Effects of rapid process on the conductivity of multiple elements doped ceria-based electrolyte

[Display omitted] ▶ Microwave sintering reduces the grain boundary resistance of both SS and SV samples. ▶ The Schottky barrier height can be adjusted by SV powder preparation and by the MW process using a slightly lower sintering temperature and with a shorter processing time for multiple elements...

Full description

Saved in:
Bibliographic Details
Published inJournal of power sources Vol. 196; no. 4; pp. 1704 - 1711
Main Authors Chang, Horng-Yi, Wang, Yao-Ming, Lin, Chia-Hsin, Cheng, Syh-Yuh
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 15.02.2011
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] ▶ Microwave sintering reduces the grain boundary resistance of both SS and SV samples. ▶ The Schottky barrier height can be adjusted by SV powder preparation and by the MW process using a slightly lower sintering temperature and with a shorter processing time for multiple elements doped solid electrolyte. The citric acid-based combustion technique (SV) for powder preparation and the rapid microwave sintering (MW) process are used to lower the synthesizing temperature and to shorten the processing time then to modify the grain boundary resistance and oxygen vacancies mobility in multiple elements doped ceria-based electrolyte (LSBC). Nanoparticles of less than 50 nm with a pure fluorite structure are prepared by SV method at a low temperature of 600 °C. Microwave sintering lowers the sintering temperature to 1400 °C from the conventional sintering (CS) temperature of 1500 °C needed for solid-state (SS) prepared LSBC, and requires only 15 min of sintering time. The SV sample conventionally sintered at 1400 °C–6 h reaches a conductivity of 0.006 S cm −1. When the SV samples are microwave sintered at 1400 °C–15 min, they achieve a conductivity as high as 0.01 S cm −1 measured at 600 °C. Microwave sintering reduces the grain boundary resistance of both SS and SV samples. The migration enthalpy ( H m) of 0.66 eV in the SS-MW and SV-MW samples is similar to that of the fully densified SS-CS sample. The Schottky barrier height can be adjusted by SV powder preparation and by the MW process using a slightly lower sintering temperature and with a shorter processing time for multiple elements doped solid electrolyte.
AbstractList The citric acid-based combustion technique (SV) for powder preparation and the rapid microwave sintering (MW) process are used to lower the synthesizing temperature and to shorten the processing time then to modify the grain boundary resistance and oxygen vacancies mobility in multiple elements doped ceria-based electrolyte (LSBC). Nanoparticles of less than 50 nm with a pure fluorite structure are prepared by SV method at a low temperature of 600 degree C. Microwave sintering lowers the sintering temperature to 1400 degree C from the conventional sintering (CS) temperature of 1500 degree C needed for solid-state (SS) prepared LSBC, and requires only 15 min of sintering time. The SV sample conventionally sintered at 1400 degree C-6 h reaches a conductivity of 0.006 S cm super(-1). When the SV samples are microwave sintered at 1400 degree C-15 min, they achieve a conductivity as high as 0.01 S cm super(-1) measured at 600 degree C. Microwave sintering reduces the grain boundary resistance of both SS and SV samples. The migration enthalpy (H sub(m)) of 0.66 eV in the SS-MW and SV-MW samples is similar to that of the fully densified SS-CS sample. The Schottky barrier height can be adjusted by SV powder preparation and by the MW process using a slightly lower sintering temperature and with a shorter processing time for multiple elements doped solid electrolyte.
[Display omitted] ▶ Microwave sintering reduces the grain boundary resistance of both SS and SV samples. ▶ The Schottky barrier height can be adjusted by SV powder preparation and by the MW process using a slightly lower sintering temperature and with a shorter processing time for multiple elements doped solid electrolyte. The citric acid-based combustion technique (SV) for powder preparation and the rapid microwave sintering (MW) process are used to lower the synthesizing temperature and to shorten the processing time then to modify the grain boundary resistance and oxygen vacancies mobility in multiple elements doped ceria-based electrolyte (LSBC). Nanoparticles of less than 50 nm with a pure fluorite structure are prepared by SV method at a low temperature of 600 °C. Microwave sintering lowers the sintering temperature to 1400 °C from the conventional sintering (CS) temperature of 1500 °C needed for solid-state (SS) prepared LSBC, and requires only 15 min of sintering time. The SV sample conventionally sintered at 1400 °C–6 h reaches a conductivity of 0.006 S cm −1. When the SV samples are microwave sintered at 1400 °C–15 min, they achieve a conductivity as high as 0.01 S cm −1 measured at 600 °C. Microwave sintering reduces the grain boundary resistance of both SS and SV samples. The migration enthalpy ( H m) of 0.66 eV in the SS-MW and SV-MW samples is similar to that of the fully densified SS-CS sample. The Schottky barrier height can be adjusted by SV powder preparation and by the MW process using a slightly lower sintering temperature and with a shorter processing time for multiple elements doped solid electrolyte.
