Elucidation of the effect of hybrid copper/selenium nanofiller on the optical, thermal, electrical, mechanical properties and antibacterial activity of polyvinyl alcohol/carboxymethyl cellulose blend
Polymer nanocomposite samples of a polyvinyl alcohol (PVA)/carboxymethyl cellulose (CMC) blend doped with copper nanoparticles and selenium nanoparticles (Cu NPs/Se NPs) were prepared by the casting method. X‐ray diffraction analysis (XRD) patterns showed an increase in the degree of amorphous natur...
Saved in:
Published in | Polymer engineering and science Vol. 63; no. 7; pp. 1974 - 1988 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
01.07.2023
Society of Plastics Engineers, Inc Blackwell Publishing Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0032-3888 1548-2634 |
DOI | 10.1002/pen.26339 |
Cover
Loading…
Abstract | Polymer nanocomposite samples of a polyvinyl alcohol (PVA)/carboxymethyl cellulose (CMC) blend doped with copper nanoparticles and selenium nanoparticles (Cu NPs/Se NPs) were prepared by the casting method. X‐ray diffraction analysis (XRD) patterns showed an increase in the degree of amorphous nature of the host polymeric matrix with increasing content of Cu/Se nanoparticles. The addition of 1.60 wt.%, Cu/Se NPs narrowed the indirect optical energy gap value of the nanocomposite from 3.97 to 2.39 eV. In addition, the differential scanning calorimetry (DSC) curve of the pure blend displays the miscibility of the blend components, confirmed by the presence of a single glass transition. Transmission electron microscopy (TEM) micrographs showed that the average sizes of Cu and Se nanoparticles are about 11 and 41 nm, respectively. The maximum values of AC and DC conductivity were 6.76 × 10−6 S.cm−1 and 5.49 × 10−10 for a PVA/CMC film filled with 1.60 wt.% of Cu‐Se NPs. The mechanical properties of the PVA/CMC blend improved after adding the hybrid NPs. Moreover, the antibacterial activity of the prepared samples was increased due to the filling of Cu‐Se nanoparticles to the films. Therefore, these results indicate the multifunctionality of PVA/CMC/Cu‐Se nanocomposite samples for use in electrical energy storage, solid‐polymer electrolytes, and food packaging industry.
Preparation and characterization of nanocomposite samples. |
---|---|
AbstractList | Polymer nanocomposite samples of a polyvinyl alcohol (PVA)/carboxymethyl cellulose (CMC) blend doped with copper nanoparticles and selenium nanoparticles (Cu NPs/Se NPs) were prepared by the casting method. X‐ray diffraction analysis (XRD) patterns showed an increase in the degree of amorphous nature of the host polymeric matrix with increasing content of Cu/Se nanoparticles. The addition of 1.60 wt.%, Cu/Se NPs narrowed the indirect optical energy gap value of the nanocomposite from 3.97 to 2.39 eV. In addition, the differential scanning calorimetry (DSC) curve of the pure blend displays the miscibility of the blend components, confirmed by the presence of a single glass transition. Transmission electron microscopy (TEM) micrographs showed that the average sizes of Cu and Se nanoparticles are about 11 and 41 nm, respectively. The maximum values of AC and DC conductivity were 6.76 × 10−6 S.cm−1 and 5.49 × 10−10 for a PVA/CMC film filled with 1.60 wt.% of Cu‐Se NPs. The mechanical properties of the PVA/CMC blend improved after adding the hybrid NPs. Moreover, the antibacterial activity of the prepared samples was increased due to the filling of Cu‐Se nanoparticles to the films. Therefore, these results indicate the multifunctionality of PVA/CMC/Cu‐Se nanocomposite samples for use in electrical energy storage, solid‐polymer electrolytes, and food packaging industry.
