Elucidation of the effect of hybrid copper/selenium nanofiller on the optical, thermal, electrical, mechanical properties and antibacterial activity of polyvinyl alcohol/carboxymethyl cellulose blend

Polymer nanocomposite samples of a polyvinyl alcohol (PVA)/carboxymethyl cellulose (CMC) blend doped with copper nanoparticles and selenium nanoparticles (Cu NPs/Se NPs) were prepared by the casting method. X‐ray diffraction analysis (XRD) patterns showed an increase in the degree of amorphous natur...

Full description

Saved in:
Bibliographic Details
Published inPolymer engineering and science Vol. 63; no. 7; pp. 1974 - 1988
Main Authors Abdallah, E. M., Asnag, G. M., Morsi, M. A., Aljohani, Marwah, Albalwa, Aisha Nawaf, Yassin, A. Y.
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.07.2023
Society of Plastics Engineers, Inc
Blackwell Publishing Ltd
Subjects
Online AccessGet full text
ISSN0032-3888
1548-2634
DOI10.1002/pen.26339

Cover

Loading…
Abstract Polymer nanocomposite samples of a polyvinyl alcohol (PVA)/carboxymethyl cellulose (CMC) blend doped with copper nanoparticles and selenium nanoparticles (Cu NPs/Se NPs) were prepared by the casting method. X‐ray diffraction analysis (XRD) patterns showed an increase in the degree of amorphous nature of the host polymeric matrix with increasing content of Cu/Se nanoparticles. The addition of 1.60 wt.%, Cu/Se NPs narrowed the indirect optical energy gap value of the nanocomposite from 3.97 to 2.39 eV. In addition, the differential scanning calorimetry (DSC) curve of the pure blend displays the miscibility of the blend components, confirmed by the presence of a single glass transition. Transmission electron microscopy (TEM) micrographs showed that the average sizes of Cu and Se nanoparticles are about 11 and 41 nm, respectively. The maximum values of AC and DC conductivity were 6.76 × 10−6 S.cm−1 and 5.49 × 10−10 for a PVA/CMC film filled with 1.60 wt.% of Cu‐Se NPs. The mechanical properties of the PVA/CMC blend improved after adding the hybrid NPs. Moreover, the antibacterial activity of the prepared samples was increased due to the filling of Cu‐Se nanoparticles to the films. Therefore, these results indicate the multifunctionality of PVA/CMC/Cu‐Se nanocomposite samples for use in electrical energy storage, solid‐polymer electrolytes, and food packaging industry. Preparation and characterization of nanocomposite samples.
AbstractList Polymer nanocomposite samples of a polyvinyl alcohol (PVA)/carboxymethyl cellulose (CMC) blend doped with copper nanoparticles and selenium nanoparticles (Cu NPs/Se NPs) were prepared by the casting method. X‐ray diffraction analysis (XRD) patterns showed an increase in the degree of amorphous nature of the host polymeric matrix with increasing content of Cu/Se nanoparticles. The addition of 1.60 wt.%, Cu/Se NPs narrowed the indirect optical energy gap value of the nanocomposite from 3.97 to 2.39 eV. In addition, the differential scanning calorimetry (DSC) curve of the pure blend displays the miscibility of the blend components, confirmed by the presence of a single glass transition. Transmission electron microscopy (TEM) micrographs showed that the average sizes of Cu and Se nanoparticles are about 11 and 41 nm, respectively. The maximum values of AC and DC conductivity were 6.76 × 10−6 S.cm−1 and 5.49 × 10−10 for a PVA/CMC film filled with 1.60 wt.% of Cu‐Se NPs. The mechanical properties of the PVA/CMC blend improved after adding the hybrid NPs. Moreover, the antibacterial activity of the prepared samples was increased due to the filling of Cu‐Se nanoparticles to the films. Therefore, these results indicate the multifunctionality of PVA/CMC/Cu‐Se nanocomposite samples for use in electrical energy storage, solid‐polymer electrolytes, and food packaging industry. Preparation and characterization of nanocomposite samples.
Polymer nanocomposite samples of a polyvinyl alcohol (PVA)/carboxymethyl cellulose (CMC) blend doped with copper nanoparticles and selenium nanoparticles (Cu NPs/Se NPs) were prepared by the casting method. X‐ray diffraction analysis (XRD) patterns showed an increase in the degree of amorphous nature of the host polymeric matrix with increasing content of Cu/Se nanoparticles. The addition of 1.60 wt.%, Cu/Se NPs narrowed the indirect optical energy gap value of the nanocomposite from 3.97 to 2.39 eV. In addition, the differential scanning calorimetry (DSC) curve of the pure blend displays the miscibility of the blend components, confirmed by the presence of a single glass transition. Transmission electron microscopy (TEM) micrographs showed that the average sizes of Cu and Se nanoparticles are about 11 and 41 nm, respectively. The maximum values of AC and DC conductivity were 6.76 × 10−6 S.cm−1 and 5.49 × 10−10 for a PVA/CMC film filled with 1.60 wt.% of Cu‐Se NPs. The mechanical properties of the PVA/CMC blend improved after adding the hybrid NPs. Moreover, the antibacterial activity of the prepared samples was increased due to the filling of Cu‐Se nanoparticles to the films. Therefore, these results indicate the multifunctionality of PVA/CMC/Cu‐Se nanocomposite samples for use in electrical energy storage, solid‐polymer electrolytes, and food packaging industry.
