Biophysical and molecular mechanisms underlying the modulation of heteromeric Kir4.1-Kir5.1 channels by CO2 and pH
CO2 chemoreception may be related to modulation of inward rectifier K+ channels (Kir channels) in brainstem neurons. Kir4.1 is expressed predominantly in the brainstem and inhibited during hypercapnia. Although the homomeric Kir4.1 only responds to severe intracellular acidification, coexpression of...
Saved in:
Published in | The Journal of general physiology Vol. 116; no. 1; pp. 33 - 46 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Rockefeller University Press
01.07.2000
The Rockefeller University Press |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | CO2 chemoreception may be related to modulation of inward rectifier K+ channels (Kir channels) in brainstem neurons. Kir4.1 is expressed predominantly in the brainstem and inhibited during hypercapnia. Although the homomeric Kir4.1 only responds to severe intracellular acidification, coexpression of Kir4.1 with Kir5.1 greatly enhances channel sensitivities to CO2 and pH. To understand the biophysical and molecular mechanisms underlying the modulation of these currents by CO2 and pH, heteromeric Kir4. 1-Kir5.1 were studied in inside-out patches. These Kir4.1-Kir5.1 currents showed a single channel conductance of 59 pS with open-state probability (P(open)) approximately 0.4 at pH 7.4. Channel activity reached the maximum at pH 8.5 and was completely suppressed at pH 6.5 with pKa 7.45. The effect of low pH on these currents was due to selective suppression of P(open) without evident effects on single channel conductance, leading to a decrease in the channel mean open time and an increase in the mean closed time. At pH 8.5, single-channel currents showed two sublevels of conductance at approximately 1/4 and 3/4 of the maximal openings. None of them was affected by lowering pH. The Kir4.1-Kir5.1 currents were modulated by phosphatidylinositol-4,5-bisphosphate (PIP2) that enhanced baseline P(open) and reduced channel sensitivity to intracellular protons. In the presence of 10 microM PIP2, the Kir4.1-Kir5.1 showed a pKa value of 7.22. The effect of PIP2, however, was not seen in homomeric Kir4.1 currents. The CO2/pH sensitivities were related to a lysine residue in the NH2 terminus of Kir4.1. Mutation of this residue (K67M, K67Q) completely eliminated the CO2 sensitivity of both homomeric Kir4.1 and heteromeric Kir4.1-Kir5.1. In excised patches, interestingly, the Kir4.1-Kir5.1 carrying K67M mutation remained sensitive to low pHi. Such pH sensitivity, however, disappeared in the presence of PIP2. The effect of PIP2 on shifting the titration curve of wild-type and mutant channels was totally abolished when Arg178 in Kir5.1 was mutated. Thus, these studies demonstrate a heteromeric Kir channel that can be modulated by both acidic and alkaline pH, show the modulation of pH sensitivity of Kir channels by PIP2, and provide information of the biophysical and molecular mechanisms underlying the Kir modulation by intracellular protons. |
---|---|
AbstractList | CO2 chemoreception may be related to modulation of inward rectifier K+ channels (Kir channels) in brainstem neurons. Kir4.1 is expressed predominantly in the brainstem and inhibited during hypercapnia. Although the homomeric Kir4.1 only responds to severe intracellular acidification, coexpression of Kir4.1 with Kir5.1 greatly enhances channel sensitivities to CO2 and pH. To understand the biophysical and molecular mechanisms underlying the modulation of these currents by CO2 and pH, heteromeric Kir4.1–Kir5.1 were studied in inside-out patches. These Kir4.1–Kir5.1 currents showed a single channel conductance of 59 pS with open-state probability (Popen) ∼ 0.4 at pH 7.4. Channel activity reached the maximum at pH 8.5 and was completely suppressed at pH 6.5 with pKa 7.45. The effect of low pH on these currents was due to selective suppression of Popen without evident effects on single channel conductance, leading to a decrease in the channel mean open time and an increase in the mean closed time. At pH 8.5, single-channel currents showed two sublevels of conductance at ∼1/4 and 3/4 of the maximal openings. None of them was affected by lowering pH. The Kir4.1–Kir5.1 currents were modulated by phosphatidylinositol-4,5-bisphosphate (PIP2) that enhanced baseline Popen and reduced channel sensitivity to intracellular protons. In the presence of 10 μM PIP2, the Kir4.1–Kir5.1 showed a pKa value of 7.22. The effect of PIP2, however, was not seen in homomeric Kir4.1 currents. The CO2/pH sensitivities were related to a lysine residue in the NH2 terminus of Kir4.1. Mutation of this residue (K67M, K67Q) completely eliminated the CO2 sensitivity of both homomeric Kir4.1 and heteromeric Kir4.1–Kir5.1. In excised patches, interestingly, the Kir4.1–Kir5.1 carrying K67M mutation remained sensitive to low pHi. Such pH sensitivity, however, disappeared in the presence of PIP2. The effect of PIP2 on shifting the titration curve of wild-type and mutant channels was totally abolished when Arg178 in Kir5.1 was mutated. Thus, these studies demonstrate a heteromeric Kir channel that can be modulated by both acidic and alkaline pH, show the modulation of pH sensitivity of Kir channels by PIP2, and provide information of the biophysical and molecular mechanisms underlying the Kir modulation by intracellular protons. CO2 chemoreception maybe related to modulation of inward rectifier K+ channels (Kir channels) in brainstem neurons. Kir4.1 is expressed predominantly in the brainstem and inhibited during hypercapnia. CO2 chemoreception may be related to modulation of inward rectifier K+ channels (Kir channels) in brainstem neurons. Kir4.1 is expressed predominantly in the brainstem and inhibited during hypercapnia. Although the homomeric Kir4.1 only responds to severe intracellular acidification, coexpression of Kir4.1 with Kir5.1 greatly enhances channel sensitivities to CO2 and pH. To understand the biophysical and molecular mechanisms underlying the modulation of these currents by CO2 and pH, heteromeric Kir4. 1-Kir5.1 were studied in inside-out patches. These Kir4.1-Kir5.1 currents showed a single channel conductance of 59 pS with open-state probability (P(open)) approximately 0.4 at pH 7.4. Channel activity reached the maximum at pH 8.5 and was completely suppressed at pH 6.5 with pKa 7.45. The effect of low pH on these currents was due to selective suppression of P(open) without evident effects on single channel conductance, leading to a decrease in the channel mean open time and an increase in the mean closed time. At pH 8.5, single-channel currents showed two sublevels of conductance at approximately 1/4 and 3/4 of the maximal openings. None of them was affected by lowering pH. The Kir4.1-Kir5.1 currents were modulated by phosphatidylinositol-4,5-bisphosphate (PIP2) that enhanced baseline P(open) and reduced channel sensitivity to intracellular protons. In the presence of 10 microM PIP2, the Kir4.1-Kir5.1 showed a pKa value of 7.22. The effect of PIP2, however, was not seen in homomeric Kir4.1 currents. The CO2/pH sensitivities were related to a lysine residue in the NH2 terminus of Kir4.1. Mutation of this residue (K67M, K67Q) completely eliminated the CO2 sensitivity of both homomeric Kir4.1 and heteromeric Kir4.1-Kir5.1. In excised patches, interestingly, the Kir4.1-Kir5.1 carrying K67M mutation remained sensitive to low pHi. Such pH sensitivity, however, disappeared in the presence of PIP2. The effect of PIP2 on shifting the titration curve of wild-type and mutant channels was totally abolished when Arg178 in Kir5.1 was mutated. Thus, these studies demonstrate a heteromeric Kir channel that can be modulated by both acidic and alkaline pH, show the modulation of pH sensitivity of Kir channels by PIP2, and provide information of the biophysical and molecular mechanisms underlying the Kir modulation by intracellular protons. CO 2 chemoreception may be related to modulation of inward rectifier K + channels (Kir channels) in brainstem neurons. Kir4.1 is expressed predominantly in the brainstem and inhibited during hypercapnia. Although the homomeric Kir4.1 only responds to severe intracellular acidification, coexpression of Kir4.1 with Kir5.1 greatly enhances channel sensitivities to CO 2 and pH. To understand the biophysical and molecular mechanisms underlying the modulation of these currents by CO 2 and pH, heteromeric Kir4.1–Kir5.1 were studied in inside-out patches. These Kir4.1–Kir5.1 currents showed a single channel conductance of 59 pS with open-state probability ( P open ) ∼ 0.4 at pH 7.4. Channel activity reached the maximum at pH 8.5 and was completely suppressed at pH 6.5 with pKa 7.45. The effect of low pH on these currents was due to selective suppression of P open without evident effects on single channel conductance, leading to a decrease in the channel mean open time and an increase in the mean closed time. At pH 8.5, single-channel currents showed two sublevels of conductance at ∼1/4 and 3/4 of the maximal openings. None of them was affected by lowering pH. The Kir4.1–Kir5.1 currents were modulated by phosphatidylinositol-4,5-bisphosphate (PIP 2 ) that enhanced baseline P open and reduced channel sensitivity to intracellular protons. In the presence of 10 μM PIP 2 , the Kir4.1–Kir5.1 showed a pKa value of 7.22. The effect of PIP 2 , however, was not seen in homomeric Kir4.1 currents. The CO 2 /pH sensitivities were related to a lysine residue in the NH 2 terminus of Kir4.1. Mutation of this residue (K67M, K67Q) completely eliminated the CO 2 sensitivity of both homomeric Kir4.1 and heteromeric Kir4.1–Kir5.1. In excised patches, interestingly, the Kir4.1–Kir5.1 carrying K67M mutation remained sensitive to low pH i . Such pH sensitivity, however, disappeared in the presence of PIP 2 . The effect of PIP 2 on shifting the titration curve of wild-type and mutant channels was totally abolished when Arg178 in Kir5.1 was mutated. Thus, these studies demonstrate a heteromeric Kir channel that can be modulated by both acidic and alkaline pH, show the modulation of pH sensitivity of Kir channels by PIP 2 , and provide information of the biophysical and molecular mechanisms underlying the Kir modulation by intracellular protons. |
Author | Cui, N Chanchevalap, S Qu, Z Xu, H Shen, W Yang, Z Jiang, C |
Author_xml | – sequence: 1 givenname: Z surname: Yang fullname: Yang, Z organization: Department of Biology, Georgia State University, Atlanta, Georgia 30302-4010, USA – sequence: 2 givenname: H surname: Xu fullname: Xu, H – sequence: 3 givenname: N surname: Cui fullname: Cui, N – sequence: 4 givenname: Z surname: Qu fullname: Qu, Z – sequence: 5 givenname: S surname: Chanchevalap fullname: Chanchevalap, S – sequence: 6 givenname: W surname: Shen fullname: Shen, W – sequence: 7 givenname: C surname: Jiang fullname: Jiang, C |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/10871638$$D View this record in MEDLINE/PubMed |
BookMark | eNpVkc1v1DAQxS1URLcLN87I4kyCxx9xekGCFVBEpV7gbDneycarxA52grT_PV62QmUu7zC_eW-kd0OuQgxIyGtgNbBWvT8e5hqgqaEW4hnZgJKs0lq2V2TDGOcV8Ft1TW5yPrIyirMX5LocamhEuyHpk4_zcMre2ZHasKdTHNGto010QjfY4POU6Rr2mMaTDwe6DFiYfSEWHwONPR1wwRQnTN7R7z7JGqoiqgZ6vg84Ztqd6O6B__Wf716S570dM7561C35-eXzj91ddf_w9dvu433lpBZLxRVyB0L0sgMO2IFulOw6YTVrUQOqxoLoe8e1RWV5q6TuGsat5G1XYCe25MPFd167CfcOw5LsaObkJ5tOJlpv_t8EP5hD_G0457dNSd6St48GKf5aMS_mGNcUys-GMwVSan2G3l0gl2LOCft_AcDMuSBTCjKlIANGnPE3T596Al8aEX8AIIiOeg |
CODEN | JGPLAD |
CitedBy_id | crossref_primary_10_1007_s00232_006_0038_x crossref_primary_10_1152_physrev_00021_2009 crossref_primary_10_1113_jphysiol_2006_115758 crossref_primary_10_1152_ajpcell_00096_2022 crossref_primary_10_1104_pp_108_129007 crossref_primary_10_4161_idp_26782 crossref_primary_10_1113_jphysiol_2002_026047 crossref_primary_10_1073_pnas_1101400108 crossref_primary_10_1152_physrev_00051_2003 crossref_primary_10_1113_jphysiol_2012_236885 crossref_primary_10_1016_j_hrthm_2006_12_033 crossref_primary_10_1007_s00424_010_0915_0 crossref_primary_10_1016_j_bbamem_2007_04_008 crossref_primary_10_1111_j_1535_7597_2004_46010_x crossref_primary_10_1016_S0014_5793_01_02136_6 crossref_primary_10_1124_jpet_104_077388 crossref_primary_10_1152_jn_00016_2010 crossref_primary_10_1007_s00429_016_1199_8 crossref_primary_10_1074_jbc_M115_679910 crossref_primary_10_1113_jphysiol_2007_133157 crossref_primary_10_1124_mol_63_6_1212 crossref_primary_10_1002_jcp_10021 crossref_primary_10_1292_jvms_70_265 crossref_primary_10_1074_jbc_M406058200 crossref_primary_10_1007_s00232_005_7012_x crossref_primary_10_1113_jphysiol_2006_124958 crossref_primary_10_1074_jbc_M106123200 crossref_primary_10_1007_s11064_017_2242_8 crossref_primary_10_1111_j_1476_5381_2012_01934_x crossref_primary_10_1016_j_bbamem_2006_06_027 crossref_primary_10_1152_jn_00358_2020 crossref_primary_10_1016_S0034_5687_01_00282_1 crossref_primary_10_4161_chan_4_5_13006 crossref_primary_10_1007_s00424_007_0276_5 crossref_primary_10_1016_j_bbrc_2016_03_100 crossref_primary_10_1038_s41598_017_00752_1 crossref_primary_10_1016_j_bbamem_2009_07_002 crossref_primary_10_1007_s00249_007_0206_7 crossref_primary_10_1074_jbc_M405985200 crossref_primary_10_1074_jbc_M009631200 crossref_primary_10_1016_j_resp_2004_07_005 crossref_primary_10_1152_ajpcell_00282_2004 crossref_primary_10_1152_ajpcell_00182_2001 crossref_primary_10_1074_jbc_M409856200 crossref_primary_10_1007_s10519_005_9032_9 crossref_primary_10_1007_s00232_005_0741_z crossref_primary_10_1073_pnas_1003072107 crossref_primary_10_1371_journal_pone_0145508 crossref_primary_10_1002_jcp_21169 crossref_primary_10_1016_j_molbrainres_2005_05_003 crossref_primary_10_1016_S0378_5955_02_00799_2 crossref_primary_10_1016_S0006_8993_02_03952_5 crossref_primary_10_1074_jbc_M106595200 crossref_primary_10_1152_ajpcell_00065_2001 crossref_primary_10_1038_s42003_018_0083_x crossref_primary_10_1113_jphysiol_2001_012961 crossref_primary_10_1016_j_gendis_2020_03_006 crossref_primary_10_1097_MNH_0000000000000817 crossref_primary_10_1113_jphysiol_2014_276527 crossref_primary_10_3389_fphys_2023_1127893 crossref_primary_10_1146_annurev_biophys_37_032807_125859 crossref_primary_10_1016_S0034_5687_01_00301_2 crossref_primary_10_1111_j_1469_7793_2001_0359f_x crossref_primary_10_1074_jbc_M411895200 crossref_primary_10_1679_aohc_67_195 crossref_primary_10_1002_glia_20808 crossref_primary_10_1016_j_npbr_2011_02_008 crossref_primary_10_1113_jphysiol_2002_025247 crossref_primary_10_1152_physrev_00016_2014 crossref_primary_10_1074_jbc_M403413200 crossref_primary_10_1016_j_pbiomolbio_2006_04_001 crossref_primary_10_1074_jbc_M110_189290 crossref_primary_10_1152_ajprenal_00288_2007 crossref_primary_10_1007_s00424_010_0828_y crossref_primary_10_1016_j_bbrc_2010_07_105 crossref_primary_10_1007_s00401_016_1553_1 crossref_primary_10_1016_j_bbrc_2006_03_026 crossref_primary_10_1016_j_bbamem_2006_07_005 |
Cites_doi | 10.1016/0896-6273(95)90103-5 10.1074/jbc.271.29.17261 10.1074/jbc.272.9.5388 10.1002/j.1460-2075.1996.tb00661.x 10.1074/jbc.275.14.10182 10.1007/BF00374587 10.1074/jbc.274.20.13783 10.1038/35882 10.1002/j.1460-2075.1996.tb00784.x 10.1146/annurev.physiol.59.1.413 10.1152/ajprenal.1997.273.4.F516 10.1146/annurev.physiol.59.1.171 10.1152/ajprenal.1994.267.1.F114 10.1016/S0306-4522(96)00485-X 10.1007/BF00656997 10.1111/j.1469-7793.1999.0699u.x 10.1073/pnas.92.15.6753 10.1113/jphysiol.1997.sp021934 10.1111/j.1469-7793.2000.00725.x 10.1111/j.1469-7793.1999.00921.x 10.1073/pnas.96.26.15298 10.1038/sj.bjp.0702164 10.1007/s004240050251 10.1074/jbc.272.1.586 10.1002/(SICI)1097-4652(200004)183:1<53::AID-JCP7>3.0.CO;2-R 10.1126/science.282.5391.1141 10.1152/ajpcell.1995.268.5.C1173 10.1074/jbc.275.11.7811 10.1111/j.1469-7793.1999.639ad.x 10.1126/science.282.5391.1138 10.1152/ajprenal.1998.275.6.F972 |
ContentType | Journal Article |
Copyright | Copyright Rockefeller University Press Jul 2000 2000 The Rockefeller University Press 2000 The Rockefeller University Press |
Copyright_xml | – notice: Copyright Rockefeller University Press Jul 2000 – notice: 2000 The Rockefeller University Press 2000 The Rockefeller University Press |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QP 7QR 7TK 7TS 8FD FR3 K9. P64 5PM |
DOI | 10.1085/jgp.116.1.33 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Physical Education Index Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Technology Research Database ProQuest Health & Medical Complete (Alumni) Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Physical Education Index Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | CrossRef Technology Research Database MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1540-7748 |
EndPage | 46 |
ExternalDocumentID | 62478772 10_1085_jgp_116_1_33 10871638 |
Genre | Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S Journal Article Feature |
GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: R01 HL58410-01 – fundername: NHLBI NIH HHS grantid: R01 HL058410 |
GroupedDBID | --- -DZ -~X .55 .GJ 0VX 123 18M 29K 2WC 36B 39C 3O- 4.4 53G 5RE 5VS 79B 85S ACGFO ACGOD ACIWK ACNCT ACPRK ADBBV AENEX AFFNX AHMBA AI. ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BKOMP BTFSW C1A C45 CGR CS3 CUY CVF D-I D0L DIK DU5 E3Z EBS ECM EIF EJD EMB F5P F9R GX1 H13 HF~ HYE KQ8 L7B MVM NPM O5R O5S OK1 P2P PQQKQ RHF RHI RPM RXW SJN TAE TAF TR2 TRP TWZ UHB UKR UPT VH1 W8F WH7 WOQ X7M XOL YKV YOC YQT YSK YWH YYQ YZZ ZCA ZGI AAYXX CITATION 7QP 7QR 7TK 7TS 8FD FR3 K9. P64 5PM |
ID | FETCH-LOGICAL-c473t-25e2c133f4b121eb17654bb3a708e71e56a13ffc27ae5a28547b602a428bb17c3 |
IEDL.DBID | RPM |
ISSN | 0022-1295 |
IngestDate | Tue Sep 17 20:47:35 EDT 2024 Thu Oct 10 15:26:19 EDT 2024 Thu Sep 26 17:17:34 EDT 2024 Sat Sep 28 08:34:05 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c473t-25e2c133f4b121eb17654bb3a708e71e56a13ffc27ae5a28547b602a428bb17c3 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2229613/ |
PMID | 10871638 |
PQID | 205144773 |
PQPubID | 42336 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2229613 proquest_journals_205144773 crossref_primary_10_1085_jgp_116_1_33 pubmed_primary_10871638 |
PublicationCentury | 2000 |
PublicationDate | 2000-Jul-01 2000-07-01 20000701 |
PublicationDateYYYYMMDD | 2000-07-01 |
PublicationDate_xml | – month: 07 year: 2000 text: 2000-Jul-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | The Journal of general physiology |
PublicationTitleAlternate | J Gen Physiol |
PublicationYear | 2000 |
Publisher | Rockefeller University Press The Rockefeller University Press |
Publisher_xml | – name: Rockefeller University Press – name: The Rockefeller University Press |
References | Choe (2023072616020081400_Choeetal1997) 1997; 273 Mitchell (2023072616020081400_MitchellandBerger1975) 1975; 111 Pearson (2023072616020081400_Pearsonetal1999) 1999; 514 Pessia (2023072616020081400_Pessiaetal1996) 1996; 15 Zhu (2023072616020081400_Zhuetal2000) 2000; 183 Yang (2023072616020081400_YangandJiang1999) 1999; 520 Fan (2023072616020081400_FanandMakielski1997) 1997; 272 Wang (2023072616020081400_Wangetal1997) 1997; 59 Schlatter (2023072616020081400_Schlatteretal1994) 1994; 428 Shyng (2023072616020081400_ShyngandNichols1998) 1998; 282 Fakler (2023072616020081400_Fakleretal1996b) 1996; 15 McNicholas (2023072616020081400_McNicholasetal1998) 1998; 275 Hamill (2023072616020081400_Hamilletal1981) 1981; 391 Omori (2023072616020081400_Omorietal1997) 1997; 499 Tsai (2023072616020081400_Tsaietal1995) 1995; 268 Xu (2023072616020081400_Xuetal2000) 2000; 524 Coulter (2023072616020081400_Coulteretal1995) 1995; 15 Nichols (2023072616020081400_NicholsandLopatin1997) 1997; 59 Baukrowitz (2023072616020081400_Baukrowitzetal1998) 1998; 282 Fakler (2023072616020081400_Fakleretal1996a) 1996; 433 2023072616020081400_vonEuler1986 Zhou (2023072616020081400_ZhouandWingo1994) 1994; 267 Chanchevalap (2023072616020081400_Chanchevalapetal2000) 2000; 275 Schulte (2023072616020081400_Schulteetal1999) 1999; 96 Doi (2023072616020081400_Doietal1996) 1996; 271 Shuck (2023072616020081400_Shucketal1997) 1997; 272 Zhu (2023072616020081400_Zhuetal1999) 1999; 516 Bredt (2023072616020081400_Bredtetal1995) 1995; 92 Leung (2023072616020081400_Leungetal2000) 2000; 275 Bond (2023072616020081400_Bondetal1994) 1994; 2 Pineda (2023072616020081400_PinedaandAghajanian1997) 1997; 77 Colquhoun (2023072616020081400_Colquhoun1998) 1998; 125 Huang (2023072616020081400_Huangetal1998) 1998; 391 Qu (2023072616020081400_Quetal1999) 1999; 274 |
References_xml | – volume: 111 start-page: 206 year: 1975 ident: 2023072616020081400_MitchellandBerger1975 article-title: Neural regulation of respiration publication-title: Am. Rev. Respir. Dis contributor: fullname: Mitchell – ident: 2023072616020081400_vonEuler1986 – volume: 2 start-page: 183 year: 1994 ident: 2023072616020081400_Bondetal1994 article-title: Cloning and expression of a family of inward rectifier potassium channels publication-title: Receptors Channels. contributor: fullname: Bond – volume: 15 start-page: 1157 year: 1995 ident: 2023072616020081400_Coulteretal1995 article-title: Identification and molecular localization of a pH-sensing domain for the inward rectifier potassium channel HIR publication-title: Neuron. doi: 10.1016/0896-6273(95)90103-5 contributor: fullname: Coulter – volume: 271 start-page: 17261 year: 1996 ident: 2023072616020081400_Doietal1996 article-title: Extracellular K+ and intracellular pH allosterically regulate renal K(ir)1.1 channels publication-title: J. Biol. Chem doi: 10.1074/jbc.271.29.17261 contributor: fullname: Doi – volume: 272 start-page: 5388 year: 1997 ident: 2023072616020081400_FanandMakielski1997 article-title: Anionic phospholipids activate ATP-sensitive potassium channels publication-title: J. Biol. Chem. doi: 10.1074/jbc.272.9.5388 contributor: fullname: Fan – volume: 15 start-page: 2980 year: 1996 ident: 2023072616020081400_Pessiaetal1996 article-title: Subunit positional effects revealed by novel heteromeric inwardly rectifying K+ channels publication-title: EMBO (Eur. Mol. Biol. Organ.) J. doi: 10.1002/j.1460-2075.1996.tb00661.x contributor: fullname: Pessia – volume: 275 start-page: 10182 year: 2000 ident: 2023072616020081400_Leungetal2000 article-title: Phosphatidylinositol 4,5-bisphosphate and intracellular pH regulate the ROMK1 potassium channel via separate but interrelated mechanisms publication-title: J. Biol. Chem. doi: 10.1074/jbc.275.14.10182 contributor: fullname: Leung – volume: 428 start-page: 631 year: 1994 ident: 2023072616020081400_Schlatteretal1994 article-title: pH dependence of K+ conductances of rat cortical collecting duct principal cells publication-title: Pflügers Arch. doi: 10.1007/BF00374587 contributor: fullname: Schlatter – volume: 274 start-page: 13783 year: 1999 ident: 2023072616020081400_Quetal1999 article-title: Identification of a critical motif responsible for gating of Kir2.3 channel by intracellular protons publication-title: J. Biol. Chem. doi: 10.1074/jbc.274.20.13783 contributor: fullname: Qu – volume: 391 start-page: 803 year: 1998 ident: 2023072616020081400_Huangetal1998 article-title: Direct activation of inward rectifier potassium channels by PIP2 and its stabilization by Gbetagamma publication-title: Nature. doi: 10.1038/35882 contributor: fullname: Huang – volume: 15 start-page: 4093 year: 1996 ident: 2023072616020081400_Fakleretal1996b article-title: Identification of a titratable lysine residue that determines sensitivity of kidney potassium channels (ROMK) to intracellular pH publication-title: EMBO (Eur. Mol. Biol. Organ.) J doi: 10.1002/j.1460-2075.1996.tb00784.x contributor: fullname: Fakler – volume: 59 start-page: 413 year: 1997 ident: 2023072616020081400_Wangetal1997 article-title: Renal K+ channelsstructure and function publication-title: Annu. Rev. Physiol. doi: 10.1146/annurev.physiol.59.1.413 contributor: fullname: Wang – volume: 273 start-page: F516 year: 1997 ident: 2023072616020081400_Choeetal1997 article-title: A conserved cytoplasmic region of ROMK modulates pH sensitivity, conductance, and gating publication-title: Am. J. Physiol. Renal Physiol doi: 10.1152/ajprenal.1997.273.4.F516 contributor: fullname: Choe – volume: 59 start-page: 171 year: 1997 ident: 2023072616020081400_NicholsandLopatin1997 article-title: Inward rectifier potassium channels publication-title: Annu. Rev. Physiol doi: 10.1146/annurev.physiol.59.1.171 contributor: fullname: Nichols – volume: 267 start-page: F114 year: 1994 ident: 2023072616020081400_ZhouandWingo1994 article-title: Stimulation of total CO2 flux by 10% CO2 in rabbit CCDrole of an apical Sch-28080- and Ba-sensitive mechanism publication-title: Am. J. Physiol. Renal Physiol. doi: 10.1152/ajprenal.1994.267.1.F114 contributor: fullname: Zhou – volume: 77 start-page: 723 year: 1997 ident: 2023072616020081400_PinedaandAghajanian1997 article-title: Carbon dioxide regulates the tonic activity of locus coeruleus neurons by modulating a proton- and polyamine-sensitive inward rectifier potassium current publication-title: Neuroscience. doi: 10.1016/S0306-4522(96)00485-X contributor: fullname: Pineda – volume: 391 start-page: 85 year: 1981 ident: 2023072616020081400_Hamilletal1981 article-title: Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches publication-title: Pflügers Arch doi: 10.1007/BF00656997 contributor: fullname: Hamill – volume: 516 start-page: 699 year: 1999 ident: 2023072616020081400_Zhuetal1999 article-title: Effects of intra- and extracellular acidification on single channel Kir2.3 currents publication-title: J. Physiol. doi: 10.1111/j.1469-7793.1999.0699u.x contributor: fullname: Zhu – volume: 92 start-page: 6753 year: 1995 ident: 2023072616020081400_Bredtetal1995 article-title: Cloning and expression of two brain-specific inwardly rectifying potassium channels publication-title: Proc. Natl. Acad. Sci. USA. doi: 10.1073/pnas.92.15.6753 contributor: fullname: Bredt – volume: 499 start-page: 369 year: 1997 ident: 2023072616020081400_Omorietal1997 article-title: Inwardly rectifying potassium channels expressed by gene transfection into the green Monkey kidney cell line COS-1 publication-title: J. Physiol. doi: 10.1113/jphysiol.1997.sp021934 contributor: fullname: Omori – volume: 524 start-page: 725 year: 2000 ident: 2023072616020081400_Xuetal2000 article-title: Modulation of Kir4.1 and Kir5.1 by hypercapnia and intracellular acidosis publication-title: J. Physiol. doi: 10.1111/j.1469-7793.2000.00725.x contributor: fullname: Xu – volume: 520 start-page: 921 year: 1999 ident: 2023072616020081400_YangandJiang1999 article-title: Opposite effects of pH on open-state probability and single channel conductance of Kir 4.1 publication-title: J. Physiol. doi: 10.1111/j.1469-7793.1999.00921.x contributor: fullname: Yang – volume: 96 start-page: 15298 year: 1999 ident: 2023072616020081400_Schulteetal1999 article-title: pH gating of ROMK (Kir1.1) channelscontrol by an Arg-Lys-Arg triad disrupted in antenatal Bartter syndrome publication-title: Proc. Natl. Acad. Sci. USA. doi: 10.1073/pnas.96.26.15298 contributor: fullname: Schulte – volume: 125 start-page: 924 year: 1998 ident: 2023072616020081400_Colquhoun1998 article-title: Binding, gating, affinity and efficacythe interpretation of structure–activity relationships for agonists and of the effects of mutating receptors publication-title: Br. J. Pharmacol doi: 10.1038/sj.bjp.0702164 contributor: fullname: Colquhoun – volume: 433 start-page: 77 year: 1996 ident: 2023072616020081400_Fakleretal1996a article-title: Heterooligomeric assembly of inward-rectifier K+ channels from subunits of different subfamiliesKir2.1 (IRK1) and Kir4.1 (BIR10) publication-title: Pflügers Arch doi: 10.1007/s004240050251 contributor: fullname: Fakler – volume: 272 start-page: 586 year: 1997 ident: 2023072616020081400_Shucketal1997 article-title: Cloning and characterization of two K+ inward rectifier (Kir) 1.1 potassium channel homologs from human kidney (Kir1.2 and Kir1.3) publication-title: J. Biol. Chem. doi: 10.1074/jbc.272.1.586 contributor: fullname: Shuck – volume: 183 start-page: 53 year: 2000 ident: 2023072616020081400_Zhuetal2000 article-title: CO2 inhibits specific inward rectifier K+ channels by decreases in intra- and extracellular pH publication-title: J. Cell. Physiol. doi: 10.1002/(SICI)1097-4652(200004)183:1<53::AID-JCP7>3.0.CO;2-R contributor: fullname: Zhu – volume: 282 start-page: 1141 year: 1998 ident: 2023072616020081400_Baukrowitzetal1998 article-title: PIP2 and PIP as determinants for ATP inhibition of KATP channels publication-title: Science. doi: 10.1126/science.282.5391.1141 contributor: fullname: Baukrowitz – volume: 268 start-page: C1173 year: 1995 ident: 2023072616020081400_Tsaietal1995 article-title: Intracellular H+ inhibits a cloned rat kidney outer medulla K+ channel expressed in Xenopus oocytes publication-title: Am. J. Physiol. Cell Physiol. doi: 10.1152/ajpcell.1995.268.5.C1173 contributor: fullname: Tsai – volume: 275 start-page: 7811 year: 2000 ident: 2023072616020081400_Chanchevalapetal2000 article-title: Involvement of histidine residues in CO2 and pH sensing of ROMK1 channel publication-title: J. Biol. Chem. doi: 10.1074/jbc.275.11.7811 contributor: fullname: Chanchevalap – volume: 514 start-page: 639 year: 1999 ident: 2023072616020081400_Pearsonetal1999 article-title: Expression of a functional Kir4 family inward rectifier K+ channel from a gene cloned from mouse liver publication-title: J. Physiol. doi: 10.1111/j.1469-7793.1999.639ad.x contributor: fullname: Pearson – volume: 282 start-page: 1138 year: 1998 ident: 2023072616020081400_ShyngandNichols1998 article-title: Membrane phospholipid control of nucleotide sensitivity of KATP channels publication-title: Science. doi: 10.1126/science.282.5391.1138 contributor: fullname: Shyng – volume: 275 start-page: F972 year: 1998 ident: 2023072616020081400_McNicholasetal1998 article-title: pH-dependent modulation of the cloned renal K+ channel, ROMK publication-title: Am. J. Physiol. Renal Physiol doi: 10.1152/ajprenal.1998.275.6.F972 contributor: fullname: McNicholas |
SSID | ssj0000520 |
Score | 1.9803375 |
Snippet | CO2 chemoreception may be related to modulation of inward rectifier K+ channels (Kir channels) in brainstem neurons. Kir4.1 is expressed predominantly in the... CO2 chemoreception maybe related to modulation of inward rectifier K+ channels (Kir channels) in brainstem neurons. Kir4.1 is expressed predominantly in the... CO 2 chemoreception may be related to modulation of inward rectifier K + channels (Kir channels) in brainstem neurons. Kir4.1 is expressed predominantly in the... |
SourceID | pubmedcentral proquest crossref pubmed |
SourceType | Open Access Repository Aggregation Database Index Database |
StartPage | 33 |
SubjectTerms | Animals Biochemistry Brain Carbon dioxide Carbon Dioxide - pharmacology Female Hydrogen-Ion Concentration Lysine - chemistry Lysine - physiology Membrane Potentials - drug effects Membrane Potentials - physiology Molecular biology Molecular Structure Mutagenesis, Site-Directed - physiology Original Potassium Channels - drug effects Potassium Channels - physiology Potassium Channels, Inwardly Rectifying Protons Threonine - chemistry Threonine - physiology Xenopus laevis |
Title | Biophysical and molecular mechanisms underlying the modulation of heteromeric Kir4.1-Kir5.1 channels by CO2 and pH |
URI | https://www.ncbi.nlm.nih.gov/pubmed/10871638 https://www.proquest.com/docview/205144773 https://pubmed.ncbi.nlm.nih.gov/PMC2229613 |
Volume | 116 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELWAiQXxTfmSB2BLGttxnIxQgQqoiAEktsh2bQhqk4qWgY3_wD_kl3B2ElRgY4sUO4l8Z_te_N4dQkeC2VQmmgWpFQBQhDBBZmOYV8wKKrWMWObEyYObpH8fXz3whwXEWy2MJ-1rVYTlaByWxZPnVk7GutvyxLq3g56rQQ3bUHcRLYKDthC9XX55k4uRuqodGW_Y7hBadJ8fJ7BEJCEJma-fEzm04JQp81vSnzjzN11ybv-5WEUrTeCIT-sPXEMLplxHG6clgObxGz7Bnsrp_5FvoNlZUU0aA2BZDvGgLYKLB8ZJfYvpeIp9yaORkzlhiAKhzbAp5YUri_uOJlP54xx8XbzEIfl8_4ALHhLsFAkl7KlYveFeRf0bbp820f3F-V2vHzTlFQIdCzYLKDdUA0S1sSKUwJotEh4rxaSIUiOI4YkkzFpNhTRcOqWlUElEJQAWBY0120JLZVWaHYSheyKoiRTAN4jwhpkDasSqFMCYFirroON2hPNJnUUj96ffKc_BKABDkpzkjHXQXjv8eTOXpjl1KdrBi-Dudm2IuWfUFuwg8cNE3w1c8uyfd8CnfBLtxod2_91zDy3XsnxH3d1HS7OXV3MAAcpMHUJofnl96N3yC4rN5j4 |
link.rule.ids | 230,315,730,783,787,888,27936,27937,53804,53806 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BTtwwEB1ReqCXqi1QtrTUh5ZbsrEdx8mRroq2hSAOIHGLbK8NQWyyYrcHbv2H_mG_pGMnqZb2xi1S7CTyjO158XszAJ8kd7nKDI9yJxGgSGmjwqU4r7iTTBmV8MKLk8uzbHqZfr8SVxsgBi1MIO0bXcfN3Txu6pvArVzMzXjgiY3Py4mvQY3b0PgZPMf5mqQDSB8WYNFnY2S-bkcher47Bhfj2-sFLhJZTGMeKugkHi94bcr6pvRfpPkvYXJtBzp-BS_70JEcdZ_4GjZs8wa2jxqEzfMHckgCmTP8Jd-G1Ze6XfQmIKqZkXIog0tK68W-9XK-JKHo0Z0XOhGMA7HNrC_mRVpHpp4o04YDHXJS36cx_f3zF16ImBKvSWhwVyX6gUxaFt5wfrMDl8dfLybTqC-wEJlU8lXEhGUGQapLNWUUV22ZiVRrrmSSW0mtyBTlzhkmlRXKay2lzhKmELJobGz4Lmw2bWP3gGD3TDKbaARwGOPNCg_VqNM5wjEjdTGCz8MIV4suj0YVzr9zUaFREIhkFa04H8H-MPxVP5uWFfNJ2tGP8O7bzhBrz-gsOAL5yER_G_j02Y_voFeFNNq9F717cs-PsDW9KE-r029nJ_vwohPpeyLve9hc3f-wHzBcWemD4Jx_AGTx6Js |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELVKKyEuCFo-lgL1Abjlw3ZsJ8ey7WpL2WoPVOotsr12G9RNou720Fv_A_-QX8LYSdAWbr1Fip1EnrE9L34zD6FPkrlcCcOi3EkAKFLaqHAZzCvmJFVGpazwycmzMzE9z75d8IsNqa9A2je6iuvrZVxXV4Fb2S5NMvDEkvls7DWoYRtK2oVLnqAdmLOpGID6sAjzviIj9dodBe857xBgJD8vW1goRExiFlR0Uo8ZfH7K5sb0X7T5L2lyYxeavEDP-_ARH3af-RJt2XoX7R3WAJ2Xd_gLDoTO8Kd8D62_Vk3bmwGreoFngxQunlmf8FutlischI-ufbIThlgQ2ix6QS_cODz1ZJkmHOrg0-omi8nv-19wwWOCfV5CDTsr1nd43NDwhvnVK3Q-Of4xnka9yEJkMsnWEeWWGgCqLtOEEli5peCZ1kzJNLeSWC4UYc4ZKpXlyudbSi1SqgC2aGhs2Gu0XTe1fYswdBeS2lQDiIM4b1F4uEaczgGSGamLEfo8jHDZdrU0ynAGnvMSjAJgRJSkZGyE9ofhL_sZtSqpL9QOvgR333SG2HhGZ8ERkg9M9LeBL6H98A54Viil3XvSu0f3PEBP50eT8vvJ2ek-etbl6Xsu73u0vb65tR8gYlnrj8E3_wDHtOmu |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biophysical+and+molecular+mechanisms+underlying+the+modulation+of+heteromeric+Kir4.1-Kir5.1+channels+by+CO2+and+pH&rft.jtitle=The+Journal+of+general+physiology&rft.au=Yang%2C+Zhenjiang&rft.au=Xu%2C+Haoxing&rft.au=Cui%2C+Ningren&rft.au=Qu%2C+Zhiqiang&rft.date=2000-07-01&rft.pub=Rockefeller+University+Press&rft.issn=0022-1295&rft.eissn=1540-7748&rft.volume=116&rft.issue=1&rft.spage=33&rft_id=info:doi/10.1085%2Fjgp.116.1.33&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=62478772 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1295&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1295&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1295&client=summon |