Modeling heat transfer subject to inhomogeneous Neumann boundary conditions by smoothed particle hydrodynamics and peridynamics

•A new method is introduced for imposing inhomogeneous Neumann and Robin BCs in smoothed particle hydrodynamics (SPH) and peridynamics for modeling heat transfer problems.•The new method can be employed for solving various transient or steady heat transfer problems subject to linear or nonlinear flu...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of heat and mass transfer Vol. 139; pp. 948 - 962
Main Authors Wang, Jianqiang, Hu, Wei, Zhang, Xiaobing, Pan, Wenxiao
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.08.2019
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •A new method is introduced for imposing inhomogeneous Neumann and Robin BCs in smoothed particle hydrodynamics (SPH) and peridynamics for modeling heat transfer problems.•The new method can be employed for solving various transient or steady heat transfer problems subject to linear or nonlinear fluxes going through boundaries.•The numerical solutions by the new method converge to the classical solutions with notably improved accuracy.•The new method can be extended in SPH for solving other classical PDEs subject to inhomogeneous Neumann or Robin BCs, e.g., mass transfer in reactive transport, and is transferable to other numerical/modeling frameworks that also rely on nonlocal formulations. Nonzero fluxes going through boundaries/interfaces are normally observed in heat transfer, which in general can be described as inhomogeneous Neumann boundary conditions (BCs). Both smoothed particle hydrodynamics (SPH) and peridynamics have been employed for modeling heat transfer or thermal diffusion processes. The former is a numerical method used to approximate the solutions of classical heat diffusion PDEs. The latter provides a nonlocal model for heat diffusion. They both employ a nonlocal formulation, which requires a full support of the nonlocal kernel to ensure accuracy. In this work, we propose a new, higher-order method to enforce inhomogeneous Neumann BCs in SPH and peridynamic model for heat transfer problems. In that, fictitious layers of (ghost) particles are needed to guarantee full support of the nonlocal kernel. The temperature is extrapolated to the ghost particles based on the Taylor expansion and the BC to be imposed. By such, no additional term is introduced into the heat equation; meanwhile, the numerical solutions converge to the classical solutions with notably improved accuracy. To validate, assess, and demonstrate the proposed method, we simulate different transient or steady heat transfer problems subject to linear or nonlinear BCs, including heat conduction, natural convection, and presence of insulated cracks. The numerical results are compared with the exact solutions of classical PDEs, solutions of other numerical methods, or experimental data.
AbstractList •A new method is introduced for imposing inhomogeneous Neumann and Robin BCs in smoothed particle hydrodynamics (SPH) and peridynamics for modeling heat transfer problems.•The new method can be employed for solving various transient or steady heat transfer problems subject to linear or nonlinear fluxes going through boundaries.•The numerical solutions by the new method converge to the classical solutions with notably improved accuracy.•The new method can be extended in SPH for solving other classical PDEs subject to inhomogeneous Neumann or Robin BCs, e.g., mass transfer in reactive transport, and is transferable to other numerical/modeling frameworks that also rely on nonlocal formulations. Nonzero fluxes going through boundaries/interfaces are normally observed in heat transfer, which in general can be described as inhomogeneous Neumann boundary conditions (BCs). Both smoothed particle hydrodynamics (SPH) and peridynamics have been employed for modeling heat transfer or thermal diffusion processes. The former is a numerical method used to approximate the solutions of classical heat diffusion PDEs. The latter provides a nonlocal model for heat diffusion. They both employ a nonlocal formulation, which requires a full support of the nonlocal kernel to ensure accuracy. In this work, we propose a new, higher-order method to enforce inhomogeneous Neumann BCs in SPH and peridynamic model for heat transfer problems. In that, fictitious layers of (ghost) particles are needed to guarantee full support of the nonlocal kernel. The temperature is extrapolated to the ghost particles based on the Taylor expansion and the BC to be imposed. By such, no additional term is introduced into the heat equation; meanwhile, the numerical solutions converge to the classical solutions with notably improved accuracy. To validate, assess, and demonstrate the proposed method, we simulate different transient or steady heat transfer problems subject to linear or nonlinear BCs, including heat conduction, natural convection, and presence of insulated cracks. The numerical results are compared with the exact solutions of classical PDEs, solutions of other numerical methods, or experimental data.
Nonzero fluxes going through boundaries/interfaces are normally observed in heat transfer, which in general can be described as inhomogeneous Neumann boundary conditions (BCs). Both smoothed particle hydrodynamics (SPH) and peridynamics have been employed for modeling heat transfer or thermal diffusion processes. The former is a numerical method used to approximate the solutions of classical heat diffusion PDEs. The latter provides a nonlocal model for heat diffusion. They both employ a nonlocal formulation, which requires a full support of the nonlocal kernel to ensure accuracy. In this work, we propose a new, higher-order method to enforce inhomogeneous Neumann BCs in SPH and peridynamic model for heat transfer problems. In that, fictitious layers of (ghost) particles are needed to guarantee full support of the nonlocal kernel. The temperature is extrapolated to the ghost particles based on the Taylor expansion and the BC to be imposed. By such, no additional term is introduced into the heat equation; meanwhile, the numerical solutions converge to the classical solutions with notably improved accuracy. To validate, assess, and demonstrate the proposed method, we simulate different transient or steady heat transfer problems subject to linear or nonlinear BCs, including heat conduction, natural convection, and presence of insulated cracks. The numerical results are compared with the exact solutions of classical PDEs, solutions of other numerical methods, or experimental data.
