Diversification of transcriptional modulation: Large-scale identification and characterization of putative alternative promoters of human genes
By analyzing 1,780,295 5′-end sequences of human full-length cDNAs derived from 164 kinds of oligo-cap cDNA libraries, we identified 269,774 independent positions of transcriptional start sites (TSSs) for 14,628 human RefSeq genes. These TSSs were clustered into 30,964 clusters that were separated f...
Saved in:
Published in | Genome Research Vol. 16; no. 1; pp. 55 - 65 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Cold Spring Harbor Laboratory Press
01.01.2006
|
Subjects | |
Online Access | Get full text |
ISSN | 1088-9051 1549-5469 1549-5477 |
DOI | 10.1101/gr.4039406 |
Cover
Loading…
Abstract | By analyzing 1,780,295 5′-end sequences of human full-length cDNAs derived from 164 kinds of oligo-cap cDNA libraries, we identified 269,774 independent positions of transcriptional start sites (TSSs) for 14,628 human RefSeq genes. These TSSs were clustered into 30,964 clusters that were separated from each other by more than 500 bp and thus are very likely to constitute mutually distinct alternative promoters. To our surprise, at least 7674 (52%) human RefSeq genes were subject to regulation by putative alternative promoters (PAPs). On average, there were 3.1 PAPs per gene, with the composition of one CpG-island-containing promoter per 2.6 CpG-less promoters. In 17% of the PAP-containing loci, tissue-specific use of the PAPs was observed. The richest tissue sources of the tissue-specific PAPs were testis and brain. It was also intriguing that the PAP-containing promoters were enriched in the genes encoding signal transduction-related proteins and were rarer in the genes encoding extracellular proteins, possibly reflecting the varied functional requirement for and the restricted expression of those categories of genes, respectively. The patterns of the first exons were highly diverse as well. On average, there were 7.7 different splicing types of first exons per locus partly produced by the PAPs, suggesting that a wide variety of transcripts can be achieved by this mechanism. Our findings suggest that use of alternate promoters and consequent alternative use of first exons should play a pivotal role in generating the complexity required for the highly elaborated molecular systems in humans. |
---|---|
AbstractList | By analyzing 1,780,295 5′-end sequences of human full-length cDNAs derived from 164 kinds of oligo-cap cDNA libraries, we identified 269,774 independent positions of transcriptional start sites (TSSs) for 14,628 human RefSeq genes. These TSSs were clustered into 30,964 clusters that were separated from each other by more than 500 bp and thus are very likely to constitute mutually distinct alternative promoters. To our surprise, at least 7674 (52%) human RefSeq genes were subject to regulation by putative alternative promoters (PAPs). On average, there were 3.1 PAPs per gene, with the composition of one CpG-island-containing promoter per 2.6 CpG-less promoters. In 17% of the PAP-containing loci, tissue-specific use of the PAPs was observed. The richest tissue sources of the tissue-specific PAPs were testis and brain. It was also intriguing that the PAP-containing promoters were enriched in the genes encoding signal transduction-related proteins and were rarer in the genes encoding extracellular proteins, possibly reflecting the varied functional requirement for and the restricted expression of those categories of genes, respectively. The patterns of the first exons were highly diverse as well. On average, there were 7.7 different splicing types of first exons per locus partly produced by the PAPs, suggesting that a wide variety of transcripts can be achieved by this mechanism. Our findings suggest that use of alternate promoters and consequent alternative use of first exons should play a pivotal role in generating the complexity required for the highly elaborated molecular systems in humans. By analyzing 1,780,295 5'-end sequences of human full-length cDNAs derived from 164 kinds of oligo-cap cDNA libraries, we identified 269,774 independent positions of transcriptional start sites (TSSs) for 14,628 human RefSeq genes. These TSSs were clustered into 30,964 clusters that were separated from each other by more than 500 bp and thus are very likely to constitute mutually distinct alternative promoters. To our surprise, at least 7674 (52%) human RefSeq genes were subject to regulation by putative alternative promoters (PAPs). On average, there were 3.1 PAPs per gene, with the composition of one CpG-island-containing promoter per 2.6 CpG-less promoters. In 17% of the PAP-containing loci, tissue-specific use of the PAPs was observed. The richest tissue sources of the tissue-specific PAPs were testis and brain. It was also intriguing that the PAP-containing promoters were enriched in the genes encoding signal