Polymer nanocomposite samples of a polyvinyl alcohol (PVA)/carboxymethyl cellulose (CMC) blend doped with copper nanoparticles and selenium nanoparticles (Cu NPs/Se NPs) were prepared by the casting method. X-ray diffraction analysis (XRD) patterns showed an increase in the degree of amorphous nature of the host polymeric matrix with increasing content of Cu/Se nanoparticles. The addition of 1.60 wt.%, Cu/Se NPs narrowed the indirect optical energy gap value of the nanocomposite from 3.97 to 2.39 eV. In addition, the differential scanning calorimetry (DSC) curve of the pure blend displays the miscibility of the blend components, confirmed by the presence of a single glass transition. Transmission electron microscopy (TEM) micrographs showed that the average sizes of Cu and Se nanoparticles are about 11 and 41 nm, respectively. The maximum values of AC and DC conductivity were 6.76 * [10.sup.-6] S.[cm.sup.-1] and 5.49 * [10.sup.-10] for a PVA/CMC film filled with 1.60 wt.% of Cu-Se NPs. The mechanical properties of the PVA/CMC blend improved after adding the hybrid NPs. Moreover, the antibacterial activity of the prepared samples was increased due to the filling of Cu-Se nanoparticles to the films. Therefore, these results indicate the multifunctionality of PVA/CMC/Cu-Se nanocomposite samples for use in electrical energy storage, solid-polymer electrolytes, and food packaging industry. KEYWORDS AC conductivity, antibacterial activity, Cu NPs, mechanical properties, Se NPs
Polymer nanocomposite samples of a polyvinyl alcohol (PVA)/carboxymethyl cellulose (CMC) blend doped with copper nanoparticles and selenium nanoparticles (Cu NPs/Se NPs) were prepared by the casting method. X‐ray diffraction analysis (XRD) patterns showed an increase in the degree of amorphous nature of the host polymeric matrix with increasing content of Cu/Se nanoparticles. The addition of 1.60 wt.%, Cu/Se NPs narrowed the indirect optical energy gap value of the nanocomposite from 3.97 to 2.39 eV. In addition, the differential scanning calorimetry (DSC) curve of the pure blend displays the miscibility of the blend components, confirmed by the presence of a single glass transition. Transmission electron microscopy (TEM) micrographs showed that the average sizes of Cu and Se nanoparticles are about 11 and 41 nm, respectively. The maximum values of AC and DC conductivity were 6.76 × 10 −6  S.cm −1 and 5.49 × 10 −10 for a PVA/CMC film filled with 1.60 wt.% of Cu‐Se NPs. The mechanical properties of the PVA/CMC blend improved after adding the hybrid NPs. Moreover, the antibacterial activity of the prepared samples was increased due to the filling of Cu‐Se nanoparticles to the films. Therefore, these results indicate the multifunctionality of PVA/CMC/Cu‐Se nanocomposite samples for use in electrical energy storage, solid‐polymer electrolytes, and food packaging industry.
Polymer nanocomposite samples of a polyvinyl alcohol (PVA)/carboxymethyl cellulose (CMC) blend doped with copper nanoparticles and selenium nanoparticles (Cu NPs/Se NPs) were prepared by the casting method. X-ray diffraction analysis (XRD) patterns showed an increase in the degree of amorphous nature of the host polymeric matrix with increasing content of Cu/Se nanoparticles. The addition of 1.60 wt.%, Cu/Se NPs narrowed the indirect optical energy gap value of the nanocomposite from 3.97 to 2.39 eV. In addition, the differential scanning calorimetry (DSC) curve of the pure blend displays the miscibility of the blend components, confirmed by the presence of a single glass transition. Transmission electron microscopy (TEM) micrographs showed that the average sizes of Cu and Se nanoparticles are about 11 and 41 nm, respectively. The maximum values of AC and DC conductivity were 6.76 * [10.sup.-6] S.[cm.sup.-1] and 5.49 * [10.sup.-10] for a PVA/CMC film filled with 1.60 wt.% of Cu-Se NPs. The mechanical properties of the PVA/CMC blend improved after adding the hybrid NPs. Moreover, the antibacterial activity of the prepared samples was increased due to the filling of Cu-Se nanoparticles to the films. Therefore, these results indicate the multifunctionality of PVA/CMC/Cu-Se nanocomposite samples for use in electrical energy storage, solid-polymer electrolytes, and food packaging industry.
Audience Academic
Author Asnag, G. M.
Abdallah, E. M.
Morsi, M. A.
Aljohani, Marwah
Yassin, A. Y.
