A review on carboxylic acid cross‐linked polyvinyl alcohol: Properties and applications
Polyvinyl alcohol (PVA) is a nontoxic, biodegradable, and biocompatible polymer and has been used extensively in various fields. Indeed, important features of PVA such as its film‐forming ability, high tensile strength and flexibility, high viscosity, solvent tolerance ability, thermostable nature h...
Saved in:
Published in | Polymer engineering and science Vol. 62; no. 2; pp. 225 - 246 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
01.02.2022
Society of Plastics Engineers, Inc Blackwell Publishing Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Polyvinyl alcohol (PVA) is a nontoxic, biodegradable, and biocompatible polymer and has been used extensively in various fields. Indeed, important features of PVA such as its film‐forming ability, high tensile strength and flexibility, high viscosity, solvent tolerance ability, thermostable nature have made it vital and drawn the attention of scientific community. However, being a water‐soluble polymer, some chemical modifications are required to alter this property of PVA. Cross‐linking is the most attractive and widely used method to change the properties of PVA to make it more valuable material. Different carboxylic acids have already been used for PVA cross‐linking in various applications such as pervaporation, reverse osmosis (RO), wound dressing, drug delivery, and fuel cells. However, a comprehensive study on structure–property correlation of carboxylic acids as PVA cross‐linker is not available. In this review, different available studies on carboxylic acid cross‐linked PVA are summarized and are used to develop structure–property correlations of carboxylic acids as cross‐linker on the properties of cross‐linked PVA. Advantages and limitations of different carboxylic acids as PVA cross‐linker are also summarized for various fields such as tissue engineering, wound dressing, drug delivery, fuel cell/solid polymer electrolyte, pervaporation, desalination and RO solid polymer electrolytes, and food packaging. |
---|---|
AbstractList | Polyvinyl alcohol (PVA) is a nontoxic, biodegradable, and biocompatible polymer and has been used extensively in various fields. Indeed, important features of PVA such as its film‐forming ability, high tensile strength and flexibility, high viscosity, solvent tolerance ability, thermostable nature have made it vital and drawn the attention of scientific community. However, being a water‐soluble polymer, some chemical modifications are required to alter this property of PVA. Cross‐linking is the most attractive and widely used method to change the properties of PVA to make it more valuable material. Different carboxylic acids have already been used for PVA cross‐linking in various applications such as pervaporation, reverse osmosis (RO), wound dressing, drug delivery, and fuel cells. However, a comprehensive study on structure–property correlation of carboxylic acids as PVA cross‐linker is not available. In this review, different available studies on carboxylic acid cross‐linked PVA are summarized and are used to develop structure–property correlations of carboxylic acids as cross‐linker on the properties of cross‐linked PVA. Advantages and limitations of different carboxylic acids as PVA cross‐linker are also summarized for various fields such as tissue engineering, wound dressing, drug delivery, fuel cell/solid polymer electrolyte, pervaporation, desalination and RO solid polymer electrolytes, and food packaging. Polyvinyl alcohol (PVA) is a nontoxic, biodegradable, and biocompatible polymer and has been used extensively in various fields. Indeed, important features of PVA such as its film-forming ability, high tensile strength and flexibility, high viscosity, solvent tolerance ability, thermostable nature have made it vital and drawn the attention of scientific community. However, being a watersoluble polymer, some chemical modifications are required to alter this property of PVA. Cross-linking is the most attractive and widely used method to change the properties of PVA to make it more valuable material. Different carboxylic acids have already been used for PVA cross-linking in various applications such as pervaporation, reverse osmosis (RO), wound dressing, drug delivery, and fuel cells. However, a comprehensive study on structure-property correlation of carboxylic acids as PVA cross-linker is not available. In this review, different available studies on carboxylic acid cross-linked PVA are summarized and are used to develop structure-property correlations of carboxylic acids as cross-linker on the properties of cross-linked PVA. Advantages and limitations of different carboxylic acids as PVA cross-linker are also summarized for various fields such as tissue engineering, wound dressing, drug delivery, fuel cell/ solid polymer electrolyte, pervaporation, desalination and RO solid polymer electrolytes, and food packaging. Polyvinyl alcohol (PVA) is a nontoxic, biodegradable, and biocompatible polymer and has been used extensively in various fields. Indeed, important features of PVA such as its film-forming ability, high tensile strength and flexibility, high viscosity, solvent tolerance ability, thermostable nature have made it vital and drawn the attention of scientific community. However, being a watersoluble polymer, some chemical modifications are required to alter this property of PVA. Cross-linking is the most attractive and widely used method to change the properties of PVA to