Diversification of transcriptional modulation: Large-scale identification and characterization of putative alternative promoters of human genes

By analyzing 1,780,295 5′-end sequences of human full-length cDNAs derived from 164 kinds of oligo-cap cDNA libraries, we identified 269,774 independent positions of transcriptional start sites (TSSs) for 14,628 human RefSeq genes. These TSSs were clustered into 30,964 clusters that were separated f...

Full description

Saved in:
Bibliographic Details
Published inGenome Research Vol. 16; no. 1; pp. 55 - 65
Main Authors Kimura, Kouichi, Wakamatsu, Ai, Suzuki, Yutaka, Ota, Toshio, Nishikawa, Tetsuo, Yamashita, Riu, Yamamoto, Jun-ichi, Sekine, Mitsuo, Tsuritani, Katsuki, Wakaguri, Hiroyuki, Ishii, Shizuko, Sugiyama, Tomoyasu, Saito, Kaoru, Isono, Yuko, Irie, Ryotaro, Kushida, Norihiro, Yoneyama, Takahiro, Otsuka, Rie, Kanda, Katsuhiro, Yokoi, Takahide, Kondo, Hiroshi, Wagatsuma, Masako, Murakawa, Katsuji, Ishida, Shinichi, Ishibashi, Tadashi, Takahashi-Fujii, Asako, Tanase, Tomoo, Nagai, Keiichi, Kikuchi, Hisashi, Nakai, Kenta, Isogai, Takao, Sugano, Sumio
Format Journal Article
LanguageEnglish
Published United States Cold Spring Harbor Laboratory Press 01.01.2006
Subjects
Online AccessGet full text
ISSN1088-9051
1549-5469
1549-5477
DOI10.1101/gr.4039406

Cover

Loading…
Abstract By analyzing 1,780,295 5′-end sequences of human full-length cDNAs derived from 164 kinds of oligo-cap cDNA libraries, we identified 269,774 independent positions of transcriptional start sites (TSSs) for 14,628 human RefSeq genes. These TSSs were clustered into 30,964 clusters that were separated from each other by more than 500 bp and thus are very likely to constitute mutually distinct alternative promoters. To our surprise, at least 7674 (52%) human RefSeq genes were subject to regulation by putative alternative promoters (PAPs). On average, there were 3.1 PAPs per gene, with the composition of one CpG-island-containing promoter per 2.6 CpG-less promoters. In 17% of the PAP-containing loci, tissue-specific use of the PAPs was observed. The richest tissue sources of the tissue-specific PAPs were testis and brain. It was also intriguing that the PAP-containing promoters were enriched in the genes encoding signal transduction-related proteins and were rarer in the genes encoding extracellular proteins, possibly reflecting the varied functional requirement for and the restricted expression of those categories of genes, respectively. The patterns of the first exons were highly diverse as well. On average, there were 7.7 different splicing types of first exons per locus partly produced by the PAPs, suggesting that a wide variety of transcripts can be achieved by this mechanism. Our findings suggest that use of alternate promoters and consequent alternative use of first exons should play a pivotal role in generating the complexity required for the highly elaborated molecular systems in humans.
AbstractList By analyzing 1,780,295 5′-end sequences of human full-length cDNAs derived from 164 kinds of oligo-cap cDNA libraries, we identified 269,774 independent positions of transcriptional start sites (TSSs) for 14,628 human RefSeq genes. These TSSs were clustered into 30,964 clusters that were separated from each other by more than 500 bp and thus are very likely to constitute mutually distinct alternative promoters. To our surprise, at least 7674 (52%) human RefSeq genes were subject to regulation by putative alternative promoters (PAPs). On average, there were 3.1 PAPs per gene, with the composition of one CpG-island-containing promoter per 2.6 CpG-less promoters. In 17% of the PAP-containing loci, tissue-specific use of the PAPs was observed. The richest tissue sources of the tissue-specific PAPs were testis and brain. It was also intriguing that the PAP-containing promoters were enriched in the genes encoding signal transduction-related proteins and were rarer in the genes encoding extracellular proteins, possibly reflecting the varied functional requirement for and the restricted expression of those categories of genes, respectively. The patterns of the first exons were highly diverse as well. On average, there were 7.7 different splicing types of first exons per locus partly produced by the PAPs, suggesting that a wide variety of transcripts can be achieved by this mechanism. Our findings suggest that use of alternate promoters and consequent alternative use of first exons should play a pivotal role in generating the complexity required for the highly elaborated molecular systems in humans.
By analyzing 1,780,295 5'-end sequences of human full-length cDNAs derived from 164 kinds of oligo-cap cDNA libraries, we identified 269,774 independent positions of transcriptional start sites (TSSs) for 14,628 human RefSeq genes. These TSSs were clustered into 30,964 clusters that were separated from each other by more than 500 bp and thus are very likely to constitute mutually distinct alternative promoters. To our surprise, at least 7674 (52%) human RefSeq genes were subject to regulation by putative alternative promoters (PAPs). On average, there were 3.1 PAPs per gene, with the composition of one CpG-island-containing promoter per 2.6 CpG-less promoters. In 17% of the PAP-containing loci, tissue-specific use of the PAPs was observed. The richest tissue sources of the tissue-specific PAPs were testis and brain. It was also intriguing that the PAP-containing promoters were enriched in the genes encoding signal transduction-related proteins and were rarer in the genes encoding extracellular proteins, possibly reflecting the varied functional requirement for and the restricted expression of those categories of genes, respectively. The patterns of the first exons were highly diverse as well. On average, there were 7.7 different splicing types of first exons per locus partly produced by the PAPs, suggesting that a wide variety of transcripts can be achieved by this mechanism. Our findings suggest that use of alternate promoters and consequent alternative use of first exons should play a pivotal role in generating the complexity required for the highly elaborated molecular systems in humans.By analyzing 1,780,295 5'-end sequences of human full-length cDNAs derived from 164 kinds of oligo-cap cDNA libraries, we identified 269,774 independent positions of transcriptional start sites (TSSs) for 14,628 human RefSeq genes. These TSSs were clustered into 30,964 clusters that were separated from each other by more than 500 bp and thus are very likely to constitute mutually distinct alternative promoters. To our surprise, at least 7674 (52%) human RefSeq genes were subject to regulation by putative alternative promoters (PAPs). On average, there were 3.1 PAPs per gene, with the composition of one CpG-island-containing promoter per 2.6 CpG-less promoters. In 17% of the PAP-containing loci, tissue-specific use of the PAPs was observed. The richest tissue sources of the tissue-specific PAPs were testis and brain. It was also intriguing that the PAP-containing promoters were enriched in the genes encoding signal transduction-related proteins and were rarer in the genes encoding extracellular proteins, possibly reflecting the varied functional requirement for and the restricted expression of those categories of genes, respectively. The patterns of the first exons were highly diverse as well. On average, there were 7.7 different splicing types of first exons per locus partly produced by the PAPs, suggesting that a wide variety of transcripts can be achieved by this mechanism. Our findings suggest that use of alternate promoters and consequent alternative use of first exons should play a pivotal role in generating the complexity required for the highly elaborated molecular systems in humans.
