Exploring the concept of compressed air energy storage (CAES) in lined rock caverns at shallow depth: A modeling study of air tightness and energy balance

► We carried out coupled thermodynamic, multiphase fluid flow and heat transport analysis. ► Coupled behavior associated with underground lined caverns for CAES was investigated. ► Air leakage could be reduced by controlling the permeability of concrete lining. ► Heat loss during compression would b...

Full description

Saved in:
Bibliographic Details
Published inApplied energy Vol. 92; pp. 653 - 667
Main Authors Kim, Hyung-Mok, Rutqvist, Jonny, Ryu, Dong-Woo, Choi, Byung-Hee, Sunwoo, Choon, Song, Won-Kyong
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.04.2012
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract ► We carried out coupled thermodynamic, multiphase fluid flow and heat transport analysis. ► Coupled behavior associated with underground lined caverns for CAES was investigated. ► Air leakage could be reduced by controlling the permeability of concrete lining. ► Heat loss during compression would be gained back at subsequent decompression phase. This paper presents a numerical modeling study of coupled thermodynamic, multiphase fluid flow and heat transport associated with underground compressed air energy storage (CAES) in lined rock caverns. Specifically, we explored the concept of using concrete lined caverns at a relatively shallow depth for which constructing and operation costs may be reduced if air tightness and stability can be assured. Our analysis showed that the key parameter to assure long-term air tightness in such a system was the permeability of both the concrete lining and the surrounding rock. The analysis also indicated that a concrete lining with a permeability of less than 1 × 10 −18 m 2 would result in an acceptable air leakage rate of less than 1%, with the operation pressure range between 5 and 8 MPa at a depth of 100 m. It was further noted that capillary retention properties and the initial liquid saturation of the lining were very important. Indeed, air leakage could be effectively prevented when the air-entry pressure of the concrete lining is higher than the operation air pressure and when the lining is kept at relatively high moisture content. Our subsequent energy-balance analysis demonstrated that the energy loss for a daily compression and decompression cycle is governed by the air-pressure loss, as well as heat loss by conduction to the concrete liner and surrounding rock. For a sufficiently tight system, i.e., for a concrete permeability of less than 1 × 10 −18 m 2, heat loss by heat conduction tends to become proportionally more important. However, the energy loss by heat conduction can be minimized by keeping the air-injection temperature of compressed air closer to the ambient temperature of the underground storage cavern. In such a case, almost all the heat loss during compression is gained back during subsequent decompression. Finally, our numerical simulation study showed that CAES in shallow rock caverns is feasible from a leakage and energy efficiency viewpoint. Our numerical approach and energy analysis will next be applied in designing and evaluating the performance of a planned full-scale pilot test of the proposed underground CAES concept.
AbstractList This paper presents a numerical modeling study of coupled thermodynamic, multiphase fluid flow and heat transport associated with underground compressed air energy storage (CAES) in lined rock caverns. Specifically, we explored the concept of using concrete lined caverns at a relatively shallow depth for which constructing and operation costs may be reduced if air tightness and stability can be assured. Our analysis showed that the key parameter to assure long-term air tightness in such a system was the permeability of both the concrete lining and the surrounding rock. The analysis also indicated that a concrete lining with a permeability of less than 1 10-18 m2 would result in an acceptable air leakage rate of less than 1%, with the operation pressure range between 5 and 8 MPa at a depth of 100 m. It was further noted that capillary retention properties and the initial liquid saturation of the lining were very important. Indeed, air leakage could be effectively prevented when the air-entry pressure of the concrete lining is higher than the operation air pressure and when the lining is kept at relatively high moisture content. Our subsequent energy-balance analysis demonstrated that the energy loss for a daily compression and decompression cycle is governed by the air-pressure loss, as well as heat loss by conduction to the concrete liner and surrounding rock. For a sufficiently tight system, i.e., for a concrete permeability of less than 1 10-18 m2, heat loss by heat conduction tends to become proportionally more important. However, the energy loss by heat conduction can be minimized by keeping the air-injection temperature of compressed air closer to the ambient temperature of the underground storage cavern. In such a case, almost all the heat loss during compression is gained back during subsequent decompression. Finally, our numerical simulation study showed that CAES in shallow rock caverns is feasible from a leakage and energy efficiency viewpoint. Our numerical approach and energy analysis will next be applied in designing and evaluating the performance of a planned full-scale pilot test of the proposed underground CAES concept.
► We carried out coupled thermodynamic, multiphase fluid flow and heat transport analysis. ► Coupled behavior associated with underground lined caverns for CAES was investigated. ► Air leakage could be reduced by controlling the permeability of concrete lining. ► Heat loss during compression would be gained back at subsequent decompression phase. This paper presents a numerical modeling study of coupled thermodynamic, multiphase fluid flow and heat transport associated with underground compressed air energy storage (CAES) in lined rock caverns. Specifically, we explored the concept of using concrete lined caverns at a relatively shallow depth for which constructing and operation costs may be reduced if air tightness and stability can be assured. Our analysis showed that the key parameter to assure long-term air tightness in such a system was the permeability of both the concrete lining and the surrounding rock. The analysis also indicated that a concrete lining with a permeability of less than 1 × 10 −18 m 2 would result in an acceptable air leakage rate of less than 1%, with the operation pressure range between 5 and 8 MPa at a depth of 100 m. It was further noted that capillary retention properties and the initial liquid saturation of the lining were very important. Indeed, air leakage could be effectively prevented when the air-entry pressure of the concrete lining is higher than the operation air pressure and when the lining is kept at relatively high moisture content. Our subsequent energy-balance analysis demonstrated that the energy loss for a daily compression and decompression cycle is governed by the air-pressure loss, as well as heat loss by conduction to the concrete liner and surrounding rock. For a sufficiently tight system, i.e., for a concrete permeability of less than 1 × 10 −18 m 2, heat loss by heat conduction tends to become proportionally more important. However, the energy loss by heat conduction can be minimized by keeping the air-injection temperature of compressed air closer to the ambient temperature of the underground storage cavern. In such a case, almost all the heat loss during compression is gained back during subsequent decompression. Finally, our numerical simulation study showed that CAES in shallow rock caverns is feasible from a leakage and energy efficiency viewpoint. Our numerical approach and energy analysis will next be applied in designing and evaluating the performance of a planned full-scale pilot test of the proposed underground CAES concept.