Preparation and characterization of nanocomposite samples. Polymer nanocomposite samples of a polyvinyl alcohol (PVA)/carboxymethyl cellulose (CMC) blend doped with copper nanoparticles and selenium nanoparticles (Cu NPs/Se NPs) were prepared by the casting method. X‐ray diffraction analysis (XRD) patterns showed an increase in the degree of amorphous nature of the host polymeric matrix with increasing content of Cu/Se nanoparticles. The addition of 1.60 wt.%, Cu/Se NPs narrowed the indirect optical energy gap value of the nanocomposite from 3.97 to 2.39 eV. In addition, the differential scanning calorimetry (DSC) curve of the pure blend displays the miscibility of the blend components, confirmed by the presence of a single glass transition. Transmission electron microscopy (TEM) micrographs showed that the average sizes of Cu and Se nanoparticles are about 11 and 41 nm, respectively. The maximum values of AC and DC conductivity were 6.76 × 10−6 S.cm−1 and 5.49 × 10−10 for a PVA/CMC film filled with 1.60 wt.% of Cu‐Se NPs. The mechanical properties of the PVA/CMC blend improved after adding the hybrid NPs. Moreover, the antibacterial activity of the prepared samples was increased due to the filling of Cu‐Se nanoparticles to the films. Therefore, these results indicate the multifunctionality of PVA/CMC/Cu‐Se nanocomposite samples for use in electrical energy storage, solid‐polymer electrolytes, and food packaging industry. Polymer nanocomposite samples of a polyvinyl alcohol (PVA)/carboxymethyl cellulose (CMC) blend doped with copper nanoparticles and selenium nanoparticles (Cu NPs/Se NPs) were prepared by the casting method. X-ray diffraction analysis (XRD) patterns showed an increase in the degree of amorphous nature of the host polymeric matrix with increasing content of Cu/Se nanoparticles. The addition of 1.60 wt.%, Cu/Se NPs narrowed the indirect optical energy gap value of the nanocomposite from 3.97 to 2.39 eV. In addition, the differential scanning calorimetry (DSC) curve of the pure blend displays the miscibility of the blend components, confirmed by the presence of a single glass transition. Transmission electron microscopy (TEM) micrographs showed that the average sizes of Cu and Se nanoparticles are about 11 and 41 nm, respectively. The maximum values of AC and DC conductivity were 6.76 * [10.sup.-6] S.[cm.sup.-1] and 5.49 * [10.sup.-10] for a PVA/CMC film filled with 1.60 wt.% of Cu-Se NPs. The mechanical properties of the PVA/CMC blend improved after adding the hybrid NPs. Moreover, the antibacterial activity of the prepared samples was increased due to the filling of Cu-Se nanoparticles to the films. Therefore, these results indicate the multifunctionality of PVA/CMC/Cu-Se nanocomposite samples for use in electrical energy storage, solid-polymer electrolytes, and food packaging industry. KEYWORDS AC conductivity, antibacterial activity, Cu NPs, mechanical properties, Se NPs Polymer nanocomposite samples of a polyvinyl alcohol (PVA)/carboxymethyl cellulose (CMC) blend doped with copper nanoparticles and selenium nanoparticles (Cu NPs/Se NPs) were prepared by the casting method. X‐ray diffraction analysis (XRD) patterns showed an increase in the degree of amorphous nature of the host polymeric matrix with increasing content of Cu/Se nanoparticles. The addition of 1.60 wt.%, Cu/Se NPs narrowed the indirect optical energy gap value of the nanocomposite from 3.97 to 2.39 eV. In addition, the differential scanning calorimetry (DSC) curve of the pure blend displays the miscibility of the blend components, confirmed by the presence of a single glass transition. Transmission electron microscopy (TEM) micrographs showed that the average sizes of Cu and Se nanoparticles are about 11 and 41 nm, respectively. The maximum values of AC and DC conductivity were 6.76 × 10 −6 S.cm −1 and 5.49 × 10 −10 for a PVA/CMC film filled with 1.60 wt.