A second-order dynamical system with Hessian-driven damping and penalty term associated to variational inequalities

We consider the minimization of a convex objective function subject to the set of minima of another convex function, under the assumption that both functions are twice continuously differentiable. We approach this optimization problem from a continuous perspective by means of a second-order dynamica...

Full description

Saved in:
Bibliographic Details
Published inOptimization Vol. 68; no. 7; pp. 1265 - 1277
Main Authors Boţ, Radu Ioan, Csetnek, Ernö Robert
Format Journal Article
LanguageEnglish
Published Philadelphia Taylor & Francis 03.07.2019
Taylor & Francis LLC
Subjects
Online AccessGet full text
ISSN0233-1934
1029-4945
1029-4945
DOI10.1080/02331934.2018.1452922

Cover

Loading…
Abstract We consider the minimization of a convex objective function subject to the set of minima of another convex function, under the assumption that both functions are twice continuously differentiable. We approach this optimization problem from a continuous perspective by means of a second-order dynamical system with Hessian-driven damping and a penalty term corresponding to the constrained function. By constructing appropriate energy functionals, we prove weak convergence of the trajectories generated by this differential equation to a minimizer of the optimization problem as well as convergence for the objective function values along the trajectories. The performed investigations rely on Lyapunov analysis in combination with the continuous version of the Opial Lemma. In case the objective function is strongly convex, we can even show strong convergence of the trajectories.
AbstractList We consider the minimization of a convex objective function subject to the set of minima of another convex function, under the assumption that both functions are twice continuously differentiable. We approach this optimization problem from a continuous perspective by means of a second-order dynamical system with Hessian-driven damping and a penalty term corresponding to the constrained function. By constructing appropriate energy functionals, we prove weak convergence of the trajectories generated by this differential equation to a minimizer of the optimization problem as well as convergence for the objective function values along the trajectories. The performed investigations rely on Lyapunov analysis in combination with the continuous version of the Opial Lemma. In case the objective function is strongly convex, we can even show strong convergence of the trajectories.
We consider the minimization of a convex objective function subject to the set of minima of another convex function, under the assumption that both functions are twice continuously differentiable. We approach this optimization problem from a continuous perspective by means of a second-order dynamical system with Hessian-driven damping and a penalty term corresponding to the constrained function. By constructing appropriate energy functionals, we prove weak convergence of the trajectories generated by this differential equation to a minimizer of the optimization problem as well as convergence for the objective function values along the trajectories. The performed investigations rely on Lyapunov analysis in combination with the continuous version of the Opial Lemma. In case the objective function is strongly convex, we can even show strong convergence of the trajectories.We consider the minimization of a convex objective function subject to the set of minima of another convex function, under the assumption that both functions are twice continuously differentiable. We approach this optimization problem from a continuous perspective by means of a second-order dynamical system with Hessian-driven damping and a penalty term corresponding to the constrained function. By constructing appropriate energy functionals, we prove weak convergence of the trajectories generated by this differential equation to a minimizer of the optimization problem as well as convergence for the objective function values along the trajectories. The performed investigations rely on Lyapunov analysis in combination with the continuous version of the Opial Lemma. In case the objective function is strongly convex, we can even show strong convergence of the trajectories.