This paper presents a numerical modeling study of coupled thermodynamic, multiphase fluid flow and heat transport associated with underground compressed air energy storage (CAES) in lined rock caverns. Specifically, we explored the concept of using concrete lined caverns at a relatively shallow depth for which constructing and operational costs may be reduced if air tightness and stability can be assured. Our analysis showed that the key parameter to assure long-term air tightness in such a system was the permeability of both the concrete lining and the surrounding rock. The analysis also indicated that a concrete lining with a permeability of less than 1×10{sup -18} m{sup 2} would result in an acceptable air leakage rate of less than 1%, with the operational pressure range between 5 and 8 MPa at a depth of 100 m. It was further noted that capillary retention properties and the initial liquid saturation of the lining were very important. Indeed, air leakage could be effectively prevented when the air-entry pressure of the concrete lining is higher than the operational air pressure and when the lining is kept moist at a relatively high liquid saturation. Our subsequent energy-balance analysis demonstrated that the energy loss for a daily compression and decompression cycle is governed by the air-pressure loss, as well as heat loss by conduction to the concrete liner and surrounding rock. For a sufficiently tight system, i.e., for a concrete permeability off less than 1×10{sup -18} m{sup 2}, heat loss by heat conduction tends to become proportionally more important. However, the energy loss by heat conduction can be minimized by keeping the air-injection temperature of compressed air closer to the ambient temperature of the underground storage cavern. In such a case, almost all the heat loss during compression is gained back during subsequent decompression. Finally, our numerical simulation study showed that CAES in shallow rock caverns is feasible from a leakage and energy efficiency viewpoint. Our numerical approach and energy analysis will next be applied in designing and evaluating the performance of a planned full-scale pilot test of the proposed underground CAES concept.
This paper presents a numerical modeling study of coupled thermodynamic, multiphase fluid flow and heat transport associated with underground compressed air energy storage (CAES) in lined rock caverns. Specifically, we explored the concept of using concrete lined caverns at a relatively shallow depth for which constructing and operation costs may be reduced if air tightness and stability can be assured. Our analysis showed that the key parameter to assure long-term air tightness in such a system was the permeability of both the concrete lining and the surrounding rock. The analysis also indicated that a concrete lining with a permeability of less than 1×10⁻¹⁸m² would result in an acceptable air leakage rate of less than 1%, with the operation pressure range between 5 and 8MPa at a depth of 100m. It was further noted that capillary retention properties and the initial liquid saturation of the lining were very important. Indeed, air leakage could be effectively prevented when the air-entry pressure of the concrete lining is higher than the operation air pressure and when the lining is kept at relatively high moisture content. Our subsequent energy-balance analysis demonstrated that the energy loss for a daily compression and decompression cycle is governed by the air-pressure loss, as well as heat loss by conduction to the concrete liner and surrounding rock. For a sufficiently tight system, i.e., for a concrete permeability of less than 1×10⁻¹⁸m², heat loss by heat conduction tends to become proportionally more important. However, the energy loss by heat conduction can be minimized by keeping the air-injection temperature of compressed air closer to the ambient temperature of the underground storage cavern. In such a case, almost all the heat loss during compression is gained back during subsequent decompression. Finally, our numerical simulation study showed that CAES in shallow rock caverns is feasible from a leakage and energy efficiency viewpoint. Our numerical approach and energy analysis will next be applied in designing and evaluating the performance of a planned full-scale pilot test of the proposed underground CAES concept.
Author Kim, Hyung-Mok
Sunwoo, Choon
Ryu, Dong-Woo
Song, Won-Kyong
Choi, Byung-Hee
Rutqvist, Jonny
Author_xml – sequence: 1
  givenname: Hyung-Mok
  surname: Kim
  fullname: Kim, Hyung-Mok
  organization: Korea Institute of Geoscience and Mineral Resources (KIGAM), Daejeon 305-350, Republic of Korea
– sequence: 2
  givenname: Jonny
  surname: Rutqvist
  fullname: Rutqvist, Jonny
  organization: Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA 94720, USA
– sequence: 3
  givenname: Dong-Woo
  surname: Ryu
  fullname: Ryu, Dong-Woo
  email: dwryu@kigam.re.kr
  organization: Korea Institute of Geoscience and Mineral Resources (KIGAM), Daejeon 305-350, Republic of Korea
– sequence: 4
  givenname: Byung-Hee
  surname: Choi
  fullname: Choi, Byung-Hee
