Effect of vimentin on cell migration in collagen-coated microchannels: A mimetic physiological confined environment

Cancer cell migration through tissue pores and tracks into the bloodstream is a critical biological step for cancer metastasis. Although in vivo studies have shown that expression of vimentin can induce invasive cell lines, its role in cell cytoskeleton reorganization and cell motility under in vitr...

Full description

Saved in:
Bibliographic Details
Published inBiomicrofluidics Vol. 15; no. 3; pp. 034105 - 34111
Main Authors Zhou, Zhiru, Cui, Feiyun, Wen, Qi, Susan Zhou, H.
Format Journal Article
LanguageEnglish
Published United States American Institute of Physics 01.05.2021
AIP Publishing LLC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cancer cell migration through tissue pores and tracks into the bloodstream is a critical biological step for cancer metastasis. Although in vivo studies have shown that expression of vimentin can induce invasive cell lines, its role in cell cytoskeleton reorganization and cell motility under in vitro physical confinement remains unknown. Here, a microfluidic device with cell culture chamber and collagen-coated microchannels was developed as an in vitro model for physiological confinement environments. Using this microchannel assay, we demonstrated that the knockdown of vimentin decreases 3T3 fibroblast cell directional migration speed in confined microchannels. Additionally, as cells form dynamic membranes that define the leading edge of motile cells, different leading edge morphologies of 3T3 fibroblast and 3T3 vimentin knockdown cells were observed. The leading edge morphology change under confinement can be explained by the effect of vimentin on cytoskeletal organization and focal adhesion. The microfluidic device integrated with a time-lapse microscope provided a new approach to study the effect of vimentin on cell adhesion, migration, and invasiveness.
AbstractList Cancer cell migration through tissue pores and tracks into the bloodstream is a critical biological step for cancer metastasis. Although in vivo studies have shown that expression of vimentin can induce invasive cell lines, its role in cell cytoskeleton reorganization and cell motility under in vitro physical confinement remains unknown. Here, a microfluidic device with cell culture chamber and collagen-coated microchannels was developed as an in vitro model for physiological confinement environments. Using this microchannel assay, we demonstrated that the knockdown of vimentin decreases 3T3 fibroblast cell directional migration speed in confined microchannels. Additionally, as cells form dynamic membranes that define the leading edge of motile cells, different leading edge morphologies of 3T3 fibroblast and 3T3 vimentin knockdown cells were observed. The leading edge morphology change under confinement can be explained by the effect of vimentin on cytoskeletal organization and focal adhesion. The microfluidic device integrated with a time-lapse microscope provided a new approach to study the effect of vimentin on cell adhesion, migration, and invasiveness.
Cancer cell migration through tissue pores and tracks into the bloodstream is a critical biological step for cancer metastasis. Although studies have shown that expression of vimentin can induce invasive cell lines, its role in cell cytoskeleton reorganization and cell motility under physical confinement remains unknown. Here, a microfluidic device with cell culture chamber and collagen-coated microchannels was developed as an model for physiological confinement environments. Using this microchannel assay, we demonstrated that the knockdown of vimentin decreases 3T3 fibroblast cell directional migration speed in confined microchannels. Additionally, as cells form dynamic membranes that define the leading edge of motile cells, different leading edge morphologies of 3T3 fibroblast and 3T3 vimentin knockdown cells were observed. The leading edge morphology change under confinement can be explained by the effect of vimentin on cytoskeletal organization and focal adhesion. The microfluidic device integrated with a time-lapse microscope provided a new approach to study the effect of vimentin on cell adhesion, migration, and invasiveness.