Author Lin, Chia-Hsin
Cheng, Syh-Yuh
Chang, Horng-Yi
Wang, Yao-Ming
Author_xml – sequence: 1
  givenname: Horng-Yi
  surname: Chang
  fullname: Chang, Horng-Yi
  email: hychang@mail.ntou.edu.tw
  organization: Department of Marine Engineering, National Taiwan Ocean University, 2 Pei-Ning Road, Keelung 20224, Taiwan, ROC
– sequence: 2
  givenname: Yao-Ming
  surname: Wang
  fullname: Wang, Yao-Ming
  organization: Department of Marine Engineering, National Taiwan Ocean University, 2 Pei-Ning Road, Keelung 20224, Taiwan, ROC
– sequence: 3
  givenname: Chia-Hsin
  surname: Lin
  fullname: Lin, Chia-Hsin
  organization: Ceramic Microengineering Laboratory, Material and Chemical Research Laboratories, Industrial Technology Research Institute, Chutung 31060, Taiwan, ROC
– sequence: 4
  givenname: Syh-Yuh
  surname: Cheng
  fullname: Cheng, Syh-Yuh
  organization: Ceramic Microengineering Laboratory, Material and Chemical Research Laboratories, Industrial Technology Research Institute, Chutung 31060, Taiwan, ROC
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23834961$$DView record in Pascal Francis
BookMark eNqFkc1u3CAURlGVSpkkfYXIm6rdeMo1xthSF62i9EeKlE32CMNFZcSACzjVvH2YTtpFF80K9HHO1RXfBTkLMSAh10C3QGH4sNvulvgrxzVtO_o73FLGX5ENjIK1neD8jGwoE2MrBGfn5CLnHaUUQNANkbfWoi65ibZJanGmWVLUmGsQmvIDGx2DWXVxj64cjtB-9cUtHhv0uMdQTRMXNI3G5FQ7q1zv9UmXFP2h4BV5bZXP-Ob5vCQPX24fbr61d_dfv998vmt1L1hpYeD9PHM7aT4OdlAW0DDTmW62dh5EP8PYM9GBHUatFQBVlPaT6ak106wndknencbW7X-umIvcu6zRexUwrlmOnFe7g76S7_9LghAC-AgwVvTtM6qyVt4mFbTLcklur9JBdmxk_TRA5YYTp1PMOaH9iwCVx4rkTv6pSB4rOua1oip-_EfUrqjiYihJOf-y_umkY_3YR4dJZu0waDQu1QKkie6lEU_vnLWo
CODEN JPSODZ
CitedBy_id crossref_primary_10_1016_j_ijhydene_2024_04_090
crossref_primary_10_1016_j_ijhydene_2012_05_095
crossref_primary_10_1016_j_ijhydene_2012_11_044
crossref_primary_10_1016_j_ijhydene_2018_05_018
crossref_primary_10_1016_j_ijhydene_2012_09_015
crossref_primary_10_1016_j_jallcom_2013_09_101
crossref_primary_10_1016_j_ceramint_2023_02_092
crossref_primary_10_1016_j_energy_2013_04_017
crossref_primary_10_3390_polym13162774
crossref_primary_10_1016_j_ijhydene_2023_04_189
crossref_primary_10_59761_RCR5092
crossref_primary_10_1016_j_memsci_2018_04_037
crossref_primary_10_1016_j_ijhydene_2012_02_022
crossref_primary_10_1016_j_jeurceramsoc_2016_05_018
crossref_primary_10_1016_j_solidstatesciences_2012_04_001
Cites_doi 10.1016/j.ssi.2004.09.051
10.1016/j.ceramint.2007.09.040
10.1016/j.jallcom.2007.12.039
10.1016/S0167-2738(00)00522-1
10.1039/b612060c
10.1016/S0167-2738(96)00588-7
10.1016/j.jpowsour.2005.11.057
10.1016/j.jpowsour.2007.07.065
10.1016/0167-2738(82)90046-7
10.1016/S1359-6454(99)00367-5
10.1007/s10832-007-9384-z
10.1016/j.ssi.2004.02.026
10.1016/j.matlet.2008.04.051
10.1111/j.1151-2916.1998.tb02341.x
10.1016/j.ssi.2009.02.021
10.1016/j.jpowsour.2009.03.053
10.1007/s10853-006-0837-6
10.1016/j.jpowsour.2007.07.071
10.1016/j.pmatsci.2005.07.001
10.1063/1.2827184
10.1038/nmat1040
10.1111/j.1151-2916.2002.tb00349.x
10.1016/S1359-6454(97)00052-9
10.1016/S0167-2738(99)00319-7
10.1016/S0025-5408(01)00762-0
10.1016/j.ssi.2007.05.019
10.1016/0167-2738(95)00229-4
10.1021/jp910925t
10.1016/S0167-2738(02)00483-6
10.1016/j.jpowsour.2009.07.009
10.1016/j.jeurceramsoc.2006.05.031
10.1016/j.ssi.2009.11.017
10.1016/0167-2738(92)90102-U
10.1016/j.ceramint.2005.01.009
10.1111/j.1151-2916.2003.tb03281.x
10.1016/j.jpowsour.2006.04.107
10.1016/j.jallcom.2009.11.006
10.1111/j.1551-2916.2008.02644.x
10.1016/j.jeurceramsoc.2007.09.031
ContentType Journal Article
Copyright 2010 Elsevier B.V.