  organization: Korea Institute of Geoscience and Mineral Resources (KIGAM), Daejeon 305-350, Republic of Korea
– sequence: 5
  givenname: Choon
  surname: Sunwoo
  fullname: Sunwoo, Choon
  organization: Korea Institute of Geoscience and Mineral Resources (KIGAM), Daejeon 305-350, Republic of Korea
– sequence: 6
  givenname: Won-Kyong
  surname: Song
  fullname: Song, Won-Kyong
  organization: Korea Institute of Geoscience and Mineral Resources (KIGAM), Daejeon 305-350, Republic of Korea
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25609206$$DView record in Pascal Francis
https://www.osti.gov/servlets/purl/1051629$$D View this record in Osti.gov
BookMark eNqFkc1uEzEUhUeoSKSFVwALCQGLhGs79sx0RRSFH6kSi9K15dh3EoeJPdhOIa_C0-LRtGxZ2YvvnnPvOZfVhQ8eq-olhQUFKj8cFnpAj3F3XjCgdAH1Aih_Us1oU7N5S2lzUc2Ag5wzSdtn1WVKBwBglMGs-rP5PfQhOr8jeY_EBG9wyCR05XscIqaElmgXyeRAUg5R75C8W682t--J86R3viAxmB_E6HuMPhGdSdrrvg-_iC1q-2uyIsdgsR9tUj7Z82gwqma322dfXIj29tFjq3td1nhePe10n_DFw3tV3X3afF9_md98-_x1vbqZm2XN85xL0bG24y0IIQUsgS-3UmgNzFLdNLTDlm25NdtG8Lq17RYsZwiCYV0LQQW_ql5PuiFlp5JxGc2-BOHRZEVBUMnaAr2doCGGnydMWR1dMtiXTTGckmoZZ8Aa0RRSTqSJIaWInRqiO-p4LlpqLEwd1GNhaixMQa1KYWXwzYOFTkb3XSwhuPRvmgkJLQNZuFcT1-mg9C4W5u62CMlSKoeSSSE-TgSW2O4dxvEqLJFaF8ejbHD_W-YvZGO6NA
CODEN APENDX
CitedBy_id crossref_primary_10_1016_j_conbuildmat_2018_01_115
crossref_primary_10_1016_j_ijrmms_2023_105346
crossref_primary_10_1016_j_ijrmms_2016_04_010
crossref_primary_10_1016_j_ijrmms_2020_104373
crossref_primary_10_1016_j_renene_2014_08_058
crossref_primary_10_1155_2015_921413
crossref_primary_10_1016_j_eng_2022_06_021
crossref_primary_10_1016_j_compgeo_2016_01_002
crossref_primary_10_1016_j_est_2021_103725
crossref_primary_10_1002_er_3550
crossref_primary_10_1016_j_enggeo_2012_03_006
crossref_primary_10_1002_er_3432
crossref_primary_10_1016_j_jgsce_2024_205263
crossref_primary_10_1016_j_ijrmms_2012_02_010
crossref_primary_10_1016_j_ijrmms_2014_02_015
crossref_primary_10_1088_1755_1315_1335_1_012043
crossref_primary_10_1007_s00603_014_0570_4
crossref_primary_10_1016_j_apenergy_2014_09_085
crossref_primary_10_3390_en7084988
crossref_primary_10_1002_ese3_1265
crossref_primary_10_1016_j_ijheatmasstransfer_2012_05_055
crossref_primary_10_1016_j_jrmge_2022_03_006
crossref_primary_10_3389_feart_2021_760464
crossref_primary_10_7474_TUS_2015_25_2_155
crossref_primary_10_1016_j_enggeo_2012_03_013
crossref_primary_10_1144_SP528_2023_5
crossref_primary_10_3390_en10101620
crossref_primary_10_3390_su14116788
crossref_primary_10_1016_j_ijhydene_2021_08_028
crossref_primary_10_1016_j_est_2024_110835
crossref_primary_10_1016_j_est_2022_105282
crossref_primary_10_1016_j_seta_2017_12_002
crossref_primary_10_12972_ksmer_2014_51_6_820
crossref_primary_10_1016_j_apenergy_2016_08_105
crossref_primary_10_3390_en17092064
crossref_primary_10_7733_jnfcwt_2023_007
crossref_primary_10_1016_j_est_2021_102696
crossref_primary_10_1002_er_3771
crossref_primary_10_1016_j_tafmec_2021_103107
crossref_primary_10_1007_s00603_014_0672_z
crossref_primary_10_1680_jenge_16_00008
crossref_primary_10_1016_j_jclepro_2023_136153
crossref_primary_10_1007_s12665_016_5970_1
crossref_primary_10_1016_j_apenergy_2012_11_037
crossref_primary_10_1139_cgj_2013_0120
crossref_primary_10_1016_j_energy_2024_130821
crossref_primary_10_3390_buildings14071923
crossref_primary_10_1155_2020_8851177
crossref_primary_10_1016_j_apenergy_2014_03_013
crossref_primary_10_1016_j_renene_2013_07_039
crossref_primary_10_1007_s00603_015_0761_7
crossref_primary_10_1016_j_est_2023_110261
crossref_primary_10_1007_s10706_014_9736_9
crossref_primary_10_1016_j_energy_2022_125601
crossref_primary_10_1016_j_jrmge_2022_11_011
crossref_primary_10_1007_s10706_014_9797_9
crossref_primary_10_1016_j_ijhydene_2023_08_342
crossref_primary_10_3390_en17040953
crossref_primary_10_1016_j_enggeo_2019_105414
crossref_primary_10_1063_1_5000287
crossref_primary_10_1016_j_rser_2016_05_002
crossref_primary_10_1016_j_energy_2017_05_047
crossref_primary_10_32390_ksmer_2023_60_2_129
crossref_primary_10_1016_j_apenergy_2014_07_048
crossref_primary_10_1007_s12205_019_0260_6
crossref_primary_10_1016_j_ijrmms_2016_01_007
crossref_primary_10_1016_j_ijmst_2024_04_005
crossref_primary_10_54097_hset_v33i_5238
crossref_primary_10_1007_s11600_017_0073_2
crossref_primary_10_1016_j_jrmge_2022_10_007
crossref_primary_10_1016_j_energy_2021_119861
crossref_primary_10_1016_j_energy_2022_124646
crossref_primary_10_1093_ijlct_ctv007
crossref_primary_10_3390_app14083525
crossref_primary_10_1088_1742_6596_2607_1_012001
crossref_primary_10_1088_1742_2140_aa7bd9
crossref_primary_10_1016_j_engfailanal_2024_108143
crossref_primary_10_1515_revce_2019_0015
crossref_primary_10_1007_s12665_021_09411_1
crossref_primary_10_1016_j_apenergy_2017_09_107
crossref_primary_10_1007_s42461_023_00778_2
crossref_primary_10_1016_j_renene_2024_119987
crossref_primary_10_3389_fphy_2023_1249458
crossref_primary_10_1016_j_compgeo_2023_105329
crossref_primary_10_1016_j_compgeo_2024_106318
crossref_primary_10_1080_19648189_2018_1499556
crossref_primary_10_1007_s12517_022_11082_6
crossref_primary_10_1016_j_applthermaleng_2018_09_117
crossref_primary_10_1016_j_apenergy_2017_09_074