transduction-related proteins and were rarer in the genes encoding extracellular proteins, possibly reflecting the varied functional requirement for and the restricted expression of those categories of genes, respectively. The patterns of the first exons were highly diverse as well. On average, there were 7.7 different splicing types of first exons per locus partly produced by the PAPs, suggesting that a wide variety of transcripts can be achieved by this mechanism. Our findings suggest that use of alternate promoters and consequent alternative use of first exons should play a pivotal role in generating the complexity required for the highly elaborated molecular systems in humans.By analyzing 1,780,295 5'-end sequences of human full-length cDNAs derived from 164 kinds of oligo-cap cDNA libraries, we identified 269,774 independent positions of transcriptional start sites (TSSs) for 14,628 human RefSeq genes. These TSSs were clustered into 30,964 clusters that were separated from each other by more than 500 bp and thus are very likely to constitute mutually distinct alternative promoters. To our surprise, at least 7674 (52%) human RefSeq genes were subject to regulation by putative alternative promoters (PAPs). On average, there were 3.1 PAPs per gene, with the composition of one CpG-island-containing promoter per 2.6 CpG-less promoters. In 17% of the PAP-containing loci, tissue-specific use of the PAPs was observed. The richest tissue sources of the tissue-specific PAPs were testis and brain. It was also intriguing that the PAP-containing promoters were enriched in the genes encoding signal transduction-related proteins and were rarer in the genes encoding extracellular proteins, possibly reflecting the varied functional requirement for and the restricted expression of those categories of genes, respectively. The patterns of the first exons were highly diverse as well. On average, there were 7.7 different splicing types of first exons per locus partly produced by the PAPs, suggesting that a wide variety of transcripts can be achieved by this mechanism. Our findings suggest that use of alternate promoters and consequent alternative use of first exons should play a pivotal role in generating the complexity required for the highly elaborated molecular systems in humans. |
Author | Sugiyama, Tomoyasu Ishida, Shinichi Isono, Yuko Yamashita, Riu Takahashi-Fujii, Asako Sekine, Mitsuo Tsuritani, Katsuki Murakawa, Katsuji Yamamoto, Jun-ichi Isogai, Takao Nakai, Kenta Kondo, Hiroshi Wakaguri, Hiroyuki Saito, Kaoru Yoneyama, Takahiro Kikuchi, Hisashi Yokoi, Takahide Nagai, Keiichi Kanda, Katsuhiro Wagatsuma, Masako Otsuka, Rie Sugano, Sumio Ota, Toshio Irie, Ryotaro Kimura, Kouichi Suzuki, Yutaka Tanase, Tomoo Kushida, Norihiro Wakamatsu, Ai Nishikawa, Tetsuo Ishii, Shizuko Ishibashi, Tadashi |
AuthorAffiliation | 4 Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Minato-ku, Tokyo, 108-8639, Japan 9 Takara Shuzo Co., Ltd., Noji-cho, Kusatsu, Shiga, 525-0055, Japan 1 Life Science Research Laboratory, Central Research Laboratory, Hitachi, Ltd., Kokubunji, Tokyo, 185-8601, Japan 2 Helix Research Institute, Kisarazu, Chiba, 292-0812, Japan 6 Genome Analysis Center, Department of Biotechnology, National Institute of Technology and Evaluation, Shibuya-ku, Tokyo, 151-0066, Japan 5 Human Genome Center, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, 108-8639, Japan 3 Reverse Proteomics Research Institute, Kisarazu, Chiba 292-0818, Japan 7 Life Science Group, Hitachi, Ltd., Kawagoe, Saitama, 350-1165, Japan 8 Hitachi Science Systems, Ltd., Kokubunji, Tokyo, 185-8601, Japan 10 Advanced Research Laboratory, Hitachi, Ltd., Kokubunji, Tokyo, 185-8601, Japan |
AuthorAffiliation_xml | – name: 3 Reverse Proteomics Research Institute, Kisarazu, Chiba 292-0818, Japan – name: 10 Advanced Research Laboratory, Hitachi, Ltd., Kokubunji, Tokyo, 185-8601, Japan – name: 4 Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Minato-ku, Tokyo, 108-8639, Japan – name: 6 Genome Analysis Center, Department of Biotechnology, National Institute of Technology and Evaluation, Shibuya-ku, Tokyo, 151-0066, Japan – name: 9 Takara Shuzo Co., Ltd., Noji-cho, Kusatsu, Shiga, 525-0055, Japan – name: 7 Life Science Group, Hitachi, Ltd., Kawagoe, Saitama, 350-1165, Japan – name: 8 Hitachi Science Systems, Ltd., Kokubunji, Tokyo, 185-8601, Japan – name: 1 Life Science Research Laboratory, Central Research Laboratory, Hitachi, Ltd., Kokubunji, Tokyo, 185-8601, Japan – name: 2 Helix Research Institute, Kisarazu, Chiba, 292-0812, Japan – name: 5 Human Genome Center, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, 108-8639, Japan |