Cancer cell migration through tissue pores and tracks into the bloodstream is a critical biological step for cancer metastasis. Although in vivo studies have shown that expression of vimentin can induce invasive cell lines, its role in cell cytoskeleton reorganization and cell motility under in vitro physical confinement remains unknown. Here, a microfluidic device with cell culture chamber and collagen-coated microchannels was developed as an in vitro model for physiological confinement environments. Using this microchannel assay, we demonstrated that the knockdown of vimentin decreases 3T3 fibroblast cell directional migration speed in confined microchannels. Additionally, as cells form dynamic membranes that define the leading edge of motile cells, different leading edge morphologies of 3T3 fibroblast and 3T3 vimentin knockdown cells were observed. The leading edge morphology change under confinement can be explained by the effect of vimentin on cytoskeletal organization and focal adhesion. The microfluidic device integrated with a time-lapse microscope provided a new approach to study the effect of vimentin on cell adhesion, migration, and invasiveness.Cancer cell migration through tissue pores and tracks into the bloodstream is a critical biological step for cancer metastasis. Although in vivo studies have shown that expression of vimentin can induce invasive cell lines, its role in cell cytoskeleton reorganization and cell motility under in vitro physical confinement remains unknown. Here, a microfluidic device with cell culture chamber and collagen-coated microchannels was developed as an in vitro model for physiological confinement environments. Using this microchannel assay, we demonstrated that the knockdown of vimentin decreases 3T3 fibroblast cell directional migration speed in confined microchannels. Additionally, as cells form dynamic membranes that define the leading edge of motile cells, different leading edge morphologies of 3T3 fibroblast and 3T3 vimentin knockdown cells were observed. The leading edge morphology change under confinement can be explained by the effect of vimentin on cytoskeletal organization and focal adhesion. The microfluidic device integrated with a time-lapse microscope provided a new approach to study the effect of vimentin on cell adhesion, migration, and invasiveness.
Cancer cell migration through tissue pores and tracks into the bloodstream is a critical biological step for cancer metastasis. Although in vivo studies have shown that expression of vimentin can induce invasive cell lines, its role in cell cytoskeleton reorganization and cell motility under in vitro physical confinement remains unknown. Here, a microfluidic device with cell culture chamber and collagen-coated microchannels was developed as an in vitro model for physiological confinement environments. Using this microchannel assay, we demonstrated that the knockdown of vimentin decreases 3T3 fibroblast cell directional migration speed in confined microchannels. Additionally, as cells form dynamic membranes that define the leading edge of motile cells, different leading edge morphologies of 3T3 fibroblast and 3T3 vimentin knockdown cells were observed. The leading edge morphology change under confinement can be explained by the effect of vimentin on cytoskeletal organization and focal adhesion. The microfluidic device integrated with a time-lapse microscope provided a new approach to study the effect of vimentin on cell adhesion, migration, and invasiveness.
Author Zhou, Zhiru
Susan Zhou, H.
Wen, Qi
Cui, Feiyun
Author_xml – sequence: 1
  givenname: Zhiru
  surname: Zhou
  fullname: Zhou, Zhiru
  organization: Department of Chemical Engineering, Worcester Polytechnic Institute
– sequence: 2
  givenname: Feiyun
  surname: Cui
  fullname: Cui, Feiyun
  organization: Department of Chemical Engineering, Worcester Polytechnic Institute
– sequence: 3
  givenname: Qi
  surname: Wen
  fullname: Wen, Qi
  organization: Department of Physics, Worcester Polytechnic Institute
– sequence: 4
  givenname: H.
  surname: Susan Zhou
  fullname: Susan Zhou, H.
  organization: Department of Chemical Engineering, Worcester Polytechnic Institute
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34025897$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtr3DAQx0VJaV495AsUQy5twYkelmX1UAghfUAgl_QsZHm0qyBLG8m7kG9fbXezSZPSk0Yzv_nP6xDthRgAoROCzwhu2Tk_w7jhRIo36IBIRmuCebf3zN5HhznfYcyJoPQd2mcNpryT4gDlK2vBTFW01cqNECYXqhgqA95Xo5slPbnyLU4TvdczCLWJeoKhBE2KZq5DAJ-_VBfFMcLkTLWYP2QXfZw5o31JC9aFwkNYuRTDusQxemu1z_B--x6hX9-ubi9_1Nc3339eXlzXphFsqqkUmhlBOdNAesEa01ugklrZwUCg7bEQPW-N5Lw3bOgaK4YGi44S1pBisCP0daO7WPYjDKaUTtqrRXKjTg8qaqf-jgQ3V7O4Uh1hTEhSBD5uBVK8X0Ke1OjyejU6QFxmVVojnHHctAU9fYHexWUKZbxC0a7FQtI19eF5R7tWHu9RgE8boCw35wR2hxCs1rdWXG1vXdjzF6xx0597lWGc_2fG501GfiR38quYnkC1GOz_4NfKvwGCMsfS
CODEN BIOMGB
CitedBy_id crossref_primary_10_1111_acel_14070
crossref_primary_10_1016_j_onano_2025_100233
crossref_primary_10_1158_1535_7163_MCT_23_0741
crossref_primary_10_1021_acsapm_2c01599
crossref_primary_10_3389_fvets_2024_1368725
crossref_primary_10_3390_bios12080604
Cites_doi 10.1083/jcb.106.4.1365
10.1038/ncb898
10.1091/mbc.12.12.3947
10.1146/annurev-bioeng-070909-105351
10.1016/bs.ctdb.2018.02.002
10.1002/bit.22361
10.1038/srep02827
10.7150/ijbs.3.303
10.1016/j.cell.2006.11.001
10.1038/35094059
10.1038/nrc3080
10.1074/jbc.M107571200
10.1242/jcs.111.13.1897
10.1038/srep02332
10.1038/ni.1936
10.1083/jcb.67.2.400
10.1007/s00018-011-0735-1
10.1101/cshperspect.a018267
10.1016/S0167-9317(02)00494-X
10.1038/onc.2010.509
10.1016/S0006-3495(01)76145-0
10.1091/mbc.e10-08-0699
10.1158/1535-7163.MCT-08-0450
10.1002/cbf.1478
10.1242/jcs.113.13.2455
10.1083/jcb.201201124
10.1146/annurev.cellbio.042308.113318
10.1242/jcs.093732
10.1088/1361-6439/aa5bbb
10.1038/emboj.2010.170
10.1016/j.devcel.2008.05.009
10.1021/acs.nanolett.8b04720
10.1146/annurev-bioeng-071114-040654
10.1371/journal.pone.0145068
10.1038/s41580-019-0172-9
10.1096/fj.09-151639
10.1242/jcs.023820
10.1016/j.cub.2003.09.014
10.1021/acs.nanolett.7b03358
10.1091/mbc.e03-05-0352
10.1038/nrm2957
10.1016/j.cell.2011.11.016
10.1002/bit.21690
ContentType Journal Article
Copyright Author(s)
2021 Author(s).
2021 Author(s). Published under an exclusive license by AIP Publishing.
2021 Author(s). 2021 Author(s)
Copyright_xml – notice: Author(s)
– notice: 2021 Author(s).
– notice: 2021 Author(s). Published under an exclusive license by AIP Publishing.
– notice: 2021 Author(s). 2021 Author(s)
DBID AAYXX
CITATION
NPM
8FD
H8D
L7M
7X8
5PM
DOI 10.1063/5.0045197
DatabaseName CrossRef
PubMed
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitleList CrossRef
Technology Research Database
PubMed

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1932-1058
ExternalDocumentID PMC8133791
34025897
10_1063_5_0045197
bmf
Genre Journal Article
GrantInformation_xml – fundername: Center for Hierarchical Manufacturing, National Science Foundation
  grantid: CBET-1805514
  funderid: https://doi.org/10.13039/100006445
– fundername: ; ;
  grantid: CBET-1805514
GroupedDBID 1UP
2-P
23N
2WC
4.4
53G
5GY
5VS
6J9
AAAAW
AABDS
AAEUA
AAKDD
AAPUP
AAYIH
ABFTF
ABJNI
ACBRY
ACGFO
ACGFS
ACZLF
ADBBV
ADCTM
AEGXH
AEJMO
AENEX
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AIAGR
AJJCW
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AQWKA
ATXIE
AWQPM
BAWUL
BPZLN
C1A
CS3
DU5
E3Z
EBS
EJD
ESX
F5P
FDOHQ
FFFMQ
GX1
HYE
M71
OK1
P2P
RIP
RNS
RPM
RQS
TR2
AAGWI
AAYXX
ABJGX
ADMLS
CITATION
OVT
NPM
8FD
H8D
L7M
7X8
5PM
ID FETCH-LOGICAL-c473t-297a3c7253ae1b734cbfe292f98ed1e6b077b56c955bc3d84f7d4078213414073
ISSN 1932-1058
IngestDate Thu Aug 21 18:02:01 EDT 2025
Fri Jul 11 09:11:58 EDT 2025
Mon Jun 30 02:39:26 EDT 2025
Wed Feb 19 02:25:11 EST 2025
Thu Apr 24 23:02:30 EDT 2025
Tue Jul 01 03:53:18 EDT 2025
Thu Jun 23 13:44:57 EDT 2022
Fri Jun 21 00:13:44 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License Published under an exclusive license by AIP Publishing.
2021 Author(s).
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c473t-297a3c7253ae1b734cbfe292f98ed1e6b077b56c955bc3d84f7d4078213414073
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5055-1423
0000-0002-6659-6965
0000-0001-5630-2997
0000-0001-7098-8251
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/8133791
PMID 34025897
PQID 2528607926
PQPubID 2050670
PageCount 7
ParticipantIDs pubmed_primary_34025897
scitation_primary_10_1063_5_0045197
proquest_miscellaneous_2531535046
crossref_primary_10_1063_5_0045197
crossref_citationtrail_10_1063_5_0045197
proquest_journals_2528607926
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8133791
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-05-01
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Melville
PublicationTitle Biomicrofluidics
PublicationTitleAlternate Biomicrofluidics
PublicationYear 2021
Publisher American Institute of Physics
AIP Publishing LLC
Publisher_xml – name: American Institute of Physics
– name: AIP Publishing LLC
References Herbst, McCarthy, Tsilibary, Furcht (c35) 1988
Satelli, Li (c16) 2011
Ananthakrishnan, Ehrlicher (c28) 2007
Munevar, Wang, Dembo (c40) 2001
Parsons, Horwitz, Schwartz (c43) 2010
Yang, Weinberg (c1) 2008
Friedl, Alexander (c4) 2011
Grinnell, Petroll (c44) 2010
Olaso, Labrador, Wang, Ikeda, Eng, Klein, Lovett, Lin, Friedman (c26) 2002
Helfand, Mendez, Murthy, Shumaker, Grin, Mahammad, Aebi, Wedig, Wu, Hahn, Inagaki, Herrmann, Goldman (c20) 2011
Jacobelli, Friedman, Conti, Lennon-Dumenil, Piel, Sorensen, Adelstein, Krummel (c36) 2010
Messica, Laser-Azogui, Volberg, Elisha, Lysakovskaia, Eils, Gladilin, Geiger, Beck (c25) 2017
Frantz, Stewart, Weaver (c5) 2010
Holle, Govindan Kutty Devi, Clar, Fan, Saif, Kemkemer, Spatz (c37) 2019
Eckes, Dogic, Colucci-Guyon, Wang, Maniotis, Ingber, Merckling, Langa, Aumailley, Delouvee, Koteliansky, Babinet, Krieg (c18) 1998
Bard, Hay (c42) 1975
Paccione, Miyazaki, Patel, Waseem, Gutkind, Zehner, Yeudall (c22) 2008
Mendez, Kojima, Goldman (c17) 2010
Yamada, Sixt (c31) 2019
Svitkina (c29) 2018
Bissell, Radisky (c6) 2001
Nishikawa, Yamamoto, Kojima, Kikuo, Fujii, Sakai (c33) 2008
Munevar, Wang, Dembo (c41) 2001
Li, Fan, Chen, Guan, Sawcer, Bokoch, Woodley (c27) 2004
Chen, Kumar, Co, Ho (c39) 2013
Horwitz, Webb (c2) 2003
Zhao, Yan, Long, Chen, Wang (c24) 2008
Mor-Vaknin, Punturieri, Sitwala, Markovitz (c15) 2003
Eckes, Colucci-Guyon, Smola, Nodder, Babinet, Krieg, Martin (c19) 2000
Somaiah, Kumar, Mawrie, Sharma, Patil, Bhattacharyya, Swaminathan, Jaganathan (c34) 2015
Gupta, Massagué (c3) 2006
Hoffman-Kim, Mitchel, Bellamkonda (c10) 2010
Petrie, Gavara, Chadwick, Yamada (c38) 2012
Petrie, Yamada (c30) 2012
TruongVo, Kennedy, Chen, Chen, Berndt, Agarwal, Zhu, Nakshatri, Wallace, Na, Yokota, Ryu (c11) 2017
Vuoriluoto, Haugen, Kiviluoto, Mpindi, Nevo, Gjerdrum, Tiron, Lorens, Ivaska (c21) 2011
Mendez, Kojima, Goldman (c23) 2010
Tibbitt, Anseth (c12) 2009
Fujii (c14) 2002
Berzat, Hall (c8) 2010
Wirtz, Konstantopoulos, Searson (c7) 2011
Muncie, Weaver (c9) 2018
Paul, Hung, Wirtz, Konstantopoulos (c13) 2016
Zhang, Choi, Nguyen, Chang, Qin (c32) 2013
(2023062410353188100_c38) 2012; 197
(2023062410353188100_c14) 2002; 61–62
(2023062410353188100_c20) 2011; 22
(2023062410353188100_c29) 2018; 10
(2023062410353188100_c35) 1988; 106
(2023062410353188100_c37) 2019; 19