crossref_primary_10_1016_j_energy_2023_128271
crossref_primary_10_1063_1_4944970
crossref_primary_10_1016_j_energy_2021_120905
crossref_primary_10_1007_s40948_021_00272_3
crossref_primary_10_1617_s11527_013_0050_4
crossref_primary_10_1007_s11771_023_5460_z
crossref_primary_10_1016_j_renene_2017_12_091
crossref_primary_10_1007_s40948_023_00671_8
crossref_primary_10_1007_s00603_012_0312_4
crossref_primary_10_1155_2014_179169
crossref_primary_10_32390_ksmer_2023_60_3_181
crossref_primary_10_1016_j_energy_2021_121314
crossref_primary_10_1016_j_apenergy_2021_116592
crossref_primary_10_1016_j_ijrmms_2024_105717
crossref_primary_10_1016_j_renene_2016_11_042
crossref_primary_10_1007_s00024_024_03442_y
crossref_primary_10_7474_TUS_2015_25_2_168
crossref_primary_10_1016_j_seta_2024_103782
crossref_primary_10_3389_fevo_2023_1196749
crossref_primary_10_1016_j_applthermaleng_2018_06_070
crossref_primary_10_1680_geolett_13_00068
crossref_primary_10_1016_j_est_2022_104160
crossref_primary_10_1061_JMCEE7_MTENG_14804
crossref_primary_10_1007_s11242_012_0118_6
crossref_primary_10_1016_j_enconman_2015_03_094
crossref_primary_10_1016_j_est_2023_108260
crossref_primary_10_1016_j_renene_2019_07_034
crossref_primary_10_1016_j_conbuildmat_2018_05_009
crossref_primary_10_1016_j_ijmst_2024_02_003
crossref_primary_10_1002_nag_2576
crossref_primary_10_1016_j_est_2023_110186
crossref_primary_10_1007_s00603_019_02009_x
crossref_primary_10_1016_j_compgeo_2024_106130
crossref_primary_10_1016_j_energy_2018_05_107
crossref_primary_10_1016_j_rser_2014_01_068
crossref_primary_10_3989_egeol_43115_480
crossref_primary_10_7474_TUS_2016_26_3_166
Cites_doi 10.1007/s00254-008-1552-1
10.1016/j.ijrmms.2005.03.004
10.1016/0306-2619(76)90038-6
10.1016/j.ijggc.2010.08.005
10.13182/NT08-A3974
10.1016/S1365-1609(02)00022-9
10.1016/j.apenergy.2009.10.017
10.1016/j.cemconres.2005.11.015
10.1016/j.pnsc.2008.07.014
10.1016/j.ijrmms.2007.04.006
10.1007/s00254-008-1401-2
10.1016/0306-2619(78)90023-5
10.1016/j.ijrmms.2005.03.012
10.2136/sssaj1980.03615995004400050002x
10.1016/j.rser.2008.09.028
10.1016/0886-7798(88)90056-9
10.2172/751729
10.1016/j.ijrmms.2008.01.016
10.1144/SP313.7
10.1016/j.apenergy.2007.07.006
10.1029/94WR03038
10.1016/j.ijrmms.2005.03.008
10.1016/j.cageo.2010.08.006
ContentType Journal Article
Copyright 2011 Elsevier Ltd
2014 INIST-CNRS
Copyright_xml – notice: 2011 Elsevier Ltd
– notice: 2014 INIST-CNRS
CorporateAuthor Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
CorporateAuthor_xml – name: Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
DBID FBQ
IQODW
AAYXX
CITATION
7ST
7U6
C1K
OIOZB
OTOTI
DOI 10.1016/j.apenergy.2011.07.013
DatabaseName AGRIS
Pascal-Francis
CrossRef
Environment Abstracts
Sustainability Science Abstracts
Environmental Sciences and Pollution Management
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
Environment Abstracts
Sustainability Science Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Environment Abstracts



Database_xml – sequence: 1
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
Applied Sciences
EISSN 1872-9118
EndPage 667
ExternalDocumentID 1051629
10_1016_j_apenergy_2011_07_013
25609206
US201600030473
S0306261911004582
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
AAYOK
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SDF
SDG
SES
SEW
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
WUQ
ZY4
~02
~G-
ABPIF
ABPTK
FBQ
8W4
AALMO
AAPBV
ADALY
IPNFZ
IQODW
AAHBH
AAXKI
AAYXX
AFJKZ
AKRWK
CITATION
7ST
7U6
C1K
OIOZB
OTOTI
ID FETCH-LOGICAL-c473t-365f29f390556504034b65aa02d1a881fe92b3dcb85379d9b0d32e052e7755153
IEDL.DBID .~1
ISSN 0306-2619
IngestDate Fri May 19 01:41:01 EDT 2023
Fri Aug 16 23:23:03 EDT 2024
Thu Sep 26 18:56:45 EDT 2024
Fri Nov 25 10:04:36 EST 2022
Wed Dec 27 19:18:50 EST 2023
Fri Feb 23 02:36:45 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Energy balance
Heat loss
Compressed air energy storage (CAES)
Air tightness
Lined rock cavern (LRC)
TOUGH-FLAC
TOUCH-FLAC
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c473t-365f29f390556504034b65aa02d1a881fe92b3dcb85379d9b0d32e052e7755153
Notes http://dx.doi.org/10.1016/j.apenergy.2011.07.013
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Earth Sciences Division
LBNL-5138E
DE-AC02-05CH11231
OpenAccessLink https://www.osti.gov/servlets/purl/1051629
PQID 923202858
PQPubID 23462
PageCount 15
ParticipantIDs osti_scitechconnect_1051629
proquest_miscellaneous_923202858
crossref_primary_10_1016_j_apenergy_2011_07_013
pascalfrancis_primary_25609206
fao_agris_US201600030473
elsevier_sciencedirect_doi_10_1016_j_apenergy_2011_07_013
PublicationCentury 2000
PublicationDate 2012-04-01
PublicationDateYYYYMMDD 2012-04-01
PublicationDate_xml – month: 04
  year: 2012
  text: 2012-04-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
– name: United States
PublicationTitle Applied energy
PublicationYear 2012
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Shidahara T, Nakagawa K, Ikegawa Y, Suenaga H, Miyamoto Y. Demonstration study for the compressed air energy storage technology by the hydraulic confining method at the Kamioka testing site. CRIEPI report U1024; 2001 [in Japanese].