Author_xml | – sequence: 1 givenname: Kouichi surname: Kimura fullname: Kimura, Kouichi – sequence: 2 givenname: Ai surname: Wakamatsu fullname: Wakamatsu, Ai – sequence: 3 givenname: Yutaka surname: Suzuki fullname: Suzuki, Yutaka – sequence: 4 givenname: Toshio surname: Ota fullname: Ota, Toshio – sequence: 5 givenname: Tetsuo surname: Nishikawa fullname: Nishikawa, Tetsuo – sequence: 6 givenname: Riu surname: Yamashita fullname: Yamashita, Riu – sequence: 7 givenname: Jun-ichi surname: Yamamoto fullname: Yamamoto, Jun-ichi – sequence: 8 givenname: Mitsuo surname: Sekine fullname: Sekine, Mitsuo – sequence: 9 givenname: Katsuki surname: Tsuritani fullname: Tsuritani, Katsuki – sequence: 10 givenname: Hiroyuki surname: Wakaguri fullname: Wakaguri, Hiroyuki – sequence: 11 givenname: Shizuko surname: Ishii fullname: Ishii, Shizuko – sequence: 12 givenname: Tomoyasu surname: Sugiyama fullname: Sugiyama, Tomoyasu – sequence: 13 givenname: Kaoru surname: Saito fullname: Saito, Kaoru – sequence: 14 givenname: Yuko surname: Isono fullname: Isono, Yuko – sequence: 15 givenname: Ryotaro surname: Irie fullname: Irie, Ryotaro – sequence: 16 givenname: Norihiro surname: Kushida fullname: Kushida, Norihiro – sequence: 17 givenname: Takahiro surname: Yoneyama fullname: Yoneyama, Takahiro – sequence: 18 givenname: Rie surname: Otsuka fullname: Otsuka, Rie – sequence: 19 givenname: Katsuhiro surname: Kanda fullname: Kanda, Katsuhiro – sequence: 20 givenname: Takahide surname: Yokoi fullname: Yokoi, Takahide – sequence: 21 givenname: Hiroshi surname: Kondo fullname: Kondo, Hiroshi – sequence: 22 givenname: Masako surname: Wagatsuma fullname: Wagatsuma, Masako – sequence: 23 givenname: Katsuji surname: Murakawa fullname: Murakawa, Katsuji – sequence: 24 givenname: Shinichi surname: Ishida fullname: Ishida, Shinichi – sequence: 25 givenname: Tadashi surname: Ishibashi fullname: Ishibashi, Tadashi – sequence: 26 givenname: Asako surname: Takahashi-Fujii fullname: Takahashi-Fujii, Asako – sequence: 27 givenname: Tomoo surname: Tanase fullname: Tanase, Tomoo – sequence: 28 givenname: Keiichi surname: Nagai fullname: Nagai, Keiichi – sequence: 29 givenname: Hisashi surname: Kikuchi fullname: Kikuchi, Hisashi – sequence: 30 givenname: Kenta surname: Nakai fullname: Nakai, Kenta – sequence: 31 givenname: Takao surname: Isogai fullname: Isogai, Takao – sequence: 32 givenname: Sumio surname: Sugano fullname: Sugano, Sumio |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/16344560$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUstu1DAUtVARfcCGD0BZsUBKaye2Y7NAqsqjlUZiA2vrjnOdMUrsYCcjwU_wy2Q6w0BhwcrHPg8d2_ecnIQYkJDnjF4yRtlVly45rTWn8hE5Y4LrUnCpTxZMlSo1FeyUnOf8hVJac6WekFMma86FpGfkx1u_xZS98xYmH0MRXTElCNkmP-4OoC-G2M79Pfu6WEHqsMwWeix8i2H67YTQFnYDCeyEyX8_xo3ztOAtFtAvRNjjMcUhLtu8U2zmAULRYcD8lDx20Gd8dlgvyOf37z7d3Jarjx_ubq5XpeVNPZW1FqKiDqVzylYgKrXmzZrWTCvQrXbQKIcOoFXMabRrR50SqLhsq1ZL29QX5M0-d5zXA7Z2uUmC3ozJD5C-mQjePGSC35gubg2rhWSVXgJeHgJS_Dpjnszgs8W-h4BxzkY2knLBq_8KWcObSohd4os_Kx27_PqsRUD3AptizgmdsX66f-aloe8No2Y3D6ZL5jAPi-XVX5Zj6r_in_xEu-M |
CitedBy_id | crossref_primary_10_1093_nar_gkn137 crossref_primary_10_1101_gr_110254_110 crossref_primary_10_1007_s00439_024_02653_6 crossref_primary_10_1007_s10709_008_9323_1 crossref_primary_10_4252_wjsc_v13_i10_1394 crossref_primary_10_1101_gr_080622_108 crossref_primary_10_1182_blood_2008_05_160325 crossref_primary_10_1016_j_bcp_2010_06_037 crossref_primary_10_1093_hmg_ddm041 crossref_primary_10_1016_j_mehy_2011_01_019 crossref_primary_10_1124_jpet_109_150870 crossref_primary_10_1093_nar_gkr731 crossref_primary_10_1016_j_bcp_2024_116543 crossref_primary_10_1016_j_canlet_2011_12_009 crossref_primary_10_1093_ibd_izy119 crossref_primary_10_1186_s13072_017_0136_2 crossref_primary_10_1093_nar_gkr173 crossref_primary_10_1080_14712598_2021_1862082 crossref_primary_10_1111_j_1365_2052_2008_01765_x crossref_primary_10_1016_j_placenta_2008_04_002 crossref_primary_10_1093_nar_gkl507 crossref_primary_10_1186_s13073_021_00884_0 crossref_primary_10_1146_annurev_virology_091919_072841 crossref_primary_10_1186_1471_2229_7_55 crossref_primary_10_1093_nar_gkr1005 crossref_primary_10_1007_s00439_011_0949_1 crossref_primary_10_1136_bmjophth_2024_001906 crossref_primary_10_15252_msb_20166941 crossref_primary_10_1093_molbev_msm045 crossref_primary_10_1007_s12079_007_0003_1 crossref_primary_10_1038_s41598_023_47055_2 crossref_primary_10_1371_journal_pone_0185678 crossref_primary_10_1016_j_heares_2020_108135 crossref_primary_10_1093_nar_gkq775 crossref_primary_10_1186_s12864_021_08039_6 crossref_primary_10_3389_fnins_2022_868556 crossref_primary_10_4161_rna_29441 crossref_primary_10_1186_gb_2009_10_4_r38 crossref_primary_10_1038_nrg2636 crossref_primary_10_1104_pp_108_131656 crossref_primary_10_1007_s12035_024_04293_3 crossref_primary_10_1093_dnares_dsn010 crossref_primary_10_1093_jjco_hyac175 crossref_primary_10_1016_j_bioorg_2021_104627 crossref_primary_10_1007_s10719_009_9260_y crossref_primary_10_1007_s00429_021_02359_9 crossref_primary_10_2337_dc13_2835 crossref_primary_10_1038_tp_2016_237 crossref_primary_10_1186_1471_2164_9_112 crossref_primary_10_1152_ajpcell_00166_2018 crossref_primary_10_1016_j_yexcr_2021_112889 crossref_primary_10_3390_cells11203201 crossref_primary_10_1074_jbc_M113_491993 crossref_primary_10_1111_febs_16592 crossref_primary_10_1093_dnares_dsr025 crossref_primary_10_1016_j_gene_2021_145523 crossref_primary_10_1038_ejhg_2010_212 crossref_primary_10_1016_j_matbio_2013_12_005 crossref_primary_10_1186_gb_2007_8_8_r159 crossref_primary_10_1038_s41598_022_16153_y crossref_primary_10_1371_journal_pgen_0020171 crossref_primary_10_1534_genetics_116_193334 crossref_primary_10_1038_s41588_024_02053_6 crossref_primary_10_1002_ijc_30762 crossref_primary_10_1038_tp_2012_57 crossref_primary_10_1186_1471_2164_9_349 crossref_primary_10_1038_ncomms7793 crossref_primary_10_1134_S2079059712030070 crossref_primary_10_1016_j_ceb_2006_04_002 crossref_primary_10_1016_j_yexmp_2021_104638 crossref_primary_10_1128_MCB_00670_09 crossref_primary_10_1016_j_bbrc_2016_09_018 crossref_primary_10_1038_s42003_021_02340_6 crossref_primary_10_1016_j_ygeno_2007_07_009 crossref_primary_10_1038_s41467_018_07969_2 crossref_primary_10_1074_jbc_M109_030726 crossref_primary_10_1371_journal_pone_0011682 crossref_primary_10_1007_s11033_009_9751_8 crossref_primary_10_1016_j_gene_2007_09_004 crossref_primary_10_1038_srep10434 crossref_primary_10_1186_1471_2164_15_118 crossref_primary_10_1128_MCB_05716_11 crossref_primary_10_1134_S0026893308030047 crossref_primary_10_1111_acer_12060 crossref_primary_10_15252_embj_201797138 crossref_primary_10_1016_j_gene_2013_12_038 crossref_primary_10_1007_s13258_016_0435_1 crossref_primary_10_7717_peerj_8394 crossref_primary_10_1002_pmic_200900321 crossref_primary_10_1016_j_bbrc_2012_10_116 crossref_primary_10_1016_j_gene_2007_04_013 crossref_primary_10_1016_j_molcel_2021_03_013 crossref_primary_10_1042_BJ20100350 crossref_primary_10_1038_jhg_2012_115 crossref_primary_10_1038_s41392_022_01098_5 crossref_primary_10_1371_journal_pone_0023409 crossref_primary_10_4252_wjsc_v14_i12_822 crossref_primary_10_1534_g3_117_042622 crossref_primary_10_2133_dmpk_DMPK_13_RG_135 crossref_primary_10_1101_gr_120535_111 crossref_primary_10_1074_jbc_R700012200 crossref_primary_10_1093_nar_gkr1188 crossref_primary_10_3390_ijms21218055 crossref_primary_10_7554_eLife_27417 crossref_primary_10_1007_s00251_006_0165_7 crossref_primary_10_1097_MAO_0b013e31828d6501 crossref_primary_10_1080_15476286_2025_2483001 crossref_primary_10_1073_pnas_0802636105 crossref_primary_10_1007_s10528_021_10175_3 crossref_primary_10_1016_j_bbagrm_2013_08_001 crossref_primary_10_1096_fj_202401207R crossref_primary_10_3390_jcm9041035 crossref_primary_10_1038_srep39933 crossref_primary_10_1007_s00018_011_0844_x crossref_primary_10_1016_j_gene_2013_03_114 crossref_primary_10_1371_journal_pone_0002712 crossref_primary_10_1039_C0MB00254B crossref_primary_10_1016_j_neuroscience_2009_12_047 crossref_primary_10_3389_fgene_2022_872026 crossref_primary_10_1093_jxb_ers081 crossref_primary_10_1186_1471_2164_13_147 crossref_primary_10_3892_ijo_2015_3310 crossref_primary_10_1016_j_jpsychires_2012_08_008 crossref_primary_10_1371_journal_pone_0002377 crossref_primary_10_1186_gb_2009_10_1_r3 crossref_primary_10_7554_eLife_00068 crossref_primary_10_1111_j_1755_148X_2008_00473_x crossref_primary_10_14814_phy2_13543 crossref_primary_10_1038_nrg2026 crossref_primary_10_1146_annurev_biochem_080111_092106 crossref_primary_10_1007_s10059_009_0062_7 crossref_primary_10_1111_mmi_13078 crossref_primary_10_1038_nprot_2007_242 crossref_primary_10_1007_s13353_011_0050_4 crossref_primary_10_1042_BSR20171668 crossref_primary_10_1093_nar_gkp469 crossref_primary_10_1093_hmg_ddr263 crossref_primary_10_1007_s00294_017_0793_5 crossref_primary_10_1111_jnc_13749 crossref_primary_10_1186_1471_2164_11_206 crossref_primary_10_1158_0008_5472_CAN_07_5590 crossref_primary_10_1038_s41598_024_68439_y crossref_primary_10_1016_j_bbrc_2014_08_063 crossref_primary_10_1134_S0026893309040025 crossref_primary_10_1002_mc_22359 crossref_primary_10_1371_journal_pone_0071578 crossref_primary_10_1016_j_bbrc_2015_12_084 crossref_primary_10_1111_j_1365_2443_2008_01197_x crossref_primary_10_1189_jlb_0507273 crossref_primary_10_1016_j_bbadis_2015_10_008 crossref_primary_10_1101_gr_7128207 crossref_primary_10_15252_embr_201745471 crossref_primary_10_1016_j_molcel_2022_04_019 crossref_primary_10_1038_s41594_025_01492_x crossref_primary_10_1080_21655979_2021_1944019 crossref_primary_10_1093_nar_gkn897 crossref_primary_10_1158_0008_5472_CAN_08_3347 crossref_primary_10_1186_s13046_017_0508_2 crossref_primary_10_1186_1471_2350_12_167 crossref_primary_10_1371_journal_pone_0028861 crossref_primary_10_1007_s00335_011_9341_7 crossref_primary_10_1016_j_ymgme_2019_01_018 crossref_primary_10_1371_journal_pone_0160765 crossref_primary_10_1007_s00438_017_1397_y crossref_primary_10_1016_j_ygeno_2010_01_004 crossref_primary_10_1093_nar_gkq1171 crossref_primary_10_1371_journal_pone_0040194 crossref_primary_10_1093_nar_gkl592 crossref_primary_10_1134_S002689331501015X crossref_primary_10_1016_j_braindev_2012_05_012 