Author Sugiyama, Tomoyasu
Ishida, Shinichi
Isono, Yuko
Yamashita, Riu
Takahashi-Fujii, Asako
Sekine, Mitsuo
Tsuritani, Katsuki
Murakawa, Katsuji
Yamamoto, Jun-ichi
Isogai, Takao
Nakai, Kenta
Kondo, Hiroshi
Wakaguri, Hiroyuki
Saito, Kaoru
Yoneyama, Takahiro
Kikuchi, Hisashi
Yokoi, Takahide
Nagai, Keiichi
Kanda, Katsuhiro
Wagatsuma, Masako
Otsuka, Rie
Sugano, Sumio
Ota, Toshio
Irie, Ryotaro
Kimura, Kouichi
Suzuki, Yutaka
Tanase, Tomoo
Kushida, Norihiro
Wakamatsu, Ai
Nishikawa, Tetsuo
Ishii, Shizuko
Ishibashi, Tadashi
AuthorAffiliation 4 Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Minato-ku, Tokyo, 108-8639, Japan
9 Takara Shuzo Co., Ltd., Noji-cho, Kusatsu, Shiga, 525-0055, Japan
1 Life Science Research Laboratory, Central Research Laboratory, Hitachi, Ltd., Kokubunji, Tokyo, 185-8601, Japan
2 Helix Research Institute, Kisarazu, Chiba, 292-0812, Japan
6 Genome Analysis Center, Department of Biotechnology, National Institute of Technology and Evaluation, Shibuya-ku, Tokyo, 151-0066, Japan
5 Human Genome Center, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, 108-8639, Japan
3 Reverse Proteomics Research Institute, Kisarazu, Chiba 292-0818, Japan
7 Life Science Group, Hitachi, Ltd., Kawagoe, Saitama, 350-1165, Japan
8 Hitachi Science Systems, Ltd., Kokubunji, Tokyo, 185-8601, Japan
10 Advanced Research Laboratory, Hitachi, Ltd., Kokubunji, Tokyo, 185-8601, Japan
AuthorAffiliation_xml – name: 3 Reverse Proteomics Research Institute, Kisarazu, Chiba 292-0818, Japan
– name: 10 Advanced Research Laboratory, Hitachi, Ltd., Kokubunji, Tokyo, 185-8601, Japan
– name: 4 Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Minato-ku, Tokyo, 108-8639, Japan
– name: 6 Genome Analysis Center, Department of Biotechnology, National Institute of Technology and Evaluation, Shibuya-ku, Tokyo, 151-0066, Japan
– name: 9 Takara Shuzo Co., Ltd., Noji-cho, Kusatsu, Shiga, 525-0055, Japan
– name: 7 Life Science Group, Hitachi, Ltd., Kawagoe, Saitama, 350-1165, Japan
– name: 8 Hitachi Science Systems, Ltd., Kokubunji, Tokyo, 185-8601, Japan
– name: 1 Life Science Research Laboratory, Central Research Laboratory, Hitachi, Ltd., Kokubunji, Tokyo, 185-8601, Japan
– name: 2 Helix Research Institute, Kisarazu, Chiba, 292-0812, Japan
– name: 5 Human Genome Center, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, 108-8639, Japan
Author_xml – sequence: 1
  givenname: Kouichi
  surname: Kimura
  fullname: Kimura, Kouichi
– sequence: 2
  givenname: Ai
  surname: Wakamatsu
  fullname: Wakamatsu, Ai
– sequence: 3
  givenname: Yutaka
  surname: Suzuki
  fullname: Suzuki, Yutaka
– sequence: 4
  givenname: Toshio
  surname: Ota
  fullname: Ota, Toshio
– sequence: 5
  givenname: Tetsuo
  surname: Nishikawa
  fullname: Nishikawa, Tetsuo
– sequence: 6
  givenname: Riu
  surname: Yamashita
  fullname: Yamashita, Riu
– sequence: 7
  givenname: Jun-ichi
  surname: Yamamoto
  fullname: Yamamoto, Jun-ichi
– sequence: 8
  givenname: Mitsuo
  surname: Sekine
  fullname: Sekine, Mitsuo
– sequence: 9
  givenname: Katsuki
  surname: Tsuritani
  fullname: Tsuritani, Katsuki
– sequence: 10
  givenname: Hiroyuki
  surname: Wakaguri
  fullname: Wakaguri, Hiroyuki
– sequence: 11
  givenname: Shizuko
  surname: Ishii
  fullname: Ishii, Shizuko
– sequence: 12
  givenname: Tomoyasu
  surname: Sugiyama
  fullname: Sugiyama, Tomoyasu
– sequence: 13
  givenname: Kaoru
  surname: Saito
  fullname: Saito, Kaoru
– sequence: 14
  givenname: Yuko
  surname: Isono
  fullname: Isono, Yuko
– sequence: 15
  givenname: Ryotaro
  surname: Irie
  fullname: Irie, Ryotaro
– sequence: 16
  givenname: Norihiro
  surname: Kushida
  fullname: Kushida, Norihiro
– sequence: 17
  givenname: Takahiro
  surname: Yoneyama
  fullname: Yoneyama, Takahiro
– sequence: 18
  givenname: Rie
  surname: Otsuka
  fullname: Otsuka, Rie
– sequence: 19
  givenname: Katsuhiro
  surname: Kanda
  fullname: Kanda, Katsuhiro
– sequence: 20
  givenname: Takahide
  surname: Yokoi
  fullname: Yokoi, Takahide
– sequence: 21
  givenname: Hiroshi
  surname: Kondo
  fullname: Kondo, Hiroshi
– sequence: 22
  givenname: Masako
  surname: Wagatsuma
  fullname: Wagatsuma, Masako
– sequence: 23
  givenname: Katsuji
  surname: Murakawa
  fullname: Murakawa, Katsuji
– sequence: 24
  givenname: Shinichi
  surname: Ishida
  fullname: Ishida, Shinichi
– sequence: 25
  givenname: Tadashi
  surname: Ishibashi
  fullname: Ishibashi, Tadashi
– sequence: 26
  givenname: Asako
  surname: Takahashi-Fujii
  fullname: Takahashi-Fujii, Asako
– sequence: 27
  givenname: Tomoo
  surname: Tanase
  fullname: Tanase, Tomoo
– sequence: 28
  givenname: Keiichi
  surname: Nagai
  fullname: Nagai, Keiichi
– sequence: 29