Rutqvist, Wu, Tsang, Bodvarsson, Modeling (b0065) 2002; 39
Rutqvist, Birkholzer, Tsang (b0075) 2008; 45
Rutqvist J, Oldenburg CM. Analysis of injection-induced micro-earthquakes in a geothermal steam reservoir, Geysers Geothermal Field, California. In: Proceedings of the 42th US rock mechanics symposium, San Francisco, California, USA. American Rock Mechanics Association ARMA, Paper No. 151; 29 June–2 July 2008.
Hadjipaschalis, Poullikkas, Efthimiou (b0020) 2009; 13
Nakata, Yamachi, Nakayama, Sakurai, Shidahara (b0160) 1998; 610
Fast Lagrangian Analysis of Continua in 3 Dimensions, Version 4.0. Minneapolis, Minnesota, Itasca Consulting Group 438; 2009.
Itasca, FLAC
Chijimatsu, Börgesson, Fujita, Jussila, Nguyen, Rutqvist (b0105) 2009; 57
Shinohara, Aida, Kawakami, Fukuda (b0155) 2001; 32
Cappa F, Rutqvist J. Modeling of coupled deformation and permeability evolution during fault reactivation induced by deep underground injection of CO
Salgi, Lund (b0005) 2008; 85
Alonso, Alcoverro (b0130) 2005; 42
Finsterle, Pruess (b0140) 1995; 31
Int J Greenhouse Gas Control; 2010.
Rutqvist J. Status of the TOUGH-FLAC simulator and recent applications related to coupled fluid flow and crustal deformations. Comput Geosci; in press.
Rutqvist, Barr, Birkholzer, Fujisaki, Kolditz, Liu (b0110) 2009; 57
Mehta, Spencer (b0060) 1988; 3
Crotogino F, Mohmeyer KU, Scharf R, Huntroft CAES: more than 20 years of successful operation. In: Spring 2001 meeting, Orlando, Florida, USA; 15–18 April 2001.
Giramonti, Lessard, Blecher, Smith (b0050) 1978; 4
.
Lux KH. Design of salt caverns for the storage of natural gas, crude oil and compressed air: geomechanical aspects of construction, operation and abandonment, underground gas storage: worldwide experiences and future development in the UK and Europe. Bodmin, UK: MPG Books Ltd.; 2010.
Chen, Cong, Yang, Tan, Li, Ding (b0015) 2009; 19
Ibrahim, Younes, Illinca, Dimitrova, Perron (b0025) 2010; 87
Rutqvist, Barr, Datta, Gens, Millard, Olivella (b0120) 2005; 42
Pepper D. Utility power storage technologies. BCC research; 2008.
Glendenning (b0010) 1976; 2
Navarro, Yustres, Cea, Candel, Juncosa, Delgado (b0145) 2006; 36
van Genuchten (b0135) 1980; 44
Rutqvist, Freifeld, Min, Elsworth, Tsang (b0090) 2008; 45
Pruess K, Oldenburg C, Moridis G. TOUGH2 User’s Guide Version 2.0. LBNL-43134; 1999.
Rutqvist, Barr, Birkholzer, Chijimatsu, Kolditz, Liu (b0115) 2008; 163
Rutqvist, Chijimatsu, Jing, De Jonge, Kohlmeier, Millard (b0125) 2005; 42
Rutqvist (10.1016/j.apenergy.2011.07.013_b0115) 2008; 163
10.1016/j.apenergy.2011.07.013_b0080
Rutqvist (10.1016/j.apenergy.2011.07.013_b0090) 2008; 45
Navarro (10.1016/j.apenergy.2011.07.013_b0145) 2006; 36
Rutqvist (10.1016/j.apenergy.2011.07.013_b0065) 2002; 39
Mehta (10.1016/j.apenergy.2011.07.013_b0060) 1988; 3
Glendenning (10.1016/j.apenergy.2011.07.013_b0010) 1976; 2
Giramonti (10.1016/j.apenergy.2011.07.013_b0050) 1978; 4
van Genuchten (10.1016/j.apenergy.2011.07.013_b0135) 1980; 44
10.1016/j.apenergy.2011.07.013_b0035
Rutqvist (10.1016/j.apenergy.2011.07.013_b0075) 2008; 45
Rutqvist (10.1016/j.apenergy.2011.07.013_b0125) 2005; 42
Chijimatsu (10.1016/j.apenergy.2011.07.013_b0105) 2009; 57
Chen (10.1016/j.apenergy.2011.07.013_b0015) 2009; 19
10.1016/j.apenergy.2011.07.013_b0030
10.1016/j.apenergy.2011.07.013_b0055
Nakata (10.1016/j.apenergy.2011.07.013_b0160) 1998; 610
10.1016/j.apenergy.2011.07.013_b0070
10.1016/j.apenergy.2011.07.013_b0095
Finsterle (10.1016/j.apenergy.2011.07.013_b0140) 1995; 31
Rutqvist (10.1016/j.apenergy.2011.07.013_b0120) 2005; 42
Hadjipaschalis (10.1016/j.apenergy.2011.07.013_b0020) 2009; 13
Alonso (10.1016/j.apenergy.2011.07.013_b0130) 2005; 42
Rutqvist (10.1016/j.apenergy.2011.07.013_b0110) 2009; 57
10.1016/j.apenergy.2011.07.013_b0100
10.1016/j.apenergy.2011.07.013_b0085
Salgi (10.1016/j.apenergy.2011.07.013_b0005) 2008; 85
Ibrahim (10.1016/j.apenergy.2011.07.013_b0025) 2010; 87
Shinohara (10.1016/j.apenergy.2011.07.013_b0155) 2001; 32
10.1016/j.apenergy.2011.07.013_b0040
References_xml – volume: 42
  start-page: 611
  year: 2005
  end-page: 638
  ident: b0130
  article-title: The FEBEX Bechmark test. Case definition and comparison of modelling approaches
  publication-title: Int J Rock Mech Min Sci
  contributor:
    fullname: Alcoverro
– volume: 3
  start-page: 295
  year: 1988
  end-page: 299
  ident: b0060
  article-title: Siting compressed-air energy plants
  publication-title: Tunn Undergr Space Technol
  contributor:
    fullname: Spencer
– volume: 610
  start-page: 31
  year: 1998
  end-page: 42
  ident: b0160
  article-title: Thermo-dynamical approach to compressed air energy storage system
  publication-title: Proc Jpn Soc Civil Eng (JSCE)
  contributor:
    fullname: Shidahara
– volume: 39
  start-page: 429
  year: 2002
  end-page: 442
  ident: b0065
  article-title: A modeling approach for analysis of coupled multiphase fluid flow, heat transfer, and deformation in fractured porous rock
  publication-title: Int J Rock Mech Mining Sci
  contributor:
    fullname: Modeling
– volume: 2
  start-page: 39
  year: 1976
  end-page: 56
  ident: b0010
  article-title: Long-term prospects for compressed air storage
  publication-title: Appl Energy
  contributor:
    fullname: Glendenning
– volume: 42
  start-page: 680
  year: 2005
  end-page: 697
  ident: b0120
  article-title: Test-comparison of field results to predictions of four different models
  publication-title: Int J Rock Mech Mining Sci
  contributor:
    fullname: Olivella
– volume: 42
  start-page: 745
  year: 2005
  end-page: 755
  ident: b0125
  article-title: Numerical study of the THM effects on the near-field safety of a hypothetical nuclear waste repository – BMT1 of the DECOVALEX III project. Part 3: effects of THM coupling in fractured rock
  publication-title: Int J Rock Mech Mining Sci
  contributor:
    fullname: Millard
– volume: 45
  start-page: 1373
  year: 2008
  end-page: 1389
  ident: b0090
  article-title: Analysis of thermally induced changes in fractured rock permeability during eight years of heating and cooling at the Yucca Mountain Drift Scale Test
  publication-title: Int J Rock Mech Mining Sci
  contributor:
    fullname: Tsang
– volume: 44
  start-page: 892
  year: 1980
  end-page: 898
  ident: b0135
  article-title: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils
  publication-title: Soil Sci Soc Am J
  contributor:
    fullname: van Genuchten
– volume: 31
  start-page: 913
  year: 1995
  end-page: 924
  ident: b0140
  article-title: Solving the estimation–identification problem in two-phase flow modeling
  publication-title: Water Resour Res
  contributor:
    fullname: Pruess
– volume: 85
  start-page: 182
  year: 2008
  end-page: 189
  ident: b0005
  article-title: System behavior of compressed air energy storage in Denmark with a high penetration of renewable energy sources
  publication-title: Appl Energy
  contributor:
    fullname: Lund
– volume: 163
  start-page: 101
  year: 2008
  end-page: 109
  ident: b0115
  article-title: Hydrological, and mechanical (THM) processes near geological nuclear waste repositories
  publication-title: Nucl Technol
  contributor:
    fullname: Liu
– volume: 87
  start-page: 1749
  year: 2010
  end-page: 1762
  ident: b0025
  article-title: Study and design of a hybrid wind-diesel-compressed air energy storage system for remote areas
  publication-title: Appl Energy
  contributor:
    fullname: Perron
– volume: 19
  start-page: 291
  year: 2009
  end-page: 312
  ident: b0015
  article-title: Progress in electrical energy storage system: a critical review
  publication-title: Prog Nat Sci
  contributor:
    fullname: Ding
– volume: 32
  start-page: 495
  year: 2001
  end-page: 503
  ident: b0155
  article-title: High compressed air storage in rock bed 450
  publication-title: Tunnels Underground
  contributor:
    fullname: Fukuda
– volume: 57
  start-page: 1255
  year: 2009
  end-page: 1261
  ident: b0105
  article-title: Hydraulic and mechanical phenomena of the bentonite
  publication-title: Environ Geol
  contributor:
    fullname: Rutqvist
– volume: 4
  start-page: 231
  year: 1978
  end-page: 239
  ident: b0050
  article-title: Conceptual design of compressed air energy storage electric power systems
  publication-title: Appl Energy
  contributor:
    fullname: Smith
– volume: 36
  start-page: 1575
  year: 2006
  end-page: 1582
  ident: b0145
  article-title: Characterization of the water flow through concrete based on parameter estimation from infiltration tests
  publication-title: Cem Concr Res
  contributor:
    fullname: Delgado
– volume: 13
  start-page: 1513
  year: 2009
  end-page: 1522
  ident: b0020
  article-title: Overview of current and future energy storage technologies for electric power applications
  publication-title: Renew Sustain Energy Rev
  contributor:
    fullname: Efthimiou
– volume: 57
  start-page: 1347
  year: 2009
  end-page: 1360
  ident: b0110
  article-title: Repositories
  publication-title: Environ Geol
  contributor:
    fullname: Liu
– volume: 45
  start-page: 132
  year: 2008
  end-page: 143
  ident: b0075
  article-title: Coupled reservoir-geomechanical analysis of the potential for tensile and shear failure associated with CO
  publication-title: Int J Rock Mech Mining Sci
  contributor:
    fullname: Tsang
– ident: 10.1016/j.apenergy.2011.07.013_b0035
– ident: 10.1016/j.apenergy.2011.07.013_b0085
– volume: 57
  start-page: 1347
  year: 2009
  ident: 10.1016/j.apenergy.2011.07.013_b0110
  article-title: Repositories
  publication-title: Environ Geol
  doi: 10.1007/s00254-008-1552-1
  contributor:
    fullname: Rutqvist
– volume: 42
  start-page: 611
  year: 2005
  ident: 10.1016/j.apenergy.2011.07.013_b0130
  article-title: The FEBEX Bechmark test. Case definition and comparison of modelling approaches
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2005.03.004
  contributor:
    fullname: Alonso
– volume: 2
  start-page: 39
  year: 1976
  ident: 10.1016/j.apenergy.2011.07.013_b0010
  article-title: Long-term prospects for compressed air storage
  publication-title: Appl Energy
  doi: 10.1016/0306-2619(76)90038-6
  contributor:
    fullname: Glendenning
– ident: 10.1016/j.apenergy.2011.07.013_b0080
  doi: 10.1016/j.ijggc.2010.08.005
– ident: 10.1016/j.apenergy.2011.07.013_b0100
– volume: 163
  start-page: 101
  year: 2008
  ident: 10.1016/j.apenergy.2011.07.013_b0115
  article-title: Hydrological, and mechanical (THM) processes near geological nuclear waste repositories
  publication-title: Nucl Technol
  doi: 10.13182/NT08-A3974
  contributor:
    fullname: Rutqvist
– volume: 39
  start-page: 429
  year: 2002
  ident: 10.1016/j.apenergy.2011.07.013_b0065
  article-title: A modeling approach for analysis of coupled multiphase fluid flow, heat transfer, and deformation in fractured porous rock
  publication-title: Int J Rock Mech Mining Sci
  doi: 10.1016/S1365-1609(02)00022-9
  contributor:
    fullname: Rutqvist
