Effect of vimentin on cell migration in collagen-coated microchannels: A mimetic physiological confined environment
Cancer cell migration through tissue pores and tracks into the bloodstream is a critical biological step for cancer metastasis. Although in vivo studies have shown that expression of vimentin can induce invasive cell lines, its role in cell cytoskeleton reorganization and cell motility under in vitr...
Saved in:
Published in | Biomicrofluidics Vol. 15; no. 3; pp. 034105 - 34111 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Institute of Physics
01.05.2021
AIP Publishing LLC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cancer cell migration through tissue pores and tracks into the bloodstream is a critical biological step for cancer metastasis. Although in vivo studies have shown that expression of vimentin can induce invasive cell lines, its role in cell cytoskeleton reorganization and cell motility under in vitro physical confinement remains unknown. Here, a microfluidic device with cell culture chamber and collagen-coated microchannels was developed as an in vitro model for physiological confinement environments. Using this microchannel assay, we demonstrated that the knockdown of vimentin decreases 3T3 fibroblast cell directional migration speed in confined microchannels. Additionally, as cells form dynamic membranes that define the leading edge of motile cells, different leading edge morphologies of 3T3 fibroblast and 3T3 vimentin knockdown cells were observed. The leading edge morphology change under confinement can be explained by the effect of vimentin on cytoskeletal organization and focal adhesion. The microfluidic device integrated with a time-lapse microscope provided a new approach to study the effect of vimentin on cell adhesion, migration, and invasiveness. |
---|---|
AbstractList | Cancer cell migration through tissue pores and tracks into the bloodstream is a critical biological step for cancer metastasis. Although in vivo studies have shown that expression of vimentin can induce invasive cell lines, its role in cell cytoskeleton reorganization and cell motility under in vitro physical confinement remains unknown. Here, a microfluidic device with cell culture chamber and collagen-coated microchannels was developed as an in vitro model for physiological confinement environments. Using this microchannel assay, we demonstrated that the knockdown of vimentin decreases 3T3 fibroblast cell directional migration speed in confined microchannels. Additionally, as cells form dynamic membranes that define the leading edge of motile cells, different leading edge morphologies of 3T3 fibroblast and 3T3 vimentin knockdown cells were observed. The leading edge morphology change under confinement can be explained by the effect of vimentin on cytoskeletal organization and focal adhesion. The microfluidic device integrated with a time-lapse microscope provided a new approach to study the effect of vimentin on cell adhesion, migration, and invasiveness. Cancer cell migration through tissue pores and tracks into the bloodstream is a critical biological step for cancer metastasis. Although studies have shown that expression of vimentin can induce invasive cell lines, its role in cell cytoskeleton reorganization and cell motility under physical confinement remains unknown. Here, a microfluidic device with cell culture chamber and collagen-coated microchannels was developed as an model for physiological confinement environments. Using this microchannel assay, we demonstrated that the knockdown of vimentin decreases 3T3 fibroblast cell directional migration speed in confined microchannels. Additionally, as cells form dynamic membranes that define the leading edge of motile cells, different leading edge morphologies of 3T3 fibroblast and 3T3 vimentin knockdown cells were observed. The leading edge morphology change under confinement can be explained by the effect of vimentin on cytoskeletal organization and focal adhesion. The microfluidic device integrated with a time-lapse microscope provided a new approach to study the effect of vimentin on cell adhesion, migration, and invasiveness. Cancer cell migration through tissue pores and tracks into the bloodstream is a critical biological step for cancer metastasis. Although in vivo studies have shown that expression of vimentin can induce invasive cell lines, its role in cell cytoskeleton reorganization and cell motility under in vitro physical confinement remains unknown. Here, a microfluidic device with cell culture chamber and collagen-coated microchannels was developed as an in vitro model for physiological confinement environments. Using this microchannel assay, we demonstrated that the knockdown of vimentin decreases 3T3 fibroblast cell directional migration speed in confined microchannels. Additionally, as cells form dynamic membranes that define the leading edge of motile cells, different leading edge morphologies of 3T3 fibroblast and 3T3 vimentin knockdown cells were observed. The leading edge morphology change under confinement can be explained by the effect of vimentin on cytoskeletal organization and focal adhesion. The microfluidic device integrated with a time-lapse microscope provided a new approach to study the effect of vimentin on cell adhesion, migration, and invasiveness.Cancer cell migration through tissue pores and tracks into the bloodstream is a critical biological step for cancer metastasis. Although in vivo studies have shown that expression of vimentin can induce invasive cell lines, its role in cell cytoskeleton reorganization and cell motility under in vitro physical confinement remains unknown. Here, a microfluidic device with cell culture chamber and collagen-coated microchannels was developed as an in vitro model for physiological confinement environments. Using this microchannel assay, we demonstrated that the knockdown of vimentin decreases 3T3 fibroblast cell directional migration speed in confined microchannels. Additionally, as cells form dynamic membranes that define the leading edge of motile cells, different leading edge morphologies of 3T3 fibroblast and 3T3 vimentin knockdown cells were observed. The leading edge morphology change under confinement can be explained by the effect of vimentin on cytoskeletal organization and focal adhesion. The microfluidic device integrated with a time-lapse microscope provided a new approach to study the effect of vimentin on cell adhesion, migration, and invasiveness. Cancer cell migration through tissue pores and tracks into the bloodstream is a critical biological step for cancer metastasis. Although in vivo studies have shown that expression of vimentin can induce invasive cell lines, its role in cell cytoskeleton reorganization and cell motility under in vitro physical confinement remains unknown. Here, a microfluidic device with cell culture chamber and collagen-coated microchannels was developed as an in vitro model for physiological confinement environments. Using this microchannel assay, we demonstrated that the knockdown of vimentin decreases 3T3 fibroblast cell directional migration speed in confined microchannels. Additionally, as cells form dynamic membranes that define the leading edge of motile cells, different leading edge morphologies of 3T3 fibroblast and 3T3 vimentin knockdown cells were observed. The leading edge morphology change under confinement can be explained by the effect of vimentin on cytoskeletal organization and focal adhesion. The microfluidic device integrated with a time-lapse microscope provided a new approach to study the effect of vimentin on cell adhesion, migration, and invasiveness. |
Author | Zhou, Zhiru Susan Zhou, H. Wen, Qi Cui, Feiyun |
Author_xml | – sequence: 1 givenname: Zhiru surname: Zhou fullname: Zhou, Zhiru organization: Department of Chemical Engineering, Worcester Polytechnic Institute – sequence: 2 givenname: Feiyun surname: Cui fullname: Cui, Feiyun organization: Department of Chemical Engineering, Worcester Polytechnic Institute – sequence: 3 givenname: Qi surname: Wen fullname: Wen, Qi organization: Department of Physics, Worcester Polytechnic Institute – sequence: 4 givenname: H. surname: Susan Zhou fullname: Susan Zhou, H. organization: Department of Chemical Engineering, Worcester Polytechnic Institute |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34025897$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtr3DAQx0VJaV495AsUQy5twYkelmX1UAghfUAgl_QsZHm0qyBLG8m7kG9fbXezSZPSk0Yzv_nP6xDthRgAoROCzwhu2Tk_w7jhRIo36IBIRmuCebf3zN5HhznfYcyJoPQd2mcNpryT4gDlK2vBTFW01cqNECYXqhgqA95Xo5slPbnyLU4TvdczCLWJeoKhBE2KZq5DAJ-_VBfFMcLkTLWYP2QXfZw5o31JC9aFwkNYuRTDusQxemu1z_B--x6hX9-ubi9_1Nc3339eXlzXphFsqqkUmhlBOdNAesEa01ugklrZwUCg7bEQPW-N5Lw3bOgaK4YGi44S1pBisCP0daO7WPYjDKaUTtqrRXKjTg8qaqf-jgQ3V7O4Uh1hTEhSBD5uBVK8X0Ke1OjyejU6QFxmVVojnHHctAU9fYHexWUKZbxC0a7FQtI19eF5R7tWHu9RgE8boCw35wR2hxCs1rdWXG1vXdjzF6xx0597lWGc_2fG501GfiR38quYnkC1GOz_4NfKvwGCMsfS |
CODEN | BIOMGB |
CitedBy_id | crossref_primary_10_1111_acel_14070 crossref_primary_10_1016_j_onano_2025_100233 crossref_primary_10_1158_1535_7163_MCT_23_0741 crossref_primary_10_1021_acsapm_2c01599 crossref_primary_10_3389_fvets_2024_1368725 crossref_primary_10_3390_bios12080604 |
Cites_doi | 10.1083/jcb.106.4.1365 10.1038/ncb898 10.1091/mbc.12.12.3947 10.1146/annurev-bioeng-070909-105351 10.1016/bs.ctdb.2018.02.002 10.1002/bit.22361 10.1038/srep02827 10.7150/ijbs.3.303 10.1016/j.cell.2006.11.001 10.1038/35094059 10.1038/nrc3080 10.1074/jbc.M107571200 10.1242/jcs.111.13.1897 10.1038/srep02332 10.1038/ni.1936 10.1083/jcb.67.2.400 10.1007/s00018-011-0735-1 10.1101/cshperspect.a018267 10.1016/S0167-9317(02)00494-X 10.1038/onc.2010.509 10.1016/S0006-3495(01)76145-0 10.1091/mbc.e10-08-0699 10.1158/1535-7163.MCT-08-0450 10.1002/cbf.1478 10.1242/jcs.113.13.2455 10.1083/jcb.201201124 10.1146/annurev.cellbio.042308.113318 10.1242/jcs.093732 10.1088/1361-6439/aa5bbb 10.1038/emboj.2010.170 10.1016/j.devcel.2008.05.009 10.1021/acs.nanolett.8b04720 10.1146/annurev-bioeng-071114-040654 10.1371/journal.pone.0145068 10.1038/s41580-019-0172-9 10.1096/fj.09-151639 10.1242/jcs.023820 10.1016/j.cub.2003.09.014 10.1021/acs.nanolett.7b03358 10.1091/mbc.e03-05-0352 10.1038/nrm2957 10.1016/j.cell.2011.11.016 10.1002/bit.21690 |
ContentType | Journal Article |
Copyright | Author(s) 2021 Author(s). 2021 Author(s). Published under an exclusive license by AIP Publishing. 2021 Author(s). 2021 Author(s) |
Copyright_xml | – notice: Author(s) – notice: 2021 Author(s). – notice: 2021 Author(s). Published under an exclusive license by AIP Publishing. – notice: 2021 Author(s). 2021 Author(s) |
DBID | AAYXX CITATION NPM 8FD H8D L7M 7X8 5PM |
DOI | 10.1063/5.0045197 |
DatabaseName | CrossRef PubMed Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitleList | CrossRef Technology Research Database PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1932-1058 |
ExternalDocumentID | PMC8133791 34025897 10_1063_5_0045197 bmf |
Genre | Journal Article |
GrantInformation_xml | – fundername: Center for Hierarchical Manufacturing, National Science Foundation grantid: CBET-1805514 funderid: https://doi.org/10.13039/100006445 – fundername: ; ; grantid: CBET-1805514 |
GroupedDBID | 1UP 2-P 23N 2WC 4.4 53G 5GY 5VS 6J9 AAAAW AABDS AAEUA AAKDD AAPUP AAYIH ABFTF ABJNI ACBRY ACGFO ACGFS ACZLF ADBBV ADCTM AEGXH AEJMO AENEX AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AIAGR AJJCW ALEPV ALMA_UNASSIGNED_HOLDINGS AOIJS AQWKA ATXIE AWQPM BAWUL BPZLN C1A CS3 DU5 E3Z EBS EJD ESX F5P FDOHQ FFFMQ GX1 HYE M71 OK1 P2P RIP RNS RPM RQS TR2 AAGWI AAYXX ABJGX ADMLS CITATION OVT NPM 8FD H8D L7M 7X8 5PM |
ID | FETCH-LOGICAL-c473t-297a3c7253ae1b734cbfe292f98ed1e6b077b56c955bc3d84f7d4078213414073 |
ISSN | 1932-1058 |
IngestDate | Thu Aug 21 18:02:01 EDT 2025 Fri Jul 11 09:11:58 EDT 2025 Mon Jun 30 02:39:26 EDT 2025 Wed Feb 19 02:25:11 EST 2025 Thu Apr 24 23:02:30 EDT 2025 Tue Jul 01 03:53:18 EDT 2025 Thu Jun 23 13:44:57 EDT 2022 Fri Jun 21 00:13:44 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | Published under an exclusive license by AIP Publishing. 2021 Author(s). |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c473t-297a3c7253ae1b734cbfe292f98ed1e6b077b56c955bc3d84f7d4078213414073 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-5055-1423 0000-0002-6659-6965 0000-0001-5630-2997 0000-0001-7098-8251 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/8133791 |
PMID | 34025897 |
PQID | 2528607926 |
PQPubID | 2050670 |
PageCount | 7 |
ParticipantIDs | pubmed_primary_34025897 scitation_primary_10_1063_5_0045197 proquest_miscellaneous_2531535046 crossref_primary_10_1063_5_0045197 crossref_citationtrail_10_1063_5_0045197 proquest_journals_2528607926 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8133791 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-05-01 |
PublicationDateYYYYMMDD | 2021-05-01 |
PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Melville |
PublicationTitle | Biomicrofluidics |
PublicationTitleAlternate | Biomicrofluidics |
PublicationYear | 2021 |
Publisher | American Institute of Physics AIP Publishing LLC |
Publisher_xml | – name: American Institute of Physics – name: AIP Publishing LLC |
References | Herbst, McCarthy, Tsilibary, Furcht (c35) 1988 Satelli, Li (c16) 2011 Ananthakrishnan, Ehrlicher (c28) 2007 Munevar, Wang, Dembo (c40) 2001 Parsons, Horwitz, Schwartz (c43) 2010 Yang, Weinberg (c1) 2008 Friedl, Alexander (c4) 2011 Grinnell, Petroll (c44) 2010 Olaso, Labrador, Wang, Ikeda, Eng, Klein, Lovett, Lin, Friedman (c26) 2002 Helfand, Mendez, Murthy, Shumaker, Grin, Mahammad, Aebi, Wedig, Wu, Hahn, Inagaki, Herrmann, Goldman (c20) 2011 Jacobelli, Friedman, Conti, Lennon-Dumenil, Piel, Sorensen, Adelstein, Krummel (c36) 2010 Messica, Laser-Azogui, Volberg, Elisha, Lysakovskaia, Eils, Gladilin, Geiger, Beck (c25) 2017 Frantz, Stewart, Weaver (c5) 2010 Holle, Govindan Kutty Devi, Clar, Fan, Saif, Kemkemer, Spatz (c37) 2019 Eckes, Dogic, Colucci-Guyon, Wang, Maniotis, Ingber, Merckling, Langa, Aumailley, Delouvee, Koteliansky, Babinet, Krieg (c18) 1998 Bard, Hay (c42) 1975 Paccione, Miyazaki, Patel, Waseem, Gutkind, Zehner, Yeudall (c22) 2008 Mendez, Kojima, Goldman (c17) 2010 Yamada, Sixt (c31) 2019 Svitkina (c29) 2018 Bissell, Radisky (c6) 2001 Nishikawa, Yamamoto, Kojima, Kikuo, Fujii, Sakai (c33) 2008 Munevar, Wang, Dembo (c41) 2001 Li, Fan, Chen, Guan, Sawcer, Bokoch, Woodley (c27) 2004 Chen, Kumar, Co, Ho (c39) 2013 Horwitz, Webb (c2) 2003 Zhao, Yan, Long, Chen, Wang (c24) 2008 Mor-Vaknin, Punturieri, Sitwala, Markovitz (c15) 2003 Eckes, Colucci-Guyon, Smola, Nodder, Babinet, Krieg, Martin (c19) 2000 Somaiah, Kumar, Mawrie, Sharma, Patil, Bhattacharyya, Swaminathan, Jaganathan (c34) 2015 Gupta, Massagué (c3) 2006 Hoffman-Kim, Mitchel, Bellamkonda (c10) 2010 Petrie, Gavara, Chadwick, Yamada (c38) 2012 Petrie, Yamada (c30) 2012 TruongVo, Kennedy, Chen, Chen, Berndt, Agarwal, Zhu, Nakshatri, Wallace, Na, Yokota, Ryu (c11) 2017 Vuoriluoto, Haugen, Kiviluoto, Mpindi, Nevo, Gjerdrum, Tiron, Lorens, Ivaska (c21) 2011 Mendez, Kojima, Goldman (c23) 2010 Tibbitt, Anseth (c12) 2009 Fujii (c14) 2002 Berzat, Hall (c8) 2010 Wirtz, Konstantopoulos, Searson (c7) 2011 Muncie, Weaver (c9) 2018 Paul, Hung, Wirtz, Konstantopoulos (c13) 2016 Zhang, Choi, Nguyen, Chang, Qin (c32) 2013 (2023062410353188100_c38) 2012; 197 (2023062410353188100_c14) 2002; 61–62 (2023062410353188100_c20) 2011; 22 (2023062410353188100_c29) 2018; 10 (2023062410353188100_c35) 1988; 106 (2023062410353188100_c37) 2019; 19 (2023062410353188100_c8) 2010; 29 (2023062410353188100_c16) 2011; 68 (2023062410353188100_c19) 2000; 113 (2023062410353188100_c30) 2012; 125 (2023062410353188100_c41) 2001; 12 (2023062410353188100_c24) 2008; 26 (2023062410353188100_c1) 2008; 14 (2023062410353188100_c17) 2010; 24 (2023062410353188100_c23) 2010; 24 (2023062410353188100_c6) 2001; 1 (2023062410353188100_c15) 2003; 5 (2023062410353188100_c39) 2013; 3 (2023062410353188100_c33) 2008; 99 (2023062410353188100_c43) 2010; 11 (2023062410353188100_c7) 2011; 11 (2023062410353188100_c32) 2013; 3 (2023062410353188100_c3) 2006; 127 (2023062410353188100_c31) 2019; 20 (2023062410353188100_c44) 2010; 26 (2023062410353188100_c12) 2009; 103 (2023062410353188100_c11) 2017; 27 (2023062410353188100_c22) 2008; 7 (2023062410353188100_c4) 2011; 147 (2023062410353188100_c5) 2010; 123 (2023062410353188100_c13) 2016; 18 (2023062410353188100_c2) 2003; 13 (2023062410353188100_c9) 2018; 130 (2023062410353188100_c18) 1998; 111 (2023062410353188100_c26) 2002; 277 (2023062410353188100_c25) 2017; 17 (2023062410353188100_c36) 2010; 11 (2023062410353188100_c10) 2010; 12 (2023062410353188100_c27) 2004; 15 (2023062410353188100_c28) 2007; 3 (2023062410353188100_c40) 2001; 80 (2023062410353188100_c21) 2011; 30 (2023062410353188100_c34) 2015; 10 (2023062410353188100_c42) 1975; 67 |
References_xml | – start-page: 679 year: 2006 ident: c3 publication-title: Cell – start-page: 818 year: 2008 ident: c1 publication-title: Dev. Cell – start-page: 203 year: 2010 ident: c10 publication-title: Annu. Rev. Biomed. Eng. – start-page: 2332 year: 2013 ident: c32 publication-title: Sci. Rep. – start-page: 992 year: 2011 ident: c4 publication-title: Cell – start-page: a018267 year: 2018 ident: c29 publication-title: Cold Spring Harbor Perspect. Biol. – start-page: 159 year: 2016 ident: c13 publication-title: Annu. Rev. Biomed. Eng. – start-page: 59 year: 2003 ident: c15 publication-title: Nat. Cell Biol. – start-page: 2734 year: 2010 ident: c8 publication-title: EMBO J. – start-page: 1274 year: 2011 ident: c20 publication-title: Mol. Biol. Cell – start-page: 303 year: 2007 ident: c28 publication-title: Int. J. Biol. Sci. – start-page: 633 year: 2010 ident: c43 publication-title: Nat. Rev. Mol. Cell Biol. – start-page: 4195 year: 2010 ident: c5 publication-title: J. Cell Sci. – start-page: 1 year: 2018 ident: c9 publication-title: Curr. Top. Dev. Biol. – start-page: 3947 year: 2001 ident: c41 publication-title: Mol. Biol. Cell – start-page: 571 year: 2008 ident: c24 publication-title: Cell Biochem. Funct. – start-page: e0145068 year: 2015 ident: c34 publication-title: PLOS ONE – start-page: 953 year: 2010 ident: c36 publication-title: Nat. Immunol. – start-page: 46 year: 2001 ident: c6 publication-title: Nat. Rev. Cancer – start-page: 1838 year: 2010 ident: c17 publication-title: FASEB J. – start-page: 1365 year: 1988 ident: c35 publication-title: The Journal of Cell Biology – start-page: 2894 year: 2008 ident: c22 publication-title: Mol. Cancer Ther. – start-page: 1897 year: 1998 ident: c18 publication-title: J. Cell Sci. – start-page: 1472 year: 2008 ident: c33 publication-title: Biotechnol. Bioeng. – start-page: 2827 year: 2013 ident: c39 publication-title: Sci. Rep. – start-page: 2455 year: 2000 ident: c19 publication-title: J. Cell Sci. – start-page: R756 year: 2003 ident: c2 publication-title: Curr. Biol. – start-page: 3033 year: 2011 ident: c16 publication-title: Cell. Mol. Life Sci. – start-page: 294 year: 2004 ident: c27 publication-title: Mol. Biol. Cell – start-page: 655 year: 2009 ident: c12 publication-title: Biotechnol. Bioeng. – start-page: 2280 year: 2019 ident: c37 publication-title: Nano Lett. – start-page: 439 year: 2012 ident: c38 publication-title: J. Cell Biol. – start-page: 1744 year: 2001 ident: c40 publication-title: Biophys. J. – start-page: 035017 year: 2017 ident: c11 publication-title: J. Micromech. Microeng. – start-page: 1436 year: 2011 ident: c21 publication-title: Oncogene – start-page: 907 year: 2002 ident: c14 publication-title: Microelectron. Eng. – start-page: 1838 year: 2010 ident: c23 publication-title: FASEB J. – start-page: 5917 year: 2012 ident: c30 publication-title: J. Cell Sci. – start-page: 738 year: 2019 ident: c31 publication-title: Nat. Rev. Mol. Cell Biol. – start-page: 6941 year: 2017 ident: c25 publication-title: Nano Lett. – start-page: 335 year: 2010 ident: c44 publication-title: Annu. Rev. Cell Dev. Biol. – start-page: 512 year: 2011 ident: c7 publication-title: Nat. Rev. Cancer – start-page: 400 year: 1975 ident: c42 publication-title: J. Cell Biol. – start-page: 3606 year: 2002 ident: c26 publication-title: J. Biol. Chem. – volume: 106 start-page: 1365 issue: 4 year: 1988 ident: 2023062410353188100_c35 publication-title: The Journal of Cell Biology doi: 10.1083/jcb.106.4.1365 – volume: 5 start-page: 59 issue: 1 year: 2003 ident: 2023062410353188100_c15 publication-title: Nat. Cell Biol. doi: 10.1038/ncb898 – volume: 12 start-page: 3947 issue: 12 year: 2001 ident: 2023062410353188100_c41 publication-title: Mol. Biol. Cell doi: 10.1091/mbc.12.12.3947 – volume: 12 start-page: 203 year: 2010 ident: 2023062410353188100_c10 publication-title: Annu. Rev. Biomed. Eng. doi: 10.1146/annurev-bioeng-070909-105351 – volume: 130 start-page: 1 year: 2018 ident: 2023062410353188100_c9 publication-title: Curr. Top. Dev. Biol. doi: 10.1016/bs.ctdb.2018.02.002 – volume: 103 start-page: 655 issue: 4 year: 2009 ident: 2023062410353188100_c12 publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.22361 – volume: 3 start-page: 2827 issue: 1 year: 2013 ident: 2023062410353188100_c39 publication-title: Sci. Rep. doi: 10.1038/srep02827 – volume: 3 start-page: 303 issue: 5 year: 2007 ident: 2023062410353188100_c28 publication-title: Int. J. Biol. Sci. doi: 10.7150/ijbs.3.303 – volume: 127 start-page: 679 issue: 4 year: 2006 ident: 2023062410353188100_c3 publication-title: Cell doi: 10.1016/j.cell.2006.11.001 – volume: 1 start-page: 46 issue: 1 year: 2001 ident: 2023062410353188100_c6 publication-title: Nat. Rev. Cancer doi: 10.1038/35094059 – volume: 11 start-page: 512 issue: 7 year: 2011 ident: 2023062410353188100_c7 publication-title: Nat. Rev. Cancer doi: 10.1038/nrc3080 – volume: 277 start-page: 3606 issue: 5 year: 2002 ident: 2023062410353188100_c26 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M107571200 – volume: 111 start-page: 1897 issue: 13 year: 1998 ident: 2023062410353188100_c18 publication-title: J. Cell Sci. doi: 10.1242/jcs.111.13.1897 – volume: 3 start-page: 2332 issue: 1 year: 2013 ident: 2023062410353188100_c32 publication-title: Sci. Rep. doi: 10.1038/srep02332 – volume: 11 start-page: 953 issue: 10 year: 2010 ident: 2023062410353188100_c36 publication-title: Nat. Immunol. doi: 10.1038/ni.1936 – volume: 67 start-page: 400 issue: 2 year: 1975 ident: 2023062410353188100_c42 publication-title: J. Cell Biol. doi: 10.1083/jcb.67.2.400 – volume: 68 start-page: 3033 issue: 18 year: 2011 ident: 2023062410353188100_c16 publication-title: Cell. Mol. Life Sci. doi: 10.1007/s00018-011-0735-1 – volume: 10 start-page: a018267 issue: 1 year: 2018 ident: 2023062410353188100_c29 publication-title: Cold Spring Harbor Perspect. Biol. doi: 10.1101/cshperspect.a018267 – volume: 61–62 start-page: 907 year: 2002 ident: 2023062410353188100_c14 publication-title: Microelectron. Eng. doi: 10.1016/S0167-9317(02)00494-X – volume: 30 start-page: 1436 issue: 12 year: 2011 ident: 2023062410353188100_c21 publication-title: Oncogene doi: 10.1038/onc.2010.509 – volume: 80 start-page: 1744 issue: 4 year: 2001 ident: 2023062410353188100_c40 publication-title: Biophys. J. doi: 10.1016/S0006-3495(01)76145-0 – volume: 22 start-page: 1274 issue: 8 year: 2011 ident: 2023062410353188100_c20 publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e10-08-0699 – volume: 7 start-page: 2894 issue: 9 year: 2008 ident: 2023062410353188100_c22 publication-title: Mol. Cancer Ther. doi: 10.1158/1535-7163.MCT-08-0450 – volume: 26 start-page: 571 issue: 5 year: 2008 ident: 2023062410353188100_c24 publication-title: Cell Biochem. Funct. doi: 10.1002/cbf.1478 – volume: 113 start-page: 2455 issue: 13 year: 2000 ident: 2023062410353188100_c19 publication-title: J. Cell Sci. doi: 10.1242/jcs.113.13.2455 – volume: 197 start-page: 439 issue: 3 year: 2012 ident: 2023062410353188100_c38 publication-title: J. Cell Biol. doi: 10.1083/jcb.201201124 – volume: 26 start-page: 335 issue: 1 year: 2010 ident: 2023062410353188100_c44 publication-title: Annu. Rev. Cell Dev. Biol. doi: 10.1146/annurev.cellbio.042308.113318 – volume: 125 start-page: 5917 issue: 24 year: 2012 ident: 2023062410353188100_c30 publication-title: J. Cell Sci. doi: 10.1242/jcs.093732 – volume: 27 start-page: 035017 issue: 3 year: 2017 ident: 2023062410353188100_c11 publication-title: J. Micromech. Microeng. doi: 10.1088/1361-6439/aa5bbb – volume: 29 start-page: 2734 issue: 16 year: 2010 ident: 2023062410353188100_c8 publication-title: EMBO J. doi: 10.1038/emboj.2010.170 – volume: 14 start-page: 818 issue: 6 year: 2008 ident: 2023062410353188100_c1 publication-title: Dev. Cell doi: 10.1016/j.devcel.2008.05.009 – volume: 19 start-page: 2280 issue: 4 year: 2019 ident: 2023062410353188100_c37 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b04720 – volume: 18 start-page: 159 issue: 1 year: 2016 ident: 2023062410353188100_c13 publication-title: Annu. Rev. Biomed. Eng. doi: 10.1146/annurev-bioeng-071114-040654 – volume: 10 start-page: e0145068 issue: 12 year: 2015 ident: 2023062410353188100_c34 publication-title: PLOS ONE doi: 10.1371/journal.pone.0145068 – volume: 20 start-page: 738 issue: 12 year: 2019 ident: 2023062410353188100_c31 publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/s41580-019-0172-9 – volume: 24 start-page: 1838 issue: 6 year: 2010 ident: 2023062410353188100_c17 publication-title: FASEB J. doi: 10.1096/fj.09-151639 – volume: 123 start-page: 4195 issue: Pt 24 year: 2010 ident: 2023062410353188100_c5 publication-title: J. Cell Sci. doi: 10.1242/jcs.023820 – volume: 13 start-page: R756 issue: 19 year: 2003 ident: 2023062410353188100_c2 publication-title: Curr. Biol. doi: 10.1016/j.cub.2003.09.014 – volume: 17 start-page: 6941 issue: 11 year: 2017 ident: 2023062410353188100_c25 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b03358 – volume: 15 start-page: 294 issue: 1 year: 2004 ident: 2023062410353188100_c27 publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e03-05-0352 – volume: 11 start-page: 633 issue: 9 year: 2010 ident: 2023062410353188100_c43 publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm2957 – volume: 147 start-page: 992 issue: 5 year: 2011 ident: 2023062410353188100_c4 publication-title: Cell doi: 10.1016/j.cell.2011.11.016 – volume: 24 start-page: 1838 issue: 6 year: 2010 ident: 2023062410353188100_c23 publication-title: FASEB J. doi: 10.1096/fj.09-151639 – volume: 99 start-page: 1472 issue: 6 year: 2008 ident: 2023062410353188100_c33 publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.21690 |
SSID | ssj0051722 |
Score | 2.2709427 |
Snippet | Cancer cell migration through tissue pores and tracks into the bloodstream is a critical biological step for cancer metastasis. Although in vivo studies have... Cancer cell migration through tissue pores and tracks into the bloodstream is a critical biological step for cancer metastasis. Although studies have shown... Cancer cell migration through tissue pores and tracks into the bloodstream is a critical biological step for cancer metastasis. Although in vivo studies have... |
SourceID | pubmedcentral proquest pubmed crossref scitation |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 034105 |
SubjectTerms | Cancer Cell adhesion Cell adhesion & migration Collagen Confined spaces Confinement Fibroblasts In vivo methods and tests Leading edges Microchannels Microfluidic devices Morphology Physiological effects Physiology Regular |
Title | Effect of vimentin on cell migration in collagen-coated microchannels: A mimetic physiological confined environment |
URI | http://dx.doi.org/10.1063/5.0045197 https://www.ncbi.nlm.nih.gov/pubmed/34025897 https://www.proquest.com/docview/2528607926 https://www.proquest.com/docview/2531535046 https://pubmed.ncbi.nlm.nih.gov/PMC8133791 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEA_rCXo-iN9XPSV-PAjSs02apvXtEI9FUBDucPGltE3iFm7bZXd7oH-9k7TJtnerqC-lJEMa8vtlOklmJgi90jnngAeRrxJ9hZmIqZ_SXPpUpkyEKlHSbGV_-hxPz6KPMzabTNphdMmmOCp_7owr-R9UoQxw1VGy_4CsaxQK4B3whScgDM-_wrhPPdzo83Xj9lPrvX-9F_9mUX3vsTWO5gA2tOKXTa4tzIX2wtMhvzX8GbvY9AU0oHO3mp0OpxBhsazADBXDeLjRMXDVmLbUeVuJgd_8t3nTmmOPebVq3TFHazwHTmT1o3WU_NqpvS_V9nRqDSrHNjAd7kqQcOsD2CtSsAtBxXdp2Y_kjjKrfdmAZXSgSgOqPVB3ankwqwAavRmmk-PwoQyM2XJh4KawMmZJV3sppbatuoauE1hdmBjxmfMMYmGXP9N11yakiulb9819dMO2MrZorixTrnrb3gTjpvOzGJgyp3fQ7X4Ngo87Qt1FE1nfQ7cGmSnvo3VHLdwobKmFmxpramFHLQyFl6iFR9R6h49xTyw8Iha2xMIDYj1AZycfTt9P_f5-Dr-MON34JOU5LTlhMLnDgtOoLJQkKVFpIkUo4yLgvGBxmTJWlFQkkeJCawaTRBBe6EO0Vze1PEAY_guKqChRSpRRWdJEcBmxNE5VoPI4Fx56bcc4s4On71A5z4wTRUwzlvXIeOiFE112GVt2CR1aoLJ-Qq8zwkgSBzwlsYeeu2pQt3pw81o2rZahYCOwIAKZRx2u7iuWEB7iI8SdgE7lPq6pq7lJ6Z6ElPI09NBLx40_dX6H1EWz2kpkS6Ee_7Z_T9D-dsoeor3NqpVPwbTeFM_MRPgFDSvOmA |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+vimentin+on+cell+migration+in+collagen-coated+microchannels%3A+A+mimetic+physiological+confined+environment&rft.jtitle=Biomicrofluidics&rft.au=Zhou%2C+Zhiru&rft.au=Cui%2C+Feiyun&rft.au=Wen%2C+Qi&rft.au=Susan+Zhou%2C+H&rft.date=2021-05-01&rft.issn=1932-1058&rft.eissn=1932-1058&rft.volume=15&rft.issue=3&rft.spage=034105&rft_id=info:doi/10.1063%2F5.0045197&rft_id=info%3Apmid%2F34025897&rft.externalDocID=34025897 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-1058&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-1058&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-1058&client=summon |