Albalwa, Aisha Nawaf
Author_xml – sequence: 1
  givenname: E. M.
  orcidid: 0000-0002-7692-7174
  surname: Abdallah
  fullname: Abdallah, E. M.
  email: dr.e_abdallah91@yahoo.com
  organization: Delta University for Science and Technology
– sequence: 2
  givenname: G. M.
  surname: Asnag
  fullname: Asnag, G. M.
  email: g.asnag@yahoo.com
  organization: Azal University for Human Development
– sequence: 3
  givenname: M. A.
  surname: Morsi
  fullname: Morsi, M. A.
  organization: Egyptian Russian University
– sequence: 4
  givenname: Marwah
  surname: Aljohani
  fullname: Aljohani, Marwah
  organization: Imam Abdulrahman Bin Faisal University
– sequence: 5
  givenname: Aisha Nawaf
  surname: Albalwa
  fullname: Albalwa, Aisha Nawaf
  organization: University of Tabuk
– sequence: 6
  givenname: A. Y.
  surname: Yassin
  fullname: Yassin, A. Y.
  organization: Delta University for Science and Technology
BookMark eNp9kttu1DAQhiNUJLaFC94gEldIza6TOI1zWVULrVQB4nAdOZPJxpVjB9spzRPyWp10kWDRgizbM-PvH5_mNDox1mAUvU7ZOmUs24xo1tlFnlfPolVacJGQw0-iFWN5luRCiBfRqfd3jNi8qFbRz62eQLUyKGti28Whxxi7DiEsXj83TrUx2HFEt_Go0ahpiI00tlNao4tJtUjsGBRIfb44blgMYiG4fXBA6KVZ7Hh0llIFhT6WpqUeVCMhoFO0SIa6V2Feth6tnu-VmSmqwfZWb0C6xj7MA4aeooBaT9p6jBs6Vfsyet5J7fHVr_ks-vZu-_XqOrn9-P7m6vI2AV7mVYKsE9g2LOWyEVhleVcILrO0Kcu0ZGXWZmVbMOA8E9CyApqiAwEyYzyF9qKE_Cx6s89LF_k-oQ_1nZ2coS3rTOSciyLn2W9qJzXWynQ2OAmD8lBflkWVV5yJkqjkCLVDg05q-lZ6Yjzk10d4ai0OCo4K3h4IiAn4EHZy8r6--fL5kD3_g20mrwx6Grza9cHvJcdSg7PeO-zq0alBurlOWb1UYk2VWD9VIrGbv1hQ4ani6PxK_0_xg240_zt1_Wn7Ya94BEG19HU
CitedBy_id crossref_primary_10_1002_pen_26549
crossref_primary_10_1002_vnl_22056
crossref_primary_10_1007_s11082_023_05950_y
crossref_primary_10_1007_s13399_024_05708_w
crossref_primary_10_1021_acsomega_4c00492
crossref_primary_10_1007_s11082_024_07113_z
crossref_primary_10_1002_pen_26389
crossref_primary_10_1149_2162_8777_adb98f
crossref_primary_10_1016_j_ceramint_2025_01_503
crossref_primary_10_1016_j_ijbiomac_2024_134473
crossref_primary_10_1007_s11082_024_07229_2
crossref_primary_10_1155_jfq_7805398
crossref_primary_10_1088_1402_4896_ad79a2
crossref_primary_10_1007_s11082_023_05420_5
crossref_primary_10_1002_slct_202404574
crossref_primary_10_1007_s10854_023_10938_1
crossref_primary_10_1002_vnl_22086
crossref_primary_10_1007_s10904_024_03244_8
crossref_primary_10_1007_s11082_024_07816_3
crossref_primary_10_1016_j_matchemphys_2024_129644
crossref_primary_10_1007_s10751_024_02092_9
crossref_primary_10_1016_j_est_2024_112765
crossref_primary_10_1007_s10854_024_11924_x
crossref_primary_10_1016_j_est_2024_111554
crossref_primary_10_1038_s41598_024_76918_5
crossref_primary_10_1080_00222348_2025_2452022
crossref_primary_10_1016_j_optmat_2024_115721
crossref_primary_10_1007_s11082_024_06916_4
crossref_primary_10_1007_s13399_025_06500_0
crossref_primary_10_1007_s10924_024_03250_4
crossref_primary_10_1007_s00289_024_05270_5
crossref_primary_10_1002_vnl_22179
crossref_primary_10_1016_j_ijbiomac_2023_127894
Cites_doi 10.1007/s10904-012-9660-5
10.1016/j.matchemphys.2020.123067
10.1016/j.molstruc.2022.132631
10.1016/j.matlet.2007.03.014
10.1016/j.jmrt.2021.10.117
10.1016/j.jallcom.2012.05.085
10.1016/j.molliq.2017.12.032
10.1007/s12648-014-0621-4
10.1016/j.polymertesting.2022.107794
10.1016/j.carbpol.2012.08.094
10.1016/j.physb.2011.07.050
10.1016/j.msec.2015.02.041
10.1016/j.ceramint.2009.09.016
10.3390/molecules26041146
10.1007/s10854-021-05701-3
10.1007/s12668-020-00718-0
10.1080/10667857.2020.1816383
10.1016/j.ceramint.2018.08.061
10.3144/expresspolymlett.2010.38
10.1007/s10570-020-03292-6
10.1007/s11664-020-08342-0
10.1016/j.molstruc.2018.11.095
10.1016/j.progpolymsci.2018.11.001
10.1016/j.materresbull.2010.05.013
10.1049/iet-nbt.2018.5228
10.1016/j.foodchem.2019.01.022
10.1016/j.matlet.2008.11.023
10.1016/j.coco.2021.100678
10.1016/j.applthermaleng.2016.07.053
10.1016/j.actbio.2007.11.006
10.1016/j.pdpdt.2021.102398
10.1088/1742-6596/1491/1/012033
10.1016/j.ijhydene.2016.06.191
10.1007/s10854-018-9257-z
10.1186/s11671-015-1073-2
10.1016/j.optmat.2022.113092
10.1002/er.7877
10.1016/S0013-4686(99)00353-9
10.56431/p-7o0g70
10.1007/s10924-012-0464-z
10.1007/BF03353781
10.1016/S0038-1098(99)00055-1
10.1007/s10904-022-02440-8
10.1016/j.molstruc.2022.133619
10.1016/j.compositesb.2019.05.044
10.1016/j.physb.2004.01.154
10.20964/2018.04.10
10.1007/BF00352048
10.1007/s10965-022-03011-8
10.1007/s10965-022-02943-5
10.1007/s10924-022-02377-6
10.1016/j.coco.2021.100662
10.1166/sl.2017.3856
10.1007/s10853-015-9023-z
10.1016/j.jmrt.2019.09.074
10.1007/s11664-012-2008-7
10.1088/0957-4484/17/2/007
10.1007/s10965-022-03134-y
10.1002/er.8695
10.1007/s12034-020-02149-9
10.1016/j.ijbiomac.2014.01.011
10.1016/j.jscs.2015.04.002
ContentType Journal Article
Copyright 2023 Society of Plastics Engineers.