  givenname: Hisashi
  surname: Kikuchi
  fullname: Kikuchi, Hisashi
– sequence: 30
  givenname: Kenta
  surname: Nakai
  fullname: Nakai, Kenta
– sequence: 31
  givenname: Takao
  surname: Isogai
  fullname: Isogai, Takao
– sequence: 32
  givenname: Sumio
  surname: Sugano
  fullname: Sugano, Sumio
BackLink https://www.ncbi.nlm.nih.gov/pubmed/16344560$$D View this record in MEDLINE/PubMed
BookMark eNqFUstu1DAUtVARfcCGD0BZsUBKaye2Y7NAqsqjlUZiA2vrjnOdMUrsYCcjwU_wy2Q6w0BhwcrHPg8d2_ecnIQYkJDnjF4yRtlVly45rTWn8hE5Y4LrUnCpTxZMlSo1FeyUnOf8hVJac6WekFMma86FpGfkx1u_xZS98xYmH0MRXTElCNkmP-4OoC-G2M79Pfu6WEHqsMwWeix8i2H67YTQFnYDCeyEyX8_xo3ztOAtFtAvRNjjMcUhLtu8U2zmAULRYcD8lDx20Gd8dlgvyOf37z7d3Jarjx_ubq5XpeVNPZW1FqKiDqVzylYgKrXmzZrWTCvQrXbQKIcOoFXMabRrR50SqLhsq1ZL29QX5M0-d5zXA7Z2uUmC3ozJD5C-mQjePGSC35gubg2rhWSVXgJeHgJS_Dpjnszgs8W-h4BxzkY2knLBq_8KWcObSohd4os_Kx27_PqsRUD3AptizgmdsX66f-aloe8No2Y3D6ZL5jAPi-XVX5Zj6r_in_xEu-M
CitedBy_id crossref_primary_10_1093_nar_gkn137
crossref_primary_10_1101_gr_110254_110
crossref_primary_10_1007_s00439_024_02653_6
crossref_primary_10_1007_s10709_008_9323_1
crossref_primary_10_4252_wjsc_v13_i10_1394
crossref_primary_10_1101_gr_080622_108
crossref_primary_10_1182_blood_2008_05_160325
crossref_primary_10_1016_j_bcp_2010_06_037
crossref_primary_10_1093_hmg_ddm041
crossref_primary_10_1016_j_mehy_2011_01_019
crossref_primary_10_1124_jpet_109_150870
crossref_primary_10_1093_nar_gkr731
crossref_primary_10_1016_j_bcp_2024_116543
crossref_primary_10_1016_j_canlet_2011_12_009
crossref_primary_10_1093_ibd_izy119
crossref_primary_10_1186_s13072_017_0136_2
crossref_primary_10_1093_nar_gkr173
crossref_primary_10_1080_14712598_2021_1862082
crossref_primary_10_1111_j_1365_2052_2008_01765_x
crossref_primary_10_1016_j_placenta_2008_04_002
crossref_primary_10_1093_nar_gkl507
crossref_primary_10_1186_s13073_021_00884_0
crossref_primary_10_1146_annurev_virology_091919_072841
crossref_primary_10_1186_1471_2229_7_55
crossref_primary_10_1093_nar_gkr1005
crossref_primary_10_1007_s00439_011_0949_1
crossref_primary_10_1136_bmjophth_2024_001906
crossref_primary_10_15252_msb_20166941
crossref_primary_10_1093_molbev_msm045
crossref_primary_10_1007_s12079_007_0003_1
crossref_primary_10_1038_s41598_023_47055_2
crossref_primary_10_1371_journal_pone_0185678
crossref_primary_10_1016_j_heares_2020_108135
crossref_primary_10_1093_nar_gkq775
crossref_primary_10_1186_s12864_021_08039_6
crossref_primary_10_3389_fnins_2022_868556
crossref_primary_10_4161_rna_29441
crossref_primary_10_1186_gb_2009_10_4_r38
crossref_primary_10_1038_nrg2636
crossref_primary_10_1104_pp_108_131656
crossref_primary_10_1007_s12035_024_04293_3
crossref_primary_10_1093_dnares_dsn010
crossref_primary_10_1093_jjco_hyac175
crossref_primary_10_1016_j_bioorg_2021_104627
crossref_primary_10_1007_s10719_009_9260_y
crossref_primary_10_1007_s00429_021_02359_9
crossref_primary_10_2337_dc13_2835
crossref_primary_10_1038_tp_2016_237
crossref_primary_10_1186_1471_2164_9_112
crossref_primary_10_1152_ajpcell_00166_2018
crossref_primary_10_1016_j_yexcr_2021_112889
crossref_primary_10_3390_cells11203201
crossref_primary_10_1074_jbc_M113_491993
crossref_primary_10_1111_febs_16592
crossref_primary_10_1093_dnares_dsr025
crossref_primary_10_1016_j_gene_2021_145523
crossref_primary_10_1038_ejhg_2010_212
crossref_primary_10_1016_j_matbio_2013_12_005
crossref_primary_10_1186_gb_2007_8_8_r159
crossref_primary_10_1038_s41598_022_16153_y
crossref_primary_10_1371_journal_pgen_0020171
crossref_primary_10_1534_genetics_116_193334
crossref_primary_10_1038_s41588_024_02053_6
crossref_primary_10_1002_ijc_30762
crossref_primary_10_1038_tp_2012_57
crossref_primary_10_1186_1471_2164_9_349
crossref_primary_10_1038_ncomms7793
crossref_primary_10_1134_S2079059712030070
crossref_primary_10_1016_j_ceb_2006_04_002
crossref_primary_10_1016_j_yexmp_2021_104638
crossref_primary_10_1128_MCB_00670_09
crossref_primary_10_1016_j_bbrc_2016_09_018
crossref_primary_10_1038_s42003_021_02340_6
crossref_primary_10_1016_j_ygeno_2007_07_009
crossref_primary_10_1038_s41467_018_07969_2
crossref_primary_10_1074_jbc_M109_030726
crossref_primary_10_1371_journal_pone_0011682
crossref_primary_10_1007_s11033_009_9751_8
crossref_primary_10_1016_j_gene_2007_09_004
crossref_primary_10_1038_srep10434
crossref_primary_10_1186_1471_2164_15_118
crossref_primary_10_1128_MCB_05716_11
crossref_primary_10_1134_S0026893308030047
crossref_primary_10_1111_acer_12060
crossref_primary_10_15252_embj_201797138
crossref_primary_10_1016_j_gene_2013_12_038
crossref_primary_10_1007_s13258_016_0435_1
crossref_primary_10_7717_peerj_8394
crossref_primary_10_1002_pmic_200900321
crossref_primary_10_1016_j_bbrc_2012_10_116