make it more valuable material. Different carboxylic acids have already been used for PVA cross-linking in various applications such as pervaporation, reverse osmosis (RO), wound dressing, drug delivery, and fuel cells. However, a comprehensive study on structure-property correlation of carboxylic acids as PVA cross-linker is not available. In this review, different available studies on carboxylic acid cross-linked PVA are summarized and are used to develop structure-property correlations of carboxylic acids as cross-linker on the properties of cross-linked PVA. Advantages and limitations of different carboxylic acids as PVA cross-linker are also summarized for various fields such as tissue engineering, wound dressing, drug delivery, fuel cell/ solid polymer electrolyte, pervaporation, desalination and RO solid polymer electrolytes, and food packaging. KEYWORDS carboxylic acids, cross-linked PVA, cross-linking, films, membranes, water- soluble polymers |
Audience | Academic |
Author | Warkar, Sudhir G. Gautam, Leela Kant, Ravi Jain, Manish Ahmad, Syed Ishraque |
Author_xml | – sequence: 1 givenname: Leela surname: Gautam fullname: Gautam, Leela organization: Zakir Husain Delhi College (University of Delhi) – sequence: 2 givenname: Sudhir G. surname: Warkar fullname: Warkar, Sudhir G. organization: Delhi Technological University – sequence: 3 givenname: Syed Ishraque surname: Ahmad fullname: Ahmad, Syed Ishraque organization: Zakir Husain Delhi College (University of Delhi) – sequence: 4 givenname: Ravi surname: Kant fullname: Kant, Ravi organization: Zakir Husain Delhi College (University of Delhi) – sequence: 5 givenname: Manish orcidid: 0000-0001-8174-4754 surname: Jain fullname: Jain, Manish email: manishjain@dtu.ac.in organization: Delhi Technological University |
BookMark | eNp9kt1qFDEYhoNUcFs98A4CHgnOdpKZzCSeLaXVQtHiz4FHIZP5sk3NJmMy23bOvASvsVfSuCvoyiqBBMLzfPn53kN04IMHhJ6Tck7Kkh4P4OeU8Vo8QjPCal7QpqoP0KwsK1pUnPMn6DCl6zKzFRMz9GWBI9xYuMXBY61iF-4mZzVW2vZYx5DS_fcfzvqv0OMhuOnG-slh5XS4Cu41voxhgDhaSFj5HqthyLIabfDpKXpslEvw7Nd6hD6fnX46eVtcvH9zfrK4KHTdVqKoVEc1JT3TYEzFjRB9RzRAy0nfcgYahOg6wUyj27o0wqhe6JpQDQ1p66arjtCLbd0hhm9rSKO8Duvo85GSNpQxzgRjv6mlciCtN2GMSq9s0nLRCNaQqqRtpoo91BI8ROXyRxubt3f4-R4-jx5WVu8VXu4ImRnhblyqdUry_OOHXfbVH2y3TtZDylOyy6sxbZV9pTddi2DkEO1KxUmSUv7MhszZkJtsZPb4L1bbcdO2fH_r_mfc5hdN_y4tL0_fbY0HQDfMbQ |
CitedBy_id | crossref_primary_10_1016_j_cej_2023_146911 crossref_primary_10_1016_j_memsci_2023_121959 crossref_primary_10_1016_j_porgcoat_2022_107186 crossref_primary_10_1515_epoly_2023_0097 crossref_primary_10_1016_j_matchemphys_2022_126986 crossref_primary_10_3390_ijms25031668 crossref_primary_10_1016_j_coche_2025_101097 crossref_primary_10_3390_polym16172513 crossref_primary_10_1016_j_scp_2024_101861 crossref_primary_10_1016_j_porgcoat_2024_108799 crossref_primary_10_1021_acsabm_3c00743 crossref_primary_10_1016_j_optmat_2023_114590 crossref_primary_10_3390_polym15092037 crossref_primary_10_1007_s00396_024_05313_3 crossref_primary_10_1021_acs_biomac_4c01564 crossref_primary_10_3390_gels11020098 crossref_primary_10_1007_s10924_023_03148_7 crossref_primary_10_1002_app_55428 crossref_primary_10_1002_mabi_202400217 crossref_primary_10_1007_s10965_022_03098_z crossref_primary_10_1007_s41779_025_01179_y crossref_primary_10_1016_j_mtchem_2023_101381 crossref_primary_10_3390_membranes15010023 crossref_primary_10_53360_2788_7995_2024_2_14__50 crossref_primary_10_1177_87560879231225120 crossref_primary_10_1016_j_tifs_2023_04_004 crossref_primary_10_3390_polym16142021 crossref_primary_10_1016_j_chempr_2023_12_005 crossref_primary_10_3389_fnut_2023_1177950 crossref_primary_10_3390_polym14081604 crossref_primary_10_1007_s10570_024_06354_1 crossref_primary_10_3390_en16083306 crossref_primary_10_1016_j_heliyon_2024_e40429 crossref_primary_10_1007_s42452_025_06477_5 crossref_primary_10_1016_j_ijbiomac_2024_131378 crossref_primary_10_1002_pen_26325 crossref_primary_10_1016_j_crgsc_2022_100354 crossref_primary_10_1021_acsapm_3c00230 crossref_primary_10_1016_j_cis_2023_102886 crossref_primary_10_1007_s13369_023_07643_w crossref_primary_10_1098_rsos_230843 crossref_primary_10_1002_vnl_22068 crossref_primary_10_1021_acsabm_3c00455 crossref_primary_10_1016_j_memsci_2023_121548 crossref_primary_10_3390_gels11020088 crossref_primary_10_3390_nano12152685 crossref_primary_10_1016_j_foodchem_2024_142018 crossref_primary_10_1016_j_fpsl_2024_101304 crossref_primary_10_3390_foods12122316 crossref_primary_10_1007_s10854_023_11418_2 crossref_primary_10_1016_j_scitotenv_2024_177926 crossref_primary_10_3390_membranes14010023 crossref_primary_10_1016_j_fpsl_2022_100892 crossref_primary_10_1016_j_chemosphere_2024_142437 crossref_primary_10_1016_j_jddst_2024_106253 crossref_primary_10_1007_s40005_023_00636_9 crossref_primary_10_1021_acsanm_3c02962 crossref_primary_10_1016_j_rinma_2024_100564 crossref_primary_10_1016_j_bioactmat_2023_06_006 crossref_primary_10_1016_j_ijhydene_2024_09_249 crossref_primary_10_1016_j_memsci_2023_122175 crossref_primary_10_1016_j_jallcom_2024_177724 crossref_primary_10_1016_j_seppur_2024_126289 crossref_primary_10_1016_j_polymer_2023_126280 crossref_primary_10_1080_09276440_2024_2412375 crossref_primary_10_1016_j_ijpharm_2024_124141 crossref_primary_10_1088_2053_1591_acd50f crossref_primary_10_1088_1402_4896_ad2329 crossref_primary_10_1590_0001_3765202420 crossref_primary_10_1002_app_56046 crossref_primary_10_1016_j_eurpolymj_2024_113487 crossref_primary_10_1007_s11947_024_03660_1 crossref_primary_10_3390_foods13091385 crossref_primary_10_1111_raq_12910 