COPYRIGHT 2023 Society of Plastics Engineers, Inc.
2023 Society of Plastics Engineers
Copyright_xml – notice: 2023 Society of Plastics Engineers.
– notice: COPYRIGHT 2023 Society of Plastics Engineers, Inc.
– notice: 2023 Society of Plastics Engineers
DBID AAYXX
CITATION
N95
ISR
7SR
8FD
JG9
DOI 10.1002/pen.26339
DatabaseName CrossRef
Business: Insights
Gale In Context: Science
Engineered Materials Abstracts
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Engineered Materials Abstracts
DatabaseTitleList
Materials Research Database

CrossRef




DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1548-2634
EndPage 1988
ExternalDocumentID A759394087
10_1002_pen_26339
PEN26339
Genre researchArticle
GeographicLocations Egypt
GeographicLocations_xml – name: Egypt
GroupedDBID -~X
.-4
.3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
29O
31~
33P
3SF
3V.
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
88I
8AF
8FE
8FG
8G5
8R4
8R5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDEX
ABEML
ABIJN
ABJCF
ABJNI
ABPVW
ABTAH
ABUWG
ACAHQ
ACBEA
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFKRA
AFPWT
AFWVQ
AFZJQ
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AIXEN
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARAPS
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAAKF
BAFTC
BDRZF
BENPR
BES
BFHJK
BGLVJ
BHBCM
BMNLL
BMXJE
BNHUX
BPHCQ
BROTX
BRXPI
BY8
CCPQU
CS3
CZ9
D-E
D-F
D1I
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
DWQXO
EBS
EJD
F00
F01
F04
FEDTE
FOJGT
G-S
G.N
GNP
GNUQQ
GODZA
GUQSH
H.T
H.X
HBH
HCIFZ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
H~9
IAO
ICW
IEA
IOF
ISR
ITC
IX1
J0M
JPC
KB.
KC.
KQQ
L6V
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M2O
M2P
M2Q
M6K
M7S
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N95
N9A
NDZJH
NEJ
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
P62
PALCI
PDBOC
PQQKQ
PROAC
PTHSS
PV9
Q.N
Q11
Q2X
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RWI
RWL
RWM
RX1
RXW
RYL
RZL
S0X
SAMSI
SUPJJ
TUS
U5U
UB1
V2E
W8V
W99
WBKPD
WFSAM
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WTY
WXSBR
WYISQ
XG1
XI7
XV2
ZE2
ZY4
ZZTAW
~02
~IA
~WT
AAYXX
ADMLS
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
PHGZM
PHGZT
7SR
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
ID FETCH-LOGICAL-c4739-e0f8edb014ab8e923f584a21b7717072d27d50c4428cd05cb5fc8ca2041cd67c3
IEDL.DBID DR2
ISSN 0032-3888
IngestDate Fri Jul 25 19:35:48 EDT 2025
Tue Jun 17 22:26:44 EDT 2025
Fri Jun 13 00:12:45 EDT 2025
Tue Jun 10 21:23:34 EDT 2025
Fri Jun 27 06:04:51 EDT 2025
Fri May 23 01:56:08 EDT 2025
Tue Jul 01 02:33:57 EDT 2025
Thu Apr 24 23:12:27 EDT 2025
Wed Jan 22 16:19:54 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4739-e0f8edb014ab8e923f584a21b7717072d27d50c4428cd05cb5fc8ca2041cd67c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7692-7174
PQID 2834485342
PQPubID 41843
PageCount 15
ParticipantIDs proquest_journals_2834485342
gale_infotracmisc_A759394087
gale_infotracgeneralonefile_A759394087
gale_infotracacademiconefile_A759394087
gale_incontextgauss_ISR_A759394087
gale_businessinsightsgauss_A759394087
crossref_primary_10_1002_pen_26339
crossref_citationtrail_10_1002_pen_26339
wiley_primary_10_1002_pen_26339_PEN26339
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2023
2023-07-00
20230701
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: July 2023
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: Newtown
PublicationTitle Polymer engineering and science
PublicationYear 2023
Publisher John Wiley & Sons, Inc
Society of Plastics Engineers, Inc
Blackwell Publishing Ltd
Publisher_xml – name: John Wiley & Sons, Inc
– name: Society of Plastics Engineers, Inc
– name: Blackwell Publishing Ltd
References 2021; 24
2022; 134
2019; 91
2021; 26
2013; 21
2000; 45
2016; 107
1994; 29
2020; 10
2008; 4
2019; 283
2018; 44
2022; 29
2014; 65
2015; 89
2021; 35
2011; 406
2021; 32
2014; 5
2013; 14
2018; 250
2020; 251
2020; 49
2016; 41
2022; 37
2022; 30
2007; 61
2022; 32
2020; 43
2014; 6
2010; 4
2012; 22
2012; 538
2019; 8
2018; 29
2022; 1267
2009; 63
2010; 36
2015; 51
2015; 50
2006; 17
2017; 21
2015; 10
2022; 46
2019; 1180
2013; 92
2004; 349
2022; 116
2010; 45
2022; 1257
2016; 6
2021; 15
2020; 1491
2017; 15
1999; 110
2020; 27
2019; 172
2012; 41
2018; 13
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_69_1
e_1_2_7_27_1
e_1_2_7_29_1
Puttaswamaiah S. (e_1_2_7_59_1) 2014; 5
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_38_1
Sardar S. (e_1_2_7_15_1) 2016; 6
References_xml – volume: 21
  start-page: 5
  year: 2017
  publication-title: J. Saudi Chem. Soc.