Author Zhang, Xiaobing
Hu, Wei
Wang, Jianqiang
Pan, Wenxiao
Author_xml – sequence: 1
  givenname: Jianqiang
  surname: Wang
  fullname: Wang, Jianqiang
  organization: School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, PR China
– sequence: 2
  givenname: Wei
  surname: Hu
  fullname: Hu, Wei
  organization: Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
– sequence: 3
  givenname: Xiaobing
  surname: Zhang
  fullname: Zhang, Xiaobing
  organization: School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, PR China
– sequence: 4
  givenname: Wenxiao
  surname: Pan
  fullname: Pan, Wenxiao
  email: wpan9@wisc.edu
  organization: Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
BookMark eNqVkU1LxDAQhoMouK7-h4AXL10z7bZpbor4iR8XPYc0mXVTtsmatMKe_OumrF70ojAQMvPyhHlyQHadd0jICbAZMKhO25ltl6j6TsXYB-XiAsMsZyBmrEw13yETqLnIcqjFLpkwBjwTBbB9chBjO17ZvJqQjwdvcGXdKx1h9JtE49C0qFPDU-uWvvOv6NAPkT7i0CnnaOMHZ1TYUO2dsb31LtJmQ2Pnfb9EQ9cq9FavkC43JnizcaqzOlLl0giD_W4ckr2FWkU8-jqn5OXq8vniJrt_ur69OL_P9JwXfVY0Wuem5LxGzgRHJipR5VixkueIdVNAvQDD0q68gAKgrJXIG4CKmYajNsWUHG-56-DfBoy9bP0QXHpS5nlZlSAqzlLqbJvSwccYcCHXwXZpSwlMjtplK39rl6N2ycpU84S4-oHQtlejnxS3q_-A7rYgTFrebZpGbdFpNDakn5HG27_DPgHS4bX5
CitedBy_id crossref_primary_10_1016_j_icheatmasstransfer_2023_106832
crossref_primary_10_1007_s11831_024_10129_z
crossref_primary_10_1080_01495739_2023_2253856
crossref_primary_10_1016_j_ijheatmasstransfer_2020_119919
crossref_primary_10_1016_j_jcp_2022_111809
crossref_primary_10_1016_j_est_2024_114930
crossref_primary_10_1007_s00466_020_01879_1
crossref_primary_10_3389_fenvs_2022_991969
crossref_primary_10_1002_nme_6773
crossref_primary_10_1007_s42102_021_00074_x
crossref_primary_10_1063_5_0211482
crossref_primary_10_1017_jfm_2023_995
crossref_primary_10_1007_s42102_024_00125_z
crossref_primary_10_1016_j_cma_2021_114544
crossref_primary_10_1109_JIOT_2023_3312331
crossref_primary_10_1016_j_ijheatmasstransfer_2023_123965
crossref_primary_10_1016_j_ijheatmasstransfer_2024_125904
crossref_primary_10_1063_5_0220606
crossref_primary_10_1016_j_ijmecsci_2022_107143
crossref_primary_10_1007_s10704_023_00709_8
crossref_primary_10_1016_j_advwatres_2023_104601
crossref_primary_10_1016_j_compgeo_2024_106476
crossref_primary_10_1007_s40948_021_00232_x
crossref_primary_10_1007_s00366_024_01995_z
crossref_primary_10_1007_s40571_020_00354_1
crossref_primary_10_1007_s42102_024_00117_z
Cites_doi 10.1016/j.ijheatmasstransfer.2011.06.034
10.1016/j.icheatmasstransfer.2016.01.008
10.1146/annurev-fluid-120710-101220
10.1007/s11012-018-0825-3
10.1016/j.ijplas.2013.02.013
10.1016/j.ijmecsci.2018.07.044
10.1140/epje/i2007-10311-4
10.13182/NSE96-A24205
10.1016/j.ijheatmasstransfer.2010.09.040
10.1006/jcph.1994.1034
10.1002/fld.1650030305
10.1016/S0022-5096(99)00029-0
10.1143/ptp/92.5.939
10.1016/j.cpc.2010.08.022
10.1016/j.cpc.2013.07.004
10.1088/0034-4885/68/8/R01
10.1016/j.jcp.2018.08.014
10.1016/j.ijheatmasstransfer.2017.03.027
10.18869/acadpub.jafm.67.221.22615
10.1016/j.jcp.2011.12.017
10.1006/jcph.1998.6118
10.1108/HFF-03-2015-0085
10.1016/j.cpc.2015.08.006
10.1016/S0010-4655(03)00155-3
10.1016/j.jcp.2014.01.027
10.1103/PhysRevE.96.033309
10.1080/00221686.2015.1119209
10.1016/j.cma.2017.06.010
10.1016/j.ijheatmasstransfer.2016.08.047
10.1016/j.ijheatmasstransfer.2017.10.020
10.1016/j.jcp.2015.09.026
10.1016/j.ijheatmasstransfer.2015.04.105
10.1016/j.ijheatmasstransfer.2014.06.044
10.1108/HFF-05-2014-0161
10.1063/1.4984742
10.1080/10407782.2017.1353385
10.1016/j.jmps.2013.10.011
10.1016/j.ijheatmasstransfer.2015.12.055
10.1016/j.ijheatmasstransfer.2010.05.024
10.1137/1037125
10.1016/j.ijheatmasstransfer.2017.10.004
10.1016/j.jcp.2016.12.042
10.1103/PhysRevE.67.026705
10.1016/j.ijheatmasstransfer.2017.11.074
10.1090/qam/15914
10.1016/j.cpc.2015.07.004
10.1006/jcph.1997.5776
10.4310/CMS.2009.v7.n1.a4
10.1080/10618562.2012.753146
10.1108/HFF-02-2017-0058
10.1007/s11831-010-9040-7
10.1186/s13628-015-0021-y
10.1016/j.ijheatmasstransfer.2016.02.037
10.1016/j.ijheatmasstransfer.2018.06.075
10.1016/j.jcp.2013.12.014
10.1016/j.ijheatmasstransfer.2018.10.119
10.1007/s10659-007-9125-1
10.1002/nag.898
10.1017/S0022112076002012
10.1016/j.jmps.2015.02.015
10.1143/PTP.125.1091
10.1016/j.camwa.2010.11.028
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright Elsevier BV Aug 2019
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Copyright Elsevier BV Aug 2019
DBID AAYXX
CITATION
7TB
8FD
FR3
H8D
KR7
L7M
DOI 10.1016/j.ijheatmasstransfer.2019.05.054
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitleList
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1879-2189
EndPage 962
ExternalDocumentID 10_1016_j_ijheatmasstransfer_2019_05_054
S0017931018365311
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABDMP
ABFNM
ABMAC
ABNUV
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACKIV
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SAC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSG
SSR
SST
SSZ
T5K
T9H
TN5
VOH
WUQ
XPP
ZMT
ZY4
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7TB
8FD
EFKBS
FR3
H8D
KR7
L7M
ID FETCH-LOGICAL-c473t-3bcc2d5778e7097e096962e60572ee8b318f1d018973131158a92b1160db7ecd3
IEDL.DBID .~1
ISSN 0017-9310
IngestDate Fri Jul 25 03:42:36 EDT 2025
Thu Apr 24 23:07:52 EDT 2025
Tue Jul 01 02:17:11 EDT 2025
Fri Feb 23 02:22:42 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Robin boundary condition
Smoothed particle hydrodynamics
Inhomogeneous Neumann boundary condition
Peridynamics
Natural convection
Heat transfer
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c473t-3bcc2d5778e7097e096962e60572ee8b318f1d018973131158a92b1160db7ecd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2256519670
PQPubID 2045464
PageCount 15
ParticipantIDs proquest_journals_2256519670