% of Cu‐Se NPs. The mechanical properties of the PVA/CMC blend improved after adding the hybrid NPs. Moreover, the antibacterial activity of the prepared samples was increased due to the filling of Cu‐Se nanoparticles to the films. Therefore, these results indicate the multifunctionality of PVA/CMC/Cu‐Se nanocomposite samples for use in electrical energy storage, solid‐polymer electrolytes, and food packaging industry. Polymer nanocomposite samples of a polyvinyl alcohol (PVA)/carboxymethyl cellulose (CMC) blend doped with copper nanoparticles and selenium nanoparticles (Cu NPs/Se NPs) were prepared by the casting method. X-ray diffraction analysis (XRD) patterns showed an increase in the degree of amorphous nature of the host polymeric matrix with increasing content of Cu/Se nanoparticles. The addition of 1.60 wt.%, Cu/Se NPs narrowed the indirect optical energy gap value of the nanocomposite from 3.97 to 2.39 eV. In addition, the differential scanning calorimetry (DSC) curve of the pure blend displays the miscibility of the blend components, confirmed by the presence of a single glass transition. Transmission electron microscopy (TEM) micrographs showed that the average sizes of Cu and Se nanoparticles are about 11 and 41 nm, respectively. The maximum values of AC and DC conductivity were 6.76 * [10.sup.-6] S.[cm.sup.-1] and 5.49 * [10.sup.-10] for a PVA/CMC film filled with 1.60 wt.% of Cu-Se NPs. The mechanical properties of the PVA/CMC blend improved after adding the hybrid NPs. Moreover, the antibacterial activity of the prepared samples was increased due to the filling of Cu-Se nanoparticles to the films. Therefore, these results indicate the multifunctionality of PVA/CMC/Cu-Se nanocomposite samples for use in electrical energy storage, solid-polymer electrolytes, and food packaging industry. |
Audience | Academic |
Author | Asnag, G. M. Abdallah, E. M. Morsi, M. A. Aljohani, Marwah Yassin, A. Y. Albalwa, Aisha Nawaf |
Author_xml | – sequence: 1 givenname: E. M. orcidid: 0000-0002-7692-7174 surname: Abdallah fullname: Abdallah, E. M. email: dr.e_abdallah91@yahoo.com organization: Delta University for Science and Technology – sequence: 2 givenname: G. M. surname: Asnag fullname: Asnag, G. M. email: g.asnag@yahoo.com organization: Azal University for Human Development – sequence: 3 givenname: M. A. surname: Morsi fullname: Morsi, M. A. organization: Egyptian Russian University – sequence: 4 givenname: Marwah surname: Aljohani fullname: Aljohani, Marwah organization: Imam Abdulrahman Bin Faisal University – sequence: 5 givenname: Aisha Nawaf surname: Albalwa fullname: Albalwa, Aisha Nawaf organization: University of Tabuk – sequence: 6 givenname: A. Y. surname: Yassin fullname: Yassin, A. Y. organization: Delta University for Science and Technology |
BookMark | eNp9kttu1DAQhiNUJLaFC94gEldIza6TOI1zWVULrVQB4nAdOZPJxpVjB9spzRPyWp10kWDRgizbM-PvH5_mNDox1mAUvU7ZOmUs24xo1tlFnlfPolVacJGQw0-iFWN5luRCiBfRqfd3jNi8qFbRz62eQLUyKGti28Whxxi7DiEsXj83TrUx2HFEt_Go0ahpiI00tlNao4tJtUjsGBRIfb44blgMYiG4fXBA6KVZ7Hh0llIFhT6WpqUeVCMhoFO0SIa6V2Feth6tnu-VmSmqwfZWb0C6xj7MA4aeooBaT9p6jBs6Vfsyet5J7fHVr_ks-vZu-_XqOrn9-P7m6vI2AV7mVYKsE9g2LOWyEVhleVcILrO0Kcu0ZGXWZmVbMOA8E9CyApqiAwEyYzyF9qKE_Cx6s89LF_k-oQ_1nZ2coS3rTOSciyLn2W9qJzXWynQ2OAmD8lBflkWVV5yJkqjkCLVDg05q-lZ6Yjzk10d4ai0OCo4K3h4IiAn4EHZy8r6--fL5kD3_g20mrwx6Grza9cHvJcdSg7PeO-zq0alBurlOWb1UYk2VWD9VIrGbv1hQ4ani6PxK_0_xg240_zt1_Wn7Ya94BEG19HU |
CitedBy_id | crossref_primary_10_1002_pen_26549 crossref_primary_10_1002_vnl_22056 crossref_primary_10_1007_s11082_023_05950_y crossref_primary_10_1007_s13399_024_05708_w crossref_primary_10_1021_acsomega_4c00492 crossref_primary_10_1007_s11082_024_07113_z crossref_primary_10_1002_pen_26389 crossref_primary_10_1149_2162_8777_adb98f crossref_primary_10_1016_j_ceramint_2025_01_503 crossref_primary_10_1016_j_ijbiomac_2024_134473 crossref_primary_10_1007_s11082_024_07229_2 crossref_primary_10_1155_jfq_7805398 crossref_primary_10_1088_1402_4896_ad79a2 crossref_primary_10_1007_s11082_023_05420_5 crossref_primary_10_1002_slct_202404574 crossref_primary_10_1007_s10854_023_10938_1 crossref_primary_10_1002_vnl_22086 