2015 INIST-CNRS
Copyright_xml – notice: 2010 Elsevier B.V.
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7QQ
7SP
7SU
7TB
8FD
C1K
FR3
JG9
KR7
L7M
7ST
SOI
DOI 10.1016/j.jpowsour.2010.10.035
DatabaseName CrossRef
Pascal-Francis
Ceramic Abstracts
Electronics & Communications Abstracts
Environmental Engineering Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
Environment Abstracts
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Environmental Engineering Abstracts
Ceramic Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
Environment Abstracts
DatabaseTitleList Materials Research Database

Environment Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1873-2755
EndPage 1711
ExternalDocumentID 23834961
10_1016_j_jpowsour_2010_10_035
S0378775310018343
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29L
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AARLI
AAXUO
ABFNM
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADECG
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLY
HVGLF
HZ~
IHE
J1W
JARJE
KOM
LX7
LY6
M41
MAGPM
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SAC
SCB
SCE
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSK
SSM
SSR
SSZ
T5K
T9H
VH1
VOH
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
IQODW
7QQ
7SP
7SU
7TB
8FD
C1K
FR3
JG9
KR7
L7M
7ST
SOI
ID FETCH-LOGICAL-c473t-1654bb5f9c586f6af1ed3d2d2bffb674b1843721f68cca110a0049d40fd9bc93
IEDL.DBID .~1
ISSN 0378-7753
IngestDate Thu Jul 10 19:14:37 EDT 2025
Tue Aug 05 10:54:51 EDT 2025
Mon Jul 21 09:16:31 EDT 2025
Tue Jul 01 04:22:34 EDT 2025
Thu Apr 24 23:07:15 EDT 2025
Fri Feb 23 02:31:24 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Citric acid-based combustion technique
Microwave sintering
Solid oxide fuel cell
Ceria
Ionic conductivity
Electrolyte
Sintering
Doped materials
Combustion
Cerium oxide
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c473t-1654bb5f9c586f6af1ed3d2d2bffb674b1843721f68cca110a0049d40fd9bc93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1777158118
PQPubID 23500
PageCount 8
ParticipantIDs proquest_miscellaneous_855721214
proquest_miscellaneous_1777158118
pascalfrancis_primary_23834961
crossref_primary_10_1016_j_jpowsour_2010_10_035
crossref_citationtrail_10_1016_j_jpowsour_2010_10_035
elsevier_sciencedirect_doi_10_1016_j_jpowsour_2010_10_035
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-02-15
PublicationDateYYYYMMDD 2011-02-15
PublicationDate_xml – month: 02
  year: 2011
  text: 2011-02-15
  day: 15
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Journal of power sources
PublicationYear 2011
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Brett, Atkinson, Brandon, Skinner (bib0010) 2008; 37
Eguchi, Setoguchi, Inoue, Arai (bib0055) 1992; 52
Bodén, Di, Lagergren, Lindbergh, Wang (bib0115) 2007; 172
Chockalingam, Amarakoon, Giesche (bib0140) 2008; 28
Matovic, Dohcevic-Mitrovic, Radovic, Brankovic, Brankovic, Boskovic, Popovic (bib0050) 2009; 193
Fleig, Rodewald, Maier (bib0165) 2000; 136–137
Kilner, Walters (bib0200) 1982; 6
Atkinson, Barnett, Gorte, Irvine, McEvoy, Mogensen, Singhal, Vohs (bib0005) 2004; 3
Tuller (bib0195) 1981
Muralidharan, Jo, Kim (bib0095) 2008; 91
Ai, Lu, Chen, Huang, Wei, Zhang, Li, Xin, Sha, Su (bib0030) 2006; 159
Guo, Waser (bib0180) 2006; 51
Inaba, Tagawa (bib0045) 1996; 83
Mori, Drennan, Lee, Li, Ikegami (bib0020) 2002; 154–155
Steele (bib0080) 2000; 129
Ivanov, Khrustov, Kotov, Medvedev, Murzakaev, Shkerin, Nikonov (bib0120) 2007; 27
Pérez-Coll, Mather (bib0175) 2010; 181
Dikmen (bib0130) 2010; 491