Author Boţ, Radu Ioan
Csetnek, Ernö Robert
Author_xml – sequence: 1
  givenname: Radu Ioan
  orcidid: 0000-0002-4469-314X
  surname: Boţ
  fullname: Boţ, Radu Ioan
  email: radu.bot@univie.ac.at
  organization: Faculty of Mathematics and Computer Science, Babeş-Bolyai University
– sequence: 2
  givenname: Ernö Robert
  surname: Csetnek
  fullname: Csetnek, Ernö Robert
  organization: Faculty of Mathematics, University of Vienna
BookMark eNqFkV1rFDEUhoNU7Lb6E4SAN97Mmo_5CoJYirZCwRu9DmeTM21KJtkmmS3z7511V6G90KsE8rwP5-Q9IychBiTkLWdrznr2gQkpuZL1WjDer3ndCCXEC7LiTKiqVnVzQlZ7ptpDp-Qs53vGBG9F_YqcSt6xvq2bFckXNKOJwVYxWUzUzgFGZ8DTPOeCI3105Y5eY84OQmWT22GgFsatC7cUgqVbDODLTAumkULO0TgoaGmJdAdpubu4ANQFfJjAu-IwvyYvB_AZ3xzPc_Lz65cfl9fVzferb5cXN5WpO1mqxkgjWIcdcNttGrnhysqOK9MIgxJEx-WgUDXWWlCDMgyU4Zve9sOgBoG1PCefDt7ttBnRGgwlgdfb5EZIs47g9NOX4O70bdzptuedFGwRvD8KUnyYMBc9umzQewgYp6yF5LKtVdfJBX33DL2PU1o2XyjRStU2i3GhmgNlUsw54fB3GM70vlb9p1a9r1Ufa11yH5_ljCu_v3aZ2_n_pj8f0i4MMY3wGJO3usDsYxoSBOOylv9W_AKWuL7m
CitedBy_id crossref_primary_10_1051_cocv_2022028
crossref_primary_10_1109_TCNS_2023_3259468
crossref_primary_10_1137_19M1307779
crossref_primary_10_1007_s11590_020_01663_3
crossref_primary_10_1109_TAC_2022_3204543
Cites_doi 10.1137/S1052623403427859
10.1090/S0002-9947-09-04785-0
10.1137/110820300
10.1137/15M1012657
10.1007/s10957-013-0296-6
10.1090/tran/6965
10.1016/j.jde.2016.11.009
10.1007/s10957-011-9936-x
10.1016/j.jde.2009.06.014
10.1007/s10957-013-0414-5
10.1007/s002459900088
10.1016/j.jmaa.2015.11.032
10.1007/s10957-014-0700-x
10.1023/A:1011253113155
10.1007/978-3-642-57592-1_2
10.1007/s11228-014-0274-7
10.1051/cocv/2010024
10.1080/00036811.2016.1157589
10.1007/s10013-013-0050-2
10.1016/j.jde.2016.08.020
10.1137/100789464
ContentType Journal Article
Copyright 2018 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group 2018
2018 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group
2018 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
2018 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group 2018 The Author(s)
Copyright_xml – notice: 2018 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group 2018
– notice: 2018 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group
– notice: 2018 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
– notice: 2018 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group 2018 The Author(s)
DBID 0YH
AAYXX
CITATION
7SC
7TB
8FD
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
5PM
DOI 10.1080/02331934.2018.1452922
DatabaseName Taylor & Francis Open Access
CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList
Aerospace Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: 0YH
  name: Taylor & Francis Open Access
  url: https://www.tandfonline.com
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitleAlternate Optimization
EISSN 1029-4945
EndPage 1277
ExternalDocumentID PMC6817320
10_1080_02331934_2018_1452922
1452922
Genre Article
GrantInformation_xml – fundername: FWF
  grantid: M 1682-N25; M 1682-N25; I 2419-N32
  funderid: 10.13039/501100002428
– fundername: Austrian Science Fund
  grantid: I 2419-N32,M 1682-N25
  funderid: 10.13039/501100002428
– fundername: ; ;
  grantid: I 2419-N32,M 1682-N25
– fundername: ; ;
  grantid: M 1682-N25; M 1682-N25; I 2419-N32
GroupedDBID .7F
.DC
.QJ
0BK
0R~
0YH
123
29N
30N
4.4
5VS
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AGDLA
AGMYJ
AHDZW
AIJEM
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DKSSO