(2023062410353188100_c8) 2010; 29
(2023062410353188100_c16) 2011; 68
(2023062410353188100_c19) 2000; 113
(2023062410353188100_c30) 2012; 125
(2023062410353188100_c41) 2001; 12
(2023062410353188100_c24) 2008; 26
(2023062410353188100_c1) 2008; 14
(2023062410353188100_c17) 2010; 24
(2023062410353188100_c23) 2010; 24
(2023062410353188100_c6) 2001; 1
(2023062410353188100_c15) 2003; 5
(2023062410353188100_c39) 2013; 3
(2023062410353188100_c33) 2008; 99
(2023062410353188100_c43) 2010; 11
(2023062410353188100_c7) 2011; 11
(2023062410353188100_c32) 2013; 3
(2023062410353188100_c3) 2006; 127
(2023062410353188100_c31) 2019; 20
(2023062410353188100_c44) 2010; 26
(2023062410353188100_c12) 2009; 103
(2023062410353188100_c11) 2017; 27
(2023062410353188100_c22) 2008; 7
(2023062410353188100_c4) 2011; 147
(2023062410353188100_c5) 2010; 123
(2023062410353188100_c13) 2016; 18
(2023062410353188100_c2) 2003; 13
(2023062410353188100_c9) 2018; 130
(2023062410353188100_c18) 1998; 111
(2023062410353188100_c26) 2002; 277
(2023062410353188100_c25) 2017; 17
(2023062410353188100_c36) 2010; 11
(2023062410353188100_c10) 2010; 12
(2023062410353188100_c27) 2004; 15
(2023062410353188100_c28) 2007; 3
(2023062410353188100_c40) 2001; 80
(2023062410353188100_c21) 2011; 30
(2023062410353188100_c34) 2015; 10
(2023062410353188100_c42) 1975; 67
References_xml – start-page: 679
  year: 2006
  ident: c3
  publication-title: Cell
– start-page: 818
  year: 2008
  ident: c1
  publication-title: Dev. Cell
– start-page: 203
  year: 2010
  ident: c10
  publication-title: Annu. Rev. Biomed. Eng.
– start-page: 2332
  year: 2013
  ident: c32
  publication-title: Sci. Rep.
– start-page: 992
  year: 2011
  ident: c4
  publication-title: Cell
– start-page: a018267
  year: 2018
  ident: c29
  publication-title: Cold Spring Harbor Perspect. Biol.
– start-page: 159
  year: 2016
  ident: c13
  publication-title: Annu. Rev. Biomed. Eng.
– start-page: 59
  year: 2003
  ident: c15
  publication-title: Nat. Cell Biol.
– start-page: 2734
  year: 2010
  ident: c8
  publication-title: EMBO J.
– start-page: 1274
  year: 2011
  ident: c20
  publication-title: Mol. Biol. Cell
– start-page: 303
  year: 2007
  ident: c28
  publication-title: Int. J. Biol. Sci.
– start-page: 633
  year: 2010
  ident: c43
  publication-title: Nat. Rev. Mol. Cell Biol.
– start-page: 4195
  year: 2010
  ident: c5
  publication-title: J. Cell Sci.
– start-page: 1
  year: 2018
  ident: c9
  publication-title: Curr. Top. Dev. Biol.
– start-page: 3947
  year: 2001
  ident: c41
  publication-title: Mol. Biol. Cell
– start-page: 571
  year: 2008
  ident: c24
  publication-title: Cell Biochem. Funct.
– start-page: e0145068
  year: 2015
  ident: c34
  publication-title: PLOS ONE
– start-page: 953
  year: 2010
  ident: c36
  publication-title: Nat. Immunol.
– start-page: 46
  year: 2001
  ident: c6
  publication-title: Nat. Rev. Cancer
– start-page: 1838
  year: 2010
  ident: c17
  publication-title: FASEB J.
– start-page: 1365
  year: 1988
  ident: c35
  publication-title: The Journal of Cell Biology
– start-page: 2894
  year: 2008
  ident: c22
  publication-title: Mol. Cancer Ther.
– start-page: 1897
  year: 1998
  ident: c18
  publication-title: J. Cell Sci.
– start-page: 1472
  year: 2008
  ident: c33
  publication-title: Biotechnol. Bioeng.
– start-page: 2827
  year: 2013
  ident: c39
  publication-title: Sci. Rep.