Herle, Horita, Kawada, Sakai, Yokokawa, Dokiya (bib0060) 1996; 86–88
Rambabu, Ghosh, Zhao, Jena (bib0145) 2006; 159
Huang, Feng, Goodenough (bib0185) 1998; 81
Waser, Hagenbeck (bib0170) 2000; 48
Purohit, Sharma, Pillai, Tyagi (bib0110) 2001; 36
Young, Choi (bib0075) 2009; 180
Heel, Vital, Holtappels, Graule (bib0105) 2009; 22
Nicholas, De Jonghe (bib0065) 2007; 178
Pérez-Coll, Ruiz-Morales, Marrero-López, Núñez, Frade (bib0125) 2009; 467
Maier (bib0205) 2004; 175
Chang, Cheng, Sheu (bib0155) 2008; 62
Kale, Mona, Lofland, Kulkarni, Ogale (bib0160) 2008; 92
Purohit, Saha, Tyagi (bib0090) 2006; 32
Zhou, Huebner, Kosacki, Anderson (bib0040) 2002; 85
Im, You, Yoon, Shin (bib0100) 2008; 34
Guo, Sigle, Maier (bib0190) 2003; 86
Hui, Roller, Yick, Zhang, Dec‘es-Petit, Xie, Maric, Ghosh (bib0035) 2007; 172
Atkinson (bib0085) 1997; 95
Jiao, Shikazono, Kasagi (bib0135) 2010; 195
Zhou, Rahaman (bib0070) 1997; 45
Rambabu, Ghosh, Jena (bib0150) 2006; 41
Leng, Chan, Jiang, Khor (bib0025) 2004; 170
Yashima, Takizawa (bib0015) 2010; 114
Matovic (10.1016/j.jpowsour.2010.10.035_bib0050) 2009; 193
Ai (10.1016/j.jpowsour.2010.10.035_bib0030) 2006; 159
Zhou (10.1016/j.jpowsour.2010.10.035_bib0070) 1997; 45
Mori (10.1016/j.jpowsour.2010.10.035_bib0020) 2002; 154–155
Bodén (10.1016/j.jpowsour.2010.10.035_bib0115) 2007; 172
Atkinson (10.1016/j.jpowsour.2010.10.035_bib0005) 2004; 3
Leng (10.1016/j.jpowsour.2010.10.035_bib0025) 2004; 170
Pérez-Coll (10.1016/j.jpowsour.2010.10.035_bib0175) 2010; 181
Guo (10.1016/j.jpowsour.2010.10.035_bib0180) 2006; 51
Hui (10.1016/j.jpowsour.2010.10.035_bib0035) 2007; 172
Eguchi (10.1016/j.jpowsour.2010.10.035_bib0055) 1992; 52
Brett (10.1016/j.jpowsour.2010.10.035_bib0010) 2008; 37
Zhou (10.1016/j.jpowsour.2010.10.035_bib0040) 2002; 85
Nicholas (10.1016/j.jpowsour.2010.10.035_bib0065) 2007; 178
Heel (10.1016/j.jpowsour.2010.10.035_bib0105) 2009; 22
Purohit (10.1016/j.jpowsour.2010.10.035_bib0090) 2006; 32
Ivanov (10.1016/j.jpowsour.2010.10.035_bib0120) 2007; 27
Guo (10.1016/j.jpowsour.2010.10.035_bib0190) 2003; 86
Yashima (10.1016/j.jpowsour.2010.10.035_bib0015) 2010; 114
Waser (10.1016/j.jpowsour.2010.10.035_bib0170) 2000; 48
Steele (10.1016/j.jpowsour.2010.10.035_bib0080) 2000; 129
Rambabu (10.1016/j.jpowsour.2010.10.035_bib0145) 2006; 159
Maier (10.1016/j.jpowsour.2010.10.035_bib0205) 2004; 175
Kilner (10.1016/j.jpowsour.2010.10.035_bib0200) 1982; 6
Purohit (10.1016/j.jpowsour.2010.10.035_bib0110) 2001; 36
Young (10.1016/j.jpowsour.2010.10.035_bib0075) 2009; 180
Chang (10.1016/j.jpowsour.2010.10.035_bib0155) 2008; 62
Jiao (10.1016/j.jpowsour.2010.10.035_bib0135) 2010; 195
Inaba (10.1016/j.jpowsour.2010.10.035_bib0045) 1996; 83
Tuller (10.1016/j.jpowsour.2010.10.035_bib0195) 1981
Herle (10.1016/j.jpowsour.2010.10.035_bib0060) 1996; 86–88
Kale (10.1016/j.jpowsour.2010.10.035_bib0160) 2008; 92
Chockalingam (10.1016/j.jpowsour.2010.10.035_bib0140) 2008; 28
Muralidharan (10.1016/j.jpowsour.2010.10.035_bib0095) 2008; 91
Rambabu (10.1016/j.jpowsour.2010.10.035_bib0150) 2006; 41
Fleig (10.1016/j.jpowsour.2010.10.035_bib0165) 2000; 136–137
Pérez-Coll (10.1016/j.jpowsour.2010.10.035_bib0125) 2009; 467
Huang (10.1016/j.jpowsour.2010.10.035_bib0185) 1998; 81
Atkinson (10.1016/j.jpowsour.2010.10.035_bib0085) 1997; 95
Dikmen (10.1016/j.jpowsour.2010.10.035_bib0130) 2010; 491
Im (10.1016/j.jpowsour.2010.10.035_bib0100) 2008; 34
References_xml – volume: 36
  start-page: 2711
  year: 2001
  end-page: 2721
  ident: bib0110
  publication-title: Mater. Res. Bull.
– volume: 193
  start-page: 146
  year: 2009
  end-page: 149
  ident: bib0050
  publication-title: J. Power Sources
– volume: 45
  start-page: 3635
  year: 1997
  end-page: 3639
  ident: bib0070
  publication-title: Acta Mater.
– volume: 92
  start-page: 012512-1
  year: 2008
  end-page: 112512-3
  ident: bib0160
  publication-title: Appl. Phys. Lett.
– volume: 6
  start-page: 253
  year: 1982
  end-page: 259
  ident: bib0200
  publication-title: Solid State lonics
– volume: 95
  start-page: 249
  year: 1997
  end-page: 258
  ident: bib0085
  publication-title: Solid State Ionics
– volume: 32
  start-page: 143
  year: 2006
  end-page: 146
  ident: bib0090
  publication-title: Ceram. Int.
– volume: 154–155
  start-page: 461
  year: 2002
  end-page: 466
  ident: bib0020
  publication-title: Solid State Ionics
– volume: 136–137
  start-page: 905
  year: 2000
  end-page: 911
  ident: bib0165
  publication-title: Solid State Ionics
– volume: 467
  start-page: 533
  year: 2009
  end-page: 538
  ident: bib0125
  publication-title: J. Alloys Compd.
– volume: 181
  start-page: 20
  year: 2010
  end-page: 26
  ident: bib0175
  publication-title: Solid State Ionics
– volume: 81
  start-page: 357
  year: 1998
  end-page: 362
  ident: bib0185
  publication-title: J. Am. Ceram. Soc.
– volume: 3
  start-page: 17
  year: 2004
  end-page: 27
  ident: bib0005
  publication-title: Nat. Mater.
– volume: 85
  start-page: 1757
  year: 2002
  end-page: 1762
  ident: bib0040
  publication-title: J. Am. Ceram. Soc.
– volume: 159
  start-page: 21
  year: 2006
  end-page: 28
  ident: bib0145
  publication-title: J. Power Sources
– volume: 195
  start-page: 151
  year: 2010
  end-page: 154
  ident: bib0135
  publication-title: J. Power Sources
– volume: 62
  start-page: 3620
  year: 2008
  end-page: 3622
  ident: bib0155
  publication-title: Mater. Lett.
– volume: 159
  start-page: 637
  year: 2006
  end-page: 640
  ident: bib0030
  publication-title: J. Power Sources
– volume: 28
  start-page: 959
  year: 2008
  end-page: 963
  ident: bib0140
  publication-title: J. Eur. Ceram. Soc.
– volume: 86
  start-page: 77
  year: 2003
  end-page: 87
  ident: bib0190
  publication-title: J. Am. Ceram. Soc.
– volume: 27
  start-page: 1041
  year: 2007
  end-page: 1046
  ident: bib0120
  publication-title: J. Eur. Ceram. Soc.
– volume: 51
  start-page: 151
  year: 2006
  end-page: 210
  ident: bib0180
  publication-title: Prog. Mater. Sci.
– volume: 83
  start-page: 1
  year: 1996
  end-page: 16
  ident: bib0045
  publication-title: Solid State Ionics
– volume: 175
  start-page: 7
  year: 2004
  end-page: 12
  ident: bib0205
  publication-title: Solid State Ionics
– volume: 178
  start-page: 1187
  year: 2007
  end-page: 1194
  ident: bib0065
  publication-title: Solid State Ionics
– volume: 41
  start-page: 7530
  year: 2006
  end-page: 7536
  ident: bib0150
  publication-title: J. Mater. Sci.
– volume: 180
  start-page: 886
  year: 2009
  end-page: 890
  ident: bib0075
  publication-title: Solid State Ionics
– volume: 91
  start-page: 3267
  year: 2008
  end-page: 3274
  ident: bib0095
  publication-title: J. Am. Ceram. Soc.