– volume: 92
  start-page: 407
  year: 2013
  publication-title: Carbohydr. Polym.
– volume: 50
  start-page: 4717
  year: 2015
  publication-title: J. Mater. Sci.
– volume: 46
  start-page: 23984
  year: 2022
  publication-title: Int. J. Energy Res.
– volume: 4
  start-page: 707
  year: 2008
  publication-title: Acta Biomater.
– volume: 49
  start-page: 6107
  year: 2020
  publication-title: J. Electron. Mater.
– volume: 14
  start-page: 58
  year: 2013
  publication-title: Int. Lett. Chem. Phys. Astron.
– volume: 5
  start-page: 470
  year: 2014
  publication-title: Int. J. Sci. Eng. Res.
– volume: 45
  start-page: 1417
  year: 2000
  publication-title: Electrochim. Acta
– volume: 349
  start-page: 84
  year: 2004
  publication-title: Phys. B
– volume: 45
  start-page: 1213
  year: 2010
  publication-title: Mater. Res. Bull.
– volume: 107
  start-page: 907
  year: 2016
  publication-title: Appl. Therm. Eng.
– volume: 17
  start-page: 385
  year: 2006
  publication-title: Nanotechnology
– volume: 22
  start-page: 878
  year: 2012
  publication-title: J. Inorg. Organomet. Polym. Mater.
– volume: 283
  start-page: 397
  year: 2019
  publication-title: Food Chem.
– volume: 91
  start-page: 141
  year: 2019
  publication-title: Prog. Polym. Sci.
– volume: 29
  start-page: 1
  year: 2022
  publication-title: J. Polym. Res.
– volume: 63
  start-page: 441
  year: 2009
  publication-title: Mater. Lett.
– volume: 44
  start-page: 20677
  year: 2018
  publication-title: Ceram. Int.
– volume: 250
  start-page: 335
  year: 2018
  publication-title: J. Mol. Liq.
– volume: 116
  year: 2022
  publication-title: Polym. Test.
– volume: 110
  start-page: 75
  year: 1999
  publication-title: Solid State Commun.
– volume: 251
  year: 2020
  publication-title: Mater. Chem. Phys.
– volume: 24
  year: 2021
  publication-title: Compos. Commun.
– volume: 538
  start-page: 212
  year: 2012
  publication-title: J. Alloys Compd.
– volume: 51
  start-page: 196
  year: 2015
  publication-title: Mater. Sci. Eng. C
– volume: 10
  start-page: 371
  year: 2015
  publication-title: Nanoscale Res. Lett.
– volume: 13
  start-page: 3812
  year: 2018
  publication-title: Int. J. Electrochem. Sci.
– volume: 61
  start-page: 4711
  year: 2007
  publication-title: Mater. Lett.
– volume: 1180
  start-page: 15
  year: 2019
  publication-title: J. Mol. Struct.
– volume: 41
  start-page: 1886
  year: 2012
  publication-title: J. Electron. Mater.
– volume: 36
  start-page: 291
  year: 2010
  publication-title: Ceram. Int.
– volume: 8
  start-page: 5996
  year: 2019
  publication-title: J. Mater. Res. Technol.
– volume: 35
  year: 2021
  publication-title: Photodiagn. Photodyn. Ther.
– volume: 4
  start-page: 300
  year: 2010
  publication-title: Express Polym. Lett
– volume: 6
  start-page: 169
  year: 2014
  publication-title: Nano Micro. Lett.
– volume: 1257
  year: 2022
  publication-title: J. Mol. Struct.
– volume: 15
  start-page: 5615
  year: 2021
  publication-title: J. Mater. Res. Technol.
– volume: 27
  start-page: 8039
  year: 2020
  publication-title: Cellulose
– volume: 32
  start-page: 4715
  year: 2022
  publication-title: J. Inorg. Organomet. Polym. Mater.
– volume: 134
  year: 2022
  publication-title: Opt. Mater.
– volume: 15
  start-page: 589
  year: 2017
  publication-title: Sens. Lett.
– volume: 46
  start-page: 1
  year: 2022
  publication-title: Int. J. Energy Res.
– volume: 30
  start-page: 2559
  year: 2022
  publication-title: J. Polym. Environ.