– start-page: 2455
  year: 2000
  ident: c19
  publication-title: J. Cell Sci.
– start-page: R756
  year: 2003
  ident: c2
  publication-title: Curr. Biol.
– start-page: 3033
  year: 2011
  ident: c16
  publication-title: Cell. Mol. Life Sci.
– start-page: 294
  year: 2004
  ident: c27
  publication-title: Mol. Biol. Cell
– start-page: 655
  year: 2009
  ident: c12
  publication-title: Biotechnol. Bioeng.
– start-page: 2280
  year: 2019
  ident: c37
  publication-title: Nano Lett.
– start-page: 439
  year: 2012
  ident: c38
  publication-title: J. Cell Biol.
– start-page: 1744
  year: 2001
  ident: c40
  publication-title: Biophys. J.
– start-page: 035017
  year: 2017
  ident: c11
  publication-title: J. Micromech. Microeng.
– start-page: 1436
  year: 2011
  ident: c21
  publication-title: Oncogene
– start-page: 907
  year: 2002
  ident: c14
  publication-title: Microelectron. Eng.
– start-page: 1838
  year: 2010
  ident: c23
  publication-title: FASEB J.
– start-page: 5917
  year: 2012
  ident: c30
  publication-title: J. Cell Sci.
– start-page: 738
  year: 2019
  ident: c31
  publication-title: Nat. Rev. Mol. Cell Biol.
– start-page: 6941
  year: 2017
  ident: c25
  publication-title: Nano Lett.
– start-page: 335
  year: 2010
  ident: c44
  publication-title: Annu. Rev. Cell Dev. Biol.
– start-page: 512
  year: 2011
  ident: c7
  publication-title: Nat. Rev. Cancer
– start-page: 400
  year: 1975
  ident: c42
  publication-title: J. Cell Biol.
– start-page: 3606
  year: 2002
  ident: c26
  publication-title: J. Biol. Chem.
– volume: 106
  start-page: 1365
  issue: 4
  year: 1988
  ident: 2023062410353188100_c35
  publication-title: The Journal of Cell Biology
  doi: 10.1083/jcb.106.4.1365
– volume: 5
  start-page: 59
  issue: 1
  year: 2003
  ident: 2023062410353188100_c15
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb898
– volume: 12
  start-page: 3947
  issue: 12
  year: 2001
  ident: 2023062410353188100_c41
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.12.12.3947
– volume: 12
  start-page: 203
  year: 2010
  ident: 2023062410353188100_c10
  publication-title: Annu. Rev. Biomed. Eng.
  doi: 10.1146/annurev-bioeng-070909-105351
– volume: 130
  start-page: 1
  year: 2018
  ident: 2023062410353188100_c9
  publication-title: Curr. Top. Dev. Biol.
  doi: 10.1016/bs.ctdb.2018.02.002
– volume: 103
  start-page: 655
  issue: 4
  year: 2009
  ident: 2023062410353188100_c12
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.22361
– volume: 3
  start-page: 2827
  issue: 1
  year: 2013
  ident: 2023062410353188100_c39
  publication-title: Sci. Rep.
  doi: 10.1038/srep02827
– volume: 3
  start-page: 303
  issue: 5
  year: 2007
  ident: 2023062410353188100_c28
  publication-title: Int. J. Biol. Sci.
  doi: 10.7150/ijbs.3.303
– volume: 127
  start-page: 679
  issue: 4
  year: 2006
  ident: 2023062410353188100_c3
  publication-title: Cell
  doi: 10.1016/j.cell.2006.11.001
– volume: 1
  start-page: 46
  issue: 1
  year: 2001
  ident: 2023062410353188100_c6
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/35094059
– volume: 11
  start-page: 512
  issue: 7
  year: 2011
  ident: 2023062410353188100_c7
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc3080
– volume: 277
  start-page: 3606
  issue: 5
  year: 2002
  ident: 2023062410353188100_c26
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M107571200
– volume: 111
  start-page: 1897
  issue: 13
  year: 1998
  ident: 2023062410353188100_c18
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.111.13.1897
– volume: 3
  start-page: 2332
  issue: 1
  year: 2013
  ident: 2023062410353188100_c32
  publication-title: Sci. Rep.
  doi: 10.1038/srep02332
– volume: 11
  start-page: 953
  issue: 10
  year: 2010
  ident: 2023062410353188100_c36
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.1936
– volume: 67
  start-page: 400
  issue: 2
  year: 1975
  ident: 2023062410353188100_c42
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.67.2.400
– volume: 68
  start-page: 3033
  issue: 18
  year: 2011
  ident: 2023062410353188100_c16
  publication-title: Cell. Mol. Life Sci.
  doi: 10.1007/s00018-011-0735-1
– volume: 10
  start-page: a018267
  issue: 1
  year: 2018
  ident: 2023062410353188100_c29
  publication-title: Cold Spring Harbor Perspect. Biol.
  doi: 10.1101/cshperspect.a018267
– volume: 61–62
  start-page: 907
  year: 2002
  ident: 2023062410353188100_c14
  publication-title: Microelectron. Eng.
  doi: 10.1016/S0167-9317(02)00494-X
– volume: 30
  start-page: 1436
  issue: 12
  year: 2011
  ident: 2023062410353188100_c21
  publication-title: Oncogene
  doi: 10.1038/onc.2010.509
– volume: 80
  start-page: 1744
  issue: 4
  year: 2001
  ident: 2023062410353188100_c40
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(01)76145-0
– volume: 22
  start-page: 1274
  issue: 8
  year: 2011
  ident: 2023062410353188100_c20
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e10-08-0699
– volume: 7
  start-page: 2894
  issue: 9
  year: 2008
  ident: 2023062410353188100_c22
  publication-title: Mol. Cancer Ther.
  doi: 10.1158/1535-7163.MCT-08-0450
– volume: 26
  start-page: 571
  issue: 5
  year: 2008
  ident: 2023062410353188100_c24
  publication-title: Cell Biochem. Funct.
  doi: 10.1002/cbf.1478
– volume: 113
  start-page: 2455
  issue: 13
  year: 2000
  ident: 2023062410353188100_c19
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.113.13.2455
– volume: 197
  start-page: 439
  issue: 3
  year: 2012
  ident: 2023062410353188100_c38
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201201124
– volume: 26
  start-page: 335
  issue: 1
  year: 2010
  ident: 2023062410353188100_c44
  publication-title: Annu. Rev. Cell Dev. Biol.
  doi: 10.1146/annurev.cellbio.042308.113318
– volume: 125
  start-page: 5917
  issue: 24
  year: 2012
  ident: 2023062410353188100_c30
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.093732
– volume: 27
  start-page: 035017
  issue: 3
  year: 2017
  ident: 2023062410353188100_c11
  publication-title: J. Micromech. Microeng.
  doi: 10.1088/1361-6439/aa5bbb
– volume: 29
  start-page: 2734
  issue: 16
  year: 2010
  ident: 2023062410353188100_c8
  publication-title: EMBO J.
  doi: 10.1038/emboj.2010.170
– volume: 14
  start-page: 818
  issue: 6
  year: 2008
  ident: 2023062410353188100_c1
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2008.05.009
– volume: 19
  start-page: 2280
  issue: 4
  year: 2019
  ident: 2023062410353188100_c37
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b04720
– volume: 18
  start-page: 159
  issue: 1
  year: 2016
  ident: 2023062410353188100_c13
  publication-title: Annu. Rev. Biomed. Eng.
  doi: 10.1146/annurev-bioeng-071114-040654
– volume: 10
  start-page: e0145068
  issue: 12
  year: 2015
  ident: 2023062410353188100_c34
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0145068
– volume: 20
  start-page: 738
  issue: 12
  year: 2019
  ident: 2023062410353188100_c31
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/s41580-019-0172-9
– volume: 24
  start-page: 1838
  issue: 6
  year: 2010
  ident: 2023062410353188100_c17
  publication-title: FASEB J.
  doi: 10.1096/fj.09-151639
– volume: 123
  start-page: 4195
  issue: Pt 24
  year: 2010
  ident: 2023062410353188100_c5
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.023820
– volume: 13
  start-page: R756
  issue: 19
  year: 2003
  ident: 2023062410353188100_c2
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2003.09.014
– volume: 17
  start-page: 6941
  issue: 11
  year: 2017
  ident: 2023062410353188100_c25
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b03358
– volume: 15
  start-page: 294
  issue: 1
  year: 2004
  ident: 2023062410353188100_c27
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e03-05-0352
– volume: 11
  start-page: 633
  issue: 9
  year: 2010
  ident: 2023062410353188100_c43
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm2957
– volume: 147
  start-page: 992
  issue: 5
  year: 2011
  ident: 2023062410353188100_c4
  publication-title: Cell
  doi: 10.1016/j.cell.2011.11.016
– volume: 24
  start-page: 1838
  issue: 6
  year: 2010
  ident: 2023062410353188100_c23
  publication-title: FASEB J.
  doi: 10.1096/fj.09-151639
– volume: 99
  start-page: 1472
  issue: 6
  year: 2008
  ident: 2023062410353188100_c33
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.21690
SSID ssj0051722
Score 2.2709427
Snippet Cancer cell migration through tissue pores and tracks into the bloodstream is a critical biological step for cancer metastasis. Although in vivo studies have...
Cancer cell migration through tissue pores and tracks into the bloodstream is a critical biological step for cancer metastasis. Although studies have shown...
Cancer cell migration through tissue pores and tracks into the bloodstream is a critical biological step for cancer metastasis. Although in vivo studies have...
SourceID pubmedcentral
proquest
pubmed
crossref
scitation
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 034105
SubjectTerms Cancer
Cell adhesion
Cell adhesion & migration
Collagen
Confined spaces
Confinement
Fibroblasts
In vivo methods and tests
Leading edges
Microchannels
Microfluidic devices
Morphology
Physiological effects
Physiology
Regular
Title Effect of vimentin on cell migration in collagen-coated microchannels: A mimetic physiological confined environment
URI http://dx.doi.org/10.1063/5.0045197
https://www.ncbi.nlm.nih.gov/pubmed/34025897
https://www.proquest.com/docview/2528607926
https://www.proquest.com/docview/2531535046
https://pubmed.ncbi.nlm.nih.gov/PMC8133791
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEA_rCXo-iN9XPSV-PAjSs02apvXtEI9FUBDucPGltE3iFm7bZXd7oH-9k7TJtnerqC-lJEMa8vtlOklmJgi90jnngAeRrxJ9hZmIqZ_SXPpUpkyEKlHSbGV_-hxPz6KPMzabTNphdMmmOCp_7owr-R9UoQxw1VGy_4CsaxQK4B3whScgDM-_wrhPPdzo83Xj9lPrvX-9F_9mUX3vsTWO5gA2tOKXTa4tzIX2wtMhvzX8GbvY9AU0oHO3mp0OpxBhsazADBXDeLjRMXDVmLbUeVuJgd_8t3nTmmOPebVq3TFHazwHTmT1o3WU_NqpvS_V9nRqDSrHNjAd7kqQcOsD2CtSsAtBxXdp2Y_kjjKrfdmAZXSgSgOqPVB3ankwqwAavRmmk-PwoQyM2XJh4KawMmZJV3sppbatuoauE1hdmBjxmfMMYmGXP9N11yakiulb9819dMO2MrZorixTrnrb3gTjpvOzGJgyp3fQ7X4Ngo87Qt1FE1nfQ7cGmSnvo3VHLdwobKmFmxpramFHLQyFl6iFR9R6h49xTyw8Iha2xMIDYj1AZycfTt9P_f5-Dr-MON34JOU5LTlhMLnDgtOoLJQkKVFpIkUo4yLgvGBxmTJWlFQkkeJCawaTRBBe6EO0Vze1PEAY_guKqChRSpRRWdJEcBmxNE5VoPI4Fx56bcc4s4On71A5z4wTRUwzlvXIeOiFE112GVt2CR1aoLJ-Qq8zwkgSBzwlsYeeu2pQt3pw81o2rZahYCOwIAKZRx2u7iuWEB7iI8SdgE7lPq6pq7lJ6Z6ElPI09NBLx40_dX6H1EWz2kpkS6Ee_7Z_T9D-dsoeor3NqpVPwbTeFM_MRPgFDSvOmA
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+vimentin+on+cell+migration+in+collagen-coated+microchannels%3A+A+mimetic+physiological+confined+environment&rft.jtitle=Biomicrofluidics&rft.au=Zhou%2C+Zhiru&rft.au=Cui%2C+Feiyun&rft.au=Wen%2C+Qi&rft.au=Susan+Zhou%2C+H&rft.date=2021-05-01&rft.issn=1932-1058&rft.eissn=1932-1058&rft.volume=15&rft.issue=3&rft.spage=034105&rft_id=info:doi/10.1063%2F5.0045197&rft_id=info%3Apmid%2F34025897&rft.externalDocID=34025897
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-1058&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-1058&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-1058&client=summon