– volume: 34
  start-page: 877
  year: 2008
  end-page: 881
  ident: bib0100
  publication-title: Ceram. Int.
– volume: 22
  start-page: 40
  year: 2009
  end-page: 46
  ident: bib0105
  publication-title: J. Electroceram.
– volume: 170
  start-page: 9
  year: 2004
  end-page: 15
  ident: bib0025
  publication-title: Solid State Ionics
– volume: 48
  start-page: 797
  year: 2000
  end-page: 825
  ident: bib0170
  publication-title: Acta Mater.
– year: 1981
  ident: bib0195
  publication-title: Nonstoichiometric Oxides
– volume: 129
  start-page: 95
  year: 2000
  end-page: 110
  ident: bib0080
  publication-title: Solid State Ionics
– volume: 172
  start-page: 520
  year: 2007
  end-page: 529
  ident: bib0115
  publication-title: J. Power Sources
– volume: 114
  start-page: 2385
  year: 2010
  end-page: 2392
  ident: bib0015
  publication-title: J. Phys. Chem. C
– volume: 86–88
  start-page: 1255
  year: 1996
  end-page: 1258
  ident: bib0060
  publication-title: Solid State Ionics
– volume: 172
  start-page: 493
  year: 2007
  end-page: 502
  ident: bib0035
  publication-title: J. Power Sources
– volume: 491
  start-page: 106
  year: 2010
  end-page: 112
  ident: bib0130
  publication-title: J. Alloys Compd.
– volume: 52
  start-page: 165
  year: 1992
  end-page: 172
  ident: bib0055
  publication-title: Solid State Ionics
– volume: 37
  start-page: 1568
  year: 2008
  end-page: 1578
  ident: bib0010
  publication-title: Chem. Soc. Rev.
– volume: 175
  start-page: 7
  year: 2004
  ident: 10.1016/j.jpowsour.2010.10.035_bib0205
  publication-title: Solid State Ionics
  doi: 10.1016/j.ssi.2004.09.051
– year: 1981
  ident: 10.1016/j.jpowsour.2010.10.035_bib0195
– volume: 34
  start-page: 877
  year: 2008
  ident: 10.1016/j.jpowsour.2010.10.035_bib0100
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2007.09.040
– volume: 467
  start-page: 533
  year: 2009
  ident: 10.1016/j.jpowsour.2010.10.035_bib0125
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2007.12.039
– volume: 136–137
  start-page: 905
  year: 2000
  ident: 10.1016/j.jpowsour.2010.10.035_bib0165
  publication-title: Solid State Ionics
  doi: 10.1016/S0167-2738(00)00522-1
– volume: 37
  start-page: 1568
  year: 2008
  ident: 10.1016/j.jpowsour.2010.10.035_bib0010
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b612060c
– volume: 95
  start-page: 249
  year: 1997
  ident: 10.1016/j.jpowsour.2010.10.035_bib0085
  publication-title: Solid State Ionics
  doi: 10.1016/S0167-2738(96)00588-7
– volume: 159
  start-page: 637
  year: 2006
  ident: 10.1016/j.jpowsour.2010.10.035_bib0030
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2005.11.057
– volume: 172
  start-page: 520
  year: 2007
  ident: 10.1016/j.jpowsour.2010.10.035_bib0115
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2007.07.065
– volume: 6
  start-page: 253
  year: 1982
  ident: 10.1016/j.jpowsour.2010.10.035_bib0200
  publication-title: Solid State lonics
  doi: 10.1016/0167-2738(82)90046-7
– volume: 48
  start-page: 797
  year: 2000
  ident: 10.1016/j.jpowsour.2010.10.035_bib0170
  publication-title: Acta Mater.
  doi: 10.1016/S1359-6454(99)00367-5
– volume: 22
  start-page: 40
  year: 2009
  ident: 10.1016/j.jpowsour.2010.10.035_bib0105
  publication-title: J. Electroceram.
