Biophysical and molecular mechanisms underlying the modulation of heteromeric Kir4.1-Kir5.1 channels by CO2 and pH

CO2 chemoreception may be related to modulation of inward rectifier K+ channels (Kir channels) in brainstem neurons. Kir4.1 is expressed predominantly in the brainstem and inhibited during hypercapnia. Although the homomeric Kir4.1 only responds to severe intracellular acidification, coexpression of...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of general physiology Vol. 116; no. 1; pp. 33 - 46
Main Authors Yang, Z, Xu, H, Cui, N, Qu, Z, Chanchevalap, S, Shen, W, Jiang, C
Format Journal Article
LanguageEnglish
Published United States Rockefeller University Press 01.07.2000
The Rockefeller University Press
Subjects
Online AccessGet full text

Cover

Loading…
Abstract CO2 chemoreception may be related to modulation of inward rectifier K+ channels (Kir channels) in brainstem neurons. Kir4.1 is expressed predominantly in the brainstem and inhibited during hypercapnia. Although the homomeric Kir4.1 only responds to severe intracellular acidification, coexpression of Kir4.1 with Kir5.1 greatly enhances channel sensitivities to CO2 and pH. To understand the biophysical and molecular mechanisms underlying the modulation of these currents by CO2 and pH, heteromeric Kir4. 1-Kir5.1 were studied in inside-out patches. These Kir4.1-Kir5.1 currents showed a single channel conductance of 59 pS with open-state probability (P(open)) approximately 0.4 at pH 7.4. Channel activity reached the maximum at pH 8.5 and was completely suppressed at pH 6.5 with pKa 7.45. The effect of low pH on these currents was due to selective suppression of P(open) without evident effects on single channel conductance, leading to a decrease in the channel mean open time and an increase in the mean closed time. At pH 8.5, single-channel currents showed two sublevels of conductance at approximately 1/4 and 3/4 of the maximal openings. None of them was affected by lowering pH. The Kir4.1-Kir5.1 currents were modulated by phosphatidylinositol-4,5-bisphosphate (PIP2) that enhanced baseline P(open) and reduced channel sensitivity to intracellular protons. In the presence of 10 microM PIP2, the Kir4.1-Kir5.1 showed a pKa value of 7.22. The effect of PIP2, however, was not seen in homomeric Kir4.1 currents. The CO2/pH sensitivities were related to a lysine residue in the NH2 terminus of Kir4.1. Mutation of this residue (K67M, K67Q) completely eliminated the CO2 sensitivity of both homomeric Kir4.1 and heteromeric Kir4.1-Kir5.1. In excised patches, interestingly, the Kir4.1-Kir5.1 carrying K67M mutation remained sensitive to low pHi. Such pH sensitivity, however, disappeared in the presence of PIP2. The effect of PIP2 on shifting the titration curve of wild-type and mutant channels was totally abolished when Arg178 in Kir5.1 was mutated. Thus, these studies demonstrate a heteromeric Kir channel that can be modulated by both acidic and alkaline pH, show the modulation of pH sensitivity of Kir channels by PIP2, and provide information of the biophysical and molecular mechanisms underlying the Kir modulation by intracellular protons.
AbstractList CO2 chemoreception may be related to modulation of inward rectifier K+ channels (Kir channels) in brainstem neurons. Kir4.1 is expressed predominantly in the brainstem and inhibited during hypercapnia. Although the homomeric Kir4.1 only responds to severe intracellular acidification, coexpression of Kir4.1 with Kir5.1 greatly enhances channel sensitivities to CO2 and pH. To understand the biophysical and molecular mechanisms underlying the modulation of these currents by CO2 and pH, heteromeric Kir4.1–Kir5.1 were studied in inside-out patches. These Kir4.1–Kir5.1 currents showed a single channel conductance of 59 pS with open-state probability (Popen) ∼ 0.4 at pH 7.4. Channel activity reached the maximum at pH 8.5 and was completely suppressed at pH 6.5 with pKa 7.45. The effect of low pH on these currents was due to selective suppression of Popen without evident effects on single channel conductance, leading to a decrease in the channel mean open time and an increase in the mean closed time. At pH 8.5, single-channel currents showed two sublevels of conductance at ∼1/4 and 3/4 of the maximal openings. None of them was affected by lowering pH. The Kir4.1–Kir5.1 currents were modulated by phosphatidylinositol-4,5-bisphosphate (PIP2) that enhanced baseline Popen and reduced channel sensitivity to intracellular protons. In the presence of 10 μM PIP2, the Kir4.1–Kir5.1 showed a pKa value of 7.22. The effect of PIP2, however, was not seen in homomeric Kir4.1 currents. The CO2/pH sensitivities were related to a lysine residue in the NH2 terminus of Kir4.1. Mutation of this residue (K67M, K67Q) completely eliminated the CO2 sensitivity of both homomeric Kir4.1 and heteromeric Kir4.1–Kir5.1. In excised patches, interestingly, the Kir4.1–Kir5.1 carrying K67M mutation remained sensitive to low pHi. Such pH sensitivity, however, disappeared in the presence of PIP2. The effect of PIP2 on shifting the titration curve of wild-type and mutant channels was totally abolished when Arg178 in Kir5.1 was mutated. Thus, these studies demonstrate a heteromeric Kir channel that can be modulated by both acidic and alkaline pH, show the modulation of pH sensitivity of Kir channels by PIP2, and provide information of the biophysical and molecular mechanisms underlying the Kir modulation by intracellular protons.
CO2 chemoreception maybe related to modulation of inward rectifier K+ channels (Kir channels) in brainstem neurons. Kir4.1 is expressed predominantly in the brainstem and inhibited during hypercapnia.
CO2 chemoreception may be related to modulation of inward rectifier K+ channels (Kir channels) in brainstem neurons. Kir4.1 is expressed predominantly in the brainstem and inhibited during hypercapnia. Although the homomeric Kir4.1 only responds to severe intracellular acidification, coexpression of Kir4.1 with Kir5.1 greatly enhances channel sensitivities to CO2 and pH. To understand the biophysical and molecular mechanisms underlying the modulation of these currents by CO2 and pH, heteromeric Kir4. 1-Kir5.1 were studied in inside-out patches. These Kir4.1-Kir5.1 currents showed a single channel conductance of 59 pS with open-state probability (P(open)) approximately 0.4 at pH 7.4. Channel activity reached the maximum at pH 8.5 and was completely suppressed at pH 6.5 with pKa 7.45. The effect of low pH on these currents was due to selective suppression of P(open) without evident effects on single channel conductance, leading to a decrease in the channel mean open time and an increase in the mean closed time. At pH 8.5, single-channel currents showed two sublevels of conductance at approximately 1/4 and 3/4 of the maximal openings. None of them was affected by lowering pH. The Kir4.1-Kir5.1 currents were modulated by phosphatidylinositol-4,5-bisphosphate (PIP2) that enhanced baseline P(open) and reduced channel sensitivity to intracellular protons. In the presence of 10 microM PIP2, the Kir4.1-Kir5.1 showed a pKa value of 7.22. The effect of PIP2, however, was not seen in homomeric Kir4.1 currents. The CO2/pH sensitivities were related to a lysine residue in the NH2 terminus of Kir4.1. Mutation of this residue (K67M, K67Q) completely eliminated the CO2 sensitivity of both homomeric Kir4.1 and heteromeric Kir4.1-Kir5.1. In excised patches, interestingly, the Kir4.1-Kir5.1 carrying K67M mutation remained sensitive to low pHi. Such pH sensitivity, however, disappeared in the presence of PIP2. The effect of PIP2 on shifting the titration curve of wild-type and mutant channels was totally abolished when Arg178 in Kir5.1 was mutated. Thus, these studies demonstrate a heteromeric Kir channel that can be modulated by both acidic and alkaline pH, show the modulation of pH sensitivity of Kir channels by PIP2, and provide information of the biophysical and molecular mechanisms underlying the Kir modulation by intracellular protons.
CO 2 chemoreception may be related to modulation of inward rectifier K + channels (Kir channels) in brainstem neurons. Kir4.1 is expressed predominantly in the brainstem and inhibited during hypercapnia. Although the homomeric Kir4.1 only responds to severe intracellular acidification, coexpression of Kir4.1 with Kir5.1 greatly enhances channel sensitivities to CO 2 and pH. To understand the biophysical and molecular mechanisms underlying the modulation of these currents by CO 2 and pH, heteromeric Kir4.1–Kir5.1 were studied in inside-out patches. These Kir4.1–Kir5.1 currents showed a single channel conductance of 59 pS with open-state probability ( P open ) ∼ 0.4 at pH 7.4. Channel activity reached the maximum at pH 8.5 and was completely suppressed at pH 6.5 with pKa 7.45. The effect of low pH on these currents was due to selective suppression of P open without evident effects on single channel conductance, leading to a decrease in the channel mean open time and an increase in the mean closed time. At pH 8.5, single-channel currents showed two sublevels of conductance at ∼1/4 and 3/4 of the maximal openings. None of them was affected by lowering pH. The Kir4.1–Kir5.1 currents were modulated by phosphatidylinositol-4,5-bisphosphate (PIP 2 ) that enhanced baseline P open and reduced channel sensitivity to intracellular protons. In the presence of 10 μM PIP 2 , the Kir4.1–Kir5.1 showed a pKa value of 7.22. The effect of PIP 2 , however, was not seen in homomeric Kir4.1 currents. The CO 2 /pH sensitivities were related to a lysine residue in the NH 2 terminus of Kir4.1. Mutation of this residue (K67M, K67Q) completely eliminated the CO 2 sensitivity of both homomeric Kir4.1 and heteromeric Kir4.1–Kir5.1. In excised patches, interestingly, the Kir4.1–Kir5.1 carrying K67M mutation remained sensitive to low pH i . Such pH sensitivity, however, disappeared in the presence of PIP 2 . The effect of PIP 2 on shifting the titration curve of wild-type and mutant channels was totally abolished when Arg178 in Kir5.1 was mutated. Thus, these studies demonstrate a heteromeric Kir channel that can be modulated by both acidic and alkaline pH, show the modulation of pH sensitivity of Kir channels by PIP 2 , and provide information of the biophysical and molecular mechanisms underlying the Kir modulation by intracellular protons.
Author Cui, N
Chanchevalap, S
Qu, Z
Xu, H
Shen, W
Yang, Z
Jiang, C
Author_xml – sequence: 1
  givenname: Z
  surname: Yang
  fullname: Yang, Z
  organization: Department of Biology, Georgia State University, Atlanta, Georgia 30302-4010, USA
– sequence: 2
  givenname: H
  surname: Xu
  fullname: Xu, H
– sequence: 3
  givenname: N
  surname: Cui
  fullname: Cui, N
– sequence: 4
  givenname: Z
  surname: Qu
  fullname: Qu, Z
– sequence: 5
  givenname: S
  surname: Chanchevalap
  fullname: Chanchevalap, S
– sequence: 6
  givenname: W
  surname: Shen
  fullname: Shen, W
– sequence: 7
  givenname: C
  surname: Jiang
  fullname: Jiang, C
BackLink https://www.ncbi.nlm.nih.gov/pubmed/10871638$$D View this record in MEDLINE/PubMed
BookMark eNpVkc1v1DAQxS1URLcLN87I4kyCxx9xekGCFVBEpV7gbDneycarxA52grT_PV62QmUu7zC_eW-kd0OuQgxIyGtgNbBWvT8e5hqgqaEW4hnZgJKs0lq2V2TDGOcV8Ft1TW5yPrIyirMX5LocamhEuyHpk4_zcMre2ZHasKdTHNGto010QjfY4POU6Rr2mMaTDwe6DFiYfSEWHwONPR1wwRQnTN7R7z7JGqoiqgZ6vg84Ztqd6O6B__Wf716S570dM7561C35-eXzj91ddf_w9dvu433lpBZLxRVyB0L0sgMO2IFulOw6YTVrUQOqxoLoe8e1RWV5q6TuGsat5G1XYCe25MPFd167CfcOw5LsaObkJ5tOJlpv_t8EP5hD_G0457dNSd6St48GKf5aMS_mGNcUys-GMwVSan2G3l0gl2LOCft_AcDMuSBTCjKlIANGnPE3T596Al8aEX8AIIiOeg
CODEN JGPLAD
CitedBy_id crossref_primary_10_1007_s00232_006_0038_x
crossref_primary_10_1152_physrev_00021_2009
crossref_primary_10_1113_jphysiol_2006_115758
crossref_primary_10_1152_ajpcell_00096_2022
crossref_primary_10_1104_pp_108_129007
crossref_primary_10_4161_idp_26782
crossref_primary_10_1113_jphysiol_2002_026047
crossref_primary_10_1073_pnas_1101400108
crossref_primary_10_1152_physrev_00051_2003
crossref_primary_10_1113_jphysiol_2012_236885
crossref_primary_10_1016_j_hrthm_2006_12_033
crossref_primary_10_1007_s00424_010_0915_0
crossref_primary_10_1016_j_bbamem_2007_04_008
crossref_primary_10_1111_j_1535_7597_2004_46010_x
crossref_primary_10_1016_S0014_5793_01_02136_6
crossref_primary_10_1124_jpet_104_077388
crossref_primary_10_1152_jn_00016_2010
crossref_primary_10_1007_s00429_016_1199_8
crossref_primary_10_1074_jbc_M115_679910
crossref_primary_10_1113_jphysiol_2007_133157
crossref_primary_10_1124_mol_63_6_1212
crossref_primary_10_1002_jcp_10021
crossref_primary_10_1292_jvms_70_265
crossref_primary_10_1074_jbc_M406058200
crossref_primary_10_1007_s00232_005_7012_x
crossref_primary_10_1113_jphysiol_2006_124958
crossref_primary_10_1074_jbc_M106123200
crossref_primary_10_1007_s11064_017_2242_8
crossref_primary_10_1111_j_1476_5381_2012_01934_x
crossref_primary_10_1016_j_bbamem_2006_06_027
crossref_primary_10_1152_jn_00358_2020
crossref_primary_10_1016_S0034_5687_01_00282_1
crossref_primary_10_4161_chan_4_5_13006
crossref_primary_10_1007_s00424_007_0276_5
crossref_primary_10_1016_j_bbrc_2016_03_100
crossref_primary_10_1038_s41598_017_00752_1
crossref_primary_10_1016_j_bbamem_2009_07_002
crossref_primary_10_1007_s00249_007_0206_7
crossref_primary_10_1074_jbc_M405985200
crossref_primary_10_1074_jbc_M009631200
crossref_primary_10_1016_j_resp_2004_07_005
crossref_primary_10_1152_ajpcell_00282_2004
crossref_primary_10_1152_ajpcell_00182_2001
crossref_primary_10_1074_jbc_M409856200
crossref_primary_10_1007_s10519_005_9032_9
crossref_primary_10_1007_s00232_005_0741_z
crossref_primary_10_1073_pnas_1003072107
crossref_primary_10_1371_journal_pone_0145508
crossref_primary_10_1002_jcp_21169
crossref_primary_10_1016_j_molbrainres_2005_05_003
crossref_primary_10_1016_S0378_5955_02_00799_2
crossref_primary_10_1016_S0006_8993_02_03952_5
crossref_primary_10_1074_jbc_M106595200
crossref_primary_10_1152_ajpcell_00065_2001
crossref_primary_10_1038_s42003_018_0083_x
crossref_primary_10_1113_jphysiol_2001_012961
crossref_primary_10_1016_j_gendis_2020_03_006
crossref_primary_10_1097_MNH_0000000000000817
crossref_primary_10_1113_jphysiol_2014_276527
crossref_primary_10_3389_fphys_2023_1127893
crossref_primary_10_1146_annurev_biophys_37_032807_125859
crossref_primary_10_1016_S0034_5687_01_00301_2
crossref_primary_10_1111_j_1469_7793_2001_0359f_x
crossref_primary_10_1074_jbc_M411895200
crossref_primary_10_1679_aohc_67_195
crossref_primary_10_1002_glia_20808
crossref_primary_10_1016_j_npbr_2011_02_008
crossref_primary_10_1113_jphysiol_2002_025247
crossref_primary_10_1152_physrev_00016_2014
crossref_primary_10_1074_jbc_M403413200
crossref_primary_10_1016_j_pbiomolbio_2006_04_001
crossref_primary_10_1074_jbc_M110_189290
crossref_primary_10_1152_ajprenal_00288_2007
crossref_primary_10_1007_s00424_010_0828_y
crossref_primary_10_1016_j_bbrc_2010_07_105
crossref_primary_10_1007_s00401_016_1553_1
crossref_primary_10_1016_j_bbrc_2006_03_026
crossref_primary_10_1016_j_bbamem_2006_07_005
Cites_doi 10.1016/0896-6273(95)90103-5
10.1074/jbc.271.29.17261
10.1074/jbc.272.9.5388
10.1002/j.1460-2075.1996.tb00661.x
10.1074/jbc.275.14.10182
10.1007/BF00374587
10.1074/jbc.274.20.13783
10.1038/35882
10.1002/j.1460-2075.1996.tb00784.x
10.1146/annurev.physiol.59.1.413
10.1152/ajprenal.1997.273.4.F516
10.1146/annurev.physiol.59.1.171
10.1152/ajprenal.1994.267.1.F114
10.1016/S0306-4522(96)00485-X
10.1007/BF00656997
10.1111/j.1469-7793.1999.0699u.x
10.1073/pnas.92.15.6753
10.1113/jphysiol.1997.sp021934
10.1111/j.1469-7793.2000.00725.x
10.1111/j.1469-7793.1999.00921.x
10.1073/pnas.96.26.15298
10.1038/sj.bjp.0702164
10.1007/s004240050251
10.1074/jbc.272.1.586
10.1002/(SICI)1097-4652(200004)183:1<53::AID-JCP7>3.0.CO;2-R
10.1126/science.282.5391.1141
10.1152/ajpcell.1995.268.5.C1173
10.1074/jbc.275.11.7811
10.1111/j.1469-7793.1999.639ad.x
10.1126/science.282.5391.1138
10.1152/ajprenal.1998.275.6.F972
ContentType Journal Article
Copyright Copyright Rockefeller University Press Jul 2000
2000 The Rockefeller University Press 2000 The Rockefeller University Press
Copyright_xml – notice: Copyright Rockefeller University Press Jul 2000
– notice: 2000 The Rockefeller University Press 2000 The Rockefeller University Press
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QP
7QR
7TK
7TS
8FD
FR3
K9.
P64
5PM
DOI 10.1085/jgp.116.1.33
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Physical Education Index
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Technology Research Database
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Physical Education Index
Biotechnology and BioEngineering Abstracts
DatabaseTitleList CrossRef
Technology Research Database
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1540-7748
EndPage 46
ExternalDocumentID 62478772
10_1085_jgp_116_1_33
10871638
Genre Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, P.H.S
Journal Article
Feature
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: R01 HL58410-01
– fundername: NHLBI NIH HHS
  grantid: R01 HL058410
GroupedDBID ---
-DZ
-~X
.55
.GJ
0VX
123
18M
29K
2WC
36B
39C
3O-
4.4
53G
5RE
5VS
79B
85S
ACGFO
ACGOD
ACIWK
ACNCT
ACPRK
ADBBV
AENEX
AFFNX
AHMBA
AI.
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BKOMP
BTFSW
C1A
C45
CGR
CS3
CUY
CVF
D-I
D0L
DIK
DU5
E3Z
EBS
ECM
EIF
EJD
EMB
F5P
F9R
GX1
H13
HF~
HYE
KQ8
L7B
MVM
NPM
O5R
O5S
OK1
P2P
PQQKQ
RHF
RHI
RPM
RXW
SJN
TAE
TAF
TR2
TRP
TWZ
UHB
UKR
UPT
VH1
W8F
WH7
WOQ
X7M
XOL
YKV
YOC
YQT
YSK
YWH
YYQ
YZZ
ZCA
ZGI
AAYXX
CITATION
7QP
7QR
7TK
7TS
8FD
FR3
K9.
P64
5PM
ID FETCH-LOGICAL-c473t-25e2c133f4b121eb17654bb3a708e71e56a13ffc27ae5a28547b602a428bb17c3
IEDL.DBID RPM
ISSN 0022-1295
IngestDate Tue Sep 17 20:47:35 EDT 2024
Thu Oct 10 15:26:19 EDT 2024
Thu Sep 26 17:17:34 EDT 2024
Sat Sep 28 08:34:05 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c473t-25e2c133f4b121eb17654bb3a708e71e56a13ffc27ae5a28547b602a428bb17c3
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2229613/
PMID 10871638
PQID 205144773
PQPubID 42336
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2229613
proquest_journals_205144773
crossref_primary_10_1085_jgp_116_1_33
pubmed_primary_10871638
PublicationCentury 2000
PublicationDate 2000-Jul-01
2000-07-01
20000701
PublicationDateYYYYMMDD 2000-07-01
PublicationDate_xml – month: 07
  year: 2000
  text: 2000-Jul-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle The Journal of general physiology
PublicationTitleAlternate J Gen Physiol
PublicationYear 2000
Publisher Rockefeller University Press
The Rockefeller University Press
Publisher_xml – name: Rockefeller University Press
– name: The Rockefeller University Press
References Choe (2023072616020081400_Choeetal1997) 1997; 273
Mitchell (2023072616020081400_MitchellandBerger1975) 1975; 111
Pearson (2023072616020081400_Pearsonetal1999) 1999; 514
Pessia (2023072616020081400_Pessiaetal1996) 1996; 15
Zhu (2023072616020081400_Zhuetal2000) 2000; 183
Yang (2023072616020081400_YangandJiang1999) 1999; 520
Fan (2023072616020081400_FanandMakielski1997) 1997; 272
Wang (2023072616020081400_Wangetal1997) 1997; 59
Schlatter (2023072616020081400_Schlatteretal1994) 1994; 428
Shyng (2023072616020081400_ShyngandNichols1998) 1998; 282
Fakler (2023072616020081400_Fakleretal1996b) 1996; 15
McNicholas (2023072616020081400_McNicholasetal1998) 1998; 275
Hamill (2023072616020081400_Hamilletal1981) 1981; 391
Omori (2023072616020081400_Omorietal1997) 1997; 499
Tsai (2023072616020081400_Tsaietal1995) 1995; 268
Xu (2023072616020081400_Xuetal2000) 2000; 524
Coulter (2023072616020081400_Coulteretal1995) 1995; 15
Nichols (2023072616020081400_NicholsandLopatin1997) 1997; 59
Baukrowitz (2023072616020081400_Baukrowitzetal1998) 1998; 282
Fakler (2023072616020081400_Fakleretal1996a) 1996; 433
2023072616020081400_vonEuler1986
Zhou (2023072616020081400_ZhouandWingo1994) 1994; 267
Chanchevalap (2023072616020081400_Chanchevalapetal2000) 2000; 275
Schulte (2023072616020081400_Schulteetal1999) 1999; 96
Doi (2023072616020081400_Doietal1996) 1996; 271
Shuck (2023072616020081400_Shucketal1997) 1997; 272
Zhu (2023072616020081400_Zhuetal1999) 1999; 516
Bredt (2023072616020081400_Bredtetal1995) 1995; 92
Leung (2023072616020081400_Leungetal2000) 2000; 275
Bond (2023072616020081400_Bondetal1994) 1994; 2
Pineda (2023072616020081400_PinedaandAghajanian1997) 1997; 77
Colquhoun (2023072616020081400_Colquhoun1998) 1998; 125
Huang (2023072616020081400_Huangetal1998) 1998; 391
Qu (2023072616020081400_Quetal1999) 1999; 274
References_xml – volume: 111
  start-page: 206
  year: 1975
  ident: 2023072616020081400_MitchellandBerger1975
  article-title: Neural regulation of respiration
  publication-title: Am. Rev. Respir. Dis
  contributor:
    fullname: Mitchell
– ident: 2023072616020081400_vonEuler1986
– volume: 2
  start-page: 183
  year: 1994
  ident: 2023072616020081400_Bondetal1994
  article-title: Cloning and expression of a family of inward rectifier potassium channels
  publication-title: Receptors Channels.
  contributor:
    fullname: Bond
– volume: 15
  start-page: 1157
  year: 1995
  ident: 2023072616020081400_Coulteretal1995
  article-title: Identification and molecular localization of a pH-sensing domain for the inward rectifier potassium channel HIR
  publication-title: Neuron.
  doi: 10.1016/0896-6273(95)90103-5
  contributor:
    fullname: Coulter
– volume: 271
  start-page: 17261
  year: 1996
  ident: 2023072616020081400_Doietal1996
  article-title: Extracellular K+ and intracellular pH allosterically regulate renal K(ir)1.1 channels
  publication-title: J. Biol. Chem
  doi: 10.1074/jbc.271.29.17261
  contributor:
    fullname: Doi
– volume: 272
  start-page: 5388
  year: 1997
  ident: 2023072616020081400_FanandMakielski1997
  article-title: Anionic phospholipids activate ATP-sensitive potassium channels
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.272.9.5388
  contributor:
    fullname: Fan
– volume: 15
  start-page: 2980
  year: 1996
  ident: 2023072616020081400_Pessiaetal1996
  article-title: Subunit positional effects revealed by novel heteromeric inwardly rectifying K+ channels
  publication-title: EMBO (Eur. Mol. Biol. Organ.) J.
  doi: 10.1002/j.1460-2075.1996.tb00661.x
  contributor:
    fullname: Pessia
– volume: 275
  start-page: 10182
  year: 2000
  ident: 2023072616020081400_Leungetal2000
  article-title: Phosphatidylinositol 4,5-bisphosphate and intracellular pH regulate the ROMK1 potassium channel via separate but interrelated mechanisms
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.275.14.10182
  contributor:
    fullname: Leung
– volume: 428
  start-page: 631
  year: 1994
  ident: 2023072616020081400_Schlatteretal1994
  article-title: pH dependence of K+ conductances of rat cortical collecting duct principal cells
  publication-title: Pflügers Arch.
  doi: 10.1007/BF00374587
  contributor:
    fullname: Schlatter
– volume: 274
  start-page: 13783
  year: 1999
  ident: 2023072616020081400_Quetal1999
  article-title: Identification of a critical motif responsible for gating of Kir2.3 channel by intracellular protons
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.274.20.13783
  contributor:
    fullname: Qu
– volume: 391
  start-page: 803
  year: 1998
  ident: 2023072616020081400_Huangetal1998
  article-title: Direct activation of inward rectifier potassium channels by PIP2 and its stabilization by Gbetagamma
  publication-title: Nature.
  doi: 10.1038/35882
  contributor:
    fullname: Huang
– volume: 15
  start-page: 4093
  year: 1996
  ident: 2023072616020081400_Fakleretal1996b
  article-title: Identification of a titratable lysine residue that determines sensitivity of kidney potassium channels (ROMK) to intracellular pH
  publication-title: EMBO (Eur. Mol. Biol. Organ.) J
  doi: 10.1002/j.1460-2075.1996.tb00784.x
  contributor:
    fullname: Fakler
– volume: 59
  start-page: 413
  year: 1997
  ident: 2023072616020081400_Wangetal1997
  article-title: Renal K+ channelsstructure and function
  publication-title: Annu. Rev. Physiol.
  doi: 10.1146/annurev.physiol.59.1.413
  contributor:
    fullname: Wang
– volume: 273
  start-page: F516
  year: 1997
  ident: 2023072616020081400_Choeetal1997
  article-title: A conserved cytoplasmic region of ROMK modulates pH sensitivity, conductance, and gating
  publication-title: Am. J. Physiol. Renal Physiol
  doi: 10.1152/ajprenal.1997.273.4.F516
  contributor:
    fullname: Choe
– volume: 59
  start-page: 171
  year: 1997
  ident: 2023072616020081400_NicholsandLopatin1997
  article-title: Inward rectifier potassium channels
  publication-title: Annu. Rev. Physiol
  doi: 10.1146/annurev.physiol.59.1.171
  contributor:
    fullname: Nichols
– volume: 267
  start-page: F114
  year: 1994
  ident: 2023072616020081400_ZhouandWingo1994
  article-title: Stimulation of total CO2 flux by 10% CO2 in rabbit CCDrole of an apical Sch-28080- and Ba-sensitive mechanism
  publication-title: Am. J. Physiol. Renal Physiol.
  doi: 10.1152/ajprenal.1994.267.1.F114
  contributor:
    fullname: Zhou
– volume: 77
  start-page: 723
  year: 1997
  ident: 2023072616020081400_PinedaandAghajanian1997
  article-title: Carbon dioxide regulates the tonic activity of locus coeruleus neurons by modulating a proton- and polyamine-sensitive inward rectifier potassium current
  publication-title: Neuroscience.
  doi: 10.1016/S0306-4522(96)00485-X
  contributor:
    fullname: Pineda
– volume: 391
  start-page: 85
  year: 1981
  ident: 2023072616020081400_Hamilletal1981
  article-title: Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches
  publication-title: Pflügers Arch
  doi: 10.1007/BF00656997
  contributor:
    fullname: Hamill
– volume: 516
  start-page: 699
  year: 1999
  ident: 2023072616020081400_Zhuetal1999
  article-title: Effects of intra- and extracellular acidification on single channel Kir2.3 currents
  publication-title: J. Physiol.
  doi: 10.1111/j.1469-7793.1999.0699u.x
  contributor:
    fullname: Zhu
– volume: 92
  start-page: 6753
  year: 1995
  ident: 2023072616020081400_Bredtetal1995
  article-title: Cloning and expression of two brain-specific inwardly rectifying potassium channels
  publication-title: Proc. Natl. Acad. Sci. USA.
  doi: 10.1073/pnas.92.15.6753
  contributor:
    fullname: Bredt
– volume: 499
  start-page: 369
  year: 1997
  ident: 2023072616020081400_Omorietal1997
  article-title: Inwardly rectifying potassium channels expressed by gene transfection into the green Monkey kidney cell line COS-1
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.1997.sp021934
  contributor:
    fullname: Omori
– volume: 524
  start-page: 725
  year: 2000
  ident: 2023072616020081400_Xuetal2000
  article-title: Modulation of Kir4.1 and Kir5.1 by hypercapnia and intracellular acidosis
  publication-title: J. Physiol.
  doi: 10.1111/j.1469-7793.2000.00725.x
  contributor:
    fullname: Xu
– volume: 520
  start-page: 921
  year: 1999
  ident: 2023072616020081400_YangandJiang1999
  article-title: Opposite effects of pH on open-state probability and single channel conductance of Kir 4.1
  publication-title: J. Physiol.
  doi: 10.1111/j.1469-7793.1999.00921.x
  contributor:
    fullname: Yang
– volume: 96
  start-page: 15298
  year: 1999
  ident: 2023072616020081400_Schulteetal1999
  article-title: pH gating of ROMK (Kir1.1) channelscontrol by an Arg-Lys-Arg triad disrupted in antenatal Bartter syndrome
  publication-title: Proc. Natl. Acad. Sci. USA.
  doi: 10.1073/pnas.96.26.15298
  contributor:
    fullname: Schulte
– volume: 125
  start-page: 924
  year: 1998
  ident: 2023072616020081400_Colquhoun1998
  article-title: Binding, gating, affinity and efficacythe interpretation of structure–activity relationships for agonists and of the effects of mutating receptors
  publication-title: Br. J. Pharmacol
  doi: 10.1038/sj.bjp.0702164
  contributor:
    fullname: Colquhoun
– volume: 433
  start-page: 77
  year: 1996
  ident: 2023072616020081400_Fakleretal1996a
  article-title: Heterooligomeric assembly of inward-rectifier K+ channels from subunits of different subfamiliesKir2.1 (IRK1) and Kir4.1 (BIR10)
  publication-title: Pflügers Arch
  doi: 10.1007/s004240050251
  contributor:
    fullname: Fakler
– volume: 272
  start-page: 586
  year: 1997
  ident: 2023072616020081400_Shucketal1997
  article-title: Cloning and characterization of two K+ inward rectifier (Kir) 1.1 potassium channel homologs from human kidney (Kir1.2 and Kir1.3)
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.272.1.586
  contributor:
    fullname: Shuck
– volume: 183
  start-page: 53
  year: 2000
  ident: 2023072616020081400_Zhuetal2000
  article-title: CO2 inhibits specific inward rectifier K+ channels by decreases in intra- and extracellular pH
  publication-title: J. Cell. Physiol.
  doi: 10.1002/(SICI)1097-4652(200004)183:1<53::AID-JCP7>3.0.CO;2-R
  contributor:
    fullname: Zhu
– volume: 282
  start-page: 1141
  year: 1998
  ident: 2023072616020081400_Baukrowitzetal1998
  article-title: PIP2 and PIP as determinants for ATP inhibition of KATP channels
  publication-title: Science.
  doi: 10.1126/science.282.5391.1141
  contributor:
    fullname: Baukrowitz
– volume: 268
  start-page: C1173
  year: 1995
  ident: 2023072616020081400_Tsaietal1995
  article-title: Intracellular H+ inhibits a cloned rat kidney outer medulla K+ channel expressed in Xenopus oocytes
  publication-title: Am. J. Physiol. Cell Physiol.
  doi: 10.1152/ajpcell.1995.268.5.C1173
  contributor:
    fullname: Tsai
– volume: 275
  start-page: 7811
  year: 2000
  ident: 2023072616020081400_Chanchevalapetal2000
  article-title: Involvement of histidine residues in CO2 and pH sensing of ROMK1 channel
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.275.11.7811
  contributor:
    fullname: Chanchevalap
– volume: 514
  start-page: 639
  year: 1999
  ident: 2023072616020081400_Pearsonetal1999
  article-title: Expression of a functional Kir4 family inward rectifier K+ channel from a gene cloned from mouse liver
  publication-title: J. Physiol.
  doi: 10.1111/j.1469-7793.1999.639ad.x
  contributor:
    fullname: Pearson
– volume: 282
  start-page: 1138
  year: 1998
  ident: 2023072616020081400_ShyngandNichols1998
  article-title: Membrane phospholipid control of nucleotide sensitivity of KATP channels
  publication-title: Science.
  doi: 10.1126/science.282.5391.1138
  contributor:
    fullname: Shyng
– volume: 275
  start-page: F972
  year: 1998
  ident: 2023072616020081400_McNicholasetal1998
  article-title: pH-dependent modulation of the cloned renal K+ channel, ROMK
  publication-title: Am. J. Physiol. Renal Physiol
  doi: 10.1152/ajprenal.1998.275.6.F972
  contributor:
    fullname: McNicholas
SSID ssj0000520
Score 1.9803375
Snippet CO2 chemoreception may be related to modulation of inward rectifier K+ channels (Kir channels) in brainstem neurons. Kir4.1 is expressed predominantly in the...
CO2 chemoreception maybe related to modulation of inward rectifier K+ channels (Kir channels) in brainstem neurons. Kir4.1 is expressed predominantly in the...
CO 2 chemoreception may be related to modulation of inward rectifier K + channels (Kir channels) in brainstem neurons. Kir4.1 is expressed predominantly in the...
SourceID pubmedcentral
proquest
crossref
pubmed
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage 33
SubjectTerms Animals
Biochemistry
Brain
Carbon dioxide
Carbon Dioxide - pharmacology
Female
Hydrogen-Ion Concentration
Lysine - chemistry
Lysine - physiology
Membrane Potentials - drug effects
Membrane Potentials - physiology
Molecular biology
Molecular Structure
Mutagenesis, Site-Directed - physiology
Original
Potassium Channels - drug effects
Potassium Channels - physiology
Potassium Channels, Inwardly Rectifying
Protons
Threonine - chemistry
Threonine - physiology
Xenopus laevis
Title Biophysical and molecular mechanisms underlying the modulation of heteromeric Kir4.1-Kir5.1 channels by CO2 and pH
URI https://www.ncbi.nlm.nih.gov/pubmed/10871638
https://www.proquest.com/docview/205144773
https://pubmed.ncbi.nlm.nih.gov/PMC2229613
Volume 116
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELWAiQXxTfmSB2BLGttxnIxQgQqoiAEktsh2bQhqk4qWgY3_wD_kl3B2ElRgY4sUO4l8Z_te_N4dQkeC2VQmmgWpFQBQhDBBZmOYV8wKKrWMWObEyYObpH8fXz3whwXEWy2MJ-1rVYTlaByWxZPnVk7GutvyxLq3g56rQQ3bUHcRLYKDthC9XX55k4uRuqodGW_Y7hBadJ8fJ7BEJCEJma-fEzm04JQp81vSnzjzN11ybv-5WEUrTeCIT-sPXEMLplxHG6clgObxGz7Bnsrp_5FvoNlZUU0aA2BZDvGgLYKLB8ZJfYvpeIp9yaORkzlhiAKhzbAp5YUri_uOJlP54xx8XbzEIfl8_4ALHhLsFAkl7KlYveFeRf0bbp820f3F-V2vHzTlFQIdCzYLKDdUA0S1sSKUwJotEh4rxaSIUiOI4YkkzFpNhTRcOqWlUElEJQAWBY0120JLZVWaHYSheyKoiRTAN4jwhpkDasSqFMCYFirroON2hPNJnUUj96ffKc_BKABDkpzkjHXQXjv8eTOXpjl1KdrBi-Dudm2IuWfUFuwg8cNE3w1c8uyfd8CnfBLtxod2_91zDy3XsnxH3d1HS7OXV3MAAcpMHUJofnl96N3yC4rN5j4
link.rule.ids 230,315,730,783,787,888,27936,27937,53804,53806
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BTtwwEB1ReqCXqi1QtrTUh5ZbsrEdx8mRroq2hSAOIHGLbK8NQWyyYrcHbv2H_mG_pGMnqZb2xi1S7CTyjO158XszAJ8kd7nKDI9yJxGgSGmjwqU4r7iTTBmV8MKLk8uzbHqZfr8SVxsgBi1MIO0bXcfN3Txu6pvArVzMzXjgiY3Py4mvQY3b0PgZPMf5mqQDSB8WYNFnY2S-bkcher47Bhfj2-sFLhJZTGMeKugkHi94bcr6pvRfpPkvYXJtBzp-BS_70JEcdZ_4GjZs8wa2jxqEzfMHckgCmTP8Jd-G1Ze6XfQmIKqZkXIog0tK68W-9XK-JKHo0Z0XOhGMA7HNrC_mRVpHpp4o04YDHXJS36cx_f3zF16ImBKvSWhwVyX6gUxaFt5wfrMDl8dfLybTqC-wEJlU8lXEhGUGQapLNWUUV22ZiVRrrmSSW0mtyBTlzhkmlRXKay2lzhKmELJobGz4Lmw2bWP3gGD3TDKbaARwGOPNCg_VqNM5wjEjdTGCz8MIV4suj0YVzr9zUaFREIhkFa04H8H-MPxVP5uWFfNJ2tGP8O7bzhBrz-gsOAL5yER_G_j02Y_voFeFNNq9F717cs-PsDW9KE-r029nJ_vwohPpeyLve9hc3f-wHzBcWemD4Jx_AGTx6Js
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELVKKyEuCFo-lgL1Abjlw3ZsJ8ey7WpL2WoPVOotsr12G9RNou720Fv_A_-QX8LYSdAWbr1Fip1EnrE9L34zD6FPkrlcCcOi3EkAKFLaqHAZzCvmJFVGpazwycmzMzE9z75d8IsNqa9A2je6iuvrZVxXV4Fb2S5NMvDEkvls7DWoYRtK2oVLnqAdmLOpGID6sAjzviIj9dodBe857xBgJD8vW1goRExiFlR0Uo8ZfH7K5sb0X7T5L2lyYxeavEDP-_ARH3af-RJt2XoX7R3WAJ2Xd_gLDoTO8Kd8D62_Vk3bmwGreoFngxQunlmf8FutlischI-ufbIThlgQ2ix6QS_cODz1ZJkmHOrg0-omi8nv-19wwWOCfV5CDTsr1nd43NDwhvnVK3Q-Of4xnka9yEJkMsnWEeWWGgCqLtOEEli5peCZ1kzJNLeSWC4UYc4ZKpXlyudbSi1SqgC2aGhs2Gu0XTe1fYswdBeS2lQDiIM4b1F4uEaczgGSGamLEfo8jHDZdrU0ynAGnvMSjAJgRJSkZGyE9ofhL_sZtSqpL9QOvgR333SG2HhGZ8ERkg9M9LeBL6H98A54Viil3XvSu0f3PEBP50eT8vvJ2ek-etbl6Xsu73u0vb65tR8gYlnrj8E3_wDHtOmu
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biophysical+and+molecular+mechanisms+underlying+the+modulation+of+heteromeric+Kir4.1-Kir5.1+channels+by+CO2+and+pH&rft.jtitle=The+Journal+of+general+physiology&rft.au=Yang%2C+Zhenjiang&rft.au=Xu%2C+Haoxing&rft.au=Cui%2C+Ningren&rft.au=Qu%2C+Zhiqiang&rft.date=2000-07-01&rft.pub=Rockefeller+University+Press&rft.issn=0022-1295&rft.eissn=1540-7748&rft.volume=116&rft.issue=1&rft.spage=33&rft_id=info:doi/10.1085%2Fjgp.116.1.33&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=62478772
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1295&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1295&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1295&client=summon