crossref_primary_10_1016_j_ijheatmasstransfer_2019_05_054
crossref_citationtrail_10_1016_j_ijheatmasstransfer_2019_05_054
elsevier_sciencedirect_doi_10_1016_j_ijheatmasstransfer_2019_05_054
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-08-01
PublicationDateYYYYMMDD 2019-08-01
PublicationDate_xml – month: 08
  year: 2019
  text: 2019-08-01
  day: 01
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle International journal of heat and mass transfer
PublicationYear 2019
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Smiatek, Allen, Schmid (b0330) 2008; 26
Oterkus, Madenci, Agwai (b0175) 2014; 64
Morris, Fox, Zhu (b0195) 1997; 136
Monaghan (b0055) 1994; 110
Bergman, Incropera, Lavine, Dewitt (b0220) 2011
Nguyen, Aly, Lee (b0130) 2017; 72
Bobaru, Duangpanya (b0170) 2012; 231
Ryan, Tartakovsky, Amon (b0225) 2010; 181
Monaghan (b0250) 2005; 68
Bobaru, Duangpanya (b0045) 2010; 53
Monfared, Sarrafi, Jafari, Schaffie (b0295) 2016; 95
Nguyen, Aly, Lee (b0140) 2018; 28
Aly (b0115) 2016; 73
Wang, Xu, Wang (b0185) 2018; 118
Liu, Liu (b0060) 2010; 17
de Vahl Davis (b0245) 1983; 3
Zhao, Chen, Mehrmashhadi, Bobaru (b0215) 2018; 126
Nassiri, Vivek, Abke, Liu, Lee, Daehn (b0155) 2017; 110
Xue, Zhang, Tamma (b0180) 2018; 374
Silling, Epton, Weckner, Xu, Askari (b0165) 2007; 88
Hu, Pan, Rakhsha, Tian, Hu, Negrut (b0210) 2017; 324
Xiao, Zhan, Gu, Li (b0025) 2017; 104
Pan, Daily, Baker (b0070) 2015; 8
Jeong, Jhon, Halow, Van Osdol (b0010) 2003; 153
Pan, Kim, Perego, Tartakovsky, Parks (b0205) 2017; 334
Oterkus, Madenci, Agwai (b0050) 2014; 265
Szewc, Pozorski, Taniere (b0095) 2011; 54
Schoenberg (b0255) 1946; 4
Takeda, Miyama, Sekiya (b0200) 1994; 92
Cleary, Monaghan (b0005) 1999; 148
Chen, Bobaru (b0265) 2015; 197
Maciá, Antuono, González, Colagrossi (b0190) 2011; 125
Aly (b0110) 2015; 25
Aly, Raizah (b0135) 2018; 146
Nguyen, Aly, Lee (b0145) 2018; 53
Bai, Rao, Xu, Chen (b0040) 2018; 117
Kuehn, Goldstein (b0300) 1976; 74
Vishwakarma, Das, Das (b0080) 2011; 54
Das, Das (b0085) 2015; 303
Özışık (b0290) 1980
Liang, Sun, Xi, Liu (b0305) 2015; 88
Aly (b0120) 2015; 25
Sazhin, Rybdylova, Crua (b0030) 2018; 117
Li, Lowengrub, Rätz, Voigt (b0275) 2009; 7
Aly, Ahmed (b0105) 2014; 77
Español, Revenga (b0320) 2003; 67
Wu, Laurence, Iacovides, Afgan (b0020) 2017; 110
Monaghan (b0065) 2012; 44
Li, Pan, Tartakovsky (b0325) 2018
Ypma (b0280) 1995; 37
Chen, Bobaru (b0270) 2015; 78
Violeau, Rogers (b0075) 2016; 54
Holmes, Williams, Tilke (b0285) 2011; 35
Khazaeli, Mortazavi, Ashrafizaadeh (b0310) 2015; 8
Pan, Li, Tartakovsky, Ahzi, Khraisheh, Khaleel (b0150) 2013; 48
Yang, Kong (b0090) 2017; 96
Gimenez, Errera, Baillis, Smith, Pardo (b0015) 2016; 97
Sikarudi, Nikseresht (b0240) 2016; 198
Koshizuka, Oka (b0315) 1996; 123
Xiong, Zhang, Yu (b0035) 2019; 130
Danis, Orhan, Ecder (b0100) 2013; 27
Mayrhofer, Rogers, Violeau, Ferrand (b0235) 2013; 184
Pan, Bao, Tartakovsky (b0230) 2014; 259
Silling (b0160) 2000; 48
Aly, Asai (b0125) 2016; 26
Fatehi, Manzari (b0260) 2011; 61
Chen (10.1016/j.ijheatmasstransfer.2019.05.054_b0270) 2015; 78
Holmes (10.1016/j.ijheatmasstransfer.2019.05.054_b0285) 2011; 35
Oterkus (10.1016/j.ijheatmasstransfer.2019.05.054_b0050) 2014; 265
Aly (10.1016/j.ijheatmasstransfer.2019.05.054_b0120) 2015; 25
Bobaru (10.1016/j.ijheatmasstransfer.2019.05.054_b0170) 2012; 231
Pan (10.1016/j.ijheatmasstransfer.2019.05.054_b0070) 2015; 8
Gimenez (10.1016/j.ijheatmasstransfer.2019.05.054_b0015) 2016; 97
Zhao (10.1016/j.ijheatmasstransfer.2019.05.054_b0215) 2018; 126
Smiatek (10.1016/j.ijheatmasstransfer.2019.05.054_b0330) 2008; 26
Wang (10.1016/j.ijheatmasstransfer.2019.05.054_b0185) 2018; 118
Xiong (10.1016/j.ijheatmasstransfer.2019.05.054_b0035) 2019; 130
Jeong (10.1016/j.ijheatmasstransfer.2019.05.054_b0010) 2003; 153
Bai (10.1016/j.ijheatmasstransfer.2019.05.054_b0040) 2018; 117
Vishwakarma (10.1016/j.ijheatmasstransfer.2019.05.054_b0080) 2011; 54
Nguyen (10.1016/j.ijheatmasstransfer.2019.05.054_b0130) 2017; 72
Aly (10.1016/j.ijheatmasstransfer.2019.05.054_b0135) 2018; 146
Español (10.1016/j.ijheatmasstransfer.2019.05.054_b0320) 2003; 67
Wu (10.1016/j.ijheatmasstransfer.2019.05.054_b0020) 2017; 110
Silling (10.1016/j.ijheatmasstransfer.2019.05.054_b0165) 2007; 88
Chen (10.1016/j.ijheatmasstransfer.2019.05.054_b0265) 2015; 197
Mayrhofer (10.1016/j.ijheatmasstransfer.2019.05.054_b0235) 2013; 184
Monaghan (10.1016/j.ijheatmasstransfer.2019.05.054_b0250) 2005; 68
Sazhin (10.1016/j.ijheatmasstransfer.2019.05.054_b0030) 2018; 117
Das (10.1016/j.ijheatmasstransfer.2019.05.054_b0085) 2015; 303
Nguyen (10.1016/j.ijheatmasstransfer.2019.05.054_b0140) 2018; 28
Nassiri (10.1016/j.ijheatmasstransfer.2019.05.054_b0155) 2017; 110
Bergman (10.1016/j.ijheatmasstransfer.2019.05.054_b0220) 2011
Li (10.1016/j.ijheatmasstransfer.2019.05.054_b0275) 2009; 7
Sikarudi (10.1016/j.ijheatmasstransfer.2019.05.054_b0240) 2016; 198
Khazaeli (10.1016/j.ijheatmasstransfer.2019.05.054_b0310) 2015; 8
Szewc (10.1016/j.ijheatmasstransfer.2019.05.054_b0095) 2011; 54
Yang (10.1016/j.ijheatmasstransfer.2019.05.054_b0090) 2017; 96
Nguyen (10.1016/j.ijheatmasstransfer.2019.05.054_b0145) 2018; 53
Aly (10.1016/j.ijheatmasstransfer.2019.05.054_b0105) 2014; 77
Pan (10.1016/j.ijheatmasstransfer.2019.05.054_b0230) 2014; 259
Aly (10.1016/j.ijheatmasstransfer.2019.05.054_b0125) 2016; 26
Fatehi (10.1016/j.ijheatmasstransfer.2019.05.054_b0260) 2011; 61
Maciá (10.1016/j.ijheatmasstransfer.2019.05.054_b0190) 2011; 125
Liang (10.1016/j.ijheatmasstransfer.2019.05.054_b0305) 2015; 88
Li (10.1016/j.ijheatmasstransfer.2019.05.054_b0325) 2018
Xiao (10.1016/j.ijheatmasstransfer.2019.05.054_b0025) 2017; 104
Xue (10.1016/j.ijheatmasstransfer.2019.05.054_b0180) 2018; 374
Ypma (10.1016/j.ijheatmasstransfer.2019.05.054_b0280) 1995; 37