– volume: 6
  start-page: 85340
  year: 2016
  publication-title: R. Soc. Chem.
– volume: 26
  start-page: 1146
  year: 2021
  publication-title: Molecules
– volume: 37
  start-page: 124
  year: 2022
  publication-title: Mater. Technol.
– volume: 13
  start-page: 275
  year: 2018
  publication-title: IET Nanobiotechnol.
– volume: 406
  start-page: 4068
  year: 2011
  publication-title: Phys. B
– volume: 65
  start-page: 155
  year: 2014
  publication-title: Int. J. Biol. Macromol.
– volume: 1267
  year: 2022
  publication-title: J. Mol. Struct.
– volume: 1491
  year: 2020
  publication-title: J. Phys. Conf. Ser.
– volume: 32
  start-page: 10443
  year: 2021
  publication-title: J. Mater. Sci. Mater. Electron.
– volume: 10
  start-page: 389
  year: 2020
  publication-title: BioNanoScience
– volume: 29
  start-page: 3451
  year: 1994
  publication-title: J. Mater. Sci.
– volume: 172
  start-page: 436
  year: 2019
  publication-title: Compos. Part B Eng.
– volume: 89
  start-page: 577
  year: 2015
  publication-title: Indian J. Phys.
– volume: 21
  start-page: 520
  year: 2013
  publication-title: J. Polym. Environ.
– volume: 29
  start-page: 11598
  year: 2018
  publication-title: J. Mater. Sci. Mater. Electron.
– volume: 43
  start-page: 1
  year: 2020
  publication-title: Bull. Mater. Sci.
– volume: 41
  start-page: 15141
  year: 2016
  publication-title: Int. J. Hydrogen Energy
– ident: e_1_2_7_68_1
  doi: 10.1007/s10904-012-9660-5
– ident: e_1_2_7_64_1
  doi: 10.1016/j.matchemphys.2020.123067
– ident: e_1_2_7_69_1
  doi: 10.1016/j.molstruc.2022.132631
– volume: 5
  start-page: 470
  year: 2014
  ident: e_1_2_7_59_1
  publication-title: Int. J. Sci. Eng. Res.
– ident: e_1_2_7_22_1
  doi: 10.1016/j.matlet.2007.03.014
– ident: e_1_2_7_8_1
  doi: 10.1016/j.jmrt.2021.10.117
– ident: e_1_2_7_32_1
  doi: 10.1016/j.jallcom.2012.05.085
– ident: e_1_2_7_62_1
  doi: 10.1016/j.molliq.2017.12.032
– ident: e_1_2_7_35_1
  doi: 10.1007/s12648-014-0621-4
– ident: e_1_2_7_18_1
  doi: 10.1016/j.polymertesting.2022.107794
– ident: e_1_2_7_9_1
  doi: 10.1016/j.carbpol.2012.08.094
– ident: e_1_2_7_38_1
  doi: 10.1016/j.physb.2011.07.050
– ident: e_1_2_7_58_1
  doi: 10.1016/j.msec.2015.02.041
– volume: 6
  start-page: 85340
  year: 2016
  ident: e_1_2_7_15_1
  publication-title: R. Soc. Chem.
– ident: e_1_2_7_61_1
  doi: 10.1016/j.ceramint.2009.09.016
– ident: e_1_2_7_30_1
  doi: 10.3390/molecules26041146
– ident: e_1_2_7_50_1
  doi: 10.1007/s10854-021-05701-3
– ident: e_1_2_7_19_1
  doi: 10.1007/s12668-020-00718-0
– ident: e_1_2_7_27_1
  doi: 10.1080/10667857.2020.1816383
– ident: e_1_2_7_57_1
  doi: 10.1016/j.ceramint.2018.08.061
– ident: e_1_2_7_55_1
  doi: 10.3144/expresspolymlett.2010.38
– ident: e_1_2_7_48_1
  doi: 10.1007/s10570-020-03292-6
– ident: e_1_2_7_31_1
  doi: 10.1007/s11664-020-08342-0
– ident: e_1_2_7_5_1
  doi: 10.1016/j.molstruc.2018.11.095
– ident: e_1_2_7_4_1
  doi: 10.1016/j.progpolymsci.2018.11.001
– ident: e_1_2_7_24_1
  doi: 10.1016/j.materresbull.2010.05.013
– ident: e_1_2_7_21_1
  doi: 10.1049/iet-nbt.2018.5228
– ident: e_1_2_7_20_1
  doi: 10.1016/j.materresbull.2010.05.013
– ident: e_1_2_7_54_1
  doi: 10.1016/j.foodchem.2019.01.022
– ident: e_1_2_7_23_1
  doi: 10.1016/j.matlet.2008.11.023
– ident: e_1_2_7_6_1
  doi: 10.1016/j.coco.2021.100678