crossref_primary_10_1016_j_gene_2007_04_013
crossref_primary_10_1016_j_molcel_2021_03_013
crossref_primary_10_1042_BJ20100350
crossref_primary_10_1038_jhg_2012_115
crossref_primary_10_1038_s41392_022_01098_5
crossref_primary_10_1371_journal_pone_0023409
crossref_primary_10_4252_wjsc_v14_i12_822
crossref_primary_10_1534_g3_117_042622
crossref_primary_10_2133_dmpk_DMPK_13_RG_135
crossref_primary_10_1101_gr_120535_111
crossref_primary_10_1074_jbc_R700012200
crossref_primary_10_1093_nar_gkr1188
crossref_primary_10_3390_ijms21218055
crossref_primary_10_7554_eLife_27417
crossref_primary_10_1007_s00251_006_0165_7
crossref_primary_10_1097_MAO_0b013e31828d6501
crossref_primary_10_1080_15476286_2025_2483001
crossref_primary_10_1073_pnas_0802636105
crossref_primary_10_1007_s10528_021_10175_3
crossref_primary_10_1016_j_bbagrm_2013_08_001
crossref_primary_10_1096_fj_202401207R
crossref_primary_10_3390_jcm9041035
crossref_primary_10_1038_srep39933
crossref_primary_10_1007_s00018_011_0844_x
crossref_primary_10_1016_j_gene_2013_03_114
crossref_primary_10_1371_journal_pone_0002712
crossref_primary_10_1039_C0MB00254B
crossref_primary_10_1016_j_neuroscience_2009_12_047
crossref_primary_10_3389_fgene_2022_872026
crossref_primary_10_1093_jxb_ers081
crossref_primary_10_1186_1471_2164_13_147
crossref_primary_10_3892_ijo_2015_3310
crossref_primary_10_1016_j_jpsychires_2012_08_008
crossref_primary_10_1371_journal_pone_0002377
crossref_primary_10_1186_gb_2009_10_1_r3
crossref_primary_10_7554_eLife_00068
crossref_primary_10_1111_j_1755_148X_2008_00473_x
crossref_primary_10_14814_phy2_13543
crossref_primary_10_1038_nrg2026
crossref_primary_10_1146_annurev_biochem_080111_092106
crossref_primary_10_1007_s10059_009_0062_7
crossref_primary_10_1111_mmi_13078
crossref_primary_10_1038_nprot_2007_242
crossref_primary_10_1007_s13353_011_0050_4
crossref_primary_10_1042_BSR20171668
crossref_primary_10_1093_nar_gkp469
crossref_primary_10_1093_hmg_ddr263
crossref_primary_10_1007_s00294_017_0793_5
crossref_primary_10_1111_jnc_13749
crossref_primary_10_1186_1471_2164_11_206
crossref_primary_10_1158_0008_5472_CAN_07_5590
crossref_primary_10_1038_s41598_024_68439_y
crossref_primary_10_1016_j_bbrc_2014_08_063
crossref_primary_10_1134_S0026893309040025
crossref_primary_10_1002_mc_22359
crossref_primary_10_1371_journal_pone_0071578
crossref_primary_10_1016_j_bbrc_2015_12_084
crossref_primary_10_1111_j_1365_2443_2008_01197_x
crossref_primary_10_1189_jlb_0507273
crossref_primary_10_1016_j_bbadis_2015_10_008
crossref_primary_10_1101_gr_7128207
crossref_primary_10_15252_embr_201745471
crossref_primary_10_1016_j_molcel_2022_04_019
crossref_primary_10_1038_s41594_025_01492_x
crossref_primary_10_1080_21655979_2021_1944019
crossref_primary_10_1093_nar_gkn897
crossref_primary_10_1158_0008_5472_CAN_08_3347
crossref_primary_10_1186_s13046_017_0508_2
crossref_primary_10_1186_1471_2350_12_167
crossref_primary_10_1371_journal_pone_0028861
crossref_primary_10_1007_s00335_011_9341_7
crossref_primary_10_1016_j_ymgme_2019_01_018
crossref_primary_10_1371_journal_pone_0160765
crossref_primary_10_1007_s00438_017_1397_y
crossref_primary_10_1016_j_ygeno_2010_01_004
crossref_primary_10_1093_nar_gkq1171
crossref_primary_10_1371_journal_pone_0040194
crossref_primary_10_1093_nar_gkl592
crossref_primary_10_1134_S002689331501015X
crossref_primary_10_1016_j_braindev_2012_05_012
crossref_primary_10_1093_nar_gkn1082
crossref_primary_10_1038_s41598_019_39011_w
crossref_primary_10_1101_gr_6030107
crossref_primary_10_1016_j_cels_2021_12_002
crossref_primary_10_3390_ijms21217851
crossref_primary_10_1101_gr_6499807
crossref_primary_10_1371_journal_pone_0165420
crossref_primary_10_1002_kjm2_12773
crossref_primary_10_1093_dnares_dsp022
crossref_primary_10_1016_j_neurobiolaging_2013_04_028
crossref_primary_10_1016_j_aquatox_2021_105788
crossref_primary_10_1021_acs_biochem_3c00097
crossref_primary_10_1016_j_gene_2006_08_002
crossref_primary_10_1002_ijc_31554
crossref_primary_10_1016_j_gene_2015_01_039
crossref_primary_10_1186_1471_2148_10_122
crossref_primary_10_1016_j_ygeno_2008_11_003
crossref_primary_10_1038_s41598_020_73248_0
crossref_primary_10_1080_00498254_2019_1626029
crossref_primary_10_1101_gr_5872707
crossref_primary_10_1074_mcp_M600297_MCP200
crossref_primary_10_1097_LGT_0000000000000482
crossref_primary_10_1186_s12863_017_0488_4
crossref_primary_10_1371_journal_pone_0012274
crossref_primary_10_1007_s10549_015_3395_2
crossref_primary_10_1016_j_ygeno_2006_07_006
crossref_primary_10_1371_journal_pone_0126966
crossref_primary_10_1158_0008_5472_CAN_09_3988
crossref_primary_10_1186_s12863_015_0274_0
crossref_primary_10_1111_acer_13890
crossref_primary_10_1007_s00439_009_0723_9
crossref_primary_10_1016_j_tibtech_2011_06_003
