR8xERddjTGve0HvZ0RuZbssse6-M2ArvLIHXbOVlyXxGlFrfQHozcVA_HxroGXVhYrYyA5g_bZhB4fMVxTVptoI_gQktQ28WMmAkXbheNkOHTlubnjw46XFccBi_277Dw9-TB4vT7SX3yZfntDXkITbYLXxYHZK-92qS3oKS1_l0nhddWEzHg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELbQIiE48EYUFjAS15Q4fiQ-roCqPFRxYCVulp8CLaTVNl1p-fXMJE7VIKE97Hk8tuPMjGfs8TeEvHEpCCuVL2otRSG8V6BSgRW2KkWKDcfLK8y2WKnlqfj0XY7ZhNucVokxdBqAInpbjcq9CWnMiHsL2wwIDscTEdaAqstKV2CFbyoED8dXHOVqH3Mx1de1RZYCecZHPP_rZrI9TcBLJy7oNIHyYEda3CNu_JYhEeVsvuvc3P_5B-bxWh97n9zN_io9GQTsAbkR24fkzgGK4SOyPaFbDKtD0eN40jAUuQeuASaa4lkvXWK-rW2LcI72lQb7G19qUZgX3UQYorukuEtQm-UlBtqt6QWE8vm4ksKIwxNQCO4fk9PFh2_vlkWu5VB4UfOukJ77qqxjbVmoneSO6cBrpr2sfOS2glg56ahlCMHqpH1ptWeuCU1KOlVR8CfkqF238Smh2IhHmRrLnIDmNqVKJAF-nFMuqnpGxPgLjc9A51hv45dhIx5qXlODa2ryms7IfM-2GZA-rmLQh_Jhuv6IJQ31UAy_gvd4FCaTjcbWgCfMtZI1B_LrPRnUHe9wbBvXO2jDGVcCnHY-I_VECPeTRsDwKaX9-aMHDlcNg87LZ9eY-Cty6-v7hfnycfX5ObkNFN3nLvNjctSd7-IL8NA697LXwb9tDjCE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+second-order+dynamical+system+with+Hessian-driven+damping+and+penalty+term+associated+to+variational+inequalities&rft.jtitle=Optimization&rft.au=Bot%2C+Radu+Ioan&rft.au=Csetnek%2C+Ern%C3%B6+Robert&rft.date=2019-07-03&rft.pub=Taylor+%26+Francis+LLC&rft.issn=0233-1934&rft.eissn=1029-4945&rft.volume=68&rft.issue=7&rft.spage=1265&rft_id=info:doi/10.1080%2F02331934.2018.1452922&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0233-1934&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0233-1934&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0233-1934&client=summon |