DU5
EBS
EJD
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NA5
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
~S~
AAGDL
AAHIA
AAYXX
ADYSH
AFRVT
AIYEW
AMPGV
AMVHM
CITATION
7SC
7TB
8FD
FR3
H8D
JQ2
L7M
L~C
L~D
TASJS
7X8
5PM
ID FETCH-LOGICAL-c473t-5c3c207e7a1d7b53b19d3719c52ce3a2713f9e95ddda9f9c0a9c1b8d8ff9f2e43
IEDL.DBID 0YH
ISSN 0233-1934
1029-4945
IngestDate Thu Aug 21 14:36:32 EDT 2025
Tue Aug 05 09:33:27 EDT 2025
Wed Aug 13 10:50:32 EDT 2025
Tue Jul 01 03:52:12 EDT 2025
Thu Apr 24 22:55:19 EDT 2025
Wed Dec 25 09:09:09 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License open-access: http://creativecommons.org/licenses/by/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c473t-5c3c207e7a1d7b53b19d3719c52ce3a2713f9e95ddda9f9c0a9c1b8d8ff9f2e43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4469-314X
OpenAccessLink https://www.tandfonline.com/doi/abs/10.1080/02331934.2018.1452922
PMID 31708645
PQID 2263965732
PQPubID 27961
PageCount 13
ParticipantIDs proquest_miscellaneous_2313649773
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6817320
crossref_primary_10_1080_02331934_2018_1452922
proquest_journals_2263965732
crossref_citationtrail_10_1080_02331934_2018_1452922
informaworld_taylorfrancis_310_1080_02331934_2018_1452922
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-07-03
PublicationDateYYYYMMDD 2019-07-03
PublicationDate_xml – month: 07
  year: 2019
  text: 2019-07-03
  day: 03
PublicationDecade 2010
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle Optimization
PublicationYear 2019
Publisher Taylor & Francis
Taylor & Francis LLC
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis LLC
References CIT0010
CIT0012
CIT0011
CIT0014
CIT0013
CIT0016
CIT0015
CIT0018
CIT0017
CIT0019
CIT0021
CIT0020
CIT0023
CIT0022
Antipin AS (CIT0004) 1994; 30
Attouch H (CIT0005) 2002; 31
CIT0025
CIT0002
CIT0024
Attouch H (CIT0006) 2012; 4
CIT0026
CIT0007
Alvarez F (CIT0001) 2002; 81
Polyak BT (CIT0003) 1987
CIT0009
CIT0008
References_xml – ident: CIT0025
  doi: 10.1137/S1052623403427859
– volume: 4
  start-page: 27
  issue: 1
  year: 2012
  ident: CIT0006
  publication-title: Differ Equ Appl
– volume: 31
  start-page: 643
  issue: 3
  year: 2002
  ident: CIT0005
  publication-title: Link with proximal methods, Control Cybern
– volume: 81
  start-page: 747
  issue: 8
  year: 2002
  ident: CIT0001
  publication-title: Application to optimization and mechanics, J Math Pures Appl
– ident: CIT0024
  doi: 10.1090/S0002-9947-09-04785-0
– volume: 30
  start-page: 1475
  issue: 9
  year: 1994
  ident: CIT0004
  publication-title: Differ Uravneniya
– ident: CIT0010
  doi: 10.1137/110820300
– ident: CIT0023
  doi: 10.1137/15M1012657
– ident: CIT0012
  doi: 10.1007/s10957-013-0296-6
– ident: CIT0018
  doi: 10.1090/tran/6965
– volume-title: Introduction to optimization (Translated from the Russian), Translations series in mathematics and engineering
  year: 1987
  ident: CIT0003
– ident: CIT0021
  doi: 10.1016/j.jde.2016.11.009
– ident: CIT0013
  doi: 10.1007/s10957-011-9936-x
– ident: CIT0009
  doi: 10.1016/j.jde.2009.06.014
– ident: CIT0022
  doi: 10.1007/s10957-013-0414-5
– ident: CIT0002
  doi: 10.1007/s002459900088
– ident: CIT0017
  doi: 10.1016/j.jmaa.2015.11.032
– ident: CIT0016
  doi: 10.1007/s10957-014-0700-x
– ident: CIT0026
  doi: 10.1023/A:1011253113155
– ident: CIT0008
  doi: 10.1007/978-3-642-57592-1_2
– ident: CIT0014
  doi: 10.1007/s11228-014-0274-7
– ident: CIT0019
  doi: 10.1051/cocv/2010024
– ident: CIT0020
  doi: 10.1080/00036811.2016.1157589
– ident: CIT0015
  doi: 10.1007/s10013-013-0050-2
– ident: CIT0007
  doi: 10.1016/j.jde.2016.08.020
– ident: CIT0011
  doi: 10.1137/100789464
SSID ssj0021624
Score 2.2331958
Snippet We consider the minimization of a convex objective function subject to the set of minima of another convex function, under the assumption that both functions...