crossref_primary_10_1210_endocr_bqab237
crossref_primary_10_3390_ijms20133279
crossref_primary_10_1038_nmeth_1273
crossref_primary_10_4049_jimmunol_2100398
crossref_primary_10_1155_2022_6004350
crossref_primary_10_1093_nar_gkn872
crossref_primary_10_1186_s12864_017_3834_z
crossref_primary_10_1016_j_gene_2011_04_010
crossref_primary_10_1371_journal_pone_0107674
crossref_primary_10_1016_j_ygeno_2009_01_008
crossref_primary_10_1089_jir_2014_0115
crossref_primary_10_1038_sj_emboj_7601866
crossref_primary_10_1186_s12885_022_09186_z
crossref_primary_10_1016_j_lfs_2022_121336
crossref_primary_10_1053_j_gastro_2017_02_017
crossref_primary_10_1371_journal_pgen_1000220
crossref_primary_10_3390_jof8101044
crossref_primary_10_1016_j_tig_2008_01_008
crossref_primary_10_1093_glycob_cws057
crossref_primary_10_1371_journal_pbio_3000197
crossref_primary_10_1096_fj_201902148R
crossref_primary_10_3390_reprodmed5030013
crossref_primary_10_1101_gr_5660607
crossref_primary_10_1002_1873_3468_14477
crossref_primary_10_1242_jcs_258523
crossref_primary_10_1038_nature09165
crossref_primary_10_1101_gr_100271_109
crossref_primary_10_1038_s41388_018_0518_3
crossref_primary_10_3390_plants12051000
crossref_primary_10_1002_2211_5463_12331
crossref_primary_10_3892_mmr_2017_8263
crossref_primary_10_3389_fnmol_2017_00428
crossref_primary_10_1371_journal_pone_0017816
crossref_primary_10_7314_APJCP_2014_15_21_9439
crossref_primary_10_1186_gb_2009_10_7_r73
crossref_primary_10_1016_j_tig_2022_05_002
crossref_primary_10_2174_1386207325666220427121619
crossref_primary_10_1016_j_mcp_2016_08_009
crossref_primary_10_3390_biomedicines9050582
crossref_primary_10_1002_mds_26820
crossref_primary_10_1128_MCB_01658_06
crossref_primary_10_1002_jcb_25222
crossref_primary_10_3390_ijms14036487
crossref_primary_10_1016_j_gene_2009_06_020
crossref_primary_10_1186_1471_2105_14_26
crossref_primary_10_1371_journal_pone_0119651
crossref_primary_10_3389_fgene_2015_00196
crossref_primary_10_1002_humu_22951
crossref_primary_10_1371_journal_pone_0018475
crossref_primary_10_1186_1471_2199_11_81
crossref_primary_10_18632_oncotarget_17553
crossref_primary_10_1093_molbev_msn071
crossref_primary_10_1111_age_12007
crossref_primary_10_1371_journal_pone_0037012
crossref_primary_10_1038_s41467_019_08949_w
crossref_primary_10_1101_gr_6831208
crossref_primary_10_3389_fnmol_2022_918852
crossref_primary_10_1042_BJ20111765
crossref_primary_10_1016_j_gde_2007_08_009
crossref_primary_10_1002_mco2_70134
crossref_primary_10_1016_j_ab_2013_02_022
crossref_primary_10_1016_j_bbagrm_2021_194746
crossref_primary_10_1273_cbij_8_1
crossref_primary_10_1186_gb_2006_7_12_r118
crossref_primary_10_1186_gb_2009_10_1_r10
crossref_primary_10_1080_15476286_2022_2091306
crossref_primary_10_1161_CIRCHEARTFAILURE_120_006926
crossref_primary_10_1261_rna_035865_112
crossref_primary_10_1038_s41598_023_50390_z
crossref_primary_10_1186_gb_2006_7_s1_s12
crossref_primary_10_1089_cbr_2018_2716
crossref_primary_10_1373_clinchem_2008_120931
crossref_primary_10_1016_j_bbalip_2006_09_014
crossref_primary_10_1074_jbc_M109_008417
crossref_primary_10_1089_dna_2012_1698
crossref_primary_10_1261_rna_1705309
crossref_primary_10_1016_j_gendis_2021_03_009
crossref_primary_10_1016_j_neuroimage_2010_02_068
crossref_primary_10_3390_biom10101442
crossref_primary_10_1016_j_jaci_2012_09_021
crossref_primary_10_1101_gr_5031006
crossref_primary_10_1007_s12192_016_0668_6
crossref_primary_10_1073_pnas_0903390106
crossref_primary_10_1093_jb_mvac077
crossref_primary_10_3389_fbioe_2019_00407
crossref_primary_10_1111_age_12182
crossref_primary_10_1093_dnares_dsm006
crossref_primary_10_1111_j_1471_4159_2010_06662_x
crossref_primary_10_1186_1471_2164_12_505
crossref_primary_10_1002_jez_b_21421
crossref_primary_10_1186_s40246_022_00399_8
crossref_primary_10_1002_ajmg_a_35783
crossref_primary_10_1016_j_febslet_2010_08_024
crossref_primary_10_1074_jbc_M607246200
crossref_primary_10_1111_tan_15810
crossref_primary_10_1038_s41388_024_03247_2
crossref_primary_10_1016_j_ydbio_2009_11_035
crossref_primary_10_1097_CJI_0b013e3181ad4092
crossref_primary_10_1186_1471_2350_10_113
crossref_primary_10_1016_j_pharmthera_2012_08_005
crossref_primary_10_1093_nar_gkn677
crossref_primary_10_1016_j_bbagrm_2018_01_002
crossref_primary_10_1111_j_1745_7262_2008_00323_x
crossref_primary_10_1158_0008_5472_CAN_08_1942
crossref_primary_10_1016_j_brainresbull_2022_06_012
crossref_primary_10_1016_j_yexcr_2009_05_011
crossref_primary_10_1101_gr_6654808
crossref_primary_10_1371_journal_pbio_3002724
crossref_primary_10_1371_journal_pone_0014514
crossref_primary_10_1093_nar_gkr355
crossref_primary_10_15252_embr_202050799
crossref_primary_10_1186_s13046_020_01739_z