Schoenberg (10.1016/j.ijheatmasstransfer.2019.05.054_b0255) 1946; 4
Koshizuka (10.1016/j.ijheatmasstransfer.2019.05.054_b0315) 1996; 123
Violeau (10.1016/j.ijheatmasstransfer.2019.05.054_b0075) 2016; 54
Ryan (10.1016/j.ijheatmasstransfer.2019.05.054_b0225) 2010; 181
Pan (10.1016/j.ijheatmasstransfer.2019.05.054_b0150) 2013; 48
Pan (10.1016/j.ijheatmasstransfer.2019.05.054_b0205) 2017; 334
de Vahl Davis (10.1016/j.ijheatmasstransfer.2019.05.054_b0245) 1983; 3
Monaghan (10.1016/j.ijheatmasstransfer.2019.05.054_b0065) 2012; 44
Aly (10.1016/j.ijheatmasstransfer.2019.05.054_b0115) 2016; 73
Danis (10.1016/j.ijheatmasstransfer.2019.05.054_b0100) 2013; 27
Özışık (10.1016/j.ijheatmasstransfer.2019.05.054_b0290) 1980
Kuehn (10.1016/j.ijheatmasstransfer.2019.05.054_b0300) 1976; 74
Morris (10.1016/j.ijheatmasstransfer.2019.05.054_b0195) 1997; 136
Aly (10.1016/j.ijheatmasstransfer.2019.05.054_b0110) 2015; 25
Bobaru (10.1016/j.ijheatmasstransfer.2019.05.054_b0045) 2010; 53
Takeda (10.1016/j.ijheatmasstransfer.2019.05.054_b0200) 1994; 92
Monfared (10.1016/j.ijheatmasstransfer.2019.05.054_b0295) 2016; 95
Liu (10.1016/j.ijheatmasstransfer.2019.05.054_b0060) 2010; 17
Silling (10.1016/j.ijheatmasstransfer.2019.05.054_b0160) 2000; 48
Hu (10.1016/j.ijheatmasstransfer.2019.05.054_b0210) 2017; 324
Cleary (10.1016/j.ijheatmasstransfer.2019.05.054_b0005) 1999; 148
Monaghan (10.1016/j.ijheatmasstransfer.2019.05.054_b0055) 1994; 110
Oterkus (10.1016/j.ijheatmasstransfer.2019.05.054_b0175) 2014; 64
References_xml – volume: 88
  start-page: 433
  year: 2015
  end-page: 444
  ident: b0305
  article-title: Numerical models for heat conduction and natural convection with symmetry boundary condition based on particle method
  publication-title: Int. J. Heat Mass Transf.
– volume: 8
  start-page: 7
  year: 2015
  ident: b0070
  article-title: Numerical calculation of protein-ligand binding rates through solution of the Smoluchowski equation using smoothed particle hydrodynamics
  publication-title: BMC Biophys.
– volume: 96
  start-page: 033309
  year: 2017
  ident: b0090
  article-title: Smoothed particle hydrodynamics method for evaporating multiphase flows
  publication-title: Phys. Rev. E
– volume: 26
  start-page: 115
  year: 2008
  end-page: 122
  ident: b0330
  article-title: Tunable-slip boundaries for coarse-grained simulations of fluid flow
  publication-title: Eur. Phys. J. E
– volume: 117
  start-page: 517
  year: 2018
  end-page: 526
  ident: b0040
  article-title: SPH-FDM boundary for the analysis of thermal process in homogeneous media with a discontinuous interface
  publication-title: Int. J. Heat Mass Transf.
– volume: 126
  start-page: 1253
  year: 2018
  end-page: 1266
  ident: b0215
  article-title: Construction of a peridynamic model for transient advection-diffusion problems
  publication-title: Int. J. Heat Mass Transf.
– volume: 97
  start-page: 975
  year: 2016
  end-page: 989
  ident: b0015
  article-title: A coupling numerical methodology for weakly transient conjugate heat transfer problems
  publication-title: Int. J. Heat Mass Transf.
– volume: 198
  start-page: 1
  year: 2016
  end-page: 11
  ident: b0240
  article-title: Neumann and Robin boundary conditions for heat conduction modeling using smoothed particle hydrodynamics
  publication-title: Comput. Phys. Commun.
– volume: 68
  start-page: 1703
  year: 2005
  ident: b0250
  article-title: Smoothed particle hydrodynamics
  publication-title: Rep. Progr. Phys.
– volume: 54
  start-page: 314
  year: 2011
  end-page: 325
  ident: b0080
  article-title: Steady state conduction through 2D irregular bodies by smoothed particle hydrodynamics
  publication-title: Int. J. Heat Mass Transf.
– volume: 35
  start-page: 419
  year: 2011
  end-page: 437
  ident: b0285
  article-title: Smooth particle hydrodynamics simulations of low Reynolds number flows through porous media
  publication-title: Int. J. Numer. Anal. Meth. Geomech.
– volume: 64
  start-page: 1
  year: 2014
  end-page: 23
  ident: b0175
  article-title: Fully coupled peridynamic thermomechanics
  publication-title: J. Mech. Phys. Solids
– volume: 104
  start-page: 288
  year: 2017
  end-page: 300
  ident: b0025
  article-title: Modeling heat transfer during friction stir welding using a meshless particle method
  publication-title: Int. J. Heat Mass Transf.
– volume: 72
  start-page: 68
  year: 2017
  end-page: 88
  ident: b0130
  article-title: Effect of a wavy interface on the natural convection of a nanofluid in a cavity with a partially layered porous medium using the ISPH method
  publication-title: Numer. Heat Transf., Part A: Appl.
– volume: 73
  start-page: 84
  year: 2016
  end-page: 99
  ident: b0115
  article-title: Double-diffusive natural convection in an enclosure including/excluding sloshing rod using a stabilized ISPH method
  publication-title: Int. Commun. Heat Mass Transf.
– volume: 181
  start-page: 2008
  year: 2010
  end-page: 2023
  ident: b0225
  article-title: A novel method for modeling Neumann and Robin boundary conditions in smoothed particle hydrodynamics
  publication-title: Comput. Phys. Commun.
– volume: 4
  start-page: 45
  year: 1946
  ident: b0255
  article-title: Contributions to the problem of approximation of equidistant data by analytic functions
  publication-title: Q. Appl. Math.
– volume: 117
  start-page: 252
  year: 2018
  end-page: 260
  ident: b0030
  article-title: A mathematical model for heating and evaporation of a multi-component liquid film
  publication-title: Int. J. Heat Mass Transf.
– volume: 61
  start-page: 482
  year: 2011
  end-page: 498
  ident: b0260
  article-title: Error estimation in smoothed particle hydrodynamics and a new scheme for second derivatives
  publication-title: Comput. Math. Appl.
– volume: 110
  start-page: 231601
  year: 2017
  ident: b0155
  article-title: Depiction of interfacial morphology in impact welded Ti/Cu bimetallic systems using smoothed particle hydrodynamics
  publication-title: Appl. Phys. Lett.
– year: 1980
  ident: b0290
  article-title: Heat Conduction
– year: 2011
  ident: b0220
  article-title: Introduction to Heat Transfer
– volume: 136
  start-page: 214
  year: 1997
  end-page: 226
  ident: b0195
  article-title: Modeling low Reynolds number incompressible flows using SPH
  publication-title: J. Comput. Phys.
– volume: 37
  start-page: 531
  year: 1995
  end-page: 551
  ident: b0280
  article-title: Historical development of the Newton-Raphson method
  publication-title: SIAM Rev.
– volume: 25
  start-page: 513
  year: 2015
  end-page: 533
  ident: b0120
  article-title: Modeling of multi-phase flows and natural convection in a square cavity using an incompressible smoothed particle hydrodynamics
  publication-title: Int. J. Numer. Methods Heat Fluid Flow
– volume: 324
  start-page: 278
  year: 2017
  end-page: 299
  ident: b0210
  article-title: A consistent multi-resolution smoothed particle hydrodynamics method
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 74
  start-page: 695
  year: 1976
  end-page: 719
  ident: b0300
  article-title: An experimental and theoretical study of natural convection in the annulus between horizontal concentric cylinders
  publication-title: J. Fluid Mech.
– volume: 48
  start-page: 189
  year: 2013
  end-page: 204
  ident: b0150
  article-title: A new smoothed particle hydrodynamics non-Newtonian model for friction stir welding: process modeling and simulation of microstructure evolution in a magnesium alloy
  publication-title: Int. J. Plast.
– volume: 8
  start-page: 309
  year: 2015
  end-page: 321
  ident: b0310
  article-title: Application of an immersed boundary treatment in simulation of natural convection problems with complex geometry via the lattice boltzmann method
  publication-title: J. Appl. Fluid Mech.
– volume: 25
  start-page: 513
  year: 2015
  end-page: 533
  ident: b0110
  article-title: Modeling of multi-phase flows and natural convection in a square cavity using an incompressible smoothed particle hydrodynamics
  publication-title: Int. J. Numer. Methods Heat Fluid Flow
– volume: 146
  start-page: 125
  year: 2018
  end-page: 140
  ident: b0135
  article-title: Incompressible smoothed particle hydrodynamics (ISPH) method for natural convection in a nanofluid-filled cavity including rotating solid structures
  publication-title: Int. J. Mech. Sci.
– volume: 148
  start-page: 227
  year: 1999
  end-page: 264
  ident: b0005
  article-title: Conduction modelling using smoothed particle hydrodynamics
  publication-title: J. Comput. Phys.
– volume: 110
  start-page: 193
  year: 2017
  end-page: 208
  ident: b0020
  article-title: Direct simulation of conjugate heat transfer of jet in channel crossflow
  publication-title: Int. J. Heat Mass Transf.
– volume: 110
  start-page: 399
  year: 1994
  end-page: 406
  ident: b0055
  article-title: Simulating free surface flows with SPH
  publication-title: J. Comput. Phys.
– volume: 153
  start-page: 71
  year: 2003
  end-page: 84
  ident: b0010
  article-title: Smoothed particle hydrodynamics: applications to heat conduction
  publication-title: Comput. Phys. Commun.
– volume: 184
  start-page: 2515
  year: 2013
  end-page: 2527
  ident: b0235
  article-title: Investigation of wall bounded flows using SPH and the unified semi-analytical wall boundary conditions
  publication-title: Comput. Phys. Commun.
– volume: 125
  start-page: 1091
  year: 2011
  end-page: 1121
  ident: b0190
  article-title: Theoretical analysis of the no-slip boundary condition enforcement in SPH methods
  publication-title: Progr. Theoret. Phys.
– volume: 28
  start-page: 684
  year: 2018
  end-page: 703
  ident: b0140
  article-title: A numerical study on unsteady natural/mixed convection in a cavity with fixed and moving rigid bodies using the ISPH method
  publication-title: Int. J. Numer. Methods Heat Fluid Flow
– volume: 334
  start-page: 125
  year: 2017
  end-page: 144
  ident: b0205
  article-title: Modeling electrokinetic flows by consistent implicit incompressible smoothed particle hydrodynamics
  publication-title: J. Comput. Phys.
– volume: 54
  start-page: 1
  year: 2016
  end-page: 26
  ident: b0075
  article-title: Smoothed particle hydrodynamics (SPH) for free-surface flows: past, present and future
  publication-title: J. Hydraul. Res.
– volume: 26
  start-page: 235
  year: 2016
  end-page: 268
  ident: b0125
  article-title: ISPH method for double-diffusive natural convection under cross-diffusion effects in an anisotropic porous cavity/annulus
  publication-title: Int. J. Numer. Methods Heat Fluid Flow
– volume: 17
  start-page: 25
  year: 2010
  end-page: 76
  ident: b0060
  article-title: Smoothed particle hydrodynamics (SPH): an overview and recent developments
  publication-title: Arch. Comput. Methods Eng.
– volume: 44
  start-page: 323
  year: 2012
  end-page: 346
  ident: b0065
  article-title: Smoothed particle hydrodynamics and its diverse applications
  publication-title: Annu. Rev. Fluid Mech.
– volume: 78
  start-page: 352
  year: 2015
  end-page: 381
  ident: b0270
  article-title: Peridynamic modeling of pitting corrosion damage
  publication-title: J. Mech. Phys. Solids
– volume: 303
  start-page: 125
  year: 2015
  end-page: 145
  ident: b0085
  article-title: Modeling of liquid–vapor phase change using smoothed particle hydrodynamics
  publication-title: J. Comput. Phys.
– volume: 53
  start-page: 4047
  year: 2010
  end-page: 4059
  ident: b0045
  article-title: The peridynamic formulation for transient heat conduction
  publication-title: Int. J. Heat Mass Transf.
– volume: 27
  start-page: 15
  year: 2013
  end-page: 31
  ident: b0100
  article-title: ISPH modelling of transient natural convection
  publication-title: Int. J. Comput. Fluid Dynam.
– volume: 92
  start-page: 939
  year: 1994
  end-page: 960
  ident: b0200
  article-title: Numerical simulation of viscous flow by smoothed particle hydrodynamics
  publication-title: Progr. Theoret. Phys.
– volume: 118
  start-page: 1284
  year: 2018
  end-page: 1292
  ident: b0185
  article-title: A peridynamic framework and simulation of non-Fourier and nonlocal heat conduction
  publication-title: Int. J. Heat Mass Transf.
– volume: 197
  start-page: 51
  year: 2015
  end-page: 60
  ident: b0265
  article-title: Selecting the kernel in a peridynamic formulation: a study for transient heat diffusion
  publication-title: Comput. Phys. Commun.
– volume: 48
  start-page: 175
  year: 2000
  end-page: 209
  ident: b0160
  article-title: Reformulation of elasticity theory for discontinuities and long-range forces
  publication-title: J. Mech. Phys. Solids
– volume: 231
  start-page: 2764
  year: 2012
  end-page: 2785
  ident: b0170
  article-title: A peridynamic formulation for transient heat conduction in bodies with evolving discontinuities
  publication-title: J. Comput. Phys.