crossref_primary_10_1007_s10904_024_03244_8 crossref_primary_10_1007_s11082_024_07816_3 crossref_primary_10_1016_j_matchemphys_2024_129644 crossref_primary_10_1007_s10751_024_02092_9 crossref_primary_10_1016_j_est_2024_112765 crossref_primary_10_1007_s10854_024_11924_x crossref_primary_10_1016_j_est_2024_111554 crossref_primary_10_1038_s41598_024_76918_5 crossref_primary_10_1080_00222348_2025_2452022 crossref_primary_10_1016_j_optmat_2024_115721 crossref_primary_10_1007_s11082_024_06916_4 crossref_primary_10_1007_s13399_025_06500_0 crossref_primary_10_1007_s10924_024_03250_4 crossref_primary_10_1007_s00289_024_05270_5 crossref_primary_10_1002_vnl_22179 crossref_primary_10_1016_j_ijbiomac_2023_127894 |
Cites_doi | 10.1007/s10904-012-9660-5 10.1016/j.matchemphys.2020.123067 10.1016/j.molstruc.2022.132631 10.1016/j.matlet.2007.03.014 10.1016/j.jmrt.2021.10.117 10.1016/j.jallcom.2012.05.085 10.1016/j.molliq.2017.12.032 10.1007/s12648-014-0621-4 10.1016/j.polymertesting.2022.107794 10.1016/j.carbpol.2012.08.094 10.1016/j.physb.2011.07.050 10.1016/j.msec.2015.02.041 10.1016/j.ceramint.2009.09.016 10.3390/molecules26041146 10.1007/s10854-021-05701-3 10.1007/s12668-020-00718-0 10.1080/10667857.2020.1816383 10.1016/j.ceramint.2018.08.061 10.3144/expresspolymlett.2010.38 10.1007/s10570-020-03292-6 10.1007/s11664-020-08342-0 10.1016/j.molstruc.2018.11.095 10.1016/j.progpolymsci.2018.11.001 10.1016/j.materresbull.2010.05.013 10.1049/iet-nbt.2018.5228 10.1016/j.foodchem.2019.01.022 10.1016/j.matlet.2008.11.023 10.1016/j.coco.2021.100678 10.1016/j.applthermaleng.2016.07.053 10.1016/j.actbio.2007.11.006 10.1016/j.pdpdt.2021.102398 10.1088/1742-6596/1491/1/012033 10.1016/j.ijhydene.2016.06.191 10.1007/s10854-018-9257-z 10.1186/s11671-015-1073-2 10.1016/j.optmat.2022.113092 10.1002/er.7877 10.1016/S0013-4686(99)00353-9 10.56431/p-7o0g70 10.1007/s10924-012-0464-z 10.1007/BF03353781 10.1016/S0038-1098(99)00055-1 10.1007/s10904-022-02440-8 10.1016/j.molstruc.2022.133619 10.1016/j.compositesb.2019.05.044 10.1016/j.physb.2004.01.154 10.20964/2018.04.10 10.1007/BF00352048 10.1007/s10965-022-03011-8 10.1007/s10965-022-02943-5 10.1007/s10924-022-02377-6 10.1016/j.coco.2021.100662 10.1166/sl.2017.3856 10.1007/s10853-015-9023-z 10.1016/j.jmrt.2019.09.074 10.1007/s11664-012-2008-7 10.1088/0957-4484/17/2/007 10.1007/s10965-022-03134-y 10.1002/er.8695 10.1007/s12034-020-02149-9 10.1016/j.ijbiomac.2014.01.011 10.1016/j.jscs.2015.04.002 |
ContentType | Journal Article |
Copyright | 2023 Society of Plastics Engineers. COPYRIGHT 2023 Society of Plastics Engineers, Inc. 2023 Society of Plastics Engineers |
Copyright_xml | – notice: 2023 Society of Plastics Engineers. – notice: COPYRIGHT 2023 Society of Plastics Engineers, Inc. – notice: 2023 Society of Plastics Engineers |
DBID | AAYXX CITATION N95 ISR 7SR 8FD JG9 |
DOI | 10.1002/pen.26339 |
DatabaseName | CrossRef Business: Insights Gale In Context: Science Engineered Materials Abstracts Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Engineered Materials Abstracts |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1548-2634 |
EndPage | 1988 |
ExternalDocumentID | A759394087 10_1002_pen_26339 PEN26339 |
Genre | researchArticle |
GeographicLocations | Egypt |
GeographicLocations_xml | – name: Egypt |
GroupedDBID | -~X .-4 .3N .4S .DC .GA .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 29O 31~ 33P 3SF 3V. 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 88I 8AF 8FE 8FG 8G5 8R4 8R5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDEX ABEML ABIJN ABJCF ABJNI ABPVW ABTAH ABUWG ACAHQ ACBEA ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOD ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFKRA AFPWT AFWVQ AFZJQ AHBTC AIAGR AITYG AIURR AIWBW AIXEN AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARAPS ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZQEC AZVAB BAAKF BAFTC BDRZF BENPR BES BFHJK BGLVJ BHBCM BMNLL BMXJE BNHUX BPHCQ BROTX BRXPI BY8 CCPQU CS3 CZ9 D-E D-F D1I DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 DWQXO EBS EJD F00 F01 F04 FEDTE FOJGT G-S G.N GNP GNUQQ GODZA GUQSH H.T H.X HBH HCIFZ HF~ HGLYW HHY HHZ HVGLF HZ~ H~9 IAO ICW IEA IOF ISR ITC IX1 J0M JPC KB. KC. KQQ L6V LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M2O M2P M2Q M6K M7S MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N95 N9A NDZJH NEJ NF~ NNB O66 O9- OIG P2P P2W P2X P4D P62 PALCI PDBOC PQQKQ PROAC PTHSS PV9 Q.N Q11 Q2X QB0 QRW R.K RIWAO RJQFR RNS ROL RWI RWL RWM RX1 RXW RYL RZL S0X SAMSI SUPJJ TUS U5U UB1 V2E W8V W99 WBKPD WFSAM WH7 WIB WIH WIK WJL WOHZO WQJ WRC WTY WXSBR WYISQ XG1 XI7 XV2 ZE2 ZY4 ZZTAW ~02 ~IA ~WT AAYXX ADMLS AEYWJ AGHNM AGQPQ AGYGG CITATION PHGZM PHGZT 7SR 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 |
ID | FETCH-LOGICAL-c4739-e0f8edb014ab8e923f584a21b7717072d27d50c4428cd05cb5fc8ca2041cd67c3 |
IEDL.DBID | DR2 |
ISSN | 0032-3888 |
IngestDate | Fri Jul 25 19:35:48 EDT 2025 Tue Jun 17 22:26:44 EDT 2025 Fri Jun 13 00:12:45 EDT 2025 Tue Jun 10 21:23:34 EDT 2025 Fri Jun 27 06:04:51 EDT 2025 Fri May 23 01:56:08 EDT 2025 Tue Jul 01 02:33:57 EDT 2025 Thu Apr 24 23:12:27 EDT 2025 Wed Jan 22 16:19:54 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4739-e0f8edb014ab8e923f584a21b7717072d27d50c4428cd05cb5fc8ca2041cd67c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-7692-7174 |
PQID | 2834485342 |
PQPubID | 41843 |
PageCount | 15 |
ParticipantIDs | proquest_journals_2834485342 gale_infotracmisc_A759394087 gale_infotracgeneralonefile_A759394087 gale_infotracacademiconefile_A759394087 gale_incontextgauss_ISR_A759394087 gale_businessinsightsgauss_A759394087 crossref_primary_10_1002_pen_26339 crossref_citationtrail_10_1002_pen_26339 wiley_primary_10_1002_pen_26339_PEN26339 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2023 2023-07-00 20230701 |
PublicationDateYYYYMMDD | 2023-07-01 |
PublicationDate_xml | – month: 07 year: 2023 text: July 2023 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: Newtown |
PublicationTitle | Polymer engineering and science |
PublicationYear | 2023 |
Publisher | John Wiley & Sons, Inc Society of Plastics Engineers, Inc Blackwell Publishing Ltd |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Society of Plastics Engineers, Inc – name: Blackwell Publishing Ltd |
References | 2021; 24 2022; 134 2019; 91 2021; 26 2013; 21 2000; 45 2016; 107 1994; 29 2020; 10 2008; 4 2019; 283 2018; 44 2022; 29 2014; 65 2015; 89 2021; 35 2011; 406 2021; 32 2014; 5 2013; 14 2018; 250 2020; 251 2020; 49 2016; 41 2022; 37 2022; 30 2007; 61 2022; 32 2020; 43 2014; 6 2010; 4 2012; 22 2012; 538 2019; 8 2018; 29 2022; 1267 2009; 63 2010; 36 2015; 51 2015; 50 2006; 17 2017; 21 2015; 10 2022; 46 2019; 1180 2013; 92 2004; 349 2022; 116 2010; 45 2022; 1257 2016; 6 2021; 15 2020; 1491 2017; 15 1999; 110 2020; 27 2019; 172 2012; 41 2018; 13 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_69_1 e_1_2_7_27_1 e_1_2_7_29_1 Puttaswamaiah S. (e_1_2_7_59_1) 2014; 5 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_38_1 Sardar S. (e_1_2_7_15_1) 2016; 6 |
References_xml | – volume: 21 start-page: 5 year: 2017 publication-title: J. Saudi Chem. Soc. – volume: 92 start-page: 407 year: 2013 publication-title: Carbohydr. Polym. – volume: 50 start-page: 4717 year: 2015 publication-title: J. Mater. Sci. – volume: 46 start-page: 23984 year: 2022 publication-title: Int. J. Energy Res. – volume: 4 start-page: 707 year: 2008 publication-title: Acta Biomater. – volume: 49 start-page: 6107 year: 2020 publication-title: J. Electron. Mater. – volume: 14 start-page: 58 year: 2013 publication-title: Int. Lett. Chem. Phys. Astron. – volume: 5 start-page: 470 year: 2014 publication-title: Int. J. Sci. Eng. Res. – volume: 45 start-page: 1417 year: 2000 publication-title: Electrochim. Acta – volume: 349 start-page: 84 year: 2004 publication-title: Phys. B – volume: 45 start-page: 1213 year: 2010 publication-title: Mater. Res. Bull. – volume: 107 start-page: 907 year: 2016 publication-title: Appl. Therm. Eng. – volume: 17 start-page: 385 year: 2006 publication-title: Nanotechnology – volume: 22 start-page: 878 year: 2012 publication-title: J. Inorg. Organomet. Polym. Mater. – volume: 283 start-page: 397 year: 2019 publication-title: Food Chem. – volume: 91 start-page: 141 year: 2019 publication-title: Prog. Polym. Sci. – volume: 29 start-page: 1 year: 2022 publication-title: J. Polym. Res. – volume: 63 start-page: 441 year: 2009 publication-title: Mater. Lett. – volume: 44 start-page: 20677 year: 2018 publication-title: Ceram. Int. – volume: 250 start-page: 335 year: 2018 publication-title: J. Mol. Liq. – volume: 116 year: 2022 publication-title: Polym. Test. – volume: 110 start-page: 75 year: 1999 publication-title: Solid State Commun. – volume: 251 year: 2020 publication-title: Mater. Chem. Phys. – volume: 24 year: 2021 publication-title: Compos. Commun. – volume: 538 start-page: 212 year: 2012 publication-title: J. Alloys Compd. – volume: 51 start-page: 196 year: 2015 publication-title: Mater. Sci. Eng. C – volume: 10 start-page: 371 year: 2015 publication-title: Nanoscale Res. Lett. – volume: 13 start-page: 3812 year: 2018 publication-title: Int. J. Electrochem. Sci. – volume: 61 start-page: 4711 year: 2007 publication-title: Mater. Lett. – volume: 1180 start-page: 15 year: 2019 publication-title: J. Mol. Struct. – volume: 41 start-page: 1886 year: 2012 publication-title: J. Electron. Mater. – volume: 36 start-page: 291 year: 2010 publication-title: Ceram. Int. – volume: 8 start-page: 5996 year: 2019 publication-title: J. Mater. Res. Technol. – volume: 35 year: 2021 publication-title: Photodiagn. Photodyn. Ther. – volume: 4 start-page: 300 year: 2010 publication-title: Express Polym. Lett – volume: 6 start-page: 169 year: 2014 publication-title: Nano Micro. Lett. – volume: 1257 year: 2022 publication-title: J. Mol. Struct. – volume: 15 start-page: 5615 year: 2021 publication-title: J. Mater. Res. Technol. – volume: 27 start-page: 8039 year: 2020 publication-title: Cellulose – volume: 32 start-page: 4715 year: 2022 publication-title: J. Inorg. Organomet. Polym. Mater. – volume: 134 year: 2022 publication-title: Opt. Mater. – volume: 15 start-page: 589 year: 2017 publication-title: Sens. Lett. – volume: 46 start-page: 1 year: 2022 publication-title: Int. J. Energy Res. – volume: 30 start-page: 2559 year: 2022 publication-title: J. Polym. Environ. – volume: 6 start-page: 85340 year: 2016 publication-title: R. Soc. Chem. – volume: 26 start-page: 1146 year: 2021 publication-title: Molecules – volume: 37 start-page: 124 year: 2022 publication-title: Mater. Technol. – volume: 13 start-page: 275 year: 2018 publication-title: IET Nanobiotechnol. – volume: 406 start-page: 4068 year: 2011 publication-title: Phys. B – volume: 65 start-page: 155 year: 2014 publication-title: Int. J. Biol. Macromol. – volume: 1267 year: 2022 publication-title: J. Mol. Struct. – volume: 1491 year: 2020 publication-title: J. Phys. Conf. Ser. – volume: 32 start-page: 10443 year: 2021 publication-title: J. Mater. Sci. Mater. Electron. – volume: 10 start-page: 389 year: 2020 publication-title: BioNanoScience – volume: 29 start-page: 3451 year: 1994 publication-title: J. Mater. Sci. – volume: 172 start-page: 436 year: 2019 publication-title: Compos. Part B Eng. – volume: 89 start-page: 577 year: 2015 publication-title: Indian J. Phys. – volume: 21 start-page: 520 year: 2013 publication-title: J. Polym. Environ. – volume: 29 start-page: 11598 year: 2018 publication-title: J. Mater. Sci. Mater. Electron. – volume: 43 start-page: 1 year: 2020 publication-title: Bull. Mater. Sci. – volume: 41 start-page: 15141 year: 2016 publication-title: Int. J. Hydrogen Energy – ident: e_1_2_7_68_1 doi: 10.1007/s10904-012-9660-5 – ident: e_1_2_7_64_1 doi: 10.1016/j.matchemphys.2020.123067 – ident: e_1_2_7_69_1 doi: 10.1016/j.molstruc.2022.132631 – volume: 5 start-page: 470 year: 2014 ident: e_1_2_7_59_1 publication-title: Int. J. Sci. Eng. Res. – ident: e_1_2_7_22_1 doi: 10.1016/j.matlet.2007.03.014 – ident: e_1_2_7_8_1 doi: 10.1016/j.jmrt.2021.10.117 – ident: e_1_2_7_32_1 doi: 10.1016/j.jallcom.2012.05.085 – ident: e_1_2_7_62_1 doi: 10.1016/j.molliq.2017.12.032 – ident: e_1_2_7_35_1 doi: 10.1007/s12648-014-0621-4 – ident: e_1_2_7_18_1 doi: 10.1016/j.polymertesting.2022.107794 – ident: e_1_2_7_9_1 doi: 10.1016/j.carbpol.2012.08.094 – ident: e_1_2_7_38_1 doi: 10.1016/j.physb.2011.07.050 – ident: e_1_2_7_58_1 doi: 10.1016/j.msec.2015.02.041 – volume: 6 start-page: 85340 year: 2016 ident: e_1_2_7_15_1 publication-title: R. Soc. Chem. – ident: e_1_2_7_61_1 doi: 10.1016/j.ceramint.2009.09.016 – ident: e_1_2_7_30_1 doi: 10.3390/molecules26041146 – ident: e_1_2_7_50_1 doi: 10.1007/s10854-021-05701-3 – ident: e_1_2_7_19_1 doi: 10.1007/s12668-020-00718-0 – ident: e_1_2_7_27_1 doi: 10.1080/10667857.2020.1816383 – ident: e_1_2_7_57_1 doi: 10.1016/j.ceramint.2018.08.061 – ident: e_1_2_7_55_1 doi: 10.3144/expresspolymlett.2010.38 – ident: e_1_2_7_48_1 doi: 10.1007/s10570-020-03292-6 – ident: e_1_2_7_31_1 doi: 10.1007/s11664-020-08342-0 – ident: e_1_2_7_5_1 doi: 10.1016/j.molstruc.2018.11.095 – ident: e_1_2_7_4_1 doi: 10.1016/j.progpolymsci.2018.11.001 – ident: e_1_2_7_24_1 doi: 10.1016/j.materresbull.2010.05.013 – ident: e_1_2_7_21_1 doi: 10.1049/iet-nbt.2018.5228 – ident: e_1_2_7_20_1 doi: 10.1016/j.materresbull.2010.05.013 – ident: e_1_2_7_54_1 doi: 10.1016/j.foodchem.2019.01.022 – ident: e_1_2_7_23_1 doi: 10.1016/j.matlet.2008.11.023 – ident: e_1_2_7_6_1 doi: 10.1016/j.coco.2021.100678 – ident: e_1_2_7_45_1 doi: 10.1016/j.applthermaleng.2016.07.053 – ident: e_1_2_7_41_1 doi: 10.1016/j.actbio.2007.11.006 – ident: e_1_2_7_44_1 doi: 10.1016/j.pdpdt.2021.102398 – ident: e_1_2_7_26_1 doi: 10.1088/1742-6596/1491/1/012033 – ident: e_1_2_7_2_1 doi: 10.1016/j.ijhydene.2016.06.191 – ident: e_1_2_7_10_1 doi: 10.1007/s10854-018-9257-z – ident: e_1_2_7_16_1 doi: 10.1016/j.progpolymsci.2018.11.001 – ident: e_1_2_7_29_1 doi: 10.1186/s11671-015-1073-2 – ident: e_1_2_7_67_1 doi: 10.1016/j.optmat.2022.113092 – ident: e_1_2_7_28_1 doi: 10.1002/er.7877 – ident: e_1_2_7_40_1 doi: 10.1016/S0013-4686(99)00353-9 – ident: e_1_2_7_60_1 doi: 10.56431/p-7o0g70 – ident: e_1_2_7_39_1 doi: 10.1007/s10924-012-0464-z – ident: e_1_2_7_42_1 doi: 10.1007/BF03353781 – ident: e_1_2_7_7_1 doi: 10.1016/S0038-1098(99)00055-1 – ident: e_1_2_7_63_1 doi: 10.1007/s10904-022-02440-8 – ident: e_1_2_7_52_1 doi: 10.1016/j.molliq.2017.12.032 – ident: e_1_2_7_17_1 doi: 10.1016/j.molstruc.2022.133619 – ident: e_1_2_7_12_1 doi: 10.1016/j.compositesb.2019.05.044 – ident: e_1_2_7_51_1 doi: 10.1016/j.physb.2004.01.154 – ident: e_1_2_7_56_1 doi: 10.20964/2018.04.10 – ident: e_1_2_7_3_1 doi: 10.1007/BF00352048 – ident: e_1_2_7_13_1 doi: 10.1007/s10965-022-03011-8 – ident: e_1_2_7_65_1 doi: 10.1007/s10965-022-02943-5 – ident: e_1_2_7_14_1 doi: 10.1016/j.ijhydene.2016.06.191 – ident: e_1_2_7_37_1 doi: 10.1007/s10924-022-02377-6 – ident: e_1_2_7_49_1 doi: 10.1016/j.coco.2021.100662 – ident: e_1_2_7_11_1 doi: 10.1166/sl.2017.3856 – ident: e_1_2_7_66_1 doi: 10.1007/s10853-015-9023-z – ident: e_1_2_7_36_1 doi: 10.1016/j.jmrt.2019.09.074 – ident: e_1_2_7_46_1 doi: 10.1007/s11664-012-2008-7 – ident: e_1_2_7_25_1 doi: 10.1088/0957-4484/17/2/007 – ident: e_1_2_7_34_1 doi: 10.1007/s10965-022-03134-y – ident: e_1_2_7_53_1 doi: 10.1002/er.8695 – ident: e_1_2_7_33_1 doi: 10.1007/s12034-020-02149-9 – ident: e_1_2_7_43_1 doi: 10.1016/j.ijbiomac.2014.01.011 – ident: e_1_2_7_47_1 doi: 10.1016/j.jscs.2015.04.002 |
SSID | ssj0002359 |
Score | 2.5402594 |
Snippet | Polymer nanocomposite samples of a polyvinyl alcohol (PVA)/carboxymethyl cellulose (CMC) blend doped with copper nanoparticles and selenium nanoparticles (Cu... |
SourceID | proquest gale crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1974 |