  doi: 10.1007/s10832-007-9384-z
– volume: 170
  start-page: 9
  year: 2004
  ident: 10.1016/j.jpowsour.2010.10.035_bib0025
  publication-title: Solid State Ionics
  doi: 10.1016/j.ssi.2004.02.026
– volume: 62
  start-page: 3620
  year: 2008
  ident: 10.1016/j.jpowsour.2010.10.035_bib0155
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2008.04.051
– volume: 81
  start-page: 357
  year: 1998
  ident: 10.1016/j.jpowsour.2010.10.035_bib0185
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1151-2916.1998.tb02341.x
– volume: 180
  start-page: 886
  year: 2009
  ident: 10.1016/j.jpowsour.2010.10.035_bib0075
  publication-title: Solid State Ionics
  doi: 10.1016/j.ssi.2009.02.021
– volume: 193
  start-page: 146
  year: 2009
  ident: 10.1016/j.jpowsour.2010.10.035_bib0050
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2009.03.053
– volume: 41
  start-page: 7530
  year: 2006
  ident: 10.1016/j.jpowsour.2010.10.035_bib0150
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-006-0837-6
– volume: 172
  start-page: 493
  year: 2007
  ident: 10.1016/j.jpowsour.2010.10.035_bib0035
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2007.07.071
– volume: 51
  start-page: 151
  year: 2006
  ident: 10.1016/j.jpowsour.2010.10.035_bib0180
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2005.07.001
– volume: 92
  start-page: 012512-1
  year: 2008
  ident: 10.1016/j.jpowsour.2010.10.035_bib0160
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2827184
– volume: 3
  start-page: 17
  year: 2004
  ident: 10.1016/j.jpowsour.2010.10.035_bib0005
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1040
– volume: 85
  start-page: 1757
  issue: 7
  year: 2002
  ident: 10.1016/j.jpowsour.2010.10.035_bib0040
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1151-2916.2002.tb00349.x
– volume: 45
  start-page: 3635
  year: 1997
  ident: 10.1016/j.jpowsour.2010.10.035_bib0070
  publication-title: Acta Mater.
  doi: 10.1016/S1359-6454(97)00052-9
– volume: 129
  start-page: 95
  year: 2000
  ident: 10.1016/j.jpowsour.2010.10.035_bib0080
  publication-title: Solid State Ionics
  doi: 10.1016/S0167-2738(99)00319-7
– volume: 36
  start-page: 2711
  year: 2001
  ident: 10.1016/j.jpowsour.2010.10.035_bib0110
  publication-title: Mater. Res. Bull.
  doi: 10.1016/S0025-5408(01)00762-0
– volume: 178
  start-page: 1187
  issue: 19–20
  year: 2007
  ident: 10.1016/j.jpowsour.2010.10.035_bib0065
  publication-title: Solid State Ionics
  doi: 10.1016/j.ssi.2007.05.019
– volume: 83
  start-page: 1
  year: 1996
  ident: 10.1016/j.jpowsour.2010.10.035_bib0045
  publication-title: Solid State Ionics
  doi: 10.1016/0167-2738(95)00229-4
– volume: 114
  start-page: 2385
  year: 2010
  ident: 10.1016/j.jpowsour.2010.10.035_bib0015
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp910925t
– volume: 86–88
  start-page: 1255
  year: 1996
  ident: 10.1016/j.jpowsour.2010.10.035_bib0060
  publication-title: Solid State Ionics
– volume: 154–155
  start-page: 461
  year: 2002
  ident: 10.1016/j.jpowsour.2010.10.035_bib0020
  publication-title: Solid State Ionics
  doi: 10.1016/S0167-2738(02)00483-6
– volume: 195
  start-page: 151
  year: 2010
  ident: 10.1016/j.jpowsour.2010.10.035_bib0135
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2009.07.009
– volume: 27
  start-page: 1041
  year: 2007
  ident: 10.1016/j.jpowsour.2010.10.035_bib0120
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2006.05.031
– volume: 181
  start-page: 20
  year: 2010
  ident: 10.1016/j.jpowsour.2010.10.035_bib0175
  publication-title: Solid State Ionics
  doi: 10.1016/j.ssi.2009.11.017
– volume: 52
  start-page: 165
  year: 1992
  ident: 10.1016/j.jpowsour.2010.10.035_bib0055
  publication-title: Solid State Ionics
  doi: 10.1016/0167-2738(92)90102-U
– volume: 32
  start-page: 143
  year: 2006
  ident: 10.1016/j.jpowsour.2010.10.035_bib0090
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2005.01.009
– volume: 86
  start-page: 77
  issue: 1
  year: 2003
  ident: 10.1016/j.jpowsour.2010.10.035_bib0190
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1151-2916.2003.tb03281.x
– volume: 159
  start-page: 21
  year: 2006
  ident: 10.1016/j.jpowsour.2010.10.035_bib0145
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2006.04.107
– volume: 491
  start-page: 106
  year: 2010
  ident: 10.1016/j.jpowsour.2010.10.035_bib0130
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2009.11.006
– volume: 91
  start-page: 3267
  issue: 10
  year: 2008
  ident: 10.1016/j.jpowsour.2010.10.035_bib0095
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1551-2916.2008.02644.x
– volume: 28
  start-page: 959
  year: 2008
  ident: 10.1016/j.jpowsour.2010.10.035_bib0140
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2007.09.031
SSID ssj0001170
Score 2.0999436
Snippet [Display omitted] ▶ Microwave sintering reduces the grain boundary resistance of both SS and SV samples. ▶ The Schottky barrier height can be adjusted by SV...