crossref_primary_10_1534_g3_116_035766
crossref_primary_10_1002_bies_20468
crossref_primary_10_1038_s41467_023_43027_2
crossref_primary_10_1038_s41598_022_17266_0
crossref_primary_10_1093_dnares_dsl005
crossref_primary_10_1371_journal_pone_0022138
crossref_primary_10_1016_j_bbagrm_2015_11_003
crossref_primary_10_1371_journal_pone_0188001
crossref_primary_10_1038_emboj_2012_343
crossref_primary_10_1111_imr_12242
crossref_primary_10_1016_j_gene_2006_09_029
crossref_primary_10_1002_stem_2362
crossref_primary_10_1101_gr_6018607
crossref_primary_10_1016_j_omto_2020_03_017
crossref_primary_10_1093_nar_gkp066
crossref_primary_10_1016_j_gene_2010_06_011
crossref_primary_10_1007_s13577_023_00967_7
crossref_primary_10_1111_j_1742_4658_2009_07273_x
crossref_primary_10_1128_MCB_00654_12
crossref_primary_10_3390_biomedicines11061674
crossref_primary_10_1007_s00441_013_1736_1
crossref_primary_10_4049_jimmunol_1402166
crossref_primary_10_1007_s00441_006_0266_5
crossref_primary_10_1002_gcc_22091
crossref_primary_10_1186_1471_2164_9_152
crossref_primary_10_3389_fonc_2021_780266
crossref_primary_10_1016_j_bbcan_2013_04_006
crossref_primary_10_1016_j_neurobiolaging_2018_06_021
crossref_primary_10_1016_j_cell_2006_12_048
crossref_primary_10_1093_nar_gkm901
crossref_primary_10_1242_bio_012831
crossref_primary_10_1371_journal_pone_0038380
crossref_primary_10_1007_s11262_011_0698_1
crossref_primary_10_1016_j_gene_2010_12_013
crossref_primary_10_1038_s41419_024_07070_1
crossref_primary_10_1074_jbc_M705095200
crossref_primary_10_1093_nar_gkae1162
crossref_primary_10_1093_nar_gkae1160
Cites_doi 10.1038/420515a
10.1038/nature01266
10.1038/35057062
10.1038/sj.onc.1206956
10.1016/S0168-9525(00)02024-2
10.1371/journal.pbio.0020162
10.1016/S0092-8674(00)00128-8
10.1126/science.274.5287.546
10.1093/nar/gki100
10.1038/ng1285
10.1126/science.287.5461.2185
10.1093/nar/gkh036
10.1093/nar/gkg029
10.1038/nbt998
10.1146/annurev.genet.32.1.279
10.1038/76115
10.1038/ng0102-13
10.1093/nar/gkh076
10.1093/embo-reports/kve085
10.1016/S0959-437X(00)00130-1
10.1093/nar/gni052
10.1101/gr.GR-1640R
10.1093/nar/gki476
10.1038/nature03441
10.1124/mol.63.6.1256
10.1126/science.282.5396.2012
10.1101/gr.3308405
10.1016/j.gene.2005.01.012
10.1186/1475-2867-5-4
10.1101/gr.1017303
10.1016/j.tig.2003.09.014
10.1101/gr.3455305
10.1126/science.1090005
10.1074/jbc.M200280200
10.1016/S0959-437X(00)00146-5
10.1038/nature02538
10.1101/gr.982903
10.1093/nar/gkh122
10.1126/science.1105136
10.1073/pnas.2136655100
10.1016/S0378-1119(97)00411-3
10.1093/nar/gni139
10.1038/nature03001
ContentType Journal Article
Copyright Copyright © 2006, Cold Spring Harbor Laboratory Press
Copyright_xml – notice: Copyright © 2006, Cold Spring Harbor Laboratory Press
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TM
8FD
FR3
P64
RC3
7X8
5PM
DOI 10.1101/gr.4039406
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Nucleic Acids Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Engineering Research Database
Technology Research Database
Nucleic Acids Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE

Genetics Abstracts
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
Biology
EISSN 1549-5469
1549-5477
EndPage 65
ExternalDocumentID PMC1356129
16344560
10_1101_gr_4039406
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Intramural NIH HHS
  grantid: Z99 DA999999
GroupedDBID ---
.GJ
18M
29H
2WC
39C
4.4
53G
5GY
5RE
5VS
AAFWJ
AAYOK
AAYXX
AAZTW
ABDIX
ABDNZ
ACGFO
ACLKE
ACYGS
ADBBV
ADNWM
AEILP
AENEX
AHPUY
AI.
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BTFSW
C1A
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HYE
IH2
K-O
KQ8
MV1
R.V
RCX
RHI
RNS
RPM
RXW
SJN
TAE
TR2
VH1
W8F
WOQ
YKV
ZCG
ZGI
ZXP
CGR
CUY
CVF
ECM
EIF
NPM
7TM
8FD
FR3
P64
RC3
7X8
-DZ
-~X
.-4
.55
0VX
5PM
85S
ABCQX
ACNCT
ADIYS
ADXHL
AETEA
AFFNX
H~9
L7B
MVM
N9A
OK1
P2P
TN5
UHB
WH7
X7M
XJT
XSW
YBU
YHG
YSK
YYP
ZY4
ID FETCH-LOGICAL-c473t-395520fe6ff8c2a528b47b03198a9d9fa78fefaad81f9ecbf0f85e846d2d96c73
ISSN 1088-9051
IngestDate Thu Aug 21 14:12:47 EDT 2025
Thu Sep 04 16:50:25 EDT 2025
Fri Sep 05 06:24:26 EDT 2025
Fri May 30 11:00:37 EDT 2025
Thu Apr 24 22:56:12 EDT 2025
Tue Jul 01 02:20:29 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c473t-395520fe6ff8c2a528b47b03198a9d9fa78fefaad81f9ecbf0f85e846d2d96c73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Present Address: School of Bionics, Tokyo University of Technology, Hachioji, Tokyo, 192-0982, Japan
Present Address: Tokyo Research Laboratories, Kyowa Hakko Kogyo Co., Ltd., Machida, Tokyo, 194-8533, Japan
Present Address: Takara Bio Inc., Otsu, Shiga, 520-2193, Japan
Corresponding author. E-mail ysuzuki@hgc.jp ; fax +81 4 7136 3607.