SubjectTerms | AC conductivity Analysis antibacterial activity Antibacterial agents Calorimetry Carboxymethyl cellulose Carboxymethylcellulose Cellulose Copper Cu NPs Diffraction Diffraction patterns Electric properties Electrolytes Energy gap Energy storage Food packaging industry Founding Glass transition Mechanical properties Miscibility Molten salt electrolytes Nanocomposites Nanoparticles Optical properties Photomicrographs Polyelectrolytes Polymeric composites Polymers Polyvinyl alcohol Properties Se NPs Selenium Solid electrolytes X-rays |
Title | Elucidation of the effect of hybrid copper/selenium nanofiller on the optical, thermal, electrical, mechanical properties and antibacterial activity of polyvinyl alcohol/carboxymethyl cellulose blend |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpen.26339 https://www.proquest.com/docview/2834485342 |
Volume | 63 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLamvQAPXAaIwUAW4vZA2sR24lY8TVOngcSEBpP2gBT5llGRJVHSIJU_yN_inDjpyDQkxEOrxPnc2okvx84530fIC8G5YybJgkxpE4iM20C5JMEtgVAIq2MXYuzwx-Pk6FR8OIvPtsi7IRbG80NsNtywZ3TjNXZwpZvpJWkorPYnLOEcg_fQVwsNopNL6ijGY2_6chZwWOYNrEIhm25yjuaiqyPy2FrtppvDO-TrUFDvZfJ90q70xPy8wuH4nzW5S273Zijd9-3mHtlyxQ65cTCov-2QW38QFd4nvxZ5a5ZefomWGQWrkXpPEDz7tsawL2rKqnL1FOWbimV7QQtVoB547moKuTBLWXU752_xBCYEOPAqPD7xwmEUMh7TCl8R1Mj1SlVh4bNaak8rDRcxFAMVL_CvqzJf_1gWa0j1Wr9To2oN9wyVsSEV30u0edk4qqFU9gE5PVx8OTgKegmIwAjJ54ELs5mzGtZxSs8cGKMZGEyKRVrCMjSUzDJp49AIWEQZG8ZGo0uaUSwUkbGJNPwh2S7Kwj0iNEGuegUGLnNaMJnMMxWJSEqrDDcyinbJm6ExpKbnR0eZjjz1zM4sheeUds9plzzfQCtPCnId6CW2qLQXE4WvBrdbmnPVNk26L-M5itLPJPxYh0MyjgK9fTzg_eeTEeh1D8pKKJRRffAEVA35u0bIVyPkuWcvvw64NwJC-zLjy0NPSPthrUkZqrKAgScY3K2uSf-9_umnxXF38PjfoU_ITQY917tD75HtVd26p2D0rfSzrnf_BjESV6o |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbGeBg8cBkgBgMsxO2BtIntxK3EyzQ6dbBVaGzSXqbIdpxR0SVR0yCVP8jf4pw46cg0JMRDIsf53NqJL8eOz_cR8kpwbpmJUi9V2ngi5YmnbBThkoAvRKJD66Pv8OEkGp-IT6fh6Rr50PrCOH6I1YIbtoy6v8YGjgvS_UvWUJju91jE-fAGuYmK3qhf8PHokjyK8dAZv5x5HCZ6La-Qz_qrpJ3R6Gqf3LVX6wFn7y45a7Pq9pl871UL3TM_r7A4_m9Z7pE7jSVKd1zVuU_WbLZJNnZbAbhNcvsPrsIH5NdoVpmpU2CieUrBcKRuMwhefVui5xc1eVHYeR8VnLJpdUEzlaEk-MzOKaTCJHlRL56_xwsYEyDghHhc5IVFR2QM0wK_EsyR7pWqLIFjMdWOWRpuojcGil7gXxf5bPljmi0h1sn99o2aa3hoKI4NsfhpoprlpaUacpU8JCd7o-PdsdeoQHhGSD70rJ8ObKJhKqf0wII9moLNpFigJcxEfckSJpPQNwLmUSbxQ6NxV5pRzBeBSSJp-COynuWZfUxohHT1CmxcZrVgMhqmKhCBlIky3Mgg2CLv2toQm4YiHZU6ZrEjd2YxvKe4fk9b5OUKWjhekOtAr7FKxY2eKJxKXHEpz1VVlvGODIeoSz-Q8GM1Dvk4Mtzw4wD7X486oLcNKM0hU0Y1_hNQNKTw6iDfdJDnjsD8OuB2Bwj1y3Rvt00hbnq2MmYozAI2nmDwtOo6_ffyx19Gkzrw5N-hL8jG-PjwID7Yn3x-Sm4xaMZud_Q2WV_MK_sMbMCFfl439d9mklvE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbGkGA8cBkgBgMixGUPpE1sJ27F0zRabVyqaTBpD0iRb9kquiRqGqTyB_lbnBMnHZmGhHholTifWzvxsY8dn-8j5CVnzFIdp34qlfZ5yowvbRzjkkDAuVGRDTB2-PMk3j_mH06ikzXyro2FcfwQqwU3tIy6v0YDL0zavyANhdl-j8aMDa-R6zwGY0GP6OiCO4qyyPm-jPoM5nktrVBA-6usncHocpfcdVfr8WZ8h3xrS-q2mXzvVQvV0z8vkTj-Z1XuktuNH-rtuoZzj6zZbJPc3Gvl3zbJrT-YCu-TX6NZpadOf8nLUw_cRs9tBcGzsyXGfXk6Lwo776N-Uzatzr1MZigIPrNzD3Jhlryol87f4gmMCHDgZHhc4rnFMGQ89gp8RzBHsldPZgY-i6lyvNJwEWMxUPIC_7rIZ8sf02wJqU7st6_lXME9Q2lsSMUXE9UsL62noFTmATkej77u7fuNBoSvuWBD3wbpwBoFEzmpBha80RQ8JklDJWAeGghqqDBRoDnMorQJIq1wT5qWNOChNrHQ7CFZz_LMPiJejGT1EjxcahWnIh6mMuShEEZqpkUYbpGdtjEkuiFIR52OWeKonWkCzympn9MWebGCFo4V5CrQK2xRSaMmCl8lrreUp7Iqy2RXRENUpR8I-LEah2wcGW73cYCDL0cd0JsGlOZQKC2b6AmoGhJ4dZCvO8hTR19-FXC7A4T2pbuXW0tImn6tTCjKsoCHxyncrbpJ_73-yeFoUh88_nfoc3Lj8P04-XQw-fiEbFAwYrc1epusL-aVfQoO4EI9qw39Nzo9Wnw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Elucidation+of+the+effect+of+hybrid+copper%2Fselenium+nanofiller+on+the+optical%2C+thermal%2C+electrical%2C+mechanical+properties+and+antibacterial+activity+of+polyvinyl+alcohol%2Fcarboxymethyl+cellulose+blend&rft.jtitle=Polymer+engineering+and+science&rft.au=Abdallah%2C+E.+M.&rft.au=Asnag%2C+G.+M.&rft.au=Morsi%2C+M.+A.&rft.au=Aljohani%2C+Marwah&rft.date=2023-07-01&rft.issn=0032-3888&rft.eissn=1548-2634&rft.volume=63&rft.issue=7&rft.spage=1974&rft.epage=1988&rft_id=info:doi/10.1002%2Fpen.26339&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_pen_26339 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-3888&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-3888&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-3888&client=summon |