crossref_primary_10_1002_smll_202308092 crossref_primary_10_1007_s42247_024_00656_7 crossref_primary_10_1016_j_jics_2022_100693 crossref_primary_10_1039_D3QO01838E crossref_primary_10_1016_j_indcrop_2024_119766 crossref_primary_10_1016_j_mtcomm_2024_110577 crossref_primary_10_1002_pc_27203 crossref_primary_10_1590_0104_1428_20230075 crossref_primary_10_1016_j_ijbiomac_2025_141961 crossref_primary_10_1515_gps_2023_0109 crossref_primary_10_1002_pen_26806 crossref_primary_10_1039_D4EE05154H crossref_primary_10_1007_s12161_025_02757_3 crossref_primary_10_3390_polym14122452 crossref_primary_10_1016_j_jwpe_2024_104852 crossref_primary_10_1002_pat_6327 crossref_primary_10_1016_j_foodchem_2024_139464 crossref_primary_10_1016_j_memsci_2022_121066 crossref_primary_10_1177_14644207231188601 crossref_primary_10_1080_00222348_2024_2367340 crossref_primary_10_1016_j_seppur_2024_131173 crossref_primary_10_3390_membranes13070662 crossref_primary_10_1016_j_eurpolymj_2022_111193 crossref_primary_10_1080_15583724_2024_2396853 crossref_primary_10_3390_mi13101651 crossref_primary_10_1016_j_micromeso_2024_113187 crossref_primary_10_1021_acs_iecr_4c02138 crossref_primary_10_1002_mawe_202300075 crossref_primary_10_1016_j_jece_2024_113237 crossref_primary_10_1016_j_jpowsour_2024_236054 crossref_primary_10_1016_j_heliyon_2025_e41863 crossref_primary_10_1007_s42250_025_01206_2 crossref_primary_10_1016_j_jmrt_2022_04_130 crossref_primary_10_1021_acsami_3c02408 crossref_primary_10_1016_j_desal_2023_117211 crossref_primary_10_1021_acs_jpcb_4c08370 crossref_primary_10_3390_membranes12030347 crossref_primary_10_3390_su14063561 |
Cites_doi | 10.1002/pen.25709 10.3390/polym7030580 10.4028/www.scientific.net/MSF.930.625 10.1002/app.31420 10.1016/j.tifs.2014.06.007 10.1016/j.memsci.2015.10.025 10.1002/pen.23239 10.1007/s13726-017-0542-0 10.1016/j.carbpol.2018.06.035 10.1002/app.1992.070460505 10.1007/s00289-020-03142-2 10.1016/j.colsurfb.2019.110757 10.1002/pen.24637 10.1007/s13201-020-1162-y 10.1109/ICSMB.2010.5735404 10.4172/2157-7587.1000131 10.1016/j.carbpol.2013.12.030 10.3390/molecules25010112 10.1080/19443994.2015.1014861 10.1016/j.polymer.2008.01.027 10.1002/pen.25147 10.1002/macp.201700130 10.1016/j.eurpolymj.2020.109484 10.1002/slct.201801851 10.1021/acs.chemrev.8b00593 10.1155/2014/764031 10.3390/polym11040716 10.1016/j.matdes.2017.02.007 10.1002/pen.24855 10.3390/sym12060960 10.3390/ma11112203 10.1039/C6RA05742J 10.1039/c3gc37141g 10.1016/j.cej.2009.05.043 10.1002/app.46159 10.1002/app.46125 10.1007/s10853-017-1370-5 10.1002/mame.201700024 10.1016/S0032-3861(01)00082-9 10.1007/s10965-009-9362-z 10.1002/(SICI)1097-4628(19970822)65:8<1643::AID-APP20>3.0.CO;2-V 10.1016/j.msec.2010.02.017 10.1016/j.jiec.2011.05.015 10.1016/j.polymer.2010.09.048 10.1109/CHUSER.2012.6504358 10.1002/app.43674 10.1016/j.cej.2016.10.039 10.1002/app.45964 10.2478/aut-2019-0040 10.1002/app.12910 10.1016/j.ssi.2013.09.047 10.1088/2053-1591/aab0e4 10.1080/01496395.2013.813040 10.1016/j.msec.2016.07.058 10.1002/pen.20823 10.1016/j.progpolymsci.2009.05.003 10.1002/app.39036 10.1177/096739110901700702 10.1002/bkcs.10493 10.1016/j.jddst.2019.05.013 10.1002/1097-0126(200008)49:8<820::AID-PI460>3.0.CO;2-D 10.1016/j.msec.2015.03.049 10.1016/j.seppur.2017.04.002 10.1016/j.desal.2013.11.024 10.1016/j.jece.2018.102824 10.1016/j.matpr.2016.11.013 10.1002/pen.25574 10.3390/nano8010023 10.1680/jbibn.16.00043 10.1016/j.memsci.2019.01.012 10.1134/S0965545X15030049 10.1007/s10924-019-01610-z 10.1002/app.50088 10.3144/expresspolymlett.2014.95 10.1080/09205063.2019.1652418 10.1002/app.47393 10.22146/ijc.21286 10.1016/j.radphyschem.2013.05.058 10.1080/09593330.2017.1388852 10.1063/5.0008096 10.1016/j.cep.2005.01.005 10.1016/j.colcom.2018.01.002 10.1038/s41467-019-13993-7 10.1007/s10856-013-4995-1 10.1002/app.38264 10.1002/pc.22482 10.1016/j.polymertesting.2018.01.024 10.1007/s10924-017-1077-3 10.1007/s10934-017-0399-9 10.1016/j.tibtech.2015.03.008 10.1063/1.4968360 10.1002/pola.28129 10.1177/0883911519841390 10.1016/j.ejps.2017.02.006 10.1016/j.jconrel.2019.11.033 10.6000/1929-6037.2016.05.03.4 10.1002/mabi.201800347 10.3390/ma11030352 10.1039/D0PY00023J 10.1016/j.cclet.2007.09.019 10.1080/03602559.2011.617404 10.1016/j.carbpol.2015.11.039 10.3390/pharmaceutics11090447 10.1016/j.memsci.2011.08.036 10.1002/slct.202000564 10.1007/s40034-020-00165-2 10.3390/polym11111799 10.1063/1.5047755 10.1680/jsuin.19.00057 10.15376/biores.14.2.3833-3843 10.2166/wst.2020.124 10.1002/pen.23825 10.3390/nano9030397 10.3390/nano5020398 10.1016/j.matlet.2019.127233 |
ContentType | Journal Article |
Copyright | 2021 Society of Plastics Engineers. COPYRIGHT 2022 Society of Plastics Engineers, Inc. 2022 Society of Plastics Engineers |
Copyright_xml | – notice: 2021 Society of Plastics Engineers. – notice: COPYRIGHT 2022 Society of Plastics Engineers, Inc. – notice: 2022 Society of Plastics Engineers |
DBID | AAYXX CITATION N95 ISR 7SR 8FD JG9 |
DOI | 10.1002/pen.25849 |
DatabaseName | CrossRef Gale Business: Insights Gale In Context: Science Engineered Materials Abstracts Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Engineered Materials Abstracts |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1548-2634 |
EndPage | 246 |
ExternalDocumentID | A695613027 10_1002_pen_25849 PEN25849 |
Genre | reviewArticle |
GeographicLocations | India |
GeographicLocations_xml | – name: India |