crossref_primary_10_1093_nar_gkn1082 crossref_primary_10_1038_s41598_019_39011_w crossref_primary_10_1101_gr_6030107 crossref_primary_10_1016_j_cels_2021_12_002 crossref_primary_10_3390_ijms21217851 crossref_primary_10_1101_gr_6499807 crossref_primary_10_1371_journal_pone_0165420 crossref_primary_10_1002_kjm2_12773 crossref_primary_10_1093_dnares_dsp022 crossref_primary_10_1016_j_neurobiolaging_2013_04_028 crossref_primary_10_1016_j_aquatox_2021_105788 crossref_primary_10_1021_acs_biochem_3c00097 crossref_primary_10_1016_j_gene_2006_08_002 crossref_primary_10_1002_ijc_31554 crossref_primary_10_1016_j_gene_2015_01_039 crossref_primary_10_1186_1471_2148_10_122 crossref_primary_10_1016_j_ygeno_2008_11_003 crossref_primary_10_1038_s41598_020_73248_0 crossref_primary_10_1080_00498254_2019_1626029 crossref_primary_10_1101_gr_5872707 crossref_primary_10_1074_mcp_M600297_MCP200 crossref_primary_10_1097_LGT_0000000000000482 crossref_primary_10_1186_s12863_017_0488_4 crossref_primary_10_1371_journal_pone_0012274 crossref_primary_10_1007_s10549_015_3395_2 crossref_primary_10_1016_j_ygeno_2006_07_006 crossref_primary_10_1371_journal_pone_0126966 crossref_primary_10_1158_0008_5472_CAN_09_3988 crossref_primary_10_1186_s12863_015_0274_0 crossref_primary_10_1111_acer_13890 crossref_primary_10_1007_s00439_009_0723_9 crossref_primary_10_1016_j_tibtech_2011_06_003 crossref_primary_10_1210_endocr_bqab237 crossref_primary_10_3390_ijms20133279 crossref_primary_10_1038_nmeth_1273 crossref_primary_10_4049_jimmunol_2100398 crossref_primary_10_1155_2022_6004350 crossref_primary_10_1093_nar_gkn872 crossref_primary_10_1186_s12864_017_3834_z crossref_primary_10_1016_j_gene_2011_04_010 crossref_primary_10_1371_journal_pone_0107674 crossref_primary_10_1016_j_ygeno_2009_01_008 crossref_primary_10_1089_jir_2014_0115 crossref_primary_10_1038_sj_emboj_7601866 crossref_primary_10_1186_s12885_022_09186_z crossref_primary_10_1016_j_lfs_2022_121336 crossref_primary_10_1053_j_gastro_2017_02_017 crossref_primary_10_1371_journal_pgen_1000220 crossref_primary_10_3390_jof8101044 crossref_primary_10_1016_j_tig_2008_01_008 crossref_primary_10_1093_glycob_cws057 crossref_primary_10_1371_journal_pbio_3000197 crossref_primary_10_1096_fj_201902148R crossref_primary_10_3390_reprodmed5030013 crossref_primary_10_1101_gr_5660607 crossref_primary_10_1002_1873_3468_14477 crossref_primary_10_1242_jcs_258523 crossref_primary_10_1038_nature09165 crossref_primary_10_1101_gr_100271_109 crossref_primary_10_1038_s41388_018_0518_3 crossref_primary_10_3390_plants12051000 crossref_primary_10_1002_2211_5463_12331 crossref_primary_10_3892_mmr_2017_8263 crossref_primary_10_3389_fnmol_2017_00428 crossref_primary_10_1371_journal_pone_0017816 crossref_primary_10_7314_APJCP_2014_15_21_9439 crossref_primary_10_1186_gb_2009_10_7_r73 crossref_primary_10_1016_j_tig_2022_05_002 crossref_primary_10_2174_1386207325666220427121619 crossref_primary_10_1016_j_mcp_2016_08_009 crossref_primary_10_3390_biomedicines9050582 crossref_primary_10_1002_mds_26820 crossref_primary_10_1128_MCB_01658_06 crossref_primary_10_1002_jcb_25222 crossref_primary_10_3390_ijms14036487 crossref_primary_10_1016_j_gene_2009_06_020 crossref_primary_10_1186_1471_2105_14_26 crossref_primary_10_1371_journal_pone_0119651 crossref_primary_10_3389_fgene_2015_00196 crossref_primary_10_1002_humu_22951 crossref_primary_10_1371_journal_pone_0018475 crossref_primary_10_1186_1471_2199_11_81 crossref_primary_10_18632_oncotarget_17553 crossref_primary_10_1093_molbev_msn071 crossref_primary_10_1111_age_12007 crossref_primary_10_1371_journal_pone_0037012 crossref_primary_10_1038_s41467_019_08949_w crossref_primary_10_1101_gr_6831208 crossref_primary_10_3389_fnmol_2022_918852 crossref_primary_10_1042_BJ20111765 crossref_primary_10_1016_j_gde_2007_08_009 crossref_primary_10_1002_mco2_70134 crossref_primary_10_1016_j_ab_2013_02_022 crossref_primary_10_1016_j_bbagrm_2021_194746 crossref_primary_10_1273_cbij_8_1 crossref_primary_10_1186_gb_2006_7_12_r118 crossref_primary_10_1186_gb_2009_10_1_r10 crossref_primary_10_1080_15476286_2022_2091306 crossref_primary_10_1161_CIRCHEARTFAILURE_120_006926 crossref_primary_10_1261_rna_035865_112 crossref_primary_10_1038_s41598_023_50390_z crossref_primary_10_1186_gb_2006_7_s1_s12 crossref_primary_10_1089_cbr_2018_2716 crossref_primary_10_1373_clinchem_2008_120931 crossref_primary_10_1016_j_bbalip_2006_09_014 crossref_primary_10_1074_jbc_M109_008417 crossref_primary_10_1089_dna_2012_1698 crossref_primary_10_1261_rna_1705309 crossref_primary_10_1016_j_gendis_2021_03_009 crossref_primary_10_1016_j_neuroimage_2010_02_068 crossref_primary_10_3390_biom10101442 crossref_primary_10_1016_j_jaci_2012_09_021 crossref_primary_10_1101_gr_5031006 crossref_primary_10_1007_s12192_016_0668_6 crossref_primary_10_1073_pnas_0903390106 crossref_primary_10_1093_jb_mvac077 crossref_primary_10_3389_fbioe_2019_00407 crossref_primary_10_1111_age_12182 crossref_primary_10_1093_dnares_dsm006 crossref_primary_10_1111_j_1471_4159_2010_06662_x crossref_primary_10_1186_1471_2164_12_505 crossref_primary_10_1002_jez_b_21421 crossref_primary_10_1186_s40246_022_00399_8 crossref_primary_10_1002_ajmg_a_35783 crossref_primary_10_1016_j_febslet_2010_08_024 crossref_primary_10_1074_jbc_M607246200 crossref_primary_10_1111_tan_15810 crossref_primary_10_1038_s41388_024_03247_2 crossref_primary_10_1016_j_ydbio_2009_11_035 crossref_primary_10_1097_CJI_0b013e3181ad4092 crossref_primary_10_1186_1471_2350_10_113 crossref_primary_10_1016_j_pharmthera_2012_08_005 crossref_primary_10_1093_nar_gkn677 crossref_primary_10_1016_j_bbagrm_2018_01_002 crossref_primary_10_1111_j_1745_7262_2008_00323_x crossref_primary_10_1158_0008_5472_CAN_08_1942 crossref_primary_10_1016_j_brainresbull_2022_06_012 crossref_primary_10_1016_j_yexcr_2009_05_011 crossref_primary_10_1101_gr_6654808 crossref_primary_10_1371_journal_pbio_3002724 crossref_primary_10_1371_journal_pone_0014514 crossref_primary_10_1093_nar_gkr355 crossref_primary_10_15252_embr_202050799 crossref_primary_10_1186_s13046_020_01739_z crossref_primary_10_1534_g3_116_035766 crossref_primary_10_1002_bies_20468 crossref_primary_10_1038_s41467_023_43027_2 crossref_primary_10_1038_s41598_022_17266_0 crossref_primary_10_1093_dnares_dsl005 crossref_primary_10_1371_journal_pone_0022138 crossref_primary_10_1016_j_bbagrm_2015_11_003 crossref_primary_10_1371_journal_pone_0188001 crossref_primary_10_1038_emboj_2012_343 crossref_primary_10_1111_imr_12242 crossref_primary_10_1016_j_gene_2006_09_029 crossref_primary_10_1002_stem_2362 crossref_primary_10_1101_gr_6018607 crossref_primary_10_1016_j_omto_2020_03_017 crossref_primary_10_1093_nar_gkp066 crossref_primary_10_1016_j_gene_2010_06_011 crossref_primary_10_1007_s13577_023_00967_7 crossref_primary_10_1111_j_1742_4658_2009_07273_x crossref_primary_10_1128_MCB_00654_12 crossref_primary_10_3390_biomedicines11061674 crossref_primary_10_1007_s00441_013_1736_1 crossref_primary_10_4049_jimmunol_1402166 crossref_primary_10_1007_s00441_006_0266_5 crossref_primary_10_1002_gcc_22091 crossref_primary_10_1186_1471_2164_9_152 crossref_primary_10_3389_fonc_2021_780266 crossref_primary_10_1016_j_bbcan_2013_04_006 crossref_primary_10_1016_j_neurobiolaging_2018_06_021 crossref_primary_10_1016_j_cell_2006_12_048 crossref_primary_10_1093_nar_gkm901 crossref_primary_10_1242_bio_012831 crossref_primary_10_1371_journal_pone_0038380 crossref_primary_10_1007_s11262_011_0698_1 crossref_primary_10_1016_j_gene_2010_12_013 crossref_primary_10_1038_s41419_024_07070_1 crossref_primary_10_1074_jbc_M705095200 crossref_primary_10_1093_nar_gkae1162 crossref_primary_10_1093_nar_gkae1160 |
Cites_doi | 10.1038/420515a 10.1038/nature01266 10.1038/35057062 10.1038/sj.onc.1206956 10.1016/S0168-9525(00)02024-2 10.1371/journal.pbio.0020162 10.1016/S0092-8674(00)00128-8 10.1126/science.274.5287.546 10.1093/nar/gki100 10.1038/ng1285 10.1126/science.287.5461.2185 10.1093/nar/gkh036 10.1093/nar/gkg029 10.1038/nbt998 10.1146/annurev.genet.32.1.279 10.1038/76115 10.1038/ng0102-13 10.1093/nar/gkh076 10.1093/embo-reports/kve085 10.1016/S0959-437X(00)00130-1 10.1093/nar/gni052 10.1101/gr.GR-1640R 10.1093/nar/gki476 10.1038/nature03441 10.1124/mol.63.6.1256 10.1126/science.282.5396.2012 10.1101/gr.3308405 10.1016/j.gene.2005.01.012 10.1186/1475-2867-5-4 10.1101/gr.1017303 10.1016/j.tig.2003.09.014 10.1101/gr.3455305 10.1126/science.1090005 10.1074/jbc.M200280200 10.1016/S0959-437X(00)00146-5 10.1038/nature02538 10.1101/gr.982903 10.1093/nar/gkh122 10.1126/science.1105136 10.1073/pnas.2136655100 10.1016/S0378-1119(97)00411-3 10.1093/nar/gni139 10.1038/nature03001 |
ContentType | Journal Article |
Copyright | Copyright © 2006, Cold Spring Harbor Laboratory Press |
Copyright_xml | – notice: Copyright © 2006, Cold Spring Harbor Laboratory Press |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TM 8FD FR3 P64 RC3 7X8 5PM |
DOI | 10.1101/gr.4039406 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Nucleic Acids Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Engineering Research Database Technology Research Database Nucleic Acids Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE Genetics Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry Biology |
EISSN | 1549-5469 1549-5477 |
EndPage | 65 |
ExternalDocumentID | PMC1356129 16344560 10_1101_gr_4039406 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Intramural NIH HHS grantid: Z99 DA999999 |
GroupedDBID | --- .GJ 18M 29H 2WC 39C 4.4 53G 5GY 5RE 5VS AAFWJ AAYOK AAYXX AAZTW ABDIX ABDNZ ACGFO ACLKE ACYGS ADBBV ADNWM AEILP AENEX AHPUY AI. ALMA_UNASSIGNED_HOLDINGS BAWUL BTFSW C1A CITATION CS3 DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HYE IH2 K-O KQ8 MV1 R.V RCX RHI RNS RPM RXW SJN TAE TR2 VH1 W8F WOQ YKV ZCG ZGI ZXP CGR CUY CVF ECM EIF NPM 7TM 8FD FR3 P64 RC3 7X8 -DZ -~X .-4 .55 0VX 5PM 85S ABCQX ACNCT ADIYS ADXHL AETEA AFFNX H~9 L7B MVM N9A OK1 P2P TN5 UHB WH7 X7M XJT XSW YBU YHG YSK YYP ZY4 |
ID | FETCH-LOGICAL-c473t-395520fe6ff8c2a528b47b03198a9d9fa78fefaad81f9ecbf0f85e846d2d96c73 |
ISSN | 1088-9051 |
IngestDate | Thu Aug 21 14:12:47 EDT 2025 Thu Sep 04 16:50:25 EDT 2025 Fri Sep 05 06:24:26 EDT 2025 Fri May 30 11:00:37 EDT 2025 Thu Apr 24 22:56:12 EDT 2025 Tue Jul 01 02:20:29 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c473t-395520fe6ff8c2a528b47b03198a9d9fa78fefaad81f9ecbf0f85e846d2d96c73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Present Address: School of Bionics, Tokyo University of Technology, Hachioji, Tokyo, 192-0982, Japan Present Address: Tokyo Research Laboratories, Kyowa Hakko Kogyo Co., Ltd., Machida, Tokyo, 194-8533, Japan Present Address: Takara Bio Inc., Otsu, Shiga, 520-2193, Japan Corresponding author. E-mail ysuzuki@hgc.jp ; fax +81 4 7136 3607. Article published online ahead of print. Article and publication date are at http://www.genome.org/cgi/doi/10.1101/gr.4039406. |
OpenAccessLink | https://genome.cshlp.org/content/16/1/55.full.pdf |
PMID | 16344560 |
PQID | 17472559 |
PQPubID | 23462 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_1356129 proquest_miscellaneous_67604542 proquest_miscellaneous_17472559 pubmed_primary_16344560 crossref_citationtrail_10_1101_gr_4039406 crossref_primary_10_1101_gr_4039406 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2006-01-01 |
PublicationDateYYYYMMDD | 2006-01-01 |
PublicationDate_xml | – month: 01 year: 2006 text: 2006-01-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Genome Research |
PublicationTitleAlternate | Genome Res |
PublicationYear | 2006 |
Publisher | Cold Spring Harbor Laboratory Press |
Publisher_xml | – name: Cold Spring Harbor Laboratory Press |
References | (2021111811011855000_16.1.55.35) 2003; 221 2021111811011855000_16.1.55.29 2021111811011855000_16.1.55.28 2021111811011855000_16.1.55.27 2021111811011855000_16.1.55.26 2021111811011855000_16.1.55.25 2021111811011855000_16.1.55.24 2021111811011855000_16.1.55.23 2021111811011855000_16.1.55.22 2021111811011855000_16.1.55.21 2021111811011855000_16.1.55.1 2021111811011855000_16.1.55.20 2021111811011855000_16.1.55.2 2021111811011855000_16.1.55.3 2021111811011855000_16.1.55.4 2021111811011855000_16.1.55.5 2021111811011855000_16.1.55.6 2021111811011855000_16.1.55.7 2021111811011855000_16.1.55.8 (2021111811011855000_16.1.55.42) 2004; 4 2021111811011855000_16.1.55.9 2021111811011855000_16.1.55.19 2021111811011855000_16.1.55.18 2021111811011855000_16.1.55.17 2021111811011855000_16.1.55.16 2021111811011855000_16.1.55.15 2021111811011855000_16.1.55.14 (2021111811011855000_16.1.55.37) 2001; 2 2021111811011855000_16.1.55.13 2021111811011855000_16.1.55.12 2021111811011855000_16.1.55.11 2021111811011855000_16.1.55.55 2021111811011855000_16.1.55.10 2021111811011855000_16.1.55.54 2021111811011855000_16.1.55.53 2021111811011855000_16.1.55.52 2021111811011855000_16.1.55.49 2021111811011855000_16.1.55.48 2021111811011855000_16.1.55.47 2021111811011855000_16.1.55.46 2021111811011855000_16.1.55.45 2021111811011855000_16.1.55.44 2021111811011855000_16.1.55.43 2021111811011855000_16.1.55.41 2021111811011855000_16.1.55.51 2021111811011855000_16.1.55.50 2021111811011855000_16.1.55.39 2021111811011855000_16.1.55.38 2021111811011855000_16.1.55.36 2021111811011855000_16.1.55.34 2021111811011855000_16.1.55.33 2021111811011855000_16.1.55.32 2021111811011855000_16.1.55.31 2021111811011855000_16.1.55.30 2021111811011855000_16.1.55.40 |
References_xml | – ident: 2021111811011855000_16.1.55.3 doi: 10.1038/420515a – ident: 2021111811011855000_16.1.55.29 doi: 10.1038/nature01266 – ident: 2021111811011855000_16.1.55.19 doi: 10.1038/35057062 – ident: 2021111811011855000_16.1.55.25 doi: 10.1038/sj.onc.1206956 – ident: 2021111811011855000_16.1.55.32 doi: 10.1016/S0168-9525(00)02024-2 – ident: 2021111811011855000_16.1.55.13 doi: 10.1371/journal.pbio.0020162 – ident: 2021111811011855000_16.1.55.2 doi: 10.1016/S0092-8674(00)00128-8 – ident: 2021111811011855000_16.1.55.9 doi: 10.1126/science.274.5287.546 – ident: 2021111811011855000_16.1.55.47 – ident: 2021111811011855000_16.1.55.12 doi: 10.1093/nar/gki100 – ident: 2021111811011855000_16.1.55.30 doi: 10.1038/ng1285 – ident: 2021111811011855000_16.1.55.53 – ident: 2021111811011855000_16.1.55.1 doi: 10.1126/science.287.5461.2185 – ident: 2021111811011855000_16.1.55.10 doi: 10.1093/nar/gkh036 – ident: 2021111811011855000_16.1.55.21 doi: 10.1093/nar/gkg029 – ident: 2021111811011855000_16.1.55.11 doi: 10.1038/nbt998 – ident: 2021111811011855000_16.1.55.22 doi: 10.1146/annurev.genet.32.1.279 – ident: 2021111811011855000_16.1.55.7 doi: 10.1038/76115 – ident: 2021111811011855000_16.1.55.28 doi: 10.1038/ng0102-13 – ident: 2021111811011855000_16.1.55.39 doi: 10.1093/nar/gkh076 – volume: 2 start-page: 388 year: 2001 ident: 2021111811011855000_16.1.55.37 publication-title: EMBO Rep. doi: 10.1093/embo-reports/kve085 – ident: 2021111811011855000_16.1.55.46 – ident: 