– volume: 87
  start-page: 1749
  year: 2010
  ident: 10.1016/j.apenergy.2011.07.013_b0025
  article-title: Study and design of a hybrid wind-diesel-compressed air energy storage system for remote areas
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2009.10.017
  contributor:
    fullname: Ibrahim
– volume: 32
  start-page: 495
  year: 2001
  ident: 10.1016/j.apenergy.2011.07.013_b0155
  article-title: High compressed air storage in rock bed 450meter down below the ground Kami-sunagawa pilot plant construction work
  publication-title: Tunnels Underground
  contributor:
    fullname: Shinohara
– volume: 36
  start-page: 1575
  year: 2006
  ident: 10.1016/j.apenergy.2011.07.013_b0145
  article-title: Characterization of the water flow through concrete based on parameter estimation from infiltration tests
  publication-title: Cem Concr Res
  doi: 10.1016/j.cemconres.2005.11.015
  contributor:
    fullname: Navarro
– volume: 19
  start-page: 291
  year: 2009
  ident: 10.1016/j.apenergy.2011.07.013_b0015
  article-title: Progress in electrical energy storage system: a critical review
  publication-title: Prog Nat Sci
  doi: 10.1016/j.pnsc.2008.07.014
  contributor:
    fullname: Chen
– volume: 45
  start-page: 132
  year: 2008
  ident: 10.1016/j.apenergy.2011.07.013_b0075
  article-title: Coupled reservoir-geomechanical analysis of the potential for tensile and shear failure associated with CO2 injection in multilayered reservoir-caprock systems
  publication-title: Int J Rock Mech Mining Sci
  doi: 10.1016/j.ijrmms.2007.04.006
  contributor:
    fullname: Rutqvist
– volume: 57
  start-page: 1255
  year: 2009
  ident: 10.1016/j.apenergy.2011.07.013_b0105
  article-title: Hydraulic and mechanical phenomena of the bentonite
  publication-title: Environ Geol
  doi: 10.1007/s00254-008-1401-2
  contributor:
    fullname: Chijimatsu
– volume: 4
  start-page: 231
  year: 1978
  ident: 10.1016/j.apenergy.2011.07.013_b0050
  article-title: Conceptual design of compressed air energy storage electric power systems
  publication-title: Appl Energy
  doi: 10.1016/0306-2619(78)90023-5
  contributor:
    fullname: Giramonti
– volume: 42
  start-page: 745
  year: 2005
  ident: 10.1016/j.apenergy.2011.07.013_b0125
  article-title: Numerical study of the THM effects on the near-field safety of a hypothetical nuclear waste repository – BMT1 of the DECOVALEX III project. Part 3: effects of THM coupling in fractured rock
  publication-title: Int J Rock Mech Mining Sci
  doi: 10.1016/j.ijrmms.2005.03.012
  contributor:
    fullname: Rutqvist
– volume: 44
  start-page: 892
  year: 1980
  ident: 10.1016/j.apenergy.2011.07.013_b0135
  article-title: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils
  publication-title: Soil Sci Soc Am J
  doi: 10.2136/sssaj1980.03615995004400050002x
  contributor:
    fullname: van Genuchten
– volume: 13
  start-page: 1513
  year: 2009
  ident: 10.1016/j.apenergy.2011.07.013_b0020
  article-title: Overview of current and future energy storage technologies for electric power applications
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2008.09.028
  contributor:
    fullname: Hadjipaschalis
– volume: 610
  start-page: 31
  year: 1998
  ident: 10.1016/j.apenergy.2011.07.013_b0160
  article-title: Thermo-dynamical approach to compressed air energy storage system
  publication-title: Proc Jpn Soc Civil Eng (JSCE)
  contributor:
    fullname: Nakata
– volume: 3
  start-page: 295
  year: 1988
  ident: 10.1016/j.apenergy.2011.07.013_b0060
  article-title: Siting compressed-air energy plants
  publication-title: Tunn Undergr Space Technol
  doi: 10.1016/0886-7798(88)90056-9
  contributor:
    fullname: Mehta
– ident: 10.1016/j.apenergy.2011.07.013_b0095
  doi: 10.2172/751729
– volume: 45
  start-page: 1373
  year: 2008
  ident: 10.1016/j.apenergy.2011.07.013_b0090
  article-title: Analysis of thermally induced changes in fractured rock permeability during eight years of heating and cooling at the Yucca Mountain Drift Scale Test
  publication-title: Int J Rock Mech Mining Sci
  doi: 10.1016/j.ijrmms.2008.01.016
  contributor:
    fullname: Rutqvist
– ident: 10.1016/j.apenergy.2011.07.013_b0055
  doi: 10.1144/SP313.7
– ident: 10.1016/j.apenergy.2011.07.013_b0030
– volume: 85
  start-page: 182
  year: 2008
  ident: 10.1016/j.apenergy.2011.07.013_b0005
  article-title: System behavior of compressed air energy storage in Denmark with a high penetration of renewable energy sources
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2007.07.006
  contributor:
    fullname: Salgi
– volume: 31
  start-page: 913
  year: 1995
  ident: 10.1016/j.apenergy.2011.07.013_b0140
  article-title: Solving the estimation–identification problem in two-phase flow modeling
  publication-title: Water Resour Res
  doi: 10.1029/94WR03038
  contributor:
    fullname: Finsterle
– ident: 10.1016/j.apenergy.2011.07.013_b0040
– volume: 42
  start-page: 680
  year: 2005
  ident: 10.1016/j.apenergy.2011.07.013_b0120
  article-title: Test-comparison of field results to predictions of four different models
  publication-title: Int J Rock Mech Mining Sci
  doi: 10.1016/j.ijrmms.2005.03.008
  contributor:
    fullname: Rutqvist
– ident: 10.1016/j.apenergy.2011.07.013_b0070
  doi: 10.1016/j.cageo.2010.08.006
SSID ssj0002120
Score 2.4911196
Snippet ► We carried out coupled thermodynamic, multiphase fluid flow and heat transport analysis. ► Coupled behavior associated with underground lined caverns for...