GroupedDBID | -~X .-4 .3N .4S .DC .GA .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 29O 31~ 33P 3SF 3V. 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 88I 8AF 8FE 8FG 8G5 8R4 8R5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDEX ABEML ABIJN ABJCF ABJNI ABPVW ABTAH ABUWG ACAHQ ACBEA ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOD ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFKRA AFPWT AFWVQ AFZJQ AHBTC AIAGR AITYG AIURR AIWBW AIXEN AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARAPS ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZQEC AZVAB BAAKF BAFTC BDRZF BENPR BES BFHJK BGLVJ BHBCM BMNLL BMXJE BNHUX BPHCQ BROTX BRXPI BY8 CCPQU CS3 CZ9 D-E D-F D1I DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 DWQXO EBS EJD F00 F01 F04 FEDTE FOJGT G-S G.N GNP GNUQQ GODZA GUQSH H.T H.X HBH HCIFZ HF~ HGLYW HHY HHZ HVGLF HZ~ H~9 IAO ICW IEA IOF ISR ITC IX1 J0M JPC KB. KC. KQQ L6V LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M2O M2P M2Q M6K M7S MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N95 N9A NDZJH NEJ NF~ NNB O66 O9- OIG P2P P2W P2X P4D P62 PALCI PDBOC PQQKQ PROAC PTHSS PV9 Q.N Q11 Q2X QB0 QRW R.K RIWAO RJQFR RNS ROL RWI RWL RWM RX1 RXW RYL RZL S0X SAMSI SUPJJ TUS U5U UB1 V2E W8V W99 WBKPD WFSAM WH7 WIB WIH WIK WJL WOHZO WQJ WRC WTY WXSBR WYISQ XG1 XI7 XV2 ZE2 ZY4 ZZTAW ~02 ~IA ~WT AAYXX ADMLS AEYWJ AGHNM AGQPQ AGYGG CITATION PHGZM PHGZT 7SR 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 |
ID | FETCH-LOGICAL-c4739-3ab2c21d5ceff38f99db1cee781d785ece99bb95f6c740f9fad9c412ce61746b3 |
IEDL.DBID | DR2 |
ISSN | 0032-3888 |
IngestDate | Sun Jul 13 04:05:00 EDT 2025 Tue Jun 17 21:28:09 EDT 2025 Thu Jun 12 23:44:22 EDT 2025 Tue Jun 10 20:25:28 EDT 2025 Fri Jun 27 03:35:54 EDT 2025 Fri May 23 01:23:27 EDT 2025 Tue Jul 01 02:33:54 EDT 2025 Thu Apr 24 22:56:11 EDT 2025 Wed Jan 22 16:27:18 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4739-3ab2c21d5ceff38f99db1cee781d785ece99bb95f6c740f9fad9c412ce61746b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8174-4754 |
PQID | 2625585955 |
PQPubID | 41843 |
PageCount | 22 |
ParticipantIDs | proquest_journals_2625585955 gale_infotracmisc_A695613027 gale_infotracgeneralonefile_A695613027 gale_infotracacademiconefile_A695613027 gale_incontextgauss_ISR_A695613027 gale_businessinsightsgauss_A695613027 crossref_primary_10_1002_pen_25849 crossref_citationtrail_10_1002_pen_25849 wiley_primary_10_1002_pen_25849_PEN25849 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2022 2022-02-00 20220201 |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 02 year: 2022 text: February 2022 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: Newtown |
PublicationTitle | Polymer engineering and science |
PublicationYear | 2022 |
Publisher | John Wiley & Sons, Inc Society of Plastics Engineers, Inc Blackwell Publishing Ltd |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Society of Plastics Engineers, Inc – name: Blackwell Publishing Ltd |
References | 2018; 1990 2019; 2019 2013; 2 2019; 11 2017; 1788 2010; 17 2013; 129 2013; 128 2019; 14 2011; 50A 2019; 19 2020; 12 2020; 11 2020; 10 2001; 42 2016; 33 2018; 8 2018; 3 2021; 78 2018; 5 2010; 117 2013; 53 1992; 46 2014; 94 2010; 30 2009; 17 2015; 57 2007; 18 2019; 7 2019; 9 2019; 3 2016; 19 2019; 30 2020; 263 2015; 52 2019; 34 2014; 49 2007; 90 2014; 2014 2018; 23 2017; 135 2018; 26 2016; 5 2016; 6 2018; 198 2017; 52 2016; 7 2017; 309 2019; 40 2016; 2 2016; 3 2021; 138 2008; 49 2020; 28 2019; 575 2020; 25 2014; 39 2021; 61 2011; 383 2018; 11 2017; 302 2010; 51 2020; 317 2017; 6 2015; 36 2021; 21 2000; 49 2017; 3 2019; 52 2013; 24 2019; 59 2015; 33 2020; 124 2009; 153 2011; 17 2012; 51 2014; 333 2020; 8 2020; 5 2013; 15 2020; 2242 2014; 4 2018; 930 2013; 13 2018; 135 2019; 119 2017; 120 2014; 8 2012; 458 2014; 54 2017; 218 2015; 6 2015; 5 2017; 26 1997; 65 2011 2010 2017; 28 2020; 81 2017; 24 2016; 54 2020; 188 2020; 101 2017; 29 2018; 67 2015; 7 2005; 44 2009; 34 2012; 3 2013; 34 2016; 498 2016; 133 2019; 136 2017; 183 2016; 138 2013; 253 2017; 101 2014; 103 2016; 69 2007; 47 2018; 58 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 Murad S. K. (e_1_2_8_64_1) 2020; 12 e_1_2_8_132_1 e_1_2_8_5_1 e_1_2_8_9_1 e_1_2_8_117_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_87_1 e_1_2_8_113_1 e_1_2_8_41_1 e_1_2_8_83_1 e_1_2_8_109_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 Gulenoor F. (e_1_2_8_102_1) 2016; 7 e_1_2_8_120_1 e_1_2_8_91_1 e_1_2_8_95_1 e_1_2_8_99_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_101_1 e_1_2_8_124_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_48_1 Alakanandana A. (e_1_2_8_62_1) 2017; 3 e_1_2_8_2_1 e_1_2_8_133_1 e_1_2_8_110_1 e_1_2_8_6_1 e_1_2_8_21_1 e_1_2_8_67_1 e_1_2_8_44_1 e_1_2_8_86_1 e_1_2_8_118_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_82_1 e_1_2_8_114_1 e_1_2_8_18_1 e_1_2_8_14_1 e_1_2_8_37_1 Chowdhury P. (e_1_2_8_61_1) 2011; 50 e_1_2_8_94_1 e_1_2_8_90_1 e_1_2_8_121_1 e_1_2_8_98_1 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_106_1 e_1_2_8_33_1 e_1_2_8_75_1 e_1_2_8_129_1 e_1_2_8_52_1 Maji P. (e_1_2_8_105_1) 2013; 2 Nagarkar R. (e_1_2_8_3_1) 2019; 3 e_1_2_8_71_1 e_1_2_8_125_1 e_1_2_8_28_1 Le Tran H. (e_1_2_8_88_1) 2016; 19 Le Tran H. (e_1_2_8_89_1) 2016; 19 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_81_1 e_1_2_8_111_1 e_1_2_8_130_1 e_1_2_8_7_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_85_1 e_1_2_8_115_1 e_1_2_8_134_1 e_1_2_8_17_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_70_1 Nguyen D. T. (e_1_2_8_108_1) 2019; 2019 e_1_2_8_122_1 e_1_2_8_97_1 Mahalakshmi P. (e_1_2_8_128_1) 2016; 2 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_107_1 Gaaz T. S. (e_1_2_8_119_1) 2017; 29 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_103_1 e_1_2_8_126_1 e_1_2_8_93_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_69_1 Mačiulytė S. (e_1_2_8_19_1) 2017; 28 e_1_2_8_80_1 e_1_2_8_131_1 Marin E. (e_1_2_8_4_1) 2014; 8 e_1_2_8_42_1 e_1_2_8_116_1 e_1_2_8_23_1 e_1_2_8_65_1 e_1_2_8_84_1 e_1_2_8_112_1 Mazumdar N. (e_1_2_8_79_1) 2016; 33 e_1_2_8_39_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_58_1 Maitra J. (e_1_2_8_8_1) 2014; 4 e_1_2_8_92_1 e_1_2_8_96_1 e_1_2_8_100_1 e_1_2_8_31_1 Jose T. (e_1_2_8_60_1) 2015; 6 e_1_2_8_77_1 e_1_2_8_127_1 e_1_2_8_12_1 e_1_2_8_54_1 e_1_2_8_73_1 e_1_2_8_123_1 e_1_2_8_50_1 e_1_2_8_104_1 |
References_xml | – year: 2011 – volume: 135 start-page: 45964 year: 2018 publication-title: J. Appl. Polym. Sci. – volume: 59 start-page: 1479 year: 2019 publication-title: Polym. Eng. Sci. – volume: 5 start-page: 115 issue: 3 year: 2016 publication-title: J. Memb. Separ. – volume: 25 start-page: 112 year: 2020 publication-title: Molecules – volume: 53 start-page: 153 year: 2013 publication-title: Polym Eng Sci. – volume: 51 start-page: 5539 year: 2010 publication-title: Polymer – volume: 90 start-page: 2420 year: 2007 publication-title: J. Appl. Polym. Sci. – volume: 11 start-page: 352 year: 2018 publication-title: Materials – volume: 54 start-page: 2515 year: 2016 publication-title: J. Polym. Sci., Part A: Polym. Chem. – volume: 2242 year: 2020 publication-title: AIP Conf Proc – volume: 101 start-page: 125 issue: 2 year: 2020 publication-title: J. Inst. Eng. (India): E – volume: 6 start-page: 39823 year: 2016 publication-title: RSC Adv. – volume: 29 start-page: 71 year: 2017 publication-title: J. Eng. – volume: 135 start-page: 46125 year: 2017 publication-title: J. Appl. Polym. Sci. – volume: 14 start-page: 3833 year: 2019 publication-title: BioResources – volume: 183 start-page: 66 year: 2017 publication-title: Sep. Purif. Technol. – volume: 30 start-page: 636 year: 2010 publication-title: Mater. Sci. Eng., C – volume: 44 start-page: 1019 year: 2005 publication-title: Chem. Eng. Process.: Process Intesif. – volume: 5 year: 2018 publication-title: Mater. Res. Express – volume: 42 start-page: 6347 year: 2001 publication-title: Polymer – volume: 54 start-page: 2449 year: 2014 publication-title: Polym Eng Sci. – volume: 17 start-page: 717 year: 2011 publication-title: J. Ind. Eng. Chem. – volume: 13 start-page: 262 year: 2013 publication-title: Indones. J. Chem. – volume: 458 year: 2012 – volume: 17 start-page: 725 year: 2010 publication-title: J. Polym. Res. – volume: 3 start-page: 131 year: 2012 publication-title: Hydrol.: Curr. Res. – volume: 11 start-page: 1 issue: 1 year: 2020 publication-title: Nat. Commun. – volume: 8 start-page: 23 issue: 1 year: 2018 publication-title: Nanomaterials – volume: 23 start-page: 52 year: 2018 publication-title: Colloid Interface Sci. Commun. – volume: 94 start-page: 171 year: 2014 publication-title: Radiat. Phys. Chem. – volume: 49 start-page: 22 year: 2014 publication-title: Sep. Sci. Technol. – volume: 33 start-page: 41 year: 2016 publication-title: J. Polym. Mater. – volume: 8 start-page: 182 year: 2020 publication-title: Surf. Innov. – volume: 2014 start-page: 1 year: 2014 publication-title: J. Nanomater. – volume: 188 year: 2020 publication-title: Colloids Surf., B – volume: 7 start-page: 580 year: 2015 publication-title: Polymers – volume: 30 start-page: 1604 year: 2019 publication-title: J. Biomater. Sci. Polym. Ed. – volume: 103 start-page: 94 year: 2014 publication-title: Carbohydr. Polym. – volume: 67 start-page: 55 year: 2018 publication-title: Polym. Test. – volume: 3 start-page: 11167 year: 2018 publication-title: ChemistrySelect – volume: 117 start-page: 2732 year: 2010 publication-title: J. Appl. Polym. Sci. – volume: 3 start-page: 34 year: 2019 publication-title: ASPS – volume: 26 start-page: 1782 year: 2018 publication-title: J. Polym. Environ. – volume: 138 start-page: 156 year: 2016 publication-title: Carbohydr. Polym. – volume: 69 start-page: 726 year: 2016 publication-title: Mater. Sci. Eng., C – volume: 19 year: 2019 publication-title: Macromol. Biosci. – volume: 11 start-page: 2203 year: 2018 publication-title: Materials – volume: 21 start-page: 20 year: 2021 publication-title: Autex Res. J. – volume: 52 start-page: 421 year: 2019 publication-title: J Drug Deliv Sci Technol – volume: 18 start-page: 1353 year: 2007 publication-title: Chin. Chem. Lett. – volume: 3 start-page: 3680 year: 2016 publication-title: Mater. Today: Proc. – volume: 28 start-page: 532 year: 2020 publication-title: J. Polym. Environ. – volume: 19 start-page: 97 issue: 4 year: 2016 publication-title: STDJ – volume: 11 start-page: 1799 year: 2019 publication-title: Polymer – volume: 128 start-page: 1640 year: 2013 publication-title: J. Appl. Polym. Sci. – volume: 11 start-page: 447 year: 2019 publication-title: Pharmaceutics – volume: 17 start-page: 403 issue: 7 year: 2009 publication-title: Polym. Polym. Compos. – volume: 333 start-page: 1 year: 2014 publication-title: Desalination – volume: 52 start-page: 306 year: 2015 publication-title: Mater. Sci. Eng., C – volume: 57 start-page: 6901 year: 2015 publication-title: Desalin. Water Treat. – volume: 61 start-page: 278 year: 2021 publication-title: Polym Eng Sci – volume: 52 start-page: 12098 year: 2017 publication-title: J. Mater. Sci. – volume: 5 start-page: 398 year: 2015 publication-title: Nanomaterials – volume: 129 start-page: 3140 year: 2013 publication-title: J. Appl. Polym. Sci. – volume: 39 start-page: 18 issue: 1 year: 2014 publication-title: Trends Food Sci. Technol. – volume: 2019 year: 2019 publication-title: Int. J. Polym. Sci. – volume: 34 start-page: 263 year: 2019 publication-title: J. Bioact. Compat. Polym. – volume: 2 start-page: 62 issue: 2 year: 2013 publication-title: J. PharmaSciTech – volume: 8 start-page: 674 year: 2014 publication-title: Afr. J. Pharmacy Pharmacol. – volume: 50A start-page: 1730 year: 2011 publication-title: Indian J. Chem. – volume: 19 start-page: 70 issue: 3 year: 2016 publication-title: STDJ – volume: 81 start-page: 491 year: 2020 publication-title: Water Sci. Technol. – volume: 317 start-page: 142 year: 2020 publication-title: J. Controlled Release – volume: 1788 year: 2017 publication-title: AIP Conf Proc – volume: 36 start-page: 2534 year: 2015 publication-title: Bull. Korean Chem. Soc. – volume: 120 start-page: 135 year: 2017 publication-title: Mater. Des. – volume: 198 start-page: 181 year: 2018 publication-title: Carbohydr. Polym. – volume: 135 start-page: 46159 year: 2018 publication-title: J. Appl. Polym. Sci. – volume: 309 start-page: 381 year: 2017 publication-title: Chem. Eng. J. – volume: 253 start-page: 189 year: 2013 publication-title: Solid State Ionics – volume: 1990 year: 2018 publication-title: AIP Conf Proc – volume: 49 start-page: 1993 issue: 8 year: 2008 publication-title: Polymer – volume: 138 start-page: 50088 year: 2021 publication-title: J. Appl. Polym. Sci. – volume: 124 year: 2020 publication-title: Eur. Polym. J. – volume: 28 start-page: 74 year: 2017 publication-title: Chemija – volume: 9 start-page: 397 year: 2019 publication-title: Nanomaterials – volume: 119 start-page: 5298 year: 2019 publication-title: Chem. Rev. – volume: 65 start-page: 1643 year: 1997 publication-title: J. Appl. Polym. Sci. – volume: 133 start-page: 43674 year: 2016 publication-title: J. Appl. Polym. Sci. – volume: 930 start-page: 625 year: 2018 publication-title: Mater. Sci. Forum – start-page: 360 year: 2010 – volume: 47 start-page: 1373 year: 2007 publication-title: Polym Eng Sci. – volume: 2 start-page: 339 issue: 2 year: 2016 publication-title: IJAR – volume: 7 start-page: 125 year: 2016 publication-title: Chem Sci J. – volume: 61 start-page: 1887 year: 2021 publication-title: Polym Eng Sci. – volume: 78 start-page: 917 year: 2021 publication-title: Polym. Bull. – volume: 153 start-page: 199 year: 2009 publication-title: Chem. Eng. J. – volume: 24 start-page: 2449 year: 2013 publication-title: J. Mater. Sci.: Mater. Med. – volume: 136 start-page: 47393 year: 2019 publication-title: J. Appl. Polym. Sci. – volume: 49 start-page: 820 year: 2000 publication-title: Polym. Int. – volume: 218 year: 2017 publication-title: Macromol. Chem. Phys. – volume: 26 start-page: 579 year: 2017 publication-title: Iran. Polym. J. – volume: 58 start-page: 2119 year: 2018 publication-title: Polym. Eng. Sci. – volume: 498 start-page: 263 year: 2016 publication-title: J. Membr. Sci. – volume: 12 start-page: 960 year: 2020 publication-title: Symmetry – volume: 383 start-page: 96 year: 2011 publication-title: J. Membr. Sci. – volume: 10 start-page: 100 issue: 4 year: 2020 publication-title: Appl. Water Sci. – volume: 575 start-page: 135 year: 2019 publication-title: J. Membr. Sci. – volume: 57 start-page: 321 year: 2015 publication-title: POLYM SCI SER A – volume: 15 start-page: 1398 year: 2013 publication-title: Green Chem. – volume: 58 start-page: 849 year: 2018 publication-title: Polym. Eng. Sci. – volume: 8 start-page: 941 year: 2014 publication-title: EXPRESS Polym. Lett. – volume: 33 start-page: 362 year: 2015 publication-title: Trends Biotechnol. – volume: 3 start-page: 30 year: 2017 publication-title: Int. J. Eng. Sci. Technol. – volume: 34 start-page: 799 year: 2013 publication-title: Polym. Compos. – volume: 6 start-page: 1 issue: 3 year: 2015 publication-title: J. Chem. Eng. Process Technol. – volume: 4 start-page: 25 year: 2014 publication-title: Am. J. Polym. Sci. – volume: 51 start-page: 65 year: 2012 publication-title: Polym.‐Plast. Technol. Eng. – volume: 263 year: 2020 publication-title: Mater. Lett. – volume: 7 year: 2019 publication-title: J. Environ. Chem. Eng. – volume: 46 start-page: 783 year: 1992 publication-title: J. Appl. Polym. Sci. – volume: 6 start-page: 191 issue: 4 year: 2017 publication-title: Bioinspired Biomim. Nanobiomaterials – volume: 11 start-page: 716 year: 2019 publication-title: Polymer – volume: 34 start-page: 969 year: 2009 publication-title: Prog. Polym. Sci. – volume: 101 start-page: 160 year: 2017 publication-title: Eur. J. Pharm. Sci. – volume: 12 start-page: 1 year: 2020 publication-title: Int. J. Pharm. Res. – volume: 5 start-page: 4826 issue: 16 year: 2020 publication-title: ChemistrySelect – volume: 302 year: 2017 publication-title: Macromol. Mater. Eng. – volume: 24 start-page: 1595 year: 2017 publication-title: J. Porous Mater. – volume: 11 start-page: 4787 year: 2020 publication-title: Polym. Chem. – volume: 40 start-page: 312 year: 2019 publication-title: Environ. Technol. – volume: 10 start-page: 1 issue: 4 year: 2020 publication-title: Appl. Water Sci. – volume: 50 start-page: 1730 year: 2011 ident: e_1_2_8_61_1 publication-title: Indian J. Chem. – ident: e_1_2_8_123_1 doi: 10.1002/pen.25709 – ident: e_1_2_8_11_1 doi: 10.3390/polym7030580 – ident: e_1_2_8_97_1 doi: 10.4028/www.scientific.net/MSF.930.625 – ident: e_1_2_8_30_1 doi: 10.1002/app.31420 – ident: e_1_2_8_109_1 doi: 10.1016/j.tifs.2014.06.007 – ident: e_1_2_8_35_1 doi: 10.1016/j.memsci.2015.10.025 – ident: e_1_2_8_72_1 doi: 10.1002/pen.23239 – ident: e_1_2_8_134_1 doi: 10.1007/s13726-017-0542-0 – ident: e_1_2_8_12_1 doi: 10.1016/j.carbpol.2018.06.035 – ident: e_1_2_8_31_1 doi: 10.1002/app.1992.070460505 – ident: e_1_2_8_50_1 doi: 10.1007/s00289-020-03142-2 – ident: e_1_2_8_53_1 doi: 10.1016/j.colsurfb.2019.110757 – ident: e_1_2_8_14_1 doi: 10.1002/pen.24637 – ident: e_1_2_8_92_1 doi: 10.1007/s13201-020-1162-y – ident: e_1_2_8_17_1 doi: 10.1109/ICSMB.2010.5735404 – ident: e_1_2_8_46_1 doi: 10.1007/s13201-020-1162-y – ident: e_1_2_8_126_1 – ident: e_1_2_8_132_1 doi: 10.4172/2157-7587.1000131 – ident: e_1_2_8_34_1 doi: 10.1016/j.carbpol.2013.12.030 – volume: 6 start-page: 1 issue: 3 year: 2015 ident: e_1_2_8_60_1 publication-title: J. Chem. Eng. Process Technol. – ident: e_1_2_8_114_1 doi: 10.3390/molecules25010112 – ident: e_1_2_8_36_1 doi: 10.1080/19443994.2015.1014861 – ident: e_1_2_8_107_1 doi: 10.1016/j.polymer.2008.01.027 – ident: e_1_2_8_9_1 doi: 10.1002/pen.25147 – ident: e_1_2_8_124_1 doi: 10.1002/macp.201700130 – ident: e_1_2_8_54_1 doi: 10.1016/j.eurpolymj.2020.109484 – ident: e_1_2_8_78_1 doi: 10.1002/slct.201801851 – ident: e_1_2_8_110_1 doi: 10.1021/acs.chemrev.8b00593 – ident: e_1_2_8_104_1 doi: 10.1155/2014/764031 – ident: e_1_2_8_120_1 doi: 10.3390/polym11040716 – ident: e_1_2_8_32_1 doi: 10.1016/j.matdes.2017.02.007 – ident: e_1_2_8_115_1 doi: 10.1002/pen.24855 – ident: e_1_2_8_5_1 doi: 10.3390/sym12060960 – ident: e_1_2_8_23_1 doi: 10.3390/ma11112203 – volume: 33 start-page: 41 year: 2016 ident: e_1_2_8_79_1 publication-title: J. Polym. Mater. – ident: e_1_2_8_2_1 doi: 10.1039/C6RA05742J – ident: e_1_2_8_116_1 doi: 10.1039/c3gc37141g – volume: 28 start-page: 74 year: 2017 ident: e_1_2_8_19_1 publication-title: Chemija – ident: e_1_2_8_69_1 doi: 10.1016/j.cej.2009.05.043 – ident: e_1_2_8_45_1 doi: 10.1002/app.46159 – ident: e_1_2_8_48_1 doi: 10.1002/app.46125 – ident: e_1_2_8_55_1 doi: 10.1007/s10853-017-1370-5 – ident: e_1_2_8_87_1 doi: 10.1002/mame.201700024 – ident: e_1_2_8_77_1 doi: 10.1016/S0032-3861(01)00082-9 – ident: e_1_2_8_10_1 doi: 10.1007/s10965-009-9362-z – ident: e_1_2_8_15_1 doi: 10.1002/(SICI)1097-4628(19970822)65:8<1643::AID-APP20>3.0.CO;2-V – ident: e_1_2_8_24_1 doi: 10.1016/j.msec.2010.02.017 – ident: e_1_2_8_130_1 doi: 10.1016/j.jiec.2011.05.015 – ident: e_1_2_8_28_1 doi: 10.1016/j.polymer.2010.09.048 – ident: e_1_2_8_20_1 doi: 10.1109/CHUSER.2012.6504358 – volume: 3 start-page: 34 year: 2019 ident: e_1_2_8_3_1 publication-title: ASPS – ident: e_1_2_8_56_1 doi: 10.1002/app.43674 – ident: e_1_2_8_122_1 doi: 10.1016/j.cej.2016.10.039 – volume: 2019 year: 2019 ident: e_1_2_8_108_1 publication-title: Int. J. Polym. Sci. – ident: e_1_2_8_91_1 doi: 10.1002/app.45964 – ident: e_1_2_8_103_1 doi: 10.2478/aut-2019-0040 – ident: e_1_2_8_112_1 doi: 10.1002/app.12910 – volume: 2 start-page: 62 issue: 2 year: 2013 ident: e_1_2_8_105_1 publication-title: J. PharmaSciTech – ident: e_1_2_8_51_1 doi: 10.1016/j.ssi.2013.09.047 – ident: e_1_2_8_58_1 doi: 10.1088/2053-1591/aab0e4 – ident: e_1_2_8_49_1 doi: 10.1080/01496395.2013.813040 – ident: e_1_2_8_127_1 doi: 10.1016/j.msec.2016.07.058 – ident: e_1_2_8_41_1 doi: 10.1002/pen.20823 – ident: e_1_2_8_75_1 doi: 10.1016/j.progpolymsci.2009.05.003 – ident: e_1_2_8_125_1 doi: 10.1002/app.39036 – ident: e_1_2_8_65_1 doi: 10.1177/096739110901700702 – ident: e_1_2_8_70_1 doi: 10.1002/bkcs.10493 – ident: e_1_2_8_98_1 doi: 10.1016/j.jddst.2019.05.013 – ident: e_1_2_8_38_1 doi: 10.1002/1097-0126(200008)49:8<820::AID-PI460>3.0.CO;2-D – ident: e_1_2_8_13_1 doi: 10.1016/j.msec.2015.03.049 – ident: e_1_2_8_133_1 doi: 10.1016/j.seppur.2017.04.002 – ident: e_1_2_8_86_1 doi: 10.1016/j.desal.2013.11.024 – ident: e_1_2_8_96_1 doi: 10.1016/j.jece.2018.102824 – volume: 19 start-page: 70 issue: 3 year: 2016 ident: e_1_2_8_89_1 publication-title: STDJ – ident: e_1_2_8_84_1 doi: 10.1016/j.matpr.2016.11.013 – ident: e_1_2_8_40_1 doi: 10.1002/pen.25574 – ident: e_1_2_8_106_1 doi: 10.3390/nano8010023 – ident: e_1_2_8_26_1 doi: 10.1680/jbibn.16.00043 – volume: 2 start-page: 339 issue: 2 year: 2016 ident: e_1_2_8_128_1 publication-title: IJAR – ident: e_1_2_8_71_1 doi: 10.1016/j.memsci.2019.01.012 – ident: e_1_2_8_63_1 doi: 10.1134/S0965545X15030049 – ident: e_1_2_8_29_1 doi: 10.1007/s10924-019-01610-z – ident: e_1_2_8_80_1 doi: 10.1002/app.50088 – volume: 19 start-page: 97 issue: 4 year: 2016 ident: e_1_2_8_88_1 publication-title: STDJ – ident: e_1_2_8_74_1 doi: 10.3144/expresspolymlett.2014.95 – ident: e_1_2_8_27_1 doi: 10.1080/09205063.2019.1652418 – ident: e_1_2_8_93_1 doi: 10.1002/app.47393 – ident: e_1_2_8_101_1 doi: 10.22146/ijc.21286 – ident: e_1_2_8_33_1 doi: 10.1016/j.radphyschem.2013.05.058 – ident: e_1_2_8_59_1 doi: 10.1080/09593330.2017.1388852 – ident: e_1_2_8_121_1 doi: 10.1063/5.0008096 – volume: 8 start-page: 674 year: 2014 ident: e_1_2_8_4_1 publication-title: Afr. J. Pharmacy Pharmacol. – ident: e_1_2_8_68_1 doi: 10.1016/j.cep.2005.01.005 – ident: e_1_2_8_57_1 doi: 10.1016/j.colcom.2018.01.002 – ident: e_1_2_8_95_1 doi: 10.1038/s41467-019-13993-7 – ident: e_1_2_8_25_1 doi: 10.1007/s10856-013-4995-1 – volume: 4 start-page: 25 year: 2014 ident: e_1_2_8_8_1 publication-title: Am. J. Polym. Sci. – volume: 12 start-page: 1 year: 2020 ident: e_1_2_8_64_1 publication-title: Int. J. Pharm. Res. – volume: 29 start-page: 71 year: 2017 ident: e_1_2_8_119_1 publication-title: J. Eng. – volume: 7 start-page: 125 year: 2016 ident: e_1_2_8_102_1 publication-title: Chem Sci J. – ident: e_1_2_8_6_1 doi: 10.1002/app.38264 – ident: e_1_2_8_66_1 doi: 10.1002/pc.22482 – ident: e_1_2_8_94_1 doi: 10.1016/j.polymertesting.2018.01.024 – ident: e_1_2_8_7_1 doi: 10.1007/s10924-017-1077-3 – volume: 3 start-page: 30 year: 2017 ident: e_1_2_8_62_1 publication-title: Int. J. Eng. Sci. Technol. – ident: e_1_2_8_37_1 doi: 10.1007/s10934-017-0399-9 – ident: e_1_2_8_43_1 doi: 10.1016/j.tibtech.2015.03.008 – ident: e_1_2_8_99_1 doi: 10.1063/1.4968360 – ident: e_1_2_8_67_1 doi: 10.1002/pola.28129 – ident: e_1_2_8_100_1 doi: 10.1177/0883911519841390 – ident: e_1_2_8_111_1 doi: 10.1016/j.ejps.2017.02.006 – ident: e_1_2_8_83_1 doi: 10.1016/j.jconrel.2019.11.033 – ident: e_1_2_8_90_1 doi: 10.6000/1929-6037.2016.05.03.4 – ident: e_1_2_8_117_1 doi: 10.1002/mabi.201800347 – ident: e_1_2_8_18_1 doi: 10.3390/ma11030352 – ident: e_1_2_8_81_1 doi: 10.1039/D0PY00023J – ident: e_1_2_8_76_1 doi: 10.1016/j.cclet.2007.09.019 – ident: e_1_2_8_21_1 doi: 10.1080/03602559.2011.617404 – ident: e_1_2_8_44_1 doi: 10.1016/j.carbpol.2015.11.039 – ident: e_1_2_8_82_1 doi: 10.3390/pharmaceutics11090447 – ident: e_1_2_8_47_1 doi: 10.1016/j.memsci.2011.08.036 – ident: e_1_2_8_73_1 doi: 10.1002/slct.202000564 – ident: e_1_2_8_85_1 doi: 10.1007/s40034-020-00165-2 – ident: e_1_2_8_52_1 doi: 10.3390/polym11111799 – ident: e_1_2_8_113_1 doi: 10.1063/1.5047755 – ident: e_1_2_8_118_1 doi: 10.1680/jsuin.19.00057 – ident: e_1_2_8_39_1 doi: 10.15376/biores.14.2.3833-3843 – ident: e_1_2_8_131_1 doi: 10.2166/wst.2020.124 – ident: e_1_2_8_42_1 doi: 10.1002/pen.23825 – ident: e_1_2_8_129_1 doi: 10.3390/nano9030397 – ident: e_1_2_8_16_1 doi: 10.3390/nano5020398 – ident: e_1_2_8_22_1 doi: 10.1016/j.matlet.2019.127233 |
SSID | ssj0002359 |
Score | 2.6334136 |
SecondaryResourceType | review_article |
Snippet | Polyvinyl alcohol (PVA) is a nontoxic, biodegradable, and biocompatible polymer and has been used extensively in various fields. Indeed, important features of... |
SourceID | proquest gale crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 225 |
SubjectTerms | Acids Biocompatibility Biodegradability Carboxylic acids cross‐linked PVA cross‐linking Desalination Electrolytes Electrolytic cells Food packaging Fuel cells membranes Molten salt electrolytes Pervaporation Polymers Polyvinyl alcohol Properties Reverse osmosis Solid electrolytes Tensile strength Tissue engineering water‐soluble polymers Wound healing |
Title | A review on carboxylic acid cross‐linked polyvinyl alcohol: Properties and applications |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpen.25849 https://www.proquest.com/docview/2625585955 |
Volume | 62 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFB5KX9QHrVWxWmUQby_ZdmcySUafltJSBUupFioIw1zL4pItm91CffIn-Bv9JZ4zk2ybUkF8CYF8SeY-35mZ8x1CXpoCzIogwDqpKpMBpbZZJUKemVwyAxTfWYPeyJ8Oiv3j_OOJOFkh7ztfmKQPsVxww54Rx2vs4No0W5eioWDtDxhMn-i8h2e1kBAdXUpHMS4S9eUs42DmdapC22xr-WZvLro-IvfZapxu9u6Rb11C0ymT74PF3Azsj2sajv-ZkzVyt6WhdJTazX2y4ut1cmuni_62Tu5cESp8QL6OaPJxodOaWj0zkKrJ2FJtx47GzP3--Qv3gr2jZ9PJxfm4vphQncLvvqOHuOI_Q-lWqmtHr26aPyTHe7tfdvazNihDZvOSy4xrwywbOmF9CLwKUjozhJm2BOJbVsJbL6UxUoTClvl2kEE7afMhsx64Ul4Y_ois1tPaPybU5A6stSrAoMDBTnPScceZc6X18AMvNsjbrnqUbRXLMXDGRCWtZaag5FQsuQ3yYgk9SzIdN4FeYR2rNrwnXBpcAGlO9aJp1KiQ0ZhiJXws4lAeo8bzNwnw4fNRD_SmBYUpJMrq1p0BsoaKWj3k6x7yNOmJ3wTc7AGhxm3_cdc2VTvQNIqB_SpQow5LKzayv-dfHe4exJsn_w59Sm4zdPiI59Q3yep8tvDPgIbNzfPY3_4Alb8vtg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bT9RAFD5BfEAfRFEjijox3l66sDO9jfFlQyCLwoYgJPhgJp0b2bjpku2uCT75E_iN_BLOzLQLJZgYX5om_drOfc43M-c7AG9lirTCJshO8lxGaFKrKE9sHMmYU4kmvlbSeSPvDdL-UfzlODlegM-NL0zQh5gvuLme4cdr18HdgvT6lWoo0v0OxfmT34G7LqK3J1QHV-JRlCXB-GU0Ykj0Gl2hDbo-f7U1G90ck9v2qp9wtpfhR5PUcM7kZ2c2lR31-4aK4__m5SE8qC1R0gtN5xEsmHIFljabAHArcP-aVuFj-N4jwc2FjEuiionEZI2GihRqqInP3cWfc7cdbDQ5HY_Ofg3LsxEpQgTeT2TfLfpPnHorKUpNru-bP4Gj7a3DzX5Ux2WIVJwxHrFCUkW7OlHGWpZbzrXs4mSboe2b5YlRhnMpeWJTlcUblttCcxV3qTJoLsWpZE9hsRyX5hkQGWskbLnFcYEhVdNcM82o1pky-AOTrMLHpn6EqkXLXeyMkQhyy1RgyQlfcqvwZg49DUodt4HeuUoWdYRPvFRuDaQ6KWZVJXop93yKZvgxj3MKGaU7ghMAO98OWqAPNciOMVGqqD0aMGtOVKuFfN9CngRJ8duAay0g1rhqP24ap6jHmkpQpLCJk6lzpeVb2d_zL_a3Bv7m-b9DX8NS_3BvV-zuDL6-gHvU-X_4Y-trsDidzMxLtMqm8pXvfJdrDzPR |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZdB1v3sEu30W7tJsYufXGaSPJF61NoG9pdQuhW6GAgrFsJC06Ik0H3tJ_Q39hfsiPJTuvSwdiLMfizreu5SDrfQei1TMCtsDF4J1kmIzCpVZTFlkWScSLBxNdKumjkz_3k4Jh9OIlPltBOHQsT-CEWC25uZnh57Sb4RNvtS9JQ8PZbBNQnv4Vus6SduSG9d3TJHUVoHGxfSiIKfl5NK9Qm24tXG8roukhumqte3_QeoO91ScMxkx-t-Uy21K9rJI7_WZWH6H5lh-JuGDiP0JIpVtHd3Tr92yq6d4Wp8DH61sUhyAWPC6zyqYRSjYYK52qosa_cxe9ztxlsNJ6MR2c_h8XZCOch_-57PHBL_lPH3YrzQuOru-ZP0HFv_-vuQVRlZYgUSymPaC6JIh0dK2MtzSznWnZA1aZg-aZZbJThXEoe20SlrG25zTVXrEOUAWOJJZI-RcvFuDBrCEumwV3LLEgFCo6a5ppqSrROlYEfmHgdbdXdI1RFWe4yZ4xEIFsmAlpO-JZbR68W0Eng6bgJ9Mb1sajye8KldCsg5Wk-L0vRTbj3pkgKH_M4x49RuAM4AXD45agBeleB7BgKpfIqngGq5ii1Gsi3DeRpIBS_CbjRAEKPq-bjemyKStKUgoADGzuSOtdafpD9vf5isN_3N8_-HfoS3Rns9cSnw_7H52iFuOAPf2Z9Ay3PpnOzCSbZTL7wU-8PzUIyiQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+review+on+carboxylic+acid+cross%E2%80%90linked+polyvinyl+alcohol%3A+Properties+and+applications&rft.jtitle=Polymer+engineering+and+science&rft.au=Gautam%2C+Leela&rft.au=Warkar%2C+Sudhir+G.&rft.au=Ahmad%2C+Syed+Ishraque&rft.au=Kant%2C+Ravi&rft.date=2022-02-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0032-3888&rft.eissn=1548-2634&rft.volume=62&rft.issue=2&rft.spage=225&rft.epage=246&rft_id=info:doi/10.1002%2Fpen.25849&rft.externalDBID=10.1002%252Fpen.25849&rft.externalDocID=PEN25849 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-3888&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-3888&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-3888&client=summon |