2021111811011855000_16.1.55.40 doi: 10.1016/S0959-437X(00)00130-1 – volume: 221 start-page: 73 year: 2003 ident: 2021111811011855000_16.1.55.35 publication-title: Methods Mol. Biol. – ident: 2021111811011855000_16.1.55.24 doi: 10.1093/nar/gni052 – ident: 2021111811011855000_16.1.55.38 doi: 10.1101/gr.GR-1640R – ident: 2021111811011855000_16.1.55.31 doi: 10.1093/nar/gki476 – ident: 2021111811011855000_16.1.55.43 doi: 10.1038/nature03441 – ident: 2021111811011855000_16.1.55.8 doi: 10.1124/mol.63.6.1256 – ident: 2021111811011855000_16.1.55.52 – ident: 2021111811011855000_16.1.55.4 doi: 10.1126/science.282.5396.2012 – ident: 2021111811011855000_16.1.55.5 doi: 10.1101/gr.3308405 – ident: 2021111811011855000_16.1.55.44 doi: 10.1016/j.gene.2005.01.012 – ident: 2021111811011855000_16.1.55.15 doi: 10.1186/1475-2867-5-4 – ident: 2021111811011855000_16.1.55.49 – ident: 2021111811011855000_16.1.55.45 doi: 10.1101/gr.1017303 – ident: 2021111811011855000_16.1.55.20 doi: 10.1016/j.tig.2003.09.014 – ident: 2021111811011855000_16.1.55.16 doi: 10.1101/gr.3455305 – ident: 2021111811011855000_16.1.55.51 – ident: 2021111811011855000_16.1.55.17 doi: 10.1126/science.1090005 – ident: 2021111811011855000_16.1.55.41 doi: 10.1074/jbc.M200280200 – ident: 2021111811011855000_16.1.55.55 – ident: 2021111811011855000_16.1.55.23 doi: 10.1016/S0959-437X(00)00146-5 – ident: 2021111811011855000_16.1.55.26 doi: 10.1038/nature02538 – ident: 2021111811011855000_16.1.55.18 doi: 10.1101/gr.982903 – ident: 2021111811011855000_16.1.55.33 doi: 10.1093/nar/gkh122 – ident: 2021111811011855000_16.1.55.6 doi: 10.1126/science.1105136 – ident: 2021111811011855000_16.1.55.48 – ident: 2021111811011855000_16.1.55.34 doi: 10.1073/pnas.2136655100 – ident: 2021111811011855000_16.1.55.36 doi: 10.1016/S0378-1119(97)00411-3 – ident: 2021111811011855000_16.1.55.50 – ident: 2021111811011855000_16.1.55.27 doi: 10.1093/nar/gni139 – volume: 4 start-page: 55 year: 2004 ident: 2021111811011855000_16.1.55.42 publication-title: In Silico Biol. – ident: 2021111811011855000_16.1.55.14 doi: 10.1038/nature03001 – ident: 2021111811011855000_16.1.55.54 |
SSID | ssj0003488 ssj0006066 |
Score | 2.3905234 |
Snippet | By analyzing 1,780,295 5′-end sequences of human full-length cDNAs derived from 164 kinds of oligo-cap cDNA libraries, we identified 269,774 independent... By analyzing 1,780,295 5'-end sequences of human full-length cDNAs derived from 164 kinds of oligo-cap cDNA libraries, we identified 269,774 independent... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 55 |
SubjectTerms | Base Sequence CpG Islands - genetics Exons - genetics Gene Library Humans Letters Molecular Sequence Data Multigene Family - genetics Organ Specificity Promoter Regions, Genetic - genetics Quantitative Trait Loci - genetics Signal Transduction - genetics Transcription, Genetic - genetics |
Title | Diversification of transcriptional modulation: Large-scale identification and characterization of putative alternative promoters of human genes |
URI | https://www.ncbi.nlm.nih.gov/pubmed/16344560 https://www.proquest.com/docview/17472559 https://www.proquest.com/docview/67604542 https://pubmed.ncbi.nlm.nih.gov/PMC1356129 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9NAEF6FIgQvFbQcKddKICSEXHwfvJVwVEA5RCq1T5bt3U2iNnaU2A_kT_Dj-EPM7K6PJK0EfYkcZ3zE83mOnYuQ56CVhWC2b0Sh4xiuk1pGxFLbECxLLSsQ4JJhcfLRV__w2P104p30en86WUtVme5nywvrSq7CVdgHfMUq2f_gbHNS2AHbwF_4BA7D5z_x-J1KqhB63U3G-1H31JIAK0MKpgd0oe__BfO-jQXwhb-aMJ0opI6V9W1N9-Zlc8JZVare4DKunqvtmUziw9pftDVlHGCEQrNr6n7keTHlTWpfG-yfVnNVh1ZUk2w8aZf0zxIwnxeVFFfN7p_VslKjtU_hTs4aLfJNmb3DYjFWqWSXrl0MinMwquUCJtYsAejhOUjoY35BNwcFRTPIQwO7iSnNpcW1GxmeqwfB1PLc38CtEs6qH7BW82pCxaYCkYMLRvN918SZ8X6XCPg0m0oogRHrguVptkq0SW38fjSwHBw5Gl0j123wXXCeyOcfbQt7xw3bL-g-qhIQ9d90A124i9ftPWBjW33BVetpwyVaz-ztmErD22Rb-zj0QAH2DunxfIfsHgB2iukv-oLKrGMZztkhN97WWzcH9ezBXfJ7Ddm0EHQN2bRF9hvawTVdxTUFXNN1XOPpalzTDq5pg2ukkLimEtd3yfGH98PBoaFHhxiZGzil4USeZ5uC-0KEmZ14dpi6QYoVe2ESsUgkQSi4SBIWWiLiWSpMEXocbHFms8jPAuce2cqLnD8g1Em5GdnCEllouizz0yDByCXQhYx7vtMnL2uWxJnuq4_jXc5j6V-bVjyax5qTffKsoZ2pbjIXUj2tORvDc8cIXpLzolrEFjj_uAZwOYUf-NhU0-6T-woJ7XU0hPokWMFIQ4CN5ld_ySdj2XBeA3rvykc-JLfa1_8R2SrnFX8MxnyZPpEvx1_GyQGH |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diversification+of+transcriptional+modulation%3A+Large-scale+identification+and+characterization+of+putative+alternative+promoters+of+human+genes&rft.jtitle=Genome+Research&rft.au=Kimura%2C+Kouichi&rft.au=Wakamatsu%2C+Ai&rft.au=Suzuki%2C+Yutaka&rft.au=Ota%2C+Toshio&rft.date=2006-01-01&rft.pub=Cold+Spring+Harbor+Laboratory+Press&rft.issn=1088-9051&rft.eissn=1549-5477&rft.volume=16&rft.issue=1&rft.spage=55&rft.epage=65&rft_id=info:doi/10.1101%2Fgr.4039406&rft_id=info%3Apmid%2F16344560&rft.externalDocID=PMC1356129 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1088-9051&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1088-9051&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1088-9051&client=summon |