– ident: e_1_2_7_45_1
  doi: 10.1016/j.applthermaleng.2016.07.053
– ident: e_1_2_7_41_1
  doi: 10.1016/j.actbio.2007.11.006
– ident: e_1_2_7_44_1
  doi: 10.1016/j.pdpdt.2021.102398
– ident: e_1_2_7_26_1
  doi: 10.1088/1742-6596/1491/1/012033
– ident: e_1_2_7_2_1
  doi: 10.1016/j.ijhydene.2016.06.191
– ident: e_1_2_7_10_1
  doi: 10.1007/s10854-018-9257-z
– ident: e_1_2_7_16_1
  doi: 10.1016/j.progpolymsci.2018.11.001
– ident: e_1_2_7_29_1
  doi: 10.1186/s11671-015-1073-2
– ident: e_1_2_7_67_1
  doi: 10.1016/j.optmat.2022.113092
– ident: e_1_2_7_28_1
  doi: 10.1002/er.7877
– ident: e_1_2_7_40_1
  doi: 10.1016/S0013-4686(99)00353-9
– ident: e_1_2_7_60_1
  doi: 10.56431/p-7o0g70
– ident: e_1_2_7_39_1
  doi: 10.1007/s10924-012-0464-z
– ident: e_1_2_7_42_1
  doi: 10.1007/BF03353781
– ident: e_1_2_7_7_1
  doi: 10.1016/S0038-1098(99)00055-1
– ident: e_1_2_7_63_1
  doi: 10.1007/s10904-022-02440-8
– ident: e_1_2_7_52_1
  doi: 10.1016/j.molliq.2017.12.032
– ident: e_1_2_7_17_1
  doi: 10.1016/j.molstruc.2022.133619
– ident: e_1_2_7_12_1
  doi: 10.1016/j.compositesb.2019.05.044
– ident: e_1_2_7_51_1
  doi: 10.1016/j.physb.2004.01.154
– ident: e_1_2_7_56_1
  doi: 10.20964/2018.04.10
– ident: e_1_2_7_3_1
  doi: 10.1007/BF00352048
– ident: e_1_2_7_13_1
  doi: 10.1007/s10965-022-03011-8
– ident: e_1_2_7_65_1
  doi: 10.1007/s10965-022-02943-5
– ident: e_1_2_7_14_1
  doi: 10.1016/j.ijhydene.2016.06.191
– ident: e_1_2_7_37_1
  doi: 10.1007/s10924-022-02377-6
– ident: e_1_2_7_49_1
  doi: 10.1016/j.coco.2021.100662
– ident: e_1_2_7_11_1
  doi: 10.1166/sl.2017.3856
– ident: e_1_2_7_66_1
  doi: 10.1007/s10853-015-9023-z
– ident: e_1_2_7_36_1
  doi: 10.1016/j.jmrt.2019.09.074
– ident: e_1_2_7_46_1
  doi: 10.1007/s11664-012-2008-7
– ident: e_1_2_7_25_1
  doi: 10.1088/0957-4484/17/2/007
– ident: e_1_2_7_34_1
  doi: 10.1007/s10965-022-03134-y
– ident: e_1_2_7_53_1
  doi: 10.1002/er.8695
– ident: e_1_2_7_33_1
  doi: 10.1007/s12034-020-02149-9
– ident: e_1_2_7_43_1
  doi: 10.1016/j.ijbiomac.2014.01.011
– ident: e_1_2_7_47_1
  doi: 10.1016/j.jscs.2015.04.002
SSID ssj0002359
Score 2.5402594
Snippet Polymer nanocomposite samples of a polyvinyl alcohol (PVA)/carboxymethyl cellulose (CMC) blend doped with copper nanoparticles and selenium nanoparticles (Cu...
SourceID proquest
gale
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1974
SubjectTerms AC conductivity
Analysis
antibacterial activity
Antibacterial agents
Calorimetry
Carboxymethyl cellulose
Carboxymethylcellulose
Cellulose
Copper
Cu NPs
Diffraction
Diffraction patterns
Electric properties
Electrolytes
Energy gap
Energy storage
Food packaging industry
Founding
Glass transition
Mechanical properties
Miscibility
Molten salt electrolytes
Nanocomposites
Nanoparticles
Optical properties
Photomicrographs
Polyelectrolytes
Polymeric composites
Polymers
Polyvinyl alcohol
Properties
Se NPs
Selenium
Solid electrolytes
X-rays
Title Elucidation of the effect of hybrid copper/selenium nanofiller on the optical, thermal, electrical, mechanical properties and antibacterial activity of polyvinyl alcohol/carboxymethyl cellulose blend
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpen.26339
https://www.proquest.com/docview/2834485342
Volume 63