This paper presents a numerical modeling study of coupled thermodynamic, multiphase fluid flow and heat transport associated with underground compressed air...
SourceID osti
proquest
crossref
pascalfrancis
fao
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 653
SubjectTerms air
Air tightness
ambient temperature
Applied sciences
atmospheric pressure
Compressed air energy storage (CAES)
Energy
Energy balance
energy efficiency
ENVIRONMENTAL SCIENCES
Exact sciences and technology
GEOSCIENCES
heat
Heat loss
Lined rock cavern (LRC)
mathematical models
operating costs
permeability
TOUGH-FLAC
TOUGH-FLAC, compressed air energy storage (CAES), air tightness, energy balance, lined rock cavern (LRC)
water content
Title Exploring the concept of compressed air energy storage (CAES) in lined rock caverns at shallow depth: A modeling study of air tightness and energy balance
URI https://dx.doi.org/10.1016/j.apenergy.2011.07.013
https://search.proquest.com/docview/923202858
https://www.osti.gov/servlets/purl/1051629
Volume 92
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nj9MwELWW5QIHBAurLQvVHDjAIa1jJ3HMraq6KiD2UirtzXJiG7pISbXJihs_hF_LTD72Qwhx4NjWHTuZ8fi1efOGsTc2d5KHUkVBOE4lOS6y-LM50iEIWYTYSk-Fwp_Ps_U2-XiRXhyw5VgLQ7TKIff3Ob3L1sM78-Fuzve73XxDaJfwfyd6luaUhxM8jDCmZz9vaR5ikGbEwRGNvlMlfDmze99V2A1SnmrGY_m3A-pBsDXm7Rp3HhEobYP3MPTNL_7I493hdPaUPRlQJSz6hT9jB746Yo_vaA0esePVbUkbDh32dPOc_bqh4QGCQSj7OkaoAxDdvNMWd2B3V9BfBBCdEpMQvF0uVpt3sKuAkKoDPAm_Q2mpdW8DtoWG2rTUP8ChtW_vYQFd0x2appO0pQnIakv_DlC-BVu5cY6CCJelf8G2Z6svy3U0dGyIykTJNpJZGoQOUpNET4r5QSZFllrLhYttnsfBa1FIVxYIEpR2uuBOCs9T4ZVC6JbKY3ZY1ZU_YaCTONbeexX7LAl5hjaUS0luXoiS83LC5qObzL4X5jAjY-3SjI415FjDlUHHTpgevWnuhZjB0-Of3z1B9xv7FTOv2W4E6fJ1T5UVfnRKMUEmSXa3JH4S2kTcGmdCT9j0XqjcrJWgphY8mzAYY8fgzqbHNbby9XVjEHrjxeZp_vI_Fn7KHuEr0XONXrHD9urav0YY1RbTbp9M2cPFh0_r899yRhud
link.rule.ids 230,315,786,790,891,4521,24144,27957,27958,45620,45714
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELXK9gAcEBSqLoUyBw5wSDexkzjmtlpttaXtXrYr9WY5sV22SMmq2ar_pb-WmXwsrRDiwDWJx07Gfn5JZt4w9tlkVoS-kIHnNqSUHBsYfG0OlPdc5D4ywlGi8MU8nS3j71fJ1Q6b9LkwFFbZYX-L6Q1ad0dG3dMcrVer0YLYLvH_RvQsyRCHd-NERvGA7Y5Pz2bzLSDzTp0Rrw-owaNE4Ztjs3ZNkl2n5imPw0j8bY965k2F0F3h4qMYSlPjY_Rt_Ys_oLzZn05es1cdsYRxO_Y3bMeVe-zlI7nBPbY__Z3Vhpd2y7p-yx62kXiAfBCKNpURKg8Ucd7Ii1swq1tobwIoohJxCL5MxtPFV1iVQGTVAm6GP6EwVL23BrOBmiq1VPdg0dqPbzCGpu4OddOo2lIHZHVDHwgIcsGUtu8jp5jLwr1jy5Pp5WQWdEUbgiKWYhOINPFceaFIpSdBiBBxnibGhNxGJssi7xTPhS1y5AlSWZWHVnAXJtxJiewtEftsUFalO2Cg4ihSzjkZuTT2WYo2pE1IcZ7zIgyLIRv1btLrVptD90FrN7p3rCbH6lBqdOyQqd6b-sks07iB_LPtAbpfm2sEX71ccJLma34sSzx1SHOCTJLybkEhSmgTqWuUcjVkR0-mynasxDYVD9Mhg37uaFzc9MfGlK66qzWyb7zZLMne_8fAP7Hns8uLc31-Oj87ZC_wDG9Djz6wweb2zn1EVrXJj7pV8wsr1R5T
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploring+the+concept+of+compressed+air+energy+storage+%28CAES%29+in+lined+rock+caverns+at+shallow+depth%3A+A+modeling+study+of+air+tightness+and+energy+balance&rft.jtitle=Applied+energy&rft.au=Kim%2C+Hyung-Mok&rft.au=Rutqvist%2C+Jonny&rft.au=Ryu%2C+Dong-Woo&rft.au=Choi%2C+Byung-Hee&rft.date=2012-04-01&rft.pub=Elsevier+Ltd&rft.issn=0306-2619&rft.eissn=1872-9118&rft.volume=92&rft.spage=653&rft.epage=667&rft_id=info:doi/10.1016%2Fj.apenergy.2011.07.013&rft.externalDocID=S0306261911004582
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon