Modeling heat transfer subject to inhomogeneous Neumann boundary conditions by smoothed particle hydrodynamics and peridynamics
•A new method is introduced for imposing inhomogeneous Neumann and Robin BCs in smoothed particle hydrodynamics (SPH) and peridynamics for modeling heat transfer problems.•The new method can be employed for solving various transient or steady heat transfer problems subject to linear or nonlinear flu...
Saved in:
Published in | International journal of heat and mass transfer Vol. 139; pp. 948 - 962 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
01.08.2019
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •A new method is introduced for imposing inhomogeneous Neumann and Robin BCs in smoothed particle hydrodynamics (SPH) and peridynamics for modeling heat transfer problems.•The new method can be employed for solving various transient or steady heat transfer problems subject to linear or nonlinear fluxes going through boundaries.•The numerical solutions by the new method converge to the classical solutions with notably improved accuracy.•The new method can be extended in SPH for solving other classical PDEs subject to inhomogeneous Neumann or Robin BCs, e.g., mass transfer in reactive transport, and is transferable to other numerical/modeling frameworks that also rely on nonlocal formulations.
Nonzero fluxes going through boundaries/interfaces are normally observed in heat transfer, which in general can be described as inhomogeneous Neumann boundary conditions (BCs). Both smoothed particle hydrodynamics (SPH) and peridynamics have been employed for modeling heat transfer or thermal diffusion processes. The former is a numerical method used to approximate the solutions of classical heat diffusion PDEs. The latter provides a nonlocal model for heat diffusion. They both employ a nonlocal formulation, which requires a full support of the nonlocal kernel to ensure accuracy. In this work, we propose a new, higher-order method to enforce inhomogeneous Neumann BCs in SPH and peridynamic model for heat transfer problems. In that, fictitious layers of (ghost) particles are needed to guarantee full support of the nonlocal kernel. The temperature is extrapolated to the ghost particles based on the Taylor expansion and the BC to be imposed. By such, no additional term is introduced into the heat equation; meanwhile, the numerical solutions converge to the classical solutions with notably improved accuracy. To validate, assess, and demonstrate the proposed method, we simulate different transient or steady heat transfer problems subject to linear or nonlinear BCs, including heat conduction, natural convection, and presence of insulated cracks. The numerical results are compared with the exact solutions of classical PDEs, solutions of other numerical methods, or experimental data. |
---|---|
AbstractList | •A new method is introduced for imposing inhomogeneous Neumann and Robin BCs in smoothed particle hydrodynamics (SPH) and peridynamics for modeling heat transfer problems.•The new method can be employed for solving various transient or steady heat transfer problems subject to linear or nonlinear fluxes going through boundaries.•The numerical solutions by the new method converge to the classical solutions with notably improved accuracy.•The new method can be extended in SPH for solving other classical PDEs subject to inhomogeneous Neumann or Robin BCs, e.g., mass transfer in reactive transport, and is transferable to other numerical/modeling frameworks that also rely on nonlocal formulations.
Nonzero fluxes going through boundaries/interfaces are normally observed in heat transfer, which in general can be described as inhomogeneous Neumann boundary conditions (BCs). Both smoothed particle hydrodynamics (SPH) and peridynamics have been employed for modeling heat transfer or thermal diffusion processes. The former is a numerical method used to approximate the solutions of classical heat diffusion PDEs. The latter provides a nonlocal model for heat diffusion. They both employ a nonlocal formulation, which requires a full support of the nonlocal kernel to ensure accuracy. In this work, we propose a new, higher-order method to enforce inhomogeneous Neumann BCs in SPH and peridynamic model for heat transfer problems. In that, fictitious layers of (ghost) particles are needed to guarantee full support of the nonlocal kernel. The temperature is extrapolated to the ghost particles based on the Taylor expansion and the BC to be imposed. By such, no additional term is introduced into the heat equation; meanwhile, the numerical solutions converge to the classical solutions with notably improved accuracy. To validate, assess, and demonstrate the proposed method, we simulate different transient or steady heat transfer problems subject to linear or nonlinear BCs, including heat conduction, natural convection, and presence of insulated cracks. The numerical results are compared with the exact solutions of classical PDEs, solutions of other numerical methods, or experimental data. Nonzero fluxes going through boundaries/interfaces are normally observed in heat transfer, which in general can be described as inhomogeneous Neumann boundary conditions (BCs). Both smoothed particle hydrodynamics (SPH) and peridynamics have been employed for modeling heat transfer or thermal diffusion processes. The former is a numerical method used to approximate the solutions of classical heat diffusion PDEs. The latter provides a nonlocal model for heat diffusion. They both employ a nonlocal formulation, which requires a full support of the nonlocal kernel to ensure accuracy. In this work, we propose a new, higher-order method to enforce inhomogeneous Neumann BCs in SPH and peridynamic model for heat transfer problems. In that, fictitious layers of (ghost) particles are needed to guarantee full support of the nonlocal kernel. The temperature is extrapolated to the ghost particles based on the Taylor expansion and the BC to be imposed. By such, no additional term is introduced into the heat equation; meanwhile, the numerical solutions converge to the classical solutions with notably improved accuracy. To validate, assess, and demonstrate the proposed method, we simulate different transient or steady heat transfer problems subject to linear or nonlinear BCs, including heat conduction, natural convection, and presence of insulated cracks. The numerical results are compared with the exact solutions of classical PDEs, solutions of other numerical methods, or experimental data. |
Author | Zhang, Xiaobing Hu, Wei Wang, Jianqiang Pan, Wenxiao |
Author_xml | – sequence: 1 givenname: Jianqiang surname: Wang fullname: Wang, Jianqiang organization: School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, PR China – sequence: 2 givenname: Wei surname: Hu fullname: Hu, Wei organization: Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA – sequence: 3 givenname: Xiaobing surname: Zhang fullname: Zhang, Xiaobing organization: School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, PR China – sequence: 4 givenname: Wenxiao surname: Pan fullname: Pan, Wenxiao email: wpan9@wisc.edu organization: Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA |
BookMark | eNqVkU1LxDAQhoMouK7-h4AXL10z7bZpbor4iR8XPYc0mXVTtsmatMKe_OumrF70ojAQMvPyhHlyQHadd0jICbAZMKhO25ltl6j6TsXYB-XiAsMsZyBmrEw13yETqLnIcqjFLpkwBjwTBbB9chBjO17ZvJqQjwdvcGXdKx1h9JtE49C0qFPDU-uWvvOv6NAPkT7i0CnnaOMHZ1TYUO2dsb31LtJmQ2Pnfb9EQ9cq9FavkC43JnizcaqzOlLl0giD_W4ckr2FWkU8-jqn5OXq8vniJrt_ur69OL_P9JwXfVY0Wuem5LxGzgRHJipR5VixkueIdVNAvQDD0q68gAKgrJXIG4CKmYajNsWUHG-56-DfBoy9bP0QXHpS5nlZlSAqzlLqbJvSwccYcCHXwXZpSwlMjtplK39rl6N2ycpU84S4-oHQtlejnxS3q_-A7rYgTFrebZpGbdFpNDakn5HG27_DPgHS4bX5 |
CitedBy_id | crossref_primary_10_1016_j_icheatmasstransfer_2023_106832 crossref_primary_10_1007_s11831_024_10129_z crossref_primary_10_1080_01495739_2023_2253856 crossref_primary_10_1016_j_ijheatmasstransfer_2020_119919 crossref_primary_10_1016_j_jcp_2022_111809 crossref_primary_10_1016_j_est_2024_114930 crossref_primary_10_1007_s00466_020_01879_1 crossref_primary_10_3389_fenvs_2022_991969 crossref_primary_10_1002_nme_6773 crossref_primary_10_1007_s42102_021_00074_x crossref_primary_10_1063_5_0211482 crossref_primary_10_1017_jfm_2023_995 crossref_primary_10_1007_s42102_024_00125_z crossref_primary_10_1016_j_cma_2021_114544 crossref_primary_10_1109_JIOT_2023_3312331 crossref_primary_10_1016_j_ijheatmasstransfer_2023_123965 crossref_primary_10_1016_j_ijheatmasstransfer_2024_125904 crossref_primary_10_1063_5_0220606 crossref_primary_10_1016_j_ijmecsci_2022_107143 crossref_primary_10_1007_s10704_023_00709_8 crossref_primary_10_1016_j_advwatres_2023_104601 crossref_primary_10_1016_j_compgeo_2024_106476 crossref_primary_10_1007_s40948_021_00232_x crossref_primary_10_1007_s00366_024_01995_z crossref_primary_10_1007_s40571_020_00354_1 crossref_primary_10_1007_s42102_024_00117_z |
Cites_doi | 10.1016/j.ijheatmasstransfer.2011.06.034 10.1016/j.icheatmasstransfer.2016.01.008 10.1146/annurev-fluid-120710-101220 10.1007/s11012-018-0825-3 10.1016/j.ijplas.2013.02.013 10.1016/j.ijmecsci.2018.07.044 10.1140/epje/i2007-10311-4 10.13182/NSE96-A24205 10.1016/j.ijheatmasstransfer.2010.09.040 10.1006/jcph.1994.1034 10.1002/fld.1650030305 10.1016/S0022-5096(99)00029-0 10.1143/ptp/92.5.939 10.1016/j.cpc.2010.08.022 10.1016/j.cpc.2013.07.004 10.1088/0034-4885/68/8/R01 10.1016/j.jcp.2018.08.014 10.1016/j.ijheatmasstransfer.2017.03.027 10.18869/acadpub.jafm.67.221.22615 10.1016/j.jcp.2011.12.017 10.1006/jcph.1998.6118 10.1108/HFF-03-2015-0085 10.1016/j.cpc.2015.08.006 10.1016/S0010-4655(03)00155-3 10.1016/j.jcp.2014.01.027 10.1103/PhysRevE.96.033309 10.1080/00221686.2015.1119209 10.1016/j.cma.2017.06.010 10.1016/j.ijheatmasstransfer.2016.08.047 10.1016/j.ijheatmasstransfer.2017.10.020 10.1016/j.jcp.2015.09.026 10.1016/j.ijheatmasstransfer.2015.04.105 10.1016/j.ijheatmasstransfer.2014.06.044 10.1108/HFF-05-2014-0161 10.1063/1.4984742 10.1080/10407782.2017.1353385 10.1016/j.jmps.2013.10.011 10.1016/j.ijheatmasstransfer.2015.12.055 10.1016/j.ijheatmasstransfer.2010.05.024 10.1137/1037125 10.1016/j.ijheatmasstransfer.2017.10.004 10.1016/j.jcp.2016.12.042 10.1103/PhysRevE.67.026705 10.1016/j.ijheatmasstransfer.2017.11.074 10.1090/qam/15914 10.1016/j.cpc.2015.07.004 10.1006/jcph.1997.5776 10.4310/CMS.2009.v7.n1.a4 10.1080/10618562.2012.753146 10.1108/HFF-02-2017-0058 10.1007/s11831-010-9040-7 10.1186/s13628-015-0021-y 10.1016/j.ijheatmasstransfer.2016.02.037 10.1016/j.ijheatmasstransfer.2018.06.075 10.1016/j.jcp.2013.12.014 10.1016/j.ijheatmasstransfer.2018.10.119 10.1007/s10659-007-9125-1 10.1002/nag.898 10.1017/S0022112076002012 10.1016/j.jmps.2015.02.015 10.1143/PTP.125.1091 10.1016/j.camwa.2010.11.028 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Ltd Copyright Elsevier BV Aug 2019 |
Copyright_xml | – notice: 2019 Elsevier Ltd – notice: Copyright Elsevier BV Aug 2019 |
DBID | AAYXX CITATION 7TB 8FD FR3 H8D KR7 L7M |
DOI | 10.1016/j.ijheatmasstransfer.2019.05.054 |
DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitleList | Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1879-2189 |
EndPage | 962 |
ExternalDocumentID | 10_1016_j_ijheatmasstransfer_2019_05_054 S0017931018365311 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABDMP ABFNM ABMAC ABNUV ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIWK ACKIV ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HVGLF HZ~ IHE J1W JARJE JJJVA K-O KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SAC SDF SDG SDP SES SET SEW SPC SPCBC SSG SSR SST SSZ T5K T9H TN5 VOH WUQ XPP ZMT ZY4 ~02 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7TB 8FD EFKBS FR3 H8D KR7 L7M |
ID | FETCH-LOGICAL-c473t-3bcc2d5778e7097e096962e60572ee8b318f1d018973131158a92b1160db7ecd3 |
IEDL.DBID | .~1 |
ISSN | 0017-9310 |
IngestDate | Fri Jul 25 03:42:36 EDT 2025 Thu Apr 24 23:07:52 EDT 2025 Tue Jul 01 02:17:11 EDT 2025 Fri Feb 23 02:22:42 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Robin boundary condition Smoothed particle hydrodynamics Inhomogeneous Neumann boundary condition Peridynamics Natural convection Heat transfer |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c473t-3bcc2d5778e7097e096962e60572ee8b318f1d018973131158a92b1160db7ecd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2256519670 |
PQPubID | 2045464 |
PageCount | 15 |
ParticipantIDs | proquest_journals_2256519670 crossref_primary_10_1016_j_ijheatmasstransfer_2019_05_054 crossref_citationtrail_10_1016_j_ijheatmasstransfer_2019_05_054 elsevier_sciencedirect_doi_10_1016_j_ijheatmasstransfer_2019_05_054 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-08-01 |
PublicationDateYYYYMMDD | 2019-08-01 |
PublicationDate_xml | – month: 08 year: 2019 text: 2019-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | International journal of heat and mass transfer |
PublicationYear | 2019 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Smiatek, Allen, Schmid (b0330) 2008; 26 Oterkus, Madenci, Agwai (b0175) 2014; 64 Morris, Fox, Zhu (b0195) 1997; 136 Monaghan (b0055) 1994; 110 Bergman, Incropera, Lavine, Dewitt (b0220) 2011 Nguyen, Aly, Lee (b0130) 2017; 72 Bobaru, Duangpanya (b0170) 2012; 231 Ryan, Tartakovsky, Amon (b0225) 2010; 181 Monaghan (b0250) 2005; 68 Bobaru, Duangpanya (b0045) 2010; 53 Monfared, Sarrafi, Jafari, Schaffie (b0295) 2016; 95 Nguyen, Aly, Lee (b0140) 2018; 28 Aly (b0115) 2016; 73 Wang, Xu, Wang (b0185) 2018; 118 Liu, Liu (b0060) 2010; 17 de Vahl Davis (b0245) 1983; 3 Zhao, Chen, Mehrmashhadi, Bobaru (b0215) 2018; 126 Nassiri, Vivek, Abke, Liu, Lee, Daehn (b0155) 2017; 110 Xue, Zhang, Tamma (b0180) 2018; 374 Silling, Epton, Weckner, Xu, Askari (b0165) 2007; 88 Hu, Pan, Rakhsha, Tian, Hu, Negrut (b0210) 2017; 324 Xiao, Zhan, Gu, Li (b0025) 2017; 104 Pan, Daily, Baker (b0070) 2015; 8 Jeong, Jhon, Halow, Van Osdol (b0010) 2003; 153 Pan, Kim, Perego, Tartakovsky, Parks (b0205) 2017; 334 Oterkus, Madenci, Agwai (b0050) 2014; 265 Szewc, Pozorski, Taniere (b0095) 2011; 54 Schoenberg (b0255) 1946; 4 Takeda, Miyama, Sekiya (b0200) 1994; 92 Cleary, Monaghan (b0005) 1999; 148 Chen, Bobaru (b0265) 2015; 197 Maciá, Antuono, González, Colagrossi (b0190) 2011; 125 Aly (b0110) 2015; 25 Aly, Raizah (b0135) 2018; 146 Nguyen, Aly, Lee (b0145) 2018; 53 Bai, Rao, Xu, Chen (b0040) 2018; 117 Kuehn, Goldstein (b0300) 1976; 74 Vishwakarma, Das, Das (b0080) 2011; 54 Das, Das (b0085) 2015; 303 Özışık (b0290) 1980 Liang, Sun, Xi, Liu (b0305) 2015; 88 Aly (b0120) 2015; 25 Sazhin, Rybdylova, Crua (b0030) 2018; 117 Li, Lowengrub, Rätz, Voigt (b0275) 2009; 7 Aly, Ahmed (b0105) 2014; 77 Español, Revenga (b0320) 2003; 67 Wu, Laurence, Iacovides, Afgan (b0020) 2017; 110 Monaghan (b0065) 2012; 44 Li, Pan, Tartakovsky (b0325) 2018 Ypma (b0280) 1995; 37 Chen, Bobaru (b0270) 2015; 78 Violeau, Rogers (b0075) 2016; 54 Holmes, Williams, Tilke (b0285) 2011; 35 Khazaeli, Mortazavi, Ashrafizaadeh (b0310) 2015; 8 Pan, Li, Tartakovsky, Ahzi, Khraisheh, Khaleel (b0150) 2013; 48 Yang, Kong (b0090) 2017; 96 Gimenez, Errera, Baillis, Smith, Pardo (b0015) 2016; 97 Sikarudi, Nikseresht (b0240) 2016; 198 Koshizuka, Oka (b0315) 1996; 123 Xiong, Zhang, Yu (b0035) 2019; 130 Danis, Orhan, Ecder (b0100) 2013; 27 Mayrhofer, Rogers, Violeau, Ferrand (b0235) 2013; 184 Pan, Bao, Tartakovsky (b0230) 2014; 259 Silling (b0160) 2000; 48 Aly, Asai (b0125) 2016; 26 Fatehi, Manzari (b0260) 2011; 61 Chen (10.1016/j.ijheatmasstransfer.2019.05.054_b0270) 2015; 78 Holmes (10.1016/j.ijheatmasstransfer.2019.05.054_b0285) 2011; 35 Oterkus (10.1016/j.ijheatmasstransfer.2019.05.054_b0050) 2014; 265 Aly (10.1016/j.ijheatmasstransfer.2019.05.054_b0120) 2015; 25 Bobaru (10.1016/j.ijheatmasstransfer.2019.05.054_b0170) 2012; 231 Pan (10.1016/j.ijheatmasstransfer.2019.05.054_b0070) 2015; 8 Gimenez (10.1016/j.ijheatmasstransfer.2019.05.054_b0015) 2016; 97 Zhao (10.1016/j.ijheatmasstransfer.2019.05.054_b0215) 2018; 126 Smiatek (10.1016/j.ijheatmasstransfer.2019.05.054_b0330) 2008; 26 Wang (10.1016/j.ijheatmasstransfer.2019.05.054_b0185) 2018; 118 Xiong (10.1016/j.ijheatmasstransfer.2019.05.054_b0035) 2019; 130 Jeong (10.1016/j.ijheatmasstransfer.2019.05.054_b0010) 2003; 153 Bai (10.1016/j.ijheatmasstransfer.2019.05.054_b0040) 2018; 117 Vishwakarma (10.1016/j.ijheatmasstransfer.2019.05.054_b0080) 2011; 54 Nguyen (10.1016/j.ijheatmasstransfer.2019.05.054_b0130) 2017; 72 Aly (10.1016/j.ijheatmasstransfer.2019.05.054_b0135) 2018; 146 Español (10.1016/j.ijheatmasstransfer.2019.05.054_b0320) 2003; 67 Wu (10.1016/j.ijheatmasstransfer.2019.05.054_b0020) 2017; 110 Silling (10.1016/j.ijheatmasstransfer.2019.05.054_b0165) 2007; 88 Chen (10.1016/j.ijheatmasstransfer.2019.05.054_b0265) 2015; 197 Mayrhofer (10.1016/j.ijheatmasstransfer.2019.05.054_b0235) 2013; 184 Monaghan (10.1016/j.ijheatmasstransfer.2019.05.054_b0250) 2005; 68 Sazhin (10.1016/j.ijheatmasstransfer.2019.05.054_b0030) 2018; 117 Das (10.1016/j.ijheatmasstransfer.2019.05.054_b0085) 2015; 303 Nguyen (10.1016/j.ijheatmasstransfer.2019.05.054_b0140) 2018; 28 Nassiri (10.1016/j.ijheatmasstransfer.2019.05.054_b0155) 2017; 110 Bergman (10.1016/j.ijheatmasstransfer.2019.05.054_b0220) 2011 Li (10.1016/j.ijheatmasstransfer.2019.05.054_b0275) 2009; 7 Sikarudi (10.1016/j.ijheatmasstransfer.2019.05.054_b0240) 2016; 198 Khazaeli (10.1016/j.ijheatmasstransfer.2019.05.054_b0310) 2015; 8 Szewc (10.1016/j.ijheatmasstransfer.2019.05.054_b0095) 2011; 54 Yang (10.1016/j.ijheatmasstransfer.2019.05.054_b0090) 2017; 96 Nguyen (10.1016/j.ijheatmasstransfer.2019.05.054_b0145) 2018; 53 Aly (10.1016/j.ijheatmasstransfer.2019.05.054_b0105) 2014; 77 Pan (10.1016/j.ijheatmasstransfer.2019.05.054_b0230) 2014; 259 Aly (10.1016/j.ijheatmasstransfer.2019.05.054_b0125) 2016; 26 Fatehi (10.1016/j.ijheatmasstransfer.2019.05.054_b0260) 2011; 61 Maciá (10.1016/j.ijheatmasstransfer.2019.05.054_b0190) 2011; 125 Liang (10.1016/j.ijheatmasstransfer.2019.05.054_b0305) 2015; 88 Li (10.1016/j.ijheatmasstransfer.2019.05.054_b0325) 2018 Xiao (10.1016/j.ijheatmasstransfer.2019.05.054_b0025) 2017; 104 Xue (10.1016/j.ijheatmasstransfer.2019.05.054_b0180) 2018; 374 Ypma (10.1016/j.ijheatmasstransfer.2019.05.054_b0280) 1995; 37 Schoenberg (10.1016/j.ijheatmasstransfer.2019.05.054_b0255) 1946; 4 Koshizuka (10.1016/j.ijheatmasstransfer.2019.05.054_b0315) 1996; 123 Violeau (10.1016/j.ijheatmasstransfer.2019.05.054_b0075) 2016; 54 Ryan (10.1016/j.ijheatmasstransfer.2019.05.054_b0225) 2010; 181 Pan (10.1016/j.ijheatmasstransfer.2019.05.054_b0150) 2013; 48 Pan (10.1016/j.ijheatmasstransfer.2019.05.054_b0205) 2017; 334 de Vahl Davis (10.1016/j.ijheatmasstransfer.2019.05.054_b0245) 1983; 3 Monaghan (10.1016/j.ijheatmasstransfer.2019.05.054_b0065) 2012; 44 Aly (10.1016/j.ijheatmasstransfer.2019.05.054_b0115) 2016; 73 Danis (10.1016/j.ijheatmasstransfer.2019.05.054_b0100) 2013; 27 Özışık (10.1016/j.ijheatmasstransfer.2019.05.054_b0290) 1980 Kuehn (10.1016/j.ijheatmasstransfer.2019.05.054_b0300) 1976; 74 Morris (10.1016/j.ijheatmasstransfer.2019.05.054_b0195) 1997; 136 Aly (10.1016/j.ijheatmasstransfer.2019.05.054_b0110) 2015; 25 Bobaru (10.1016/j.ijheatmasstransfer.2019.05.054_b0045) 2010; 53 Takeda (10.1016/j.ijheatmasstransfer.2019.05.054_b0200) 1994; 92 Monfared (10.1016/j.ijheatmasstransfer.2019.05.054_b0295) 2016; 95 Liu (10.1016/j.ijheatmasstransfer.2019.05.054_b0060) 2010; 17 Silling (10.1016/j.ijheatmasstransfer.2019.05.054_b0160) 2000; 48 Hu (10.1016/j.ijheatmasstransfer.2019.05.054_b0210) 2017; 324 Cleary (10.1016/j.ijheatmasstransfer.2019.05.054_b0005) 1999; 148 Monaghan (10.1016/j.ijheatmasstransfer.2019.05.054_b0055) 1994; 110 Oterkus (10.1016/j.ijheatmasstransfer.2019.05.054_b0175) 2014; 64 |
References_xml | – volume: 88 start-page: 433 year: 2015 end-page: 444 ident: b0305 article-title: Numerical models for heat conduction and natural convection with symmetry boundary condition based on particle method publication-title: Int. J. Heat Mass Transf. – volume: 8 start-page: 7 year: 2015 ident: b0070 article-title: Numerical calculation of protein-ligand binding rates through solution of the Smoluchowski equation using smoothed particle hydrodynamics publication-title: BMC Biophys. – volume: 96 start-page: 033309 year: 2017 ident: b0090 article-title: Smoothed particle hydrodynamics method for evaporating multiphase flows publication-title: Phys. Rev. E – volume: 26 start-page: 115 year: 2008 end-page: 122 ident: b0330 article-title: Tunable-slip boundaries for coarse-grained simulations of fluid flow publication-title: Eur. Phys. J. E – volume: 117 start-page: 517 year: 2018 end-page: 526 ident: b0040 article-title: SPH-FDM boundary for the analysis of thermal process in homogeneous media with a discontinuous interface publication-title: Int. J. Heat Mass Transf. – volume: 126 start-page: 1253 year: 2018 end-page: 1266 ident: b0215 article-title: Construction of a peridynamic model for transient advection-diffusion problems publication-title: Int. J. Heat Mass Transf. – volume: 97 start-page: 975 year: 2016 end-page: 989 ident: b0015 article-title: A coupling numerical methodology for weakly transient conjugate heat transfer problems publication-title: Int. J. Heat Mass Transf. – volume: 198 start-page: 1 year: 2016 end-page: 11 ident: b0240 article-title: Neumann and Robin boundary conditions for heat conduction modeling using smoothed particle hydrodynamics publication-title: Comput. Phys. Commun. – volume: 68 start-page: 1703 year: 2005 ident: b0250 article-title: Smoothed particle hydrodynamics publication-title: Rep. Progr. Phys. – volume: 54 start-page: 314 year: 2011 end-page: 325 ident: b0080 article-title: Steady state conduction through 2D irregular bodies by smoothed particle hydrodynamics publication-title: Int. J. Heat Mass Transf. – volume: 35 start-page: 419 year: 2011 end-page: 437 ident: b0285 article-title: Smooth particle hydrodynamics simulations of low Reynolds number flows through porous media publication-title: Int. J. Numer. Anal. Meth. Geomech. – volume: 64 start-page: 1 year: 2014 end-page: 23 ident: b0175 article-title: Fully coupled peridynamic thermomechanics publication-title: J. Mech. Phys. Solids – volume: 104 start-page: 288 year: 2017 end-page: 300 ident: b0025 article-title: Modeling heat transfer during friction stir welding using a meshless particle method publication-title: Int. J. Heat Mass Transf. – volume: 72 start-page: 68 year: 2017 end-page: 88 ident: b0130 article-title: Effect of a wavy interface on the natural convection of a nanofluid in a cavity with a partially layered porous medium using the ISPH method publication-title: Numer. Heat Transf., Part A: Appl. – volume: 73 start-page: 84 year: 2016 end-page: 99 ident: b0115 article-title: Double-diffusive natural convection in an enclosure including/excluding sloshing rod using a stabilized ISPH method publication-title: Int. Commun. Heat Mass Transf. – volume: 181 start-page: 2008 year: 2010 end-page: 2023 ident: b0225 article-title: A novel method for modeling Neumann and Robin boundary conditions in smoothed particle hydrodynamics publication-title: Comput. Phys. Commun. – volume: 4 start-page: 45 year: 1946 ident: b0255 article-title: Contributions to the problem of approximation of equidistant data by analytic functions publication-title: Q. Appl. Math. – volume: 117 start-page: 252 year: 2018 end-page: 260 ident: b0030 article-title: A mathematical model for heating and evaporation of a multi-component liquid film publication-title: Int. J. Heat Mass Transf. – volume: 61 start-page: 482 year: 2011 end-page: 498 ident: b0260 article-title: Error estimation in smoothed particle hydrodynamics and a new scheme for second derivatives publication-title: Comput. Math. Appl. – volume: 110 start-page: 231601 year: 2017 ident: b0155 article-title: Depiction of interfacial morphology in impact welded Ti/Cu bimetallic systems using smoothed particle hydrodynamics publication-title: Appl. Phys. Lett. – year: 1980 ident: b0290 article-title: Heat Conduction – year: 2011 ident: b0220 article-title: Introduction to Heat Transfer – volume: 136 start-page: 214 year: 1997 end-page: 226 ident: b0195 article-title: Modeling low Reynolds number incompressible flows using SPH publication-title: J. Comput. Phys. – volume: 37 start-page: 531 year: 1995 end-page: 551 ident: b0280 article-title: Historical development of the Newton-Raphson method publication-title: SIAM Rev. – volume: 25 start-page: 513 year: 2015 end-page: 533 ident: b0120 article-title: Modeling of multi-phase flows and natural convection in a square cavity using an incompressible smoothed particle hydrodynamics publication-title: Int. J. Numer. Methods Heat Fluid Flow – volume: 324 start-page: 278 year: 2017 end-page: 299 ident: b0210 article-title: A consistent multi-resolution smoothed particle hydrodynamics method publication-title: Comput. Methods Appl. Mech. Eng. – volume: 74 start-page: 695 year: 1976 end-page: 719 ident: b0300 article-title: An experimental and theoretical study of natural convection in the annulus between horizontal concentric cylinders publication-title: J. Fluid Mech. – volume: 48 start-page: 189 year: 2013 end-page: 204 ident: b0150 article-title: A new smoothed particle hydrodynamics non-Newtonian model for friction stir welding: process modeling and simulation of microstructure evolution in a magnesium alloy publication-title: Int. J. Plast. – volume: 8 start-page: 309 year: 2015 end-page: 321 ident: b0310 article-title: Application of an immersed boundary treatment in simulation of natural convection problems with complex geometry via the lattice boltzmann method publication-title: J. Appl. Fluid Mech. – volume: 25 start-page: 513 year: 2015 end-page: 533 ident: b0110 article-title: Modeling of multi-phase flows and natural convection in a square cavity using an incompressible smoothed particle hydrodynamics publication-title: Int. J. Numer. Methods Heat Fluid Flow – volume: 146 start-page: 125 year: 2018 end-page: 140 ident: b0135 article-title: Incompressible smoothed particle hydrodynamics (ISPH) method for natural convection in a nanofluid-filled cavity including rotating solid structures publication-title: Int. J. Mech. Sci. – volume: 148 start-page: 227 year: 1999 end-page: 264 ident: b0005 article-title: Conduction modelling using smoothed particle hydrodynamics publication-title: J. Comput. Phys. – volume: 110 start-page: 193 year: 2017 end-page: 208 ident: b0020 article-title: Direct simulation of conjugate heat transfer of jet in channel crossflow publication-title: Int. J. Heat Mass Transf. – volume: 110 start-page: 399 year: 1994 end-page: 406 ident: b0055 article-title: Simulating free surface flows with SPH publication-title: J. Comput. Phys. – volume: 153 start-page: 71 year: 2003 end-page: 84 ident: b0010 article-title: Smoothed particle hydrodynamics: applications to heat conduction publication-title: Comput. Phys. Commun. – volume: 184 start-page: 2515 year: 2013 end-page: 2527 ident: b0235 article-title: Investigation of wall bounded flows using SPH and the unified semi-analytical wall boundary conditions publication-title: Comput. Phys. Commun. – volume: 125 start-page: 1091 year: 2011 end-page: 1121 ident: b0190 article-title: Theoretical analysis of the no-slip boundary condition enforcement in SPH methods publication-title: Progr. Theoret. Phys. – volume: 28 start-page: 684 year: 2018 end-page: 703 ident: b0140 article-title: A numerical study on unsteady natural/mixed convection in a cavity with fixed and moving rigid bodies using the ISPH method publication-title: Int. J. Numer. Methods Heat Fluid Flow – volume: 334 start-page: 125 year: 2017 end-page: 144 ident: b0205 article-title: Modeling electrokinetic flows by consistent implicit incompressible smoothed particle hydrodynamics publication-title: J. Comput. Phys. – volume: 54 start-page: 1 year: 2016 end-page: 26 ident: b0075 article-title: Smoothed particle hydrodynamics (SPH) for free-surface flows: past, present and future publication-title: J. Hydraul. Res. – volume: 26 start-page: 235 year: 2016 end-page: 268 ident: b0125 article-title: ISPH method for double-diffusive natural convection under cross-diffusion effects in an anisotropic porous cavity/annulus publication-title: Int. J. Numer. Methods Heat Fluid Flow – volume: 17 start-page: 25 year: 2010 end-page: 76 ident: b0060 article-title: Smoothed particle hydrodynamics (SPH): an overview and recent developments publication-title: Arch. Comput. Methods Eng. – volume: 44 start-page: 323 year: 2012 end-page: 346 ident: b0065 article-title: Smoothed particle hydrodynamics and its diverse applications publication-title: Annu. Rev. Fluid Mech. – volume: 78 start-page: 352 year: 2015 end-page: 381 ident: b0270 article-title: Peridynamic modeling of pitting corrosion damage publication-title: J. Mech. Phys. Solids – volume: 303 start-page: 125 year: 2015 end-page: 145 ident: b0085 article-title: Modeling of liquid–vapor phase change using smoothed particle hydrodynamics publication-title: J. Comput. Phys. – volume: 53 start-page: 4047 year: 2010 end-page: 4059 ident: b0045 article-title: The peridynamic formulation for transient heat conduction publication-title: Int. J. Heat Mass Transf. – volume: 27 start-page: 15 year: 2013 end-page: 31 ident: b0100 article-title: ISPH modelling of transient natural convection publication-title: Int. J. Comput. Fluid Dynam. – volume: 92 start-page: 939 year: 1994 end-page: 960 ident: b0200 article-title: Numerical simulation of viscous flow by smoothed particle hydrodynamics publication-title: Progr. Theoret. Phys. – volume: 118 start-page: 1284 year: 2018 end-page: 1292 ident: b0185 article-title: A peridynamic framework and simulation of non-Fourier and nonlocal heat conduction publication-title: Int. J. Heat Mass Transf. – volume: 197 start-page: 51 year: 2015 end-page: 60 ident: b0265 article-title: Selecting the kernel in a peridynamic formulation: a study for transient heat diffusion publication-title: Comput. Phys. Commun. – volume: 48 start-page: 175 year: 2000 end-page: 209 ident: b0160 article-title: Reformulation of elasticity theory for discontinuities and long-range forces publication-title: J. Mech. Phys. Solids – volume: 231 start-page: 2764 year: 2012 end-page: 2785 ident: b0170 article-title: A peridynamic formulation for transient heat conduction in bodies with evolving discontinuities publication-title: J. Comput. Phys. – volume: 67 start-page: 026705 year: 2003 ident: b0320 article-title: Smoothed dissipative particle dynamics publication-title: Phys. Rev. E – volume: 130 start-page: 680 year: 2019 end-page: 692 ident: b0035 article-title: Multiphase SPH modeling of water boiling on hydrophilic and hydrophobic surfaces publication-title: Int. J. Heat Mass Transf. – volume: 259 start-page: 242 year: 2014 end-page: 259 ident: b0230 article-title: Smoothed particle hydrodynamics continuous boundary force method for Navier-Stokes equations subject to a Robin boundary condition publication-title: J. Comput. Phys. – volume: 123 start-page: 421 year: 1996 end-page: 434 ident: b0315 article-title: Moving-particle semi-implicit method for fragmentation of incompressible fluid publication-title: Nucl. Sci. Eng. – volume: 374 start-page: 1180 year: 2018 end-page: 1195 ident: b0180 article-title: A two-field state-based peridynamic theory for thermal contact problems publication-title: J. Comput. Phys. – start-page: 1 year: 2018 end-page: 20 ident: b0325 article-title: Particle-based methods for mesoscopic transport processes publication-title: Handbook of Materials Modeling: Applications: Current and Emerging Materials – volume: 265 start-page: 71 year: 2014 end-page: 96 ident: b0050 article-title: Peridynamic thermal diffusion publication-title: J. Comput. Phys. – volume: 3 start-page: 249 year: 1983 end-page: 264 ident: b0245 article-title: Natural convection of air in a square cavity: a bench mark numerical solution publication-title: Int. J. Numer. Methods Fluids – volume: 54 start-page: 4807 year: 2011 end-page: 4816 ident: b0095 article-title: Modeling of natural convection with smoothed particle hydrodynamics: non-Boussinesq formulation publication-title: Int. J. Heat Mass Transf. – volume: 53 start-page: 2299 year: 2018 end-page: 2318 ident: b0145 article-title: ISPH modeling of natural convection heat transfer with an analytical kernel renormalization factor publication-title: Meccanica – volume: 77 start-page: 1155 year: 2014 end-page: 1168 ident: b0105 article-title: An incompressible smoothed particle hydrodynamics method for natural/mixed convection in a non-Darcy anisotropic porous medium publication-title: Int. J. Heat Mass Transf. – volume: 95 start-page: 927 year: 2016 end-page: 935 ident: b0295 article-title: Linear and non-linear Robin boundary conditions for thermal lattice Boltzmann method: cases of convective and radiative heat transfer at interfaces publication-title: Int. J. Heat Mass Transf. – volume: 7 start-page: 81 year: 2009 ident: b0275 article-title: Solving PDEs in complex geometries: a diffuse domain approach publication-title: Commun. Math. Sci. – volume: 88 start-page: 151 year: 2007 end-page: 184 ident: b0165 article-title: Peridynamic states and constitutive modeling publication-title: J. Elast. – volume: 54 start-page: 4807 issue: 23–24 year: 2011 ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0095 article-title: Modeling of natural convection with smoothed particle hydrodynamics: non-Boussinesq formulation publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2011.06.034 – volume: 73 start-page: 84 year: 2016 ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0115 article-title: Double-diffusive natural convection in an enclosure including/excluding sloshing rod using a stabilized ISPH method publication-title: Int. Commun. Heat Mass Transf. doi: 10.1016/j.icheatmasstransfer.2016.01.008 – volume: 44 start-page: 323 year: 2012 ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0065 article-title: Smoothed particle hydrodynamics and its diverse applications publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev-fluid-120710-101220 – volume: 53 start-page: 2299 issue: 9 year: 2018 ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0145 article-title: ISPH modeling of natural convection heat transfer with an analytical kernel renormalization factor publication-title: Meccanica doi: 10.1007/s11012-018-0825-3 – volume: 48 start-page: 189 year: 2013 ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0150 article-title: A new smoothed particle hydrodynamics non-Newtonian model for friction stir welding: process modeling and simulation of microstructure evolution in a magnesium alloy publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2013.02.013 – volume: 146 start-page: 125 year: 2018 ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0135 article-title: Incompressible smoothed particle hydrodynamics (ISPH) method for natural convection in a nanofluid-filled cavity including rotating solid structures publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2018.07.044 – volume: 26 start-page: 115 issue: 1–2 year: 2008 ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0330 article-title: Tunable-slip boundaries for coarse-grained simulations of fluid flow publication-title: Eur. Phys. J. E doi: 10.1140/epje/i2007-10311-4 – volume: 123 start-page: 421 issue: 3 year: 1996 ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0315 article-title: Moving-particle semi-implicit method for fragmentation of incompressible fluid publication-title: Nucl. Sci. Eng. doi: 10.13182/NSE96-A24205 – volume: 54 start-page: 314 issue: 1–3 year: 2011 ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0080 article-title: Steady state conduction through 2D irregular bodies by smoothed particle hydrodynamics publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2010.09.040 – volume: 110 start-page: 399 issue: 2 year: 1994 ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0055 article-title: Simulating free surface flows with SPH publication-title: J. Comput. Phys. doi: 10.1006/jcph.1994.1034 – start-page: 1 year: 2018 ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0325 article-title: Particle-based methods for mesoscopic transport processes – volume: 3 start-page: 249 issue: 3 year: 1983 ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0245 article-title: Natural convection of air in a square cavity: a bench mark numerical solution publication-title: Int. J. Numer. Methods Fluids doi: 10.1002/fld.1650030305 – volume: 48 start-page: 175 issue: 1 year: 2000 ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0160 article-title: Reformulation of elasticity theory for discontinuities and long-range forces publication-title: J. Mech. Phys. Solids doi: 10.1016/S0022-5096(99)00029-0 – volume: 92 start-page: 939 issue: 5 year: 1994 ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0200 article-title: Numerical simulation of viscous flow by smoothed particle hydrodynamics publication-title: Progr. Theoret. Phys. doi: 10.1143/ptp/92.5.939 – volume: 181 start-page: 2008 issue: 12 year: 2010 ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0225 article-title: A novel method for modeling Neumann and Robin boundary conditions in smoothed particle hydrodynamics publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2010.08.022 – volume: 184 start-page: 2515 issue: 11 year: 2013 ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0235 article-title: Investigation of wall bounded flows using SPH and the unified semi-analytical wall boundary conditions publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2013.07.004 – volume: 68 start-page: 1703 issue: 8 year: 2005 ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0250 article-title: Smoothed particle hydrodynamics publication-title: Rep. Progr. Phys. doi: 10.1088/0034-4885/68/8/R01 – volume: 374 start-page: 1180 year: 2018 ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0180 article-title: A two-field state-based peridynamic theory for thermal contact problems publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2018.08.014 – volume: 110 start-page: 193 year: 2017 ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0020 article-title: Direct simulation of conjugate heat transfer of jet in channel crossflow publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2017.03.027 – volume: 8 start-page: 309 issue: 2 year: 2015 ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0310 article-title: Application of an immersed boundary treatment in simulation of natural convection problems with complex geometry via the lattice boltzmann method publication-title: J. Appl. Fluid Mech. doi: 10.18869/acadpub.jafm.67.221.22615 – volume: 231 start-page: 2764 issue: 7 year: 2012 ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0170 article-title: A peridynamic formulation for transient heat conduction in bodies with evolving discontinuities publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2011.12.017 – volume: 148 start-page: 227 issue: 1 year: 1999 ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0005 article-title: Conduction modelling using smoothed particle hydrodynamics publication-title: J. Comput. Phys. doi: 10.1006/jcph.1998.6118 – volume: 26 start-page: 235 issue: 1 year: 2016 ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0125 article-title: ISPH method for double-diffusive natural convection under cross-diffusion effects in an anisotropic porous cavity/annulus publication-title: Int. J. Numer. Methods Heat Fluid Flow doi: 10.1108/HFF-03-2015-0085 – volume: 197 start-page: 51 year: 2015 ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0265 article-title: Selecting the kernel in a peridynamic formulation: a study for transient heat diffusion publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2015.08.006 – volume: 153 start-page: 71 issue: 1 year: 2003 ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0010 article-title: Smoothed particle hydrodynamics: applications to heat conduction publication-title: Comput. Phys. Commun. doi: 10.1016/S0010-4655(03)00155-3 – volume: 265 start-page: 71 year: 2014 ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0050 article-title: Peridynamic thermal diffusion publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2014.01.027 – volume: 96 start-page: 033309 issue: 3 year: 2017 ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0090 article-title: Smoothed particle hydrodynamics method for evaporating multiphase flows publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.96.033309 – volume: 54 start-page: 1 issue: 1 year: 2016 ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0075 article-title: Smoothed particle hydrodynamics (SPH) for free-surface flows: past, present and future publication-title: J. Hydraul. Res. doi: 10.1080/00221686.2015.1119209 – volume: 324 start-page: 278 year: 2017 ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0210 article-title: A consistent multi-resolution smoothed particle hydrodynamics method publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2017.06.010 – volume: 104 start-page: 288 year: 2017 ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0025 article-title: Modeling heat transfer during friction stir welding using a meshless particle method publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2016.08.047 – volume: 117 start-page: 252 year: 2018 ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0030 article-title: A mathematical model for heating and evaporation of a multi-component liquid film publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2017.10.020 – volume: 303 start-page: 125 year: 2015 ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0085 article-title: Modeling of liquid–vapor phase change using smoothed particle hydrodynamics publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2015.09.026 – volume: 88 start-page: 433 year: 2015 ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0305 article-title: Numerical models for heat conduction and natural convection with symmetry boundary condition based on particle method publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2015.04.105 – volume: 77 start-page: 1155 year: 2014 ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0105 article-title: An incompressible smoothed particle hydrodynamics method for natural/mixed convection in a non-Darcy anisotropic porous medium publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2014.06.044 – volume: 25 start-page: 513 issue: 3 year: 2015 ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0110 article-title: Modeling of multi-phase flows and natural convection in a square cavity using an incompressible smoothed particle hydrodynamics publication-title: Int. J. Numer. Methods Heat Fluid Flow doi: 10.1108/HFF-05-2014-0161 – volume: 110 start-page: 231601 issue: 23 year: 2017 ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0155 article-title: Depiction of interfacial morphology in impact welded Ti/Cu bimetallic systems using smoothed particle hydrodynamics publication-title: Appl. Phys. Lett. doi: 10.1063/1.4984742 – volume: 72 start-page: 68 issue: 1 year: 2017 ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0130 article-title: Effect of a wavy interface on the natural convection of a nanofluid in a cavity with a partially layered porous medium using the ISPH method publication-title: Numer. Heat Transf., Part A: Appl. doi: 10.1080/10407782.2017.1353385 – year: 1980 ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0290 – volume: 64 start-page: 1 year: 2014 ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0175 article-title: Fully coupled peridynamic thermomechanics publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2013.10.011 – volume: 95 start-page: 927 year: 2016 ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0295 article-title: Linear and non-linear Robin boundary conditions for thermal lattice Boltzmann method: cases of convective and radiative heat transfer at interfaces publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2015.12.055 – volume: 53 start-page: 4047 issue: 19–20 year: 2010 ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0045 article-title: The peridynamic formulation for transient heat conduction publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2010.05.024 – volume: 37 start-page: 531 issue: 4 year: 1995 ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0280 article-title: Historical development of the Newton-Raphson method publication-title: SIAM Rev. doi: 10.1137/1037125 – volume: 117 start-page: 517 year: 2018 ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0040 article-title: SPH-FDM boundary for the analysis of thermal process in homogeneous media with a discontinuous interface publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2017.10.004 – volume: 334 start-page: 125 year: 2017 ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0205 article-title: Modeling electrokinetic flows by consistent implicit incompressible smoothed particle hydrodynamics publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2016.12.042 – volume: 67 start-page: 026705 year: 2003 ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0320 article-title: Smoothed dissipative particle dynamics publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.67.026705 – volume: 118 start-page: 1284 year: 2018 ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0185 article-title: A peridynamic framework and simulation of non-Fourier and nonlocal heat conduction publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2017.11.074 – volume: 4 start-page: 45 year: 1946 ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0255 article-title: Contributions to the problem of approximation of equidistant data by analytic functions publication-title: Q. Appl. Math. doi: 10.1090/qam/15914 – volume: 198 start-page: 1 year: 2016 ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0240 article-title: Neumann and Robin boundary conditions for heat conduction modeling using smoothed particle hydrodynamics publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2015.07.004 – volume: 136 start-page: 214 issue: 1 year: 1997 ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0195 article-title: Modeling low Reynolds number incompressible flows using SPH publication-title: J. Comput. Phys. doi: 10.1006/jcph.1997.5776 – volume: 7 start-page: 81 issue: 1 year: 2009 ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0275 article-title: Solving PDEs in complex geometries: a diffuse domain approach publication-title: Commun. Math. Sci. doi: 10.4310/CMS.2009.v7.n1.a4 – volume: 27 start-page: 15 issue: 1 year: 2013 ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0100 article-title: ISPH modelling of transient natural convection publication-title: Int. J. Comput. Fluid Dynam. doi: 10.1080/10618562.2012.753146 – volume: 28 start-page: 684 issue: 3 year: 2018 ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0140 article-title: A numerical study on unsteady natural/mixed convection in a cavity with fixed and moving rigid bodies using the ISPH method publication-title: Int. J. Numer. Methods Heat Fluid Flow doi: 10.1108/HFF-02-2017-0058 – volume: 17 start-page: 25 issue: 1 year: 2010 ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0060 article-title: Smoothed particle hydrodynamics (SPH): an overview and recent developments publication-title: Arch. Comput. Methods Eng. doi: 10.1007/s11831-010-9040-7 – volume: 25 start-page: 513 issue: 3 year: 2015 ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0120 article-title: Modeling of multi-phase flows and natural convection in a square cavity using an incompressible smoothed particle hydrodynamics publication-title: Int. J. Numer. Methods Heat Fluid Flow doi: 10.1108/HFF-05-2014-0161 – volume: 8 start-page: 7 issue: 1 year: 2015 ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0070 article-title: Numerical calculation of protein-ligand binding rates through solution of the Smoluchowski equation using smoothed particle hydrodynamics publication-title: BMC Biophys. doi: 10.1186/s13628-015-0021-y – volume: 97 start-page: 975 year: 2016 ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0015 article-title: A coupling numerical methodology for weakly transient conjugate heat transfer problems publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2016.02.037 – volume: 126 start-page: 1253 year: 2018 ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0215 article-title: Construction of a peridynamic model for transient advection-diffusion problems publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2018.06.075 – volume: 259 start-page: 242 year: 2014 ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0230 article-title: Smoothed particle hydrodynamics continuous boundary force method for Navier-Stokes equations subject to a Robin boundary condition publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2013.12.014 – volume: 130 start-page: 680 year: 2019 ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0035 article-title: Multiphase SPH modeling of water boiling on hydrophilic and hydrophobic surfaces publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2018.10.119 – year: 2011 ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0220 – volume: 88 start-page: 151 issue: 2 year: 2007 ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0165 article-title: Peridynamic states and constitutive modeling publication-title: J. Elast. doi: 10.1007/s10659-007-9125-1 – volume: 35 start-page: 419 issue: 4 year: 2011 ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0285 article-title: Smooth particle hydrodynamics simulations of low Reynolds number flows through porous media publication-title: Int. J. Numer. Anal. Meth. Geomech. doi: 10.1002/nag.898 – volume: 74 start-page: 695 issue: 4 year: 1976 ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0300 article-title: An experimental and theoretical study of natural convection in the annulus between horizontal concentric cylinders publication-title: J. Fluid Mech. doi: 10.1017/S0022112076002012 – volume: 78 start-page: 352 year: 2015 ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0270 article-title: Peridynamic modeling of pitting corrosion damage publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2015.02.015 – volume: 125 start-page: 1091 issue: 6 year: 2011 ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0190 article-title: Theoretical analysis of the no-slip boundary condition enforcement in SPH methods publication-title: Progr. Theoret. Phys. doi: 10.1143/PTP.125.1091 – volume: 61 start-page: 482 year: 2011 ident: 10.1016/j.ijheatmasstransfer.2019.05.054_b0260 article-title: Error estimation in smoothed particle hydrodynamics and a new scheme for second derivatives publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2010.11.028 |
SSID | ssj0017046 |
Score | 2.4535987 |
Snippet | •A new method is introduced for imposing inhomogeneous Neumann and Robin BCs in smoothed particle hydrodynamics (SPH) and peridynamics for modeling heat... Nonzero fluxes going through boundaries/interfaces are normally observed in heat transfer, which in general can be described as inhomogeneous Neumann boundary... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 948 |
SubjectTerms | Boundary conditions Computational fluid dynamics Computer simulation Conduction heating Conductive heat transfer Cracks Fluid flow Fluid mechanics Fluxes Free convection Heat transfer Inhomogeneous Neumann boundary condition Kernels Mathematical models Natural convection Numerical analysis Numerical methods Peridynamics Robin boundary condition Smooth particle hydrodynamics Smoothed particle hydrodynamics Taylor series Thermal diffusion Thermodynamics |
Title | Modeling heat transfer subject to inhomogeneous Neumann boundary conditions by smoothed particle hydrodynamics and peridynamics |
URI | https://dx.doi.org/10.1016/j.ijheatmasstransfer.2019.05.054 https://www.proquest.com/docview/2256519670 |
Volume | 139 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6iKF7EJ77JwYOXapOmTXuSZVFWF_cgit5C81hccdvF1sNe9K8708eKigdBKJSmbVIm0y8zYeYbQo7AZxDMN9YTJuWeiFjqpcIIz1grrOTcjy1uDVwPot6duHoIH-ZIt82FwbDKBvtrTK_Qumk5baR5OhmNMMcXlQsZp4IINKnKYBcStfzkbRbmwaRfJ-sgGuPTS-T4M8Zr9ISINwYztazMRIcMoSypuDxD8dtS9Q20q5XoYpWsNCYk7dRfuUbmXLZOFqtQTlNskHcsb4ZJ5hRHpe2QtHjVuOdCy5yOssd8nIPqOPD76cDhRn5GdVVh6WVKwUW2dSQX1VNajHPM0rJ00siFPk4twG5dyr6gaQa3QI_bhk1yd3F-2-15TZkFzwgZlF6gjeE2lDJ20k-k85EwhzvwcyR3Ltbw1w-ZBTFjlSsk54nThGvGIh-pmY0Ntsh8lmdum1DBh2FopebGDkVgmI4Ck0ROyNiGw9SyHXLWSlSZhoMcS2E8qzbY7En9nBOFc6L8EA6xQ5JZD5Oaj-MP73bbSVRfdEzB8vGHXvbb-VfN_14oQMUIbOFI-rv_MsgeWcarOtJwn8yXL6_uAKyfUh9W6n1IFjqX_d4Az_2b-_4HZtMOWg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6i-LiIT3ysmoMHL9UmTZv2JLIo62tPCt5C81hccdvF1sNe9K8708eKigdB6ClpkzKZfJkJM98Qcgg-g2C-sZ4wKfdExFIvFUZ4xlphJed-bPFq4LYf9e7F1UP4MEO6bS4MhlU22F9jeoXWTctJI82T8XCIOb6oXMg4FUSgSeACzQnYvljG4PhtGufBpF9n6yAc4-sL5OgzyGv4hJA3Aju1rOxEhxShLKnIPEPx21n1DbWro-hihSw3NiQ9q39zlcy4bI3MV7Gcplgn71jfDLPMKc5K2ylp8arx0oWWOR1mj_koB91x4PjTvsOb_IzqqsTSy4SCj2zrUC6qJ7QY5ZimZem4EQx9nFjA3bqWfUHTDLpAkduGDXJ_cX7X7XlNnQXPCBmUXqCN4TaUMnbST6TzkTGHO3B0JHcu1rDtB8yCnLHMFbLzxGnCNWORj9zMxgabZDbLM7dFqOCDMLRSc2MHIjBMR4FJIidkbMNBatk2OW0lqkxDQo61MJ5VG232pH6uicI1UX4Ij9gmyXSEcU3I8Ydvu-0iqi9KpuD8-MMonXb9VbPhCwWwGIExHEl_518mOSCLvbvbG3Vz2b_eJUvYU4cddshs-fLq9sAUKvV-peof-sgORQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+heat+transfer+subject+to+inhomogeneous+Neumann+boundary+conditions+by+smoothed+particle+hydrodynamics+and+peridynamics&rft.jtitle=International+journal+of+heat+and+mass+transfer&rft.au=Wang%2C+Jianqiang&rft.au=Hu%2C+Wei&rft.au=Zhang%2C+Xiaobing&rft.au=Pan%2C+Wenxiao&rft.date=2019-08-01&rft.pub=Elsevier+BV&rft.issn=0017-9310&rft.eissn=1879-2189&rft.volume=139&rft.spage=948&rft_id=info:doi/10.1016%2Fj.ijheatmasstransfer.2019.05.054&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0017-9310&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0017-9310&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0017-9310&client=summon |