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLamvQAPXAaIwUAW4vZA2sR24lY8TVOngcSEBpP2gBT5llGRJVHSIJU_yN_inDjpyDQkxEOrxPnc2okvx84530fIC8G5YybJgkxpE4iM20C5JMEtgVAIq2MXYuzwx-Pk6FR8OIvPtsi7IRbG80NsNtywZ3TjNXZwpZvpJWkorPYnLOEcg_fQVwsNopNL6ijGY2_6chZwWOYNrEIhm25yjuaiqyPy2FrtppvDO-TrUFDvZfJ90q70xPy8wuH4nzW5S273Zijd9-3mHtlyxQ65cTCov-2QW38QFd4nvxZ5a5ZefomWGQWrkXpPEDz7tsawL2rKqnL1FOWbimV7QQtVoB547moKuTBLWXU752_xBCYEOPAqPD7xwmEUMh7TCl8R1Mj1SlVh4bNaak8rDRcxFAMVL_CvqzJf_1gWa0j1Wr9To2oN9wyVsSEV30u0edk4qqFU9gE5PVx8OTgKegmIwAjJ54ELs5mzGtZxSs8cGKMZGEyKRVrCMjSUzDJp49AIWEQZG8ZGo0uaUSwUkbGJNPwh2S7Kwj0iNEGuegUGLnNaMJnMMxWJSEqrDDcyinbJm6ExpKbnR0eZjjz1zM4sheeUds9plzzfQCtPCnId6CW2qLQXE4WvBrdbmnPVNk26L-M5itLPJPxYh0MyjgK9fTzg_eeTEeh1D8pKKJRRffAEVA35u0bIVyPkuWcvvw64NwJC-zLjy0NPSPthrUkZqrKAgScY3K2uSf-9_umnxXF38PjfoU_ITQY917tD75HtVd26p2D0rfSzrnf_BjESV6o
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbGeBg8cBkgBgMsxO2BtIntxK3EyzQ6dbBVaGzSXqbIdpxR0SVR0yCVP8jf4pw46cg0JMRDIsf53NqJL8eOz_cR8kpwbpmJUi9V2ngi5YmnbBThkoAvRKJD66Pv8OEkGp-IT6fh6Rr50PrCOH6I1YIbtoy6v8YGjgvS_UvWUJju91jE-fAGuYmK3qhf8PHokjyK8dAZv5x5HCZ6La-Qz_qrpJ3R6Gqf3LVX6wFn7y45a7Pq9pl871UL3TM_r7A4_m9Z7pE7jSVKd1zVuU_WbLZJNnZbAbhNcvsPrsIH5NdoVpmpU2CieUrBcKRuMwhefVui5xc1eVHYeR8VnLJpdUEzlaEk-MzOKaTCJHlRL56_xwsYEyDghHhc5IVFR2QM0wK_EsyR7pWqLIFjMdWOWRpuojcGil7gXxf5bPljmi0h1sn99o2aa3hoKI4NsfhpoprlpaUacpU8JCd7o-PdsdeoQHhGSD70rJ8ObKJhKqf0wII9moLNpFigJcxEfckSJpPQNwLmUSbxQ6NxV5pRzBeBSSJp-COynuWZfUxohHT1CmxcZrVgMhqmKhCBlIky3Mgg2CLv2toQm4YiHZU6ZrEjd2YxvKe4fk9b5OUKWjhekOtAr7FKxY2eKJxKXHEpz1VVlvGODIeoSz-Q8GM1Dvk4Mtzw4wD7X486oLcNKM0hU0Y1_hNQNKTw6iDfdJDnjsD8OuB2Bwj1y3Rvt00hbnq2MmYozAI2nmDwtOo6_ffyx19Gkzrw5N-hL8jG-PjwID7Yn3x-Sm4xaMZud_Q2WV_MK_sMbMCFfl439d9mklvE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbGkGA8cBkgBgMixGUPpE1sJ27F0zRabVyqaTBpD0iRb9kquiRqGqTyB_lbnBMnHZmGhHholTifWzvxsY8dn-8j5CVnzFIdp34qlfZ5yowvbRzjkkDAuVGRDTB2-PMk3j_mH06ikzXyro2FcfwQqwU3tIy6v0YDL0zavyANhdl-j8aMDa-R6zwGY0GP6OiCO4qyyPm-jPoM5nktrVBA-6usncHocpfcdVfr8WZ8h3xrS-q2mXzvVQvV0z8vkTj-Z1XuktuNH-rtuoZzj6zZbJPc3Gvl3zbJrT-YCu-TX6NZpadOf8nLUw_cRs9tBcGzsyXGfXk6Lwo776N-Uzatzr1MZigIPrNzD3Jhlryol87f4gmMCHDgZHhc4rnFMGQ89gp8RzBHsldPZgY-i6lyvNJwEWMxUPIC_7rIZ8sf02wJqU7st6_lXME9Q2lsSMUXE9UsL62noFTmATkej77u7fuNBoSvuWBD3wbpwBoFEzmpBha80RQ8JklDJWAeGghqqDBRoDnMorQJIq1wT5qWNOChNrHQ7CFZz_LMPiJejGT1EjxcahWnIh6mMuShEEZqpkUYbpGdtjEkuiFIR52OWeKonWkCzympn9MWebGCFo4V5CrQK2xRSaMmCl8lrreUp7Iqy2RXRENUpR8I-LEah2wcGW73cYCDL0cd0JsGlOZQKC2b6AmoGhJ4dZCvO8hTR19-FXC7A4T2pbuXW0tImn6tTCjKsoCHxyncrbpJ_73-yeFoUh88_nfoc3Lj8P04-XQw-fiEbFAwYrc1epusL-aVfQoO4EI9qw39Nzo9Wnw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Elucidation+of+the+effect+of+hybrid+copper%2Fselenium+nanofiller+on+the+optical%2C+thermal%2C+electrical%2C+mechanical+properties+and+antibacterial+activity+of+polyvinyl+alcohol%2Fcarboxymethyl+cellulose+blend&rft.jtitle=Polymer+engineering+and+science&rft.au=Abdallah%2C+E.+M.&rft.au=Asnag%2C+G.+M.&rft.au=Morsi%2C+M.+A.&rft.au=Aljohani%2C+Marwah&rft.date=2023-07-01&rft.issn=0032-3888&rft.eissn=1548-2634&rft.volume=63&rft.issue=7&rft.spage=1974&rft.epage=1988&rft_id=info:doi/10.1002%2Fpen.26339&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_pen_26339
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-3888&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-3888&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-3888&client=summon