SourceID pubmedcentral
proquest
crossref
informaworld
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1265
SubjectTerms Convergence
convex optimization
Damping
Differential equations
Dynamical systems
Lyapunov analysis
Newton dynamics
nonautonomous systems
Optimization
Trajectories
Title A second-order dynamical system with Hessian-driven damping and penalty term associated to variational inequalities
URI https://www.tandfonline.com/doi/abs/10.1080/02331934.2018.1452922
https://www.proquest.com/docview/2263965732
https://www.proquest.com/docview/2313649773
https://pubmed.ncbi.nlm.nih.gov/PMC6817320
Volume 68
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQe4ED4im2lMpIXA1x_IqPq5Yq4sCJiscl8lMgQbZqUiT-PTOJs9ocUA8cI3vsyDNjz4zH3xDyxucondKBGaskkyFoUKnImasrmVMj8PIKsy0-6vZKfviilmzCoaRVog-dZ6CIaa9G5XZ-WDLi3sExA4IjMCLCG1B1VdsaduHjGqUVRLr62u59Lq6nurZIwpBmecTzr2FWx9MKvHRlgq4TKA9OpMtH5GExJel25v1jci_1T8iDA4DBp2TY0gE93sgmiE0a5_rzQDUjOFMMw9IWU2Fdz-INbn00ul_4iIrC-tDrBFOMfyhu4NQVVqZIxx39DV52iSRSmHF-nQl-9zNydfn-03nLSpkFFqQRI1NBhLoyyTgejVfCcxuF4TaoOiThanBjs01WxRidzTZUzgbum9jkbHOdpHhOjvpdn14Qip1EUrlx3Evo7nKuZZZgYnntkzYbIpfV7ULBIMdSGD87vkCVFqZ0yJSuMGVD3u7JrmcQjrsI7CHrunGKfuS5VEkn7qA9XfjcFX0eOjBShdXKCGh-vW8GTcTrFden3S30EVxoCfa02BCzko_9TyOW97ql__F9wvTWDYfBq5P_-PGX5D582imXWJySo_HmNr0Ci2n0Z5NOnJHjbXvx7fNf8WgQDA
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxQxDI5QOQAH3ogtBYLENctk8pocK9RqgbKnVuptlKdAlNmqO4sEv772PFY7SFUPPSdOMhk7sR37MyEffY7SKR2YsUoyGYIGkYqcubKQOVUCH68w2mKpF2fy67k638mFwbBKtKFzDxTRndUo3OiMHkPiPsE9A5wj0CXCK5B1VdoSjuH7ymqDVQxEsdwaXVx3hW2RhCHNmMVz0zCT-2mCXjrRQacRlDtX0vETEsaP6SNRfs03rZ-Hf__hPN7ta5-Sx4PGSg97FntG7qXmOXm0g2P4gqwP6RoN68g6JE8a-zL3QNUDRVP09tIFRty6hsUrPGFpdL8xV4vCwuhlginavxTvCeoGjkmRtiv6B4z5wWFJYcY-CRTM-5fk7Pjo9POCDdUcWJBGtEwFEcrCJON4NF4Jz20UhtugypCEK8FazjZZFWN0NttQOBu4r2KVs81lkuIV2WtWTXpNKHYSSeXKcS-hu8u5lFmCJue1T9rMiBz_YR0GqHOsuHFR8xERddjTGve0HvZ0RuZbssse6-M2ArvLIHXbOVlyXxGlFrfQHozcVA_HxroGXVhYrYyA5g_bZhB4fMVxTVptoI_gQktQ28WMmAkXbheNkOHTlubnjw46XFccBi_277Dw9-TB4vT7SX3yZfntDXkITbYLXxYHZK-92qS3oKS1_l0nhddWEzHg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELbQIiE48EYUFjAS15Q4fiQ-roCqPFRxYCVulp8CLaTVNl1p-fXMJE7VIKE97Hk8tuPMjGfs8TeEvHEpCCuVL2otRSG8V6BSgRW2KkWKDcfLK8y2WKnlqfj0XY7ZhNucVokxdBqAInpbjcq9CWnMiHsL2wwIDscTEdaAqstKV2CFbyoED8dXHOVqH3Mx1de1RZYCecZHPP_rZrI9TcBLJy7oNIHyYEda3CNu_JYhEeVsvuvc3P_5B-bxWh97n9zN_io9GQTsAbkR24fkzgGK4SOyPaFbDKtD0eN40jAUuQeuASaa4lkvXWK-rW2LcI72lQb7G19qUZgX3UQYorukuEtQm-UlBtqt6QWE8vm4ksKIwxNQCO4fk9PFh2_vlkWu5VB4UfOukJ77qqxjbVmoneSO6cBrpr2sfOS2glg56ahlCMHqpH1ptWeuCU1KOlVR8CfkqF238Smh2IhHmRrLnIDmNqVKJAF-nFMuqnpGxPgLjc9A51hv45dhIx5qXlODa2ryms7IfM-2GZA-rmLQh_Jhuv6IJQ31UAy_gvd4FCaTjcbWgCfMtZI1B_LrPRnUHe9wbBvXO2jDGVcCnHY-I_VECPeTRsDwKaX9-aMHDlcNg87LZ9eY-Cty6-v7hfnycfX5ObkNFN3nLvNjctSd7-IL8NA697LXwb9tDjCE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+second-order+dynamical+system+with+Hessian-driven+damping+and+penalty+term+associated+to+variational+inequalities&rft.jtitle=Optimization&rft.au=Bot%2C+Radu+Ioan&rft.au=Csetnek%2C+Ern%C3%B6+Robert&rft.date=2019-07-03&rft.pub=Taylor+%26+Francis+LLC&rft.issn=0233-1934&rft.eissn=1029-4945&rft.volume=68&rft.issue=7&rft.spage=1265&rft_id=info:doi/10.1080%2F02331934.2018.1452922&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0233-1934&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0233-1934&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0233-1934&client=summon