Article published online ahead of print. Article and publication date are at http://www.genome.org/cgi/doi/10.1101/gr.4039406.
OpenAccessLink https://genome.cshlp.org/content/16/1/55.full.pdf
PMID 16344560
PQID 17472559
PQPubID 23462
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_1356129
proquest_miscellaneous_67604542
proquest_miscellaneous_17472559
pubmed_primary_16344560
crossref_citationtrail_10_1101_gr_4039406
crossref_primary_10_1101_gr_4039406
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2006-01-01
PublicationDateYYYYMMDD 2006-01-01
PublicationDate_xml – month: 01
  year: 2006
  text: 2006-01-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Genome Research
PublicationTitleAlternate Genome Res
PublicationYear 2006
Publisher Cold Spring Harbor Laboratory Press
Publisher_xml – name: Cold Spring Harbor Laboratory Press
References (2021111811011855000_16.1.55.35) 2003; 221
2021111811011855000_16.1.55.29
2021111811011855000_16.1.55.28
2021111811011855000_16.1.55.27
2021111811011855000_16.1.55.26
2021111811011855000_16.1.55.25
2021111811011855000_16.1.55.24
2021111811011855000_16.1.55.23
2021111811011855000_16.1.55.22
2021111811011855000_16.1.55.21
2021111811011855000_16.1.55.1
2021111811011855000_16.1.55.20
2021111811011855000_16.1.55.2
2021111811011855000_16.1.55.3
2021111811011855000_16.1.55.4
2021111811011855000_16.1.55.5
2021111811011855000_16.1.55.6
2021111811011855000_16.1.55.7
2021111811011855000_16.1.55.8
(2021111811011855000_16.1.55.42) 2004; 4
2021111811011855000_16.1.55.9
2021111811011855000_16.1.55.19
2021111811011855000_16.1.55.18
2021111811011855000_16.1.55.17
2021111811011855000_16.1.55.16
2021111811011855000_16.1.55.15
2021111811011855000_16.1.55.14
(2021111811011855000_16.1.55.37) 2001; 2
2021111811011855000_16.1.55.13
2021111811011855000_16.1.55.12
2021111811011855000_16.1.55.11
2021111811011855000_16.1.55.55
2021111811011855000_16.1.55.10
2021111811011855000_16.1.55.54
2021111811011855000_16.1.55.53
2021111811011855000_16.1.55.52
2021111811011855000_16.1.55.49
2021111811011855000_16.1.55.48
2021111811011855000_16.1.55.47
2021111811011855000_16.1.55.46
2021111811011855000_16.1.55.45
2021111811011855000_16.1.55.44
2021111811011855000_16.1.55.43
2021111811011855000_16.1.55.41
2021111811011855000_16.1.55.51
2021111811011855000_16.1.55.50
2021111811011855000_16.1.55.39
2021111811011855000_16.1.55.38
2021111811011855000_16.1.55.36
2021111811011855000_16.1.55.34
2021111811011855000_16.1.55.33
2021111811011855000_16.1.55.32
2021111811011855000_16.1.55.31
2021111811011855000_16.1.55.30
2021111811011855000_16.1.55.40
References_xml – ident: 2021111811011855000_16.1.55.3
  doi: 10.1038/420515a
– ident: 2021111811011855000_16.1.55.29
  doi: 10.1038/nature01266
– ident: 2021111811011855000_16.1.55.19
  doi: 10.1038/35057062
– ident: 2021111811011855000_16.1.55.25
  doi: 10.1038/sj.onc.1206956
– ident: 2021111811011855000_16.1.55.32
  doi: 10.1016/S0168-9525(00)02024-2
– ident: 2021111811011855000_16.1.55.13
  doi: 10.1371/journal.pbio.0020162
– ident: 2021111811011855000_16.1.55.2
  doi: 10.1016/S0092-8674(00)00128-8
– ident: 2021111811011855000_16.1.55.9
  doi: 10.1126/science.274.5287.546
– ident: 2021111811011855000_16.1.55.47
– ident: 2021111811011855000_16.1.55.12
  doi: 10.1093/nar/gki100
– ident: 2021111811011855000_16.1.55.30
  doi: 10.1038/ng1285
– ident: 2021111811011855000_16.1.55.53
– ident: 2021111811011855000_16.1.55.1
  doi: 10.1126/science.287.5461.2185
– ident: 2021111811011855000_16.1.55.10
  doi: 10.1093/nar/gkh036
– ident: 2021111811011855000_16.1.55.21
  doi: 10.1093/nar/gkg029
– ident: 2021111811011855000_16.1.55.11
  doi: 10.1038/nbt998
– ident: 2021111811011855000_16.1.55.22
  doi: 10.1146/annurev.genet.32.1.279
– ident: 2021111811011855000_16.1.55.7
  doi: 10.1038/76115
– ident: 2021111811011855000_16.1.55.28
  doi: 10.1038/ng0102-13
– ident: 2021111811011855000_16.1.55.39
  doi: 10.1093/nar/gkh076
– volume: 2
  start-page: 388
  year: 2001
  ident: 2021111811011855000_16.1.55.37
  publication-title: EMBO Rep.
  doi: 10.1093/embo-reports/kve085
– ident: 2021111811011855000_16.1.55.46
– ident: 2021111811011855000_16.1.55.40
  doi: 10.1016/S0959-437X(00)00130-1
– volume: 221
  start-page: 73
  year: 2003
  ident: 2021111811011855000_16.1.55.35
  publication-title: Methods Mol. Biol.