– volume: 67
  start-page: 026705
  year: 2003
  ident: b0320
  article-title: Smoothed dissipative particle dynamics
  publication-title: Phys. Rev. E
– volume: 130
  start-page: 680
  year: 2019
  end-page: 692
  ident: b0035
  article-title: Multiphase SPH modeling of water boiling on hydrophilic and hydrophobic surfaces
  publication-title: Int. J. Heat Mass Transf.
– volume: 259
  start-page: 242
  year: 2014
  end-page: 259
  ident: b0230
  article-title: Smoothed particle hydrodynamics continuous boundary force method for Navier-Stokes equations subject to a Robin boundary condition
  publication-title: J. Comput. Phys.
– volume: 123
  start-page: 421
  year: 1996
  end-page: 434
  ident: b0315
  article-title: Moving-particle semi-implicit method for fragmentation of incompressible fluid
  publication-title: Nucl. Sci. Eng.
– volume: 374
  start-page: 1180
  year: 2018
  end-page: 1195
  ident: b0180
  article-title: A two-field state-based peridynamic theory for thermal contact problems
  publication-title: J. Comput. Phys.
– start-page: 1
  year: 2018
  end-page: 20
  ident: b0325
  article-title: Particle-based methods for mesoscopic transport processes
  publication-title: Handbook of Materials Modeling: Applications: Current and Emerging Materials
– volume: 265
  start-page: 71
  year: 2014
  end-page: 96
  ident: b0050
  article-title: Peridynamic thermal diffusion
  publication-title: J. Comput. Phys.
– volume: 3
  start-page: 249
  year: 1983
  end-page: 264
  ident: b0245
  article-title: Natural convection of air in a square cavity: a bench mark numerical solution
  publication-title: Int. J. Numer. Methods Fluids
– volume: 54
  start-page: 4807
  year: 2011
  end-page: 4816
  ident: b0095
  article-title: Modeling of natural convection with smoothed particle hydrodynamics: non-Boussinesq formulation
  publication-title: Int. J. Heat Mass Transf.
– volume: 53
  start-page: 2299
  year: 2018
  end-page: 2318
  ident: b0145
  article-title: ISPH modeling of natural convection heat transfer with an analytical kernel renormalization factor
  publication-title: Meccanica
– volume: 77
  start-page: 1155
  year: 2014
  end-page: 1168
  ident: b0105
  article-title: An incompressible smoothed particle hydrodynamics method for natural/mixed convection in a non-Darcy anisotropic porous medium
  publication-title: Int. J. Heat Mass Transf.
– volume: 95
  start-page: 927
  year: 2016
  end-page: 935
  ident: b0295
  article-title: Linear and non-linear Robin boundary conditions for thermal lattice Boltzmann method: cases of convective and radiative heat transfer at interfaces
  publication-title: Int. J. Heat Mass Transf.
– volume: 7
  start-page: 81
  year: 2009
  ident: b0275
  article-title: Solving PDEs in complex geometries: a diffuse domain approach
  publication-title: Commun. Math. Sci.
– volume: 88
  start-page: 151
  year: 2007
  end-page: 184
  ident: b0165
  article-title: Peridynamic states and constitutive modeling
  publication-title: J. Elast.
– volume: 54
  start-page: 4807
  issue: 23–24
  year: 2011
  ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0095
  article-title: Modeling of natural convection with smoothed particle hydrodynamics: non-Boussinesq formulation
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2011.06.034
– volume: 73
  start-page: 84
  year: 2016
  ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0115
  article-title: Double-diffusive natural convection in an enclosure including/excluding sloshing rod using a stabilized ISPH method
  publication-title: Int. Commun. Heat Mass Transf.
  doi: 10.1016/j.icheatmasstransfer.2016.01.008
– volume: 44
  start-page: 323
  year: 2012
  ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0065
  article-title: Smoothed particle hydrodynamics and its diverse applications
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev-fluid-120710-101220
– volume: 53
  start-page: 2299
  issue: 9
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0145
  article-title: ISPH modeling of natural convection heat transfer with an analytical kernel renormalization factor
  publication-title: Meccanica
  doi: 10.1007/s11012-018-0825-3
– volume: 48
  start-page: 189
  year: 2013
  ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0150
  article-title: A new smoothed particle hydrodynamics non-Newtonian model for friction stir welding: process modeling and simulation of microstructure evolution in a magnesium alloy
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2013.02.013
– volume: 146
  start-page: 125
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0135
  article-title: Incompressible smoothed particle hydrodynamics (ISPH) method for natural convection in a nanofluid-filled cavity including rotating solid structures
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2018.07.044
– volume: 26
  start-page: 115
  issue: 1–2
  year: 2008
  ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0330
  article-title: Tunable-slip boundaries for coarse-grained simulations of fluid flow
  publication-title: Eur. Phys. J. E
  doi: 10.1140/epje/i2007-10311-4
– volume: 123
  start-page: 421
  issue: 3
  year: 1996
  ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0315
  article-title: Moving-particle semi-implicit method for fragmentation of incompressible fluid
  publication-title: Nucl. Sci. Eng.
  doi: 10.13182/NSE96-A24205
– volume: 54
  start-page: 314
  issue: 1–3
  year: 2011
  ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0080
  article-title: Steady state conduction through 2D irregular bodies by smoothed particle hydrodynamics
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2010.09.040
– volume: 110
  start-page: 399
  issue: 2
  year: 1994
  ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0055
  article-title: Simulating free surface flows with SPH
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1994.1034
– start-page: 1
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0325
  article-title: Particle-based methods for mesoscopic transport processes
– volume: 3
  start-page: 249
  issue: 3
  year: 1983
  ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0245
  article-title: Natural convection of air in a square cavity: a bench mark numerical solution
  publication-title: Int. J. Numer. Methods Fluids
  doi: 10.1002/fld.1650030305
– volume: 48
  start-page: 175
  issue: 1
  year: 2000
  ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0160
  article-title: Reformulation of elasticity theory for discontinuities and long-range forces
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/S0022-5096(99)00029-0
– volume: 92
  start-page: 939
  issue: 5
  year: 1994
  ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0200
  article-title: Numerical simulation of viscous flow by smoothed particle hydrodynamics
  publication-title: Progr. Theoret. Phys.
  doi: 10.1143/ptp/92.5.939
– volume: 181
  start-page: 2008
  issue: 12
  year: 2010
  ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0225
  article-title: A novel method for modeling Neumann and Robin boundary conditions in smoothed particle hydrodynamics
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2010.08.022
– volume: 184
  start-page: 2515
  issue: 11
  year: 2013
  ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0235
  article-title: Investigation of wall bounded flows using SPH and the unified semi-analytical wall boundary conditions
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2013.07.004
– volume: 68
  start-page: 1703
  issue: 8
  year: 2005
  ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0250
  article-title: Smoothed particle hydrodynamics
  publication-title: Rep. Progr. Phys.