The citric acid-based combustion technique (SV) for powder preparation and the rapid microwave sintering (MW) process are used to lower the synthesizing...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1704
SubjectTerms Applied sciences
Ceria
Citric acid-based combustion technique
Combustion
Direct energy conversion and energy accumulation
Electrical engineering. Electrical power engineering
Electrical power engineering
Electrochemical conversion: primary and secondary batteries, fuel cells
Electrolytes
Energy
Energy. Thermal use of fuels
Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc
Exact sciences and technology
Fuel cells
Grain boundaries
Ionic conductivity
Microwave sintering
Microwaves
Migration
Nanoparticles
Sintering
Sintering (powder metallurgy)
Solid oxide fuel cell
Title Effects of rapid process on the conductivity of multiple elements doped ceria-based electrolyte
URI https://dx.doi.org/10.1016/j.jpowsour.2010.10.035
https://www.proquest.com/docview/1777158118
https://www.proquest.com/docview/855721214
Volume 196
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4hegEh1PIQ25aVK3ENu3HsODkiVLRtVS6AxM2KX9KuUBKxixCX_nZm4oSCCuLQq2Ur1ng8D2fm-wCOgkMDYDKepEHyRHAnEuI9SqahKtPKBBcMNQr_Ps9nV-Lntbxeg9OhF4bKKnvbH216Z637kUkvzUk7n08uphkqG0bbhCJUZIIQP4VQpOXHf_6WeRCzSvcnAbMlmv2sS3hxvGibe3okjyVeVOXV0b696qC22mqJYguR7-If0935o7OPsN0Hkuwk7vUTrPl6BzafwQvugo7QxEvWBHZbtXPH2tgWwJqaYeDHMBcmuNeOP4ImDdWFzMei8iVzTesds6SmCTk8x3renJuHld-Dy7Pvl6ezpCdUSKxQ2SqhziVjZCitLPKQVyH1LnPccROCyZUwRP6CKWHICzxYDAwqSiCcmAZXGltm-7BeN7U_AKaCxUDH5AWhvVvhCm-C5VzlyvqU53IEchCitj3YOHFe3OihqmyhB-FrEj6No_BHMHla10a4jXdXlMMZ6ReKo9EnvLt2_OJQnz6JcQwB6acj-DacssZrR_9Sqto3d0udKqVSWWB6NgL2xpxCShQmT8Xn_9jjF9iIz9h4neRXWF_d3vlDjINWZtwp-hg-nPz4NTt_BLqyDBc
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7R5dAihFraqgstdSWuYTeOnccRoaKlwF66lbhZ8UvaFUoidhHi3zMTJysQRRy4WrZijcfzcGa-D-DQWzQAOuFR7CWPBLciIt6jaOzLIi61t15To_DlNJ38E3-u5NUGnPS9MFRW2dn-YNNba92NjDppjpr5fPR3nKCyYbRNKEJ5IpJ3sEnoVHIAm8dn55Pp2iATuUr7MwETJlrwqFF4cbRo6jt6Jw9VXlTo1TK__ddHbTflEiXnA-XFM-vduqTTj7DTxZLsOGz3E2y4ahe2HiEMfgYV0ImXrPbspmzmljWhM4DVFcPYj2E6TIivLYUETeoLDJkLdeVLZuvGWWZIUyPyeZZ11DnX9yv3BWanv2cnk6jjVIiMyJJVRM1LWktfGJmnPi197GxiueXae51mQhP_C2aFPs3xbDE2KCmHsGLsbaFNkXyFQVVX7huwzBuMdXSaE-C7ETZ32hvOszQzLuapHILshahMhzdOtBfXqi8sW6he-IqET-Mo_CGM1uuagLjx6oqiPyP1RHcUuoVX1x48OdT1JzGUISz9eAi_-lNWePPod0pZufp2qeIsy2KZY4Y2BPbCnFxKFCaPxd4b9vgT3k9mlxfq4mx6vg8fwqs23i75HQarm1v3A8OilT7o1P4B1xIOyA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+rapid+process+on+the+conductivity+of+multiple+elements+doped+ceria-based+electrolyte&rft.jtitle=Journal+of+power+sources&rft.au=CHANG%2C+Horng-Yi&rft.au=WANG%2C+Yao-Ming&rft.au=LIN%2C+Chia-Hsin&rft.au=CHENG%2C+Syh-Yuh&rft.date=2011-02-15&rft.pub=Elsevier&rft.issn=0378-7753&rft.volume=196&rft.issue=4&rft.spage=1704&rft.epage=1711&rft_id=info:doi/10.1016%2Fj.jpowsour.2010.10.035&rft.externalDBID=n%2Fa&rft.externalDocID=23834961
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7753&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7753&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7753&client=summon