– ident: 2021111811011855000_16.1.55.24
  doi: 10.1093/nar/gni052
– ident: 2021111811011855000_16.1.55.38
  doi: 10.1101/gr.GR-1640R
– ident: 2021111811011855000_16.1.55.31
  doi: 10.1093/nar/gki476
– ident: 2021111811011855000_16.1.55.43
  doi: 10.1038/nature03441
– ident: 2021111811011855000_16.1.55.8
  doi: 10.1124/mol.63.6.1256
– ident: 2021111811011855000_16.1.55.52
– ident: 2021111811011855000_16.1.55.4
  doi: 10.1126/science.282.5396.2012
– ident: 2021111811011855000_16.1.55.5
  doi: 10.1101/gr.3308405
– ident: 2021111811011855000_16.1.55.44
  doi: 10.1016/j.gene.2005.01.012
– ident: 2021111811011855000_16.1.55.15
  doi: 10.1186/1475-2867-5-4
– ident: 2021111811011855000_16.1.55.49
– ident: 2021111811011855000_16.1.55.45
  doi: 10.1101/gr.1017303
– ident: 2021111811011855000_16.1.55.20
  doi: 10.1016/j.tig.2003.09.014
– ident: 2021111811011855000_16.1.55.16
  doi: 10.1101/gr.3455305
– ident: 2021111811011855000_16.1.55.51
– ident: 2021111811011855000_16.1.55.17
  doi: 10.1126/science.1090005
– ident: 2021111811011855000_16.1.55.41
  doi: 10.1074/jbc.M200280200
– ident: 2021111811011855000_16.1.55.55
– ident: 2021111811011855000_16.1.55.23
  doi: 10.1016/S0959-437X(00)00146-5
– ident: 2021111811011855000_16.1.55.26
  doi: 10.1038/nature02538
– ident: 2021111811011855000_16.1.55.18
  doi: 10.1101/gr.982903
– ident: 2021111811011855000_16.1.55.33
  doi: 10.1093/nar/gkh122
– ident: 2021111811011855000_16.1.55.6
  doi: 10.1126/science.1105136
– ident: 2021111811011855000_16.1.55.48
– ident: 2021111811011855000_16.1.55.34
  doi: 10.1073/pnas.2136655100
– ident: 2021111811011855000_16.1.55.36
  doi: 10.1016/S0378-1119(97)00411-3
– ident: 2021111811011855000_16.1.55.50
– ident: 2021111811011855000_16.1.55.27
  doi: 10.1093/nar/gni139
– volume: 4
  start-page: 55
  year: 2004
  ident: 2021111811011855000_16.1.55.42
  publication-title: In Silico Biol.
– ident: 2021111811011855000_16.1.55.14
  doi: 10.1038/nature03001
– ident: 2021111811011855000_16.1.55.54
SSID ssj0003488
ssj0006066
Score 2.3905234
Snippet By analyzing 1,780,295 5′-end sequences of human full-length cDNAs derived from 164 kinds of oligo-cap cDNA libraries, we identified 269,774 independent...
By analyzing 1,780,295 5'-end sequences of human full-length cDNAs derived from 164 kinds of oligo-cap cDNA libraries, we identified 269,774 independent...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 55
SubjectTerms Base Sequence
CpG Islands - genetics
Exons - genetics
Gene Library
Humans
Letters
Molecular Sequence Data
Multigene Family - genetics
Organ Specificity
Promoter Regions, Genetic - genetics
Quantitative Trait Loci - genetics
Signal Transduction - genetics
Transcription, Genetic - genetics
Title Diversification of transcriptional modulation: Large-scale identification and characterization of putative alternative promoters of human genes
URI https://www.ncbi.nlm.nih.gov/pubmed/16344560
https://www.proquest.com/docview/17472559
https://www.proquest.com/docview/67604542
https://pubmed.ncbi.nlm.nih.gov/PMC1356129
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9NAEF6FIgQvFbQcKddKICSEXHwfvJVwVEA5RCq1T5bt3U2iNnaU2A_kT_Dj-EPM7K6PJK0EfYkcZ3zE83mOnYuQ56CVhWC2b0Sh4xiuk1pGxFLbECxLLSsQ4JJhcfLRV__w2P104p30en86WUtVme5nywvrSq7CVdgHfMUq2f_gbHNS2AHbwF_4BA7D5z_x-J1KqhB63U3G-1H31JIAK0MKpgd0oe__BfO-jQXwhb-aMJ0opI6V9W1N9-Zlc8JZVare4DKunqvtmUziw9pftDVlHGCEQrNr6n7keTHlTWpfG-yfVnNVh1ZUk2w8aZf0zxIwnxeVFFfN7p_VslKjtU_hTs4aLfJNmb3DYjFWqWSXrl0MinMwquUCJtYsAejhOUjoY35BNwcFRTPIQwO7iSnNpcW1GxmeqwfB1PLc38CtEs6qH7BW82pCxaYCkYMLRvN918SZ8X6XCPg0m0oogRHrguVptkq0SW38fjSwHBw5Gl0j123wXXCeyOcfbQt7xw3bL-g-qhIQ9d90A124i9ftPWBjW33BVetpwyVaz-ztmErD22Rb-zj0QAH2DunxfIfsHgB2iukv-oLKrGMZztkhN97WWzcH9ezBXfJ7Ddm0EHQN2bRF9hvawTVdxTUFXNN1XOPpalzTDq5pg2ukkLimEtd3yfGH98PBoaFHhxiZGzil4USeZ5uC-0KEmZ14dpi6QYoVe2ESsUgkQSi4SBIWWiLiWSpMEXocbHFms8jPAuce2cqLnD8g1Em5GdnCEllouizz0yDByCXQhYx7vtMnL2uWxJnuq4_jXc5j6V-bVjyax5qTffKsoZ2pbjIXUj2tORvDc8cIXpLzolrEFjj_uAZwOYUf-NhU0-6T-woJ7XU0hPokWMFIQ4CN5ld_ySdj2XBeA3rvykc-JLfa1_8R2SrnFX8MxnyZPpEvx1_GyQGH
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diversification+of+transcriptional+modulation%3A+Large-scale+identification+and+characterization+of+putative+alternative+promoters+of+human+genes&rft.jtitle=Genome+Research&rft.au=Kimura%2C+Kouichi&rft.au=Wakamatsu%2C+Ai&rft.au=Suzuki%2C+Yutaka&rft.au=Ota%2C+Toshio&rft.date=2006-01-01&rft.pub=Cold+Spring+Harbor+Laboratory+Press&rft.issn=1088-9051&rft.eissn=1549-5477&rft.volume=16&rft.issue=1&rft.spage=55&rft.epage=65&rft_id=info:doi/10.1101%2Fgr.4039406&rft_id=info%3Apmid%2F16344560&rft.externalDocID=PMC1356129
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1088-9051&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1088-9051&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1088-9051&client=summon