  doi: 10.1088/0034-4885/68/8/R01
– volume: 374
  start-page: 1180
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0180
  article-title: A two-field state-based peridynamic theory for thermal contact problems
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2018.08.014
– volume: 110
  start-page: 193
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0020
  article-title: Direct simulation of conjugate heat transfer of jet in channel crossflow
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2017.03.027
– volume: 8
  start-page: 309
  issue: 2
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0310
  article-title: Application of an immersed boundary treatment in simulation of natural convection problems with complex geometry via the lattice boltzmann method
  publication-title: J. Appl. Fluid Mech.
  doi: 10.18869/acadpub.jafm.67.221.22615
– volume: 231
  start-page: 2764
  issue: 7
  year: 2012
  ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0170
  article-title: A peridynamic formulation for transient heat conduction in bodies with evolving discontinuities
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2011.12.017
– volume: 148
  start-page: 227
  issue: 1
  year: 1999
  ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0005
  article-title: Conduction modelling using smoothed particle hydrodynamics
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1998.6118
– volume: 26
  start-page: 235
  issue: 1
  year: 2016
  ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0125
  article-title: ISPH method for double-diffusive natural convection under cross-diffusion effects in an anisotropic porous cavity/annulus
  publication-title: Int. J. Numer. Methods Heat Fluid Flow
  doi: 10.1108/HFF-03-2015-0085
– volume: 197
  start-page: 51
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0265
  article-title: Selecting the kernel in a peridynamic formulation: a study for transient heat diffusion
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2015.08.006
– volume: 153
  start-page: 71
  issue: 1
  year: 2003
  ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0010
  article-title: Smoothed particle hydrodynamics: applications to heat conduction
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/S0010-4655(03)00155-3
– volume: 265
  start-page: 71
  year: 2014
  ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0050
  article-title: Peridynamic thermal diffusion
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2014.01.027
– volume: 96
  start-page: 033309
  issue: 3
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0090
  article-title: Smoothed particle hydrodynamics method for evaporating multiphase flows
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.96.033309
– volume: 54
  start-page: 1
  issue: 1
  year: 2016
  ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0075
  article-title: Smoothed particle hydrodynamics (SPH) for free-surface flows: past, present and future
  publication-title: J. Hydraul. Res.
  doi: 10.1080/00221686.2015.1119209
– volume: 324
  start-page: 278
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0210
  article-title: A consistent multi-resolution smoothed particle hydrodynamics method
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2017.06.010
– volume: 104
  start-page: 288
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0025
  article-title: Modeling heat transfer during friction stir welding using a meshless particle method
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2016.08.047
– volume: 117
  start-page: 252
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0030
  article-title: A mathematical model for heating and evaporation of a multi-component liquid film
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2017.10.020
– volume: 303
  start-page: 125
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0085
  article-title: Modeling of liquid–vapor phase change using smoothed particle hydrodynamics
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2015.09.026
– volume: 88
  start-page: 433
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0305
  article-title: Numerical models for heat conduction and natural convection with symmetry boundary condition based on particle method
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2015.04.105
– volume: 77
  start-page: 1155
  year: 2014
  ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0105
  article-title: An incompressible smoothed particle hydrodynamics method for natural/mixed convection in a non-Darcy anisotropic porous medium
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2014.06.044
– volume: 25
  start-page: 513
  issue: 3
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0110
  article-title: Modeling of multi-phase flows and natural convection in a square cavity using an incompressible smoothed particle hydrodynamics
  publication-title: Int. J. Numer. Methods Heat Fluid Flow
  doi: 10.1108/HFF-05-2014-0161
– volume: 110
  start-page: 231601
  issue: 23
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0155
  article-title: Depiction of interfacial morphology in impact welded Ti/Cu bimetallic systems using smoothed particle hydrodynamics
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4984742
– volume: 72
  start-page: 68
  issue: 1
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0130
  article-title: Effect of a wavy interface on the natural convection of a nanofluid in a cavity with a partially layered porous medium using the ISPH method
  publication-title: Numer. Heat Transf., Part A: Appl.
  doi: 10.1080/10407782.2017.1353385
– year: 1980
  ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0290
– volume: 64
  start-page: 1
  year: 2014
  ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0175
  article-title: Fully coupled peridynamic thermomechanics
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2013.10.011
– volume: 95
  start-page: 927
  year: 2016
  ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0295
  article-title: Linear and non-linear Robin boundary conditions for thermal lattice Boltzmann method: cases of convective and radiative heat transfer at interfaces
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2015.12.055
– volume: 53
  start-page: 4047
  issue: 19–20
  year: 2010
  ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0045
  article-title: The peridynamic formulation for transient heat conduction
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2010.05.024
– volume: 37
  start-page: 531
  issue: 4
  year: 1995
  ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0280
  article-title: Historical development of the Newton-Raphson method
  publication-title: SIAM Rev.
  doi: 10.1137/1037125
– volume: 117
  start-page: 517
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0040
  article-title: SPH-FDM boundary for the analysis of thermal process in homogeneous media with a discontinuous interface
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2017.10.004
– volume: 334
  start-page: 125
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0205
  article-title: Modeling electrokinetic flows by consistent implicit incompressible smoothed particle hydrodynamics
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2016.12.042
– volume: 67
  start-page: 026705
  year: 2003
  ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0320
  article-title: Smoothed dissipative particle dynamics
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.67.026705
– volume: 118
  start-page: 1284
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0185
  article-title: A peridynamic framework and simulation of non-Fourier and nonlocal heat conduction
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2017.11.074
– volume: 4
  start-page: 45
  year: 1946
  ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0255
  article-title: Contributions to the problem of approximation of equidistant data by analytic functions
  publication-title: Q. Appl. Math.
  doi: 10.1090/qam/15914
– volume: 198
  start-page: 1
  year: 2016
  ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0240
  article-title: Neumann and Robin boundary conditions for heat conduction modeling using smoothed particle hydrodynamics
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2015.07.004
– volume: 136
  start-page: 214
  issue: 1
  year: 1997
  ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0195
  article-title: Modeling low Reynolds number incompressible flows using SPH
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1997.5776
– volume: 7
  start-page: 81
  issue: 1
  year: 2009
  ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0275
  article-title: Solving PDEs in complex geometries: a diffuse domain approach
  publication-title: Commun. Math. Sci.
  doi: 10.4310/CMS.2009.v7.n1.a4
– volume: 27
  start-page: 15
  issue: 1
  year: 2013
  ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0100
  article-title: ISPH modelling of transient natural convection
  publication-title: Int. J. Comput. Fluid Dynam.
  doi: 10.1080/10618562.2012.753146
– volume: 28
  start-page: 684
  issue: 3
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0140
  article-title: A numerical study on unsteady natural/mixed convection in a cavity with fixed and moving rigid bodies using the ISPH method
  publication-title: Int. J. Numer. Methods Heat Fluid Flow
  doi: 10.1108/HFF-02-2017-0058
– volume: 17
  start-page: 25
  issue: 1
  year: 2010
  ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0060
  article-title: Smoothed particle hydrodynamics (SPH): an overview and recent developments
  publication-title: Arch. Comput. Methods Eng.
  doi: 10.1007/s11831-010-9040-7
– volume: 25
  start-page: 513
  issue: 3
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0120
  article-title: Modeling of multi-phase flows and natural convection in a square cavity using an incompressible smoothed particle hydrodynamics
  publication-title: Int. J. Numer. Methods Heat Fluid Flow
  doi: 10.1108/HFF-05-2014-0161
– volume: 8
  start-page: 7
  issue: 1
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0070
  article-title: Numerical calculation of protein-ligand binding rates through solution of the Smoluchowski equation using smoothed particle hydrodynamics
  publication-title: BMC Biophys.
  doi: 10.1186/s13628-015-0021-y
– volume: 97
  start-page: 975
  year: 2016
  ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0015
  article-title: A coupling numerical methodology for weakly transient conjugate heat transfer problems
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2016.02.037
– volume: 126
  start-page: 1253
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0215
  article-title: Construction of a peridynamic model for transient advection-diffusion problems
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2018.06.075
– volume: 259
  start-page: 242
  year: 2014
  ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0230
  article-title: Smoothed particle hydrodynamics continuous boundary force method for Navier-Stokes equations subject to a Robin boundary condition
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2013.12.014
– volume: 130
  start-page: 680
  year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0035
  article-title: Multiphase SPH modeling of water boiling on hydrophilic and hydrophobic surfaces
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2018.10.119
– year: 2011
  ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0220
– volume: 88
  start-page: 151
  issue: 2
  year: 2007
  ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0165
  article-title: Peridynamic states and constitutive modeling
  publication-title: J. Elast.
  doi: 10.1007/s10659-007-9125-1
– volume: 35
  start-page: 419
  issue: 4
  year: 2011
  ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0285
  article-title: Smooth particle hydrodynamics simulations of low Reynolds number flows through porous media
  publication-title: Int. J. Numer. Anal. Meth. Geomech.
  doi: 10.1002/nag.898
– volume: 74
  start-page: 695
  issue: 4
  year: 1976
  ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0300
  article-title: An experimental and theoretical study of natural convection in the annulus between horizontal concentric cylinders
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112076002012
– volume: 78
  start-page: 352
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0270
  article-title: Peridynamic modeling of pitting corrosion damage
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2015.02.015
– volume: 125
  start-page: 1091
  issue: 6
  year: 2011
  ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0190
  article-title: Theoretical analysis of the no-slip boundary condition enforcement in SPH methods
  publication-title: Progr. Theoret. Phys.
  doi: 10.1143/PTP.125.1091
– volume: 61
  start-page: 482
  year: 2011
  ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0260
  article-title: Error estimation in smoothed particle hydrodynamics and a new scheme for second derivatives
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2010.11.028
SSID ssj0017046
Score 2.4535987
Snippet •A new method is introduced for imposing inhomogeneous Neumann and Robin BCs in smoothed particle hydrodynamics (SPH) and peridynamics for modeling heat...
Nonzero fluxes going through boundaries/interfaces are normally observed in heat transfer, which in general can be described as inhomogeneous Neumann boundary...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 948
SubjectTerms Boundary conditions
Computational fluid dynamics
Computer simulation
Conduction heating
Conductive heat transfer
Cracks
Fluid flow
Fluid mechanics
Fluxes
Free convection
Heat transfer
Inhomogeneous Neumann boundary condition
Kernels
Mathematical models
Natural convection
Numerical analysis
Numerical methods
Peridynamics
Robin boundary condition
Smooth particle hydrodynamics
Smoothed particle hydrodynamics
Taylor series
Thermal diffusion
Thermodynamics
Title Modeling heat transfer subject to inhomogeneous Neumann boundary conditions by smoothed particle hydrodynamics and peridynamics
URI https://dx.doi.org/10.1016/j.ijheatmasstransfer.2019.05.054
https://www.proquest.com/docview/2256519670
Volume 139
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6iKF7EJ77JwYOXapOmTXuSZVFWF_cgit5C81hccdvF1sNe9K8708eKigdBKJSmbVIm0y8zYeYbQo7AZxDMN9YTJuWeiFjqpcIIz1grrOTcjy1uDVwPot6duHoIH-ZIt82FwbDKBvtrTK_Qumk5baR5OhmNMMcXlQsZp4IINKnKYBcStfzkbRbmwaRfJ-sgGuPTS-T4M8Zr9ISINwYztazMRIcMoSypuDxD8dtS9Q20q5XoYpWsNCYk7dRfuUbmXLZOFqtQTlNskHcsb4ZJ5hRHpe2QtHjVuOdCy5yOssd8nIPqOPD76cDhRn5GdVVh6WVKwUW2dSQX1VNajHPM0rJ00siFPk4twG5dyr6gaQa3QI_bhk1yd3F-2-15TZkFzwgZlF6gjeE2lDJ20k-k85EwhzvwcyR3Ltbw1w-ZBTFjlSsk54nThGvGIh-pmY0Ntsh8lmdum1DBh2FopebGDkVgmI4Ck0ROyNiGw9SyHXLWSlSZhoMcS2E8qzbY7En9nBOFc6L8EA6xQ5JZD5Oaj-MP73bbSVRfdEzB8vGHXvbb-VfN_14oQMUIbOFI-rv_MsgeWcarOtJwn8yXL6_uAKyfUh9W6n1IFjqX_d4Az_2b-_4HZtMOWg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6i-LiIT3ysmoMHL9UmTZv2JLIo62tPCt5C81hccdvF1sNe9K8708eKigdB6ClpkzKZfJkJM98Qcgg-g2C-sZ4wKfdExFIvFUZ4xlphJed-bPFq4LYf9e7F1UP4MEO6bS4MhlU22F9jeoXWTctJI82T8XCIOb6oXMg4FUSgSeACzQnYvljG4PhtGufBpF9n6yAc4-sL5OgzyGv4hJA3Aju1rOxEhxShLKnIPEPx21n1DbWro-hihSw3NiQ9q39zlcy4bI3MV7Gcplgn71jfDLPMKc5K2ylp8arx0oWWOR1mj_koB91x4PjTvsOb_IzqqsTSy4SCj2zrUC6qJ7QY5ZimZem4EQx9nFjA3bqWfUHTDLpAkduGDXJ_cX7X7XlNnQXPCBmUXqCN4TaUMnbST6TzkTGHO3B0JHcu1rDtB8yCnLHMFbLzxGnCNWORj9zMxgabZDbLM7dFqOCDMLRSc2MHIjBMR4FJIidkbMNBatk2OW0lqkxDQo61MJ5VG232pH6uicI1UX4Ij9gmyXSEcU3I8Ydvu-0iqi9KpuD8-MMonXb9VbPhCwWwGIExHEl_518mOSCLvbvbG3Vz2b_eJUvYU4cddshs-fLq9sAUKvV-peof-sgORQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+heat+transfer+subject+to+inhomogeneous+Neumann+boundary+conditions+by+smoothed+particle+hydrodynamics+and+peridynamics&rft.jtitle=International+journal+of+heat+and+mass+transfer&rft.au=Wang%2C+Jianqiang&rft.au=Hu%2C+Wei&rft.au=Zhang%2C+Xiaobing&rft.au=Pan%2C+Wenxiao&rft.date=2019-08-01&rft.pub=Elsevier+BV&rft.issn=0017-9310&rft.eissn=1879-2189&rft.volume=139&rft.spage=948&rft_id=info:doi/10.1016%2Fj.ijheatmasstransfer.2019.05.054&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0017-9310&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0017-9310&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0017-9310&client=summon